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SIMULTANEOUS POTENTIAL AND CIRCUIT SOLUTION
FOR BOUNDED PLASMA PARTICLE SIMULATION CODES

John P. Verboncoeur, M. Virginia Alvest, and V. Vahedi
Plasma Theory and Simulation Group
University of California, Berkeley, CA 94720

Abstract

A second-order accurate method for solving the combined potential and circuit
equations in an electrostatic bounded plasma PIC simulation is presented. The
boundary conditions include surface charge on the electrodes, which are connected
to a series RLC circuit with driving terms V() and I(f). The solution is obtained for
planar, cylindrical, and spherical electrodes. The result is a tridiagonal matrix which
is readily solved using well-known methods. The method is implemented in the codes
PDP1 (Plasma Device Planar ID), PDC1 (Cylindrical), and PDS1 (Spherical).

|. INTRODUCTION

A comprehensive review of the considerations involved in bounded plasma particle simu-
lation is presented by W. S. Lawson [1]. Lawson presents a method which is second-order accurate
when ARILC 1 and RAt/L < 1, and is stable for A#2ILC < 2 and RAt/L <2. Here we improve
on the accuracy, stability, and simultaneity of the solution for potentials in a bounded one-
dimensional plasma with external circuit and driving terms.

In [1] and [2] the boundary conditions are decoupled from the potential equation. A first-
order circuit solution is used when the inductance is zero. The scheme is self-consistent when L
is non-zero and the applied (driving) potential is small compared to the space-charge potential
across the system. These conditions are violated for a large class of problems, including capac-
itively coupled RF discharges and plasma immersion ion implantation materials processing;
therefore, a new method is desired.

Particle-in-Cell (PIC) methods weight particles to a spatial grid using a particle shape factor
to obtain charge and current densities on the grid [2], For example, the code PDP1 uses the linear
weighting scheme shown in Figure 1. The field and circuit solution presented here is independent
of the weighting scheme used; we assume that the charge density is given on the spatial grid.

fPermanent address Institute for Space Research (INPE), P.O. Box 515, S. J. dos Campos, SP,
12201, Brazil; supported in part by CAPES, Ministry of Education, Brazil.



single partide density
p ve w \
\N Figure 1. PDP1 PIC with linear weighting to the
k spatial grid. The subscript /'is the particle index, /is
the grid index. For particles in a cell adjacent to an
/ electrode, the weighting must also account for the
0’ \ half width of the cell.
Ci
H J J*1 j+2

particle (cloud) location *

Figure 2. Particle weighting to a radial grid, using
area (cylindrical model) or volume (spherical model)
ratio.

1j+3/2
J2

Particles of finite size, cylindrical shells in PDC1 and spherical shells in PDS1, are placed
in a gridded system, and weighted to the grid to obtain p(r;) at the grid points. The particles are
assumed to have uniform density, so the area ofrings or the volume of shells can be used to weight
the charges to the grid as shown in Figure 2. The particle of finite width Ar is centered atr,. The
intersection between the finite particle and the grid cell determines the fraction of the particle
charge assigned to each grid node rr This is cloud-in-cell weighting, versus the particle-in-cell
weighting in [2, Figure 14-11a]. The fractions of the charge assigned to the grids are

f 2  ri-12

1
f+m ~ r?-in )

and
Ai+12 R
(2)

r?+\n~rKin



In the spherical model, the squared terms are replaced by cubic terms.

