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ABSTRACT. The methods for finding poloidal and toroidal numbers of MHD oscil-
Jation: from Mirnov coils are reviewed and modified. Examples of various MHD phenom-

ena occurring during start-up on TFTR are illustrated. It is found that the MHD mede

1,2

structure best fits a modz! with the toroidal correction included.

A new algorithin which finds m, n numbers can accommodate toroidal effects which are
manifested in the phase data. The algorithm can find m,n numbers with 2 given toroidal
correctipn parameter X', {¥ = 0 = cvlindrical). This algorithm is also used to find the
optimal value of A\’ automatically, eliminating the need for “guesswork.” The algorithm
finds the best parameters to the fit much faster than more conventional computational

techniques,
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I. INTRODUCTION

Evidence of magnetic islands in a tokamak plasma is given by the external magretic
field fluctuations which Mirnov coils detect. Correlating the phases from an array of Mirnov
cails yields useful information about the geometry of a mode’s magnetic perturbations. In
Sec. II of this paper, the techniques involved in analyzing data from an array of Mirnov
coils are reviewed and modified. This data analysis takes into account the increased spatial
variation of the mode on the inner side of the tokamak. The analysis techniques are
especially helpful for analyzing modes in the plasma with m > 4.

Section I1I contains results obtained by using these analysis techniques on TFTR start-
up data. Particular emphasis is given to measuring the degree of poloidal asymmetry in the
magnetic perturbations. These results are compared with theoreticai predictions for the
first order toroidal correction. Efects due io the displacement of the mode’s center away
from the vacuum vessel center are also investigated. The combined effect due to toraidicity
and the off-center position provides a strong motivation for using a free torridal correction
parameter when fitting the phase data from the Mirnov coils.

An algorithm was developed 1o minimize the computational time and length of code
necessary to calculate the m.n numbers for a given sel of phase data. This algorithm is
particulariy useful for anyone analyzing Mirrov coil data in order 1o find m, n numbers,
Analytical solutions for the parameters in the phase fit may be found for all the parameters

used in the fit to the Mirnov phase data.

II. METHOD

T.e locations of the Mirnov coils in TFTR are given in Fig. 1. The coils are located
110 ¢m from the vacuum vessel center and are oriented in order to detec! Ba. The poloidal
array forined by coils 1-16 detect the m number and coils 17-19 are used tv determine
the n pumber. Techniques for analyzing data from these signals are well known.* First a
Mirnov signal, depicted in Fig. 2(a), is inspected for regions of high MHD activity. After
panding ihe region of interest, the I§9 signal usually appears sinvsoidal when a clear
mode is present. If the signal is iarge enough, one can often determine the m number of
the mode as the number of maxima that pass by at a fixed time on an overlaid plot of
the Mimov signals from the poloidal array. as Fig. 2(b) illustrates. This method is less
misleading if the signal from the first coil plotted at the bottom) is plotted again at the
top {unlike the diagram in Fig. 2(b); to more easily see that the signal on channel 1 is
“lagging” far behind channel 16 rather than “leading” it slightly, so thal 6 “ridges” can

be observed to cross any vertical line.



One should choose a time range which is large enough for a fast Fourier tr:«;nsform to
single out relevant oscillation frequencies in the signal above the background noise. The
time range should be small enough, however, so that the mode’s frequency does not vary
too much over the time range to be fast Fourier transformed, and so that regions where too
much noise is on the signals may be avoided. Time ranges for which a mode was present
and the data were suitable for phase correlation analysis were most efficienily found by
observing Mirnov signals from the poloidal array on overlaid plots.

Analysis of the data shown in Fig. 2(b] is given in Fig. 3. Although the average of ail
the Mirnov coil’s amplitudes at a given frequency for a wide range of frequencies |Fig. 3(a)]
has little quantitative meaning, it is useful to determine the frequency of the mode which
the Mirnov coils detect. The corresponding data from a single Mirnov coil may contain
misleading peaks due to noise on that signal.

Having chosen the frequency of interest, the phase angles from each Mirnev coil taken
at that frequency are investigated ;as in Fig. 3(b)]. At this point one may attempt to find
the best cylindrical fit ‘Fig. 3(¢)] to the phases, This involves finding the optimal m,n.é;
parameters such that £ = mé + no ~+ &, approximates the phase data. Here 4, iz a phase
constant and 4. are the poloidal and toroidal angles of the Mirnov coils. A more reliable
method for finding m. n numbers (especially for m > 4) is finding the optimal fit with four
free parameters, i.e.. £ =z m(8@ + A'sin ) = n¢ + &,. The added free (1oroidal correction)
parameter, A’, enables the fit to allow for toroidal corrections to the geometry of the mode
and the off-center position of the mode with respect to the center of the vacuum vessel.
Figure 3(d) illustrates the optimal toroidal fit.

Figure 4 llustrates typical failure of the cylindrical approximation to determine mi.n
numbsers correctly. The optimal cylindrical fit is depicted by the dashed line whish indicates
m = 3. The solid iine indicates the contrasting optimal toroidal fit which determined m = 4
coryectly, This solid line fit was found by leaving A" as a [ree parameter. The number of
times the fit wraps around the top of 1the graph indicates the m number of the fit.

