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Extension of Glimm’s Method to the Problem of

Gas Flow in a Duct of Variable Cross~section

by
Simon KaMan Fok

Abstract

Various numerical methods for extending Glimm’s scheme to solve a
nonlinear hyperbolic system of partial differential equations in one
space'variable of the form ;k + E; (ﬁ) = .E (iju) are described.
The reason' for considering Glimm’s scheme rather than some finite
difference schemes is because of its ability to pick out the correct
weak solution of a given hyperbolic system of partial differential
equations without requiring it to be written in conservation form. The
numerical schemes we shall look at are (1) Generalized Glimm’s scheme,
(2) Glimm’s scheme with Sod’s operator splitting method, and (3) Liu’s
scheme. In particular, the inhomogeneous Burgers’ equation and the
problem of radial symmetic gas flow will be studied, and Sod’s opera-
tor splitting method will be seen to be best among the three numerical
schemes, Finally, gas flow in a duct of wvariable cross-section is
discussed together with the classical Chisnell’s formula which
describes the changes in the speed of the shock with respect  to the
varying cross—-sectional area. It will be shown that incorporating

Chisnell’s formula into Glimm’s scheme (with operator splitting) and

Liu’s scheme can be done easily; moreover, the resulted schemes are



best in treating shock propagation problem in a duct of montonically
decreasing and increasing cross-sectional area respectively. Thus, the
case of a variable area duct can be handled by hybridizing Glimm’s
scheme (with operator splitting and Chisnell’s formula) and Liu’s

scheme (with Chisnell’s formula).
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Introduction

We wish to extend Glimm”s scheme for solving the following non-

linear hyperbolic system of partial differential equations in one space

variable:
TIt + %, (v) = glx,u) , A (1)
with
u(x,0) =u (x) , (2)

where 'G(x,t): Rx[0,0) -» RN is the solution vector to be determined,
and Tf: RNxRN is a C2 mapping whose Jacobian matrix Du F = A(u) has N
real distinct right eigenvalues ,\l(u) <...<)\N(u) known as the charac-

teristic velocities for system (1). Finally, E(x,'ff): RxRN -> RN is

called the source term for the problem, and the function 30: R — RN is
the given initial datum. If the source term g=0, then (1) is called a

hyperbolic system of conservation laws.

The following three examples are the speciél cases of (1) that we
shall study closely in this thesis. Chapter 1 will concentrate on exam-
ple 1 while exampleé 2 and 3 will be dealt with in chapters 2 and 3
respectively. Moreover, we are interested in each case initial data

that immediately resolves into a shock wave.
Example 1. The inhomogeneous inviscid Burgers’ equation:

2 .
¥ | (3)
%lé-+~s—§-= g{x,u)

The single characteristic velocity for (3) is A(u)=u.



Example 2. The best-known physical example of a hyperbolic system

of the form (1) 1is the set of equations for an inviscid, non-heat-

conducting, radially symmetric gas flow:

'p m m
3 |m| L, 2|, _ - n”
ot ox P P X 0

e m_(s_:_v m(e : p) (4)

Here p is the density of the gas, u is the velocity, m=jou is the momen~-
tum, p is the pressure, e is the energy per unit volume,  is a constant
which is equal to 2 for cylindrical symmetry and 3 for spherical sym-

metry. Finally, we may write

2
e=-),E_T+912‘— ,

where Y is the ratio of specific heats (a constant greater than 1). The

three characteristic velocities for the system are

Al(u) =u-c ,Az(u) =u ,A3(u) =u+c , (5)

where ¢ = (%?0 ¥2 is the sound speed.
Example 3. Another well-known physical example is one-dimensional
gas flow in a duct of given cross—sectional area A(x), where A(x) does

not vary too rapidly. The equations are



i

(6)
3 3 gﬁ-_i_ P _ _A'(x) 91_2
el |t oo A(x) )
m(e + p) m(e + p)
e
p p

Again, the characteristic velocities are given by (5).

The numerical schemes we shall use are: (1) A straightforward gen-
eralization of the random choice method introduced by Glimm [6] for a
strictly hyperbolic system of conservation form and developed as a

numerical method by Chorin[2]. (2) Glimm’s scheme with Sod’s operator

" splitting method[13. (3) Liu’s scheme{ 9]. One major advantage of such

numerical schemes over other finite difference schemes is that they have

the property of keeping shock fronts perfectly sharp.

The thesis is divided as follows. In chapter one, we shall
describe a most natural way of generalizing Glimm’s method to (1);
also, Sod’s operator splitting method will be introduced. As an illus-
tration, we shall solve the inhomogeneous Burgers’ equation using both
methods, one of the major conclusion is that the generalized Glimm’s
method is not practical. In chapfer two, Liu’s scheme will be intro-
duced. As an example, we look at the problem of a point blast explosion
where again Sod’s operator splitting method is shown to be best.
Finally in chapter three, the classical formula of Chisnell[ 1] which
describes the speed of a shock relative to the cross-sectional area A(Xx)
of a variable area duct will be rederived in a more general setting. In
general, Chisnell’s fprmula is only good as a local result. This, how-
ever, fits into the structure of Glimm’s scheme and Liu’s scheme very

well because these two schemes typically use local results from solu-



tions of Riemann problems‘(see section 1l.3) to advance from one time
level to the other. It will be seen that appropriate hybridization of
Chisnell’s formula with both Liu’s scheme and Glimm’s scheme with opera-
tor splitting is ideal for handling the problem of shock propagation in

a variable area ducte.

Then using numerical experiments in the following three chapters,

we shall try to justify the following recommedations:

Problem Recommeded numerical scheme

Inhomogeneous Glimm’s scheme

Burgers’ equation with operator splitting

Spherically symmetric Glimm’s scheme

gas flow with operator splitting

Gas flow in a monotonic Glimm’s scheme with operator

decreasing area duct splitting and Chisnell’s formula

Gas flow in a monotonic Liu’s scheme with

increasing area duct Chisnell’s formula

Gas flow in a duct of For A’(x)<0, use Glimm’s scheme with

variable cross—-sectional operator splitting and Chisnell’s formula;

area A(x) for A’ (x)>0, use Liu’s scheme with
Chisnell’s formula




Chapter 1 Inhomogeneous Burgers’ equation

1.l Preliminaries

One of the most natural way to extend Glimm’s scheme for solving
the partial differential equations (1) is to follow closely his con-

struction for a hyperbolic system of conservation laws

ut + fx (u) = 0 . (lolol)

The only obstacle is that finding an exact solution to the Riemann prob-
lem corresponding to (1) proves much more difficult than to the Riemann
problem coresponding to (l.ls1). This will be demonstrated vividly for
the inhomogeneous Burgers’ equation. Also, since Glimm’s scheme for the
hyperbolic system (l.l.1) is at best first order éccurate, it is doubt=-
ful whether an exact solution to the Riemann problem is warranted. This
leads us to Sod’s operator splitting method which does not solve the
Riemann problem corresponding to (1) exactly but has the advantage of
fitting into the framework of Glimm’s construction without requiring a
lot more computational time. In section l.6, test problems will indeed
show that Glimm’s scheme with operator splitting is superior than a
straightforward generalization of Glimm’s scheme for the inhomogeneous

Burgers’ equation.



1.2 Generalization of Glimm’s scheme

Consider the nonlinear system of equations (1) with initial data
(2). Divide time t into intervals of length k, and let h be the spatial
increment. A discrete approximate to the solution u(x,t) is to be com-
puted at the points (ih,nk) and ( (i+l1/2)h,(n+1/2)k ) for |i},

n=0,1,2,.... Denote the approximate values by '11': 2 u(ih,nk), T;IH% z

u( (i+l/2)h,(n+1/2)k ) , so that initially

g (D |
ui = E‘ J‘ uo(X)dX, li|=0, 1,200-.
ih

Suppose -L;;_l has already been computed for all i, then Ti::”% is computed

from Tf;‘ and U},. by a random procedure described as follows.

i+l
Let v(x,t) be the solution to the Riemann problem of (1) defined by

" the initial data

[

| J

_ : |<ui for x<0

u(x,O) =I-_n for x>0 (1020 1)
v

\
Then wotl 2 . V(Gnh,k/Z) , Where Qn is a random variable equidistributed

i+1/2

in the interval [-Y¥p,Y] . similarly, :T'l can be computed from

—n+1/2 . -n+1/2 . . o
ui+1/2 and U172 by this procedure via the use of another random vari
able 9n+1/2 . This completes Glimm“s construction.

As usual, the choice of h and k must satisfy the Courant-

Fredrichs-Levy condition so that the correct problem is solved.



Finally, to ensure better results, the sequence of random variables is

chosen by a procedure due to Colella[3].

When the source term is identically zero in (1), Glimm showed
that the approximate solution tends to a weak solution of the
corresponding conservation laws under some appropriate conditions. In
order for this construction to be wuseful when the source term is
present, a method of solving the Riemann problem is essential.
Presumably, the solution of the Riemann problem for (1) is difficult,
at least not much easier than the general initial value problem. This
fact is in sharp contrast to the case when the source term g is zero.
In next section, we will outline a method for solving Riemann prob-

lems.



1.3 The Riemann problem

We are concerned with solving (1) with the special initial data:

-
Lul for x<0
u(x,0) = for x<0 (1.3.1)
-0
| u.

where 3? and Gg are two constant states. Intuitively, the initial

discontinuity at the origin should be resolved immediately into vari-
ous waves, then the source term comes into play to perturb the
resolved waves. Thus, the procedure for solving the Riemann problem

could be divided into two steps:

Step 1. Solve the Riemann problem by assuming that the source

term is zero, herice resolving the initial discontinuity.

Step 2. Use the resolved waves as initial data to trace the
change of characteristics under the perturbation due to the source

term to obtain the final waves.

Note that here we have implicitly assumed that the perturbation

due to the source term is not large enough to produce new waves.

This method of solving the Riemann problem is known as the method
of characteristic tracing. Next, we shall illustrate the above idea
by solving the Riemann problem for the inhomogeneous inviscid Burgers’
equation (3). Solutions of the Riemann problems for radially symmetr-
ical gas flow and for gas flow in a duct of variable cross—section are
much more difficult to obtain and will be carried out in the next two

chapters.



2
le4 Solution of the Riemann problem for u, + (-uz—)x=_g(§,3) at a sample

point (&\x./\t)

To begin, we shall put the partial differential equation into
characteristic form which consists of two coupled ordinary differen-

tial equations:

dx
i (ledel)

Here (l.4.1) describes the characteristic curve =x(t) while (l.4.2)
describes the solution u(t) along it. Equations (l.4.1&2) can thus be
solved (at least numerically) whenever appropriate initial/boundary

conditions are prescribed.

We now proceed to solve the Riemann problem using the two step as

outlined in section 1l.3.

