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SIMULTANEOUS POTENTIAL AND CIRCUIT SOLUTION 
FOR BOUNDED PLASMA PARTICLE SIMULATION CODES

John P. Verboncoeur, M. Virginia Alvest, and V. Vahedi 
Plasma Theory and Simulation Group 

University of California, Berkeley, CA 94720

Abstract

A second-order accurate method for solving the combined potential and circuit 
equations in an electrostatic bounded plasma PIC simulation is presented. The 
boundary conditions include surface charge on the electrodes, which are connected 
to a series RLC circuit with driving terms V(t) and I(t). The solution is obtained for 
planar, cylindrical, and spherical electrodes. The result is a tridiagonal matrix which 
is readily solved using well-known methods. The method is implemented in the codes 
PDP1 (Plasma Device Planar ID), PDC1 (Cylindrical), and PDS1 (Spherical).

I. INTRODUCTION
A comprehensive review of the considerations involved in bounded plasma particle simu­

lation is presented by W. S. Lawson [1]. Lawson presents a method which is second-order accurate 
when At2!LC 1 and RAt/L < 1, and is stable for At2!LC < 2 and RAt/L < 2. Here we improve 
on the accuracy, stability, and simultaneity of the solution for potentials in a bounded one­
dimensional plasma with external circuit and driving terms.

In [1] and [2] the boundary conditions are decoupled from the potential equation. A first- 
order circuit solution is used when the inductance is zero. The scheme is self-consistent when L 
is non-zero and the applied (driving) potential is small compared to the space-charge potential 
across the system. These conditions are violated for a large class of problems, including capac- 
itively coupled RF discharges and plasma immersion ion implantation materials processing; 
therefore, a new method is desired.

Particle-in-Cell (PIC) methods weight particles to a spatial grid using a particle shape factor 
to obtain charge and current densities on the grid [2], For example, the code PDP1 uses the linear 
weighting scheme shown in Figure 1. The field and circuit solution presented here is independent 
of the weighting scheme used; we assume that the charge density is given on the spatial grid.

fPermanent address Institute for Space Research (INPE), P.O. Box 515, S. J. dos Campos, SP, 
12201, Brazil; supported in part by CAPES, Ministry of Education, Brazil.
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Figure 1. PDP1 PIC with linear weighting to the 
spatial grid. The subscript /'is the particle index, /is 
the grid index. For particles in a cell adjacent to an 
electrode, the weighting must also account for the 
half width of the cell.

particle (cloud) location ^

rj+3/2

J+2

Figure 2. Particle weighting to a radial grid, using 
area (cylindrical model) or volume (spherical model) 
ratio.

Particles of finite size, cylindrical shells in PDC1 and spherical shells in PDS1, are placed 
in a gridded system, and weighted to the grid to obtain p(r;) at the grid points. The particles are 
assumed to have uniform density, so the area of rings or the volume of shells can be used to weight 
the charges to the grid as shown in Figure 2. The particle of finite width Ar is centered at r,. The 
intersection between the finite particle and the grid cell determines the fraction of the particle 
charge assigned to each grid node rr This is cloud-in-cell weighting, versus the particle-in-cell 
weighting in [2, Figure 14-1 la]. The fractions of the charge assigned to the grids are

rj +1/2 ri - 1/2

rf+m ~ r?-in
(1)

and
ri + 1/2 rj + 1/2 

r?+\n~ rKin
(2)

2



In the spherical model, the squared terms are replaced by cubic terms.

The charge density on the grid is used to solve the Poisson equation, V2<I> = -p/e, or the 
equivalent flux conserving potential equation obtained from Gauss’ Law. Once the potentials are 
known, the electric field on the grid can be obtained from E = -VO. The force on the particles is 
obtained by interpolating E at each particle position using some weighting. The particle velocity 
is updated using the Lorentz force equation.

dt
-[EOO + v.xB] 
m:

(3)

The particle positions are updated using

dxi
~dt

In cylindrical coordinates, Eq. (4) is

dvr mve
m — = F+-----

dt r r

rf(rve)
m —-— = rpQ , and

(4)

(5)

Here r, 0, and z are the cylindrical coordinates and vr = dr/dt and ve = rdQ/dt. For the cylindrical 
model, B = BJ so Fr = q{Er + VqBz), Fe = -qvJBz, and Fz = 0. Equation (5) is finite differenced to 
obtain the sequence

»+A;/2_ r-A//2 + AfW F‘̂
--------- + —

m

/ + A/ / , * „ t + A//2 ,r = r + A/vr , and
(6)

vrA'=-
r\
./ +A/

qBz

2m r i+si

The latter guarantees conservation of angular momentum.