Since A’ is found by the computer, the difficulty of having to estimate A’ for the
flux surface on which the mode lies is removed. This automation is especially useful for
analyzing start~up data (m > 4} to obtain m, n numbers as well as gain useful information
about the geometry of the 1earing mode.

Another method is avatlable for abtaining a more concrete idea of what the geometry
of the mode’s poloidal field variations looks like.? Let a(¢) and pk(i) be the amplitude and
phase angle for each Mirnov coil taken at the fraquency of interest. Let 8(7) represent the
poloidal angle of the /*" Mirnov coil. Define #(8) as the cubic spline fit which interpolates
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the data points, {8(:),7({) = a(i)cos[ph(i}] + C}!.,. A polar plot of the #(8) fit then
indicates the m number, according to the number of “humps” that are present. These polar
plots can be thought of as a “snapshot” of the mode’s poloidal magnstic field variations.

Emphasizing only one Fourier component from the signals merely attempts to filter out

noise from sources other than the mode.

This method breaks down for large values of m. As the difference between the phases
from adjacent Mirnov coils (1-16) increases, it bacomes more prabable that one of the
“humps” will be missed. Figure 5 illustrates four different methods of analyzing the same
data. In Fig. 5(a} the optimal cyiindrical fit indicates m = 4, and in Fig. 5(b) the polar plot
indicates m = 5. The optimal toroidal fit shown in Fig. 5(c) correctly determined that m =
6. A careful examination of a corrected m = 6 polar plot in Fig. 5(d] reveals that a “hump”
between the 16" and 1°! Mirnov coils was missed in Fig. 5(b}. Figure 5(b) demonstrates
that the m number resolution obtained from directly interpolating the {8(),(:)}/X | data
was unrecliable for m > 3. The technique that was used to produce the corrected polar

plot in Fig. 5(d)} was accurate for much higher m numbers.

The techniyue employed to construct this carrected m = 6 polar plot is illusirated in
Fig. 6. The (optimal teroidal) phase fit is depicted by the curved solid line in Fig. 6(a).
The éiiterences between the Mirnov coil phases and this phase fit are evaiuated at each
Mirnov roil position and plotted against poloidal angle in Fig. 6(b). This is interpolated by
a cubic spline, which is also given in Fig. 6{(b). This spline is added to the phase fit in order
to obtain a corrected phase fit which actually interpolates the phase data. The cubic spline
fit in Fig. 6(c) interpolates the amplitude data of the Mirnov coils {versus poloidal angle).
Now the {0(1).7(i) = a(¢) cos!@(s) + C}¥ | data are interpolated with the product of the
amplitude spline times the cosine of the corrected phase fit (plus a constant) in Fig. 6(d).
To reiterate this more symbolically, let the interpolating cubic spline (ics) of {x,.y,}¥ ;| be
denoted by y(z) = ies(z) = sesl/{z;, 1} ;.. The fit, £(8) = m([8 + Nsin8) + no + é,. is
adjusted to £(0) = £(8) + ies|[{B(i), ph(i) — £0(:)]}Y .6 so that £'8(:)| = ph(i). Letting
a(#) = iesi{8(t),a(i)}V,.8) , the corrected polar plot is then constructed from 7(8) =
a(#) cosn&[ﬂ)l + C. This technique gives a much better picture of the mode's geometry
as Fig. 6(dj illustrates. Using the interpolation of the phase data. ph{i). instead of only
utilizing the cosine of the phase data by directly interpolating 7(i) = a{i}cos;ph{.} + C.

avoids losing usefu] information about the phases, for example, cos{—-157) = cos(157).

The polar plot in Fig. 6(e) depicts the same data and interpolation as Fig. 6(d):
plotted against 6° = # + A’sind instead of §. This should transform the mode into a

cylindrical geometry, according to the degree that £ = m#" — nd + & is an appropriate
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model for the phase data.
All of the polar plots given in the remainder of this paper show #(8) plotted against

" 8 as obtained by the described method for constructing corrected polar plots.

II1. PHYSICS

With the exception of Fig. 19 all of the data shown in this report was taken from shot
#9689 (6/22/84) during start-up. This was a typical discharge for TFTR. The current
flat topped at 1 MA at { = 1 sec. This was an ohmic heating discharge with B+ = 2.8 T.

A. Parameters

Figures 7-8 give the relevant parameters of the shot for the 0 to 0.6 sec time range
for which aralysis from the Mirnov coils will be given. A = 35 = [,;2 (where !, is the
internal inductance per unit length), the major radius of the plasma, the plasma current.
and the Shalranov g value at the edge of the plasma are shown in Fig. 7. Figure 8 gives

the line-averaged density.
B. Evolution of detected modes

Figure 9 gives the Mirnov signal on coil #9 (see Fig. 1). The modes which were
detected and the time range for which they could be [ound is shown above the signal. A
correlation between increased MHD activity and the time ranges when a2 mode is present
can easily be ohserved.

Figures 10-11 illustrate the 7 different modes that were detected in their chronological
order. Note that the phase data and corresponding phase fits typically show greater spatial
variation on the inner side of the tokamak (near § = 07 or # = 360°). Table 1 gives the
time range which was Fourier analyzed, frequency, Shafranov q value at the edge of the
plasma. & B../Bas. and 13, for 7 modes. To within the experimental accuracy of g.(a). it was
found that m/n < ¢.(a). Since n =1 for all 7 modes, the m numbers generally decreased
as g.(a) decreased with time.