Step l: assume g(x,u)=0.v Then the solution to the Riemann problem
defined by equation (3) and initial data (l.3.1) is well-known. There

are two possibilities:

(1) ui>u:. The solution in this case is given by a shock wave of

o, 0
u, +u

° 5 joining the left and right state ui and u: respec-

speed s =

tively (see figure l.1):

0
x<s t+x
o

u(x,t) = < o (1e443)
u Xx>s t:+xo



(2) u§<us. The solution is given by a rarefaction fan joining u? and
u: (see figure 1.2):
| <’
i ui’ X ult+xo
ng 0 X% o
t = e e
u(x,t) r: uy < <ug (l.4.4)
|
| uo x>u t+x
r r ‘o

10



Step 2. From step 1l we know that the initial discontinuity can be
resolved into either a shock wave or a rarefaction fan depending on
whether ug > us or < u: respectively. We now proceed to solve the

Riemann problem at the sample point (8Ax,At) using these resolved

waves as initial data. There are a total of five cases to consider.

Suppose ug > ug + Then because of the presence of the source
term, the shock path will no longer be a straight line with initial
speed s but rather a curve X, = X (t) to be determined later with

initial conditions X (0) = X, and x's(O) = %, (See figure 1.3.)

Case l. €&\ < stﬁp) - x_: the sample point §\x lies to the left of
the perturbed shock wave. The solution of the Riemann problem

ul(qﬁx,t) can be obtained by solving the characteristic equatiomns

(l.4.1 & 2) with the boundary conditions:

X(At) = xo + %X N (1-4053)
(o)
u(O) = ul . (l.4-5b)

Case 2. €&\ > xS(At) - x ¢ the sample point &\x lies to the right of
the perturbed shock wave. Similarly, the solution of the Riemann

problem ur(qﬁxJ}t) is obtained by solving the characteristic equatioms
(l.4.1&2) of the partial differential equation with the boundary con-

dition:
x(Qt) = x_ + 6k  (l.4.63)

u(0) = u: . (1. 4e6b)

11



Suppose now that ui < ug, then the wave is a rarefaction fan with
left boundary xl(t) and right boundary xr(t) whose initial speeds are

ui and u:. (See figure l.4.)

Case 3. &\x < leﬁt) - x i the sample point lies to the left of the
perturbed left boundary. As in case 1, the solution of the Riemann
problem ul(Qﬁx¢ﬁt) is obtained by solving the characteristic equations

with the boundary conditions (l.4.5).

Case 4. §\x > erﬁp) - X i the sample point §\x lies to the right of
the perturbed right boundary. As in case 2, the solution of the
Riemann problem ur(qﬁxgﬁt) is obtained by solving the characteristic

equations with the boundary conditions (l.4.6).

Case 5. leﬁt) - %, < 8\x < X Ae) - x ¢ the sample point g\x lies
inside the perturbed rarefaction £fan. The solution of the Riemann
problem uC(Qﬁxgﬁt) can be obtained by solving the characteristic equa-

tions with boundary conditions
X(At) = %x + xo s (104. 7a)

x(0) = xé . (1. 4e 7b)

To summarize, we have reduced the Riemann problem for the pgrtial
differential equation (3) at a given sample point §\x at time /At to a
pair of nonlinear ordinary differential equations. with appfopriate
boundary conditions that depend on where the sample point lies with
respect to the perturbed wave. Thus, the Riemann problem now becomes a

two-point nonlinear boundary value problem. The numerical method in

12



solving boundary value problems commonly known in the literature are:
simple shooting, multiple shooting, and finite differencing. A short
but concise review can be found in Dahlquist and Bjork [7]. Since we
do not know a priori how much accuracy will be adequate for the solu-
tion of the Riemann problem, it is natural to select a variable order
method. A very efficient method for solving a two-point nonlinear
boundary problem is readily available in the existing code of boundary

value problem solvers. In fact, it is the only one available; it is

known as PASVA3. For a detail description, see Lentini and Pereyra[12].

Now using PASVA3, the Riemann problem can be solved with arbitrary

order of accuracy at a sample point @\x at time /A\t.

13



Trajectory of a perturbed wave

In order to determine which one of the five cases a sample point
&\x belongs to, it is imperative to determine a priori the locations
of the perturbed left/right boundary of a rarefaction fan or the posi-

tion of a shock wave at time /\t.

(1) Boundary of a perturbed rarefaction fan

Since the boundaries of a rarefaction fan are characteristics of
the given partial differential equation, their trajectories are given
by the characteristic equations with the appropriate initial condi-

tions described below:

(a) for the left boundary

x(Q) = X, (1.4.8)
u(0) = ug ,
(b) for the right boundary
X(O) = Xo ’ (10409)
_ .0

The locations of the left and right boundaries at time /At can now be
found by solving the initial value problems defined by the ordinary
.differential equations (le.4.1&2) with the initial conditioms "~"(1.4.8)
and (l.4.9) respectively. In order to avoid the loss of information
for taking unreasonable large time steps, we set Qﬁt)m = 10_l in all

ax

test problems. The 1initial value problems are then solved by the

14



celebrated 4;h-order Runge-Kutta method in N steps. Since the global
truncation error of this method is O(hA), our errors in solving the
initial value problems will then be less than (10N)-4. The desired

accuracy can thus be attained by taking N sufficiently large.

(2) Trajectory of a perturbed shock

Denote the trajectory of the perturbed shock by X, (). Then
given fixed time /\t, we would like to determine the position of the
shock. Now using the Rankine-Hugoniot condition, the path of the

shock can be obtained by solving the initial value problem:

X uy (£) + u_ (v)

s _ T (l.4.10a)
T 2 ’
xs(O) = Xo ’ (1.4010b)

where ul(t)=u(t-) and ur(t)=u(t+). Obviously, in order to solve
(l.4.10), we need to determine ul(t) and ur(t), this can be accom-
plished by tracing the left and right characteristics to the dinitial

surface t=0. (See figure l.5.)

Now the left and right characteristics are given by the following

two systems of ordinary differential equations:

X

=t = (1.4.11a)
T
Y1 (1. 4. 11Db)
03 = 8(xpn) o

with

u (0) = u; ; (1e4e1lc)



d-—r = (l.4.12a)
dt Y
r | " (le4e12Db)
dEE = g(xr,ur) ’ o
with
o
ur(O) = ur . (1040 12('.)

Equations (le4.10-l.4.12) furnish us with five coupled ordinary dif-
ferential equations and three initial conditioms, thus we need two
more pieces of information to solve for (xs,xl,ul,xr,ur). These can
be obtained by noting that at time /\t, the shock as well as both left
and right characteristics collide together. Phrasing in terms of

boundary conditions, we have:

leﬁt) - stﬁt) (le4413a)

(]
o
-

Xr(At) - Xsﬂt) 0 . (104. 13b)
Now we have a well-posed boundary value problem and using the boundary

value problem solver PASVA3 described previously, stﬁt) can be deter-

mined with arbitrary accuracy.



The Courant-Fredrichs-Levy (C-F-L) condition

Recall that in Glimm’s construction, we have to solve a sequence
of Riemann problems for the given partial differential equation at
each time level t. To ensure ‘that waves generated by different
Riemann problems will not interact at the next time level t + /At, the

C~F-L condition

e
At = 2 u(x,0] (le4.14)

must be satisfied. The initial data in our case are piecewise con-
stant functions ug. In the case of zero source ( g=0 ), the C-F-L
condition simply reduces to

pe - — L

0
2maxi Iuil

' (1.4.15)

Geometrically, this amounts to requiring that the time increment /\t be
chosen such that the characteristic curve (-%% = uz ) emanating from
X, must not penetrate the right side of the box [xi,xiﬁﬁx/ZI x [0,At].
See figures 1.6 &le.7. 1In the case of nonzero source, the C-F-L condi-
tion will be‘satisfied by enforcing the same geometrical constraint
described above. Of course, in this case the characteristics are

curves described by the characteristic equations (l.4.1&2) with ini-

tial conditions

.(1.4.16)

x(0) = X,
u(0) = u¥
i

Dividing the interval [0,/At] into N equal subintervals, we proceed to

17



solve the initial value problem numerically until we come to the first

j (0<j<N) such that
fNa Lx
x( N ) > Xy + o

G-1)Ae =
Letting Ati N and Atmin = miniAti, then we can ensure ‘that
the waves generated by solving different Riemann problems at time t
will not interact at the next time level tﬁﬁpmin, that is , the C-F-L

condition is satisfied.

We conclude by summarizing what we have done so far. By
transforming the given partial differential equation, u + uu =
g(x,u), into its characteristic equations, the Riemann problem at a
sample point (&\x,/\t) becomes a well-posed boundary value problem.
Using the boundary value problem code PASVA3, we obtain a numerical
scheme of variable order for solving the Riemann problem. Moreover,
the position of a perturbed wave (a shock or a rarefaction fan) at a
given time /\t can be computed using equations (l.4.1&2) with properly
posed initial conditions (and boundgry conditions in the case of a
shock) . Similarly, the position of a characteristic curve can be
determined which enable us to ensure that the C-F-L condition 1is

satisfied.

In the case when g=0, Lax[ 8] and Chorin[ 2] have shown that
Glimm’s scheme is at Dbest a first order method, thus it is unélear
whether it is worthwhile to solve Riemann problems with high .accuracy
even in the presence of a nonzero source. In fact, we will described
a low order, but very efficient, scheme for solving Riemann problems

nexte. Then by taking special source terms, we will see that such a

18



low order method sometimes gives better results.

19



l.5 The method of operator splitting

The idea behind operator splitting is similar to the method of
_ characteristic tracing described in section 1.3. Again, we first
resolve the initial discontinuity by solving the nonlinear system of
partial differential equations (1) without the source term, that ié,
.Et +'§% (u) = 0. Denote the solution at (xo+qﬁx, At) by ;;. Next,

using v, as initial data we obtain a new solution vector';(xo+Qﬁx¢§;)

by solving the ordinary differential equation

v = - (1.5.1a)
| ac - 8(xj +\x ,v)
with initial condition
vo)=v . (1.5.1b)

(o}

The influence of the source term'E thus enters in this last step. The
approximate solution of the Riemann problem is ;Kxo+qﬁxgﬁp). Although
the order of accuracy of this method is not known in general, the
advantage of operator splitting is that it is simpler than the vari-
able order method of characteristic tracing. Moreover, we have the

following interesting lemma.

Lemma. The method of operator splitting gives an exact solution to

the initial value problem

T +E (=% @ , (1.5.2a)

t X
with inditial data
Tl- (X,O) =: . (loSoZb)

20



Proof. The solution to (l.5.2) without the source term is simply E;.
The approximate solution given by the method of operator splitting is

then

. t
v(t) = u + Jo‘g(v('T))d('T) .
This solution is exact as

W N W
TRk ol TR

uO. Qt E.D.

and %%'QE(Q). Fur thermore v(0)

In practice the ordinary differential equation (l.5.la) is solved

numerically by the simple Cauchy-Euler scheme

Vix, + @A) = v+ g (x +edx,v ) A .
It is well~known that the Cauchy-Euler scheme is at most £first order
accurate; however, Glimm’s scheme is itself at most first order accu-
rate so there is'no reason for using a higher order ordinary differen-
tial equation solver for (l.5.1a). In fact, from the first test prob-
lem it is interesting to see that the method of operator splitting
gives more accurate results than that of characteristic tracing when

used in the solution of Riemann problems in Glimm’s scheme.



