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ABSTRACT

This paper treats steady laminar flows of liquid metals
in electrically insulated circular ducts in the presence
of strong, transverse nonuniform magnetic fields. The
interaction parameter and Hartmann number are
assumed to be large, whereas the magnetic Reynolds
number is assumed to be small. This problem is of
importance to MHD flows in fusion blankets especially
when suitable insulating material is identified and
developed for use in fusion reactor environments. Use
of insulated duct could substantially reduce the MHD
pressure drop and thus would simplify the desgin and
enhance the performance of the liquid-metal-cooled
blankets.

L INTRODUCTION

In a deuterium-tritium (D-T) fusion reactor, the
basic T (D,n) He fusion reaction in the plasma releases
its energy in a 14.1-MeV neutron, a 3.5 MeV alpha
particle (helium) and electromagnetic radiation. The
alpha particle is typically retained in the plasma and
provides for self-heating. The energy from the
neutron and electromagnetic radiation is recovered in
a structure surrounding the plasma called "blanket"
which, among many other purposes, also serves to
breed tritium to replenish the supply of tritium fuel.
Tritium is produced when the high energy neutron
collides with a lithium atom. In previous blanket
design studies such as the Blanket Comparison and
Selection Study (BCSS) , lithium is a favorable choice
for coolant and breeding material. It has ideal thermal
conductivity and nuclear properties. The main
disadvantage is its high electrical conductivity which
leads to large magnetohydrodynamic (MHD) pressure
gradient in the liquid metal when it is circulated in
thin walled conducting ducts in the presence of strong
magnetic fields. The resulting MHD pressure drop may
cause excessive pumping power losses and large
material stresses.

•Work supported by the U. S. Department of
Energy/Office of Fusion Energy.

It is known that the use of electrically-insulated
duct would reduce substantially the MHD pressure drop
and, consequently, would simplify the design and
enhance the performance of liquid-metal-cooled
blankets. At the present, no suitable insulating
materials with acceptable characteristics of radiation
damage, compatibility with both liquid metal and
structural materials have been developed. While such
a development is a long term activity, capability for
analyzing MHD flow in insulating ducts is needed now
to quantify the impact of insulating duct on
MHD-related issues.

This paper treats the steady flow of a liquid
metal in insulating circular duct in nonuniform
transverse magnetic field. The magnetic field in a
fusion reactor is so strong that inertia effects can be
neglected and viscous effects are confined to very thin
boundary layers adjacent to the wall. The induced
field produced by the circulating currents in the liquid
metal is also negligible compared to the imposed
magnetic field.

D. ANALYSIS

A. Governing Equations

Consider the flow of an incompressible liquid
metal in a circular duct with electrically-insulated
wall in the presence of an imposed nonuniform
transverse magnetic field. The magnetic field, B = B^
(x,y) x + By (x,y) y where x and y are unit vectors, is

assumed to be uniform in the plane of the duct cross
section (Figure 1). It is also assumed that B is
symmetric about the y = 0 plane and varies in the x
direction over a characteristic axial length Lg >> L, L
being the radius of the duct. Then the function B is
approximated by

B = By (x) y

neglecting O(L/Lfl) terms.

The two important parameters in any general
MHD problem are the interaction parameter, N, and
Hartmann number, M, defined by



N =
oB Lo

a
= L BO O

>/2

where p and \> are the fluid's density and kinematic
viscosity, B is a characteristic magnetic flux density,
and Uo is the average axial velocity of the fluid. The
values for M, which is the square root of the ratio of
the electromagnetic (EM) force to the viscous body
force, and N, which is the ratio of EM force to t̂ ie
inextial body force, are typically of the order of 10 -
10 in a tokamak fusion reactor. Thus the EM force
is the dominant force determining the flow and
pressure distributions throughout the liquid-metal
flow, except for thin boundary and possibly free shear
layers.

O(M"V3)

FIG. 1 A CROSS SECTIONAL VIEW

The inertialess, dimensionless equations
governing the flow are:

SP = j x B + M"2 v2 v, (la)

j = -J4> + y x B (l,b)

v • y = 0, V • j = 0. (lc.d)

Here p, j , y, and • are the pressure, electric current

density^ velocity, and electric potential, normalized by
aVoBo L» oVcPo' U o ' a n d UoBoh> respectively.