Figures 12 13 show the same 7 modes on polar plots. The inner side of the tokamak
is to the right of each of the polar plots. The typically increased spatial variation of the
mode on the inner side can casily be observed. In Fig. 14 the phases have been negated.
shifted relative to the phase of Mirnov ceil #1, and added 10 appropriate multiples of
360 1 order to display the phase data from the 7 modes in a more continuous manner.

Although A’ is not the seme for the 7 modes, a rough msin ¢ dependence in the toroidal
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effect can be seen in Fig. 14. This agrees with the £ = mé + ) (msin @) + n¢ + éy model.

C. Minor Disruptions

Figure 15 depicts two minor disruptions. The first distuption occurred at the end
of an m = 8, n = 1 mode which was quickly followed by an m = 7, n = 1 mode after
a negative loop voltage spike was observed. Later the m = 7, n = 1 mode grew very
large and disrupted, bul remained after the negative loop voltage spike. Figure 16 shows
Iy, Ry, g.(e), and & = [y + {;/2 data over the time range in which the two minor
disruptions occurred. The growth rates for the first and second modes preceding the
two disruptions were estimated from the integrated Mirnov signal 1o be 900 sec™! and
300 sec™?, respectively. Rough estimates of the Alfvén and resistive time scales of the
plasima were made using Rpnn = 255 ¢cm, ¢ = 80 em. 1. = 4-10'% em™?, By = 28 T,
and Vi, = 3.5 V. For these parameiars 74 = 0.084 - 1077 sec and 7z = 6.5 sec. giving
a magnetic Reynold’s number of § = 7g/r4 = 7.7 - 107. Assuming the current profile
was such that these modes were unstable, the linear theory® predicts a growth raie of
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T EoeT, ’STR e Although the growth rate coefficient o depends on the current profile.
-2/5_ -3 _
which is not known, « is on the order of unity and 7 -’/er 5 = 290 sec™?.

D. Coupled Modes

Figure 17 shows the Mirnov signal from coil #9 and its Fourier transform. The time
range over which the fast Fourier transform was performed on the Mirnov data was from
535-550 ms as is indicated on the graph. Simultaneously existing modes were found with
m=3,n=1andm =4, 7 =1 at 1.0 and 0.8 kHz, respectively, as indicated on the
Fourier transform graph in Fig. 17. Perhaps the relative weakness of the m = 3 mode’s
signal reflects the fact that the mm = 3 mode lies deeper in the plasma and further away
from the Mirnov coils than the m = 4 mode. Figure 18 illustrates a superposition of the

polar plots from the coupled modes.
E. Electron Diamagnetic Drift Direction

Figure 19 demonstrates two modes rotating in the electron diamagnetic drift direction
(v¥4). The upper three diagrams in Fig. 19 were taken from a different shot (=9031) with
the plasma current and toroidal magnetic field reversed, sa " is in the opposite direction.

Mution of the mode is essential for Mirnov coils to detect it.



F. Toroida! effect on mode geometry

1. Experiment

A measure of the relative accuracy by which a phase fit approximates the N phase
data points is given by the reduced chi-squared statistic,®” denoted y*. Lower x* values
indicate more accurate fits. Minimizing x2 is the basis by which the phase parameters
m,n,é, and optionally A’ are chosen. The code to implement this minimization actually
evaluates CHI2, where x? =CHI2«3/|(N~v)7%), and v is the number of free parameters
in the fit. CHI2 is explicitly defined in Sec. IV.

For the modes which were analyzed in Table 2 it was found that the cylindrical fits
(A = 0) approximated the Mirnov phase data poorly. The m,n numbers chosen on the
basis of optimally minimizing xfy, were inaccurate for all cases in Table 2. Adding the
free parameter A’ resulted in better fits as indicated by the x%, column in Table 2. The
optimal choice of m,n,é;, A’ to minimize X}, determined the correct m,n numbers of the
mode in all cases. Values of x%, are also given i Table 1, which shows data for the 7
different modes in Figs. 10-14.

Assuming that the mode lies near the outermost {in minor radius) flux surface (a, =
83 cm, T, = 80 cm, R, —~ 265 cm), then R,,, = R, = 255 cm and one can transform the
poloidal angles of the Mirnov coils relative to the vacuum vessel center into poloidal angles
relative to the center of the tearing mode (see Fig. 20). R. and R, are the major radii of the
center of the tokamak vessel and the center of the outermost most flux surface, respectively.
This transformation usually improves the accuracy of the subsequently computed toroidal
phase fit, as shown under the column headed x:"\:’m" in Table 2. This improvement reflects
the fact that the effect of the mode’s off-center position on the phase data can be more
accurately accommodated by a term proportional to sin{8) in the coordinates of the mode.
The value of the toroidal correction parameter for the fit using transformed coordinates is
given under the column headed A/, ... This A, ,. value represents the toroidal correction
parameter for coordinates relative to the center of the mode if the mode lies near the
outermost flux surface.

Again assuming the mode lies nezr the outermost flux surface, theory® predicts that

A= Fe (A =1) for A = Ay +{;/2 evaluated at the edge of the plasma, and AL, =~ A~ £.