1.6 Test problems

In order to compare the performance of Glimm’s construction using
the two different numerical schemes characteristic tracing and opera-
tor splitting described in section l.4 and l.5 respectively, a suit-
able way of measuring their accuracies is essential. In the case of a
smooth solution (e.ge. a rarefaction fan), the ll-norm is often used.

In the presence of a shock, however one can measure the superiority of

one scheme over the other by examining the shock-jump error at each

time level defined by

N
151 lup g=vy, g€
where
uL R=the difference between the exact values of
’

the left and right state of the shock at time N\t,
vy, R=the difference between the estimated values
b4
of the left and right state at the shock.

Problem 1:

2
u + ( %T-)X = -X on [0,2] (1.6.1)
with
IZ for x<1
- 1.6.
u(x,0) |0 for x>l : (1.6.2)

The exact solution is



2-x sint . x<x_(t)

cost
= < ' .o De
u(x,t) - sint for x>xs(t) (1.6.3)
l' cost

where xS(t) = cos t + sin t 1is the shock path.

The spatial grid size h used is O.1l. A comparison of the shock-
jump errors of the two methods can be found in table l.1l. The loga-
rithm of the shock-jump errors of each method is plotted against time
t. See graph l.1. At all five time levels 0.05 to 0.25, Glimm’s con-
struction using operator splitting gives better results than charac=-
teristic tracing. This is very surprising because characteristic trac-
ing solves a Riemann problem with high order of accuraﬁy (10-7) while
operator splitting is only first order accurate (recall that the
Cauchy-Euler scheme is used as our ordinary differential equation

solver). This paradox can be partially explained away as follows.

Consider the Riemann problem

u + (BT)X = -x , (l.6.5a)
u(x,O) =u . (106.5b)

(0]

Assume further that characteristic tracing solves this problem

exactly,

u_ = xsin(/\t)

= =2 l.6.6
uCT(xAt) =os (A . ( )

In Glimm’s construction, however, the solution at (x/At) is u

CT
evaluated at the sample point (x + &\x /A t) instead of (x,At) s Recall

that © is a random number between [- Vz, VZ]. Thus, the error commit-

ted by characteristic tracing is
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error .. (xAt) = Uer (x+\x AL) - uCT(xAt) .

Expanding error ., in powers of /\t, we get

CcT

3
error . (xAt) = of\sx At + eAxAg— + O(Ats) . (1.647)
Similarly, the error committed by operator splitting is
Atz AtS 4
error . (xAt) = e\x A + u S5 - xS+ oAt . (1.6.8)
For simplicity, comsider the special case when x

= (O Moreover in the

case when u =2, (1.648) reduces to

erroryg (xAt) = ol At el + ot . (1.6.8°)

3
When 0 < 0, loAcrNE] > labAeA?] oo

IerrorCT(xiﬁt)l > Ierroros(xgﬁt)l ! (1.6.9)
Thus the high order of accuracy of characteristic tracing in solving
Riemann problems can be lost in the process of random sampling. It is
wrong to conclude, however, that the method of operator splitting
should be preferred over that of characteristic tracing in the solu;
tion of Riemann problems. The reason is very simple, when © > 0 the
inequality in (l.6.9) reverses. Thus the performance of operator
splitting is not always better than characteristic tracing. But £from
this test problem, we see that high order of accuracy in solving
Riemann problems does not necessarily guarantee a better solution. In
order to decide which methods should be used in solving Riemann prob-
lems, one has to do a detail error analysis for the general .equation
(3). | It should be noted, however, that rigorous error analysis of

Glimm’s scheme even for the the inviscid Burgers’ equation
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u2
U F Gl =0

t
is extremely difficult (for details see Colellal3]); thus, we shall
resort to numerical experiment instead.

In the following test problems, we have chosen the source term g

2 2
to be of the form - %F-and + %?3 x > 0 . Moreover, the initial data

is piecewise constant and will initially result in a shock wave.
There are two reasons for restricting our attention to such special

cases:

(1) Exact solutions can be obtained rather easily so that a compari-
son of the accuracies when using characteristic tracing and operator

splitting can be carried out explicitly.

(2) Our main concern for the next chapter will be the propagation of
shock waves in a duct of x-sectional area A(x). In particular, A(x) =

+
- x+x
o

for some constant X, hence the spatial part of the source
term has the form.

A’ (x) 1
Alx) T F Rk (1.6410)

Thus, the source terms we have chosen closely mimic (1l.6.10), hence
the results we obtain in the following test problems should help us
decide which of the two numerical schemes we should use in solving

Riemann problems in the more cdmplicated cases.

Finally, we say a numerical scheme is more efficient than another
if it requires 1less computational (or execution) time to attain a

given level of accuracy.
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Problem 2:
“2 u2 (1.6.11)
u + ( 5 ) x - on [1,5] ¢ De
with

1Y for x<3

= <
U.(X,O) l uo for x>3. (1-6- 12)
| T |
The exact solution is
° ( 1+u0-£ ) Vz - u0~£ ) for x<x (t)
Iul 1l x 1x s

u(x,t) = < 1 (1.60 13)

| u: ( 1+u:'£ ) ) _ u: i') for x>xs(t)

L

where xs(t) is the shock path given implicitly by the nonlinear equa-

tion
X X X
[1+(-—f‘;)213/2-1.5(1+(—§-)2)-((—%)3-0.5)=o.
Y1 Y Y1
In this test problem, we will use u§ = 2, u: = 0, and ° = 3. The

shock~jump errors from time levels 0.1 to 0.5 and the execution time
of'the two methods can be found in tables 1.2 and 1.3 respectively.
Finally, the logarithms of the shock=jump erfors of operator splitting
and characteristic tracing versus time t are plotted in graph l.2.

The spatial step sizes used are J%; where h = 0.2 and n=0,1,2,3.
2

Observations: for all spatial step sizes used, the shock=-jump errors
committed by operator splitting is less than characteristic.tracing.
However, it is interesting ﬁo observe that the high accuracy of
characteristic trécing in all cases can be obtained by operator split-

ting by simply halving the spatial grid size h. (See graph 1.2.)
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Moreover, the execution time required by operator splitting is dramat-
ically less than characteristic tracing. In fact, the amount of time
required by operator splitting with-% is still less than that required

by characteristic tracing with h |
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Problem 3:
uz U2
u + o) = on [1,5] (1.6.14)
with

|<“1 for x<3
u(x,0) =|u° for x50 (1.6.15)

The exact solution is

|ul(x,t) for x<xs(t)

= <
u(x,t) | ur(x,t) for x>xs(t) (1.6.16)

L

vhere ul(x,t) and ur(x,t) are given implicitly by the following non-

linear equation

t
O l,r X (106017)

Y,r T

and the shock path xs(t).is given by the initial value problem

xS ul + ur (1.6.18)
= emccare——— e Do a
Ty 7
xs(O) = 3, (1.6.18b)
where u, _ are given implicitly by (l.6.17). As in test problem 2, we
b4
use u§ = 2, and ug = 0. The shock=jump errors from time levels 0.05

to 0.25 and the execution time of the two methods can be found in

tables 1.4 and l.5 respectively. The spatial grid size used are=l%,
' 2

where h = 0.2 and n=0, 2.

Observations: solving Riemann problems with characteristic tracing

28



give more accurate results than operator splitting in Glimm’s con=-
struction. However, operator splitting can attain the same accuracy
as characteristic tracing with step size h by using %u As in the pre-
vious test problem, the execution time by operator splitting is much
less than characteristic tracing. Thus the lower of accuracy operator

splitting is being compensated by its efficiency.
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1.7 Conclusions

On the whole, the higher order of accuracy of characteristic
tracing do sometimes provide us with better Glimm solutions than
operator splitting. However, the execution time required is astound-
ingly larger than with operator splitting so that it is more efficient
to use operator splitting with half (or quarter) the spatial grid size
in order to achieve the same accuracy. Furthermore, using charac-
teristic tracing does not necessarily guarantee better solutions than
operator splitting. (See graphs l.l and l.2.) Roughly speaking, the
random sampling kills off a substantial amount of the éccuracy of
characteristic tracing in the solution of Riemann problem. In conclu-
sion, if one measures the superiority of one scheme over the other by
comparing their efficiencies, operator splitting should be preferred

over characteristic tracing in solution of Riemann problems for Glimm

2
. u
scheme for the special source terms 5
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Chapter 2 Radially Symmetric Gas Flows

2.1 Preliminaries

In the next two chapters, we wish to study the equations of an
inviscid non-heat conducting, radially symmetric gas flow and gas flow
in a duct of variable cross-section. The equations are given respec-

tively by (4) and (6) which we can replace for simplicity by

- N = - — -
0 W m m
2 2
9 9 | m - m-
ot m + 9x 0 tp N ~G(x) 0
(2.1.1)
o m(e + p) m(e + p)
- g L. o] - - P -

Our numerical method has been a generalization of Glimm’s scheme (see
Section 1l¢2). Recall from Chapter 1 that the successful implementation
of such a scheme hinges on solving the Riemann problem for ' the
corresponding set of partial differential equations. In other words, in

this case we need to solve (2.1l.1) with piecewise constant initial data

o o o.T
|(Pl,ml,el) for x<x

T - < .-
(P,m,e) (x,0) = I o o o.T for x>x e 1e2)
(Ior »1 o]

| r’er)
In the last chapter, we presented two methods for solving the

Riemann problem, they are

(1) the method of characteristic tracing,

(2) the method of operator splitting.



Although the first method is supposed to be exact, it has two important

disadvantages as compared with the second method:

(1) tracing characterisitcs is not feasible in general for the hyper-

bolic system of partial differential equations (1) for n > 1.

(2) it is a very inefficient method even in the simple case of the

inviscid inhomogeneous Burgers’ equation (see Section 1.6).

Of course, we may be able to off-set these two disadvantages by devising
some (ad-hoc) high order approximate schemes for solving the Riemann
problem. But how much accuracy is enough?? In the last chapter, we
have discovered that the first order method of operator splitting can
sometimes beat the ‘exact” method of characteristic tracing in the con-
struction of a global solution, not to mention that it is more effi-
ciente Thus any arbitrary approximate schemes for solving the Riemann
problem will not do in general. However, the numerical scheme to be
described next, due to T. P. Liu, is quite different; it has something
that cannot be matched by operator splitting. Liu’s scheme converges
under the same assumptions made by Glimm in his scheme and with the
added assumption that the characteristic speeds are nonzero. For
details of the assumptions made and proof of convergence, see Liu
fol&[1d. In the next section, Liu’s scheme will be described with

emphasis on constructing a solution to (2.1.1).
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2.2 Liu’s comstruction

Basically, Liu’s construction is similar to the generalization of
Glimm’s construction as described in Section l.2. Again, we consider
the nonlinear system of equations (1) with initial data (2). Let k
and h be 'the time and spatial increments respectively. A discrete

approximation to the solution u(x,t) is to be computed at the points

(ih,nk) and ((i+ % Yh, (ot %-)k) for |il, n =0,1,2,+.¢. Denote ;he
approximate values by ﬁ? ~ u(ih,nk), ﬁ;:i;g T u((i+1/2)h,(n+t1/2)k),
and suppose that Gg has already been computed for all i. Then
a?:i;% is computed from ﬁ? and G?+l by a procedure described as
follows.

