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ABSTRACT

The alias method is a Monte Carlo sampling technique that offers significant advantages over more
traditional methods. It equals the accuracy of table lookup and the speed of equal probable bins. The
original formulation of this method sampled from discrete distributions and was easily extended to
histogram distributions. We have extended the method further to applications more germane to Monte
Carlo particle transport codes: continuous distributions. This paper presents the alias method as
originally derived and our extensions to simple continuous distributions represented by piecewise linear
functions. We also present a method to interpolate accurately between distributions tabulated at points
other than the point of interest. We present timing studies that demonstrate the method’s increased
efficiency over table lookup and show further speedup achieved through vectorization.

INTRODUCTION

The alias method, a Monte Carlo sampling technique that offers significant advantages over more
traditional methods, was originally developed nearly 15 years ago for sampling from discrete distribu-
tions.] Six years later it was independently rediscovered? and applied to discrete sampling in a
vectorized Monte Carlo particle transport code. Since then, although it has not seen widespread use in
the Monte Carlo community, the method has been extended to continuous distributions (see, for example,
reference 3). The alias method equals the accuracy of table lookup and nearly equals the speed of equal
probable bins. Further, unlike table lookup, the alias method can be effectively vectorized. Perhaps a
reason for its limited use is the alias method’s heretofore inability to interpolate between tabulated
distributions. This paper remedies this situation and presents a statistical method of interpolation
that reproduces to within statistical errors an accepted interpolation technique.

This paper reviews the traditional sampling techniques: equal probable bins and table lookup. It
reviews the alias method as applied to discrete distributions and presents a new alias-like method for
sampling from a linearly varying continuous distribution. Together with the discrete alias method,
this technique can be used to sample from piecewise-linear distributions. The statistical alias
interpolation technique is presented. Comparisons of Cray-XMP execution times of the various methods
sampling from a typical distribution are given.
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TRADITIONAL SAMPLING TECHNIQUES

Sampling techniques randomly sample values of a parameter, x, according to a probability distribution
y(x), which is usually tabulated at discrete values of the parameter, yj=y(xj), between which a speci-
fied interpolation procedure applies, usually linear-linear.

EQUAL PROBABLE BIN METHOD

The equal probable bin method divides the parameter space into N intervals, or bins, defined by the set
{n}, such that the probability of all bins are equal,

n; 1
j y(x)dx=— .
N
N
A value of x is sampled by first selecting a bin randomly
J=NG +1
and then randomly selecting a value within the bin with a uniform probability
x=(1- éz)nm +EM;

where §; and &, are random numbers uniformly distributed between 0 and 1.

This method is extremely fast but at the expense of accuracy. Much of the detail of the original
distribution is lost by the necessary assumption of uniform likelihood within each bin.

TABLE LOOKUP METHOD

The table lookup method searches a table of increasing cumulative probabilities until the interval, j, is
found within which a given random number, £, falls,

'l:)j—l s 61 < I’) ’
where
B=0

P=P_+ jy(x)dx .

xi_t

The sets (x} and (P} define the table.



The value of x is found by sampling over the interval

(xi-l’xi)

according to a uniform likelihood. This method retains almost all the detail of the original distri-
bution. All is retained if a linearly varying, rather than uniform, probability is used in the last step.
The speed of this method is dependent on the size and shape of the distribution. Because the random
number may fall at various positions in the table, this method cannot be vectorized.

THE DISCRETE ALIAS METHOD

Consider a distribution, {p}, describing the likelihood of M discrete outcomes. The alias method recasts
this distribution into M equal probable cvents, each with likelihood 1/M. Each event, i, consists of a
non-alias outcome, i, an alias outcome, A; and the probability of the non-alias outcome, IT;. The alias
probability is the complement of the non-alias probability. The new distribution is formed by adding
to the probability of each outcome with less than average likelihcod enough probability from an
outcome with more than average likelihood such that the total is equal to 1/M. The donor outcome’s
probability is then reduced accordingly. The original outcome is called the non-alias outcome; the
donor is the alias outcome. The non-alias probability is equal to its original probability multiplied by
M. During the course of the generation of the new distribution, a donor is allowed to become a recipient
as its probability falls below the average 1/M.

Table 1 presents an example of generating an alias representation for this simple, 6-element probability
distribution:

{p} = {24,.08,.28,.12,.12,.16}.

