M9u08002

CoNF-90/025C -

WSRC-MS--90-15¢
DE91 007241

ARCHY: A TOOL FOR FORTRAN CODE MAINTENANCE AND
DEVELOPMENT (U)

'l’(’ﬂ;hrn/: 2. £ Fremy
Bé,a SR

‘ i
BY FEB 0 8 1991

J. E. AULL .

NUCLEAR REACTOR TECHNOLOGY AND SCIENTIFIC COMPUTATIONS
WESTINGHOUSE SAVANNAH RIVER COMPANY
AIKEN, SC 29808

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employses, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its nse would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily atate or reflect those of the
United | ates Government or any agency thereof.

WESTINGHOUSE COMPUTER SYMPOSIUM
FOX CHAPEL YACHT CLUB
FOX CHAPEL, PENNSYLVANIA
OCTOBER 1990

MASTER

DISTRIBUTION OF THIS

WSRC-MS-90-150

ARCHY: A TOOL FOR FORTRAN CODE MAINTENANCE AND
DEVELOPMENT (U)

by
J.E. Aull

Nuclear Reactor Technology and Scientific Computations
Westinghouse Savannah River Company

Savannah River Site

Aiken, South Carolina 29808

(803) 725-2622

ABSTRACT

Analysis and Reverse Engineering of Code Using Hierarchy and Yourdon (ARCHY)
diagrams is a tool for development and maintenance of FORTRAN programs. When FORTRAN
source code is read by ARCHY, it automatically creates a database that includes a data dictionary,
which lists each variable, its dimensions, type, category (set, referenced, passed), module calling
structure, and common block information. The database exists in an ASCII file that can be directly
edited or maintained with the ARCHY database editor. The database is used by ARCHY to
produce structure charts and Yourdon data flow diagrams in PostScript format. ARCHY also
transfers database information such as a variable definitions, module descriptions, and technical
references to and from module headers.

ARCHY contains several utilities for making programs more readable. It can automatically
indent the body of loops and conditionals and resequence statement labels. Various language
extensions are translated into FORTRAN-77 to increase code portability. ARCHY frames
comment statements and groups FORMAT statements at the end of modules. It can alphabetize
modules within a program, end-of-line labels can be added, and it can also change executable
statements to upper or lower case.

ARCHY runs under the VAX-VMS operating system and inputs from VAX-FORTRAN,
IBM-FORTRAN, and CRAY FORTRAN source files.

INTRODUCTION

This paper describes a set of software tools called ARCHY that were developed in the Reactor
Physics Group of the Savannah River Laboratory, which is operated for the U.S. Department of
Energy by Westinghouse Savannah River Company. In the following sections, the need for
reverse engineering tools within the computer industry is assessed. How ARCHY is used to
analyze and maintain existing applications and how it is used to develop new applications is
discussed. The last section provides a summary of the benefits of ARCHY.

9008002

WSRC-MS-90-150
DISCUSSION

Why Reverse Engineering Tools Are Needed

This section describes the problem that ARCHY was built to solve and examines the potential
market within the computer industry for a product like ARCHY.

There is a substantial investment within industry in computer applications that are written in
Third Generation Languages (3GL) such as FORTRAN. A study by Digital Equipment
Corporation estimated that it would cost more than $2 trillion to replace all of their 3GL code.'
Many of today's scientific applications are large programs written in FORTRAN before the advent
of structured programming or design methodologies such as the Yourdon method. In many cases
the documentation for these programs is often nonexistent or sketchy at best and the design used to
develop the program is completely missing. Many of these programs are being maintained by
experts who are approaching retirement.

The need to maintain FORTRAN programs is likely to continue for some time as most
scientists and engineers are well grounded in the language. In Levesque?, it is related that John
Backus was once asked by an interviewer what would be the nature of the language running on

supercomputers in the year 2000. He replied, "I can't tell you anything about its-nature, but I
know we will call it FORTRAN."

Maintenance of existing 3GL applications is expensive. Numerous surveys have shown that
70 to 80 percent of the effort within the life cycle of an application is devoted to maintenance.’ A
survey by Digital Equipment Corporation' found that there is an average of 170,000 lines of 3GL
code per maintenance programmer with enhancements being performed at the rate of 1 to 2 lines
per day. Clearly there is a need for tools that can enhance software maintenance productivity.

Computer-Assisted Software Engineering (CASE) tools are hard to cost justify. CASE tools
are designed to ease mainienance by automatically generating code based on the specification or
design of an application. Then when the program must be changed, the specification is changed
and a modified program is regenerated using the CASE tool. The costs for CASE hardware,
software, and training for a typical scenario are estimated at $30,000 per programmer.® In addition
to initial cost there is the inevitable loss of productivity as programmiers convert to use of the CASE
tool. Programmer productivity is difficult to measure and use of a CASE tool often imposes
adherence to a particular design methodology, which can be a management problem. Furthermore
many CASE tools are designed only for use in developing new applications and provide no help in
the maintenance phase of the software life cycle.