Step le We solve the ordinary differential equation

L) - g(x,7) (2.2.1)

-assuming that the initial conditiomn G(xo) is given. Denote the solu-
tion by G(x;ﬁ(xo)). This (umique) solution is called the standing wave
_solution because it has no time dependence. Also, (2.2.1) is called the

steady~state equation for the general hyperbolic system (1).

Step 2. Using the solution to the steady-state equations, we solve
the Riemann problem without the source term using the following initial

data
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| w(h;ﬁ ) x<0
m = < o Le
u(x,0) . . , %50 (2.2.2)
| wi=hsugp)
. - -n+l/2 _ = k
and denote the solution by v(x,t). Then Uili/s = v(enh,z), where Gn
is a random variable equidistributed in the interval [—%3%1. Simi-
-n+l -n+l/2 -n+l/2 ,
larly, u, can be computed from Yy/2 and Uil /2 by this pro-
cedure via the use of another random variable 1° This completes the
n+z
2

construction.

Thus, given initial data at any time level, Liu’s scheme carries
6ut’ the same construction devised by Glimm for the case of zero source
(g = 0 ) except that initial data has to be £i£§£ recomputed using the
steady-state equations. Since the source term g enters into the whole
picture solely via the steady-state equations (2.2.1), the effect of the
source term in Liu'; construction is thus introduced only in the process
of setting up initial data at each time levei. Finally, 1if a global
solution consists in part of steady-states, then Liu’s scheme will
reproduce these steady-states without any difficulty because they are
used explicitly in the construction process. This is a major advantage
over Glimm’s scheme with operator splitting and will be illustrated

clearly in test problem 3 of the next chapter.

Example 2.2 The steady-state equations of (2.1.1) are

-E; = - G(x)m , (2.2.38)
d 2 2
————— ( _TI_l_ + p) = e G(x)m_, (2- 20 3b)
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L (mletp) ) - c<x>——£?-‘“‘;"

,. (2+2.3c)
P Cc

or expressing in terms of the dependent variables p,u,p alone, (2.2.3)

can be rewritten as

2 2 N (2-204&)

du _ cu

el G(x) c2-u2 R (2.2.4b)
dp Buzc2

= G(x) c2_u2 . (2+2.40)

Recall that ¢ = \I_)‘ls is the sound speed in the gas. Notice also the

assumption that the characteristic speeds u, u+ec # 0, is used
explicitly here. Given the initial conditions
T o o _o,T
(P»u,P) (xo _'tAx) = (Pi,ui,pi) ’
(2.2.3a) can be integrated to give
(2.2.5)

x
p,u =P°u:exp(- T G(3)de) .
X

u, (x)

Next, by introducing the variable 1;+(x) e and using (2.2.4) we
- +

get after some simplifications

y-1
5, (1 +=-9_ )

1—n+

Py
dx

that can be integrated again to give
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(2.2.6)

a2 YL

-1 -1 -1 -1

(L+ 5y, ) L+ 87l e
= = - exp(2 | G(g)dg) ,
+ n, x
. X
. u
where gi = 6—;— ) » Suppose a solution to the nonlinear algebraic
- c
+

equation (2.2.6) exists, then using (2.2.5) (p+,u+,p+)T(x) can easily

u

2 ,
be recovered from PLY, and ( E£ )" once these two values at a given
-—— +

x are found. In particular, Ri(xo)’ gi(xo), pifxo) can be computed.
The key step in Liu’s construction will then be compiete if we can solve

the source-~free Riemann problem of (2.1.1), i.e.,

p m
2
9 m ) m
—— — ——— + = O
at + ox p p. i
e m(e + p) (2.2.7a)
p
with the piecewise constant initial data
T
. | (ppomse ) (%) 5 x<x
(p>m,e) " (x,0) = < (2.2.7b)

n(P_,m_,e_)T(xo) » X,

But (2.2.7a) is just the one-dimensional equations of gas dynamics whose
Riemann problem can be solved easily. A detailed description can be
found in Chorin [2], or Sod [13]. Qualitatively, the solution consists of
two waves (either rarefaction fans or shock waves), w, and w

1 2?

separated by a slip line defined by the ordinary differential equation
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%% = u, with initial condition x(0) = X e Here wu, is the speed of

the gas at the center state. (See figure 2.1.) Furthermore, this slip
line subdivides the center region into two parts with possibly different
values of density but equal values of u, and ©p, (pressure of the

center state). .

Remark

It is important to note that Liu’s scheme cannot be carried out for
transonic flows. The reason 1s as follows. Suppose a standing wave
solution exists between two points Xy and %, at which the flows are

subsonic and supersonic respectively, then a standing wave solution must

automatically exist connecting x, and LR < (xl,xz) where the flow 1is

2

sonice. However, that is impossible because the steady-state equations .

fail to hold at X as omne of the characteristic speeds u + ¢ is zero
at X e This is the major drawback of‘Liu's construction, and no pro-
gress has yet been made towards resolving it. (See, however, Liu 11]

for the most recent development.) In the ne#t section, we will look at

operator splitting, which appears to handle transonic flow problems with

relative ease.
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2.3 Operator splitting

The method of operator splitting for solving the Riemann problem
for the general equation (1) has already been outlined in Sectiom 1l.5.
In the present section, we want to. apply the method explicity to
(2.1.1)¢ Recall that the first step involves solving the source-free
Riemann problem corresponding to (2.1l.1); this has already been dis-
cussed in Section 2.2. Let the solution thus obtained at a given sample
point X + 8/\Ax at time /At be denoted by (po,uo,po). Then the solu-~
tion to the original Riemann problem with nonzero source‘ at

(xO + §\x /\t) is obtained by solving the set of ordinary differential

equations
%€-= - 6(x_ + &x)pu (2.3.1a)
%.‘ti =0 (2.3.1b)
%% = - Y6(x_ + &x)pu (2.3.1¢)

with initial data

(Psu:P) (0) = (IOO’UO,PO) .

Since (2.3.1b) has a trivial solution

u(xo + %}C,t) = uo Py (2- 3- 20a)

(2.3.1a) and (2.3.1c) thus uncouple conveniently and can be  integrated

exactly to give at time /At

px, + &\ At) = p_ exp(-u G(x  + ¢\x)At) (24342Db)

and
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p(x, + e At) = p_ exp(=Yu G(x_ + &x)Ac) . (2¢3.2¢)

The solution to the Riemann problem for (2.l.1) as obtained by operator

splitting at (xo + &\ ,/At) is now given by (2.3.2a-c).

Next, we shall study the problem of a point blast explosion and use
this as a test problem for determining whether Liu’s scheme or Glimm’s

scheme does a better job in treating spherical shock wave problems.
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2.4 Point blast explosion

The formation of a blast wave by a very intense explosion was stu-
died very closely by Taylor(14 in connection with atomic bomb research.
The explosion can be idealized as a sudden release of an amount of
energy E concentrated at a point. Furthermore, we assume that the
resglting disturbance will be so strong that the atmospheric pressure P,
and sound speed a  are negligible compared with post-shock pressure and
velocity. Also, the velocity of the undisturbed region is assumed to be
Zero. Then it can be argued on dimensional grounds (see Whitham[l6])
that the spherical shock wave propagating outwards, whose radius R, 1is

related to time t by

2/5

E /5 , (2.4.1)

R=S =
()’)(Ioo

where P is the atmospheric density, S(Y) is some calculated function of

Y determined by the problem.

Now the equations of spherical wave motion are simply (2.l.1) with

G(x) = %- (vhere r is the radial co-ordinate) which we can rewrite as

g%+u%%=pl%% , (24 4e 22)
d d du , 2u _
§%+“5%+|°(§?+r )y = 0 , (24 44 2b)
<§T+ ub%)(pp"Y) =0 . (24 4e 20)
Following Taylor, we introduce the similarity variable g =-§ and
take
P -
pressure, p = —%'( R 3/2 A )2 f(p) (2. 403a)
a

o
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density, p=p, ¥®» (24 4.3b)

32 4 4 (2. 4 3¢)

radial velocity, u =
where again P, and a, are respectively the atmospheric pressure and

sound speed and A is a constant equal to %-[ sy )5 —E-] yz. Substitut-

Po
ing (2.4.3a=c) into (2.4.2a-c), this set of partial differential equa-

tions reduces to a set of first order ordinary differential equations:

b (P =y - (2e4ba)
g % ¢ 2 (20 44 4b)
* 1p-¢ °
3%+ pf + P £(pmp) - pf =0, (2240 4e)

or after some simplifications,

F(3(n - ) + v¢<% -4

an @ - ME P& - M5 .

2
dn £ -y - m? ,
3 _ 2. _ 3, _ |
J e E(3 - 20) - 3500 - mep) (2¢4.5)
dn £ - P - m2 ,
bwoe - m (2-3) - =
. & =
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Shock-wave conditions

By assumptions, the post-shock pressure is much larger than the

atmospheric pressure, the Rankine-Hugoniot conditions then become

P 2
1.2/ 0
;— = Y+l -E ] (204063)
0 a
0
P1 yn
F;' = Y"l s (204o6b)
u
N S (24 4s6c)
U Y+l
where U is the shock speed. Differentiating (2.4.1), we get U=A R-3/2.

Furthermore, evaluating (2.4.3a-c) at 75=l, we get on comparison with

(2.4.6)

2y

i ° (2.4.7a)

£(1) =

3

(1) =’;,—f; , (2. 4 7b)

¥(1) = %’{-}- . (24 be 7¢)

Now (2.4.5) together with (2.4.7) constitute a well-posed initial value
problem at p=l which can be solved numerically backwards to p=0 so that
f, ¢, ¥ for g€ [0,1) can be found. Unfortuately Taylor did not realize
that (2.4.5) was mildly stiff, hence his results.could be improved.
Table 2.1 contains values of f(y), ¢(y), ¥(p) obtained by a standard
stiff ordinary equation package by Gear[5 ]. Curves of £, ¢, ¥ can also

be found in figure 2.2.