R
{The % term will be explained in the following section on theory.) Thus the A!, . values
are expected to be equal to Aly,,,. = F== (A + 1) + % when the mode lies near the

outermost flux surface. Here values for A are measured from the moments of the exierna)
magnetic field. Apparently, from the tabulated data given in Table 2, as g.(a) decreases.
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the mode is pushed outward in minor radius towards the outermost flux surface so that the
assumptions based on the mode’s outward position becorn:c more valid and ], .. — Mi.(.

for each of the three modes.
2. Theory of Tearing Mode Phase Moduiation

The poloidal magretic field perturbations produced by tearing modes were observed to
vary in space more rapidly on the inner side of the tokamak {# = D). The phase asymmetry
is understood to be primarily due to two effects; Loroidicity and an off-center position.

In the infinite aspect ratio cylindrical approximation of a tearing mode, a current
perturbation of the form ; = JmnCos(mb + n@ + bo — wt)b(r ~ rmn}, produces variations
in the poloidal magnetic field given by?3 B, =-A s'mé and Be = Acosé where

fonn T r -
A= ‘f_“iﬂqﬂﬁ{ﬂ_}m“ , E=mb+ng+ by~ wi
2 r
The toroidal geometry induces a correction’ 297 to the mode such that

étmﬂ'-&ng&%—&;—ut

with the “Merezhkin™ correction; §° = & + Asinf

r . ]
A= Mrgap) = R’:,: Ba(rme) + ,zlz (rme) + 1|
Ry and r,, are the minor and major radii of the m.n flux surface, §, = ::fs((p),_,,,‘ - Pa).

L(rma) = {B3),.. . /B2, and for any function [, {f), = {7 fl.:q'-‘f(r.ﬂ)rdrdt?.

A secondary effect is due to the fact that the center of the mode and the center of the
vacuum vessel do not necessarily have the same major radins.® Let the Grad-Shafranov
shift! be taken with respect to the outermost flux surface so that A(r = a) = 0. Let
s = R. - Ry so that d = d(r) = s — A(r) gives the exact distance by which the flux
surface having minor radius r is off-center with respect to the Mirnov coil array. The
A{r) term will subsequently be neglected. Figure 20 illustrates the displacement of the
outermost flux surface and introduces the variables used to analyze this effect. The distance
from the vacuum center to the Mimov coils is b = 110 cm. Letting y = d/b one finds

. sin @ vde . . )
lhaL ~ = arcsin; —~],_=—{’_’"_——_H_=—_q] and gmulz = = ~ S0 lhat 0 = 0mude + ,\S"] o e _
ff -2y cus o y®

0*"”1\51"(0'{"1)- .
For a typical TFTR plasma d = 10 c¢m [265 cm — 253 cm) so y = 1/11. For TFTR.
typically A < 1so that A < 2'35"’5 (A+1) < % Because the mode is off-centered, the position

]



of each Mirnov coil is an angle of v away irom the orientation which would only measure
By of the mode. In the low frequency limit, the Mirnov coils measure

B :Egcos'y+,é,.sin' =wA(sinEcos~;+cosésin-y) =wAsin(f), £= £+

Fourier analyzing each coil’s signal in time gives a phase angle

ysin . L ysinf
= m{ﬂ + arcsiy + Asin{ @ + arcsin
¢ 1[\/1—2yc056?+yz’J ( l\/1—Zycosﬂ{Ly""'})]
ysm0 ] =g+ 6y —wt

+arcsin[ j
V11— 2ycos@ + y?’
f=mlf+(A+y+ ;-i—)sinﬂ] +n¢ + &y — wt + miycosfsin 8 + O(y?)

This analysis indicates A = A + y + £. The same calculation in mode coordinates, using
- = aresin(ysin §7°%), yields

€ =m0 4 (X + rgn)sin 070 4 ng + by —wt + O(¥°) L Apge = A+ %

Comparison of the phase formulas for physical and mode coordinates reveals that
one would expecl to obtain lower x? values by converting the physical coordinates into
mode conrdinates, since this eliminates the mAycos #sin 6 term which the fit parameters
cannot accommodate. Transforming to mode coordinates reduces the theoretical errors
in the fit from O(y) to O(y®). This improvement in the fit was previously verified in the
experimental results. it is due to this reduced error that theoretical predictions of the
toroidal effect were compared with ], .. rather than X,

The phase angle formula for physical coordinates helps to explain why correct m.n
numbers may be obtained by modelling the fit with a free toroidal correction parameter,
A’ without having to “worry” about the off-center position of the mode. First of all, the
off-center position of the mode typically produces a smaller correction than the domirant
Merezhkin correction, i.e., y + £ < A, Secondly, the effect of an off-centered position
can be approzimately accommodated by a term proportional to sinfl. (The ratio of the
maximum effect on the phase fit from the mAysin @cos# term to the maximum effect of
the terms due to the off-center position which are proportional to sin# is § Z%5 A < 1,3).
Thus, the sum of the two effects is allowed for by the free X' parameter. The tedious
computational task of guessing at the effects of toroidicity and the off-centered position
on the phase data is consequently unnecessary for analyzing typical TFTR data to obtain

