
TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 
For a personal retention copy, call 
Tech. Info. D ioision, Ext. 6782 

' 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



* 

EXTENSION OF GLIMM'S METHOD TO THE PROBLEM OF 
GAS FLOW IN A DUCT OF VARIABLE CROSS-SECTION* 

Simon KaMan Fok 

Ph.D. Thesis 

December 1980 

Department of Mathematics and Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

LBL-12322 

This work was supported in part by the Director, Office of Energy 
Research, Office of Basic Energy Sciences, Engineering, Mathematical, 
and Geosciences Division of the U.S. Department of Energy under con­
tract W-7404-ENG-48. 





p 

Extension of Glimm's Method to the Problem of 

Gas Flow in a Duct of Variable Cross-section 

by 

Simon KaHan Fok 

Abstract 

Various numerical methods for extending Glimm's scheme to solve a 

nonlinear hyperbolic system of partial differential equations in one 

space variable of the form u + f {u) = g (x,u) are described. 
t X 

The reason for considering Glimm's scheme rather than some finite 

difference schemes is because of its ability to pick out the correct 

weak solution of a given hyperbolic system of partial differential 

equations without requiring it to be written in conservation form. The 

numerical schemes we shall look at are (1) Generalized Glimm's scheme, 

(2) Glimm's scheme with Sod's operator splitting method, and (3) Liu's 

scheme. In particular, the inhomogeneous Burgers' equation and the 

problem of radial symmetic gas flow will be studied, and Sod's opera-

tor splitting method will be seen to be best among the three numerical 

schemes. Finally, gas flow in a duct of variable cross-section is 

discussed together with the classical Chisnell's formula which 

describes the changes in the speed of the shock with respect . to the 

varying cross-sectional area. It will be shown that incorporating 

Chisnell's formula into Glimm's scheme (with operator splitting) and 

Liu's scheme can be done easily; moreover, the resulted schemes are 

i 



best in treating shock propagation problem in a duct of montonically 

decreasing and increasing cross-sectional area respectively. Thus, the 

case of a variable area duct can be handled by hybridizing Glimm's 

scheme (with operator splitting and Chisnell's formula) and Liu's 

scheme (with Chisnell's formula). 
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Introduction 

~~ wish to extend Glimm's scheme for solving the following non-

linear hyperbolic system of partial differential equations in one space 

variable: 

with 

u(x,O) = ~ (x) 
0 

(1) 

(2) 

where "'U(x,t): Rx[O, oo) ~ RN is the solution vector to be determined, 

and f: RNxRN is a c2 mapping whose Jacobian matrix D F = A(u) has N 
u 

real distinct right eigenvalues A 1 (u) < ••• <,\N(u) known as the charac-

teristic velocities for system (1). Finally, g(x,u): RxRN ~ RN is 

called the source term for the problem, and the function u R ~ RN is 
0 

the given initial datum. If the source term g=O, then (1) is called a 

hyperbolic system of conservation laws. 

The following three examples are the special cases of (1) that we 

shall study closely in this thesis. Chapter 1 will concentrate on exam-

ple 1 while examples 2 and 3 will be dealt with in chapters 2 and 3 

respectively. Moreover, we are interested in each case initial data 

that immediately resolves into a shock wave. 

Example 1. The inhomogeneous inviscid Burgers' equation: 

2 
~ 

~u + 2 - g ( x 'u) "Ot rx-
(3) 

The single characteristic velocity for (3) is A(u)=u. 
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Example 2. The best-known physical example of a hyperbolic system 

of the form (1) is the set of equations for an inviscid, non-heat-

conducting, radially symmetric gas flow: 

p m m 

a a 2 
(1 - a.) 

2 m + !!!._+ m 
at ax p = 

p X p 

e m(e + p) 
m(e + E) (4) p p 

Here p is the density of the gas, u is the velocity, m~u is the momen-

tum, p is the pressure, e is the energy per unit volume, d is a constant 

which is equal to 2 for cylindrical symmetry and 3 for spherical sym-

metry. Finally, we may write 

2 
e = f-:r + t?~ 

where Y is the ratio of specific heats (a constant greater than 1). The 

three characteristic velocities for the system are 

A1(u) = u- c ,A 2(u) = u ,A 3(u) = u+ c 

where c = (l'.E..) lf2 is the sotmd speed. 
p 

(5) 

Example 3. Another well-known physical example is one-dimensional 

gas flow in a duct of given cross-sectional area A(x), where A(x) does 

not vary too rapidly. The equations are 

·2 
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p m m 

a 2 
A' (x) 2 a m + m 

at m + dX 
p = - A(x) p p 

(6) 

m(e + E) m(e + E) 
e p p 

Again, the characteristic velocities are given by (5). 

The numerical schemes we shall use are: (1) A straightforward gen-

eralization of the random choice method introduced by Glimm [6] for a 

strictly hyperbolic system of conservation form and developed as a 

numerical method by Chorin[ 2]. (2) Glimm' s scheme with Sod's operator 

splitting method[13· (3) Liu's scheme[Q]. One major advantage of such 

numerical schemes over other finite difference schemes is that they have 

the property of keeping shock fronts perfectly sharp. 

The thesis is divided as follows. In chapter one, we shall 

describe a most natural way of generalizing Glimm's method to (1); 

also, Sod's operator splitting method will be introduced. As an illus-

tration, we shall solve the inhomogeneous Burgers' equation using both 

methods, one of the major conclusion is that the generalized Glimm's 

method is not practical. In chapter two, Liu's scheme will be intra-

duced. As an example, we look at the problem of a point blast explosion 

where again Sod's operator splitting method is shown to be best. 

Finally in chapter three, the classical formula of Chisnell[ 1] which 

describes the speed of a shock relative to the cross-sectional area A(x) 

... 
of a variable area duct will be rederived in a more general s~tting. In 

general, Chisnell's formula is only good as a local result. This, how-

ever, fits into the structure of Glimm's scheme and Liu's scheme very 

well because these two schemes typically use local results from solu-
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tions of Riemann problems (see section 1.3) to advance from one time 

level to the other. It will be seen that appropriate hybridization of 

Chisnell's formula with both Liu's scheme and Glimm's scheme with opera-

tor splitting is ideal for handling the problem of shock propagation in 

a variable area duct. 

Then using numerical experiments in the following three chapters, 

we shall try to justify the following recommedations: 

Problem 

Inhomogeneous 
Burgers' equation 

Spherically symmetric 
gas flow 

Gas flow in a monotonic 
decreasing area duct 

Ga.s flow in a monotonic 
increasing area duct 

Gas flow in a duct of 
variable cross-sectional 
area A(x) 

Recommeded numerical scheme 

Glimm' s scheme 
with operator splitting 

Glimm' s scheme 
with operator splitting 

Glimm's scheme with operator 
splitting and Chisnell's formula 

Liu's scheme with 
Chisnell's formula 

For A' (x) <0, use Glimm' s scheme with 
operator splitting and Chisnell's formula; 
for A'(x)>O, use Liu's scheme with 
Chisnell's formula 

4 
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Chapter l Inhomogeneous Burgers' eguation 

l·l Preliminaries 

One of the most natural way to extend Glimm's scheme for solving 

the partial differential equations (1) is to follow closely his con­

struction for a hyperbolic system of conservation laws 

The only obstacle is that finding an exact solution to the Riemann prob­

lem corresponding to (1) proves much more difficult than to the Riemann 

problem coresponding to (1.1.1). This will be demonstrated vividly for 

the inhomogeneous Burgers' equation. Also, since Glimm's scheme for the 

hyperbolic system (1.1.1) is at best first order accurate, it is doubt­

ful whether an exact solution to the Riemann problem is warranted. This 

leads us to Sod's operator splitting method which does not solve the 

Riemann problem corresponding to (1) exactly but has the advantage of 

fitting into the framework of Glimm'.s construe tion without requiring a 

lot more computational time. In section 1.6, test problems will indeed 

show that Glimm's scheme with operator splitting is superior than a 

straightforward generalization of Glimm's scheme for the inhomogeneous 

Burgers' equation. 
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1.2 Generalization of Glimm's scheme - - .................... 

Consider the nonlinear system of equations (1) with initial data 

(2). Divide timet into intervals of length k, and let h be the spatial 

increment. A discrete approximate to the solution u(x,t) is to be com-

puted at the points (ih,nk) and ( (i+1/2)h,(n+1/2)k ) for I il, 

n=O, 1, 2, •••• ~ - -n+1/2 Denote the approximate values by ui : u(ih,nk), ui+1/ 2 

u( (i+1/2)h,(n+1/2)k ) ' so that initially 

1 (i+1)h_ 
~ = h J' u (x) dx, 

... ih 0 
I ii=O, 1, 2 •••• 

-n . -n+1/2 Suppose ui has already been computed for all ~, then ui+1/ 2 is computed 

from ~ and ~+1 by a random procedure described as follows. 

Let v(x,t) be the solution to the Riemann problem of (1) defined by 

the initial data 

r 
1-n 
I ui for x<O 

u(x,O) = < (1.2.1) 
1-n for x>O 

I ui+1 
l 

Then un+l/2 = v(9 h,k/2) ' where 9 is a random variable equidistributed i+1/2 n n 

in the interval [- 1!2, 1!2] S. .1 1 -n+ 1 b d f ~m~ ar y, ui can e compute rom 

~+1/2. --n+1/2 ui+1/ 2 and ui_112 by this procedure via the use of another random vari-

able 9n+1/ 2 • This completes Glimm's construction. 

As usual, the choice of h and k must satisfy the Courant-

Fredrichs-Levy condition so that the correct problem is solved. 



Finally, to ensure better results, the sequence of random variables is 

chosen by a procedure due to Colella[3]. 

When the source term is identically zero in (1), Glimm showed 

that the approximate solution tends to a weak solution of the 

corresponding conservation laws under some appropriate conditions. In 

order for this construction to be useful when the source term is 

present, a method of solving the Riemann problem is essential. 

Presumably, the solution of the Riemann problem for (1) is difficult, 

at least not much easier than the general initial value problem. This 

fact is in sharp contrast to the case when the source term g is zero. 

In next section, we will outline a method for solving Riemann prob­

lems. 
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1.3 ~Riemann problem 

we are concerned with solving (1) with the special initial data: 

r 
1-o 
I ul for x<O 

u(x, 0) = < (1.3.1) 
1-o for x<O 
I ur 
l 

where u~ and u~ are two constant states. Intuitively, the initial 

discontinuity at the origin should be resolved immediately into vari-

ous waves, then the source term comes into play to perturb the 

resolved waves. Thus, the procedure for solving the Riemann problem 

could be divided into two steps: 

Step 1. Solve the Riemann problem by assuming that the source 

term is zero, hertce resolving the initial discontinuity. 

Step 2. Use the resolved waves as initial data to trace the 

change of characteristics under the perturbation due to the source 

term to obtain the final waves. 

Note that here we have implicitly assumed that the perturbation 

due to the source term is not large enough to produce new waves. 

This method of solving the Riemann problem is known as the method 

of characteristic tracing. Next, we shall illustrate the above idea 

by solving the Riemann problem for the inhomogeneous inviscid Burgers' 

equation (3). Solutions of the Riemann problems for radially'symmetr-

ical gas flow and for gas flow in a duct of variable cross-section are 

much more difficult to obtain and will be carried out in the next two 

chapters. 