By symmetry, the solution is sough^ ,in2 one
quadrant of the duct, namely for 0 < y < (1-z ) , 0 <
z < 1 (all lengths are nondintensionalized by the duet
radius L).

B. Solution in the Core

In the core, the viscous term in Eq. (la) can be
neglected. Then the x, y, z core velocity components
ue , Vp, wc , and electric current density components
jxc» Jyc» izc, which satisfy equation (1) and the

symmetry conditions ]' = v c = 0 at y = 0 are:

3* . ap
uc(x,y,z) = e -^ - B2 - (2a), (Cf.lb)

3* 2 3p
w c (x,y,z) = - 6 jf - B — (2b), (Cf.lb)

0 » w •> 2 "V

(x,y,z) = - y 6' (x) — + y — [B — ]

(2c), (Cf.lc)
3Z

]• (x,y,z) = B -•£- (2d), (Cf.la)

hc = - 8 • £ - (2e), (Cf.la)

j (x.y.z) = -yfi' *£ (2f), (Cf.lb)

where p(x,z) is the pressure which is constant a^ong
magnetic field lines by virtue of Eq. (la), B(X) = B~ y(x)
and 6' = dB/dx. The electric potential in the dore
varies along the magnetic field lines according to

*« (x,y,z) = • (x,z) - •=• (a - y ) B1
3Z

(2g)

where * w (x,z) is the electric potential at the inside
surface of the duct. Equation (2g) is obtained by
integrating the y- component of equation (lb), and
using equation (2f).

The three-dimensional problem with eight
variables is reduced to solving for the functions p(x,z)
and $v(x,z). The equations necessary for the
determination of p(x,z) and <t>w(x,z) are derived in
subsequent subsections.

C. Solution in the Hartmann Layer

For M >> 1, viscous effects are confined to the
Hartmann layer which has O(M~ ) thickness and which
separates the inviscid core region from the duct wall.
In insulating ducts, the Hartmann layer is part of the
electrical circuit through which currents circulate.
Thus a complete analysis of the Hartmann layer
together with that in the core is needed to guarantee
that the flow and current leaving the core region is the
same as that entering the Hartmann layer.

Introducing the (r,e,x) cylindrical coordinate
system (see Fig. 1), Eqs. (1) are equivalent to:

an 2 2 vr 2 3 V B| 2 =BsineJx+M- [V2vr- -f - ^ —e ] (3a)
3r x p r 36

1 ap - 2 2 2 avr ve

r r

= -B sin 6jr - B ccs 6je + M"2 V2vx (3c)



= - a7 + B S i n 6 v x

+ B cos ev_
x

j = - 1 a&
9 ? ae

j = - - B sin ev - B cos 8 ve
3X

ar r r ae ax

3r
I 3,
r 38 ax

(3d)

(3e)

(3f)

(3g)

(3h)

Each of the variables in the Hartmann layer
(subsequently denoted with subscript^'h") is expanded
asymptotically in power series of M" , i.e., ^ = *h_ +
M •hi* Terms of O(M" ) or smaller are truncated
since at the Hartmann layer/core interface solution in
the Hartmann layer must match the solution in the
core where terms of O(M" ) are neglected. At the
duet wall the normal velocity and normal current must
vanish. The final solutions for the non-zero leading
terms in the asymptotic expansions are as follows (a
complete presentation of the lengthy and complex
analysis will be given elsewhere).

interface at t -> -=>. The lengthy expressions for the
functions A,, A2, A3, C,, C2, C3 will be omitted here.

D. Matching Between Hartmann and Core Solutions

The formal matching procedure is quite simple:
it reduces to equating a core variable evaluated at
r = 1 to the corresponding Hartmann variable
as c -> -». Matching also provides boundary conditions
for the core variables to guarantee continuity of mass
and current. This matching procedure leads to two
partial differential equations governing the pressure in
the liquid metal and the electric potential at the inside
wall.

