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Impurity Effects on Ion-Drift-Wave Eigenmodes

in a Sheared Magnetic Field
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The stability of ion-drift-wave eigenmodes in
a slab geometry with a sheared magnetic field is
investigated. It is found that in contrast to the
case of universal and dissipative electron drift
wave eigenmodes, unstable impurity-driven normal
modes can appear if specific conditions are satisfied.
In addition, the influence of impurities on unstable
ion-temperature-gradient-driven drift eigenmodes is
also studied. It is found that, if their density
profile is inwardly peaked, the impurities can exert

a strong stabilizing influence on these modes.
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I. INTRODUCTION

The influence of radially nonlocal effects, such as magnetic
shear, on the presence of absolutely unstable drift modes in a
confined plasma is a fundamental problem that has been actively .
investigated in numerous papers. Most of these studies have been
carried out for a slab geometry with shear and have focused on
electron drift waves with long radial wavelengths. This approach

leads to a differential eigenmode equation of the form

18%/0x% + 0(x,0) 18 (x) = 0 | (1)

with Q(x,w) being the governing radial potential, whose specific
form is determined by the particular instability of intérest. In
the case of universal (collisionless)1 and dissipative {collisional)
drift waves,2 it has been emphasized in several recent papers that,
if the complete electron dynamics driving these modes is properly
included in Q(x,w) , then absolutely unstable forms of these insta-
bilities cannot be present at long radial wavelengths (kxpi <1 with
Py being the ion gyroradius). In the present paper, it is demon-
strated that unlike these modes, the impurity-driven ion-drift
waves,3'4 previously derived in only the radially local limit, can
persist as unstable normal modes in a sheared slab gecmetry pro-
vided certain criteria are satisfied. Additionally, the influence
of impurities on unstable ion-temperature-gradient-driven drift ,
eigenmodess_a is also determined.

Before describing the radially nonlocal calculations, it is
appropriate to first, review the characteriscic features of ion-drift

waves driven unstable by impurity effects and by ion temperature



gradients. As noted in the original local derivation of the impurity
modes by Coppi, et al.,3 the basic requirement for their onset is
that in addition to the electron and principal ion (taken here to
be hydrogen) populations, there must be an impurity population with
a density gradient which is oppositely directed from those of the
main plasma components. A representative example of this type of
configuration is one where the electron and hydrogen components
monotonically decrease away from the center of the plasma (x=0),
and the impurity component is peaked toward the outside. For such
equilibrium density profiles, the diamagnetic drift fregquency,

W, T (k,CT/ZeB L), with Ly =-(d1nn/dr)”!, will be positive for
the electrons and impurities (m*e PR > 0) and negative for the

principal ion component (w*i< 0). It should also be remembered here

that charge neutrality must be preserved; i.e.,

2 =
Z(z nom*/T)j =0 . (2)

J

For the ion-temperature-gradient modes, the basic reguiremert is
simply that n; = d1ln Ti/d in n,;: be sufficiently large. Aas pointed
out by Kadomtsev and Pogutse5 (and confirmed in later more detailed
studies7) the criterion is roughly n;21.

In the local analysis3'4

of impurity drift instabilities, it
was found that the dominant modes of this type have characteristic
parallel phase velocities below the thermal velocity of hydrogen
but above that of i i ies; i

344 e that of the impurity species; i.e., Vor <w/h, <V -+
Hence, to a good approximation, the perturbed electron density

response can be taken as adiabatic; i.e., (n/no) = ield;/Te . The
e

hydrogen ions, on the other hand, now have a role analogous to



that of the electrons for universal and dissipative drift modes.
Specifically, the perturbed density response of hydrogen provides
the destabilizing contribution in the form of inverse Landau damping
in the collisionless regime3 and collisional dissipation in the
more collisional regimes.4 As shown in Ref. 3, the local analysis
indicates that the impurity drift modes typically propagate in the
ion diamagnetic direction [i.e., Re(w) =w*i] and have maximum growth
rates of roughly the same magnitude as Re(w) [i.e., Im(m)r-w*i].
In the next section a radially nonlocal analysis of these modes as
well as the ni-driven eigenmodes in the presence of impurities will
be carried out. The results will be presented in Sec. III, and the

conclusions and implications of these studies discussed in Sec. IV.

