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ABSTRACT

Linearized Vlasov-Maxwell equations are used to derive a partial
differential equation determining the 3-dimensional slowly warying
envelope function of the radiated electric field. The equation is
solved analytically. From the correlation functien

<E(z,;,t) E*(z',:',c)) of the electric field averaged over the sto-
chastic ensemble describing the initial shot noise in the beam, we
compute the longitudinal and transverse correlatiom lengths oj and
o, .+ The radiated power § per unit cross-sectional area of the

electron beam is pS
S =

e [
A exp(lﬁ'amep),

where Vc - (2'17)3"2 ulclz is the coherence volume, n, the electron

density, S, = (yomcz) n,c the power per unit area in the electron
beam, N, the number of wiggler perlods and p the Plerce parameter.
The angular distribucign of the radiaticn is characterized by the
Gaussian factor exp{(-9</2¢ 2), where 2w70,0, = A (radiated wavelength).
Our analysis is applicable for wiggler length L = N A, long enough
for the exponential regime to be reached, but short encugh so that

L % < a, the electron beam radius.

INTRODUCTIION

There 1s great interest in using a free electron laser (FEL) oper-
ating in the high~gain regime for the generation of high intensity
coherent radiation at wavelengths below 1000 A. Amplification in a
long wiggler magnet of the initial spoataneous radiation emitted by
individual electrons has the attractive feature that the use of an
optical resonator is avoided. The process of self-amplified spontane-
ous emission is still not well understood. Three key issues which
require further eluc{dgtion to facilitate the design of a single pass
FEL are the start-up ~~ of the laser from the shot noise in the elec—-
tron beam, the guiding“- (or self-focusing) of the radiation by the
electron beam, and the saturation of the exponential growth of the

radiation field due to nonlinear effects.

*This work has been performed under the auspices of the U.S. Depart- g

ment of Energy.
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In this paper we present the results of an analysis of the start—
up of an FEL from shot-nolse. Linearized Vlasov-Maxwell equations have
been used to derive a partial differential equation determining the
three-dimensional slowly varying envelope function of the emitted radi-
ation, extending an earlier one-dimansioral treatment »3 to include
transverse variations. The problem with the one-dimensional mcdel is
tkat individual electrons are treated as two-dimensional charge sheets,
hence the angular distribution of the radiation cannot be properly
described, and the total radiated power cannot be correctly deter-
rmined. In the three-dimensional calculation which we shall present,
individual electrons are described as point charges (Fig. 1), allowing
us to determine the angular distribution of the emitted radiation and
the build-up of transverse correlations.

Initially each electron radiates independently of all others, and
the angular distribution of the radiation is that of the spontaneous
radiation from a point charge. As the electron beam proceeds down the
wiggler magnet different electrons communicate wvia their emitted radi-~
ation and correlations build up. 45 the transverse correlation length
increases, the angular distributiorn of the radiation narrows. The
description of the development of transverse correlations and the nar-
rowing of the angular distribution are the key subjects of this paper.

ENVELOPE EQUATION

Suppose a highly relativistic electron beam is moving in the
positive z-directisn through a pericdic helical wiggler with vectotr

potential Kw = Ab(é_eisz +c.c.)/VZ, where e, = (&, % 1€,)/vZ and

31 and 32 are orthogonal uni: vectors transverse to z. The transverse
> +

electron velocity is approximatgd by v = -eAwimy and the longitud-

1+§ ), vhere Y is the electron energy in

2y

units of its rest mass and K = eAwlmc is the wiggler strength para-

meter. The electron beam is assumed to be initially monoenergetic
with all electrons having energy Y, and longitudinal velocity vm(yb)-

Voe The spontaneous radiation emitted by the electrons in the forward
direction is left circularly polarized with wave number ko and fra-
quency mozkoc. The combined action of the static wiggler field and the

inal velocity by vy = c(l -

radiation field produces a ponderomotive potential. which has the

Tkyz-Lugt eik"z. Because the electron beam moves with

dependence e
1kr(z-vot). To be

velocity v,, the modulation should be of tte form e
in resonance, these two exponential expressions should be the same,

hence we have

ko= k_ +k, - (1)

and
kv =kc=uw. {2)
ro o 0
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Fig. l. In the three-dimensional calculation, individual electrons
are descriped as print charges allowing the proper deter=-
mination of angular distribution and transverse correlations
of the emitted radiation.
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Fig. 2. Numerical evaluation of the one-dimensional Green's function
g21{(z,1) introduced in Eq. {21). Note the sarddle point
approximatiog is very accurate. The case shown corresponds
to p = 3x107°, N, = 300, 2 pr = 3.5 w.