correct m,n numbers.
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Figure 21 illustrates that for shot #9689 (when the outermost flux surface was dis-
placed from the vacuum center by 10 cm towards the center of the tokamak) the Merezhkin
correction dominated the effect of the mode’s off-center position. Since g,(a) = 6.0 was
measured heve, it is assumed that the m = 6, n = 1 mode is near the edge of the plasma.
In Fig. 21 the curved solid line shows the combined effect of the offcenter position and the
Merezhkin correction. The curved dashed line shows the same radial data plotted against
the poloidal angle of the Mirnov coils relative to the center of the mode. Thus the curved

dashed line atiempts to isolate the effect of the Merezhkin correction from the effect of
Y . y). This illustrates that for typical

being off-center (neglecting the % term since
TFTR data, the more rapid spatial variation of Mirnov coil phases on the inner side of

the tokatnak is predominantly due to toroidicity {or the mode’s noncylindrical geometry)
rather than being caused by the effect of the mode being off-center relative to the array of

Mirnov coils. Note for £, < R the two effects enhance each other.

IV. ALGORITHM

The problem of solving for m,n numbers from the Fourier transform phase angles
of N Mirnov coil signals taken at a specific frequency is now defined. Let pk(7) denocte
the phase of the #** Mirnov coil (where -7 < ph(i) < x). Let 8(:) and ¢(i) represent
the poloidal and toroidal angles giving the position of the i'" Mirnov coil relative to the
tokamak. The parameters m,n, ', 8, are chosen such that the Jdata, {ph(z’)}i]. are best
approximated by the fit, {m[f(s) + X'sin 8(i)] + =7} + (5,7,}!1].

Assume that m,n, X are given and one is trying to find the optimal &;. ; is determined
by minimizing CHI2, the unnormalized chi-squared vaiue of the fit.? CHI2 is defined in
the following heuristic code, in which {y(i)}i'v:! = {m|8(i) + Msin8(7)] ~ mb(r‘)};v:] ]
FUNCTION CHI2(y, ph, N, &)

CHI2= 0.

DC10i=1,N

D=ABS(ph(i) - (¥(z) + 1))

D=AMOD{D+7,27) -« '
10 CHIZ2=CHIZ+D+D

RETURN

Excluding the step followed 4y an asterisk, CHI2= E: (ph(i) - y(z) - 6.)*. The “asterisk
step” essentially adds 2% times an integer Lo the difference between the actual phase and
the phase fit, so that D< #. Two signals cannot be more than 180° out of phase, and

adding any integer times 27 to a phase does not change the signal it represents.
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6o could be solved for by applying a “grid search” followed by an iterative minimization
routine using the CHI2 function with o restricted to lic within any 27 interval. In order
to determine m and n this minimization algorithm is placed within two nested DO loops,
which test each m,n combination and minimize CHI2=CK12(m, n,8,) with A’ given. The
resulting minimum CHI2 value defines CHI2(A"), and (if desired) the optimum A’ value
may be determined by applying a “search and iterate” routine to this CHI2(A’) function.
Analysis of Mirnov data may typically involve running this four parameter search algorithm
very often. Since the algorithm to determine §;, is nested within loops to determine m, =
and ), it would be beneficial to speed up the ruethod of solving for &, given m,n, A,

An analytical methad was developed to find the value of &, which will minimize
CHI2(5:) with m,n, ) given. It can best be described by defining an equivalent norm,
CHINEW(&,). Let

7(i) = ph(E) ~ {m[0(i) + A'sin8(i)] + (1)} . (1)
Let {t(:)}1 , be the sequence {r z)} with each element ma.pped into the interval (—x, 7!
by adding 27 times an integer. Let {Wg( )} , be the {t(¢ )} sequence rearranged in
ascending order. Now CHI2(4,) =CHI2{y, ph,n,ﬁr_,) may be deﬁned equivalently in terms
of the {Wa(i)}" | sequence.
FUNCTION CHINEW (W,,N,é)

CHINEW= 0.

DO 10i=1,N

D=ABS(W,(:) - &)

D=AMOD(D+#,27) - 7 v
10 CHINEW=CHINEW+D+D

RETURN

Note CHINEW (W, N, 6,) =CHI2(é.). '\Iote if b € W..(N) — 7, Wy(1) + 7], then the
astorisk step” has no effect, CHINEW= """ l(W (2) - 60) , and by standard analysis,
&y = N Z: T Wold) = W, is a critical point of CHINEW,

Define another sequence, W () } = {Wy(2),Wa(3),...,Wo(N),Ws(1)+2r}. The
elements of {W,(z]} are in ascendmg order. Note CHINEW(W],N,éc.) =CHI2(6y).
Note if &y € [H".(l] + 7.', Wo(2) + x|, then the ‘“asterisl\ step" has no effec., CHINEW =
::" l(W () - 6.,) , and by standard analysis é, = ,v Yo = W, - -j-l is a critical
point.

Define the tiext sequence, {W2(1)} = {Wa[3),,..,W.J(N),WL-,{1)+21r,WD(2)+277}.
The elements of {Wa (i )} arein ascendmg order. Note CHINEW(W,, N, §;) =CHI2(6,).
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Note if 6 € [Wo(2)+ 7, Wo(3) + 7], then the “asterisk step” has no effect, CHINEW=
TN W) - 60)°, and by standard analysis 6;, — & TN Wo(i) = Wo + 47 is a eritical
point.

