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The stability of ion-drift-wave eigenmodes in 
a slab geometry with a sheared magnetic field is 
investigated. It is found that in contrast to the 
case of universal and dissipative electron drift 
wave eigenmodes, unstable impurity-driven normal 
modes can appear if specific conditions are satisfied. 
In addition, the influence of impurities on unstable 
ion-temperature-gradient-driven drift eigenmodes is 
also studied. It is found that, if their density 
profile is inwardly peaked, the impurities can exert 
a strong stabilizing influence on these modes. 



-2-

I. INTRODUCTION 

The influence of radially nonlocal effects, such as magnetic 
shear, on the presence of absolutely unstable drift modes in a 
confined plasma is a fundamental problem that has been actively 
investigated in numerous papers. Most of these studies have been 
carried out for a slab geometry with shear and have focused on 
electron drift waves with long radial wavelengths. This approach 
leads to a differential eigenmode equation of the form 

[3 2/3x 2 +Q(x,w)]iMx) = 0 (1) 

with Q(x,u) being the governing radial potential, whose specific 
form is determined by the particular instability of interest. In 
the case of universal (collisionless) and dissipative (collisional) 

2 drift waves, it has been emphasized m several recent papers that, 
if the complete electron dynamics driving these modes is properly 
included in Q(x,u) , then absolutely unstable forms of these insta­
bilities cannot be present at long radial wavelengths (k p. <1 with 
p. being the ion gyroradius). In the present paper, it is demon­
strated that unlike these modes, the impurity-driven ion-drift 
waves, ' previously derived in only the radially local limit, can 
persist as unstable normal modes in a sheared slab geometry pro­
vided certain criteria are satisfied. Additionally, the influence 
of impurities on unstable ion-temperature-gradient-driven drift 

5—8 eigenmodes is also determined. 
Before describing the radially nonlocal calculations, it is 

appropriate to first, review the characteristic features of ion-drift 
waves driven unstable by impurity effects and by ion temperature 
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gradients. As noted in the original local derivation of the impurity 
3 

modes by Coppi, et al., the basic requirement for their onset is 
that in addition to the electron and principal ion (taken here to 
be hydrogen) populations, there must be an impurity population with 
a density gradient which is oppositely directed from those of the 
main plasma components. A representative example of this type of 
configuration is one where the electron and hydrogen components 
monotonically decrease away from the center of the plasma (x = 0), 
and the impurity component is peaked toward the outside. For such 
equilibrium density profiles, the diamagnetic drift frequency, 
u^ . = (k cT/ZeBL ) . with L s - (d In nQ/dr) ~ , will be positive 
the electrons and impurities (u , w _ > 0) and negative for the 

I . 
that charge neutrality must be preserved; i.e.. 
principal ion component (w4. < 0). It should also be remembered here 

Z(Z2n u^/T). = 0 . (2) 
j 

For the ion-temperature-gradient modes, the basic requirement is 
simply that r\i = d InTi/d In n Q i be sufficiently large. As pointed 

5 out by Kadomtsev and Pogutse (and confirmed in later more detailed 
7 studies ) the criterion is roughly n. > 1 . 

3 4 In the local analysis ' of impurity drift instabilities, it 
was found that the dominant modes of this type have characteristic 
parallel phase velocities below the thermal velocity of hydrogen 
but above that of the impurity species; i.e., v„ T <to/k,. <vFp. . 
Hence, to a good approximation, the perturbed electron density 
response can be taken as adiabatic; i.e., (n/n ) = ieU/T . The 

o e e 
hydrogen ions, on the other hand, now have a role analogous to 
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that of the electrons for universal and dissipative drift modes. 
Specifically, the perturbed density response of hydrogen provides 
the destabilizing contribution in the form of inverse Landau damping 

3 in the collisionless regime and collisional dissipation in the 
4 more collisional regimes. As shown in Ref. 3, the local analysis 

indicates that the impurity drift modes typically propagate in the 
ion diamagnetic direction [i.e., Re(a>) = to . ] and have maximum growth 
rates of roughly the same magnitude as Ke(w) [i.e., Im(u>) ~-<i>t-l • 
In the next section a radially nonlocal analysis of these modes as 
well as the n.-driven eigenmodes in the presence of impurities will 
be carried out. The results will be presented in Sec. Ill, and the 
conclusions and implications of these studies discussed in Sec. IV. 