Note that event 1 is a donor event during step 1 and, after dropping in liklihood below the average, 1/6,
becomes a recipeint event in step 2. The resulting alias distribution,

{11/A}={92/3,.48/1,1.00/3,.72/1,.72/1,.96/3},
is not unique. Others are equally valid, for example,

{r/A}={.88/3,.48/1,1.00/3,.72/1,.72/1,.96/3}.

The outcome is sampled by first randomly selecting a equal probable non-alias/alias set,

j=ME+1.



The method then compares a second random number against the non-alias probability to select either
the non-alias or alias outcome:

if &, < 1T,

choose j (non - alias),
else,

choose A ; (alias).

The alias method is easily vectorized because each sample undergoes the same operations.

THE GENERAL ALIAS METHOD

The general alias method constructs from a piece-wise linear tabulated distribution a series of discrete
probabilities corresponding to the likelihood of x lying in the each tabulated interval,

b= [y(x)dx

From the set {p} a discrete alias distribution is calculated as described above. Sampling with the
discrete alias method results in an interval from which the value of x is then sampled. The accuracy of
this method is identical to that of the table loockup method.

SAMPLING FROM A LINEARLY VARYING CONTINUOUS DISTRIBUTION

The accuracy of both the table lookup and continuous alias methods can be improved by sampling over
the sampled interval in x according to a linearly varying continuous distribution instead of a uniform
distribution. The value x’ is found from a uniform distribution between x, and x,, as shown in Figure 1, by

x'= (1— é)xl+§xr

where £ is a random number uniformly distributed between 0 and 1. Various methods of sampling from a
linearly varying distribution exist, such as choosing the greater (or lessor) of two random numbers or
solving a quadratic equation. Presented here is a method* that converts a non-uniform distribution into
a uniform distribution analogous to the alias method coercing non-equal probable bins into equal
probable bins.



Figure 2 shows a distribution varying from yjon the left to y, on the right. The method randomly
chooses a value x* a distance {Ax from the left and x" an equal distance from the right,

x'=(1-&)x, + &,
x'= &+ (1-§)x,

If a second random number, selected between 0 and y;+y,, i.e. £'(y+y,), falls below the linear function
evaluated at x’, the value x’ is retained, otherwise x” is chosen:

if &(y+u)<(1-8u+ly,
~ choose x = x',
else,
choose x = x".

The non-alias outcome can be thought of as x’, the alias outcome as x”, and the linear function as the
non-alias probability.

INTERPOLATION BETWEEN TABULATED DISTRIBUTIONS

Often in Monte Carlo particle transport codes a value must be sampled from a distribution that is not
available. An example helps illuminate this apparent paradox: a neutron with energy 7.32 MeV may
undergo a reaction resulting in its absorption and the emission of a second neutron. Spectra for this
second neutron are tabulated only at, say, integral MeV neutron energies. Spectra exist at 7 MeV and
8 MeV but not at 7.32 MeV. One could derive a spectrum at 7.32 MeV using an interpolation procedure
and then sample from that distribution with one of the techniques described above. This procedure
would result in a different spectra for each possible neutron energy and is absurdly impractical.
Instead, means to sample a value at an intermediate energy from distributions tabulated at specific
energies have been developed.

Generalizing the example of the previous paragraph, a value T is desired from a nonexistent
distribution at E which lies between the distributions tabulated at E!o and EM. The parameter o
specifies the fractional position of E in the interval,

E_Elo
ETEP
E=(1-a)E°+aE".



EQUAL PROBABLE BIN METHOD

Again the simplest method is equal probable bins. The corresponding bins are selected from both the
‘lo” and ‘hi’ bin sets

j=NE& +1.

A value for T is found from each set
T*=(1-&,)n2+ &/
T"=(1- 62)77;; + ﬁzn;i

and the final value found through linear interpolation
T=(1-a)T"+aT" .

Although this method is fast and effectively vectorized, it suffers from the same liabilities of the
equal probable bin method mentioned earlier. Moreover, the final interpolation to find T has no
theoretical basis and may introduce errors. : ‘

TABLE LOOKUP METHOD

The traditional technique for interpolation with the table lookup method is very similar to the equal
probable bin method. Again, with the same random number, values T! and TH are found and then used
in the final interpolation. Observations of the table lookup method made earlier apply here, too.

STATISTICAL INTERPOLATION

The alias method cannot take advantage of the simple linear interpolation used as the last step in the
other interpolation methods because there is no correlation between the values selected with the same
random number from the ‘io’ and ‘hi’ alias distributions. This is a consequence of the rearrangement of
probabilities inherent to the alias method. Instead, a statistical method of interpolation must be used.
This technique presented here can also be applied to the table lookup method.