It follows that kb/kw vol(c vo) 2¥y</(14K) and kr "blvo
ww/(c-vo), where u, = k"c.

The radiated electric field $ sarisfies the wavi: equation, in mks

units,
2 -+
(72—.1—- .a——‘.E-u-a—i 3
c? a2 ° 3t 3
The current density 3 is given by
+> *
j=en | v, £y (4)

with n, being the peak density of the electron beam and nbf{z,;,y,t)
dzdzrdv being the number of electrors in element dzdzrdy. {Transverse

coordinates denoted by z.) Writing the distribution as £ = £ + £,,
the linearized Vlasov equation is

of o | 3f,
‘3T+Vﬂ('!)'5§'+‘r-w= 0 (s
where
;--9-2-: . E. (6)
me

It is convenient to intreduce dimensionless variables measuring
spatial and temporal variations:

T = wwt s [ = kr(z-vot),

= 2 2
% = %k, T, vj_--—‘i—;+ 32 .
Bxl sz‘

The unperturbed equilibrium distribdution is tr=ken to be
. .
£, = ulg,x) 8ly=v,), (7)

the smooth function u(;,;) describes the average properties of the
initial electron beam, in the absence of the high-frequency shot
noise. The distribution f is determined from Eg. (5) subject to the

initial condition at t = 0,
£(e =0) =i T 8z-z,) 8(Z-Z,) S(¥-v.) . (8
o 1 i 0
o 1
The shot noise is taken into account by treating the initial
coordinates zi’;i of the 1 th . ::tron as stochastic variables and
determining physical quantities as averages over the ensemble of

EY
poesible zi,ri.



Introducing the slowly varying envelope function E by writing
€ = E exp(ik,z-iw,t), and using the paraxial approximation, the
coupled Vliasov-Maxwell equations can be shown to take the form:

e+ v e
Gerwg-1gE-d <
2
e B+ L 1)), (10)
ar? L 1
2.2
n uec A dy
= 90 W Az ¢ __ ‘
J = T, e / £ (11)

The constant a in Eq. (10) is related to the Plerce parameter » of
Bonifacio et al.® by

3 no"v:,eu"\xf
a = (2p)° = (12)
2m373w2
ow
Egs. (9) and (10) immediately lead to the envelope equation:
2
-3—2 (vl v Eaa (T4 vy) (u). (13)
3t T 3z ) 3T 3

GREEN'S FUNCTICN

For an initially uniform electron beam, u(c,?:) = 1, we introduce

the Green's function g(;,;,'r) via

2
Bo vy ma v lr nig = 50 6 8 . (18
9T’ 3t 3¢ = 3t 33

Solving by Fourier-Lapace transform ylelds

2 Y
. wtis 4R dq ld q, exp(iq,l;-}-iql-x—im)
ggx, 1) = [ — N < , (15)
—~=iis 2ni (2m) D(%,9,,9 )
with
>y .03 o 2 2 0 -
D(2,9,,9)) = 8" - (g, +q)) "+ ol -l +q)). (16)

It follows that

> 2 1q|;+13 ';
g(%,%,7) = [ dq,d%, G (1)e L an



where

r -1911 "1921 "1“31
G (1) = -1 e e e

- + + |18
1 (2x%) L(n,-nz)(n,-ng:u (=2 )(8p-R3)  (R3-23)(03~R,) |

and 21,12,8; are the three solutions of D(ﬂ,qm.al) = 0,

Another useful reprasentation of the Green’s function can be
obtained from Eq. {15) by employing the identity
“+1:E
= [ dv o1VB {19)
o

O =

which allows the integrals over a, and ;l.to be performed, one obtains

_ 2;,, s ; 2

g(z,%, 1) = 2B AxT/hs Ty A8 o papgenpy - 10, 20X
87°g -otis §) Q%o 4Q%¢

20)

We chose s > va 1in Eg. (20), so the integral vanishes’ for T - g € De
In the regime of exponential growth, T + =, r/g finite, the

integral in Ej. (18) 1is dominated by a saddle point™ at

R, = (205/¢t~5)1 33 eZmiIB. We consider p < 1 so o <X ﬂﬂ:'.

