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ABSTRACT

We analyze the behavior of discontinuous finite-element methods (DFEMs) for problems that
contain diffusive regions. We find that in slab geometry most of these methods perform quite
well, but that the same is not true in XY or XYZ geometry. In these geometries, we find that there
are two distinct sets of DFEMs. Methods in one set produce unphysical solutions in diffusive
regions; the others produce leading-order solutions that satisfy discretizations of the correct
diffusion equation. We show that two simple properties of the finite-element weight functions are
sufficient to guarantee that a DFEM belongs tc the latter set. We show, however, that even these
DFEMs suffer from several defects: their leading-order solutions are in general discontinuous,
they satisfy diffusion discretizations that can be ill-behaved, and they may not be accurate given
boundary layers that are not resolved by the spatial mesh. We discuss the practical significance of
these defects, and we show that liberal modification of some DFEMs can eliminate the defects. We
present numerical results from simple test problems; these fully agree with our analysis.

I. INTRODUCTION

Thermal-radiation transport problems of practical interest often contain optically thick, diffusive
regions. Practical considerations usually force the use of a spatial mesh whose cells are thick
relative tc a mean-free path in such regions. We are therefore interested in the performance of
numerical transport methods in diffusive regions with optically thick spatial cells. In this paper we
analyze and test the behavior of a family of transport spatial discretizations, namely the
discontinuous finite-element methods (DFEMs), for such problems. We find that in one-
dimensional slab geometry, most DFEMs perform extremely well, provided they use mass-matrix
lumping. (We shall describe lumping below.) We find that in two- and three-dimensional
Cartesian geometries, many DFEM:s fail dramatically in thick diffusive regions. We find that these
DFEMs are characterized by certain properties (which we describe) of the finite-element weight
functions. We show that the remaining DFEMs behave much more reasonably in diffusive
regions, but that they too suffer from several defects. We introduce modifications to existing
DFEMs which mitigate, and in some cases eliminate, these defects.

Our work follows from previous work by many researchers; here we summarize some of this
work. Larsen, Morel and Miller! have used an asymptotic analysis to study the behavior of some
simple slab-geometry spatial discretizations in the interior of diffusive regions. Larsen and Morel?
have extended this work, analyzing the linear DFEM in slab geometry both in the interior and at the
boundaries of diffusive regions. They have shown that in the interior of a thick diffusive region, a
modified linear DFEM is very accurate. (The modification is equivalent to mass-matrix lumping,
which we discuss below.) This holds even when there are transport boundary layers that are not
resolved by the spatial mesh. A subsequent communication? emphasizes that the standard un-
lumped linear DFEM can perform poorly in diffusive slabs. Bérgers, et al.3 have found that in
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two-dimensional Cartesian geometry with rectangular spatial cells, the linear DFEM produces non-
physical solutions in diffusive regions. Recent studies by Waring, et al.# have shown that the
bilinear DFEM method does not share the failure of the linear DFEM, at least given rectangular
spatial cells and no boundary layers.

These results demonstrate a need for a better understanding of how DFEMs behave in multi-
dimensional diffusive regions. Toward that end, we apply here an asymptotic diffusion-limit
analysis to a very general problem. We assume Cartesian geometry, an arbitrarily-connected
spatial mesh with arbitrarily-shaped cells, and finite diffusive regions upon which is incident an
arbitrary angular intensity. We analyze the family of weighted-residual discontinuous finite-
element methods (DFEMs) for spatially discretizing the transport equation. Perhaps our most
interesting result is that we can analyze such a general problem and obtain sharp results. (We note
that similar general problems have been analyzed recently.>%) We find that multidimensional
DFEM s fall into two sets, one characterizeu by unphysical solutions in diffusive regions, and one
characterized by more reasonable solutions. We show that the set to which a given DFEM belongs
depends entirely on certain properties (which we specify) of the finite-element weight functions.
We show further that even the “reasonable” DFEMs suffer from several defects. First, in the
interior of a diffusive region, their leading-order solutions are in general discontinuous. This is not
desirable, for the correct leading-order solution satisfies a diffusion equation and is therefore
smooth. Second, the continuous components of these solutions satisfy diffusion discretizations
that in general are not well-behaved. That is, the discretizations are not positive and can permit
unphysical oscillations. Third, if there are transport boundary layers at the surface of a diffusive
region, the leading-order DFEM solutions may be inaccurate in the interior. This can happen when
the angular intensity incident upon the region is anisotropic or discontinuous. We find that mass-
matrix lumping is necessary to obtain a robust solution, but that ir two or three dimensions it is not
sufficient. We introduce the concept of surface-integral lumping, and we show that it alleviates
some of the defects of DFEMs. We find, however, that further modifications are needed to create
a truly robust method. We introduce such modifications for the bilinear DFEM on rectangular
spatial cells in two-dimensional Cartesian geometry. We provide numerical results, all of which
support our theoretical claims. Finally, we offer some concluding remarks.