Now with the values of f, ¢, ¥ known for any < [0,1], the following
example illustrates how to find the state of the gas (p,u,p) in the

region behind the shock for a given problem.
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Example 2.4 In a atomic explosion in New Mexico in 1947, the amount of

energy E released was measured to be 7.14x1020 ergs. Taking po=1.25

kg/m> and Y=l.4, (2.4.1) becomes

S -
2 1Og10 R = loglot + 11.915 > (2-408)

R(t) = (¢ x 10110905 )2/5 (244.9)
Using the defintion of A,
-3/2 2R .
R A= 5 t . (2040 10)
Substituting (2.4.10) into (2.4.3a-c), we get
Po 2R .2
p=—5 ()7 £(n) , (2. 4. 11a)
%
P =P, ¥ () , (2.4.11b)
2 R
us= 5 t ¢(D) . (2-4- 11C)

For any given time t, we first determine the position R(t) of the
spherical shock wave by (2.4.8). Then using (2.4.11) the state of the

gas at any distance R-r behind the shock at time t can be computed.

In the next section, we proceed to solve this spherical shock wave
problem with Liu’s and Glimm’s scheme with operator splitting and then

compare both solutions with the exact solution.
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2.5 Test problem

We consider the partial differential equations (2.4.2a-c) which we

write compactly as

o u o 0 o pu
u + O u é‘ u = dz O (20501)
r
2
| P 0  pe” u [P L —Ypu_|]
t X
with initial conditions
[ T
. L(Po’uo’po) for r=Ro
(P,u,p) = (205-2)
| (1.25,0,0.008)T for ©R,

\

where t = 0.217558 milliseconds and R P,su »P_ are defind by (2.4.9)
) o’o’ 0’0

and (2.4.11) respectively at t = to and 3 = 1. Also, mass,length and

time are measured in kilograms, meters, and milliseconds. The initial

value problem as defined by (2.5.1) and (2.5.2) is then solved by both

Liu’ s scheme (see section 2.3) and Glimm’s scheme with operator split-

ting (see section 2.4). The spatial grid size used is-l%, where h = 0.2
2

and n=0,1,2. Finally, as in the last chapter, we measure the superior-

ity of omne scheme over the other by examining the shock-jump errors at

each time level N defined by : |

N
> - B t het (205-3
j_i]_lpl’r pl,rIA ’ w e )

P, , = exact pressure difference between the left and right
?



states of the shock at time W\t,

~

P, = estimated pressure difference between the left and
?

right states of the shock.

The shock-jump errors from time levels 18-48 pseconds are displayed
in table 2.2 and graphed in graph 2.1 while the execution times for both

schemes are tabulated in table 2.3.
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Observations and comments

The shock-jump errors resulted when using Liu’s scheme and Glimm’s
scheme with operator splitting are close for for h=0.05 and h=0.2. How-
ever, for h=0.1, the results obtained by Glimm’s scheme with operator
splitting is definitely better than Liu’s scheme, see table 2.2 and
graph 2.l. Moreover, the execution time is less for Glimm’s scheme in
all cases. Hence if we judge the superiority of one scheme by its effi~
ciency, that is, the amount of labor required to achieve a certain level
of accuracy, Glimm’s construction with operator splitting is definitely

superior to Liu’s.

Moreover, there is one major difference between Liu’s scheme and
Glimm’s scheme. When transonic flow takes place, Liu’s construction
fails (see section 2.2), but Glimm”s scheme with operator splitting has
no difficulties in continuing ;he construction of a global solution.
For example in this case when t-t°>50 pseconds, transonic flow develops
and Liu’s scheme cannot be carried out any further, but this has no
effect on operator splitting; in fact, even for time up to 859 Mseconds
and using only spatial grid size 0.2, the shock locations are determined
with great accuracy (see graph 2.2). The density, velocity, and pres-
sure profiles at time 859 pseconds are also displayed in graphs 2.3-2.5

for comparisons with exact solutions.
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2.6 Conclusion

For the treatment of spherical shock wave problems (typically blast
wave problems), Glimm’s scheme with operator splitting should be pre-

ferred over Liu’s scheme.

Finally, the method of characteristic tracing which solves the
Riemgnn problem (exactly) as defined by the partial differential equa-
tion (2.1.1) and initial data (2.1.2) with G(x) = + %- cannot be carried
out. Thus the straightforward generalization of Glimm’s scheme as
described in the last chapter is not feasible for spherical shock wave

problems.
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Chapter 3 Shock propagation down a duct of variable cross-section

3.1 The Classical and Generalized Chisnell formula

If the cross~sectional area A(x) does not vary too rapidly, gas
fiow in the variable area duct is given by (2.1.1) with G(x)=A‘(x)/A(x).
Using this set of equations, Chisnell [1] studied the problem of shock
propagation down a duct of variable cross-section where the gas ahead of
the shock was at rest. Under the assumptions that the flow behind the
shock 1is nearly steady, and that wave generated behind the shock do not
interact strongly with it, he was able to derive the following ordinary

differential equation for the mach number M(x) of the shock:

M aMm , 1da
A S+ 2T =0, (3.1.1a)
Mo-1
where
S . ,
A = (L W—"“—P ) (1+2p+}?) (3.1.1b)

2 (Y-1) M2+
- 2

2yM° - (¥-1)

Recall that the mach number of the shock is related to the shock speed U

n . (3.1.1c)

by

M= r’ (3.102)

where u, and c are respectively the speed of the gas and the sound
speed of the flow ahead of the shock. A very neat derivation (but less
general than the one described next) of (3.1.1) can be found in Whitham

[1d. We shall derive this formula via a more general setting.
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Generalization of Chisnell’s formula

We return again to the general hyperbolic system (1), which we

rewrite as

Il-t + A -;X = E (}-{-;u) . (30 103)

Consider a shock moving at constant speed from a region where g=0 into a
region where g#0. See figure 3.1. Futhermore, assume that the shock

arrives at the position x at time t=0 with speed Un- . (See figure

n-1

3.2) Denote the post-shock state by Gﬁ-l

E;. First let v be the solution to the steady~- state equation

1
and the pre-shock state by

A u, =8 (xn_l,u) (3.1.4a)
with

wix )= _, (3. 1.4b)

n-1
evaluated at xn=xn_1ﬁﬁx. Next, we solve the Riemann problem with g=0

and initial data

[

|_ x<x [y
U(X,O) = <_ x>x% (30105)
|l u n’

L r
Assume that a leading shock is produced with a new post-shock state E;

and shock speed Uh. Our objective now is to compute the change in shock

Un-Un-l

speed, that is, —_ZS:—-‘
Using the Rankine-Hugoniot condition, the post-shock state can be
parameterized by its speed, so we can write u=H(U). In particular,

u 1=H(Un—

0 X .) 1is the solution operator to

1 -1°"n~1

(3. 1. 4) y We get

). Also if S(x,-ﬁ'r1
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v = S@x, n—l’xn—l). (301.6)
Finally if R(u) denotes the speed of the leading shock resulting from

the Riemann problem with left state'ﬁ, right statelﬁr, then

U =R@E) = R'S(Ax,un_l,xn_l)

Then using Taylor's expansion, we find,

o 3 R*S(0,u
Un =R S(O’un—l’ N 1) + = ( ’un-l’xn—l) Ax + O(sz).
But S(O,un 0% 1) u_, and R(u 1) =V, » 80
U -4 -
n n-1 _ 9 ReS(0,u__,,x__.)
o "% n-1""n-1" + 0(Ax) . (3.1.7)

— n'. = . e
xn-l) = R S(x,un_l,xn_l)SX and by definition

= L4 u —1 u
Ax ReS0,up_qoxy g )8 TeCx o)) (3.1.8)

Formally passing to the limit, we get

Lo R EO)A g HEO), (3.1.9)

This is the generalized Chisnell shock propagation equatiomn.
The above derivation was due to Wendroff[15]where he also applied

(3.1.8) to shock propagation problems in variable area ducts with phase

changes.



Suppose now that the speed of the shock at the position X is Uo’
then the generalized Chisnell shock propagation equation (3.1.9) is an
ordinary differential equation that informs us what the shock speed 1is
at a latter position x due to the influence of the source term. We
illustrate this more concretely by looking at the following example.
Example 3.1

Consider now the problem of a shock moving into a duct of variable

cross-section A(x). Using the steady equations (2.2.4),

[~
i lex ) = A 1 2

A(x) C2 _ u2 -c’u (3.1.10)
puzc2
Hence (3.1.9) reduces to
a _ A'(x) QR 23R 2 3R
- o) c IR
& "2 Pyay o0 du PY % . (3.1.11)

Using the assumptions made by Chisnell and using the Rankine-Hugoniot

conditions (see Whitham[16]):

c 2 1

u = r)\+1(M+E)
P = p ci (=22 A=l (3.1.12)
r A-17" "X+ D
_ O+ D
P r - DM + 2

%H— ’ %H" %H- can be computed in terms of M. Moreover, using (3.1.12)
P u
p, p, u and ¢ can be expressed in terms of M. Substituting all these

into (3.1.11), the originalChisnell formula (3.1.1) will be recovered

after some simplications.
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Note that according to this classical Chisnell formula (3.1.1), the
factor that determines the mach number of a given shock at a latter
location of the duct is simply the relative rate of change of the duct
area, that is, A’(x)/A(x) and nothing else. This fact is crucial as we
shall see in case 1 and 2 of the test problem to be described in section

3.3.
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Remarks

(1) It is interesting to note that the similarity between the pro-
cedure used in obtaining Wendroff’s generalized Chisnell formula and the
solution of a Riemann problem used in Liu“s scheme (see section 2.2).

Given the Riemann problem with initial data

|un_1 for x<xn

u(x,0) = ﬁ— for x>x °
Lur n

step 1 of both Liu"s scheme and Wendroff’s procedure is the recomputa-
tidn of the given data by the steady state equation (3.1.4a). Then step
2 of both procedures is the solution of the Riemann problem with the new
initial data assuming that g = 0. The major difference, however, is
that in Liu’s scheme this procedure is only a key step in a more ela-
borate global construction scheme for the general hyperbolic system
(3.1.3) with arbitrary initial data. In Wendroff’s scheme this procedure
is a means of obtaining a finite difference approximation to the local
change in shock speed due to the influence of the source term assuming

implicitly that the given initial data in all cases resulted into shock

waves.

(2) For a shock that slows down due to the expanding geometry of
the duct, continuing interactions with the flow behind are expected, and
Chisnell’s formula is not appropriate. In a converging duct, however, a
shock wave typically speeds up and thus Chisnell’s formula ig good, see
Whitham(l1§. 1In section 3.3, we shall study shocks propagating in vari-
ous converging ducts, moreover, we shall compare the results obtained by

Glimm’s scheme with operator splitting and Liu’s scheme with that



obtained by Chisnell’s formula. But first, we shall examine the possi-
bility of incorporating Chisnell’s formula into Glimm’s scheme and Liu’s

scheme.
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3.2 The Chisnell formula and the numerical schemes of Glimm and Liu

One of the most crucial assumption in the derivation of Chisnell’s
formula is that waves generated behind the shock do not interact
strongly with it (see 3.1). Therefore quite mnaturally in order to
improve Chisnell’s formula one must be able to take care of all the wave
interactions behind the leading shock. At first glance this seems to be
a formidable task but this is precisely Qhat both the Glimm and Liu
schemes are geared towards -- construction of a global solution without
going through the painful process of characteristic tracing. More pre-
cisely, we improve Glimm’s and Liu’s scheme (or Chisnell’s formula

depending on how ome looks at it) in the following way.