Then we found the saddle point method is wvalid 1f pt >> 1, and

g(n‘;o;,f) = gE(C.;,T) gl(;:f) R(C,;.T) » {21)
where
B | oy 2y, j
gg(s,x, 1) = - 2R e (22)

05,0 = 7= Ve -3 M5 o012 201 - F1}, g0,

2
R(c,§,1) = exp {L i ezm.",3 [2zCx-2)21 Y3 25 2£-}
3 2 (24)

Here, gg is the Green's function (within the paraxial approximation)
for the low density limit o = 0; g; 1is the Green's function for the
one-dimensional model? {see Fig. 2]; R describes the transverse fall-
off of the radiaticn. From the derivation of these results, it can be
gseen that the trangverse fall-off 1s a consequence of the term odg/ag
in Eq. (14) and correspondingly of the term agy In Eq. (16). This
tera is negligible in the one-dimensional treatment, but is of primary



importance in three—-dimensions, since zero detuning corresponds to q4

%+ q; = 0 as shown later [see Eq. (36)}, so q3 * —q, and the term
aqy determines the divergence angle of the radiation, and the

transverse size of the radiation cone.

The maximum of g,(Z,7) is at § = t/3., From Eq. (24), we f£ind
2 2 .
R (z = 1/3, % 2= /20x (25)

with
2

T
%" 3T (26)

FEL START-UP FROM SHOT NOISE

We wish to solve the envelope equation (13} subject to initial
conditions specified at t = 0. 1In particular, we specify E(;,;,o) =
EO(C,;), J(z,%,0) = JO(C,;) and J(z,%,0) = 30(;,;), where the dot

denotes 3/3T and the current J was introduced in Egqs. (9-11). The
envelope function is then determined by

E(ca;st) - j d;'dzx' IEO(;');') glz-3', ;';'s ™)
QN
+ 3 (5,K") B(E-g" %', T) + J (5%, %) 8(z-5",%-%", D]
where g(;,?,t) is the Green's function defined in Eq. (14). Here, E,

represents an initial electric field possibly due to an external laser;
Jo deseribes the initial spatial bunching of the electron beam and

30 corresponds to an initial energy modulation of the electron beam.

We assume the absence of an external radiation field, E, = O,
and describe the shot noise by

2.2
nue‘cA
T . 00 w ~1if dy ‘
I,= —mg—— ¢ { = ¢ (28)
w
1 + >
£ E 8(z~z,) 8G-7,) 8(v-v,) , (29)

-
where the coordinates Zgy Ty of the 1 th electron are treated as

independent random variables. For the purposes of the present dis-
cussion we ignore the spread in energles of the electrons, hence

30 = 0. Although <E> = 0, averages of quantities quadratic in E do
not vanish. 1In particular, the correlation function of the electric
field at two different spatial points is found to be expressed in
terms of the Fourler transform of the Green's function Gq(r) [see
Egqs. (17-18)}] via



Clz,L,7) = :,1,‘—- <E*(z,%,T) E(0,0,7)>

o
> >

- 3 2 2 ° > 2 _ikyz+ik, or
4 uc(Yomc )y f dkld EL G(q‘.ﬁL,r) e » (30)

where k =k ql, 4_ = v2k k q , and Z = uc is the impedance of

free space. Denoting the radiated power per unit area by S and the
radiated power per unit area, per unit solid angle, per unit frequency

dp/dAdfidw, we see that
| dp ‘
S = C(0,0,7) = [dwdR Tadede ° (31

Using dkyd’ky = k%dkd® with k = /e, Eqs. (30) and (31) show

dp

3 2 1A 2 12
dadodg = 47 omy w iG(q'sqL,T)J . (32)