II. ASYMPTOTIC ANALYSIS

We begin with a very brief review of the behavior of the exact transport solution in a diffusive
region. This material is taken from References [7-10]. We write the transport equation for a single
energy group, assuming isotropic sources and scattering, as:

QVY¥+0,¥rQ)= Zli("‘" o, )(r) + Z‘;Q(r) , rebD, (1a)

Y(rQ)=F@rQ) , re dD, nQ<0, (1b)

where ¥'is the angular flux, @ is the scalar flux, F is the incident angular flux, o; is the total cross
section, 0, is the absorption cross section, and Q is a given source. We consider the scaled
transport problem:

1 Ot - 1
QVE+ 2 = Yo ec o) +£00), reD, (2a)

Y (r)=F(rQ) , re oD, nQ<0, | (2b)



and ask how the solution ‘¥ behaves as the small parameter € tends toward zero. We find that to
leading order in the interior of the diffusive region D, the solution is isotropic and satisfies a
diffusion equation. This leading-order interior solution satisfies the following boundary condition:

Y(r,Q) = Zl;db(r) +0(€) , rawayfromaD , (3a)

-V-E{‘—Vd) +0,d(r)=0(r) , (3b)

D(r) =2 f dQW(n-Q)F(r, Q) , r.e oD . (3c)
nQ<0

We briefly discuss this result using a simple thought problem. We imagine a mono-directional
beam of particles incident upon a homogeneous region that is many mean-free paths thick and
almost a pure scatterer (0, << ¢;). In agreement with physical intuition, Egs. (3) say that away
from the boundaries the solution is very nearly isotropic and very nearly satisfies the diffusion
equation. We emphasize thai Eq. (3c) does not describe the leading-order solution at the boundary;
it describes the value obtained by smoothly extrapolating the interior solution to the boundary. Just
inside the boundary, the solution is neither isotropic nor diffusive. In this boundary layer, which
is on the order of a mean-free path thick, the solution may have rapid angular and spatial
variations. (Figure 2 displays the solution of just such a problem.) An important question
addressed by this paper is whether DFEMs can obtain accurate interior solutions when these
boundary layers are not resolved by the spatial grid. ‘

Equation (3c) is a Dirichlet condition equal to a weighted integral of the incoming intensity. The
angular weight function W is defined in terms of Chandrasekhar’s H-function for a purely
scattering medium!!, It is reasonably well approximated by a simple polynomial:

W =BpHw
W) = 0.9561 + 1.56542  0.0035 ~ u+15u2 . @

When we analyze a given numerical transport method in the “diffusion limit”, we find the
equations that are satisfied by its leading-order solution in that limit. If these equations have no
physical content, we know the numerical transport solution will be unphysical in diffusive regions.
If the equations are reasonably accurate approximations to Eqgs. (3), we shall conclude that the
numerical transport solution will be reasonably accurate in diffusive regions.

Derivation of DFEMs

We now define the family of DFEMs that we are studying. We assume that the problem domain
has been divided by a spatial grid into cells. We assume no regularity of the spatial grid. We
assume that each spatial cell is polyhedron (3D), a polygon (2D), or a slab (1D). The DFEM
derivation begins in cell k, where we define approximate solution functions in terms of a chosen
linearly independent set of basis functions, { by, 15/</i}:



Ji
Hr.Q)= yr.Q)= ), Vi (R)by(r),  re cellk;
. j=1 (Sa)

i
Dr)= §(r)= Y, $y by, recellk;
j=1 (5b)