2 
1. 4 Solution ..2!, ili Riemann problem !2!. ut + (u2 ) x=_g_(_!,_!!) ~ ~ sample 

point (~~) 

To begin, we shall put the partial differential equation into 

characteristic form which consists of two coupled ordinary differen-

tial equations: 

I 
dx 
dt = u (1.4.1) 

du 
dt = g(x,u) 

Here (1.4.1) describes the characteristic curve x(t) while (1.4.2) 

describes the solution u(t) along it. Equations (1.4.1&2) can thus be 

solved (at least numerically) whenever appropriate initial/boundary 

conditions are prescribed. 

We now proceed to solve the Riemann problem using the two step as 

outlined in section 1.3. 

Step 1: assume g(x,u)=O. Then the solution to the Riemann problem 

defined by equation (3) and initial data (1.3.1) is well-known. There 

are two possibilities: 

(1) The solution in this case is given by a shock wave of 

0 0 

speed 0 s = 
ul+ur o o 

2 joining the left and right state u1 and ur respec-

tively (see figure 1.1): 

u(x,t) 

0 
x<s t+x 

0 

0 x>s t+x 
0 

9 
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( ) 
0 0 0 2 u1<ur· The solution is given by a rarefaction fan joining u1 and 

u0 (see figure 1.2): 
r 

r 
I 0 

0 x<u
1 

t+x
0 I ul 

I x-x 
u(x,t) =<.!. 0 0 0 (1. 4. 4) u

1
<- <u I t t r 

I 0 0 
I u x>u t+x 
l r r 0 



•. 

.Q 

.. 

Step 2. From step 1 we know that the initial discontinuity can be 

resolved into either a shock wave or a rarefaction fan depending on 

whether u~ > u~ or < u~ respectively. We now proceed to solve the 

Riemann problem at the sample point (~,/1t) using these resolved 

waves as initial data. There are a total of five cases to consider. 

Suppose u~ > u~ Then because of the presence of the source 

term, the shock path will no longer be a straight line with initial 

0 
speed s but rather a curve x = x (t) to be determined later with s s 

initial conditions x (0) = x and x' (0) 
s 0 s 

0 
= s • (See figure 1.3.) 

Case 1. ~ < x ~t) - x : the sample point ~ lies to the left of 
s 0 

the perturbed shock wave. The solution of the Riemann problem 

u1 (~x,t) can be obtained by solving the characteristic equations 

(1.4.1 & 2) with the boundary conditions: 

x~t) = x + ~ 
0 

(1. 4. Sa) 

u(O) 

Case 2. ~ > x ~t) - x : the sample point ~x lies to the right of 
s 0 

the perturbed shock wave. Similarly, the solution of the Riemann 

problem u (~,/1t) is obtained by solving the characteristic equations 
r 

(1.4.1&2) of the partial differential equation with the boundary con-

dition: 

I x~t) = xo u+ro 9{j;r. 

u(O) = 

(1. 4. 6a) 

(1. 4. 6b) 

11 



0 0 Suppose now that u1 < ur' then the wave is a rarefaction fan with 

left boundary x
1
(t) and right boundary xr(t) whose initial speeds are 

Case 3. 

0 
u • 

r 
(See figure 1.4.) 

- X : 
0 

the sample point lies to the left of the 

perturbed left boundary. As in case 1, the solution of the Riemann 

problem u1 (~l:>.t) is obtained by solving the characteristic equations 

with the boundary conditions (1.4.5). 

Case 4. ~ > x ~t) - x : the sample point ~ lies to the right of r o 

the perturbed right boundary. As in case 2, the solution of the 

Riemann problem u (~l:>.t) is obtained by solving the characteristic 
r 

equations with the boundary conditions (1.4.6). 

Case 5. x1 ~t) - x < ~ < x ~t) - x : the sample point ~ lies 
o r o 

inside the perturbed rarefaction fan. The solution of the Riemann 

problem uC(~~t) can be obtained by solving the characteristic equa­

tions with boundary conditions 

x~t) = ~ + X 
0 

x(O) = x 
0 

(1. 4. 7a) 

(1. 4. 7b) 

To summarize, we have reduced the Riemann problem for the partial 

differential equation (3) at a given sample point~ at time~t to a 

pair of nonlinear ordinary differential equations with appropriate 

boundary conditions that depend on where the sample point lies with 

respect to the perturbed wave. Thus, the Riemann problem now becomes a 

two-point nonlinear boundary value problem. The numerical method in 

12 



solving boundary value problems commonly known in the literature are: 

simple shooting, multiple shooting, and finite differencing. A short 

but concise review can be found in Dahlquist and Bjork [ 7]. Since we 

do not know a priori how much accuracy will be adequate for the solu­

tion of the Riemann problem, it is natural to select a variable order 

method. A very efficient method for solving a two-point nonlinear 

boundary problem is readily available in the existing code of boundary 

value problem solvers. In fact, it is the only one available; it is 

known as PASVA3. For a detail description, see Lentini and Pereyra[12]. 

Now using PASVA3, the Riemann problem can be solved with arbitrary 

order of accuracy at a sample point ~x at time fj,t. 

13 



Trajectory.£!..! perturbed~ 

In order to determine which one of the five cases a sample point 

~ belongs to, it is imperative to determine a priori the locations 

of the perturbed left/right boundary of a rarefaction fan or the posi-

tion of a shock wave at time ~t. 

(1) Boundary of a perturbed rarefaction fan 

Since the boundaries of a rarefaction fan are characteristics of 

the given partial differential equation, their trajectories are given 

by the characteristic equations with the appropriate initial condi-

tions described below: 

(a) for the left boundary 

(b) for the right boundary 

xfO) = x 
0 

u(O) 

x(O) = x 
0 

u(O) = u0 

r 

(I. 4. 8) 

The locations of the left and right boundaries at time~t can now be 

found by solving the initial value problems defined by the ordinary 

differential equations (1. 4. 1&2) with the initial conditions · ( 1. 4. 8) 

and (1.4.9) respectively. In order to avoid the loss of information 

for taking unreasonable large time steps, we set ~t) = 10-1 in all 
max 

test problems. The initial value problems are then solved by the 

14 
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celebrated 4th-order Runge-Kutta method in N steps. Since the global 

truncation error of this method is O(h4), our errors in solving the 

initial value problems will then be less than (lON)-4• The desired 

accuracy can thus be attained by taking N sufficiently large. 

(2) Trajectory of a perturbed shock 

Denote the trajectory of the perturbed shock by x (t). Then 
s 

given fixed time f:1t, we would like to determine the position of the 

shock. Now using the Rankine-Hugoniot condition, the path of the 

shock can be obtained by solving the initial value problem: 

where u
1 

(t)=u(t-) and 

(1.4.10), we need to 

x u
1 

(t) + u (t) 
~= r 
dt 2 

(1. 4. lOa) 

X (Q) = X (1. 4el0b) 
s 0 

u (t)=u{-t+). Obviously, in order to solve 
r 

determine u
1

(t) and ur(t), this can be accom-

plished by tracing the left and right characteristics to the initial 

surface t=O. (See figure 1. 5.) 

Now the left and right characteristics are given by the following 

two systems of ordinary differential equations: 

(1. 4. lla) 

(1. 4. llb) 

with 

(1. 4. llc) 

15 



(1. 4. 12a) 

u 
cr:£. = g(x ,u ) 
dt r r 

(1.4.12b) 

with 

u (0) = u
0 

r r • (1. 4. 12c) 

Equations (1.4.10-1.4.12) furnish us with five coupled ordinary dif-

ferential equations and three initial conditions, thus we need two 

more pieces of information to solve for (x ,x
1

,u
1

,x ,u ). 
s r r 

These can 

be obtained by noting that at time /1t, the shock as well as both left 

and right characteristics collide together. Phrasing in terms of 

boundary conditions, we have: 

(1.4.13a) 

X ~t) - X (/1t) = 0 r s 
(1.4.13b) 

Now we have a well-posed boundary value problem and using the boundary 

value problem solver PASVA3 described previously, x ~t) can be deter­
s 

mined with arbitrary accuracy. 

16 
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~ Courant-Fredrichs-1evy (£-!-1) condition 

Recall that in Glimm's construction, we have to solve a sequence 

of Riemann problems for the given partial differential equation at 

each time level t. To ensure 'that waves generated by different 

Riemann problems will not interact at the next time level t + f:lt, the 

C-F-1 condition 

llt = --:--&~~ 
2lu(x,1)1 

(1.4.14) 

must be satisfied. The initial data in our case are piecewise con-

stant functions 0 
u .• 

l. 
In the case of zero source ( g=O ), the C-F-1 

condition simply reduces to 

4t = --Dc~-o-
2maxi I ui I 

(1.4.15) 

Geometrically, this amounts to requiring that the time increment /lt be 

chosen such that the characteristic curve ( ddx = u~ ) emanating from 
t l. 

xi must not penetrate the right side of the box [xi,xi~/2] x [0,/lt]. 

See figures 1.6 &1.7. In the case of nonzero source, the C-F-1 condi-

tion will be satisfied by enforcing the same geometrical constraint 

described above. Of course, in this case the characteristics are 

curves described by the characteristic equations (1.4.1&2) with ini-

tial conditions 

I x(O) = x. (1.4.16) 
l. 

u(O) = 0 u. 
l. 

Dividing the interval [O~t] into N equal subintervals, we proceed to 

17 



solve the initial value problem numerically until we come to the first 

j (O<j<N) such that 

1\. (j-1 )/1t 
Letting ~ti N and Lltmin = minflti, then we can ensure that 

the waves generated by solving different Riemann problems at time t 

will not interact at the next time level t~t . , that is , the C-F-L 
m~n 

condition is satisfied. 

we conclude by summarizing what we have done so far. By 

transforming the given partial differential equation, ut + uux = 

g(x,u), into its characteristic equations, the Riemann problem at a 

sample point (~~t) becomes a well-posed bot.mdary value problem. 

Using the bot.mdary value problem code PASVA3, we obtain a numerical 

scheme of variable order for solving the Riemann problem. Moreover, 

the position of a perturbed wave (a shock or a rarefaction fan) at a 

given time Llt can be computed using equa tiotis (1. 4. 1&2) with properly 

posed initial conditions (and bot.mdary conditions in the case of a 

shock). Similarly, the position of a characteristic curve can be 

determined which enable us to ensure that the C-F-L condition is 

satisfied. 

In the case when g=O, Lax[ 8] and Chorin[ 2] have shown that 

Glimm's scheme is at best a first order method, thus it is unclear 

whether it is worthwhile to solve Riemann problems with high accuracy 

even in the presence of a nonzero source. In fact, we will described 

a low order, but very efficient, scheme for solving Riemann problems 

next. Then by taking special source terms, we will see that such a 

18 
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low order method sometimes gives better results. 



1.5 ~method~ operator splitting 

'nle idea behind operator splitting is similar to the method of 

characteristic tracing described in section 1.3. Again, we first 

resolve the initial discontinuity by solving the nonlinear system of 

partial differential equations (1) without the source term, that is, 

u + f (u) = 0. 
t X 

Denote the solution at (x ~' f:J.t) 
0 

by v • 
0 

Next, 

using v as initial data we obtain a new solution vector ;(x ~,{j.t) 
0 0 

by solving the ordinary differential equation 

with initial condition 

dv -dt = g(xo ~,v) 

v(O) = v 
0 

(1. S.1a) 

(l.S.1b) 

The influence of the source term g thus enters in this last step. The 

approximate solution of the Riemann problem is v(x ~,{j.t). Although 
0 

the order of accuracy of this method is not known in general, the 

advantage of operator splitting is that it is simpler than the vari-

able order method of characteristic tracing. Moreover, we have the 

following interesting lemma. 