II. EIGENMODE ANALYSIS 

3 To derive the basic eigenmode equation, standard procedures 
can be employed to calculate the full kinetic density response of 
the electrons and the ion components. For the regime of interest 

3 4 (v T J < <o/k.. ) prescribed in earlier studies, ' the impurity response 
can also be obtained using the fluid approximation, i.e., 

*^=~ T I l' 
z i i e i « r * i + ^ ! 15M) ( 2 ) 

Although the complete kinetic response of the electrons was taken 
into account in the calculations carried out in this paper, it 
was found that using the simple linearized Boltzmann response, 
n /n = |e|<f>/T , yields essentially the same results. For the 
e' oe 
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ions, the perturbed density response in the collisionless limit can 
be expressed in the form: 

n i 
n o i ^+11- ¥)^ z^ ro - ^vik +K 2-i) z<vk 

p i - iy z ^i>} + b(r , - r ) z ( c . ) l (3) 

g with z(?-) being the plasma dispersion function, t,^ = w/k^v. , 
and r 5 I (b)exp(-b) with I (b) being the modified Bessel func-n n n 

2 2 tion and b = kxp./2. 
1 2 The familiar sheared slab configuration ' considered has an 

equilibrium magnetic field of the form, B = B [z+ (x/L )y] , with 
L being the shear length and x corresponding to the radial variable. 
Hence, for perturbations of the form, <f> = 4> (x) exp(-iiot + ik y) , the 
parallel wavenumber becomes k, = k x/L . At long radial wavelengths 
(k p. <1), the quasineutrality condition, I z.e.n. = 0 , together 

x i j : J J 

with the assumption that the radial variation in equilibrium quantities 
such as w* . can be ignored, leads to the radial differential eigen-
mode equation given in Eq. (1); i.e., 

[82/8x2 + Q(x,uM<Mx) = 0 (4) 

where x is now a dimensionless variable (:<-*-xp //2) and 

Q(x,to) = A(x,(o)/B(x,u) (5) 
f 

with 
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n~~ n^T i L~~ n_M-r .> n - m. r L \2 2 
A ( X f £ l J ) = _2£ _ Z T -°I 1 -BB. + b T _2i _I _ z2 ol mif nel x 

noi J noi 0 Lnl noi m i * noi M i I L
s J J? 2 

[(1+^L^f)ro " i ^ t r o - 2 b < r i - r o ^ i Z ^ 
i ne „ 2 

B<*'*» = - ft 1 + jff s£f ) ( r i - V - w ^ f ^ ro+ r i + 4 b < r i - V > K Z <c±i 
H_- L 9 n _ M_ 

-Jff^7< ri- ro>«It 1 + 5lz^i>J - a ^ i f ' <7> nz oi I 

A = w/o) ± e , T s T e/T ± , and C ± H fi(Ls/Lne) (T/2) 1 / 2 / | x | . This equa­
tion determines the radial eigenfunctions and eigenvalues of both 
the impurity-driven eigenmodes and (by suppressing the impurity 

Q 
terms) the n.-driven eigenmodes, 

A. Local Analysis 

The radially local dispersion relation can be easily recovered 
by treating k.. = k x/L as a simple input variable in Eq. (6) and 
then setting A{UJ) =0 . To solve for eigenvalues of the impurity 
drift modes, it is convenient to adopt the approximations made by 

3 . . . 
Coppi, et al.; i.e./ ignore the finite gyroradius and lmpuriiy-
ion-acoustic terms and take 

T V 2 Z <s.) « iTT-^e.U- <u/w.,)[i- (n./2)]} 
X J- ~1 i 

with | 5 . | << 1 . This leads to the result 
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zl noi r n — n - i w-» r ,„ f. V 
w = r W* ̂ ^ * ^ J ' - ^ - ? l l } •,8> 