Let the approximate values of the solution at time nk obtained by

either Liu’s scheme or Glimm’s scheme (with operator splitting) be

denoted by (PE’“?’pz)’ [i1=0,1,2, 0000 Then we compute

n+l/2 no+l/2 n+l/2 nonn n n’ n
(Py4+1/2°93+1 /2°P141/2) £rom (ogsuysps)  and oy josliyg 799P4/2) bY

Glimm’s or Liu’s construction exactly as described in 2.2 except when we
come to the position of the leading shock, say, at (1+1/2)h. Thus,

n n n _ . .
(Pl+l/2’ul+1/2’pl+l/2) = (pr,ur,pr) which is the state of the gas ahead

of the leading shock and is given initially. Then given the initial left

state (P?,u?,p?) and the right state (p ,ur,pr), the Riemann problem

r
without the source term can be solved readily and there are two possi-

bilities:

(1) the right wave is not a shock: we simply compute

n+l/2 n+l/2. n+l/2 nonn n n n
(0141 /279141 /22P14+1 /20 EFom (op5uy5pp) and (oy g suyp9Py4y)

as before by our numerical schenmes.

(2) the right wave is a shock: let the initial mach number of the shock
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be Mb' Then the mach number of the shock at time (nt+l/2)k can be
obtained by computing the solution at k/2 of the initial wvalue.

problem defined by the Chisnell formula :

'd—t' = ch s (30 2e 1a)
2 Y .
a_ . M-l A'(» (3. 2. 1b)
dt r A(M  A(x) ’
with initial data
x(nk)=(L+l/2)k, M(nk)=Mo . (3.2.1¢)

. x % %
The post-shock state (p ,u ,p ) at time (n+tl/2)k is then obtained

by the Rankine-Hugoniot conditions. Thus

(
(o_su_,p.) =x(o+l/2k)>(1+1/2+0 )h
(©EPL/2 ml/2 ntl/2 L Pe % Pr n
Pi+1/2°%1+1/2°P1+1/2 |

\

(p*,u*,p*) x(n+1/2k)<(l+l/2+9n)h

The superiority of using Chisnell’s formula with Glimm’s scheme and
Liu’s scheme in this way is demonstrated in the test problems described

in the next section.



3.3 Test problems

In this section we consider a shock propagating into monotonically
converging and diverging ducts defined respectively by A’(x)/A(x)=-
1/(x0-x) and 1/(x0+x) where Xq is known as the apex of the ducts and
x0<[xl,xr]. In the case of a converging duct, we differentiate between
two cases, namely |A"(x)/A(x)]<l and |A"(x)/A(X)|>1 with X=X _e While
for a diverging duct, we look. at the case where A’(xl)/A(xl)=1~and
A'(xr)/A(xr)<<l. We shall see that the results obtained are drastically

different form each other.

For definiteness, the test problems to be described are concerned
with the solution of the initial problem defined by the partial dif-

ferential equations

P u p 0 P pu
A(x)
0 2
p ¢t pe v L Ypu

with initial conditions

[

L(1.0,0.0,1.4)

(Psusp) (03 = 5 5, 11.6,152.9) for x<x

\

for'x>x1

The initial discontinuity is immediately resolved into a shock of mach
number M(xl)=10. Using this as initial conditions for the Chisnell for-
mula (3.1.1), the shock speed as well as the post-shock state can

theoretically be computed for =x< (xl,xr]. As mentioned before,
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Chisnell’s formula provides us with accurate predictions for converging
ductse. Thus, in cases 1 and 2 belqw we wish to solve the initial value
problem (3.2.1) by Glimm’s scheme (with operator splitting), Liu’s
scheme, Glimm’s scheme (with operator splitting) with Chisnell’s formula
and compare their errors of the post-shock states with respect to
Chisnell’s results.

Case 1l:

~1/(7-x), x <«(5,6]
AT (x) /A(x) =

0, x<5.
In this case, two different spatial grid sizes h=0.04, and h= 0.02 are
used. The computed post-shock states £form x=5.1 to 5.9 of the three
numerical schemes are shown in tables 3.1 and 3.2 while their errors
relative to Chisnell’s formula can be found in tables 3.3 and 3.4. For
convenience, the averaged errors are also computed and displayed in
table 3.9 Finally, the computational time is displayed in table 3.10

for comparison purposes.

Observations:

(1) The post-shock density of both the Liu and Glimm schemes oscil-~
lates, see tables 3.1 and 3.2. This is not physically realistic because
the shock accelerates as the duct narrows hence the post-shock deﬁsity
should increase in the positive x-direction. However, this phenomenon
does not exist for Glimm’s scheme with Chisnell’s formula; iq fact, the

post-shock density increases as desired.

(2) From table 3.9, we see that Glimm’s scheme with Chisnell’s formula

is definitely superior to the other two numerical schemes. Moreover,
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Glimm’s scheme is better than Liu’s scheme and the computational time is

less.
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-1/(7-X), X<(6,7],

AT (x) /A(x)=

O, x<6.

The two spatial grid sizes used are h=0.02, and h=0.0l. Tables 3.5 and
3.6 contain the computed post-shock states form x=6.1 to 6.9 of the
three numerical schemes while tables 3.7 and 3.8 contain their relative

€TrYOLSe

Observations:

(1) Again form tables 3.5 and 3.6 we see that the post-shock density of
both Liu’s and Glimm’s scheme oscillates while that of Glimm’s scheme
with Chisnell’s formula increases. (2) As in case 1, we see from table
3.9 that Glimm’s scheme with Chisnell’s formula on the average is the
superior one of the three schemes. Liu’s scheme, however, is better
than Glimm’s scheme in this case. In fact, as the shock approaches the

apex x,=7 (wvhere |A“(x)/A(x)|=m), Liu’s scheme is surprisingly good.

In conclusion for the cases of converging ducts, Glimm’s scheme
with operator splitting and Chisnell formula’s is the best scheme among
the three not only because the errors relative to Chisnell’s formula is
less, but most important of all it gives physically realistic. post=shock
densities as the shock accelerates down the ducts. Between Glimm’s
scheme and Liu’s scheme, one has to look at the relative change in x-

sectional area A’ (x)/A(x). |A’(x)/A(x)]|=1 is approximately the dividing
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line. If |A(x)/A(x)|<l, then Glimm’s scheme is more accurate and takes
less time. If |A'(X)/AX)| >> 1, then Liu’s scheme is very

good. and should be used even though it takes more time.

Before considering the case of a diverging duct, it is instructive
to look at the pressure, velocity, and density profiles: they are plot-
ted respectively in graphs 3.la-c for case 1 using h=0.02 and in graphs
3e2a=c for case 2 using h=0.01. Immediately, one will notice the

difference in their post-shock wave structures as described below.

Profile 3.1l: the post-shock wave structure is the simpler of the two
cases. It consists of a steady-state compression wave of the C- family
follow by a rarefaction fan again of the C- family before ending in a
shock of incresing strength. Both the compression wave and rarefaction

fan are propagating in the positive x=-direction.

Profile 3.2: 4in the begining (for x<6.5), the wave structure still con=
sists mainly of a steady-state compression wave and a rarefaction fan
(both of the C- family), however, as the relative rate of narrowing of
the duct increases, the two waves interact producing a C+ rarefaction
fan in between. VWhile the compression wave and the C+ rarefaction f£fan
are expanding to the right, the C- rarefaction fan is slowly being
“eaten up’+ The post-shock wave structure becomes more complicated as
the shock approaches the apex. As for the shock, it is accelerating

faster and faster with M(x)=-»m as x-éxo.

It is important to note that the difference in wave structures in
both cases are not determined by the rate at which the ducts are con-

verging because for both ducts, A" (x)=-l. Furthermore, it is not the
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difference 1in x-sectional area change which is the key factor because
A(xl)—A(xr)=l. The determining factor is |A“(x)/A(xX)| -- the relative

rate of change of the duct, and this can be seen plainly from the

Chisnell formula (3.1l.1). For |A“(x)/A(x)|<l, the post-shock wave struc-

ture is simple, consisting of a compression wave followed by a rarefac-
tion fan. For |A7(x)/A(x)]|>>1, one should expect the post-shock waves
to interact hence producing new waves and thus a more complicated pic=-

ture.
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We now concentrate on the problem of sending a shock down a
linearly diverging duct. As explained in section 3.1, the Chisnell for-
mula no longer can give us good predictions on the mach number M(x) of
the shock as well as the post-shock states (P,u,p)(x). However, by exa-
mining carefully the density, velocity, pressure profiles of the three
numerical schemes (namely .Liu’s, Glimm’s, and Glimm’s scheme with
Chisnell’s formula), we can still recognize each one’s better quality

(if any) over the others.

1/(1+x), x<(0,16]
A% () /A(x) =

0, x<0.

The spatial grid size used for all numerical schemes will be h=0.2. The
density, velocity, and pressure profiles for Glimm’s scheme are
displayed in graphs 3.3a-c and that for Glimm’s scheme with Chisnell’s
formula in graphs 3.4a~-c. Also, the computational time of different
numerical schemes used can be found in table 3.1l. The detailed post-
shock wave structure will be discussed later. Except for minor differ-
ences, the wave structures for all numerical schemes are almost identi-
cale However, the major advantage of Glimm’s scheme with Chisnell’s
formula is that it gives physically realistic post-shock states. The
reason being that as the shock slows due to the expanding geometry of
the duct, the post- shock pressure, density, and velocity should

decrease. While both schemes predict that the post-shock pressure and
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velocity will decrease only Glimm’s scheme with Chisnell’s formula gives

a monotonic decreasing sequence of post-shock densities.

One of the most prominent and undesirable feature for both schemes
is the presence of heavy oscillations coalescing together in the begin-
ning of each velocity profile. Such violent oscillations are clearly
absent in the pressure and density profiles suggesting that we might
have a steady-state rarefaction fan éf the C~ family. This brings out
one advantage of Liu’s scheme which uses steady staﬁes in his construc-
tion, see secion 2.2. If indeed a steady- state rarefaction fan exists,
then Liu’s scheme shall produce one without any undesirable oscillations
whatsoever. This is clearly illustrated in the profiles produced by
Liu“s scheme (graphs 3eba=c) . Unfortuately Liu’s scheme still has the
problem of not préducing a monotonic decreasing sequence of post=shock

densities. This can be remedied easily.