Continuing to add 27 to the first and least element of the previous ascending Wy
sequence and transferring the result to the last (and greatest) element of the W .1 sequence
generates N critical points over a 27 interval (or domain) for é,. The critical points are
{ck}::gl = {Wo+ 2—5'—’}:;”1 . It has been rigorously proven thal the optimal é; is in this set
of critical points and if & = ez is cptimal, then CHI2(y, ph, N, ¢x) = Z:v:  (Wilz) - ck)z.

Generating the sequence {Hk}fz—nl = {}‘::il (Wi(s) ~ ck)2}::'l may be simplified
by substituting for ¢y and the W)’s in terms of the Wy’s. A recurrence relation useful
for determining the smaliest element of the sequence, {Hk}::olf may then be derived.

Substituting cx = Wy = 22% and N We(i) = NW, into

hY —i=1
k 2 N Y
He=) Woli)+2n — ekl + ) [Wald) - ek
i=1 r=k41
) M L
and letting Sk = _—|H - NoWRE) - N(EE {2)

i=1
one finds that S, =0 and for k > 0,

= 27 N1
Sk:WU(k)—Wo+E]-(-——_’;*-—'——P'C)#—Sk_; . (3}

Finding j such that
S = min JSk

determines the optimal é:, i.e., 8o = ¢;. The code to implement this algnrithm for deter-
mining m,n, &, for a given X’ is given in the appendix.

The described algorithm was used to define CHI2(X') whicn minimizes CHI2 with
respect to m, n,é,. The described algorithm was alsp used 10 minimize CHI2 with respest
to all four parameters, rm,n, &,, A'. CHIZ(A’) was evaluated at 32 equally spaced points over
the region of interest, (—1 < A’ < 1), to constrict the neighborhood containing the absolute
minima. This prevented the subsequent iterative minimization routine from converging 1o

any relative minima other than the absoluie minima.

Another method of minimizing CHI2 with respect to all four parameters was devised.
Rather than applying a search and standard iterative minimization routine using CHI2(A")

12



to determine the optimal m,n,6p, A, a much more sophisticated code was developed to
find both )’ and &; analytically. For large N and a fixed range of m,n numbers the more
sophisticated algorithm’s run time scaled as N2 and the described iterative approach scaled
as N2. Unfortunately, for TFTR data (N = 19 Mimov coils) the sophisticated analytical
algorithm ran only slightly faster than the iterative algorithm when allowing a 0.00001
error in A'. For the algorithm which obtained both A’ and 6, analytically, the added
complexity and 200 lines of FORTRAN code required did not seem to be justified.

A second method for finding both A’ and é; analytically exists. This optional method
was not used to analyze the Mirnov data. Unlike the method described in the pre-
ceding paragraph, this method is not certain to provide the correct answer when one
or more “bad” data points are approximately 18C° away from the optimal phase fit.
This method involves .teratively minimizing CHIZ()’} until one has determined the m,n
numbers and has a goos approximawun of what A’ and &, are. Let the parameters
obtained at the end of this iterative minimization procedure be (mg,ng,ég,z\'g). Let
{6, A7) = [mg(8(i) + M sin 8(2)} + ngd(i) + bo — ph(s))? wherc ph(s) is the value of
ph{i) summed with the appropriate multiple of 27 to make s(8; = &, A" = A},7) < 7°,
Letting

N

5= flbo,N) = Z 5(6n, A'.1) s

i=1

the optimal values of A’ and 6y are then found by setling

o _éf _
s, 3N
The resulting parameters are m = my, n = n, and with (1) = —p-h.(i) + ml(z) + ns(),

N N

N ~ A4
A=) "z(),B= sz(i) ,C =) snb(E), D= sin*8(:), E=)_ z(i)sin6(i) ,

i=1 =1 1=]

i=i

one obtains

& ) _ 1 CE - AD

m\ ) DN -C2\AC-EN
and for these parameters, CHI2 = f = B+ EmM'+ Ab). An advisable precaution would be
to use this method to terminate the CHI2(A') minimization iteration only if this method

yields the same answer when (ing,n,,6,,A}) are set to the values corresponding to the

minimum and maximum values within which A’ has been restricted to lie.

13




V. CONCLUSION

The methods presented for constructing phase fits and polar plots s:gnificantly im-
proved the accuracy of mode number determination frorn Mirnov coil data. [t was found
that making a proper fit to the phase data required a correction parameter, A’, t¢ accom-
modate the effects of the toroidicity and the off-center posilion of the mode. Improved
resolution of mnde geometry was made possible through better data analysis techniques
so that modes with m numbers as high as m = 9 can be clearly seen on the various plots
presented.

Interesting physical phenomena occurring during the start-up of shot #9689 were ob-
served. As the mode numbers evolved from higher to lower m numbers, seven different
modes with n = 1 and m numbers from m = 9 ‘o m = 3 were detected. A correlation
hetween m/r and g.{a) was observed. Minor disruptions were preceded by growing modes.
Simultaneously existing modes were found with m =4, n = land m = 3, » = 1. The
modes detected on shot #9689 and other shots consistently rotated in the electron dia-
magnetic direction. More analysis of Mirnov coil data would be useful to see if the physical
phenomena seen on shot #9689 are typical.