3



In spherical coordinates, the equation of motion becomes

dvr r ™(ve + v*)
m — = Fr+--------------

dt r

d(rve)
m—-— = rFn + mr sinGcosG 

dt 9 ydtj
, and

(7)

d(mr sin Qdtydt) 
Jt = r sin 6/^ ,

where r, G, and <}) are the spherical coordinates and v^ = r sin6d<j>/dr. For the spherical model, 
B = 0 so Fq = /^ = 0 and Fr = qEr. If dtydt = 0 initially, then it remains zero. The motion is then 
in a plane (j) =constant through the polar axis, in which r and G play the role of plane polar 
coordinates. The angular momentum mrve is then constant, and Eq. (7) reduces to the cylindrical 
case, Eq. (5).

II. POTENTIAL EQUATION
0 /
I--------------------------------------- h

Plasma

surface charge

Figure 3. Configuration in planar coordinates with 
series RLC circuit and voltage/current source. In 
these coordinates, the particles are charge sheets 
with motion in the x-direction.

The planar, cyclindrical, and spherical configurations for one-dimensional bounded plasma 
systems are shown in Figures 3 and 4. The current in the external circuit interacts with the plasma 
current via surface charge on the electrodes. Similarly, the potential within the plasma region is 
affected by the distribution and motion of space charge, the electrode surface charge, and the 
current in the external circuit. Thus, we seek a simultaneous solution for the potential and circuit 
equations.

4



Plasma

surface charge

V(t) or I(t)

Figure 4. Configuration in cylindrical and spherical 
coordinates with series RLC circuit and volta­
ge/current source. Particles are infinite annuli with 
motion in the radial direction in cylindrical 
coordinates, and spherical shells with radial motion 
in spherical coordinates.

The boundary conditions for the potential equation are obtained by applying Gauss’ Law 
to the system.

f fp A+g+ + Ajg_\E-dS= \ ^dV+-^--------- = 0,
J J £ £ (8)

where the surface S encloses the plasma and electrodes. A+ refers to the surface area of the 
positively biased (left/inner) electrode, A. to the negatively biased (right/outer) electrode, and o 
is the surface charge on the respective electrode. Note that p has units of charge/volume and o 
has units of charge/area. Equation (8) is a statement of Gauss’ Law; the first part reflects the 
assumption of an ideal conductor connecting the electrodes to the external circuit elements, the 
second part expresses conservation of charge in the system.

Applying Gauss’ Law about each node of the gridded system, and using the definition of 
potential, we obtain

planar
+ Q,-i _ pj

Ax2 e ’

cylindrical
r.Ar2

0+1/2O,+1 - 2ry<D, + ry _ v2<t>j _ t = -J— p,, and

spherical rj + 1/2Oy+j (f, +1/2 + 0 -1/2)0, + _ 1/20; _ j —
3e Py-

(9)

5



In the cylindrical and spherical forms, rj±ia = r]±tsrH. For all Eq. (9),y=l, 2,nc-l, where nc
is the number of cells in the gridded space. These results are equivalent to the flux-conserving 
method of Birdsall and Langdon [2]. The planar and cylindrical result of Eq. (9) can also be 
obtained by applying a central difference to the Poisson equation; the finite difference result is 
different in spherical coordinates.