2 Following the earlier calculation, first note that at marginal 
stability, w 0 = w ^ i H - (r>±/2) ] , and then substitute u = W Q + 6w r + iy 
back into Eq. (8) to obtain 

d N 2InQl , fnoe +
 noif X ,-, 

and -,2 1/2, 
Z„n _. IT ' 6w /-n n . El oe+ °i] . (10) 

V i l T. TiJ 
Hence, for instability, the criterion reduces to w Su> > 0 or 

Noting that the second term is generally much less than unity, and 
3 setting n • = 0 , this is just the requirement that the impurity 

density gradient be oppositely directed from those of the main 
plasma components; i.e., I,

nr/I'ni< ° • 
Although the simple estimates here lead to results which will 

prove to be in qualitative agreement with those from the nonlocal 
calculations, it should be pointed out that such a procedure can 
also generate erroneous conclusions. In particular, if the n. 
term is retained in Eq. (11), the inference from this type of cal­
culation would be that positive ion temperature gradients (n. > 0) 
should exert a stabilizing influence on the impurity modes. How­
ever, when the complete nonlocal analysis is carried out, it is 
found that just the opposite is true? i.e., n i > 0 is destabilizing 
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while n i < 0 is stabilizing. This is a consequence of the fact 
that the B(x,w) term, specified in Eq. (7), has a different in­
dependence than A(x,u) . As noted earlier, this factor does not 
appear in the simple local calculation. 

The local analysis of ion-temperature-gradient driven modes 
is well documented in earlier papers. ' The simplest form of 
these instabilities (ignoring resonant ion effects) can be readily 

5 7 obtained from fluid equations. ' Inclusion of resonant ion effects 
leads to an ri. threshold near unity. As before, the local results 
for n•-modes can be recovered from Eq. (6) by ignoring the impuritie 
treating k. as an input variable, and setting A(w) = 0 . 

B. Nonlocal Analysis 

Before describing the procedures used to carry out the radially 
nonlocal calculations, it is appropriate to first comment on the 
nature of the governing potential, V(x,w) E - Q ( X , W ) in Eq. (1). 
In contrast to the familiar "anti-well" form of V for the electron 
drift waves, the real part of the potential for the ion drift waves 
can have the shape of a bounded well. Hence, instead of appearing 
as propagating eigenmodes characteristic of electron drift waves, 
these ion waves can take the form of dominantly nonpropagating 
normal modes. 

The above point can be illustrated by considering the simplest 
7 form of the n- -driven instability which requires n- » 1 and has 

I Y/U I >> 1 with ID <* w. . . The potential for this case reduces to 
the usual Weber equation form, 
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V(x,w) = -Q(x,w) = A<w) - B(w)x2 (12) 

with 

A , . x(fl-l) n f „ > _ f Ln 1 1 

T = T /T. , and 12 = w/w . Notice here that for |YA>r| >> 1 # 
the potential, V, is dominantly real and has the shape of a well; 

2 i.e., Re(V)=Re(A)x with Re(B) < 0 . In addition, since & r < 0 
and n. >> 1 imply that Re(A) < 0 , the governing potential ia a 
bounded well. Hence, the solutions to the differential equation 
will accordingly take on the character of dominantly nonpropagating 
normal modes. Although the actual form of Q(x,k>) , as given in 
Eq.'s (5-7), is far more complicated than Eq. (12), the basic 
bounded-well nature of the potential is found to persist. 

In carrying out the detailed radially nonlocal analysis, solu­
tions were obtained by the WKBJ or phase integral method and also 
by a standard shooting code procedure. The WKBJ solution to Eq. 
(1) has the familiar form 

<j>± = Q - 1 / 4exp|±i| dzQ 1 / 2j (13) 

with z = x + iy being the spatial variable in the complex plane, 
Q being defined in Eq.'s (5-7), and the boundary conditions deter­
mining the proper combination of $+ and $_ . As shown in Ref. 10, 
the corresponding eigenvalue equation is 

z 2 

J d2[Q(z,o))]1/2 = <n + i)ir (14) 
Zl 
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with n being the radial mode number and z, , z~ being the turning 
points determined by Q(Z,OJ) = 0 . 

