

2
CONF-890887-1

UCRL- 101200
PREPRINT

CONF-890887-1
101200 PREPRINT

RECOMMENDED COMBAT DRINKING WATER STANDARDS
FOR ORGANOPHOSPHORUS NERVE AGENTS

Jeffrey I. Daniels
Stephen A. Schaub

This paper was prepared for presentation at
the 1989 Medical Defense Bioscience Review,
The Johns Hopkins University
Applied Physics Laboratory
Columbia, Maryland
August 15-17, 1989

Received by OSTI

JUN 30 1989

June 1989

Lawrence
Livermore
National
Laboratory

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DO NOT MICROFILM THIS PAGE

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

RECOMMENDED COMBAT DRINKING WATER STANDARDS FOR ORGANOPHOSPHORUS NERVE AGENTS

Jeffrey I. Daniels, D.Env.* and
Stephen A. Schaub, Ph.D.†

*Lawrence Livermore National Laboratory, Livermore, CA and
†U.S. Army Biomedical Research and Development Laboratory,
Fort Detrick, Frederick, MD

ABSTRACT

Organophosphorus (OP) nerve agents may be used on an integrated battlefield and U.S. Army preventive medicine and quartermaster personnel are required to ensure the safety of drinking water supplies in such combat situations. Accordingly, research was performed to develop improved drinking water standards for OP nerve agents. This research yielded recommended interim drinking water standards for OP nerve agents for consumption rates of 5 and 15 L/d and exposure periods lasting up to seven days. The emphasis in developing these standards was the protection of soldiers against any performance degradation that would impede their ability to accomplish combat missions. The relationship between pharmacokinetic parameters and toxic responses were established for OP nerve agents for the oral route of exposure only and soman (GD) and VX were identified as being the OP nerve agents of most concern in field-drinking-water supplies. Inhibition of red blood cell cholinesterase (RBC-ChE) was linked to the potential for performance degradation, however, actual toxicological interactions probably occur at cholinergic synapses (i.e., junctions between nerves or nerves and muscles), which cannot be monitored *in vivo*. In the absence of prophylactic pretreatment with substances such as carbamates, the recommended standards correspond to 50% inhibition of RBC-ChE and are 12 and 4 µg/L for 5 and 15 L/d consumption rates, respectively. If prophylactic pretreatment with a carbamate is used, then RBC-ChE will be inhibited prior to exposure, and the recommended standards correspond to 20% inhibition of RBC-ChE, which correspond to 4.7 and 1.6 µg/L for 5 and 15 L/d consumption rates, respectively.

ACKNOWLEDGMENT

This work was supported by the U.S. Army Medical Research and Development Command under Intergovernmental Project Order 82PP2817 and the work was performed under the auspices of the United States Department of Energy through the Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

INTRODUCTION

The potential use of organophosphorus (OP) nerve agents, such as tabun (GA), sarin (GB), soman (GD), or VX, on an integrated battlefield necessitates the development of improved field drinking water standards for this category of chemical agent. Monitoring field drinking water supplies to determine if the water complies with these standards for OP nerve agents will ensure that water contaminated with such substances does not contribute to troop incapacitation or

casualty. Also, U.S. Army water-treatment equipment that has the inherent capacity to reduce the concentration of OP nerve agents in water from maximum levels down to concentrations at or below the standards will make it possible for such water to be consumed without degrading performance. The methodology used to develop improved field water quality standards for OP nerve agents is provided and the resulting standards are presented. These standards are designated as recommended interim drinking water standards for the following reasons. First, the toxicity of OP nerve agents seems to differ depending on route of administration^{1,2,3} and the effects of OP nerve agents may not be parallel in different species of laboratory animals.⁴ Second, the dose-response data available in the literature for oral exposure by humans to OP nerve agents are very limited. Finally, the methodology and standards that are described must receive approval of the military surgeons and major user communities before they are adopted for use by United States forces in combat.