Lemma. The method of operator splitting gives an exact solution to 

the initial value problem 

with initial data 

u (x,O) = u 
0 

(1. S. 2a) 

(1. s. 2b) 
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Proof. The solution to (1.5.2) without the source term is simply u • 
0 

The approxfmate solution given by the method of operator splitting is 

then 

t 
= u + J'g ( v("I'") ) d(,T) 

0 0 

This solution is exact as 

~ -­and ~ =g(v). Furthermore ;(0) = ~ • 
0 

Q.E.D. 

In practice the ordinary differential equation (l.S.la) is solved 

numerically by the simple Cauchy-Euler scheme 

v(x + ~~t) = v + g (x + er::v.-;v ) l;.t 
. 0 0 0 0 

It is well-known that the Cauchy-Euler scheme is at most first order 

accurate; however, Glimm's scheme is itself at most first order accu-

rate so there is no reason for using a higher order ordinary differen-

tial equation solver for (l.S.la). In fact, from the first test prob-

lem it is interesting to see that the method of operator splitting 

gives more accurate results than that of characteristic tracing when 

used in the solution of Riemann problems in Glimm's scheme. 
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l•i Test problems 

In order to compare the performance of Glimm's construction using 

the two different numerical schemes characteristic tracing and opera-

tor splitting described in section 1.4 and 1.5 respectively, a suit-

able way of measuring their accuracies is essential. In the case of a 

smooth solution (e.g. a rarefaction fan), the 1
1

-norm is often used. 

In the presence of a shock, however one can measure the superiority of 

one scheme over the other by examining the shock-jump error at each 

time level defined by 

where 

Problem 1: 

with 

uL,R=the difference between the exact values of 

the left and right state of the shock at time ~t, 

vL,R=the difference between the estimated values 

of the left and right state at the shock. 

2 
u + ( ~) = -x 

t 2 X 

u(x,O) 

on [0, 2] 

for x<1 

for x>1 

The exact solution is 

(1. 6.1) 

(1.6.2) 
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rz-x sint for x<x ( t) I cost s 
u(x,t) = < 

I - sint for x>x ( t) 
x- s 

L cost 

where x (t) = cos t + sin t is the shock path. 
s 

(1. 6. 3) 

The spatial grid size h used is 0.1. A comparison of the shock-

jump errors of the two methods can be found in table 1.1. The loga-

rithm of the shock-jump errors of each method is plotted against time 

t. See graph 1.1. At all five time levels 0.05 to 0.25, Glimm's con-

struction using operator splitting gives better results than charac-

teristic tracing. This is very surprising because characteristic trac-

-7 ing solves a Riemann problem with high order of accuracy (10 ) while 

operator splitting is only first order accurate (recall that the 

Cauchy-Euler scheme is used as our ordinary differential equation 

solver). This paradox can be partially explained away as follows. 

Consider the Riemann problem 

2 
ut + (u2)x = -x 

u(x,O) = u 
0 

Assume further that characteristic tracing solves this 

exactly, 

u - xsin~t) 
0 

cosC/:1t) 

In Glimm's construction, however, the solution at 

(1. 6. Sa) 

( 1. 6. Sb) 

problem 

(1.6.6) 

is 

evaluated at the ·sample point (x + ~,D. t) instead of (x,b.t). Recall 

that e is a random number between [- lfz, 1/2]. Thus, the error commit-

ted by characteristic tracing is 
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errorCT (x~t) = uCT (~Jlt) - uCT(x~t) 

Expanding errorCT in powers of f:::..t, we get 

~ 5 errorCT (x~t) = eL1x ~t + Etlx 3 + 0 ~t ) 

Similarly, the error committed by operator splitting is 

• 

For simplicity, consider the special case when x = o. Moreover in the 

case when u = 2, (1.6.8) reduces to 
0 

2 4 
error08 (x~t) = 9L1x /1t +f::lt + O~t ) 

3 
Wnen e < 0, l~t~l > l~t+l::lt 2 1 so 

(1.6.8') 

Thus the high order of accuracy of characteristic tracing in solving 

Riemann problems can be lost in the process of random sampling. It is 

wrong to conclude, however, that the method of operator splitting 

should be preferred over that of characteristic tracing in the solu-

tion of Riemann problems. The reason is very simple, when 9 > 0 the 

inequality in (1.6.9) reverses. Thus the performance of operator 

splitting is not always better than characteristic tracing. But from 

this test problem, we see that high order of accuracy in solving 

Riemann problems does not necessarily guarantee a better solution. In 

order to decide which methods should be used in solving Riemann prob-

lems, one has to do a detail error analysis for the general equation 

(3). It should be noted, however, that rigorous error analysis of 

Glimm's scheme even for the the inviscid Burgers' equation 
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2 
ut + (u2 )x = 0 

is extremely difficult (for details see Colella(3]); thus, we shall 

resort to numerical experiment instead. 

In the following test problems, we have chosen the source term g 

to be of the form 
2 

- .!:!... and 
X 

2 
u + -; X > 0 • 
X 

Moreover, the initial data 

is piecewise constant and will initially result in a shock wave. 

There are two reasons for restricting our attention to such special 

cases: 

(1) Exact solutions can be obtained rather easily so that a compari-

son of the accuracies when using characteristic tracing and operator 

splitting can be carried out explicitly. 

(2) Our main concern for the next chapter will be the propagation of 

shock waves in a duct of x-sectional area A(x). In particular, A(x) = 

1 
±~for some constant x

0
, hence the spatial part of the source 

0 

term has the form 

=A~' (~x~) = 
A(x) 

1 
+ 'X'+X' 

0 
(1.6.10) 

Thus, the source terms we have chosen closely mimic (1.6.10), hence 

the results we obtain in the following test problems should help us 

decide which of the two numerical schemes we should use in solving 

Riemann problems in the more complicated cases. 

Finally, we say a numerical scheme is more efficient than another 

if it requires less computational (or execution) time to attain a 

given level of accuracy. 

25 



Problem 2: 

2 2 
u + (.!!....) =~ 

t 2 X X 

with 

r o 
I ul 

u(x,O) = < 
I uo 
l r 

The exact solution is 

r o 1+u0 .! ) lf2 I ul ( 1 X 
u(x,t) = < 

1;2 I uo < 1+u0 .! ) 
l r r x 

on 

for x<3 

for x>3. 

0 t ) - u -1 X 

0 t 
- u - ) r x 

[ 1' 5] 

for x<x ( t) 
s 

for x>x ( t) 
s 

(1. 6. 11) 

(1.6.12) 

(1.6.13) 

where x (t) is the shock path given implicitly by the nonlinear equa­s 

tion 

X 

1. 5 ( 1 + ( ~ )2 
) 

0 
u 

r 

X 

( (-2. ) 
3 - 0. 5 ) 

0 
ul 

In this test problem, we will use u~ 0 = 2, ur = 0, and 0 
s = 3. 

= o. 

The 

shock-jump errors from time levels 0.1 to 0.5 and the execution time 

of the two methods can be found in tables 1. 2 and 1. 3 respectively. 

Finally, the logarithms of the shock-jump errors of operator splitting 

and characteristic tracing versus timet are plotted in graph 1.2. 

h The spatial step sizes used are-;' where h = 0.2 and n=0,1,2,3. 
2 

Observations: for all spatial step sizes used, the shock-jump errors 

committed by operator splitting is less than characteristic tracing. 

However, it is interesting to observe that the high accuracy of 

characteristic tracing in all cases can be obtained by operator split-

ting by simply halving the spatial grid size h. (See graph 1.2.) 
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MOreover, the execution time required by operator splitting is dramat­

ically less than characteristic tracing. In fact, the amount of time 

required by operator splitting with~ is still less than that required 

by characteristic tracing with h ! 
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Problem 3: 

with 

The exact solution is 

u(x,O) 

2 
u =-
X 

r 1 u
1 

( x, t) 

on 

for x<3 

for x>O 

[ 1' 5] 

for x<x ( t) 
s 

(1.6.14) 

(1.6.15) 

u(x,t) = < 
1 ur(x,t) for x>x ( t) s 

(1.6.16) 

l 
where u1 (x,t) and ur(x,t) are given implicitly by the following non-

linear equation 

0 
u = u l,r l,r 

t 
u -l,r x e 

(1. 6. 17) 

and the shock path x ( t) is given by the initial value problem 
s 

X (0) = 3, 
s 

(1. 6. 18a) 

(1.6.18b) 

where u
1 

are given implicitly by (1.6.17). As in test problem 2, we ,r 

use u~ = 2, and ~ = o. The shock-jump errors from time levels 0.05 

to 0.25 and the execution time of the two methods can be found in 

tables 1.4 and 1.5 respectively. 

where h = 0.2 and n=0,2. 

h The spatial grid size used are -­n' 
2 

Observations: solving Riemann problems with characteristic tracing 
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give more accurate results than operator splitting in Glimm's con-

struction. However, operator splitting can attain the same accuracy 

h as characteristic tracing with step size h by using 4• As in the pre-

vious test problem, the execution time by operator splitting is much 

less than characteristic tracing. Thus the lower of accuracy operator 

splitting is being compensated by its efficiency. 
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1.7 Conclusions --
On the whole, the higher order of accuracy of characteristic 

tracing do sometimes provide us with better Glimm solutions than 

operator splitting. However, the execution time required is astound-

ingly larger than with operator splitting so that it is more efficient 

to use operator splitting with half (or quarter) the spatial grid size 

in order to achieve the same accuracy. Furthermore, using charac-

teristic tracing does not necessarily guarantee better solutions than 

operator splitting. (See graphs 1.1 and 1.2.) Roughly speaking, the 

random sampling kills off a substantial amount of the accuracy of 

characteristic tracing in the solution of Riemann problem. In conclu-

sian, if one measures the superiority of one scheme over the other by 

comparing their efficiencies, operator splitting should be preferred 

over characteristic tracing in solution of Riemann problems for Glimm 

2 
scheme for the special source terms + ~. 

-X 
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Chapter 1. Radially Symmetric Gas Flows 

2.1 Preliminaries 

In the next two chapters, we wish to study the equations of an 

inviscid non-heat conducting, radially symmetric gas flow and gas flow 

in a duct of variable cross-section. The equations are given respec-

tively by (4) and (6) which we can replace for simplicity by 

p m m 

a a 2 2 
+ .!!!....+ -G(x) m 

at m ax p = 
p p 

(2.1.1) 

m(e + p) m(e + p) 
e 

p p 

Our numerical method has been a generalization of Glimm's scheme (see 

Section 1.2). Recall from Chapter 1 that the successful implementation 

of such a scheme hinges on solving the Riemann problem for the 

corresponding set of partial differential equations. In other words, in 

this case we need to solve (2.1.1) with piecewise constant initial data 

T 
(p,m,e) (x,O) 

for x<x , 
0 

for x>x 
0 

·-.1.2) 

In the last chapter, we presented two methods for solving the 

Riemann problem, they are 

(1) the method of characteristic tracing, 

(2) the method of operator splitting. 
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Although the first method is supposed to be exact, it has two important 

disadvantages as compared with the second method: 

(1) tracing characterisitcs is not feasible in general for the hyper­

bolic system of partial differential equations (1) for n > 1. 