Prom Eg. (13) it is clear that the solution, * , is oscillating 
along the so-called "anti-Stokes lines" which are defined by the 
requirement that the integral in the exponential be real. Accord­
ingly, a local anti-Stokes line (at z = z ) can be represented as 
an infinitesimal path emanating from z along which Q ' dz is 
real. Provided Q(z ,to) is finite and well behaved, such a line 
is simply determined by setting dz equal to a real number times 

-1/2 ±[Q(zo)] ' . Hence, from each local point z in the complex 
plane, there will issue two oppositely directed lines. In the 
vicinity of a turning point [z = z_ with Q(z„,) =0], Q(z) = [z - z )Q' (z ) . 

Since this implies the requirement that (z - z ) ' be real near z , 
there will now be three lines emanating from this local point. As 

12 described in detail by White, the local anti-Stokes lines can be 
used to form the global Stokes diagram which in turn describes the 
global properties of the WKBJ solutions. The actual WKBJ calcula­
tion implemented can be briefly summarized as follows. First, an 
initial guess for u is taken from the local analysis and used to 
generate the global Stokes diagram. If the diagram indicates two 
good turning points and a structure consistent with the boundary 
condition requirement that the solutions be exponentially decaying 
at large x (subdominant regions), then the eigenvalue condition, 
given in Eq. (14), is used to iteratively search for the proper (o . 
A typical picture of a Stokes diagram corresponding to an unstable 
normal mode is given in Fig. 1. 

The shooting code procedure used to complement and check the 
WKBJ analysis involves the application of a well-known finite 
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difference scheme known as the Numerov algorithm. Here* an initial 
guess for tu is used in the WKBJ form for </> given in Eq. (13) with 
the appropriate sign chosen to correspond to exponentially decaying 
solutions. Equation (1) is then integrated from large x (where 
the WKBJ form is a good aoproximation) to the origin (x = 0). The 
required boundary condition at the origin provides the constraint 
determining the eigenvalue. Specifically, d<(>/dx|x=0 = 0 for even 
modes and <$>(0) =0 for odd modes. The new value of ID predicted 
here is then used as the initial guess, and the entire procedure is 
repeated until the scheme converges. 

III. RESULTS 

In this section the eigenmode analysis described in the pre­
ceding section is applied to the impurity-driven and n.-driven ion 
drift instabilities. Results presented here deal with the influence 
of magnetic shear, typical wave number spectra, collisional effects, 
and the combined effects of impurities and ion temperature gradients. 

A. Impurity Drift Eigenmodes 

In general the radial localization of the impurity-driven 
eigenmodes is governed by the dynamics of the principal ion com­
ponent (taken to be hydrogen). Specifically, it is the ion Z-func-
tion response in Eq.'s (6) and (7) which determine the relevant 
turning points for these normal modes. Typical eigenfunctions are 
plotted on Fig. 2 for radial mode numbers n= 0 and n=2 . In these 
cases the chosen input parameters are T = T /T. = 1 , b=k2p?/2=0.125 , 
n± = ° ' Lne / Ls = 0'1> Zl noI / noe = °«X ' zi = 8 <°xygen), and L n e/L n I = -8 
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(to correspond to outwardly peaked impurity density profile). The 
qualitative dependence of these instabilities on wave number (b), 
magnetic shear strength (L n e/L s), and ion temperature gradient (n.) 
can be conveniently illustrated by varying the physical parameter 
of interest while keeping the rest fixed to those values just spec­
ified for Fig. 2. 

A typical wave number (k ) spectrum for impurity eigenmodes is 
plotted on Fig. 3. It is clear from this graph that over a wide 
range of wavelengths where these instabilities are strongest (i.e., 
for b < 1), they appear to be quite insensitive to changes in the 
wave number. Hence, for the rest of the parameter variation studies 
carried out here, b= 0.125 is chosen as a representative case. 