The basis functions are assumed to be continuous within cell k but will in general be discontinuous
at the boundary, ok, of cell k. Each b;; vanishes outside of cell k. We next choose a linearly
independent set of weight functions, {wy;, 1<i<Ji}, for cell k. These are also assumed to be
continuous within cell £, to be discontinuous on ok, and te vanish outside of cell k. We multiply
the transport equation (1a) by each of these weight functions and integrate over cell k. The result is
Jx equations for the J; unknowns in the cell. The ith equation is:

f d%rw(r)n Q w(r,ﬂ)—f Pry(r.Q)Q:Vw,,
ok k

+f d3rwk‘-c,w=741;f d3rw,‘i[(0',-0'a)¢ +0] .
k k

(6)

We complete the derivation by defining cell-boundary angular fluxes as the value on the upstream
side of the boundary:

yriQ), ng Q<0, redk,

Q)=
V’(’k ) r;,Q), nQ<0, r.e ok ,

)

where r,* is just outside cell k and r- is just inside. The result is a J; by J; matrix equation for
the unknowns {4} in cell :

QL Tyl + L, W+ T ¥ = (T-A) &+ -a, ®)

where we have defined several vectors and matrices:
_ t
Jﬁk“[‘/’u' e s V’u,]’ etc.,

Qi =J/; d3rwkiQ(r) ,

[Li“'f %“’q i= Lk Crwy(nyrQ)



Neighboring cells are coupled through thelr surface terms and the “upstream” definition (7). We
note that the boundary condition (1a) is “naturally” included in our matrix equations; we simply
recognize that

w(r,.Q)=Fr,.Q) for r,e oD, neQ<0. )

We now illustrate this general method with a concrete example. We choose the bilinear DFEM on
rectangular spatial cells in XY geometry. We number various points on a generic rectangle as
shown below:

4T 3T
. ' ) ?
4L 4 3 3R
' | Ay
1L ® 1 2 e & 2R i
- — y=0
1B 2B
Ax |

The numbers 1 through 4 refer to comers in the cell; L means left side, B means bottom, etc. We
define bilinear basis functions:

L&__l =_&__l =X 2 . =1x Y
bu Ax 4y’ bia Ax 4y’ kb"3 Ax 4y’ b = Ax 4y ' (10)

and we use Galerkin weighting, which means wy; = by, We define p to be e,*Q and 1 to be
e,*Q. For this case, Eq. (8) becomes:

-2Y1L - VL -2Y15 - Vg 22 11w 21 12|y
pdy | 2¥m+ V|, nAx| -Viz-2Vas| pdy|-2-2-1-1\|yz) 74x| 12 2 1|y,
6 Var +2Vap 6 | 2var+ wur| 12 |-1-1-2-2{|ys| 12 'é '% 2 é 7
V1L -2V Var +2War 11 22]lys -2-1-1-2 Ly,
3%%2 ( 4212$1 33%28'
0,4x4y Llya| _(0,-0)Axdy (2 4 2 1 2|, Ax4y 1 2
+ -~ = .
21241 |y 2124 4 2124 Qs (11)

In the remainder of this paper, we shall often use these bilinear DFEM equations for illustration.



Analysis of DFEMs

We have performed an asymptotic analysis of the generic DFEM, Eq. (8), applied to the scaled
transport problem (2). Mechanically, the scaling involves dividing the T matrices by € and
multiplying the A matrices by €. (We note that our spatial grid remains constant as € shrinks;
thus, we are analyzing the “thick diffusion limit,” in which each spatial cell becomes many mean-
free paths thick.) We assume an asymptotic expansion for each unknown:

Y, (Q) = V’i(}](ﬂ) + ewg.](ﬂ) + g2 y/,[jl(ﬂ) + . , (12a)
by = Ok + o) + e+ . : ~ (12b)

We insert this expansion into our scaled DFEM equacions, and require that the equations be
satisfied for each power of &. We immediately find, considering the O(1/¢) equations, that to
leading order the DFEM angular flux is isotropic (equal to the scalar flux divided by 47x)
everywhere: _

T 13)

We find next (by integrating the O(1) equations over angle) that the leading-order scalar flux is
continuous in a weighted-residual sense:

f Frwg [ - o] =0 .
ok | (14)

Here the scalar flux just outside the problem boundary is defined to be a weighted integral of the
incident angular flux:

oVrh=2 f dQ2nQF(r,Q) , r,edD.
n-Q<0 (15)

We pause now in our analysis to discuss the result (14), which contains a great deal of
information. Equations (14) are N equations for the N leading-order scalar flux unknowns, If
these equations are linearly independent, they completely determine the leading-order solution,
despite the fact that they contain no information about sources or cross sections. Thus, if Eqs.
- (14) for a given DFEM are linearly independent, that DFEM’s solution will be unphysical. In fact,
given vacuum boundary conditions, the leading-order solution of such a DFEM is zero, regardless
of interior sources. On the other hand, if enough of these equations are redundant (linearly
dependent), we can show that the DFEM solution will probably be reasonable.