(2) it is a very inefficient method even in the simple case of the 

inviscid inhomogeneous Burgers' equation (see Section 1.6). 

Of course, we may be able to off-set these two disadvantages by devising 

some (ad-hoc) high order approximate schemes for solving the Riemann 

problem. But how much accuracy is enough?? In the last chapter, we 

have discovered that the first order method of operator splitting can 

sometimes beat the 'exact' method of characteristic tracing in the con­

struction of a global solution, not to mention that it is more effi­

cient. Thus any arbitrary approximate schemes for solving the Riemann 

problem will not do in general. However, the numerical scheme to be 

described next, due to T. P. Liu, is quite different; it has something 

that cannot be matched by operator splitting. Liu's scheme converges 

under the same assumptions made by Glimm in his scheme and with .the 

added assumption that the characteristic speeds are nonzero. For 

details of the assumptions made and proof of convergence, see Liu 

[g]&[1d· In the next section, Liu's scheme will be described with 

emphasis on constructing a solution to (2.1.1). 
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1•1 ~,~construction 

Basically, Liu's construction is similar to the generalization of 

Glimm's construction as described in Section 1.2. Again, we consider 

the nonlinear system of equations (1) with initial data (2). Let k 

and h be the time and spatial increments respectively. A discrete 

approximation to the solution u(x,t) is to be computed at the points 

( ih,nk) and ((i+ t )h,(n+ i )k) for Iii, n = 0,1,2, •••• Denote the 

approximate values by -n -ui - u(ih,nk), u~!~~~ :: u((i+1/2)h,(n+1/2)k), 

and that -n has already been computed for all i. Then suppose u. 
~ 

ijn+1/2 is computed from -n and -n by procedure described u. ui+1 a as i+1/2 ~ 

follows. 

Step l• We solve the ordinary differential equation 

__ d-=-f < .... w.._> = 
dx 

assuming that the initial condition 

g(x,w) 

u(x ) 
0 

(2. 2. 1) 

is given. Denote the solu-

tion by w(x;u(x )). 
0 

This (unique) solution is called the standing wave 

solution because it has no time dependence. Also, (2. 2.1) is called the 

steady-state equation for the general hyperbolic system (1). 

Step 1· Using the solution to the steady-state equations, we solve 

the Riemann problem without the source term using the following initial 

data 
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\i'(x, 0) 

r 
1- -n 1 w(h ;ui) 

= < 
1- -n 
I w(-h;ui+1) 

l 

, x<O 

, x>O (2.2.2) 

and denote the solution by v(x,t). Then -n+1/2 - k 
ui+1/ 2 = v(~nh,2), where e n 

is a random variable equidistributed in the interval 1 1 
[2'2]. Simi-

larly, -n+1 can be computed from -n+1 /2 and -n+1 /2 
by this u. ui-1 /2 ui+1 /2 pro-

~ 

cedure via the use of another random variable e 
1

• This completes the 
n-+t 

construe tion. 

Thus, given initial data at any time level, Liu's scheme carries 

out the same construction devised by Glimm for the case of zero source 

(g ~ 0 ) except that initial data has to be first recomputed using the 

steady-state equations. Since the source term g enters into the whole 

picture solely via the steady-state equations (2.2.1), the effect of the 

source term in Liu's construction is thus introduced only in the process 

of setting up initial data at each time level. Finally, if a global 

solution consists in part of steady-states, then Liu's scheme will 

reproduce these steady-states without any difficulty because they are 

used explicitly in the construction process. This is a major advantage 

over Glimm's scheme with operator splitting and will be illustrated 

clearly in test problem 3 of the next chapter. 

Example l·l The steady-state equations of (2.1.1) are 

dm - G(x)m rx= 
2 

d ( ~ + p) = 
dx p 

2 
m 

- G(x)­p 

(2.2.3a) 

( 2. 2. 3b) 
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• 

d ( m( e+p) ) 
di p = - G(x)m(e+p) 

p 
, . (2.2.3c) 

or expressing in terms of the dependent variables p,u,p alone, (2.2.3) 

can be rewritten as 

.$?.= 
2 

G(x) · f;!U 
dx 2 2 

(2. 2. 4a) 
c -u 

du 2 
- G(x) 

c u 
dx = 2 2 

(2.2.4b) 
c -u 

~= 
2 2 

G(x) ~u c 
dx 2 2 

(2.2.4c) 
c -u 

Recall that c = ~-~ is the sound speed in the gas. Notice also the 

assumption that the characteristic speeds u, u±c,& o, is used 

explicitly here. Given the initial conditions 

(2.2.3a) can be integrated to give 

( 2. 2. 5) 

• 

Next, by introducing the variable I)+ (x) and using (2.2.4) we 

get after some simplifications 

that can be integrated again to give 
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Y+1 
Y-1 o Y-1 

(2.2.6) 

Y+l 
( 1 + ¥ Q± )y:r 

Q+ 
= 

( 1 + 2 Q:;) X 

----=---=~-- exp( 2 J' G (~) d~) 
Q~ X~ 

where 0 
Q = + 

0 

u: )2 
(-
co 
+ 

• Suppose a solution to the nonlinear 

equation (2.2.6) exists, then using (2.2.5) 

be recovered from p +u+ and 
u± 2 

( -- ) once these two values at 
c+ 

algebraic 

a given 

x are found. In particular, p+(x
0
), u+(x

0
); p+(x

0
) can be computed. 

The key step in Liu's construction will then be complete if we can solve 

the source-free Riemann problem of (2.1.1), i.e., 

p m 

a a 
2 m .!!!.__+ + p 

9t ax p 

e m(e + :e) 
p 

with the piecewise constant initial data 

T (p,m,e) (x,O) 

r T 
1 (p+,m+,e+) (x

0
) 

= < 
\ (p_,m_,e_)T (x

0
) 

= 0 

, x<x 
0 

, x>x • 
0 

(2.2.7a) 

(2. 2. 7b) 

But (2.2.7~) is just the one-dimensional equations of gas dynamics whose 

Riemann problem can be solved easily. A detailed description can be 

found in Chorin [2], or Sod [~. Qualitatively, the solution consists of 

two waves (either rarefaction fans or shock waves) , and 

separated by a slip line defined by the ordinary differential equation 
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dx 
~=~ with initial condition x(O) = X • 

0 
Here is the speed of 

the gas at the center state. (See figure 2.1.) Furthermore, this slip 

line subdivides the center region into two parts with possibly different 

values of density but equal values of u* and (pressure of the 

center state). 

Remark 

It is important to note that Liu's scheme cannot be carried out for 

transonic flows. The reason is as follows. Suppose a standing wave 

solution exists between two points x
1 

at which the flows are 

subsonic and supersonic respectively, then a standing wave solution must 

automatically exist connecting x2 and x
0 

~ (x1,x2) where the flow is 

sonic. However, that is impossible because the steady-state equations 

fail to hold at x as one of the characteristic speeds u + c is zero 
0 

at X • 
0 

This is the major drawback of Liu's construction, and no pro-

gress has yet been made towards resolving it. (See, however, Lidll] 

for the most recent development.) In the next section, we will look at 

operator splitting, which appears to handle transonic flow problems with 

relative ease. 
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2.3 Operator splitting 

The method of operator splitting for solving the Riemann problem 

for the general equation (1) has already been outlined in Section 1.5. 

In the present section, we want to apply the method explicity to 

(2.1.1). Recall that the first step involves solving the source-free 

Riemann problem corresponding to (2.1.1); this has already been dis-

cussed in Section 2.2. Let the solution thus obtained at a given sample 

point X+~ 
0 

at time ~t be denoted by Then the solu-

tion to the original Riemann problem with nonzero source at 

(x + ~~t) is obtained by solving the set of ordinary differential 
0 

equations 

* = - G(x0 + ~)jOu ( 2. 3. 1a) 

(2. 3. 1b) 

~ = - YG(x + ~) pu dt 0 
(2.3.1c) 

with initial data 

Since (2.3.1b) has a trivial solution 

(2. 3. 2.a) 

(2.3.1a) and (2.3.1c) thus uncouple conveniently and can be .integrated 

exactly to give at time ~t 

10 exp(-u G(x + 9/j;c)at) 
,-0 0 0 

(2. 3. 2b) 

and 
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p(x + 9/j.x~t) = p exp(-Yu G(x + 9/SA)fj.t) (2.3.2c) 
0 0 0 0 

The solution to the Riemann problem for (2.1.1) as obtained by operator 

splitting at (x + 9/J.~t) is now given by (2. 3. 2a-c). 
0 

Next, we shall study the problem of a point blast explosion and use 

this as a test problem for determining whether Liu's scheme or Glimm's 

scheme does a better job in treating spherical shock wave problems. 
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2.4 Point blast explosion 

The formation of a blast wave by a very intense explosion was stu-

died very closely by Taylor[14l in connection with atomic bomb research. 

The explosion can be idealized as a sudden release of an amount of 

energy E concentrated at a point. Furthermore, we asstnne that the 

resulting disturbance will be so strong that the atmospheric pressure p 
0 

and sound speed a are negligible compared with post-shock pressure and 
0 

velocity. Also, the velocity of the undisturbed region is asstnned to be 

zero. Then it can be argued on dimensional grounds (see \tbitham[l.6]) 

that the spherical shock wave propagating outwards, whose radius R, is 

related to time t by 

( 2. 4. 1) 

where p
0 

is the atmospheric density, S(Y) is some calculated function of 

Y determined by the problem. 

G(x) 

take 

Now the equations of spherical wave motion are simply (2.1.1) with 

2 =-
r 

(Where r is the radial co-ordinate) Which we can rewrite as 

~u + u ~u = l~ 
dt !r p ~r 

~+ufr.+p(*+~u) = 0 

( 2. 4. 2a) 

(2. 4. 2b) 

(2.4.2c) 

r Following Taylor, we introduce the similarity variable ~ = R and 

pressure, (2. 4. 3a) 
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.; 

density, p = p
0 

T(9) (2. 4. 3b) 

radial velocity, u = R-
312 

A ~(9) (2. 4. 3c) 

where again p
0 

and a
0 

are respectively the atmospheric pressure and 

sound speed and A is a constant equal to f [ S <Y ) 5 ..!. ] lf2. Substitut­
Po 

ing (2.4.3a-c) into (2.4.2a-c), this set of partial differential equa-

tions reduces to a set of first order ordinary differential equations: 

, , 
~ <9-M 

1 f 3 
= yT-~ (2. 4. 4a) 

, 
+zf , 

rp 
i..= !l 
i' I) - rp ' 

(2.4.4b) 

, , 
+ + f(¢>-9) 

, 
3£ + 9f - (>f = 0 (2. 4. 4c) 

or after some simplifications, 

.2 1 
f~(3(n - ~) + y~( - - -) 

df 2 
= 2 dn f - ~<~ - n) 

f( 1 2 3 - - ~) - -<~ - n)~~) (2.4.5) 
~ y n 2 = dn 2 

f - ~<~ - n) 

~<~~<~ - n) 
2 1 3f ( - - - ) --

.£1£. 
n 2 y 

= 2 
dn <~- n)(f -~<~- n) ) 
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Shock-~ conditions 

By assumptions, the post-shock pressure is much larger than the 

atmospheric pressure, the Rankine-Hugoniot conditions then become 

~ = ..ll.i 
p Y+1 2 o a 

P1 Y+1 
Po .. Y-1 

u1 2 -=--u Y+1 

0 

(2. 4. 6a) 

(2. 4. 6b) 

(2.4.6c) 

where U is the shock speed. Differentiating (2.4.1), we get U=A R-312• 

Furthermore, evaluating (2.4.3a-c) at ~=1, we get on comparison with 

(2. 4. 6) 

f(l) = ..11. 
Y+1 

(2. 4. 7a) 

sHl) 
I 2 

(2.4.7b) ... Y+l 

+<1) = Y+1 T-f • (2. 4. 7c) 

Now (2.4.5) together with (2.4.7) constitute a well-posed initial value 

problem at ~=1 which can be solved numerically backwards to ~=0 so that 

f, ~'+for~~ [0,1) can be found. Unfortuately Taylor did not realize 

that (2. 4. 5) was mildly stiff, hence his results -could be improved. 

