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ABSTRACT

Linearized Vlasov-Maxwell equations are used to derive a partial
differential equation determining the 3-dimensional slowly varying
envelope function of the radiated electric field. The equation is
solved analytically. From the correlation function

<E(z,r,t) E*(z',r',t)> of the electric field averaged over the sto-
chastic ensemble describing the initial shot noise in the beam, we
compute the longitudinal and transverse correlation lengths 0j and
Oj_. The radiated power S per unit cross-sectional area of the
electron bean is _

S - 9 S - V - Vo c

where V • (2ir) / a|°j.2 i s c^e coherence volume, n the electron

density, Se - (yomc
2) nQc the power per unit area In the electron

beam, N w the number of wiggler periods and p the Pierce parameter.
The angular distribution of the radiation is characterized by the
Gaussian factor exp<-0 /2<r0 ) , where 2*o a • X (radiated wavelength).
Our analysis is applicable for wiggler length L » U ^ ^ long enough
for the exponential regime to be reached, but short enough so that
1. oa <, a, the electron beam radius.

INTRODUCTION

There is great interest in using a free electron laser (FEL) oper-
ating in the high-gain regime for the generation of high intensity
coherent radiation at wavelengths below 1000 A. Amplification in a
long wiggler magnet of the initial spontaneous radiation emitted by
individual electrons has the attractive feature that the use of an
optical resonator is avoided. The process of self-amplified spontane-
ous emission is still not well understood. Three key issues which
require further elucidation to facilitate the design of a single pass
FEL are the start-up ~ of the laser from the shot noise in the elec-
tron beam, the guiding » (or self-focusing) of the radiation by the
electron beam, and the saturation of the exponential growth of the
radiation field due to nonlinear effects.

*This work has been performed under the auspices of the U.S. Depart-
ment of Energy.
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In this paper we present the results of an analysis of the start-
up of an FEL from shot-noise. Linearized Vlasov-Maxwell equations have
been used to derive a partial differential equation determining the
three-dimensional slowly varying envelope function of the emitted radi-
ation, extending an earlier one-dimensioi:al treatment2'3 to include
transverse variations. The problem with the one-dimensional model is
that individual electrons are treated as two-dimensional charge sheets,
hence the angular distribution of the radiation cannot be properly
described, and the total radiated power cannot be correctly deter-
rmined. In the three-dimensional calculation which we shall present,
individual electrons are described as point charges (Fig. 1), allowing
us to determine the angular distribution of the emitted radiation and
the build-up of transverse correlations.

Initially each electron radiates independently of all others, and
the angular distribution of the radiation is that of the spontaneous
radiation from a point charge. As the electron beam proceeds down the
wiggler magnet different electrons communicate via their emitted radi-
ation and correlations build up. i^ the transverse correlation length
increases, the angular distribution of the radiation narrows. The
description of the development of transverse correlations and the nar-
rowing of the angular distribution are the key subjects of this paper.

ENVELOPE EQUATION

Suppose a highly relativistic electron beam is moving in the
positive z-direction through a periodic helical wiggler with vector

potential A - A (e_elkwz +c.c.)//T, where e+ - (e1 ± ie2)/<£*and

ej and £2 are orthogonal unit vectors transverse to z. The transverse

electron velocity is approximated by v. = -eA /my ant* the longitud-

inal velocity by vj = c(l — ) , where if Is the electron energy in
2Y2

units of its rest mass and K = eA /me is the wiggler strength para-

meter. The electron beam is assumed to be initially nonoenergetic

with all electrons having energy y and longitudinal velocity v^{y )•

v . The spontaneous radiation emitted by the electrons In the forward

direction Is left circularly polarized with wave number k and fre-

quency M «k c. The combined action of the static wiggler field and the

radiation field produces a ponderomotive potential, which has the

dependence e ° z W c e ^* . Because the electron beam moves with
Ik (2—v t)

velocity vo, the aiodulation should be of the form e
 r ° . To be

in resonance, these two exponential expressions should be the same,
hence we have

\ • K + K • <"
and

k v * k c * w . (2)
r o o 0



Fig. 1. In the three-dimensional calculation, individual electrons
are describe as print charges allowing the proper deter-
mination of angular distribution and transverse correlations
of the emitted radiation.

— SADDLE POINT -
COMPUTER

Fig. 2. Numerical evaluation of the one-dimensional Green's function
gl(C,x) introduced in Eq. (21). Note the saddle point
approximation is very accurate. The case shown corresponds
to p m 3x10" S^ - 300 2 pr •to p m 3x10

y
- 300, 2 pr • 3.5



It follows that k /k - v /(c-v ) * 2y2/(l+K2) and k - w /V -
o w o o r o o

u /(c-v ), where w » k c.