We have determined two properties of DFEM weight functions that are sufficient to guarantee that
Egs. (14) contain redundancies. The first property is that weight functions be “local”. (It should
help the reader to observe Figures 1 while trying to understand the definitions that follow.) Let us
suppose there exists in a cell a linear combination of weight functions that vanishes on all cell faces
except those that meet at a given vertex. If this is true for each vertex of each cell, we say that the
DFEM’s weight functions are “local”. The seccnd property is the existence of “mirror-image”
weight functions. Let us suppose there exists a “local” linear combination of weight functions at a



given vertex of cell k, and let us define this combination to be wy,. We seek a “local” linear
combination of weight functions in a cell &’ that is adjacent to cell k and to the given vertex; we
define this combination to be wy,,. We say that wy, and wy, are “mirror images” if w,(r) =
win(r) for all r on the interface between cells k and &’. If such mirror images exist for all of the
cells that meet at each vertex in the problem, we say that the DFEM possesses the “mirror image”
property. If a DFEM possesses both the “local” and the “mirror-image” properties, there will be
one redundant Eq. (14) for every vertex in the problem.

In Table 1 we examine several combinations of cell shapes and weight furctions in light of Egs.
(14). Here LD refers to the linear DFEM, and BLD refers to the bilinear DFEM. We “pass” or
“fail” each combination based on the two properties described above. We note that our
assessments agree with previous findings34 concerning LD and BLD on rectangles; the remaining
results are new. We remark that it is possible to create slab-geometry DFEMs that fails this test.
However, this requires a very poor choice of weight functions and is unlikely to be proposed.

Equations (14) contain further information. We consider a DFEM that has the “local” and “mirror-
image” properties. In this case we classify the scheme as “probably reasonable”, because its
leading-order solution satisfies a discretized diffusion equation (as we show below). We now
discuss the first defect that we find in these “reasonable” DFEMs. We recall that we can ignore
one equation (14) at every interior vertex. We can show that the remaining equations completely
determine the scalar-flux discontinuities throughout the problem. These equations depend only on
the spatial grid, the DFEM weight and basis functions, and discontinuities in the incident partial
current on the problem boundary dD. If the incident partial current is continuous on dD, then the
leading-order solution of each DFEM will be continuous; otherwise, it will be discontinuous. The
discontinuities, to leading order, do not depend on sources or cross sections. They are simply an
unphysical artifact of standard DFEMs. We introduce now a simple modification, which we call
surface-integral lumping, that removes this defect. The modification involves changing two of the
matrices in Eq. (8): .

; ‘
[L‘;‘wf]i"‘nmp = 8‘1 i [Li‘”j]‘.m forallm@j,
' i=1 ' (16)

L (g 3 (el - (L)

(We caution the reader that these formulas assume that each weight and basis function is
“Cardinal”: unity at its own support point and zero at all other support points.) The notation m @
Jj means surface points m adjacent to volume support point j. When we apply our modification to
the BLD method on rectangles, Eq. (11), we obtain:

3y -3y 42 1-1[w 4-1 177y
Eél 3yap +1‘LA_x_ -3yas +EAL 2-41-1|tyy +_71£ 14 2 4,y
6 | 3wl 6 | 3var| 12 |-114-2[lys|" 1o |-1-241 [Vg
-3y 3Wur 11 24|y, 2-1 14|y,
432 18] et 33 4], e 13338
c,AxA V| _ (0,-0,)AxA 11| @2 AxAy (2 4 2 1 2
+ =
36 1242 723 47!(36) 1242 03 +4)‘L’(36) 1242 Qs .
2124|ly, 2124}y, 2124]|0, an

The physical content of our modification is that communication between neighboring cells has been
made local. The only surface quantities first row of Egs. (17), for example, are . and Wiys;



“far neighbors” Wi and yizp are no longer present. The mathe matical result is that Eqgs. (14) are
replaced by simpler equations, each of which involves discontinuities at a single vertex. We now
find that the discontinuities vanish at each interior vertex. We remark that our modification has no
effect on slab-geometry DFEMs.