Table 2.1 contains values of£(~),~(~),+(~) obtained by a standard 

stiff ordinary equation package by Gear [5 ). Curves of f, ~, + can also 

be found in figure 2. 2. 

Now with the values of f, ~'~known for any~~ [0,1], the following 

example illustrates how to find the state of the gas (p,u,p) in the 

region behind the shock for a given problem. 
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Example l•i In a atomic explosion in New Mexico in 1947, the amount of 

energy E released was measured to be 7.14x1020 ergs. Taking p
0
=1.25 

3 kg/m and Y=1.4, (2.4.1) becomes 

5 2 log 10 R = log10t + 11.915 , 

or 

R(t) = (t X 1011.915 )2/5 

Using the defintion of A, 

2 R = --5 t • (2.4.10) 

Substituting (2.4.10) into (2.4.3a-c), we get 

p = p 02 ( 1 ! ) 2 f ( ~) 
5 t (2. 4. lla) 

a 
0 

(2.4.1lb) 

2 R 
u = st" rp<~> • (2.4.11c) 

For any given time t, we first determine the position R(t) of the 

spherical shock wave by (2.4.8). Then using (2.4.11) the state of the 

gas at any distance R-r behind the shock at time t can be computed. 

In the next section, we proceed to solve this spherical shock wave 

problem with Liu's and Glimm's scheme with operator splitting and then 

compare both solutions with the exact solution. 
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1•1 !!!! problem 

We consider the partial differential equations (2.4.2a-c) which we 

write compactly as 

p u p 0 p pu 

0 1 2 (2.5.1) u + u u = 0 p r 

0 2 
p pc u p -ypu 

t X 

with initial conditions 

r T 
I (po,uo,po) for r=R 

T 0 < (2. 5. 2) (p,u,p) =I T for r>R l (1. 25, 0, o. 098) 0 

where t = 0.217558 milliseconds and R ,p ,u ,p are defind by (2.4.9) 
0 0 0 0 0 

and (2. 4.11) respectively at t = t and ~ = 1. 
0 

Also, mass,length and 

tUne are measured in kilograms, meters, and milliseconds. The initial 

value problem as defined by (2.5.1) and (2.5.2) is then solved by both 

Liu' s scheme (see section 2.3) and Glimm's scheme with operator split-

h The spatial grid size used is--, where h = 0.2 
2n 

ting (see section 2.4). 

and n=0,1,2. Finally, as in the last chapter, we measure the superior-

ity of one scheme over the other by examining the shock-jump errors at 

each time level N defined by 

where (2.5.3) 

Pl,r = exact pressure difference between the left and right 
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states of the shock at time ~t, 

Ap = estimated pressure difference between the left and l,r 

right states of the shock. 

The shock-jump errors from time levels 18-48 pseconds are displayed 

in table 2.2 and graphed in graph 2.1 while the execution times for both 

schemes are tabulated in table 2.3. 
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Observations ~ comments 

The shock-jump errors resulted when using Liu's scheme and Glimm's 

scheme with operator splitting are close for for h=O.OS and h=0.2. How­

ever, for h=O.l, the results obtained by Glimm's scheme with operator 

splitting is definitely better than Liu's scheme, see table 2.2 and 

graph 2.1.. Moreover, ~he execution time is less for Glimm' s scheme in 

all cases. Hence if we judge the superiority of one scheme by its effi­

ciency, that is, the amount of labor required to achieve a certain level 

of accuracy, Glimm's construction with operator splitting is definitely 

superior to Liu's. 

Moreover, there is one major difference between Liu's scheme and 

Glimm's scheme. When transonic flow takes place, Liu's construction 

fails (see section 2.2), but Glimm's scheme with operator splitting has 

no difficulties in continuing the construction of a global solution. 

For example in this case when t-t
0

>50 ~seconds, transonic flow develops 

and Liu's scheme cannot be carried out any further, but this has no 

effect on operator splitting; in fact, even for time up to 859 pseconds 

and using only spatial grid size 0.2, the shock locations are determined 

with great accuracy (see graph 2.2). The density, velocity, and pres­

sure profiles at time 859 pseconds are also displayed in graphs 2.3-2.5 

for comparisons with exact solutions. 
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2.6 Conclusion 

For the treatment of spherical shock wave problems (typically blast 

wave problems), Glimm's scheme with operator splitting should be pre-

ferred over Liu's scheme. 

Finally, the method of characteristic tracing which solves the 

Riemann problem (exactly) as defined by the partial differential equa­

tion (2.1.1) and initial data (2.1.2) with G(x) = + l cannot be carried 
X 

out. Thus the straightforward generalization of Glimm's scheme as 

described in the last chapter is not feasible for spherical shock wave 

problems. 
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Chapter 1 Shock propagation~~~~ variable cross-section 

l•l ~ Classical ~ Generalized Chisnell formula 

If the cross-sectional area A(x) does not vary too rapidly, gas 

flow in the variable area duct is given by (2.1.1) with G(x)=A'(x)/A(x). 

Using this set of equations, Chisnell [1) studied the problem of shock 

propagation down a duct of variable cross-section where the gas ahead of 

the shock was at rest. Under the assumptions that the flow behind the 

shock is nearly steady, and that wave generated behind the shock do not 

interact strongly with it, he was able to derive the following ordinary 

differential equation for the mach number M(x) of the shock: 

where 

A (M) 

_2M )..(M) ,2!! + l dA = 0, 
M _1 dx A dx 

2 
= ( 1 ~ 1=I!L- ) ( 1 +2u-t-1::.

2 
) 

Y+1 p ,- M 

2 p = ( Y-1) M
2+2 

2 • 
2YM - <Y-1) 

( 3. 1. 1a) 

(3. 1. 1b) 

(3.1. 1c) 

Recall that the mach number of the shock is related to the shock speed U 

by 

U-u 
r 

M=~, 
r 

(3. 1. 2) 

where u and c are respectively the speed of the gas and the sound 
r r 

speed of the flow ahead of the shock. A very neat derivation (but less 

general than the one described next) of (3.1.1) can be found in Whitham 

[161• We shall derive this formula via a more general setting. 
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Generalization~ Chisnell'~ formula 

We return again to the general hyperbolic system (1), which we 

rewrite as 

u + A u = g (x,u) 
t X 

(3. 1. 3) 

Consider a shock moving at constant speed from a region where g=O into a 

region where g~O. See figure 3.1. Futhermore, assume that the shock 

arrives at the position x 
1 

at time t=O with speed U 
1

• 
n- n-

(See figure 

Denote the post-shock state by u and the pre-shock state by 
n-1 

u • First let v be the solution to the steady- state equation 
r 

with 

(3.1.4a) 

(3. 1. 4b) 

evaluated at x =x 1-tjj.x. Next, we solve the Riemann problem with g=O n n-

and initial data 

r_ 
x<x , I v n 

u(x,O) = < (3.1.5) 
I~ x>x • 

n 
l r 

Assume that a leading shock is produced with a new post-shock state u 
n 

and shock speed 

speed, that is, 

u • 
n 

Our objective now is to compute the change in shock 

u -u n n-1 
&. 

Using the Rankine-Hugoniot condition, the post-shock state can be 

parameterized by its speed, so we can write ~=H(U). In particular, 

u 
1

=H(U 
1
). Also if S(x,u 

1
,x 

1
) is the solution operator to 

n- n- n- n-

(3.1.4), we get 
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v = sr,&.,;. 1'x 1) n- n- • (3.1. 6) 

Finally if R(~) denotes the speed of the leading shock resulting from 

the Riemann problem with left state u, right state ur' then 

u = R(v) = R·S(6x,u 1,x 
1
) n n- n-

Then using Taylor's expansion, we find, 

u 1 ' so n-

u - u -
n n-1 = l_R•S(O,un_ 1,xn_ 1) + 0(6x) • 

6x Clx (3.1.7) 

Since Cl R•S(x,u 1,x 1) = R'•S(x,u 1,x 1)s a_nd by definition - n- n- n- n- x Clx 

-1 -Sx =A g(xn_1 ,u), then 

u - u n-1 n 
6x 

Formally passing to the limit, we get 

dU 
dx = -1 R'(H(cr))A g(x,H(cr)). 

This is the generalized Chisnell shock propagation equation. 

(3.1. 9) 

The above derivation was due to Wendroff[l5]where he also applied 

(3.1.8) to shock propagation problems in variable area ducts with phase 

changes. 
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Suppose now that the speed of the shock at the position x is U , 
0 0 

then the generalized Chisnell shock propagation equation (3.1.9) is an 

ordinary differential equation that informs us what the shock speed is 

at a latter position x due to the influence of the source term. We 

illustrate this more concretely by looking at the following example. 

Example 3.1 

. Consider now the problem of a shock moving into a duct of variable 

cross-section A(x). Using the steady equations (2.2.4), 

-1 
A g(x,H(cr)) = 

A' (x) 
A(x) 

1 
·2 2 

c - u 

Hence (3.1.9) reduces to 

dU 
dx = A'(x) 2aR _ c2 aR + 

2 2 p c -;:;- -;:;-
(c - u )A(x) ap au 

2 aR 
cpu­ap 

(3.1.10) 

(3.1.11) 

Using the assumptions made by Chisnell and using the Rankine-Hugoniot 

conditions (see Whitham[l6]): 

au 
a;;-

au 
au 

au 
ap 

c 2 1 
u = r A 1(M+M) + 

2 2 M2 - A - 1 p = prcr 
( A - 1 A(A + 

p = pr 
(A + 12M2 

(A - 1)M2 + 2 

can be computed in terms of M. 

1) ) 
(3.1.12) 

Moreover, using (3.1.12) 

p, p, u and c can be expressed in terms of M. Substituting all these 

into (3.1.11), the originalChisnell formula (3.1.1) will be recovered 

after some simplications. 
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Note that according to this classical Chisnell formula (3.1.1), the 

factor that determines the mach number of a given shock at a latter 

location of the duct is simply the relative rate of change of the duct 

area, that is, A'(x)/A(x) and nothing else. This fact is crucial as we 

shall see in case 1 and 2 of the test problem to be described in section 

3. 3. 
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Remarks 

(1) It is interesting to note that the similarity between the pro-

cedure used in obtaining Wendroff's generalized Chisnell formula and the 

solution of a Riemann problem used in Liu's scheme (see section 2.2). 