II. EIGENMODE ANALYSIS

To derive the basic eigenmode equation, standard procedures
can be employed to calculate the full kinetic density response of
the electrons and the ion components. For the regime of interest
(VTI <w/HI) prescribed in earlier studies,3'4 the impurity response

can also be obtained using the fluid approximation, i.e.,

2.2 2.2
2 =-ﬁ_l_e_.ii [E + L1 _ k“vI] (2)
o1 TI w 2 2m2

Although the complete kinetic response of the electrons was taken
into account in the calculations carried out in this paper, it
was found that using the simple linearized Boltzmann response,

n. /n e::[eldb/Te , yields essentially the same results. .For the
(3
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ions, the perturbed density response in the collisionless limit can
be expressed in the form:
n, 4 W . W, .
: eld _ A _ _*i 2 1 ]
n. s "L‘L{l 2 T]Ciz(ci)ro ~Enefe, + [Ci 2]2“;1’ To

n_. T.
oi i

+ b(Pi-PD)Z(Ci)} (3)

with Z(Ci) being the plasma dispersion function,9 Ly = “’/lﬁlvi '

and I‘n = In(b)exp(-—b) with In(b) being the modified Bessel func-
. -2 2

tion and b= k‘_pi/z .

2 .
considered has an

The familiar sheared slab configurationl’
equilibrium magnetic field of the form, B=Bo[§+ (x/Ls)i;] , with
Ls being the shear length and x corresponding to the radial variable.
Hence, for perturbations of the form, ¢= ¢(x)exp(—iwt+ikyy) , the
parallel wavenumber becomes k” =kyx/Ls . At long radial wavelengths
(kxpi <1), the quasineutrality condition, ;: Zjejnj =0, together
with the assumption that the radial variation in equilibrium quantities
such as w*j can be ignored, leads to the radial differential eigen-

mode equation given in Eqg. (1); i.e.,

(32/3x2 + Q(x,w} 1 (x) = 0 (4)
where x 1is now a dimensionless variable (:{+xps/f2‘) and

Q(x,w) = A(X,m)/B(X,m) (5)

with




2
n
A(x,w) = noe - ZI ol S—]i-Lne + b.—[.i;.-M—I.— Zzh !:J_'[il_g} ?.EE
oi Do @ Ing Noi My Ingg Mp(ILg ) o2
L n L
1 ne 1 "ne
P T[[1+——]r‘ o Tl R TR I | ER TN
QT Lni o QT Lni
ﬂiL
+’Q_£_"FC[1+C Z(C)] ' (6)
ni
L n. L
1l Tne i
B{x,w) ——Hl+———](f‘ =T ) - —----—[l"+1" +4b(1" -T )]]C.Z(C.)
QT ni 1l o 29t Lni o] i 1
n. L n M
- o 22, )2 [L+z,2(501 - 22 L, {7)
ni oi 1
Q= w/w T= T /T and ¢, =Q(L_/L )(T/2)1/2/| | This equa-
- ' "7 Te i’ i~ s’ “ne xl - § equa

tion determines the radial eigenfunctions and eigenvalues of both
the impurity-driven eigenmodes and (by suppressing the impurity

terms) the ni-driven eigenmodes.8

A. Local Analysis

The radially local dispersion relation can be easily recovered
by treating ]ﬁl==kyx/Ls as a simple input variable in Eq. (6) and

then setting A{w) =G. To solve for eigenvalues of the impurity

drift modes, it is convenient to adopt the approximations made Dby

Coppi, et al.;3 i.e., ignore the finite gyroradius and impurity-

ion-acoustic terms and take

2(z,) = in'/ 20 (1~ (w/u ) 11 - (ny/2)1)

with I;il <<1. This leads to the result



e et i e it et e TR AR

—'7_

2 -1

Z.n n n_. n.