For a one dimensional system, the boundary conditions can be written

= 0 and (10)

(11)

Equation (10) fixes a reference potential for the system without implying a grounded electrode. 
For the cylindrical and spherical models the inner electrode is driven; the outer electrode serves 
as the reference potential for the system even when the inner electrode is not present. Equation 
(11) can be written at one half grid cell from the boundary in conjunction with a central difference 
applied to the definition of potential to obtain

planar

cylindrical

spherical

(Do-cD, if Ax 
1/2" Ax "ea+ + Po2

^1/2 —
fop-frl

Ar

f 2 Wro Pp ro
^ M/2 Z rin

\
and

F =
frp-fri 1 

Ar e

( 2 _ / 3 NN
ro Po r0

Gv +3~
y M/2

ri/2 2

(12)

Equation (9) and its boundary conditions for the gridded system are written in a general 
matrix form,

\ C0 0 • ■ (*0)t ( d vuo
al bx cx 0 dr
0 a2 b2 c2 0 d2

. = /

aiic-2 bnc-2 Cnc-2 *„-2 dnc-2
K anc - 1 ^nc -1, ^ - b ^nc-\2

(13)

6



The superscript indicates the quantity is evaluated at time t. The matrix elements in planar 
coordinates are

and

ii n s> ..,nc -1 ;

b0 = -\. bj = —2, j = 1,2,. ..,nc — \ ;

c, = 1 , .7 = 0,1,. .., nc — 2 ;

< Po 
d* Ar 2 ’ dj = p', 7 = 1,2,. ..,nc - 1 ;

n -k
The matrix elements in cylindrical coordinates are

and

aj ~ rj-V2 ’

C
NII
> ,.,nc -1

— rV2 > bi= ~lrj > 7 = 1,2,.,,.,nc -1

cj = rj +1/2 >

o'II ,.,nc -2

V
II Po 2

2a/ 1/2 n 7 = 1,2,. ..,nc -1
iii

(14)

(15)

The matrix elements in spherical coordinates are

g
-

o II 1

A*
- II II 5 +

1--- II II to
 to ,.,nc

..,nc

-l;

-1;

cj — rj + m > 7=0,1,. ..,nc -2; (16)
d0 — 3o^r0 + po(^i/2 ^o), dj = (rj + \i2~ rj-\n)Pj > 7 = 1,2,. ..,nc -i;

and / = -
Ar 
3e '

When the center conductor is not present in the curvilinear models, the boundary conditions 
must be modified. From Gauss’ Law, the electric field at the origin must be zero. Integrating 
Gauss’ Law from the origin to r = r1/2, we obtain the modified form of Eq. (12) for the hollow 
cylindrical system [2, Section 14-10],

7



(17)^1/2 —
^o-^i if Po ^

Ar ? 1/2 Vz 7

The coefficients are still given by Eq. (15), with the modification that

Po
d° ~ 2Ar rm (18)

The modification of Eq. (16) for removal of the center electrode in the spherical system is similarly

(19)
“o — Por 1/2 •

CIRCUIT

The external circuit is coupled toEqs. (13)-(16) through conservation of charge at each wall,

AAo = QCOHV + AQ , (20)

where Qconv is the charge deposited by the convection (particle) current and AQ is the charge 
deposited by the external circuit current, both over some interval in time. Equation (20) is applied 
at the positively biased electrode as shown in Figures 3 and 4, guaranteeing conservation of charge 
at all times. The same logic can also be applied to the other electrode; however, the surface charge 
on the second electrode is determined readily from Eq. (8) when the first surface charge is known. 
The charge conservation equation becomes

o' = a'“A' + -
Q^ + Q'-Q"*

(21)

where Q is the charge on one plate of the external circuit capacitor. An alternate method of 
coupling the circuit to the potential matrix is applying continuity of current (Kirchhoff’s Current 
Law) at the boundary [2, Section 16-9],

da / (22)
dt conv A ’

where JCOHV is the plasma convection current at the electrode. The methods are equivalent when 
a first-order backward difference is used for da/dt and I = dQ/dt. Since Qconv is in general a noisy 
quantity in a particle simulation, any other quantity in Eqs. (20) and (22) will contain similar noise. 
Thus Eq. (20) causes the wall charge a to be noisy as might be expected, because the capacitor 
charge reacts to the particle convection current only through the wall charge; i.e., particles absorbed

8



by the wall contribute immediately to o, but the charge drains slowly to the capacitor through 
currents. It can be shown that Eq. (22) results in the convection current being absorbed gradually 
into a, so the noise is induced in the capacitor charge Q (and consequently in the external current 
I) to satisfy conservation of charge. Therefore we use the conservation of charge method of Eq. 
(20).