Given the Riemann problem with initial data 

r-
I un-1 for x<x 

n 
·u(x,O) = < 

I~ for x>x 
n l r 

step 1 of both Liu's scheme and Wendroff's procedure is the recomputa-

tion of the given data by the steady state equation (3.1.4a). Then step 

2 of both procedures is the solution of the Riemann problem with the new 

initial data assuming that g = 0. The major difference, however, is 

that in Liu's scheme this procedure is only a key step in a more ela-

borate global construction scheme for the general hyperbolic system 

(3.1.3) with arbitrary initial data. In Wendroff's scheme this procedure 

is a means of obtaining a finite difference approximation to the local 

change in shock speed due to the influence of the source term assuming 

implicitly that the given initial data in all cases resulted into shock 

waves. 

(2) For a shock that slows down due to the expanding geometry of 

the duct, continuing interactions with the flow behind are expected, and 

Chisnell's formula is not appropriate. In a converging duct, however, a 

shock wave typically speeds up and thus Chisnell's formula is good, see 

Whitham[1~. In section 3.3, we shall study shocks propagating in vari-

ous converging ducts, moreover, we shall compare the results obtained by 

Glimm's scheme with operator splitting and Liu's scheme with that 



obtained by Chisnell's formula. But first, we shall examine the possi­

bility of incorporating Chisnell's formula into Glimm's scheme and Liu's 

scheme. 
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l•l lli Chisnell formula ~ ~ numerical schemes .2f Glimm .!.!!.£ lli 

One of the most crucial assumption in the derivation of Chisnell's 

formula is that waves generated behind the shock do not interact 

strongly with it (see 3.1). Therefore quite naturally in order to 

improve Chisnell's formula one must be able to take care of all the wave 

interactions behind the leading shock. At first glance this seems to be 

a formidable task but this is precisely what both the Glimm and Liu 

schemes are geared towards -- construction of a global solution without 

going through the painful process of characteristic tracing. More pre-

cisely, we improve Glimm's and Liu's scheme (or Chisnell's formula 

depending on how one looks at it) in the following way. 

Let the approximate values of the solution at time nk obtained by 

either Liu's scheme or Glimm's scheme (with operator splitting) be 

I i I =O, 1, 2, •••• Then we compute 

Glimm's or Liu's construction exactly as described in 2.2 except when we 

come to the position of the leading shock, say, at (1+112)h. Thus, 

( n n n ) Pl+112 ,u1+112 ,p1+112) = (~r'ur,pr which is the state of the gas ahead 

of the leading shock and is given initially. Then given the initial left 

( 10 u p ) the Riemann problem 1-r' r' r ' 

without the source term can be solved readily and there are two possi-

bilities: 

(1) the right wave is not a shock: we simply compute 

n+ 1 I 2 n+ 1 I 2 n+ 1 I 2 n n n n n n 
<rl+112'ul+li2'Pl+112) from (~l,ul,pl) and (~1+1'ul+1'Pl+1) 

as before by our numerical schemes. 

(2) the right wave is a shock: let the initial mach number of the shock 
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be M • 
0 

Then the mach number of the shock at time (n+l/2)k can be 

obtained by computing the solution at k/2 of the initial value 

problem defined by the Chisnell formula : 

(3. 2. la) 

(3. 2. lb) 

with initial data 

x(nk)=(l+l/2)k 
' 

M(nk)=M
0 

(3. 2.lc) 

* * * The post-shock state (p ,u ,p ) at time (n+l/2)k is then obtained 

by the Rankine-Hugoniot conditions. Thus 

x(n+l/2k)>(l+l/2~ )h n 

x(n+l/2k)<(l+l/2~ )h 
n 

The superiority of using Chisnell's formula with Glimm's scheme and 

Liu's scheme in this way is demonstrated in the test problems described 

in the next section. 
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l•l ~ problems 

In this section we consider a shock propagating into monotonically 

converging and diverging ducts defined respectively by A'(x)/A(x)=-

1/(x0-x) and 1/(x0+x) where x0 is known as the apex of the ducts and 

In the case of a converging duct, we differentiate between 

two cases, namely IA'(x)/A(x) 1<1 and IA'(x)/A(x) 1>1 with x0=xr. While 

for a diverging duct, we look at the case where A'(x1)/A(x1)=1·and 

A'(x )/A(x )<<1. We shall see that the results obtained are drastically 
r r 

different form each other. 

For definiteness, the test problems to be described are concerned 

with the solution of the initial problem defined by the partial dif-

ferential equations 

p,' u 

u + 
0 

0 p t 

with initial conditions 

(p,u,p) (0) 

p 0 p 

u 1 u 
p 

2 pc u p 

r 
I o.o,o.o,1.4) 

= < 1 (5.5,11.6,152.9) 

L 

= - A' (x) 
A(x) 

X 

for x>x1 

for x<x1 

pu 

0 

ypu 

The initial discontinuity is immediately resolved into a shock of mach 

number M(x1)=10. Using this as initial conditions for the Chisnell for­

mula (3.1.1), the shock speed as well as the post-shock state can 

theoretically be computed for x~ (x1 ,xrl· As mentioned before, 
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Chisnell' s formula provides us with accurate predictions for converging 

ducts. Thus, in cases 1 and 2 below we wish to solve the initial value 

problem (3.2.1) by Glimm's scheme (with operator splitting), Liu's 

scheme, Glimm's scheme (with operator splitting) with Chisnell's formula 

and compare their errors of the post-shock states with respect to 

Chisnell's results. 

~..!.: 

-1/(7-x), x ~(5,6] 

A'(x)/A(x) = 

0, x<S. 

In this case, two different spatial grid sizes h=0.04, and h= 0.02 are 

used. The computed post-shock states form x=5.1 to 5.9 of the three 

numerical schemes are shown in tables 3.1 and 3.2 while their errors 

relative to Chisnell' s formula can be found in tables 3. 3 and 3. 4. For 

convenience, the averaged errors are also computed and displayed in 

table 3. 9. Finally, the computational time is displayed in table 3.10 

for comparison purposes. 

Observations: 

(1) The post-shock density of both the Liu and Glimm schemes oscil­

lates, see tables 3.1 and 3.2. This is not physically realistic because 

the shock accelerates as the duct narrows hence the post-shock density 

should increase in the positive x-direction. However, this phenomenon 

does not exist for Glimm's scheme with Chisnell's formula; in fact, the 

post-shock density increases as desired. 

(2) From table 3.9, we see that Glimm's scheme with Chisnell's formula 

is definitely superior to the other two numerical schemes. Moreover, 
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Glimm's scheme is better than Liu's scheme and the computational time is 

less. 
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Case 2: --
-1/(7-x), x~(6, 7], 

A' ( x) I A( x) = 

0, x<6. 

The two spatial grid sizes used are h=0.02, and h=0.01. Tables 3.5 and 

3.6 contain the computed post-shock states form x=6.1 to 6.9 of the 

three nwnerical schemes while tables 3. 7 and 3. 8 contain their relative 

errors. 

Observations: 

( 1) Again form tables 3. 5 and 3. 6 we see that the post-shock density of 

both Liu's and Glimm's scheme oscillates while that of Glimm's scheme 

with Chisnell's formula increases. (2) As in case 1, we see from table 

3.9 that Glimm's scheme with Chisnell's formula on the average is the 

superior one of the three schemes. Liu's scheme, however, is better 

than Glimm's scheme in this case. In fact, as the shock approaches the 

apex x0=7 (where IA'(x)/A(x) l=oo), Liu's scheme is surprisingly good. 

In conclusion for the cases of converging ducts, Glimm's scheme 

with operator splitting and Chisnell formula's is the best scheme among 

the three not only because the errors relative to Chisnell's formula is 

less, but most important of all it gives physically realistic. post-shock 

densities as the shock accelerates down the ducts. Be tween Glimm' s 

scheme and Liu's scheme, one has to look at the relative change in x-

sectional area A'(x)/A(x). IA'(x)/A(x) 1=1 is approximately the dividing 



.. 

line. If IA'(x)/A(x)l<1, then Glimm's scheme is more accurate and takes 

less time. If lA' (x)/A(x) I >> 1 , then Liu's scheme is very 

good and should be used even though it takes more time. 

Before considering the case of a diverging duct, it is instructive 

to look at the pressure, velocity, and density profiles: they are plot­

ted respectively in graphs 3.1a-c for case 1 using h=0.02 and in graphs 

3. 2a-c for case 2 using h=O. 01. Immediately, one will notice the 

difference in their post-shock wave structures as described below. 

Profile 3.1: the post-shock wave structure is the simpler of the two 

cases. It consists of a steady-state compression wave of the C- family 

follow by a rarefaction fan again of the C- family before ending in a 

shock of incresing strength. Both the compression wave and rarefaction 

fan are propagating in the positive x-direction. 

Profile 3.2: in the begining (for x<6.S), the wave structure still con~ 

sists mainly of a steady-state compression wave and a rarefaction fan 

(both of the C- family), however, as the relative rate of narrowing of 

the duct increases, the two waves interact producing a C+ rarefaction 

fan in between. While the compression wave and the C+ rarefaction fan 

are expanding to the right, the C- rarefaction fan is slowly being 

'eaten up'. The post-shock wave structure becomes more complicated as 

the shock approaches the apex. As for the shock, it is accelerating 

faster and faster with H(x)4oo as x4x0• 

It is important to note that the difference in wave structures in 

both cases are not determined by the rate at which the ducts are con­

verging because for both ducts, A'(x)=-1. Furthermore, it is not the 
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difference in x-sectional area change which is the key factor because 

A(x1)-A(xr)=1. The determining factor is IA'(x)/A(x) I -- the relative 

rate of change of the duct, and this can be seen plainly from the 

Chisnell formula (3.1.1). For IA'(x)/A(x) 1<1, the post-shock wave struc­

ture is simple, consisting of a compression wave followed by a rarefac­

tion fan. For I A' (x) /A(x) 1>>1, one should expect the post-shock waves 

to interact hence producing new waves and thus a more complicated pic-

ture. 
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We now concentrate on the problem of sending a shock down a 

linearly diverging duct. As explained in section 3.1, the Chisnell for­

mula no longer can give us good predictions on the mach number M(x) of 

the shock as well as the post-shock states (p,u,p) (x). However., by exa­

mining carefully the density, velocity, pressure profiles of the three 

numerical schemes (namely Liu's, Glimm's, and Glimm's scheme with 

Chisnell's formula), we can still recognize each one's better quality 

(if any) over the others. 

1/(1+x), x~(0,16] 

A'(x)/A(x) = 

0, x<O. 

The spatial grid size used for all numerical schemes will be h=0.2. The 

density, velocity, and pressure profiles for Glimm's scheme are 

displayed in graphs 3.3a-c and that for Glimm's scheme with Chisnell's 

formula in graphs 3.4a-c. Also, the computational time of different 

numerical schemes used can be found in table 3.11. The detailed post­

shock wave structure will be discussed later. Except for minor differ­

ences, the wave structures for all numerical schemes are almost identi­

cal. However, the major advantage of Glimm' s scheme with Chisnell' s 

formula is that it gives physically realistic post-shock states. The 

reason being that as the shock slows due to the expanding geometry of 

the duct, the post- shock pressure, density, and velocity should 

decrease. While both schemes predict that the post-shock pressure and 
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velocity will decrease only Glimm's scheme with Chisnell's formula gives 

a monotonic decreasing sequence of post-shock densities. 