The influence of magnetic shear on the impurity eigenmodes is 
illustrated on Fig. 4. Here s seen that these modes remain 
absolutely unstable over a wide range of shear strength (L /L ). 
For the more realistic values of L /L (i.e., L /L lying between 

s ne s ne 
10 and 50) the n = 2 radial eigenmode is found to have the largest 
growth rate. As shown on Fig. 4, the actual sensitivity of this 
mode to changes in L„/L (between 10 and 50) is not pronounced. 
It should also be noted that for the very weak shear regime 
(L /L > 50), the higher radial eigenmodes (n > 2) will be the dominant 
instabilities. In addition to the shear dependence of the impurity 
eigenmodes, Fig. 4 also illustrates the good agreement between the 
results from the WKBJ and shooting code calculations. 

As mentioned earlier in this paper, if the ion temperature 
gradient (n- 7*0) is taken into account in the analysis, it is found 
that for n • < 0 the influence is stabilizing, while for: n. > 0 
effect is destabilizing. This ^-dependence of the impurity 

the 
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eigenmodes is plotted on Fig. 5. Here it is seen that the desta­
bilizing trend actually sets in for n- > 1 • Of course, even in 
the absence of impurities, the condition n. > 1 is sufficient to 

7 drive ion drift waves unstable. 
In order to study the behavior of impurity eigenmodes in a 

more collisional regime, a simple number-conserving form of the 
4 Krook collision operator is employed. For n. - 0 and b<< 1 , the 

terms in the governing pote'ntial specified in Eq.'s (6) and (7) 
become: 

n n T , L n _ M T _ n .. m. /L -,2.2 
A{x,u>) = - — - z - — — = — + bx - — —— - Z - — — — — —=• 

oi oi nl oi i oi I v s' n 

+ T + x(l -b)E(w,v.) , (15) 

n M 
B(x,w) = E(w,v.) - ~ -i , (16) 

oi i 
with 

\ e l =o fa(n+iv,)-

E(w,V i) = 

f 1 + 1 LnelaSJ . f a ( n + l v i M 

iv.a ra(ft+iv.) 
1 rv 1 I+-T^T Z FT i~F 

+ i v i n 
*i i 

v
i = v

i i/w j > (accounting for hydrogen-hydrogen collisions) and 
a= (Ls/Ln)k/2) . As in the previous radially local calculation, 
electron-hydrogen and impurity-hydrogen collisions are taken to be 
negligible. Typical results of the radially nonlocal analysis is 
shown on Fig. 6. The qualitative trend indicated here is that the 
collisional effects do not significantly modify the collisionless 
results. For example, a very large collision frequency (v .. > 5u ) 

XX *G 
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is required to reduce the growth rate by about a factor of two. 

B. Ion Temperature Gradient Drift Eigenmodes 

In the absence of impurities, detailed numerical (shooting 
o 

code) solutions to Eg.'s (5-7) have been obtained by Waltz, et al. 
On the basis of these results, it was concluded that if n. > 1 , 
then unstable normal modes can readily appear and are quite insen­
sitive to shear stabilization. For a typj-oal magnetic shear strength, 
L /L =0.1 , and n ,= 2 , their calculations indicated that the 
largest growth rate is associated with the fundamental (n=0) radial 
eigenmode. In the present calculations, it is found that this 
dominance of the n = 0 mode (for L /L =0.1) persists at larger 
values of n. . Hence, for the remainder of this section attention 
will be focused on results dealing with the n = 0 eigenmodes with 

A typical wave number spectrum for the n•-modes (with n- =3) 
is illustrated on Fig. 7. Here it is seen that these instabilities 

2 2 are quite insensitive to changes in k for b = k p./2< 0.1 , and 
that the largest growth rates occur around b=0.5 . 