Liu’s scheme with Chisnell's formula

As described in section 3.2, Chisnell’s formula can be easily
incorporated in Liu’s scheme. The results are illustrated in graphs
3. 5a-c, where the advantage of using Liu’s scheme to produce steady-
state waves and the advantage of Chisnell’s formula to produce the phy-
sically realistic post-shock state are combined. These two major advan-
tages of Liu’s scheme with Chisnell'sformula prove itself to be the best
scheme among the four numerical schemes we. have discussed so far.
Before concluding this section, we now turn to examine the: post=shock
wave structure. Profile 3.5: the wave structure is more complicated
than the ones we have seen for converging ducts. At first we have a

steady-state rarefaction fan (C- family), then a shock and compression
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waves (C+ family) before ending into the leading shock which decreases
in strength as the duct widens. The steady-state rarefaction is very
strong and it moves in the positive x-direction. The compression wave
is very small at first but gradually widens and decreases in strength as

it travels down the duct.
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3.4 Conclusions

(1) The Chisnell formula in general is very good only as a local
result because new waves typically develope behind the shock and
interact with it. The wave structure can be rather complicated as seen
in case 1 and 2 in the last section. Thus, it is imperative to be able
to track all the new waves generated behind the shock. This, however,
can be accomplished readi;y by resorting to Glimm’s scheme and Liu’s
schemé and then using Chisnell’s formula as a way of obtaining the
appropriate boundary conditions at the leading shock. The result is a
scheme which gives physically realistic post-shock states as well as one
which takes care of all the wave interactions due to the geometry of the

duct with relative ease.

(2) 0f the four numerical schemes developed so far, Glimm’s scheme
with Chisnell’s formula is the best for a converging duct. However, for
a diverging duct, heavy oscillations typically set in and mask up the
presence of a steady-state rarefaction fan and thus Liu’s scheme with

Chisnell’s formula is superior in this case.

(3) Finally because of the generalized Chisnell formula derived by
Wendroff in section 3.1, the coupling of Chisnell’s formula with Glimm’s
scheme and Liu”s scheme can be theoretically extended from the case of a

variable =x-sectional duct to the case of a general hyperbolic system

(L.
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Chapter 4 Conclusions and Discussions

In the last chapter, we have developed two new schemes, namely
(1) Glimm’s scheme with operator splitting and Chisnell’s formula, and
(2) Liu’s scheme with Chisnell’s formula.

While (1) is best in treating the problem of a shock propagating down a
duct of monotonic decreasing area, (2) is best for a duct of monotonic
increasing area. Both scheme 1 and 2 have been coded in FORTRAN; they
are known as subroutines GLIMM and LIU respectively and are available
from the author. Given arbitrary initial data and cross—-sectional area
(either monotonic decreasing or increasing), one can advance from one

time-level to the next by making calls to either GLIMM or LIU.

Now using these two subroutines, the case of a arbitrary cross-
sectional area duct can be handled easily as illustrated by the follow-
ing example. Consider a duct known as the de Laval nozzle depicted in

the diagram below:

W

Py

X
(o]

/—\

De Laval nozzle




The section at x = X is known as the throat of the nozzle. For x < xo,
the duct area is monotonic decreasing, while for x > X the duct area
is monotonic increasing. Hence to obtain the best results at each time
level, one simply utilizes subroutines GLIMM and LIU at different sec-
tion of the nozzle. 1In other words, for the section that is decreasing
in area (x < xo), call subroutine GLIMM, while for the section that is
increasing in area (x > xo), call subroutine LIU. The extension to  the

general case of arbitrary cross—sectional area is clear.

At this point, a word of caution is in order. For a de Laval noz-
zle, transition from subsonic to supersonic flow is possible, see for
example Courant and Fredrichs(4]. In this situation, Liu’s scheme by
itself is not applicable as explained at the end of section 2.2. In
fact, as noted by Liufll] in his recent paper on transonic gas flow for a
variable area duct, in the event of such a transition, the flow is sonic
at x = xo where the duct is narrowest. But on the other hand, it is also
observed that a stable standing shock wave may occur in the expanding
portion of the duct which indicates that Liu’s scheme is better suited
than Glimm’s scheme for that section of the duct. Thus hybridizing sub-
routine GLIMM and LIU for different section of the duct at each time

level is indeed sensible.

Finally, it would be a substantial improvement if one could extend
Liu’s scheme to handle transonic flow as well. Moreover, more need to
be known about the phenomenon of tramsonic flow itself as modeled by the
one-dimensional equations (3.3.1a). As Liullll has pointed out: if ome
uses (3.3.la), then for a de Laval nozzle, bifuracating phenomena may

occur and a flow may not depend on its values at x = +® uniquely and
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smoothly. This raises an important question: is it even correct to use
these omne-dimensional equations to model a phenomena which is inherently

two=~ or three-dimensional ?? To this date, this question is far from

being satisfactorily answered.



70

Figure 1.1
A
shock of speed
o o
up tou
2
o
2
% = X
o
Figure 1.2

left boundary
of the fan:

o
XxX=u, + X
2 o

“

right boundary
of the fan

o
X=u_ +X
r O




Figure 1.3
e
trajectory of a
perturbed shock xs(t)
. o o)
xs(O) uz + ur
2\\\N
=
p'e X
o
Figure 1.4

a perturbed \\

rarefaction fan

left boundary xg(t)

) . )
with XZ(O) = uz

\\\\\right boundary xr(t)

with % (0) = u>
r X

71



72

Figure 1.5
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10910( shock-jump error )

Table 1.1

shock-jump errors of

t characteristic operator
tracing splitting
. -3 -3
0.05 0.219x10 0.172x10
-3 -3
0.10 0.687x10 0.530x10
=2 -2
0.15 0.140x10 0.107x10
-2 . -2
0.20 0.235x10 0.178x10
-2 -2
0.35 0.350x10 0.263x10
Graph 1.1
-2.0~
QO -- characteristic tracing
A-- opérator splitting
-2.5
-3.0I"
-3.51~
-4.0 | ] 1 | i
0 0.05 0.10 0.15 0.20 0.25
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Table 1.3
execution time required by
characteristic operator
h tracing splitting
0.2 1.00 0.01
0.1 3.05 0.04
0.0 10.67 0.16
0.025 38.70 0.64
Graph 1.2
2.5 e .
H Q0 -- characteristic tracing
<
?J A -- operator splitting
g
T
& =-3,01
3]
o}
<
n
o
D\H
9 h = 0.2
-3.51
h = 0.2
h = 0.1
—4.0F h = 0.1
h=0.05
h=0.05
“4-37 pe0.025
h=0.025
-5.0 | I | i
0.1 0.2 0.3 0.4



h = 0.2
h = 0.1
h = 0.05
h = 0.025

Table 1.2
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shock-jump errors of

characteristic operator

t tracing splitting
-3 -3

0.1 0.249x10 0.401x10
-3 -2

0.2 0.696x10 0.115x10
-2 -2

0.3 0.121x10 0.207x10
-2 -2

0.4 0.199x10 0.322x10
-2 -2

0.5 0.279x10 0.458x10
-4 -3

0.1 0.946x10 0.157x10
-3 -3

0.2 0.284x10 0.458x10
_ L,

0.3 0.557x10 0.895x10
-3 -2

0.4 0.786x10 0.121x10
-2 -2

0.5 0.130x10 0.161x10
-4 -4

0.1 0.382x10 0.615x10
-3 =3

0.2 0.1l26x10 0.201x10
-3 -3

0.3 0.268x10 0.430x10
-3 -3

0.4 0.638x10 0.919x10
-3 -2

0.5 0.922x10 0.143x10
-4 . -4

0.1 0.167x10 0.263x10
-4 -4

0.2 0.572x10 0.886x10
-3 -3

0.3 0.145x10 0.148x10
-3 =3

0.4 0.436x10 0.382x10
-3 -3

0.5 0.654x10 0.560x10
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log
0
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Graph 1.3

Q -- characteristic tracing

A -- operator splitting

=0.05

=0.05

0.20

0.25
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h = 0.05

Table 1.4

shock=-jump errors of

t characteristic tracing operator splitting
-4 -4
0.05 0.4920x10 0.980x10
-3 -3
0.10 0.166x10 0.357x10
-3 -3
0.15 0.404x10 0.866x10
-2 -2
0.20 0.124x10 0.208x10
=2 -2
0.25 0.280x10 0.414x10
-4 -4
0.05 0.174x10 0.293x10
-3 -3
0.10 0.134x10 0.181x10
-3 -3
0.15 0.365x10 0.475x10
-3 -3
0.20 0.736x10 0.943x10
-2 : -2
0.25 0.127x10 0.156x10
Table 1.5
computational time of
h characteristic tracing operator splitting
0.2 2.38 0.01
0.05 35.40 0.16
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Figure 2.1

A

center --slip line

(p+lm_te_)(xo)




Table 2.1
n £ ¢ (7
0. 0.426 0. 0.
0.1 0.426 0.072 0.560x10"'
0.2 0.426 0.143 0.107x10~%
0.3 0.426 0.214 0.223x10°3
0ulh 0,426 0. 286 0.193x10"2
0.5 0.427 0.357 0.103x107}
0.6 0.429 0. 429 0.407x10°F
0.7 0.439 0. 503 0.133
0.8 0.472 0. 584 0. 393
0.9 0.592 0. 685 1.232
Figure 2.2
1.2 ¢
1.0 F
o 0.8 F
o
[=}
© 0.6 b 160
UN]
004 o 400
0.2 b ¢ 2.0V
i 1 ]
0 et 1.0

0.2 0.4 0.6 0.8
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Table 2.2

shock=jump errors of

t~to(psec) Liu”s scheme Glimm’s scheme
18 0. 517 0.533
24 0. 696 0. 689
0.2 30 0.820 0.881
36 0.964 0.980
42 1.135 1. 180
48 1. 445 1. 492
18 0. 380 0. 329
24 0. 464 0.412
0.1 30 0. 763 0.660
36 0.939 0.812
42 1. 087 0.936
48 1e417 1. 222
18 0.175 0.156
24 0. 245 0.225
0.05 30 0.354 0.342
36 0.436 0.423
42 0. 531 0.526
48 0.631 0.627
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1.5

shock-jump error

1.3

1.1

0.7

Table 2.3
execution time

Liu' scheme

required by

t -

h Glimm's scheme
0.2 0.28 0.24
0.1 0.63 0.51
0.0 2.24 1.77
Graph 2.1
[~ Q -- Liu's scheme
A -- Glimm's scheme

-

h= 0.2
ot

h = 0.1

h = 0.05

1 1 | |

10 20 30 40

50
to(USec)
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1.2
Graph 2.3
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Table 3.1

*% h = 0.04 **

Chisnell's formula. Glimm's scheme

X M(x) p(x) u(x) p(x) p(x) u(x) px)

5.1 10.08 5.72 11.64 165.74 5.78 11.61 165.93
5.2 10.21 5.73 11.80 169.99 5.76 11.75 169.93
5.3 10.30 5.73 11.90 173.06 5.93 11.79 176.94
5.4 10.45 5.74 12.08 178.05 5.95 11.96 182.75
5.5 10.55 5.74 12.20 181.67 6.06 12.10 187.38
5.6 10.72 5.75 12.40 187.64 5.94 12.25 192.03
5.7 10.85 5.76 12.55 192.03 6.07 12.40 197.93
5.8 11.05 5.76 12.79 199.36 . 6.05 12.64 206.69
5.9 11.24 5.77 12.97 204.84 6.23 12.89 215.60