At this point we have not proceeded very far into our asymptotic analysis. Already we have
learned more, however, than we could have learned from analyzing specific DFEMs in specific
geometries on specific spatial meshes. First, we have obtained a simple test for classifying any
given DFEM as “a failure” or as “probably reasonable”. Second, we have identified a defect
present in all of the “reasonable” DFEMs. Third, we have introduced a modification that eliminates
this defect. Finally, we have gained useful insights into what makes DFEMs work or not work in
the thick diffusion limit.

We now continue our asymptotic analysis. After some algebra, we quickly find another defect in
standard DFEMs: unresolved boundary layers will be treated poorly unless we employ mass-
matrix lumping. This is a generalization of the result found by Larsen and Morel? for the slab-
geometry linear DFEM. (Mass-matrix lumping is one way to obtain the “0=1" scheme of their
paper.) Mass lumping changes the T and A matrices in our DFEMS:

Ji Jy
[Tk]ﬁf”"’ = 0 2 {TkJij ’ [Ak]f;mp =9 2 [Ak]ij :

i=1 i=1 (18)

(We have again assumed Cardinal weight and basis functions.) A similar change is made to the
source term. The physical content of this modification is that the collision and source terms have
been made more local. With both mass-matrix and surface-integral lumping, our BLD scheme on
rectangles becomes:

-3y -3y1s 42 1-1[w 4-1 12w
pay | 3var| nAx|-3yas| pdy|-2-4 1-1]|yy|, n4x|-14 2 1|y,
6 | 3V 6 | 3var| 12 |1 14-2(lys|" Tja|-1-24 1|1y

By 3Wur 11 2 4|y 2-11-4]|y,

Vi ¢ O
+ 04y (v | _(0-094ax4y | 2| Axdy |Q2|
V3 47(4) ¢3|  4ma) |Cs
V4 ¢4 Q4 (19)

We now continue our analysis, considering DFEMs with both kinds of lumping. We find that the
leading-order interior solution satisfies a discrete diffusion equation. We let pg denote some vertex
that is at least two cells away from the boundary. Then we find that the scalar flux at pq is coupled
to the scalar fluxes at all support points in all the cells that touch pq. Given our modified BLD
method on rectangles, the result is a nine-point diffusion equation. For the simple case of Ax, Ay,
o, and 0, constant, this becomes:

1 ay_ 1
Roaxay | Ppal8at8a7] [9p+1,061% pa1 o1 * Bpot g1 * Byt g @+ @]

- [¢p+l-q + ¢p+l.q] [4a-2a""] - [‘pp'qﬂ *Ppq- l] [4a!- Za]} *038pq= Cpq> (20)

where (p,q) is the index of some interior vertex, (p+1,q) is the vertex to the right, (p,q+1)‘is the
vertex above, etc., and g is the ratio Ax/Ay.



A close look at this result reveals another DFEM defect. The term that couples a point to its
horizontal or vertical neighbor can vanish or have the wrong sign if Ax # Ay (which means a # 1).
This can lead to unphysical oscillations and negative values in the leading-order solution.

The above discussion concerns vertices that are two or more cells away from the boundary; thus,
boundary conditions did not come into play. At a vertex that is only one cell away from the
boundary, the equations satisfied by the leading-order solution do depend on the transport
boundary condition. These equations reveal how a given DFEM performs in the presence of
unresolved boundary layers. We assume, for simplicity of presentation, that the incident angular
~ flux is spatially continuous across the boundary, dD, of the diffusive region. Then we find that at
each boundary vertex, two different quantities appear in our equations. Each is a weighted angular
integral of the incident intensity:

o Wrn=2 f dQ2nQF(r, Q) , re D ;
n+f2<0 (21a)

aQ (n

(=2 f n-Q + 3Q (n'Q))F(rk,Q) , r,ead
nQ<0 2

| (21b)

We recall that the exact leading-order interior solution extrapolates to the boundary condition (3c).
We note that ¢{9] is not always an accurate approximation to Eq. (3c), for 2In+€Ql is not always an
accurate approximation to W(In-Ql). However, we recognize that the normal component of @,
n®, is an accurate approximation to Eq. (3c) [see Eq. (4)]. Thus, if the interior-vertex equations
contain only n*® quantities at boundaries, then the interior solution extrapolates to an accurate
value at boundaries. This is precisely what happens in slab geometry, given mass-matrix lumping.
However, in 2D and 3D the DFEM equations include the normal component of ®, the non-normal
components of ®, and ¢l%. The precise combination of these quantities to which the leading-
order interior solution extrapolates depends on the grid, weight functions, and basis functions.
However, it appears that significant inaccuracies are possible. Thus, we find that in the thick
diffusion limit, multidimensional DFEMs do not retain the excellent boundary-layer behavior of the
slab-geometry DFEMs. »