Mirnov data from the different modes were used Lo construct polar plots which clearly
displayed increased spatial variation on the inner side of the tokamak. Placing relatively
more Mirnov ccils on the inner side of the machine should be considered for fulure machine
designs in order to enhance mode resolution and the detection of high = nunbers. The
effect of toroidicity typically dominates the effect due to the mode’s off-center position for
TFTR data. Theoretical calculations from Merezhkin® on this toroidal effect were tested
and found to be consistent with the data.

Anyone who wishes to obtain m, n numbers from phase correlation analysis could ben-
efit from the algorithm which was developed for that purpose. The difficulties in estimzting
the value of A’ were circumvented by using the computer to find A" automaticaily. The
improved efficiency of the algorithin reduces run time greatly and significantly enhances

the ease of between-shot analysis requiring m,n number calculation.
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APPENDIX

C Heuristic code to determine m,n,6; for a given X’
C——and return the resulting CHI2{}’) value
FUNCTION CHI2(ph,8, 4, \ MLOW MHI,NLOW NHI, m,n,é;)
R=FLOAT(N-1)/2.
Q= 2r/FLOAT(N)
DOS5{i=1N
5 S1{¢) = sin(8(z))
CHI2= 10000.
DO 30 M1=MLOW MHI
DO 30 N1=NLOW,NHI
WSUM= 0. )
WWSUM= v,
DO 10:=1N o
W({i) = ph({)~FLOAT(M1)+{8(z) + A"+S1(¢))-~FLOAT(NI)«¢(i}) ! (see egn.1) i
Z=m ki
IF(W{i).LT.0.)Z=—= |
W(i}) =AMOD(W(:i)+Z.27)-Z i
WSUM=WSUM + W(i) °l
10 WWSUM=WWSUM+ W({)-W(7)
WAVG=WSUM/FLOAT(N)
C-——Subroutine ORDER arranges the W array in ascending order
CALL ORDER(W,N)
5=0.
SBEST=S
j=0
DO 20k =1,N-1
SNEXT=W{({k)-WAVG+Q+(R—FLOAT(k))+S ! (see egn.3)
IF(SNEXT.GE.SBEST) GOTO 20
SBEST=SNEXT
i=k
20 S=SNEXT
CHl= 47+8SBEST+ WWSUM-WSUM:WAVG ! (see eqn.2)
iF (CHI.GE.CHI2} GOTO 30
CHI2==CHI
&, =WAVG- Q+FLOAT(j)
m =M1
n =N1 ;
30+ CONTINUE ¥
RETURN i

P

If desired, one could further optimize the program by setting up arrays i
PHN1(/,N1-NLOW +1) =¢(:)«FLOAT(N1), THM1({ MI-MLOW+1)= 6(/)+T LOAT(M1), :

15



and SINM1(:,M1-MLOW+1] = sin{f(:))*FLOAT{M1). Passing PHNi, THM]1, SINMI,
R, and Q to FUNCTION CHIZ2 through a common block would then enabie the W array to
be initialized with less multiplication and reduce needless redundancy in the computation,
(especially if FUNCTION CHIZ is called more than once). Note minor modifications of
this code weuld be required for a FORTRAN compiler, i.e., 7,8,¢,80, and A’ need new
names and EXTERNAL, DIMENSION, and COMMON statements should be included.
The IMSL Library® provides a rountine called VRSTA which arrange arrays in ascending

order.
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Table 1.

time range (ms)

freq (kHz)

m,n | gs(a) | 6Bg/By % | X2,

856-90 1.4 9,1 9.3 0.057 |0.193
126-130 1.1 8,11 7.8 0.055 0.065
190-200 0.8 7,1 | 6.8 0.152 }0.059
285-290 1.5 9,1 | 6.3 0.021 0.062
382-387 1.2 6,1 | 6.0 0.052 0.048
230-535 1.2 3,11 5.5 0.062 0.033
540-550 0.8 4,1 54 0.126 0.016




Table 2.

8T

time range (ms) |freq (kHz) |m,n | gs(a) | 6Bo/By %1 x3/ | X2, ) Al vode | AMeres
107-111 2.0 8,1 | 83 0.037 j0.i11| 0.100 | 0.368 | 0.443
120 130 1.1 8,1 7.8 0.055 |0.065| 0.045 | 0.432 | 0.445
135 138 1.7 8,11 7.5 0.057 }0.132| 0.113 | 0.438 | 0.442
145 -150 1.2 7,11 7.2 0.085 0.127! 0.135 0.323 | 0.441
190--200 0.8 7,1 { 6.8 0.152 0.059| 0.039 | 0.460 | 0.458
210-220 0.7 7,11 67 0.149 [0.066| 0.051 | 0.484 | 0.467
330-335 1.4 6,1 | 6.2 0.075 |0.054| 0.045 | 0.436 | 0.469
310--350 1.1 6,1 6.1 0.106 |0.052] 0.043 | 0.450 | 0.483
382 387 1.2 6.1 | 6.0 0.052 10.048| 0.038 | 0.472 | 0.491




FIGURKE CAPTIONS

Fig. 1 Locations of Mirnov coils in TFTR.