METHODOLOGY

The development of recommended interim field drinking water standards for OP nerve agents is based on the relationship between inhibition of acetylcholinesterase (AChE) bound to red blood cells (RBC-ChE) and toxicity.^{5,6,7} The inhibition of AChE at cholinergic synapses (i.e., junctions between nerves or nerves and muscles), which cannot be monitored *in vivo*, is regarded as the principal mechanism by which OP nerve agents induce acute toxicity.⁸ An exponential single-compartment model was used to quantitatively link the effects of sublethal doses of an OP threat agent on RBC-ChE, even after repetitive administration, to the potential for adverse health consequences and to take into account the recovery from such effects. The development of recommended interim field drinking water standards for OP nerve agents also takes into consideration the following criteria and limitations.

- Only oral exposure to OP nerve agents in field drinking water supplies for a maximum of 7 d is of concern--no other exposure routes are considered and water is assumed not to be a primary target (no sabotage).
- Exposed military personnel are considered to be adequately immunized, fed, and clothed; to possess no physiological/psychological burdens; to be 70 kg, male and female, and between 18 and 55 years old.
- Possible chronic or reversible health effects after a maximum combat exposure period of 7 d are not addressed nor are the toxicities of hydrolysis products or any byproducts of water-treatment.
- Unique methods of agent delivery (e.g., thickeners and encapsulation) are not considered.
- On the basis of limited human data presented in the literature,^{5,6,7} the toxicological endpoint that will ensure no performance decrement for general military occupational specialties is 50% depression of RBC-ChE.
- The capabilities of current agent-detection equipment and existing water-treatment equipment do not drive the development of the recommended standards.

• Standards also will allow for any prescribed prophylactic treatment with carbamates that would depress RBC-ChE prior to exposure to OP threat agents and will address both 5 and 15 L/d consumption rates.

RESULTS AND DISCUSSION

Equation 1 was derived from the exponential single-compartment model and was used to determine the concentration of an OP nerve agent in field water, C ($\mu\text{g/L}$), that corresponds to a particular level of depression of RBC-ChE, Q (%),

$$C = \frac{Q r W}{k [1 - \exp(-rt)] D} , \quad (1)$$

where r = the recovery rate from toxicity (d^{-1}); k = a conversion factor describing the potency of a dose [(%RBC-ChE depression \times kg/ μg)]; t = the maximum time over which repetitive dosing from field drinking water takes place (i.e., 7 d); W = the standard weight of military personnel (i.e., 70 kg); and D = the daily drinking water consumption rate (i.e., 5 or 15 L/d). The values for k and r are compound specific and were derived using the limited empirical data available^{1,2,5,9-12} and by making conservative assumptions with regard to the application of these data.

For VX, k is $20 (\% \times \text{kg})/\mu\text{g}$ and r is 0.4 d^{-1} ; for GD, k is $10 (\% \times \text{kg})/\mu\text{g}$ and r is 0.05 d^{-1} ; for GB, k is $5 (\% \times \text{kg})/\mu\text{g}$ and r is 0.1 d^{-1} ; and for GA, k is $1 (\% \times \text{kg})/\mu\text{g}$ and r is 0.1 d^{-1} . Based on these pharmacokinetic parameters, VX is the most potent of the OP nerve agents (i.e., highest k value) and GD is the OP nerve agent for which recovery from toxic effects is the slowest (smallest r value). Substitution of the parameter values for each OP nerve agent into Eq. 1 for Q values equal to 50% or 20%, depending on whether or not pretreatment with carbamates is anticipated, yields concentrations for GD that are lower than for any of the other OP threat agents. This is because GD is eight times more effective than VX in inhibiting recovery from toxicity.

Because the method for detecting OP nerve agents in field water is nonspecific, recommended field drinking water quality standards for OP nerve agents are based on concentrations of GD corresponding to either 50% RBC-ChE depression or 20% RBC-ChE depression. In the absence of prophylactic pretreatment with substances such as carbamate compounds, the recommended interim field drinking water standards for a 7-d exposure period are based on GD inhibition of RBC-ChE to 50%. These concentrations are 12 and 4 $\mu\text{g/L}$ for 5 and 15 L/d consumption rates, respectively. If prophylactic pretreatment with a carbamate is used, the RBC-ChE will be inhibited prior to exposure and the recommended interim standards for a 7-d exposure period are based on GD inhibition of RBC-ChE of only 20%. These concentrations are 4.7 and 1.6 $\mu\text{g/L}$ for 5 and 15 L/d consumption rates, respectively.