In the high gain regime, keeping only the dominant term,

1037
. i e 3
& (o = (33)

q (217 (R-0p)(R-03)

where D(ﬂl,ql,q ) = 0 [Eq. (16)] and Imﬁ1 > 0. We consider p < 1
and 2p7 > 1. Introducing u by

8 =201 +q)3 0, G

to gcod approximation u 1s determined from
p -t -1=0, (35)
q, +af @ = wy(8)

= (36)
Zp(1+qm)1]3 2puw;(8)

A=

where? wi(8) = Zyzqw/(l+K2+7282). Note that Imy; is maximum at 2 = 0,

.2
so q, QL’ and
- 9 2 Q_L
Icq(r)l = = S exp (VT 2071 - — - =] . (37)
(2%) " 9{2p) 9 3

From Eq. (32) we find

__“,’2 2_‘2 2
P __ 1 D(Y me )k2 73 2pt o~ (w-01(8)) /20,° -8 /20g ,

dadfdw  9¢2m)° (38)




with 2
.2 9(2pu )
‘u E

o V3 2pT

39

2
202 = LU . 0)
y“2p1
Integrating Eq. (38) over frequeﬁcy and golid angle we obtain the
radiated power per unit cross—-sectional arca of the electron beam
2.2
pse ko°B e/? 2pT1

g9(2%)3/2 ng, »

5= 41

where

S, = (v mc?in ¢ (42)

is the power per unit area Iin the electron beam and

g, = c/uu {43)

1
is the longitudinal correlation leagth.

In a similar fashion, the correlation function of Eq. {30) can be
evaluated, yielding

> pseeii 2pt . z2 rz
o(z,r,7) = —————— exp (- 2) exp (- -—E-—-Q s (44)
9novcw(z) 201 291?(23

where the transverse correlation length for z = 0 is

g, = 1k o5 (45)
the coherence volume V. is
- 2 _ 2
V. (2x) 9,9} (46)
and
133'krz
wiz) =1+ . {37)

2pT

The total power radiated per unit area given in Eg. (41) can now be
rewritten as

1

s = Clo,0,) = g ase”? T Il

o C

(48)



and is seen to be inversely proporticnal to the number of electrons in
a coherence volume.

In our analysis the transverse wvariation of the electron density
has been neglected, i.e. u appearing in Eq. (13) has been taken to be
unity., This is a reasonable approximation for times short cnough tiwc?
radiation emitted by the electrons in the bulk of the beam has not
reached the edge, i.e. (ct) % { a, where a is the electron baam

radius. Once the radiation reaches the edge of the beam, the trans-
verse fall-off of u becomes important and may lead to self~focusing or

8Uiding.l' » 5

One~dimensional analysis gives the total radiated power2s3
‘ 1 V3 27 1
Pip g PP, e N {49)

where N, is the number of electrons within a coherence length,

rather than a coherence volume. If one thinks of keeping the electron
density constant and increasing the electron beam cross-section, Pyp
would remain constant, because P, = SpA and N, are both propor-
tional to the beam cross-—section. This puzzling result is removed by

the 3-dimensional treatment leading to Eq. {4B), since N, is
replaced by n,V., the number of electrons in a coherence volume.

Hence the transverse coherence length 9 1s important in the start-up
process.
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7.

8.

9.

The paraxial approximation has resulted in a plane wavefront
T~ ¢ =0, An improved paraxial approximation (IPA) leads to

Ty - o3 - 2 02 4+ af -
DypalR, 9,5 q,) = (1+q,) [8° - (q, + qj/(1 + q,)) 2% + af
a{l + qs)], and a curved wavefront t - § - lekc = ),
For the one-dimensional Green's Eunction this has been nsoted in
the Appendix of ref. 4.

The approximate equality in Eq. (36) holds over a larger angular
range in the improwved paraxial approgimation mentioned ia ref, 7.
For v>>1, 9<<1, one sees that q, + ql!(l + qu) = (w0;(9))/w(8).