One of the most prominent and undesirable feature for both schemes 

is the presence of heavy oscillations coalescing together in the begin­

ning of each velocity profile. Such violent oscillations are clearly 

absent in the pressure and density profiles suggesting that we might 

have a steady-state rarefaction fan of the C- family. This brings out 

one advantage of Liu's scheme which uses steady states in his construc­

tion, see secion 2.2. If indeed a steady- state rarefaction fan exists, 

then Liu's scheme shall produce one without any undesirable oscillations 

whatsoever. This is clearly illustrated in the profiles produced by 

Liu's scheme (graphs 3.4a-c). Unfortuately Liu's scheme still has the 

problem of not producing a monotonic decreasing sequence of post-shock 

densities. This can be remedied easily. 

lli' ~ scheme .!1.!h Chisnell 's formula 

As described in section 3.2, Chisnell's formula can be easily 

incorporated in Liu's scheme. The results are illustrated in graphs 

3.5a-c, where the advantage of using Liu's scheme to produce steady­

state waves and the advantage of Chisnell's formula to produce the phy­

sically realistic post-shock state are combined. These two major advan­

tages of Liu' s scheme with Chi snell' sformula prove itself to be the best 

scheme among the four numerical schemes we have discussed so far. 

Before concluding this section, we now turn to examine the· post-shock 

wave structure. Profile 3.5: the wave structure is more complicated 

than the ones we have seen for converging ducts. At first we have a 

steady-state rarefaction fan (C- family), then a shock and compression 

64 

• 



waves (C+ family) before ending into the leading shock which decreases 

in strength as the duct widens. The steady-state rarefaction is very 

strong and it moves in the positive x-direction. The compression wave 

is very small at first but gradually widens and decreases in strength as 

it travels down the duct. 
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3.4 Conclusions 

(1) The Chisnell formula in general is very good only as a local 

result because new waves typically develope behind the shock and 

interact with it. The wave structure can be rather complicated as seen 

in case 1 and 2 in the last section. Thus, it is imperative to be able 

to track all the new waves generated behind the shock. This, however, 

can be accomplished readi~y by resorting to Glimm's scheme and Liu's 

scheme and then using Chisnell's formula as a way of obtaining the 

appropriate boundary conditions at the leading shock. The result is a 

scheme which gives physically realistic post-shock states as well as one 

which takes care of all the wave interactions due to the geometry of the 

duct with relative ease. 

(2) Of the four numerical schemes developed so far, Glimm's scheme 

with Chisnell's formula is the best for a converging duct. However, for 

a diverging duct, heavy oscillations typically set in and mask up the 

presence of a steady-state rarefaction fan and thus Liu's scheme with 

Chisnell's formula is superior in this case. 

(3) Finally because of the generalized Chisnell formula derived by 

wendroff in section 3.1, the coupling of Chisnell's formula with Glimm's 

scheme and Liu's scheme can be theoretically extended from the case of a 

variable x-sectional duct to the case of a general hyperbolic system 

(1). 
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Chapter i Conclusions and Discussions 

In the last chapter, we have developed two new schemes, namely 

(1) Glimm's scheme with operator splitting and Chisnell's formula, and 

(2) Liu's scheme with Chisnell's formula. 

While (1) is best in treating the problem of a shock propagating down a 

duct of monotonic decreasing area, (2) is best for a duct of monotonic 

increasing area. Both scheme 1 and 2 have been coded in FORTRAN; they 

are known as subroutines GLIMM and LIU respectively and are available 

from the author. Given arbitrary initial data and cross-sectional area 

(either monotonic decreasing or increasing), one can advance from one 

time-level to the next by making calls to either GLIMM or LIU. 

Now using these two subroutines, the case of a arbitrary cross­

sectional area duct can be handled easily as illustrated by the follow­

ing example. Consider a duct known as the de Laval nozzle depicted in 

the d~agram below: 

throat 

X 
0 

De Laval nozzle 
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The section at x = x is known as the throat of the nozzle. For x < x , 
0 0 

the duct area is monotonic decreasing, while for x > x , the duct area 
0 

is monotonic increasing. Hence to obtain the best results at each time 

level, one simply utilizes subroutines GLIMM and LIU at different sec-

tion of the nozzle. In other words, for the section that is decreasing 

in area (x < x ) , call subroutine GLll1H, while for the section that is 
0 

increasing in area (x > x ), call subroutine LIU. The extension to the 
0 

general case of arbitrary cross-sectional area is clear. 

At this point, a word of caution is in order. For a de Laval noz-

zle, transition from subsonic to supersonic flow is possible, see for 

example Courant and Fredrichs[4]. In this situation, Liu's scheme by 

itself is not applicable as explained at the end of section 2.2. In 

fact, as noted by Liu~D in his recent paper on transonic gas flow for a 

variable area duct, in the event of such a transition, the flow is sonic 

at x = x where the duct is narrowest. But on the other hand, it is also 
0 

observed that a stable standing shock wave may occur in the expanding 

portion of the duct which indicates that Liu's scheme is better suited 

than Glimm's scheme for that section of the duct. Thus hybridizing sub-

routine GLIMH and LIU for different section of the duet at each time 

level is indeed sensible. 

Finally, it would be a substantial improvement if one could extend 

Liu's scheme to handle transonic flow as well. Moreover, more need to 

be known about the phenomenon of transonic flow itself as modeled by the 

one-dimensional equations (3. 3. la). As Liu~l] has pointed out: if one 

uses (3.3.la), then for a de Laval nozzle, bifuracating phenomena may 

occur and a flow may not depend on its values at x = +oo uniquely and 
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smoothly. This raises an important question: is it even correct to use 

these one-dimensional equations to model a phenomena which is inherently 

two- or three-dimensional ?? To this date, this question is far from 

being satisfactorily answered. 

; 
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Figure 1.3 
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Table 1. 3 

execution time required by 
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tracing splitting 
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10.67 0.16 

38.70 0.64 

Graph 1. 2 
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Table 1.2 

shock-jump errors of 

characteristic operator 
t tracing splitting 

0.1 -3 -3 0.249xl0 0.40lxl0 

0.2 -3 -2 0.696xl0 0.115xl0 

h = 0.2 0.3 -2 -2 0.12lxl0 0.207xl0 

0.4 -2 -2 O.l99xl0 0.322xl0 

0.5 -2 -2 0.279xl0 0.458xl0 

0.1 -4 -3 0.946xl0 0.157xl0 

0.2 0.284xl0 -3 
0.458xl0 -3 

h = 0.1 0.3 -3 -- -3 
0.557xl0 0.895xl0 

0.4 0.786xl0 -3 
0.12lxl0 -2 

0.5 -2 -2 0.130xl0 0.16lxl0 

0.1 -4 -4 0.382xl0 0.615xl0 

0.2 0.126xl0 -3 --3 
0.20lxl0 

h = 0.05 -3 -i 0.3 0.268xl0 0.430xl0 -

0.4 0.638xl0 -3 
0.919xlo- 3 

0.5 0.922xl0 -3 
0.143xl0 -2 

0.1 O.l67xl0 -4 . -4 
0.263xl0 

0.2 -4 -4 0. 572xl0 0.886xl0 

h = 0.025 -3 -3 0.3 0.145xl0 O.l48xl0 · 

0.4 0.436xl0 -3 -3 o. 382xlo· 

0.5 -3 -3 0.654xl0 0.560xl0 
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Table 1.4 

shock-jump errors of 

t characteristic tracing operator splitting 

0.05 0.490xl0 -4 
0.980xl0 

-4 

0.10 O.l66xl0 
-3 

0.357xl0 
-3 

h 0.2 0.15 
-3 -3 = 0.404xl0 0.866xl0 

0.20 0.124xl0 
-2 

0.208xl0 
-2 

0.25 0.280xl0 -2 0.414xl0 
-2 

0.05 O.l74xl0 
-4 

0.293xl0 
-4 

0.10 0.134xl0 
-3 

0.18lxl0 
-3 

h = 0.05 -3 -3 
0.15 0.365xl0 0.475xl0 

0.20 0.736xl0 
-3 0.943xl0 

-3 

0.25 O.l27xl0 
-2 . -2 

O.l56xl0 

Table 1.5 

computational time of 

h characteristic tracing operator splitting 

0.2 2.38 0.01 

0.05 35.40 0.16 
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Table 2. 2 

shock-jump errors of 
t-t

0
(fsec) Liu's scheme Glimm' s scheme 

18 o. 517 0.533 
24 o. 696 0.689 

h = 0.2 30 o. 820 o. 881 
36 0.964 0.980 
42 1.135 1.180 
48 1.445 1.492 

18 0.380 0.329 
24 0.464 0.412 

h = 0.1 30 o. 763 0.660 
36 o. 939 0.812 
42 1. 087 o. 936 
48 1.417 1.222 

18 0.175 0.156 
24 0.245 o. 225 

h = 0.05 30 0.354 0.342 
36 0.436 0.423 
42 o. 531 0.526 
48 o. 631 o. 627 
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Table 2.3 

execution time required by 

Liu' scheme 
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Table 3.1 

** h = 0.04 ** 

Chisnell's formula 

X I M(x) p(x} u(x) p(x) 

5.1 10.08 5. 72 11.64 165.74 
5.2 10.21 5.73 11.80 169.99 
5.3 10.30 5.73 11.90 173.06 
5.4 10.45 5.74 12.08 178.05 
5.5 10.55 5.74 12.20 181.67 
5.6 10.72 5.75 12.40 187.64 
5.7 10.85 5.76 12.55 192.03 
5.8 11.05 5.76 12.79 199.36 
5.9 11.24 5. 77 12.97 204.84 

Glimm's scheme with Chisnell's formula 

X I p (x) u(x) p(x) 

5.1 5. 72 11.61 164.76 
5.2 5. 72 11.75 168.65 
5.2 5.73 11.86 171.67 
5.4 5.73 12.01 176.01 
5.5 5.74 12.20 181.68 
5.6 5.75 12.37 186.65 
5.7 5.75 12.52 191.02 
5.8 5.76 12.73 197.43 
5.9 5. 77 12.97 204.89 

Glimm's scheme 

p (x) u(x) 

5.78 11.61 
5.76 11.75 
5.93 11.79 
5.95 11.96 
6.06 12.10 
5.94 12.25 
6.07 12.40 
6.05 12.64 
6.23 12.89 

Liu's scheme 

p (x) u(x) 

5.78 11.65 
5.73 11.08 
5.95 11.73 
5.99 11.89 
6.07 12.01 
6.03 12.18 
6.] 4 12.32 
6.09 12.53 
6.22 12.69 

p(x) 

165.93 
169.93 
176.94 
182.75 
187.38 
192.03 
197.93 
206.69 
215.60 

p(x) 

165.73 
169.97 
179.57 
185.24 
189.37 
196.26 
201.36 
210.08 
216.58 

00 
""'-1 



Table 3.2 

** h = 0 • .02 ** 

Chisnell's formula 

X I M(x) p (x) u(x) p(x) 

5.1 10.10 5. 72 11.67 166.42 
5.2 10.21 5.73 11.80 169.99 
5.3 10.32 5.73 11.93 173.85 
5.4 10.45 5.74 12.08 178.05 
5. 5· lo.58 5.74 12.23 182.62 
5.6 10.72 5.75 12.40 187.64 
5.7 10.88 5.76 12.59 193.19 
5.8 11.05 5.76 12.79 199.36 
5.9 11.24 5.77 13.02 206.30 