III. GENERAL SERIES RLC CIRCUIT
Four cases cover the full range of external circuit parameters. For the general voltage-driven 

series RLC circuit, the capacitor charge Q is advanced using Kirchhoff’s Voltage Law,

Td2Q n dQ Q ^
LTT+*^77 + r V(r) + 0'‘

dr dt C
<Dn (23)

The polarity of the source and resultant positive current are shown in Figures 3 and 4. The 
general circuit equation is finite differenced using the second-order backward Euler representation 
of the first derivative,

(dQ^ 3{2'-4{2"A' + (2'“2A' (24)
Jh j ~ 2At ’

and the second derivative,

Ve"
{dt2)

3{dQ/dt)‘ - AjdQldt)1-* + {dQldt)'-2^ 
2At

9Q‘ + 22Q‘~2A‘ + Q‘~^
AAt2

(25)

The latter is obtained by a second application of the first derivative to Q. An alternate 4 point 
difference for the second derivative is given by:

VgY
[dt2)

2Q'5Q-* + 4Q'-^Q'-^

At2
(26)

The charge on the capacitor is not known at t. Combining Eqs. (23)-(25), we obtain

Q‘ =
ViO + ^-^o-K1

Oo
(27)

9



where

r = + c^'"3* + a4<2

_9L_ 3R_ j_ 
Ct<)~4Ar2 + 2Ar + C ’

v(-4A(

ai-~6TT2~2~^
R_

A/2 Ar 
11 L IR 

(X2~ 2 At2 +2At ’

(28)

GCo = —2—r ,and 
Ar2
1 L

a4 = -—-.

4 A/2

Combining the potential equation results, Eqs. (13)-(16), with the circuit equation results, 
Eqs. (27) and (28), using the boundary condition, Eq. (21), we obtain the self consistent field 
solution matrix for the voltage-driven series RLC circuit case. The matrix can still be represented 
by Eq. (13), replacing elements of Eqs. (14)-(16) as follows. In the planar model,

Ax
bn = -\---------and

OoEA

w Po 1
dn= —+ —----+ -

Ax AAx
O' -O'" +

/ - a/ , V{t)-K^

Oo

(29)

In the cylindrical model.

, __ Ar 
0 rm Inecioh and

, ''1/2-'•o Po + Ar ^ +2^ , _Q,-«+mz?L
x^conv x-* ^

^0

(30)

In the spherical model,

bn — I'1/2
Ar

d0 = (’'m ~ ro3)Po + 3r0V+_Ai + ^

47iea0

/

and

, _Q-.+mzi
xZ-conv xC

^0V

(31)

10



Here, A is area of the planar electrodes and h is axial length of the cylindrical system. The solution 
is then self-consistent and second-order accurate for the general circuit case. The matrix can be 
solved using any algorithm optimized for tridiagonal matrices [3].

IV. OPEN CIRCUIT (FLOATING OUTER ELECTRODE)
When C —»0, the impedance of the external circuit approaches infinity, becoming an open 

circuit. The potentials on the boundaries are floating; no circuit solution is required since there 
is no external current. The surface charges on the electrodes influence the potential as always, 
but the electrodes cannot exchange charge via external current. In this case, the field solution is 
given by Eqs. (13)-(16), with

(32)

V. SHORT-CIRCUIT
When R-L=0 and C —» the external circuit is a short, with

^o-^ = V(r). (33)

The short-circuit case is applied in practice when

planar

cylindrical (34)

spherical

where / is the length of the planar plasma region.

The field solution is still given by Eqs. (13)-(16), with

— bQ — Cq — d0 — 0 , (35)

and

11



cylindrical
^ , rxaV{t)

---------- —-
(36)

spherical — (rm r\n)P\
rtnVjt)

f

Equation (35) eliminates the first row of Eq. (13). In Eq. (36),/depends on the model as 
given in Eqs. (14)-(16). Note that the wall charge is no longer required to solve the potential 
equation. Wall charge is found using Eq. (12) once the potentials have been determined, and the 
current is found by finite differencing Eq. (22),

r*a=A cf-o'
At

(37)

Determining the current in this way produces a noisy result as discussed above; however, with a 
short between electrodes, we expect large currents with rapid changes since potential differences 
cannot exist along an ideal conductor. Note that here I is only a diagnostic quantity, so the 
time-centering is not a problem.