~ (M cos2e - s(x) sec3 e] | |

^ { [M82(x) + y cos2e - 63(x) sec3e]|f

3 *

= e'(x) cose [M - 2B(X) sec 6] r r^x .e
do

S(x) sine fM + 2B(X) sec e] -~rf (x,8)
dX I

8(x) | ^ [sece rr^e.x)]

(5)

3*w

= cosB e'(x) [M - 2B(x) sec38] ff/ (x,8)

- e<B c o s (4a)
sine 6'(x) [M + 26(x) sec38] | | (x,e) (6)

3X 38

j x _ e (B cos ec)j (4b)

E. Boundary Conditions

At each cross section, the boundary conditions
are provided by symmetry at 8 = 0, namely:

ixh0 - [8 sec e J [1 - «» oc),

a<t>

ax
hoe(Bcos

a*.ho e(B cos Bt.)

(4c)

(4d)

v r h l = Aj (e,x)c + A 2 (e,x) + [A3 (e,xk

- A2(e,x)] e ( B c o s e t ) (4e)

j r h l = c , (e,x)t + c 2 (e,x) + [C3 (e,xk

- C 2 (8,x)]e<B c o s (40

where c is a stretched coordinate in the Hartmann
layer with the duct wall at t = 0 and the layer/core

ae
at 8 = 0 (7a,b>

As 8 -> J and in particular, as 26(x)sec 9 -> M
Eqs. (5) and (6Ffail, because the Hartmann lay|?^rows
into a side region witl^ dimensions Ar = O(M, ~ ' ) and
AQ = cose = O(M, ~ ), where ML is Ihe local
Hartmann number, ML = By(x)M. Such a side region or
singularity of the Hartmanh layer has been treated by
Roberts for fully developed flow in uniform magnetic
field. Here the flow is disturbed by the nonuniformity
of magnetic field and the dimensions of the side region
increase as the field decreases. A detailed and
complicated analysis of the side region is necessary to
completely define the problem. However, for
practical purposes, it is sufficient to apply an
approximate integral approach to treat the side region.

In our computation, Eqs. (5) and (6) are solved for
is smaller than but close to | .0 1 e 1 9in where

Consider the area S bounded by 0 < y < (1 - z )
i h i f S i ll

)' /'2

with z = < z < 1. If S is a very small area then



the rate of change of mass flow and current over a
volume with cross section S and length Ax are
negligible. Thus the mass flow or current entering the
volume Six in a particular cross section must leave it
in the same cross section. These conservation
considerations lead to two equations determining the
boundary

conditions for ^ ' ( x . 9

aP(x,em) + B(x)secem -

I Mcosem £ [6- « | f <x,em>] (8)

sec e
m

(X,8m) [M - B(x) sec'e 3P (9 )

em)

Sufficiently upstream and downstream of the
region where the magnetic field is changing, the flow
will be fully developed. For fully developed flow,
there are no axial currents in the fluid. The
appropriate boundary conditions at the upstream cross
section, x j , and at the downstream cross section, x2,
are:

P = P,

3<t>

ix
W - 0 at x = (10a,b)

and

= P2

8 * ,

3x
?=0 at x = x2 (10e,d)

The constants P,, and P2 (Pi * P2) can be
arbitrarily chosen. After the solution is found, every
variable is multiplied by a scaling factor to get the
desired volumetric flux. The dimensionless axial
velocity must satisfy the total volumetric condition

"1

m
(11)

in which the axial velocity inside the very small area S
is approximated by its value at zm-

Equations (5) and (6) constitute a set of coupled
partial differential equations to be solved
simultaneously in the X-6 domain. A staggered grid
network is used to formulate the finte difference
equations. Previous studies for circular conducting
duct and rectangular duct have shown that the use
of staggered grid is essential to provide efficient and
stable numerical solutions.

DL RESULTS AND DISCUSSION

A. Pressure Gradient for Fully Developed Flow

One of the important parameters pertinent to
the overall performance of a fusion reactor blanket is
the pressure gradient, which, when integrated over a
duct length of interest, yields the MHD pressure
drop. As mentioned earlier, the use of electrically-
insulated duct could result in a much lesser MHD
pressure drop than that for a conducting duct.

The pressure gradient in a round thin-walled
conducting duct is

3P.
3X

(12)

where c = owt/oL is the wall conductance ratio, t is the
wall thickness, L is the duet's radius, ow and o are the
electrical conductivities of the wall and the liquid
metal, respectively.

In an insulating duct the transverse current
density is of O(M~ ), then by virtue of Eq. (2e), the
pressure gradient is expected to be proportional to M~
and is given by

If.
3X 8 M (13)

Equation (14) is derived from Eqs. (5, 8, 11) for
fully developed flow conditions and for M>>1, 6m close
to TI/2.