Using b=0.5 , the sensitivity of these temperature-gradient-
driven eigenmodes to the parameter n. was studied. As shown on 
Fig. 8, the destabilizing influence of increasing this variable is 
approximately linear up to n- - 3 . However, at higher .values of 
n. , the growth rates of these modes become almost independent of 
this parameter. 
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On the basis of the preceding results, it seems appropriate 
to choose the n = 0 radial eigenmode with L /L =0.1, b = 0.5, 
and n. = 3 as a representative case to study the influence of 
impurities. As noted earlier in this paper, the presence of impurities 
with outwardly peaked density profiles will in general enhance the 
destabilization of ion drift waves. However, if the impurities are 
inwardly peaked, their stabilizing influence can be quite dramatic. 
This favorable trend is most easily seen in the analytic treatment 
of these modes ignoring resonant ion effects. As shown, for example, 
by Coppi, et al., the resultant Weber equation for the n.-
eigenmodes leads to the eigenvalue condition, 

Jne (2n+l) _ QT-T 
52 1+r̂ +fiT (17) 

with n i » l required for self-consistent unstable solutions. If 
impurities are now included, the eigenvalue equation becomes 

. ne (2n+l) 

with 

S2T 
n /-L 
n o i l Lni J In 1 TJ oe nl ; 

(l+n.)-BS + fix 
1 Lni 

(18) 

ne - o e h 7 ol ne ~ Soli' ***Z^\ (19) 

as a consequence of charge neutrality. Obviously, in the absence 
of impurities, LR&= L R 1 and n o e = n o i , so that Eq. (18) just 
reduces to Kq. (17). However, if the impurities are present 
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and inwardly peaked (L /L _ > 0 ) , then L /L . < 1 . Since L /L . 
ne ni ne ni ne ni 

multiplies the destabilizing term, 1+n• , the effect here is clearly 
stabilizing. This favorable trend is also found to persist when 
solving the more exact eigenmode problem as specified by Eq.'s (5 - 7) . 

The stabilizing influence of inwardly peaked impurities on 
the ru-driven instabilities is illustrated on Fig.'s 9 and 10. For 
a given impurity concentration (ZJ.II z/n = 0.2), the required degree 
of peaking for stabilization is shown on Fig. 9 to be about L /L ,. > 2 

ne ni ~ 
On Fig. 10, the required impurity concentration for stabilization 
corresponding to several different inwardly peaked impurity pro­
files is plotted, it is seen that for the more strongly peaked 
cases, the impurity concentration needed for stability is quite low. For example, with L /L T > 2 , the required Z,n T/n < 0.2 . This ne ni I ol oe 
corresponds^ to less than a three percent density concentration of 
a low-Z impurity, such as oxygen. 

IV. CONCLUSIONS 

A systematic analysis of long radial wavelength (k p. <1) ion 
drift wave eigenmodes in a sheared slab geometry has beer presented 
in this paper. With regard to impurity-driven modes, it is found 
that for outwardly peaked impurity profiles, these instabilities 
are very unlikely to be shear stabilized. On the other hand, if 
the impurities are inwardly peaked, the instabilities do not appear. 
Moreover, for such a situation, the impurities tend to exert a 
strong stabilizing effect on the temperature-gradient-drive»i ion 
drift modes. In light of these results, it would be quite inter­
esting to explore the possible existence of favorable impurity 

http://Zj.ii
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profiles in actual experiments. For example, Goldston's measurements 
on the ATC (adiabatic toroidal compressor) tokamak indicate an 
inward peaking of the effective Z-profile. This at least allows 
for the possibility that individual types of low-Z impurities could 
be inwardly peaked. In general, measurements of such individual 
.mpurity profiles on existing experiments should provide some very 
useful information. 
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Fig. 5. Typical ion temperature gradient dependence of im­
purity drift instability. 
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Fig. 6. Typical dependence of impurity drift instability on ion-ion (hydrogen) 

collisions. 
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Fig. 7. Wave number (b) spectrum for ion temperature gradient instability with 
n - = 3 , L/L =* 0.1, and radial mode number (n) = 0 . 
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Fig. 8. Ion temperature gradient dependence of n,- -driven instability with 

b = 0.5, L /L =0.1, and n = 0. ~ 
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Fig. 9. Typical stabilizing influence of impurities on n. 
792122 

-driven 
instability as a function of degree of inward peaking of the impurity 
density profile, L
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Fig. 10. Typical stabilizing influence of. impurities on 

n^-driven instability as a function of impunity concentration, 
Z In o l/n o e, for a given degree of inward peaking of the impurity 
density profile, L
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