Glimm's scheme with Chisnell's formula 

X I p (x) u(x) p(x) 

5.1 5.72 11.65 165.89 
5.2 5.73 11.79 169.85 
5.3 5.73 11.92 173.42 
5.4 5.74 12.08 178.02 
5.5 5.74 12.20 181.57 
5.6 5.75 12.41 187.60 
5.7 5.76 12.60 193.64 
5.8 5.76 12.82 200.27 
5.9 5. 77 12.99 205.42 

Glimm's scheme 

p (x) u(x) 

5.73 11.65 
5.82 11.75 
5.81 11.87 
5.84 12.03 
5.94 12.17 . 
5.87 12.34 
5.87 12.54 
5.90 12.77 
6.03 12.94 

Liu • s scheme 

p(x) u(x) 

5. 72 11.67 
5.83 11.71 
5.84 11.84 
5.86 11.98 
5.97 12.13 
5.89 12.29 
5.91 12.47 
5.85 12.75 
6.08 12.87 

p(x) 

166.38 
171.96 
175.61 
180.57 
184.81 
190.71 
196.86 
203.G5 
210.36 

p(x) 

166.42 
173.03 
177.14 
181.62 
186.48 
191.90 
197.91 
201.05 
212.14 

00 
00 
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Table 3.3 

Errors relative to Chisnell 's formula (%) 

** h = 0.04 ** 
Glinnn' s scheme I Glinnn' s scheme with Chis nell's I Liu's scheme 

formula 
X I p(x) u(x) p(x) p(x) u(x) p(x) P(x) u(x) p(x) 

5.1 1.0 0.3 0. 1 0.0 0.3 0.6 1.0 0.1 0.0 
5.2 0.5 0.4 0.0 0.2 0.4 0.8 0.0 0.0 0.0 
5.3 3.5 0.9 2.2 0.0 0.3 0.8 3.8 1.4 3.8 
5.4 3.7 1.0 2.6 0.2 0.6 1.1 4.4 1.6 4.0 
5.5 5.6 0.8 3.1 0.0 0.0 0.0 5.7 1.6 4.2 
5.6 3.3 1.2 2.3 0.0 0.2 0.5 4.9 1.8 4.6 
5.7 5.4 1.2 3.1 0.2 0.2 0.5 6.6 1.8 4.9 
5.8 5.0 1.2 3.7 0.0 0.5 1.0 5.7 2.0 5.4 
5.9 8.0 0.6 5.3 0.0 0.0 0.0 7.8 2.2 5.7 

Table 3.4 

** h = 0.02 ** 
5.1 0.2 0.2 0.0 0.0 0.2 0.3 0.0 0.0 0.0 
5.2 1.6 0.4 1.2 0.0 0.1 0.1 1.7 0.8 1.8 
5.3 1.4 0.5 1.0 0.0 0. 1 0.2 1.9 0.8 1.9 
5.4 1.7 0.4 1.4 o .. o 0.0 0.0 2.1 0.8 2.0 
5.5 . 3.5 0.5 1.2 o.o 0.2 0.6 4.0 0.8 2.1 
5.6 2.1 0.5 1.6 0.0 0.1 0.0 2.4 0.9 2.3 
5.7 1.9 0.4 1.9 0.0 0. 1 0.2 2.6 1.0 2.4 
5.8 2.4 0.2 2.2 0.0 0.2 0.5 1.6 0.3 0.8 
5.9 4.5 0.6 2.0 o. 0 0.2 0.4 5.4 1.2 2.8 

00 
\0 



Table 3.5 

** h = 0.02 ** 

Chisnell's formula 

X I M(x) p(x) u(x) p(x) 

6.1 10.21 5.73 11.80 169.99 
6.2 10.45 5.74 12.08 178.05 
6.3 10.72 5.75 12.40 187.64 
6.4 11.05 '::..76 12.79 199.36 
6.5 11.46 5.78 13.27 214.18 
6.6 11.97 5.80 13.87 233.82 
6.7 12.67 5.82 14.69 261.83 
6.8 13.72 5.84 15.92 307.12 
6.9 15.72 5.88 18.27 403.45 

Glimm's scheme with Chisnell's formula 

X I p (x) u(x) p(x) 

6.1 5.72 11.75 168.65 
6.2 5.74 12.01 176.01 
6.3 5.75 12.37 186.65 
6.4 5.76 12.73 197.43 
6.5 5.78 13.27 214.17 
6.6 5.80 13.81 231.06 
6.7 5.82 14.64 260.07 
6.8 5.85 15.98 309.49 
6.9 5.88 17.94 389.32 

.. 

Glimm's scheme 

p (x) u(x) 

5.76 11.75 
5.95 11.96 
5.94 12.25 
6.05 12.64 
6. 38 13.08 
6.23 13.66 
6.38 14.41 
6. 72 15.67 
8.56 16.45 

Liu's scheme 

p(x) u(x) 

5.73 11.80 
5.98 11.89 
6.03 12.18 
6.09 12.53 
6.45 12.95 
5.87 13.85 
5.92 14.68 
6.00 15.90 
7.89 17.46 

p(x) 

169.93 
182.75 
192.03 
206.69 
222.73 
247.93 
283.18 
352.92 
494.84 

p(x) 

169.97 
185.24 
196.26. 
210.08 
227.58 
233.49 
261.44 
306.20 
4·~9.93 

\0 
0 



Table 3.6 

** h = 0.01 ** 

Chisnell's formula 

X I M(x) p (x) u(x) p(x) 

6.1 10.21 5.73 11.80 169.99 
6.2 10.45 5.74 12.08 178.05 
6.3 10.72 5.75 12.40 187.64 

6.4 11.05 5.76 12.79 199.36 
6.5 11.46 5.78 13.27 214.18 
6.6 11.97 5.80 13.87 233.82 
6.7 12.67 5.82 14.69 261.83 
6.8 13.72 5.84 15.92 307.12 

6.9 15.72 5.88 18.27 403.45 

Glimm's scheme with Chisnell's formula 

X I p (x) u(x) p(x) 

6.1 5.73 11.79 169.85 
6.2 5.74 12.08 178.02 
6.3 5.75 12.41 187.60 
6.4 5.76 12.82 200.27 
6.5 5.78 13.25 213.72 
6.6 5.80 13.88 234.41 
6.7 5.82 14.69 261.75 

6.8 5.84 15.99 309.82 
6.9 5.88 17.99 391.44 

·. 

Glimm's scheme 

p (x) u(x) 

5.82 11.75 
5.84 12.03 
5.87 12.34 
5.90 12.77 
5.95 13.17 
6.01 13.76 
6.11 14.50 
6.17 15.99 
6.16 18.00 

Liu's scheme 

p (x) u(x) 

5.83 11.71 
5.86 11.98 
5.89 12.29 
5.85 12.75 
5.81 13.26 
5.84 13.86 
5.87 14.67 
5.92 15.90 
5.88 18.21 

p(x) 

171.96 
180.57 
190.71 
203.65 
218.88 
240.73 
271.00 
323.31 
406.95 

p(x) 

173.03 
181.62 
191.90 
201.05 
214.03 
233.65 
261.38 
306.54 
401.09 

" 

\0 ..... 



X I 

6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 

6.1 
6.2 
6.3 
6.4 
6.5 
6.6 
6.7 
6.8 
6.9 

' 

Table 3. 7 

Errors relative to Chisnell's formula (%) 

** h = 0.02 ** 
Glimm's scheme IGlimm's scheme with Chisnell's I Liu's scheme 

formula 
p(x) u(x) p(x) p(x) u(x) p(x) p(x) u(x) 

0.5 0.4 0.0 0.2 0.4 0.8 0.0 0.0 
3.7 1.0 3.6 0.0 0.6 1.1 4.2 1.6 
3.3 1.2 2.3 0.0 0.2 0.5 4.9 1.8 
5.0 1.2 3.7 0.0 0.5 1.0 5.7 2.0 
10.4 1.4 4.0 0.0 0.0 0.0 11.6 2.4 
7.4 1.5 6.0 0.0 0.4 1.2 1.2 0.1 
9.6 1.9 8.2 0.0 0.3 0.7 1.7 0.1 
15.1 1.6 14.9 0.2 0.4 0.8 2.7 0.1 
45.6 10.0 22.7 0.0 1.8 3.5 34.2 4.4 

Table 3.8 

** h = 0.01 ** 
1.6 0.4 1.2 0.0 ,, 0.1 0.1 1.7 0.8 
1.7 0.4 1.4 0.0 0.0 0.0 2.1 0.8 
2.1 0.5 1.6 0.0 0.1 o.o 2.4 0.9 
2.4 0.2 2.2 0.0 0.2 0.5 1.6 0.3 
2.9 0.8 2.2 o.o 0.2 0.2 0.5 0.1 
3.6 0.8 3.0 0.0 0.1 0.3 0.7 0.1 
5.0 1.3 3.5 o.o 0.0 0.0 0.9 0.1 
5.7 0.4 5.3 o.o 0.4 0.9 1.4 0.1 
4.8 1.5 0.9 0.0 1.5 3.0 0.0 0.3 

_. ..... 

p(x) 

0.0 
4.0 
4.6 
5.4 
6.3 
0.1 
0.1 
0.3 
11.5 

1.8 
2.0 
2.3 
0.8 
0.1 
0.1 
0.2 
0.2 
0.6 

\0 
N 
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Table 3.9 

Averaged errors relative to Chisnell's formula (%) 

** A' (x)/A(x) = -1/(7-x), xe(5,6] ** 

Glinun's scheme Glimm's scheme with Chisnell's formula 

P (x) u(x) p (x) p(x) u(x) p (x) 

h = 0.04 4.0 1.0 2.3 0.1 0.4 0.9 

h = 0.02 2.2 0.4 1.4 0.0 0.1 0.3 

**A' (x)/A(x) = -1/(7-x), XE(6.7] ** 

Glimm's scheme Glimm's scheme with Chisnell's formula 

p(x) u(x) p(x) p (x) u(x) p(x) 

h = 0.02 11.2 2.2 7.2 0.0 0.5 1.1 

h = 0.01 3.3 0.7 2.2 0.0 0.3 0.6 

" 

Liu's scheme 

p (x) u(x) 

. 4.8 1.5 

2.4 0.7 

Liu's scheme 

p(x) u(x) 

7.4 1.4 

1.3 0.4 

p(x) 

3.6 

1.8 

p(x) 

3.6 

0.9 

\0 
w 



Table 3.10 

Execution ~ required .£I ~ numerical scheme 

** A' (x) I A(x) = -1 I (7 - x) , x"[5,6) ** 

Glimm's scheme 
Glimm' s scheme with Chisnell' s formula Liu's scheme 

h = o. 02 1. 02 1. 13 1. 55 

h = 0.04 o. 31 0.35 0.49 

** A' (x) I A(x) = =11(7 - X ) , X" [6, 7) ** 

h = o. 01 3. 90 4.36 6.26 

h = 0.02 1.14 1. 21 1. 72 

Table 3.11 

** A'(x)IA(x) = -11(1 + x), x"[0,16) ** 

Glimm' s scheme Glimm' s scheme 
with 

Chisnell's formula 

Li·u' s scheme Liu' s scheme 
with 

Chisnell' s formula 

5.53 5. 60 6.97 7.84 
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