The charge density on the grid is used to solve the Poisson equation, VI> = -p/e, or the

equivalent flux conserving potential equation obtained from Gauss’ Law. Once the potentials are
known, the electric field on the grid can be obtained from E = -VO. The force on the particles is
obtained by interpolating E at each particle position using some weighting. The particle velocity
is updated using the Lorentz force equation.

ot ;FE:EOO + v.xB] (3)

The particle positions are updated using

dxi (4)
~dt
In cylindrical coordinates, Eq. (4) is
dvr mve
m—-=F4+—
dt r r
rf(rve 5
m—(——)=rpQ, and ®)

Here r, 0, and z are the cylindrical coordinates and vr = dr/dt and ve = rdQ/dt. For the cylindrical
model, B = BJ so Fr = q{Er + V0Bz), Fe = -qvJBz, and Fz = 0. Equation (5) is finite differenced to
obtain the sequence

»+A;/2_  r-All2 + AT

Y =¢+ANFY? | and 6)
r\ qB:

VA== A i+si

2mr

The latter guarantees conservation of angular momentum.



In spherical coordinates, the equation of motion becomes

d(rve) _ (7)
m———-= rth + mr sinGcosG _, and
dt ydit
d(mr sin Qdtydt
( Jt ya) =rsin 6/°,
where r, G, and <) are the spherical coordinates and v* = r sin6d<j>/dr. For the spherical model,
B =0soFa=/”=0 and Fr = qEr. Ifdtydt = 0 initially, then it remains zero. The motion is then
in a plane (j) =constant through the polar axis, in which r and G play the role of plane polar
coordinates. The angular momentum mirve is then constant, and Eq. (7) reduces to the cylindrical
case, Eq. (5).

Il. POTENTIAL EQUATION

0 /
| h

Figure 3. Configuration in planar coordinates with

Plasma series RLC circuit and voltage/current source. In
these coordinates, the particles are charge sheets
with motion in the x-direction.

surface charge

The planar, cyclindrical, and spherical configurations for one-dimensional bounded plasma
systems are shown in Figures 3 and 4. The current in the external circuit interacts with the plasma
current via surface charge on the electrodes. Similarly, the potential within the plasma region is
affected by the distribution and motion of space charge, the electrode surface charge, and the
current in the external circuit. Thus, we seek a simultaneous solution for the potential and circuit
equations.



Figure 4. Configuration in cylindrical and spherical
coordinates with series RLC circuit and volta-
ge/current source. Particles are infinite annuli with
motion in the radial direction in cylindrical

Plasma coordinates, and spherical shells with radial motion
in spherical coordinates.

surface charge

V(t) or I(t)

The boundary conditions for the potential equation are obtained by applying Gauss’ Law
to the system.

{E-ads= [Prgv£IR*TAL _ o

J J £ £ ®)

where the surface S encloses the plasma and electrodes. A+ refers to the surface area of the
positively biased (left/inner) electrode, A. to the negatively biased (right/outer) electrode, and o
is the surface charge on the respective electrode. Note that p has units of charge/volume and o
has units of charge/area. Equation (8) is a statement of Gauss’ Law; the first part reflects the
assumption of an ideal conductor connecting the electrodes to the external circuit elements, the
second part expresses conservation of charge in the system.

Applying Gauss’ Law about each node of the gridded system, and using the definition of
potential, we obtain

+Q,-i _ pj
planar
Ax? e’
r.Arl 9)
cylindrical O+1/20,+1 = 2ry<D, + ry_v2¢pj t = —-J—p,, and

spherical  rj+120y+ (f,+12+0—il)o, + _120;_j— 56



In the cylindrical and spherical forms, rjtia = rJ*tsrH. For all Eq. (9),y=Il, == , nc-I, where nc
is the number of cells in the gridded space. These results are equivalent to the flux-conserving
method of Birdsall and Langdon [2]. The planar and cylindrical result of Eq. (9) can also be
obtained by applying a central difference to the Poisson equation; the finite difference result is
different in spherical coordinates.