I 0l {oe oi, . 1/2 [ w [ ___{H} (8
wE - —=—m=n, Yo *+ =+ iT z.l1-—j1 . )

T, *UT, T, i Wiy 2

Following the earlier calculation,3 first note that at marginal
stability, ®_=w,; [1-~ (n;/2)1, and then substitute w=o_+du + iy

back into Eg. (8) to obtain

-1
n., i n n n_.
i I ol oe [e2}
S0 == .[1*_.} - o [——+—~} , (9)
r *i 2 T, *I{T. T T
and 1/2
2
y = Z1l01 " ml Sy {noe+noi] . (10)
Ty I kyvy (T Ty

Hence, for instability, the criterion reduces to m*Iéwr >0 or

2
W, ", ZZn__ [ n_.y-1
w'kl [1_ 21] + :EI.OI {Toe+ TOlJ >0 . (11)
*T I e i

Noting that the second term is generally much less than unity, and
setting ny = 0, this is just the requirement3 that the impurity
density gradient be oppositely directed from those of the main

plasma components; i.e., LnI/L i <Q.

n
Although the simple estimates here lead to results which will
prove to be in qualitative agreement with those from the nonlocal
caiculations, it should be pointed out that such a procedure can
also generate erroneous conclusions. In particular, if the ny
term is retained in Eq. (11), the inference from this type of cal-
culation would be that positive ion temperature gradients (ni> 0)
should exert a stabilizing influence on the impurity modes. How-

ever, when the complete nonlocal analysis ‘is carried out, it is

found that just the opposite is true; i.e., ni‘) 0 is destabilizing




while n; < 0 is stabilizing. This is a consequence of the fact
that the B(x,w) term, specified in Eq. (7), has a different ng-
dependence than A(x,w) . As noted earlier, this factor does not
appear in the simple local calculation.

The local analysis of ion-temperature-gradient driven modes

5,7

is well documented in earlier papers. The simplest form of

™
.

these instabilities (ignoring resonant ion effects) can be readily

5.7 Inclusion of resonant ion effects

obtained from fluid equations.
leads to an n; threshold near unity.7 As before, the local results
for ni-modes can be recovered from Eq. (6) by ignoring the impurities,

treating as an input variable, and setting A(w)=0.
i g

B. Nonlocal Analysis

Before describing the procedures used to carry out the radially
nonlocal calculations, it is appropriate to first comment on the
nature of the governing potential, V(x,w) Z-Q(x,w) in Eg. (1).

In contrast to the familiar "anti-well" form of V for the electron

drift waves,l the real part of the potential for the ion drift waves

can have the shape of a bounded well. Hence, instead of appearing
as propagating eigenmodes characteristic of electron drift waves,
these ion waves can take the form of dominantly nonpropagating

normal modes. '

The above point can be illustrated by considering the simplest

form of the ni-driven instability7 which requires n; >> 1 and has

IY/wrl >>1 with w_e=w,; . The potential for this case reduces to

the usual Weber equation form,



~0(x,0) = Alw) - B(w)x> (12)

Vix,w)
with

L 2
Aw) = HE B =[r‘l?12-) .
i s

TET /T, , and QZw/w, . Notice here that for lv/u, | >>1,
the potential, V, is dominantly real and has the shape of a well;
i.e., Re(V) =Re(A)x’ with Re(B)<0. In addition, since 2_<0
and n; >> 1 impiy that Re(A) <0, the governing potential is a
bounded well. Hence, the solutions to the differential equation
will accordingly take on the character of dominantly nonpropagating
normal modes. Although the actual form of Q(x,w) , as given in
Eq.'s (5~ 7), is far more complicated than Eq. (12), the basic
bounded~-well nature of the potential is found to persist.

In carrying out the detailed radially nonlocal analysis, solu-

10 and also

tions were obtained by the WKBJ or phase integral method
by a standard shooting code procedure.ll The WKBJ solution to Eq.

(1) has the familiar form
. z
¢, = Q 1/4exp[iij szl/z} (13)

with z=x+iy being the spatial variable in the complex plane,
Q being defined in Eg.'s (5-7), and the boundary conditions deter-
mining the proper combinaticn of ¢, and ¢_. As shown in Ref. 10,
the corresponding eigenvalue eguation is

2

2
[ “aztetz,01? = @l (14)
2
1
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with n being the radial mode number and Z) 1 2, being the turning
points determined by Q(z,w) =0.