The radiated electric field £ satisfies the wave, equation, in s&s
units, ^

" 7 aT5 E " "° at <3>
The current density j is given by

j - eno / ̂  fdY (4)

with n being the peak density of the electron beam and n £(z,r,7,t)

dzd rdif being the number of electrons in element dzd^rdy. (Transverse

coordinates denoted by r.) Writing the distribution as f » f0 + fj,
the linearized Vlasov equation is

3f 3f t 3f0

where

y • - % v • e . (63
me

It is convenient to introduce dlmensionless variables measuring
spatial and temporal variations:

T - u t , c * k (2-v t),
w * r o

x - /2k k r , vf - — — +
o w ' J.

The unperturbed equilibrium distribution is r»Jken to be

)Q O)» (7)

the smooth function u(;,x) describes the average properties of the
initial electron beam, in the absence of the high-frequency shot
noise. The distribution f is determined from Eq. (5) subject to the
initial condition at t - 0,

f(t » 0) - i- 2 SCz-zp Six-r^ 5(Y-Y ) . (8)
o i

The shot noise is taken into account by treating the initial

coordinates z.,r- of the i th > ;tron as stochastic variables and

determining physical quantities as averages over the ensemble of

possible s^.r,*



Introducing the slowly varying envelope function E by writing
e » E exp(ikoz-iuot), and using the paraxial approximation, the
coupled Vlasov-Maxwell equations can be shown to take the form:

3T 2 3T 35

n H e2c2Au ., dy

\1 *"U / T f •
The constant a in Eq. (10) is related to the Fierce parameter ,; of

6
n

Bonifacio et al.6 by

n n e**A2

a - (2p)3 - ° ° ,w (12)

^14
Eqs. (9) and (10) immediately lead to the envelope equation:

2 l ( 3 _ + !_-ivf) E - « {!. + ! . + ± ) (uE) . (13)
3T Z 3T 35 3t 35

GREEN'S FUNCTION

For an initially uniform electron beam, u(?,x) » 1, we introduce

the Green's function g(5»x,x) via

I ~ (— + — -iV2) - a (— + •?- + i)]g « 6(5) 6(x) 6(x) . (14)
3T 3T 3? ~ 3T 35

Solving by Fourier-Lapace transform yields

«*fis dfl dq d2q exp(iq,,5+iq 'X-UJT)
g(C,x,T) - / / ,X *—r± , (15)

3(2ir)

with

»q() " a
3 - (q, + qf) n2 + an - ad + q ) . (16)

It follows that

(17)



where

_, -IJIjT - iH 2T -iJ53x
(18)V

(Q2-fii)< Qs-f

and H|,02*^3 are the three solutions of D(fi,<]g,qj) •• 0,

Another useful representation of the Green's function can be
obtained from Eq. (15) by employing the Identity

(19)

which allows the integrals over q( and q to be performed, one obtains

_ - (20)
We chose s > /a in Eq. (20), so the integral vanishes for T - 5 < 0.

In the regime of exponential growth, x + •», T/| finite, the
integral in Eq. (18) is dominated by a saddle point at

flo - [ 2 O C / ( T - C ) 3 ^ 3 e2iri''3. We consider p « 1 so a « | o 2 L
I o|

Then we found the saddle point method is valid if ,pT » 1, and

where

g(£ ,X ,T) gi(?,T) R(5,X,T) , (21)

f i}. (23)

H(5i5.T) - exp {I i e
2iri/3 [ 2 ? ( T - 5 )

2 ] V - 2 P *!}
8 C 2

Here, gg is the Green's function (within the paraxial approximation)
for the low density limit o - 0; gj Is the Green's function for the
one-dimensional model [see Fig. 2]; R describes the transverse fall-
off of the radiation. From the derivation of these results, it can be
seen that the transverse fall-off is a consequence of the term o3g/3{
in Eq. (14) and correspondingly of the term aqg in Eq. (16). This
tera is negligible in the one-dimensional treatment, but Is of primary



importance In three-dimensions, since zero detuning corresponds to qg
+ qj_ • 0 as shown later [see Eq. (36)], so q| " -q^ and the term
aq; determines the divergence angle of the radiation, and the
transverse size of the radiation cone.

The maximum of gi(C,T) is at ? - T/3. From Eq. (24), we find

|* (C " T/3, X, T)j2 - C " * W {25)

with

FEL START-UP FROM SHOT NOISE

We wish to solve the envelope equation (13) subject to initial

conditions specified at t - 0. In particular, we specify E(?,x,o) »

EQ(5,x), J(5,x,o) = JQ(C,x) and l(t,x,o) - Jo(C,x), where the dot

denotes 3/9T and the current J was introduced in Eqs. (9-11). The
envelope function is then determined by

/ dC'dV fEoU',x') g(5"5\ x-x', T)
(27)

+ Jo(5',x') g(C-C',x-x"',T) + J^S'.x') gU-t'.x-x
1, t)]

where g(C,x,t) is the Green's function defined in Eq. (14). Here, E o

represents an initial electric field possibly due to an external laser;
Jo describes the initial spatial bunching of the electron bean and

Jo corresponds to an initial energy modulation of the electron beam.