For a one dimensional system, the boundary conditions can be written

=0 and (10)

n

Equation (10) fixes a reference potential for the system without implying a grounded electrode.
For the cylindrical and spherical models the inner electrode is driven; the outer electrode serves
as the reference potential for the system even when the inner electrode is not present. Equation
(11) can be written at one half grid cell from the boundary in conjunction with a central difference
applied to the definition of potential to obtain

(Do-cD, if Ax
planar 12" Ax "eat+ Po2
f 2W
fop-frl
cylindrical M2 — P r. P rin o and (12)
Ar AOMR O Z
/ 3NN
. fro-fri 10 2 e’ A
spherical F = G\ +3 ri2 2
Ar ey MR

Equation (9) and its boundary conditions for the gridded system are written in a general
matrix form,

N C 0 o o' (g V
al b c 0 dr
0O a b2 c2 O d?
13
_, (13)

aiic-2 bnc-2 Cnc-2 *,,-2 dnc-2
K anc-1 Mc-1, “>~-b Anc-\2



The superscript indicates the quantity is evaluated at time . The matrix elements in planar
coordinates are

= c b ..,nc-1
b0 =-\. bj =-2, J=12,..,nc—-\;
c, =1, 7=0,1,...,nc—2;
< Po
d Ar 2’ dji=p', 7=1.2,..,nc -1 (14)
and ——
The matrix elements in cylindrical coordinates are
aj ~ rj-v2’ = 2 ,nc-1
— v ba= ~Irj> 7=1,2,.,,.,nc -1
Cj = ’j+1/2 ’ = . »-,N1C -2
Po 2 15
== s i 7=1.2,...nc -1 (15)
and = -
The matrix elements in spherical coordinates are
= = 2 ,,nc —I;
C-',oz- i: L‘_>.|. L= = _.,nc_1;
cj—rj+m> 7=Oa15-"’nc -=: (16)
d0— 30~r0 + po(ri/2 o), dj = (rj+\i2~ rj-\n)Pj > 7=1,2,..,nCc —i;
P Ar
and =4

When the center conductor is not present in the curvilinear models, the boundary conditions
must be modified. From Gauss’ Law, the electric field at the origin must be zero. Integrating
Gauss’ Law from the origin to r = r12, we obtain the modified form of Eq. (12) for the hollow
cylindrical system [2, Section 14-10],



~ro-~i ifPo A
A —
= A vl

The coefficients are still given by Eq. (15), with the modification that

Po
d°~2Arrm (18)

The modification of Eq. (16) for removal of the center electrode in the spherical system is similarly

19
“0 — Por1f2 + (19)

CIRCUIT

The external circuit is coupled toEgs. (13)-(16) through conservation of charge at each wall,

AAo = QUH + AQ , (20)

where Qeonv is the charge deposited by the convection (particle) current and AQ is the charge
deposited by the external circuit current, both over some interval in time. Equation (20) is applied
at the positively biased electrode as shown in Figures 3 and 4, guaranteeing conservation ofcharge
at all times. The same logic can also be applied to the other electrode; however, the surface charge
on the second electrode is determined readily from Eq. (8) when the first surface charge is known.
The charge conservation equation becomes

QM+ Q-Q"*
o'=a"A +- @1

where Q is the charge on one plate of the external circuit capacitor. An alternate method of
coupling the circuit to the potential matrix is applying continuity of current (Kirchhoff’s Current
Law) at the boundary [2, Section 16-9],

da / (22)
dt conv A’

where JO0HV is the plasma convection current at the electrode. The methods are equivalent when
a first-order backward difference is used for da/dt and I = dQ/dt. Since Qconv is in general a noisy
quantity in a particle simulation, any other quantity in Eqgs. (20) and (22) will contain similar noise.
Thus Eq. (20) causes the wall charge a to be noisy as might be expected, because the capacitor
charge reacts to the particle convection current only through the wall charge; i.e., particles absorbed



by the wall contribute immediately to o, but the charge drains slowly to the capacitor through
currents. It can be shown that Eq. (22) results in the convection current being absorbed gradually
into a, so the noise is induced in the capacitor charge Q (and consequently in the external current
) to satisfy conservation of charge. Therefore we use the conservation of charge method of Eq.
(20).