For the specific case of BLD on rectangles, we have developed yet another modification that
removes all identified diffusion-limit defects. We modify the gradient matrix L to make the
method’s gradient approximation more local. The resulting scheme is:

-V Vs Wity +Y1+ Vs
BAY | War|, NAx |-yag| KAy | -Vi- V2| NAx|+Vy2+ Y3
2 Yar 2 Var 4 |~Va-Va 4 |-V2-Va
~VYaL Var Y3+ ¥y Y1 - VY,

W o O

+ Gidxdy | ya | _(0,-0.)AxAy 92|, Axdy (073 ”
4 |V am@d) |9 ama) Qs
Vs 04 Q4

(22)

This scheme has many nice properties in the thick diffusion limit. The interior solution now
satisfies a five-point, instead of the previous nine-point, differencing:



30,4x4y {¢P~q [2a+ 2a-l] - [¢pv+l,q + ¢ —1,q] [a-l] - [¢p.‘q+1 + ¢p 7_1] [a]}

+ 0, 8pe=Cpg - (23)

This differencing is positive and non-oscillatory. Furthermore, at every boundary vertex the
interior solution extrapolates to n*®, where @ is given by Eq. (21b). Thus, our heavily-modified
bilinear DFEM performs exactly as well on rectangles as the mass-lumped linear DFEM does in
slabs. We have not discovered how to extend this performance to arbitrary DFEMs or arbitrary
grids.

III. NUMERICAL RESULTS

We consider first a homogeneous, purely-scattering (0,=0) slab 1000 mean-free paths thick.
Incident upon the left face is a mono-directional beam at a cosine of L;,. = 0.095. We sclve this
problem with the S;¢ Gauss-Legendre quadrature set, which has an ordinate at the angle of the
incident beam. We obtain a reference solution with an extremely fine spatial grid using the (mass-
matrix-lumped) linear DFEM (LD). We also obtain a solution using LD with 10 equally-spaced
cells. The reference solution is plotted as a hcavy line in Fig. 2. We direct attention to the rapid
~ variation at the left boundary, where the solution is plotted as an almost vertical line. We note that
away from this boundary layer the interior solution is linear, and that it extrapolates to a boundary
value of approximately 2[W(i;,)] = 0.21. The coarse-mesh result is also linear in the interior,
and it extrapolates to approximately 2[iin. + 1.51inc2] = 0.22 at the boundary. All of this is
predicted by the asymptotic analysis. The actual LD solution at the left boundary is approximately
2[2pinc] = 0.38; again, this is predicted by the analysis. We have generated all of our solutions
- using the DFEM diffusion-synthetic acceleration (DSA) iteration method that is described in
reference [12].

We consider next a homogeneous square with a constant isotropic source and vacuum boundaries.
The square is 1 by 1; we place on it a 20 x 20 uniform spatial mesh. We consider two test
problems, each of which has cross sections and sources of the form o; = 1/, 0, =¢,and Q = €.
We choose € = 10-2 for the first problem and € = 10-5 for the second. We solve each problem
with the standard linear and bilinear DFEMs using the Sg level-symmetric quadrature set; we
present the results in Figs. 3 and 4. We also numerically solve the diffusion problem (3) that is
satisfied by the exact transport solution in the limit as € approaches zero; we also display this
result in Fig. 4. (We take from reference [3] the figures showing the linear and diffusion
solutions.) We note that the linear DFEM solution approaches zero as the problem gets more
diffusive, as predicted by our analysis of Eqs. (14). We further note that the bilinear DFEM
solution is very accurate; again, this is predicted by our analysis, for this problem has none of the
characteristics that expose the defects of such “reasonable” DFEMs. (The incident angular flux is
continuous, the grid cells are square, and there are no boundary layers.) Again, we have generated
all of our results using the DFEM-DSA iteration scheme of reference [12].