We assume the absence of an external radiation field, Eo * 0,
and describe the shot noise by

f - — I 5(z-Zi) SCr-rp «(Y-TO) , (29)
o i

where the coordinates z,, r, of the i th electron are treated as

independent random variables. For the purposes of the present dis-
cussion we ignore the spread in energies of the electrons, hence

Jo » 0. Although <E> » 0, averages of quantities quadratic in E do
not vanish. In particular, the correlation function of the electric
field at two different spatial points is found to be expressed in
terms of the Fourier transform of the Green*s function 6 4(T) [see
Eqs. (17-18)] via



C(z,r>) - |-<E*(z,r,T) E(O,O,T)>
o

•»• +

» 4if <xc(Y me ) / dk.d k, |G(q.»q, » T ) | e | Z x # r , (30)o • x i i x i

where k. - kq., k. •> /2k k q , and Z • u c is the impedance of

free space. Denoting the radiated power per unit area by S and the
radiated power per unit area, per unit solid angle, per unit frequency
dP/dAdfidw, we see that

S - C(O,O,T) - /dudn ^jgjj . (31)

Using dkid 2^ =• k2dkdfl with k - u/c, Eqs. (30) and (31) show

. (32)

In the high gain regime, keeping only the dominant term,

(33)

where DC^j,qj.q^) » 0 [Eq. (16)] and ItnRi > 0. We consider p « 1
and 2pt > 1. Introducing u by

2p(l + q / ' 3 U , ( 3 4 )

to gcod approximation y is determined from

ji3 - AH2 - 1 - 0 , (35)

q + q^ W -
A - -^ „- , (36)

ZpCl+q,?73

where9 u1(6) - 2y2w /(1+K2+Y262). Note that Imp, i s maximum a t A * 0,
2so q. " -q , and

1 1 A2
1 1 A q

£ ( T ) j2 K - e x p l V T 2 p T a - J . (37)
q ' (2»)6 9(2p)2 9 3

From Eq. (32) we find

dAdfidu 9 (2*) 3 ° ° * (38)



with

2px

2 8{
Y 2 2 P T

Integrating Eq. (38) over frequency and solid angle we obtain the
radiated power per unit cross-sectional area of the electron beam

s »

where

is the power per unit area in the electron beam and

(43)

is the longitudinal correlation length.

In a similar fashion, the correlation function of Eq* (30) can be
evaluated, yielding

PS ^ 2PT z 2 r2

exp ( r) exp (
9n0Vcw(z) 2a, fc

where the transverse correlation length for z « 0 is

the coherence volume Vc is

and
i/Tk z

w(z) - 1 + r . (47)

The total power radiated per unit area given in Eq. (41) can now be
rewritten as

S - C(O,O,T) - I fiSjF 2pT ^ - , (48)
o co c



and is seen to be inversely proportional to the number of electrons in
a coherence volume.

In our analysis the transverse variation of the electron density
has been neglected, i.e. u appearing in Eq. (13) has been taken to be
unity. This is a reasonable approximation for tines short enough tiiut
radiation emitted by the electrons in the bulk of the beam has not
reached the edge, I.e. (ct) o. <J a, where a is the electron beam

0

radius. Once the radiation reaches the edge of the beam, the trans-
verse fall-off of u becomes important and may lead to self-focusing or
guiding. #

One-dimenf.ional analysis gives the total radiated power2*3

P - i DP J* 2fir ̂ - (49)
c

where Nc is the number of electrons within a coherence length,
rather than a coherence volume. If one thinks of keeping the electron
density constant and increasing the electron beam cross-section, P|D
would remain constant, because Pe * SCA and N c are both propor-
tional to the beam cross-section. This puzzling result is removed by
the 3-dimensional treatment leading to Eq. (48), since Nc is
replaced by nQVc, the number of electrons in a coherence volume.
Hence the transverse coherence length a, is important in the start-up
process.
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7. The paraxial approximation has resulted in a plane wavefront
T - C • 0. An improved paraxial approximation (IFA) leads to

"*" 3 9 9

o(l + q,)], and a curved wavefront T - c - x2/4{ • 0.

8. For the one-dimensional Green's function this lias been noted in
the Appendix of ref. 4.

9. The approximate equality in Eq. (36) holds over a larger angular
range In the Improved paraxial approximation mentioned in ref. 7.
For Y»l» 9«1, one sees that q 4- qV(l + q ) -