From Eg. (13) it is clear that the solution, ¢ , is oscillating
along the so-called "anti-Stokes lines" which are defined by the
requirement that the integral in the exponential be real. Accord-
ingly, a local anti-Stokes line (at z==zo) can be represented as
an infinitesimal path emanating from z, along which Ql/zdz is
real. Provided Q(zo,w) is finite and well behaved,such a line
is simply determined by setting dzc equal to a real number times
i[Q(zo)]-l/z. Hence, from each local point z, in the complex
plane, there will issue two oppositely directed lines. 1In the
vicinity of a turning point {z =z, with 0(zy) =01, Q(2) ﬁ(z-—zT)Q'(zT).
Since this implies the requirement that (z-—z,l,)3/2 be real near 2
there will now be three lines emanating from this local point. As
described in detail by White,12 the local anti-Stokes lines can be
used to form the global Stokes diagram which in turn describes the
global properties of the WKBJ solutions. The actual WKBJ calcula-
tion implemented can be briefly summarized as follows. First, an
initial gquess for w is taken from the local analysis and used to
generate the global Stokes diagram. If the diagram indicates two
good turning points and a structure consistent with the boundary
condition regquirement that the solutions be exponentially decaying
at large x (subdominant regions), then the eigenvalue condition,
given in Eq. (14), is used to iteratively search for the proper w. .
A typical picture of a Stokes diagram corresponding to an unstable
normal mode is given in Fig. 1. . .

The shooting code procedure used to complement and check the

WKBJ analysis involves the application of a well-known finite
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1 Hers an initial

difference scheme known as the Numerov algorithm,l
guess for « is used in the WKBJ form for ¢ given in Eg. (13) with
the appropriate sign chosen to correspon? to exponentially decaying
solutions. Equation (1) is then integrated from large x (where
the WKBJ form is a good aoproximation) to the origin (x=0). The
required boundary condition at the origin provides the constraint
determining the eigenvalue. Specifically, d¢/dx|x=o= 0 for even
modes and ¢(0) =0 for odd modes. The new value of w predicted

here is then used as the initial guess, and the entire procedure is

repeated until the scheme converges.

III. RESULTS

In this section the eigenmode analysis described in the pre-
ceding section is applied to the impurity-driven and ni—driven ion
drift instabilities. Results presented here deal with the influence
of magnetic shear, typical wave number spectra, collisional effects,

and the combined effects of impurities and ion temperature gradients.

A. Impurity Drift Eigenmodes

In general the radial localization of the impurity-driven
eigenmodes is governed by the dynamics of the principal ion com~
ponent (taken to be hydrogen). Specifically, it is the ion Z-func-
tion response in Eq.'s (6) and (7) which determine the relevant
turning points for these normal modes. Typical eigenfunctions are
plotted on Fig. 2 for radial mode numbers n=0 and n=2. In these
cases the chosen input parameters are 1= Te/Ti =1, b =k§pi/2 =0.125,

Ny = 0, Lpe/Lg=0.1, 2:n /0, =0.1, 3;=8 (oxygen), and Lpe/Lyz = -8
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(to correspond to outwardly peaked impurity density profile). The
qualitative dependence of these instabilities on wave number (b),

magnetic shear strength (Lne/Ls), and ion temperature gradient (ni)

can be conveniently illustrated by varying the physical parameter

of interest while keeping the rest fixed to those values just spec—

ified for Fig. 2, R

A typical wave number (ky) spectrum for impurity eigenmodes is
plotted on Fig. 3. It is clear from this graph that over a wide
range of wavelengths where these instabilities are strongest (i.e.,
for b<1), they appear to be quite insensitive to changes in the
wave number. Hence, for the rest of the parameter variation studies
carried out here, b=0.125 is chosen as a representative case.

The influence of magnetic shear on the impurity eigenmodes is
illustrated on Fig. 4. Here .s seen that these modes remain
absolutely unstable over a wide range of shear strength (Ls/Lne).

For the more realistic values of Ls/Lne (i.e., Ls/Lne lying betyeen
10 and 50) the n=2 radial eigenmode is found to have the largest
growth rate. As shown on Fig. 4, the actual sensitivity of this
mode to changes in LS/Lne (between 10 and 50) is not pronounced.