VI. CURRENT-DRIVEN CIRCUIT
The final case is the current-driven external circuit. An ideal current source is assumed 

which can drive the specified time-varying current I(t). The external circuit elements R, L, and 
C are ignored since an ideal current source is an open circuit. Then Eqs. (13)-(16) are applied 
with the wall charge found by finite differencing Eq. (22) for diagnostic purposes.

VII. INITIAL CONDITIONS
The multi-point finite difference methods require initial values for the Qn, where n <0. 

Physically, these values are used to obtain the desired initial conditions for the circuit equation, 
Eq. (23). For example, the initial charge on the capacitor, Q°, and the initial current in the external 
circuit, 7°, form a complete set of initial conditions for the differential equation. However, the 
finite difference requires five initial values for Q (four for the 4-point method). There are several 
ways the conditions can be obtained.

The traditional method for starting a multi-point scheme (second or higher order accurate) 
is to use a 2-point method (first order accurate) to obtain the required initial values. A smaller 
timestep is used with the 2-point method to maintain the same accuracy. This presents a problem 
for a PIC code; the time-centered mover is initialized such that positions are known at integral



timesteps, while velocities are known at half timesteps [2]. Thus, it is difficult to switch to a new 
At and maintain the time centering. Also, switching schemes is inefficient from a coding stand­
point. In addition, the stability of the starter method must be considered in relation to the circuit 
parameters R, L, and C.

Another method of initializing the solver is to solve the circuit equations analytically. To 
do this, we must replace the plasma by a known impedance. Using the vacuum capacitance of 
the plasma region is the obvious choice; physically, this means there is no plasma until r=0+. If 
plasma is then introduced, the impedance changes abruptly and the circuit has been conditioned 
for a different system. This problem is less severe when the plasma is generated at a slow rate 
since the impedance change is gradual.

If the method turns out to be stable, the initial conditions will be damped regardless of the 
value (this includes desired initial conditions as well as error in the initial conditions). If the 
method is unstable, any error in the initial conditions grows exponentially. If the method is 
marginally stable, any error in the initial conditions remains in the solution, neither growing nor 
damping.

VIII. STABILITY
We now explore stability of the circuit equation, Eq. (27). As is customary for stability 

analysis [4], we neglect the driving terms and study the homogeneous circuit equation

2 dt C
(38)

We study the stability of the 5-point circuit difference, Eqs. (24)-(25), as well as the 4-point 
difference, Eq. (24) and (26).

In the limit of no inductance, L 0, both methods produce

(39)

Letting Q' -Q0er and ^ = elAt we obtain

q,=z>q‘-“ = z>2q‘~2A1 , (40)

where | ^ 1 is required for stability. Here, y and ^ are arbitrary complex variables. Then the
characteristic stability equation for Eq. (39) is

^2(3 + 2At/RC) - 4^ + 1 = 0 . (41)

13



The roots are

2 ± V1 - 2A///? C (42)
3 + 2A///? C '

UNSTABLE

STABLE

0.8 -

0.6 -

0.001

Figure 5. Stability roots in the limit L —»0. Since 
| ^ |< 1 everywhere, the method is stable. The 
scheme can only follow the RC time when A/ < RCI2.

As shown in Figure 5, both methods are stable in the limit L —> 0 for all positive, real At/RC.

Now we attack the more difficult general case. The general characteristic stability equations 
for the four and five point schemes are respectively

A ^ 1 ^
-1=0 and

/ v - •
2+hi+x^]~ ^2(5+2xi)+^f4+^ x>

^(9 + 6Xj + 4X2) - ^3(24 + 8XJ + ^2(22 + 2X!) - 8^ + 1 = 0 ,

(43)

(44)

where the normalized times are xl = RAt/L and x2 = At/^jLC. We obtain the roots of Eq. 31 using

the Lin-Bairstow method [5], which gives the complex roots of polynomials. Figures 6 and 7 
show the stability of the four and five point methods, respectively, for a wide range of X! and x2.
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(a) (b)

Figure 6. Magnitude of the three roots of the four 
point method, whose characteristic equation is Eq. 
(43). Sinceforallthreeroots,|^li2i3|< 1, the four point 
difference method is stable over the range shown.