Finally, we consider a homogeneous square problem that we have designed to highlight the defects
in standard DFEMs. The problem, which is depicted in Fig. 5, has a slightly nonuniform spatial
grid containing some cells with a 5:3 aspect ratio. The boundary condition is designed tc produce
boundary layers. On part of the boundary, alternating cells are exposed to a mono-directional
beam incident at a grazing angle; remaining cells are exposed to a vacuum. In Figs. 6 we compare
contour plots of two solutions to the problem. We note that the mass-matrix-lumped bilinear
DFEM solution exhibits discontinuities and oscillations in the interior, just as our analysis predicts.
Our contour plots do not show it, but the method also produces a negative sclution along much of
the vacuum boundary. We obtain similar results using a uniform square grid. In contrast, our



heavily-modified bilinear DFEM solution is smooth, as the correct (diffusion) solution must be,
and it produces no negative values. We point out that both methods produce inaccurate solutions
in the cells adjacent to non-vacuum boundaries. This behavior is identical to that seen in the slab-
geometry mass-lumped LD method (see Fig. 2). Again, the asymptotic analysis precisely predicts
all of this behavior.

IV. CONCLUSIONS

We have analyzed the behavior of discontinuous finite-element methods (DFEMs) applied to the
transport equation, for problems that contain thick diffusive regions. Our analysis holds for an
eatire family of DFEMs, in 3D Cartesian geometry on an arbitrary spatial mesh. We have found
that some DFEMs fail dramatically in thick diffusive problems, and we have found specific
properties of the finite-element weight functions that lead to this failure. We have also found that
some DFEMs behave reasonably in such problems, in the sense that their leading-order interior
solutions satisfy discretizations of a diffusion equation. We have found that these reasonable
- DFEMs suffer from several defects, and that these methods must be significantly modified if they
are to be free of such defects. We have found that mass-matrix lumping is one modificatior: that is
required. We have introduced a second modification, which we call surface-integral lumping, that
is also required. We have found that these modifications lead to improved solution behavior, but
that further modification is needed if a truly robust method is to be obtained. We have introduced
such a modification for the bilincar DFEM on rectangles in two dimensions, and we have found
that the new method is quite superior to unmodified and partially-modified methods. We have
demonstrated the validity of our theoretical results with several numerical tests.

Our study has taken place in Cartesian coordinates, in which the transport equation is somewhat
simpler than it is in curvilinear coordinates. We note that Palmer and Adams!3 have performed a
similar study in one-dimensional spherical geometry. We expect to extend this to one- and two-
dimensional cylindrical geometries in the near future.

Our experience with multidimensional DFEMs in the thick diffusion limit has not been entirely
encouraging. As we have explained, these methods possess several defects. We are not prepared
to condemn DFEMs for diffusive problems; it may be that their defects will not seriously degrade
their performance on an interesting set of such problems. However, in pursuit of a truly robust
multidimensional method, we are developing a new spatial discretization. The two-dimensional
Cartesian version of our present attempt is introduced in reference [14]. It is interesting that when
spatial cells are rectangular, this new method reduces to ow heavilv-modified BLD scheme.

Our analysis has taken place on transport equations with spatial discretization but no angular
discretization. This keeps the analysis simple, and serves to isolate errors that are due to the spatial
discretization scheme. It will hold for any reasonable angular discretization in the limit of fine
angular resolution. We note for completeness that recent work by Jin and Levermore!5 shows that
angular discretizations can also introduce errors in the boundary condition satisfied by the leading-
order solution in diffusive regions.
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Table 1. Performance of specific DFEMs given specific spatial cell shapes in two dimensions.

Cell Weight-Function Comments
Shape Space

Q (1.x,y} (LD) reasonable
- {1,.x,y} (LD) fails

33| {I.xyx)} (BLD) ‘reasonable
G {l.x,y.xy} (BLD) fails

{1,a,b,ab)
d (BLD in mapped coords.) reasonable
G ? all previously-proposed
DFEM:s fail on
arbitrary polygons

Figures 1. A “local” weight function (left); two “mirror-image” weight functions (right).
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Figure 2. Reference and LD solutions of slab test prbblem.
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Figures 3. LD (left) and BLD solutions of simple XY test problem, €= 102,
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Figure 5. Difficult XY diffusion-limit problem.
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Figures 6. Mass-lumped BLD (left) and new BLD solutions to the above problem.
Contours range from 0.05 to 0.70 in increments of 0.05.