Glimm's scheme with Chisnell's formula Liu's scheme

x px) u(x) p(x) p(x) u(x) p(x)

5.1 5.72 11.61 164.76 5.78 11.65 165.73
5.2 5.72 11.75 168.65 5.73 11.08 169.97
5.2 5.73 11.86 171.67 5.95 11.73 179.57
5.4 5.73 12.01 176.01 5.99 11.89 185.24
5.5 5.74 12.20 181.68 6.07 12.01 189.37
5.6 5.75 12.37 186.65 6.03 12.18 196.26
5.7 5.75 12.52 191.02 6.14 12.32 201.36
5.8 5.76 12.73 197.43 6.09 12.53 210.08
5.9 5.77 12.97 204.89 6.22 12.69 216.58
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Table 3.2

*% h = 0.02 **

Chisnell's formula

Glimm's scheme

X M(x) p(x) u(x) p(x) p(x) u(x) . p(x)

5.1 10.10 5.72 11.67 166.42 5.73 11.65 166. 38
5.2 10.21 5.73 11.80 169.99 5.82 11.75 171.96
5.3 10.32 5.73 11.93 173.85 5.81 11.87 175.61
5.4 10.45 5.74 12.08 178.05 5.84 i2.03 180.57
5.5 lo.58 5.74 12.23 182.62 5.94 12.17 - 184.81
5.6 10.72 5.75 12.40 187.64 5.87 12.34 190.71
5.7 10.88 5.76 12.59 193.19 5.87 12.54 196.86
5.8 11.05 5.76 12.79 199.36 5.90 12.77 203.65
5.9 11.24 5.77 13.02 206.30 6.03 12.94 210.36

Glimm's scheme with Chisnell's formula Liu's scheme

X px) u(x) p(x) p(x) u(x) p(x)

5.1 5.72 11.65 165.89 5.72 11.67 166.42
5.2 5.73 11.79 169.85 5.83 11.71 173.03
5.3 5.73 11.92 173.42 5.84 11.84 177.14
5.4 5.74 12.08 178.02 5.86 11.98 181.62
5.5 5.74 12.20 @ 181.57 5.97 12.13 186.48
5.6 5.75 12.41 187.60 5.89 12.29 191.90
5.7 5.76 12.60  193.64 5.91 12.47 127.91
5.8 5.76 12.82 200.27 5.85 12.75 201.05
5.9 5.77 12.99 205.42 6.08 12.87 212.14
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Table 3.3

Errors relative to Chisnell 's formula (%)

%% h = 0.04 **

Liu's scheme

u(x) p(x)

P(x)

008026947
003/.../4/4/455

10/4668802
001111122

008479678
103454657

Glimm's scheme with Chisnell's

u(x) p(x)

formula

p(x)

688105500
000100010

NT N OONNWNO
COOO0OOCOOCOO0O

O NONOONOO
* @& = & & ¢ 2 & @
COO0O OO OCOQOO0O

Glimm's scheme

u(x) px)

p (x)

T ONWYWSOM~MNM
. . . . . . . e e
QO NNMNMMIN

NT NSO 0O NANNY
e o & & 2 4 e =
COO0O— QO - —0O

055763/400
*« 8 & o
103353558

NN O N0
*« o & @ . e e e @
[TalTaNTalTo i oIl ol 'all o]

Table 3.4

% h = 0.02 **
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0.0
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11222202
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[eNeloloNol ol

N HO 0w
G R
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N NOWONINT
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0000000.0.
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Table 3.5

*% h = 0.02 **

Chisnell's formula

Glimm's scheme

p(x) u(x)

X M(x) p(x) u(x) p(x) p(x)

6.1 10.21 5.73 11.80 1692.99 5.76 11.75 169.93
6.2 10.45 5.74 12.08 178.05 5.95 11.96 182.75
6.3 10.72 5.75 12.40 187.64 5.94 12.25 192.03
6.4 11.05 5.76 12.79 199.36 6.05 12.64 206.69
6.5 11.46 5.78 13.27 214.18 6.38 13.08 222.73
6.6 11.97 5.80 13.87 233.82 6.23 13.66 247.93
6.7 12.67 5.82 14.69 261.83 6.38 14.41 283.18
6.8 13.72 5.84 15.92 307.12 6.72 15.67 352.92
6.9 15.72 5.88 18.27 403.45 8.56 16.45 494.84

Glimm's scheme with Chisnell's formula Liu's scheme

x p(x) u(x) p(x) p(x) u(x) p(x)

6.1 5.72 11.75 168.65 5.73 11.80 169.97
6.2 5.74 12.01 176.01 5.98 11.89 135.24
6.3 5.75 12.37 186.65 6.03 12.18 196.26 .
6.4 5.76 12.73 197.43 6.09 12.53 210.08
6.5 5.78 13.27 214.17 6.45 12.95 227.58
6.6. 5.80 13.81 231.06 5.87 13.85 233.49
6.7 5.82 14.64 260.07 5.92 14.68 261.44
6.8 5.85 15.98 309.49 6.00 15.90 306.20
6.9 5.88 17.94 389.32 7.89 17.46 4:9.93
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Table 3.6
*% h = 0.01 **

Chisnell's formula

Glimm's scheme

X M(x) p(x) u(x) p(x) p(x) u(x) px)

6.1 10.21 5.73 11.80 169.99 5.82 11.75 171.96
6.2 10.45 5.74 12.08 178.05 5.84 12.03 180.57
6.3 10.72 5.75 12.40 187.64 5.87 12.34 190.71
6.4 11.05 5.76 12.79 199.36 5.90 12.77 203.65
6.5 11.46 5.78 13.27 214.18 5.95 13.17 218.88
6.6 11.97 5.80 13.87 233.82 6.01 13.76 240.73
6.7 12.67 5.82 14.69 261.83 6.11 14.50 271.00
6.8 13.72 5.84 15.92 307.12 6.17 15.99 323.31
6.9 15.72 5.88 18.27 403.45 6.16 18.00 406.95

Glimm's scheme with Chisnell's formula Liu's scheme

x p(x) u(x) pix) p(x) u(x) p(x)

6.1 5.73 11.79 169.85 5.83 11.71 173.03
6.2 5.74 12.08 178.02 5.86 11.98 181.62
6.3 5.75 12.41 187.60 5.89 12.29 191.90
6.4 5.76 12.82 200.27 5.85 12.75 201.05
6.5 5.78 13.25 213.72 5.81 13.26 214.03
6.6 5.80 13.88 234.41 5.84 13.86 233.65
6.7 5.82 14.69 261.75 5.87 14.67 261.38
6.8 5.84 15.99 309.82 5.92 15.90 306.54
6.9 5.88 17.99 391.44 5.88 18.21 401.09
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Table 3.7

Errors relative to Chisnell's formula (%)
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Glimm's scheme

Averaged errors relative to Chisnell's formula (%)

Table 3.9

**  A'(x)/A(x) = -1/(7-x), xe(5,6] **

Glimm's scheme with Chisnell's formula:

Liu's scheme

p(x) u(x) px) p(x) u(x) px) p(x) u(x) px)
4.0 1.0 2.3 0.1 0.4 0.9 . 4.8 1.5 3.6
2.2 0.4 1.4 0.0 0.1 0.3 2.4 0.7 1.8

Glimm's scheme

** A'(x)/A(x) = -1/(7-x), xe(6.7] **

Glimm's scheme with Chisnell's formula

Liu's scheme

p(x) u(x) p(x) p(x) u(x) pix) p(x) u(x) px)
11.2 2.2 7.2 0.0 0.5 1.1 7.4 1.4 3.6
3.3 0.7 2.2 0.0 0.3 0.6 1.3 0.4 0.9

£6



Table 3.10

94

Execution time required by each numerical scheme

*% A% (x)/A(x) = -1/(7 - x), x<[5,6)

*%

Glimm’s scheme

Glimm’s scheme with Chisnell’s formula Liu’s scheme
h = 0.02 1.02 1.13 1.55
h = 0.04 0.31 0.35 0. 49

*% AC(x)/A(x) = =1/(7 = x ), x<[6,7) **
h = 0.01 3.90 4,36 6. 26
h = 0.02 l. 14 1.21 1.72
Table 3.11

Glimm’s scheme

*% A (x)/A(x) = -1/(1 + x), x<[0,16)

Glimm’s scheme Liu’s scheme
with
Chisnell’s formula

*k

Liu’s scheme
with
Chisnell’s formula

5.353

5. 60 6.97

7.84



95

+ e . - T e .. FET

e
|

Graph 3.la

alalal aloo ity

adlala

500, 0,
450, 0]
400, 0f
350,0f
300.0
100,0

34NSSIdd

5,1



PRESSURE

Graph 3.2a

500,0

450,0 &

400.0 £

350,0 -

300,0

T T ]

| : ]

i ! ! 7

- ! | | 3
z | o\
+ : ‘ s N ) 1
T AR
A /4 D U
r ; ) ; : : ]
L : : ; ! ! ~/ s i B
+ i 1 . ! . 4
| L “-
F e peds i
I ™ 7 7 X ;
E L/,//~’//J AVJ“V\ i\h\\J ]
S S ‘,/”/w | :
E - /\/wM/\/\/\// ‘T"\/ ‘ ]

250,0 L

[ 47 ’m"-\;’\/“*\
F Z /J—‘ \/\ 4
3 E ! i .
| i k]
i i -
1 | : T
i I
m : . | ]

6.9

96



97

Graph 3.1b

A

17'0T

15,01

11.0F
0

13,04

ALTIDOIN

5.1



98

Graph 3.2b

/i/,,i// /!/////
.1.. - o h /.I / S
~ ////,7f\l|§il$
//// ' o
. N ///; S

15

13,0

ALL30773n




99

Graph 3.1c

- —— \\I.HAH.\.H
. Y I S, [ O - i\r\ .\.‘ e =]
N
: 7y
L A
( 7
W
_ {5
i
] NI
]

ALTSMNECN

5.9



100

Graph 3.2c

N
~\A

+——

........

FUT

10

ALLISN30




101

Graph 3.3a

/

;

/

11

/J/J /T J’ f

W/

ALISN30




nitiza

ALTISN3O0




VELOCITY

103

Graph 3.3b

20,00 b r e e Y pepermie
16.00 ? ?

12.00

10.00

€.00

/
T
/

4.00

IRRYY FFYYY Fowey PETT FFETS FIES FRIREY PINPDY NPT PN SN

z.oo%
3
- 5
0.00 AYNTE TTWRY SUNUN FRREY aalos iy W ST R NN AN N R IEWE SURN AW FRENY & U | W RN W N -n--l-n..j,

0.00 2.00 4.00 4.00 8.00 10.00 12.00 14.00 16.00 18.00 20.



VELOCITY

104

Graph 3.4b
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Graph 3.4c
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VELOCITY

108

Graph 3.5b
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