lll. GENERAL SERIES RLC CIRCUIT

Fourcases cover the full range of external circuit parameters. Forthe general voltage-driven
series RLC circuit, the capacitor charge Q is advanced using Kirchhoff’s Voltage Law,

Td2Q ndQ Q n
LTT+*77+r V()+0" <Dn (23)
dr dt C

The polarity of the source and resultant positive current are shown in Figures 3 and 4. The
general circuit equation is finite differenced using the second-order backward Eulerrepresentation
of the first derivative,

(dQr  3{2'-4{2"A + ("W (24)
Jh j ~ 2At ’

and the second derivative,

Vve"  3{dQ/dt) - AjdQldt1-*+ {dQIdt) -2
{dt2) At 25)

2Q + 22Q~ " + Q=
AAL

The latter is obtained by a second application of the first derivative to Q. An alternate 4 point
difference for the second derivative is given by:

VgyY 2Q°5Q-*+4Q°-~Q-A

[dt2) A (26)

The charge on the capacitor is not known at £ Combining Egs. (23)-(25), we obtain

‘

_ VioO + M=-"r0o-K
Oo



where

= + CNPE 4 gl A

9L 3R j_
C~4ATI + 2AT +C

R
ai-~6TT2~2~"
A/ “Ar (28)

"ML IR
(X2~ 2 At2 +2At°

600 = —2—r ,and
Ar2

1L

a4 = ————._

4 A2

Combining the potential equation results, Egs. (13)-(16), with the circuit equation results,
Egs. (27) and (28), using the boundary condition, Eq. (21), we obtain the self consistent field
solution matrix for the voltage-driven series RLC circuit case. The matrix can still be represented
by Eq. (13), replacing elements of Egs. (14)-(16) as follows. In the planar model,

Ax
bn = = \-—--—---—--and
OoEA

0
(29)
[-N . V{O)-KN
‘é’n= P_O+_____+. 1 o -O" + 0
Ax  AAx Oo
In the cylindrical model.
. Ar
0" rm Inecion @and
(30)
" ' - -+ ?
B R - M
In the spherical model,
b I Ar d
- I an
" Atiea
, (31)
d) = ('m~m)Po+3riV+ A+ | _Q—_+rrm»=i
xZ-conv xC
a0
v

10



Here, A is area of the planar electrodes and h is axial length ofthe cylindrical system. The solution
is then self-consistent and second-order accurate for the general circuit case. The matrix can be
solved using any algorithm optimized for tridiagonal matrices [3].

IV. OPEN CIRCUIT (FLOATING OUTER ELECTRODE)

When C —»0, the impedance of the external circuit approaches infinity, becoming an open
circuit. The potentials on the boundaries are floating; no circuit solution is required since there
is no external current. The surface charges on the electrodes influence the potential as always,
but the electrodes cannot exchange charge via external current. In this case, the field solution is
given by Egs. (13)-(16), with

(32)
V. SHORT-CIRCUIT
When R-L=0 and C —» the external circuit is a short, with
No-" = V(). (33)
The short-circuit case is applied in practice when
planar
cylindrical (34)
spherical
where / is the length of the planar plasma region.
The field solution is still given by Egs. (13)-(16), with
—bQ—Co—d0—0, (35)

and



A . rxaV{t
cylindrical vy (36)

rtnVjt)
spherical —(rm nrn)P\

Equation (35) eliminates the first row of Eq. (13). In Eq. (36),/depends on the model as
given in Egs. (14)-(16). Note that the wall charge is no longer required to solve the potential
equation. Wall charge is found using Eq. (12) once the potentials have been determined, and the
current is found by finite differencing Eq. (22),

cf-o' (37)
At

ra=A

Determining the current in this way produces a noisy result as discussed above; however, with a
short between electrodes, we expect large currents with rapid changes since potential differences
cannot exist along an ideal conductor. Note that here I is only a diagnostic quantity, so the
time-centering is not a problem.