CONCLUSIONS

Pharmacokinetic analyses indicate that the OP nerve agents VX and GD are of most concern in field water. While GD is only half as potent as VX, it is eight times more effective than VX in preventing recovery from toxicity. Therefore, GD is a more effective cumulative poison than VX, and recommended field drinking water standards for OP nerve agents are based on concentrations of GD corresponding to either 50% or 20% RBC-ChE depression.

REFERENCES

1. Dacre, J. C., "Toxicology of Some Anticholinesterases Used as Chemical Warfare Agents," in Cholinesterases Fundamental and Applied Aspects of Proceedings of the Second International Meeting on Cholinesterases, Bled, Yugoslavia (September 17 to 21, 1983), M. Brin, E.A. Barnard, and D. Sket, Eds. (Walter de Gruyter, New York, NY, 1984), pp. 415-426.
2. Sidell, F. R., and W. A. Groff, "The Reactivability of Cholinesterase Inhibited by VX and Sarin in Man," Toxicol. Appl. Pharmacol. 27, 241-252 (1974).
3. Schoene, K., D. Hochrainer, H. Oldiges, M. Krugel, N. Franzes, and H-J. Bruckert, "The Protective Effect of Oxime Pretreatment Upon the Inhalative Toxicity of Sarin and Soman in Rats," Fundam. Appl. Toxicol. 5, S84-S88 (1985).
4. Ellin, R. I., Anomalies in Theories and Therapy of Intoxication by Potent Organophosphorus Anticholinesterase Compounds, U.S. Army Biomedical Laboratory, Aberdeen Proving Ground, MD, Biomedical Laboratory Special Publication USABML-SP-81-103 (1981).
5. Grob, D., and J. C. Harvey, "Effects in Man of the Anticholinesterase Compound Sarin (Isopropyl Methyl Phosphonofluoridate)," J. Clin. Invest. 37, 350-368 (1958).
6. Kimura, K. K., B. P. McNamara, and V. M. Sim, Intravenous Administration of VX in Man, U.S. Army Chemical Research and Development Laboratories, Army Chemical Center, MD, CRDLR 3017 (1960).
7. Sim, V. M., and J. L. Stubbs, VX Percutaneous Studies in Man, U.S. Army Chemical Research and Development Laboratories, Army Chemical Center, MD, Technical Report CRDLR 3015 (1960).
8. National Research Council, Possible Long-Term Health Effects of Short-Term Exposure to Chemical Agents. Volume 1. Anticholinesterases and Anticholinergics, National Academy of Sciences, National Academy Press, Washington, DC (1982).
9. Boskovic, B., V. Kovacevic, and D. Jovanovic, "PAM-2, HI-6, HGG-12 in Soman and Tabun Poisoning," Fundam. Appl. Toxicol. 4, S106-S115 (1984).
10. McNamara, B. P., and F. Leitnaker, Toxicological Basis for Controlling Emission of GB into the Environment, Department of the Army Edgewood Arsenal Research Laboratories, Medical Research Laboratory, Edgewood Arsenal, MD, Edgewood Arsenal Special Publication EASP 100-98 (1971).
11. McNamara, B. P., F. C. Leitnaker, and F. J. Vocc, Proposed Limits for Human Exposure to VX Vapor in Nonmilitary Operations, Department of the Army Headquarters, Edgewood Arsenal, Aberdeen Proving Ground, MD, Edgewood Arsenal Special Publication EASP 1100-1 (R-1)/AD 770443 (1973).
12. Dettbarn, W-D., "Pesticide Induced Muscle Necrosis: Mechanisms and Prevention," Fundam. Appl. Toxicol. 4, S18-S26 (1984).