Instead of sampling from both the ‘1o’ and ‘hi’ distributions for each event, the statistical interpolation
method samples from either ‘lo’ or ‘hi’ with a probability governed by the parameter . The result,
Thilo, is transposed to the interval (TminTmax) determined again by a. The ‘lo’ distribution is
sampled if

¢<(1-a),



otherwise, the ‘hi” distribution is sampled. The final value T is given by

_ T (T;ll‘lt'l:_Thilo)+ T (Thxlo Thxlo)

min min
“rhilo hilo
r Tmm ’
where
_ il hi
Tmin - (l - a)lmam + aTm:n

T = (1= )T+ 0T,

and ‘hilo’ refers to either ‘hi’ or 1o’ depending on which dlstrlbutlon was sampled. The ‘max’ and min’
values of T are the largest and smallest values of T tabulated.

This method reproduces the distribution found with the unit base transformation interpolation scheme®
to within statistical errors if a linear function is sampled between tabulated points. The unit base
scheme is used to generate ENDF multi-group transfer matrices.

NUMERICAL RESULTS

Execution times on the Cray-XMP for the various methods were found by sampling from a typical
distribution: the neutron spectra arising from the (n,n’) reaction on vanadium-51. The tabulated spectra
contain 105 values at the incident neutron energy of 5 MeV and 103 values at 7 MeV. The interpolation
schemes used both distributions while others used only the lower energy spectra. The equal probable
bin method used 32 bins. All methods sampled 1000 events.

Table 2 gives the times required for each sample for the various methods, both in scalar and vector
modes.

Table lookup times vary with different tables; the other times are insensitive to table length or
makeup. A time is given for a vectorized table lookup. As mentioned early, table lookup cannot be
vectorized. The speedup given in the table accounts for vectorized generation of random numbers. The
hand assembly coded routine LUF® was used to perform the table lookup. This routine uses a combined
binary and linear search and has been optimized for vector architectures. All other routines are coded
in FORTRAN.

The equal probable bin method is the fastest of all the methods and profits from vectu.. .ation. The
alias method is 30% faster than table lookup in scalar mode but the vectorized version is nine times
faster. The vectorized alias method is 50% slower than equal probable bin. Recall, however, that
equal probable bin gives up accuracy for its speed; alias is nearly as fast as equal probable bin and is as
accurate as table lookup. Adding the increased accuracy of linear sampling between tabulated points
increases run time by 40%.

Interpolation between tabulated distributions adds only 20% to the time required by the equal probable
bin method. Interpolation nearly doubles the compute time required by alias. The transformation from
the sampled basis to the interpolated basis requires substantial arithmetic. Alias takes almost four
times the compute time of equal probable bin but avoids the problem of losing detail in the distribution.
As is always the case, users of these methods must evaluate the trade-off between speed and accuracy.
In contrast to table lookup, this trade-off is not offensive.
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Table 1. Generating an Example Alias Representation.
step 1 step 2 step 3 step 4 step 5 ' step 6
recipient event 2 1 4 S 6 3
donor event 1 3 3 3 3 3
event original updated probability distribution after step
prob.
1 24 1533 0.0 0.0 0.0 0.0 0.0
2 .08 0.0 0.0 0.0 0.0 0.0 0.0
3 28 .28 2667 22 1733 1667 0.0
4 12 12 12 0.0 0.0 0.0 0.0
5 12 12 12 12 0.0 0.0 0.0
6 .16 16 .16 16 .16 0.0 0.0
non-alias evolving alias representation (H}-/ A))
event () ‘
1 92/3 - .92/3 92/3 92/3 92/3
2 48/1 48/1 48/1 48/1 48/1 48/1
3 ‘ 1.00/3
4 72/3 72/3 72/3 72/3
5 72/3 72/3 72/3
6 96/3 .96/3
Table 2. Cray-XMP execution tim
method usec/sample speedup
scalar vectorized
without interpolation
equal probable bin 2.280 0.294 7.76
table lookup (uniform) 6.245 3.790 1.65
alias (uniform) 4.290 0.428 10.02
alias (linear) 5.831 0.642 9.08
with interpolation
equal probable bin 3.227 0.340 9.49
alias (linear) 8.471 1.160 7.30




Figure 1. Sampling From a Uniform Distribution.
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Figure 2. Sampling From a Linearly Varying Distribution.
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