VI. CURRENT-DRIVEN CIRCUIT

The final case is the current-driven external circuit. An ideal current source is assumed
which can drive the specified time-varying current I(t). The external circuit elements R, L, and
C are ignored since an ideal current source is an open circuit. Then Egs. (13)-(16) are applied
with the wall charge found by finite differencing Eq. (22) for diagnostic purposes.

VIl. INITIAL CONDITIONS

The multi-point finite difference methods require initial values for the Qn, where n <O.
Physically, these values are used to obtain the desired initial conditions for the circuit equation,
Eq. (23). Forexample, the initial charge on the capacitor, Q°, and the initial current in the external
circuit, 7°, form a complete set of initial conditions for the differential equation. However, the
finite difference requires five initial values for Q (four for the 4-point method). There are several
ways the conditions can be obtained.

The traditional method for starting a multi-point scheme (second or higher order accurate)
is to use a 2-point method (first order accurate) to obtain the required initial values. A smaller
timestep is used with the 2-point method to maintain the same accuracy. This presents a problem
for a PIC code; the time-centered mover is initialized such that positions are known at integral



timesteps, while velocities are known at half timesteps [2]. Thus, it is difficult to switch to a new
At and maintain the time centering. Also, switching schemes is inefficient from a coding stand-
point. In addition, the stability of the starter method must be considered in relation to the circuit
parameters R, L, and C.

Another method of initializing the solver is to solve the circuit equations analytically. To
do this, we must replace the plasma by a known impedance. Using the vacuum capacitance of
the plasma region is the obvious choice; physically, this means there is no plasma until r=0+. If
plasma is then introduced, the impedance changes abruptly and the circuit has been conditioned
for a different system. This problem is less severe when the plasma is generated at a slow rate
since the impedance change is gradual.

If the method turns out to be stable, the initial conditions will be damped regardless of the
value (this includes desired initial conditions as well as error in the initial conditions). If the
method is unstable, any error in the initial conditions grows exponentially. If the method is
marginally stable, any error in the initial conditions remains in the solution, neither growing nor
damping.

VIIl. STABILITY

We now explore stability of the circuit equation, Eq. (27). As is customary for stability
analysis [4], we neglect the driving terms and study the homogeneous circuit equation

38
2 dt C (38)

We study the stability of the 5-point circuit difference, Eqgs. (24)-(25), as well as the 4-point
difference, Eq. (24) and (26).

In the limit of no inductance, L 0, both methods produce

(39)
Letting Q' -Q0er and " = elAt we obtain
Q,=PQ-“=D2Q~U, (40)
where | * 1 is required for stability. Here, y and * are arbitrary complex variables. Then the
characteristic stability equation for Eq. (39) is
A2(3 + 2At/RC) -4+ 1=0. 41)

13



The roots are

2+ V1 -2Al7C (42)
3+2A2C

UNSTABLE
STABLE
08 -

Figure 5. Stability roots in the limit L —»0. Since
|M|<1 everywhere, the method is stable. The
scheme can only follow the RC time when A/ < RCI2.

06 -

0.001

As shown in Figure 5, both methods are stable in the limit L — 0 for all positive, real At/RC.

Now we attack the more difficult general case. The general characteristic stability equations
for the four and five point schemes are respectively

2+Ri+x N~ (54 2xi)+ 4+ 5
/ v -

1 =0 and (43)

A(Q + BXj + aX2) = A3(24 + 8XJ + 7222+ 2X!) =87 + 1 =0, (44)

where the normalized times are xI = RAt/L and x2 = At/AJLC. We obtain the roots of Eq. 31 using

the Lin-Bairstow method [5], which gives the complex roots of polynomials. Figures 6 and 7
show the stability of the four and five point methods, respectively, for a wide range of X! and x2.