It should also be noted that for the very weak shear regime

(Ls/Lh >50}, the higher radial eigenmodes (n>2) will be the dominant
instabilities. In addition to the shear dependence of the impurity
eigenmodes,»Fig. 4 also illustrates the good agreement between the
results from the WKBJ and shooting code calculations. ,

As mentioned earlier in this paper, if the ion teméerature
gradient (ni7‘0) is taken into account in the analysis, it is found
that for n; <0 the influence is stabilizing, while for: n; >0 the

effect is destabilizing. This n;-dependence of the impurity
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eigenmodes is plotted on Fig. 5. Here it is seen that the desta-
bilizing trend actually sets in for n; >1. Of course, even in
the absence of impurities, the condition ng > 1 is sufficient to
drive ion drift waves \mstable.7

In order to study the behavior of impurity eigenmodes in a
more collisional regime, a simple number-conserving form of the
Krock collisicn operator is empl.oyed.4 For n = 0 and b<<1l, the

terms in the governing potential specified in Eq.'s (6) and (7)

become:
n n L n M n m, 2 2
oe oI 1 Tne ol ' I 2 oI "1i) nej x
Axaw) = 5= = B gL - Y PTR o m T fia, W Tl 2
oi oi ™ TnI ol 7i of I s/ 0
+ 1‘+1‘(1-b)E(m,vi) ’ {15)
n M
B(x,w) = E(w,v,) ~ =% % , (16)
i n_. m,
oi "1
with
f1+—1— Lne a® , a(sz+1vi)
- fr L.s x| x|
E(w,v;) = — ~ p
iv.,a ra(l+iv,)
14— Z[ =
il IEI
Gi = vii/“‘*e (accounting for hydrogen-hydrogen collisions) and
az (L/L) (1’/2)1/2 . As in the previous radially local calculation,4

electron-hydrogen and impurity-hydrogen collisions are taken to be
negligible. Typical results of the radially nonlocal analysis is
shown on Fig. 6. The qualitative trend indicated here is that the
collisional effects do not significantly modify the collisionless

results. For example, a very large collision freguency (vii> Sm*e)
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is required to reduce the growth rate by about a factor of two.

B. Ion Temperature Gradient Drift Eigenmodes

In the absence of impurities, detailed numerical (shooting
code) solutions to Eq.'s (5-7) have been obtained by Waltz, et al.8
On the basis of these results, it was concluded that if U >1,
then unstable normal modes can readily appear and are quite insen-
sitive to shear siabilization. For a typ.~al magnetic shear strength,
Lne/Ls =0.1, and n, = 2, their calculations indicated that the
largest growth rate is associated with the fundamental (n=0) radial
eigenmode. 1In the present calculations, it is found that this
dominance of the n=0 mode (for Lne/Ls= 0.1) persists at larger
values of n - Hence, for the remainder of this section attention
will be focused on results dealing with the n=0 eigenmodes with
Lne/Ls =0.1.

A typical wave number spectrum for the ni-modes (with ni=3)
is illustrated on Fig. 7. Here it is seen that these instabilities
are guite insensitive to changes in ky for b=k}2,p§/2 <0.1, and
that the largest growth rates occur around b=0.5.

Using b=0.5, the gsensitivity of these temperature-gradient-
driven eigenmodes to the parameter n; was studied. As shown on
Fig. 8, the destabilizing influence of increasing this variable is
approximately linear up to n; = 3. However, at higher .values of

n; s the growth rates of these modes become almost independent of

this parameter.
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On the basis of the preceding results, it seems appropriate

to choose the n=0 radial eigenmode with Lne/Ls= 0.1, b=0.5,

and n; = 3 as a representative case to study the influence of

impurities. As noted earlier in this paper, the presence of impurities
' with outwardly peaked density profiles will in general enhance the
destabilization of ion drift waves. However, if the impurities are
inwardly peaked, their stabilizing influence can be quite dramatic.
This favorable trend is most easily seen in the analytic treatment
of these modes ignoring resonant ion effects. As shown, for example,
by Coppi, et al.,6 the resultant Weber equation for the n;=

eigenmodes leads to the eigenvalue condition,

1
_s_ne (2n+l) _ QT=~T
iv- 7% T#n, 0t (17

s

with ni>>1 required for self-consistent unstable solutions. If

impurities are now included, the eigenvalue equation becomes

n
g1 o8 'r[ ne |, 4 _ol ne]
. Lne (2n+l) _ oi I'ni 1 oe I'nI
- lr—- Q = L - (18)
s (1+ni)L_“£+m
ni
with
Lne _ noe noI l"'ne
. L. ~ n 1-Z215— 1% (19)
ni oi oe "nI