Fig. 2 Examining 2 Mirnov signal from shot #9689 reveals a region of interest (a),
which is exparded and compared with the signals from the poloidal array of the first 16
Mirnov coils (b).

Fig. 3 This figure shows how the data shown in Fig. 2 are analyzed. Each signal
is Fourier analyzed from 340-350 ms and each signal’s Fourier spectrum of amplitudes is
averaged together (a). The phases from rach coil at 1.1 kHr are shown in (b). The data
points from coils 17-19 are usually denoted by a distinctiv symbol in this report. The
term n[¢(1) — ¢(¢)] is added to the phases from coils 17-19 in order to compare their phases
with the poleidal array which is at a different toroidal angle. This term comes from the
¢ dependence in the £ = m(# + A'sin@) + ng + 6 model. Thus an n = 1 number was
assumed a priori in (b} in order to plot the data from coils 17-19. The phase data in (b)
are correlated by an optimal cylindrical fit (c). An optimal toroidal fit (d), in which A’ is
chiosen to optimize the fit, is also shown.

Fig. 4 The dashed line indicates the optimal cylindrical fit to a typical m = 4 mode’s
phase data. Tue cylindrical fit “wraps around” from bottom to top 3 times, indicating
m = 3. The optimal toroidal fit correctlv indicates m = 4.

Fig. 5 Four different ways of analyzing the same set of phase data are illustrated.
The cylindrical fit (a) indicates m = 4. Interpolating {6(i},7(i) = a(i) coslph(7)] + C}:.:l
with a cubic spline (b} indicates m = 5. The optimal toroidal fit (c) correctly indicates
m = €. Careful analysis of the mm = 6 corrected polar plot (d) reveals that a branch of the
mode was missed in (b). The location of this branch is indicated by an arrow in (b).

Fig. 6 The phase data in (a) from «n m = 6 mode are adjusted by adding appro-
priate multiples of 360° in order to illustrate the optimal cylindrical and foroidal fits in
a continuous manner. The optimal toroidal fit is adjusted to interpolate the phase data
by adding the cubic spline shown in (b). A cubic spline of the amplitude data taken from
each coil at the same frequency is shown in {c). These cubic splines have matching 0%,
1¥, and 2" derivatives at § = 0° and # = 360° and were calculated by IMSL® routine
ICSPLN. The corrected polar plot which (b) and (c) were used to produce is shown in (d).
The same polar plot data against 8° = § + A sin @ (iustead of §) are shown in fe).

Fig. 7 Parameters of shot #9689 during start-up including A = 3+ — 1,/2, R, I,
and q.(a).

Fig. 8 Line-averaged density of shot #9689 during start-up.
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Fig. 9 A summary of the mode evolution during start-up on shot #8689 is shown
with the Mirnov signal from coil #9.

Fig. 10-11 Phase data from 7 of the modes detected during start-up are illustrated.
Additional data fo: these 7 modes are shown in Table 1. The 7 modes in Figs. 10-11,
Figs. 12-13, Fig. 14 and Table 1 were each taken from the same time range and frequency.

Fig. 12-13 Polar piots for the 7 detected modes. Although m = 9 is above the
Nyquist limit for 16 evenly spaced Mirnov coils, the 3 other coils remove the “degeneracy”
between the m = 9 and m = —7 modes. For the phase data of the given m = 9 mode,
x3(m=9,n=1)=0193 < x},(m= ~7,n = 1) = 0.241.

Fig. 14 The phases from the 7 modes have been negated and shifted by appropriate
multiples of 360° in order to show the data and their optimal toroidal phase fits in a
coniinuous manner.

Fig. 15 The eflects of disruptive plasma behavior in the Mirnov coil and loop voltage
signals during shot #3689.

Fig. 16 Parameters of the plasma during the disruptive activity shown in Fig. 15.

Fig. 17 Simultaneous m = 3 and m = 4 modes were detected at 1.0 kHz and 0.8
kHz, respectjvely.

Fig. 18 Polar plot for the simultaneous m = 3 and m = 4 modes.

Fig. 19 The lower 3 diagrams illustrate an m = 3 mode rotating wi‘h time in the
electron diamagnetic drift direction during shot #9689, The upper 3 diagrams show an
m = 3 mode’s motion during another shot (#9031) with the electron diamagnetic drift
direction reversed.

Fig. 20 This picture illustrates the variables used to analyze the effect of the mode’s
off-center position on the phase data. The transformation from coordinates taken with
respect to the vacuum vessel to coordinates relative to the center of the mode is derived
from §™°% = § + a and sin a/d = sin 8/1/6% + d* — 2bdcos 6.

Fig. 21 The curve solid line indicates the polar plot of the actual data. The asym-
metrically increased spatial variation in the phase data on the inner side of the tokamalk is
caused by toroidal offects and the off-center position of the mode relative to the vacyum
vessel center. The dashed line shows the same radial data with the poloidal coordinates
taken relative to the center of the mode, thus attempting to remove the eHect due to
the ofl-center position. Since the dashed outline of the mode shows that the noncylindri-
cal asymmetry of the mode is only slightly reduced, it illustrates that the toroidal effect

dominates the effect due to the mode’s off-center position.
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