14



(@)

(c)

(a)

15

Figure 6. Magnitude of the three roots of the four
point method, whose characteristic equation is Eq.
(43). Sinceforallthreeroots,|li2i3|< 1, the four point

difference method is stable over the range shown.



Figure 7. Magnitude of the four stability roots of the five point method, whose characteristic
equation is Eq. (44). Since all four roots, | |< 1, the five point difference scheme is stable

over the range shown.

IX. SIMULATION ACCURACY

As discussed above, the circuit and field solution is second-order accurate. We now dem-
onstrate the accuracy of the five point circuit as implemented in the code, PDP1. To compare the
simulation results with analytic circuit theory, the permittivity of the plasma region is taken as
1020 and no plasma is used. Then we have a passive voltage-driven series RLC circuit. The current

for a sinusoidal driving voltage V = sin((or + 0) can be predicted using

L a2V/(uZ) cos(0 — 5) + VIZ sin(0 - 5)

expCfljf
aMax -1 PCAf)
(45)
a,W(coZ)cos(0 - 5) + VIZ sin(0 - 5) _
exp(azr) + —sin(cor + 0 - 5),
axla? -1 a1
where (0 is the angular frequency of the voltage, 0 is the initial phase of the voltage, and
\Y
coL -
coC
. coL = 1/(coC)
8 = asin
Vv
R rv 1 (46)

3, =-2L+ y ALT ZC"3"1



1L LC'

peak at f=1/2 TtMHz

1.01063E+007

Figure 8. The frequency spectrum of the steady-state current obtained from PDP1.

We choose /? =1, C =5 x ICT6, L = KT6, and to = 106, and initial conditions (2(0)=0 and /(0)=0.
The code PDP1, using the same parameters and timestep A/0 = 27t/128co, gives the results shown

in Figures 8 and 9. Here, tj = 0.049 and x2 = 0.022 for the baseline case. Note that the t scale
with Ar/Ar0.

From the frequency spectrum of the current shown in Figure 8, we see the driven frequency
peak is six orders of magnitude larger than the magnitude at other frequencies, indicating nearly
a pure sinusoid. Since PDP1 stores results in single precision (32 bits), we expect roundoff error
in the sixth or seventh significant digit, so the powers less than 107 are neglible. Comparing the
phases I(t), we see the the PDP1 results follow Eq. (45) closely, with increasing phase error as Ar
increases. From the history of the current, we see the initial transient due to the charging of the
capacitor from (2(0)=0.

17



Exact
———————— Af/ Armn =1

1.25664E-005

Figure 9. PDP1 output for vottage-driven series RLC circuit. The exact current predicted by
Eq. (45) compared to the results of the PDP1 circuit solver at various ratios of A/A/0 where

Ar0 = 211/(128c0). Note the transient charging of the external capacitor.

0.03 -

0.02 -

0.01 -

Figure 10. The relative error, | (/,~-WVi)//,™ |, versus A//A/l compared with a powerfit. The
exponent of the best power fit is 1.94.

18



The relative error, plotted in Figure 10, follows the curve 0.00158(Ar)1% closely. An ideal

second order accurate scheme would resultin a power fit exponent of 2. This demonstrates second
order accuracy, with errors resulting from truncation of the finite difference at A/2 terms.

X. CONCLUSION

A method for the simultaneous solution of the coupled potential and external circuit
equations for one-dimensional electrostatic plasma particle simulations is presented. The method
is stable over many orders of magnitude for the values of the RLC circuit elements, and can in
principle be extended to arbitrary external circuits.

The method is implemented in the codes PDP1 (Plasma Device Planar 1 Dimension), PDC1
(Cylindrical), and PDS1 (Spherical)!l. These codes have been used to simulate many complete
bounded plasma devices [6-11], including voltage-driven RF discharges, plasma immersion ion
implantation devices, and Q-machines. The codes have performed reliably, generating many
interesting discussions and discoveries.
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