- as a conseguence of charge neutrality. Obviously, in the absence i

of 1 iti = . =
mpurities, Lne Lm. and noe noi'

reduces to Eg. (17). However, if the impurities are present

so that Eg. (18) just
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and inwardly peaked (Lne/LnI> 0}, then Lne/Lni< 1. Since Lne/Lni
multiplies the destabilizing term, 11-ni, the effect here is clearly
stabilizing. This favorable trend is also found to persist when
solving the more exact eigenmode problem as specified by Eq.'s (5-7)}.

The stabilizing influence of inwardly peaked impurities on
the ni—driven instabilities is illustrated on Fig.'s 9 qnd 10. For (>

a given impurity concentration (ZInol/n e==0.2), the required degree

o
of peaking for stabilization is shown on Fig. 9 to be about Lne/LnIZ 2.
On Fig. 10, the required impurity concentration for stabilization
corresponding to several different inwardly peaked impurity pro-

files is plotted. It is seen that for the more stronqgly peaked

cases, the impurity concentration needed for stability is guite low.
For example, with Lne/LnI> 2, the required ZInoI/noe< 0.2 . This

corresponds to less than a three percent density concentration of

a low-Z impurity, such as oxygen.

IV. CONCLUSIONS

A systematic analysis of long radial wavelength (kxoi'<1) ion
drift wave eigenmodes in a sheared slab geometry has beer presented
in this paper. With regard to impurity~-driven modes, it is found
that for outwardly peaked impurity profiles, these instabilities
are very unlikely to be shear stabilized. On the other hand, if
the impurities are inwardly peaked, the instabilities do not appear.
Moreover, for such a situation, the impurities tend to exert a
strong stabiiizing effect on the temperature-gradient-drivea ion
drift modes. In light of these results, it would be quite inter-

esting to explore the possible existence of favorable impurity
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profiles in actual experiments. For example, Goldston's measurements
on the ATC (adiabatic toroidal compressor) tokamak indicate an

inward peaking of the effective Z-profile. This at least allows

for the possibility that individual types of low-2Z impurities could
be inwardly peaked. In general, measurements of such individuval
.mpurity profiles on existing experiments should provide some very

useful information.
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Typical plot of anti-Stokes structure for unstable impurity drift eigenmode.

Fig. 1.
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Fig, 2. Typical plots of n = 0 and n = 2 radial
eigenfunctions for impurity drift instability.



0.12F
0.81
] [ Y N | ] [ T A W N ] I N I Y W I )
Ol i 10

[b]

Typical wave number (b = k;p‘i?/Z) spectrum for impurity drift instability.

0.0l

Fig. 3.

[

-ZC-




0.7
06} \
05}
04}

o]

0.3

0.2f

0.1

N \
() 1 /1/ el L1 bt 1] SSees

0.1 I 10 100
792130

Fig. 4. Results from WKBJ and shooting code calculations showing typical shear
dependence of the n = 0 and n = 2 impurity drift radial eigenmodes.
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Fig. 5. Typical ion temperature gradient dependence of im-
purity drift instability.
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Fic__;. 6. Typical dependence of impurity drift instability on ion-ion (hydrogen)
collisions.




T T T T T TT]

UL LN

04 ;

03

[
02+

0.l

L el

10"

0
1073

ﬂi‘

Fig. 7.
=3, L /L,

VR A A A |

10
b=k pf /2] -

Wave number (b) spectrum for ion temperature gradient instability with
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Jon temperature gradient dependence of n,-driven instability with

Fig. 8.
b = 0.5, Ln/LS = 0.1, and n = 0.
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Fig. 9. Typical stabilizing influence of impurities on n.-driven
instability as a function of degree of inward peaking of th& impurity
density profile, Lne/LnI'
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Fig. 10. Typical stabilizing influence ¢f impurities on
n,-driven instability as a function of impurity concentration,

ZInoI/noe’ for a given degree of inward peaking of the impurity

density profile, Lne/LnI'