In a tokamak reactor, the conductance ratio, c,
of the coolant duet is typically 10" - 10" yihile tfje
Hartmann number is of the order of 10 - 10 .
Consequently, the pressure drop in an insulating duct is
at least an order of magnitude smaller than that in a
conducting duct.

B. Flows in Fringing Magnetic Field

The nonuniform magnetic field distribution used
here are the values actually measured in the ALEX
experimental facility at Argon ne National
Laboratory. The tail of the normalized By(x) is
smoothly leveled to a value of 0.2 (Figure 2) since the
inertialess, inviscid assumptions for the core solutions
are no longer valid once By becomes too small. The
results presented in Figs. 3 t o 5 correspond to M= 7000
and e = 1.45 radians. Thus, the area of the "side
region" S, amounts to only 0.07% of the total cross
sectional area.
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FIG. 2 THE NORMALIZED MAGNETIC FIELD
DISTRIBUTION

Figure 3 shows the electrical potential profiles
at the inside surface of the duct divided by the local
magnetic field at various axial locations. If the flow
were locally fully developed everywhere, all these
curves would coincide with the upstream curve at x =
-13.7. The axial potential differences drive axial
electric currents in the liquid metal in the ± x
direction for z 5 o. These currents must eventually
turn in the z direction to close through the Hartmann
layeror the core. A large distance, of the order
O(M ' ) is required to accommodate the complete
current paths.

D X = -13.7 B = 100
o x = -0.8 B= 0.80
« = -0.1 B = 0.64
- X = 0.8 B = 0.44
* X = 10.0 B = 0.20
o X = 13.7 8 = 0.20

-0.25-1

FIG. 3 ELECTRICAL POTENTIAL PROFILES AT
THE INSIDE SURFACE OF THE DUCT
DIVIDED BY THE LOCAL MAGNETIC
FIELD.

The motion of the flow on the y = 0 plane passing
through the nonuniform field region is shewn in
Figure 4a, b. Upstream, where the field is uniform and
the flow is locally fully developed, the axial velocity
peaks at the center and vanishes at the wall. As the
flow evolves in the downstream direction, 3-D effects
due to nonuniformity of the field causes the velocity
to increase dramatically near the wall, leaving a
stagnant fluid region in the center. The effect persists
for a large distance before the flow slowly resumes its
fully-developed flow profile (Figure 4b). A companion
plot of the velocity variation along x at various z
locations is shown in Figure 5. It is interesting to note
a slight increase in velocity at the center as the flow
approaches the nonuniform field region from upstream
before a rapid decrease to zero. The evolution of the
flow motion can also be visualized from the electrical
potential profiles in Figure 3 in which the slopes of the
curves are partially proportional to the local axial
velocities.

15.0

12.5-
• X = -13.6 B = 100
o X = -0.6 B= 0.77
OX= 0.0 8 = 0.61
• X = 0.9 8 = 0.42

FIG. 4a VELOCITY PROFILES ON THE y = 0
PLANE AT VARIOUS AXIAL LOCATIONS,

15.0

12.5-
• X= 2-8 B = 0.20
° X = 6.5 B= 0.20
OX = 10.1 B= 0.20
• X= 13.8 B= 0.20

FIG. 4b VELOCITY PROFILES ON THE y = 0
PLANE AT VARIOUS AXIAL LOCATIONS.
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Layers," Proc. R. Soc. Ser. A 300, 94 (1967).
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FIG. 5 AXIAL VELOCITY VARIATION
AT VARIOUS RADIAL LOCATIONS.

SUMMARY

An analysis for liquid-metal flow in circular ducts with
insulating walls in varying transverse magnetic fields
has been carried out. The present solution involves M
as an arbitrary parameter, but '•.fleets terms which
are O(M~ ) or smaller in the core. The matching of
the Hartmann layer variables evaluated at r = 1 is
related to the well-known Hartmann conditions at an
insulating wall duet in a uniform magnetic field. This
matching procedure yields a pair of coupled partial
differential equations governing p and *w which are
solved simultaneously using numerical methods. The
remaining variables in the core are then easily derived
to provide a fully three-dimensional solution for the
flow. An approximate integral method for the
treatment of the side region, valid under the
conditions of fusion reactor blankets, simplifies the
analysis.
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