skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Characterization of heterogeneous nickel sites in CO dehydrogenase from Clostridium thermoaceticum by nickel L-edge x-ray spectroscopy

Technical Report ·
DOI:https://doi.org/10.2172/603654· OSTI ID:603654
 [1]; ;  [2]
  1. Univ. of California, Davis, CA (United States)
  2. Univ. of Nebraska, Lincoln, NE (United States); and others

L-edge x-ray absorption spectroscopy (XAS) is a useful spectroscopic technique for determining the electronic state of transition metals. For first row transition metals, the L-edge represents a transition from 2p core levels to 3d valence levels. Coulomb and exchange interactions between the core hole and 3d valence electrons make the L-edge sensitive to the number and configuration of 3d electrons, hence to the metal spin state and oxidation state. The authors have used L-edge XAS to characterize the Ni sites in the carbon monoxide dehydrogenase (CODH) enzyme from Clostridium thermoaceticum. This CODH catalyzes both CO oxidation and acetyl-CoA synthesis at two Ni and Fe containing centers, C and A, respectively. Since the enzyme exhibits complex EPR signals that never integrate to one spin per Ni, there is evidence for heterogeneity in the types of Ni present. The Ni L-edge protein spectra were recorded at ALS beamline 9.3.2. The photon energy resolutions used for protein samples and for Ni model compound spectra were 350 and 270 meV respectively. During data collection the sample chamber was maintained at less than 5{times}10{sup {minus}9} Torr using a helium cryopump. Model compound spectra were measured using total electron yield detection, while protein spectra were recorded using fluorescence detection with a windowless 13-element germanium detector, and were calibrated using the total electron yield spectrum of NiF{sub 2} or NiO. Each protein spectrum presented represents the sum of approximately 40 15-minute scans. The authors have found that by using L-edge XAS they are able to distinguish between different spin and oxidation states of Ni compounds. They have used this result to characterize the Ni containing CODH protein in various states. The L-edge spectra are consistent with other results showing that when CODH is reacted with CO, the metal centers undergo reduction.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
OSTI ID:
603654
Report Number(s):
LBNL-39981; ON: DE97007345; CNN: Grant GM-44380; TRN: 98:009599
Resource Relation:
Other Information: PBD: Apr 1997; Related Information: Is Part Of Advanced light source: Compendium of user abstracts 1993--1996; PB: 622 p.
Country of Publication:
United States
Language:
English