(c)

(a) (b)
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Figure 7. Magnitude of the four stability roots of the five point method, whose characteristic 
equation is Eq. (44). Since all four roots, | |< 1, the five point difference scheme is stable

over the range shown.

IX. SIMULATION ACCURACY
As discussed above, the circuit and field solution is second-order accurate. We now dem­

onstrate the accuracy of the five point circuit as implemented in the code, PDP1. To compare the 
simulation results with analytic circuit theory, the permittivity of the plasma region is taken as 
1020 and no plasma is used. Then we have a passive voltage-driven series RLC circuit. The current 
for a sinusoidal driving voltage V = sin((or + 0) can be predicted using

1 =
a2V/(uZ) cos(0 - 5) + VIZ sin(0 - 5)

a^/ax -1

a,W(coZ)cos(0 - 5) + VIZ sin(0 - 5) 
axla2 -1

expCfljf)

exp(a2r) + — sin(cor + 0 - 5),
JL/

(45)

where (0 is the angular frequency of the voltage, 0 is the initial phase of the voltage, and

V
coL -

coC

8 = asin
coL - l/(coC)

V

a, =-
r ri
2L + y AL

1
iTZc'3"11

(46)
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a2 =
R_
1L

1

LC '

peak at f=1/2 TtMHz

1.01063E+007

Figure 8. The frequency spectrum of the steady-state current obtained from PDP1.

We choose /? = 1, C = 5 x ICT6, L = KT6, and to = 106, and initial conditions (2(0)=0 and /(0)=0. 
The code PDP1, using the same parameters and timestep A/0 = 27t/128co, gives the results shown 
in Figures 8 and 9. Here, tj = 0.049 and x2 = 0.022 for the baseline case. Note that the t scale 
with Ar/Ar0.

From the frequency spectrum of the current shown in Figure 8, we see the driven frequency 
peak is six orders of magnitude larger than the magnitude at other frequencies, indicating nearly 
a pure sinusoid. Since PDP1 stores results in single precision (32 bits), we expect roundoff error 
in the sixth or seventh significant digit, so the powers less than 10'7 are neglible. Comparing the 
phases I(t), we see the the PDP1 results follow Eq. (45) closely, with increasing phase error as Ar 
increases. From the history of the current, we see the initial transient due to the charging of the 
capacitor from (2(0)=0.
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1

Exact
--------Af/ Arn = 1

1.25664E-005

Figure 9. PDP1 output for vottage-driven series RLC circuit. The exact current predicted by 
Eq. (45) compared to the results of the PDP1 circuit solver at various ratios of A//A/0 where

Ar0 = 2ti/(128co). Note the transient charging of the external capacitor.

0.03 -

0.02 -

0.01 -

Figure 10. The relative error, | (/,^-Wi)//,^ I, versus A//A/0 compared with a power fit. The 

exponent of the best power fit is 1.94.
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The relative error, plotted in Figure 10, follows the curve 0.00158(Ar)194 closely. An ideal 
second order accurate scheme would result in a power fit exponent of 2. This demonstrates second 
order accuracy, with errors resulting from truncation of the finite difference at A/2 terms.

X. CONCLUSION
A method for the simultaneous solution of the coupled potential and external circuit 

equations for one-dimensional electrostatic plasma particle simulations is presented. The method 
is stable over many orders of magnitude for the values of the RLC circuit elements, and can in 
principle be extended to arbitrary external circuits.

The method is implemented in the codes PDP1 (Plasma Device Planar 1 Dimension), PDC1 
(Cylindrical), and PDS1 (Spherical)1. These codes have been used to simulate many complete 
bounded plasma devices [6-11], including voltage-driven RF discharges, plasma immersion ion 
implantation devices, and Q-machines. The codes have performed reliably, generating many 
interesting discussions and discoveries.
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