There is a great need for CASE tools to ease maintenance of existing FORTRAN programs by
making programs more readable as well as providing tools for documenting programs and the
underlying design within the programs. The remainder of this paper describes how ARCHY meets
this need as well as describing how it may be used to develop new software.

WSRC-MS-90-150
WHAT ARCHY DOES

ARCHY Is Used to Reverse Engineer Code

Often the responsibility for maintaining a large FORTRAN program is transferred to an
individual and the program is accompanied by minimal or nonexistent documentation. Upon
examination of the source code, the unfortunate new maintainer may find it incomprehensible
because of statement numbers in random order and lack of comment lines and indention. This
section shows how ARCHY is used to assist a maintainer in such a predicament.

Figure. 1 is a dataflow diagram that shows an overview of the sequence in which various
ARCHY tools are used. Each step in the sequence is then expanded in more detail. The diagram
uses the Yourdon symbology wherein files or data stores are represented by parallel lines,
transforms (i.e., programs) are represented by circles, and the flow of data between a transform
and file is represented by an arrow.

File 1 (Figure 1) is a messy program that needs to be cleaned up in order to be easily
comprekiended by the maintainer. It is fed into the cleanup utilities that produce a program with the
body of loops and IF-THEN-ELSE statements indented, statement numbers in sequence, modules
alphabetized and separated, comment lines framed, and end-of-line labels appended. Next the
unfamiliar source code i3 processed by the DECIFE program, which creates a database of entities
within the program including modules with their calling structure, variables, and common blocks.
This database (file 3 in Figure 1) is then accessed by various report writing programs such as
STRUCT (not shown), which produces a structure chart that shows what submodules are called
by each module. The maintainer then enters descriptions of modules, variables, and common
blocks into the database using the DB program. Lastly, INCORP is used to put descriptive
information from the database into the program in the form of comment statements at the head of
each module.

The cleanup utilities are best illustrated by an example of what a program looks like before and
after cleaning. Programs always behave in an identical manner after cleaning as they do before
cleaning. The only benefit of cleaning is to make a program easier to read and thus easier to
understand. Figure 2 shows a program before cleaning (a) and the same program after cleaning
(b). The indention of the body of control structures, resequencing of statement numbers,
alphabetizing of modules, and framing of comment lines all serve to enhance program readability.
Other features of the cleanup utilities include the conversion of certain non-standard language
extensions to FORTRAN-77. These include the VAX TAB format, Hollerith constants, and end-
of-line comments.

Figure 3 shows the type of information that is stored in an ARCHY database when a
program is analyzed by the DECIFE utility. The database is organized into seven tables, of
which, three are shown in Figure 3. The other four tables contain information used to
generate dataflow diagrams. The database is actually just an ASCII file, which means it is
portable and can be easily browsed or modified using any text editor. The ARCHY system
also includes a menu-driven database editor, which ensures that the database is in the
proper format and performs referential integrity checks. The database is useful as a point
of reference when examining a particular module or variable. Varicus reports based on the
database contents are printed by ARCHY including a data dictionary of variables, module
descriptions, and structure charts,

M0008002

WSRC-MS-90-150

1

CLEAN
Indentand -
Resequence
Statement
Numbers

File 1
PROGRAM.FOR;1 2
File 2
PROGRAM.FOR;2

from Existing
Program

3
D
Edit Database

Insert Database
Information into
Module Headers

File 3

File 4
PROGRAM RCH;1

PROGRAM.FOR;3

Figure 1. Reverse Engineering Using ARCHY

M9008002

WSRC-MS-90-150

a. Before Cleaning

PROGRAM MAIN

20000 I =1,3
IF (I.EQ.2) THEN
WRITE (6,250)

250 FORMAT (' UNEQUAL')
ELSE
GOTO 40
ENDDO

40 WRITE(8,300)

300 FORMAT (1X, 7HTHE END)
CALL A |
STOP
END
SUBROUTINE A
WRITE (6,111)

111 FORMAT (1X, 'PROGEND')
RETURN
END

b. After cleaning

program main MAINOOO1

10 do 1i=1,3 MAINO002
if (i.eq.2) then 'MAINOO0OQ3

write (6, 9010) MAINOQO4

else ‘ MAINOOOS

goto 20 MAINOUO6

endif MAINOQO7

enddo MAINOOOS

20 write(8,9020) MAINOOQO9
call a . ‘ MAINOO10

stop MAINOO11

9010 format (' UNEQUAL') MAINOQO12
9020 format (1x,'THE END') MAINOO13
end MAINO0014

C**#
c***********'k*****************************‘k****************************#

subroutine a A 0001
write(6,9010) A 0002
return A 0003
9010 format (1x, 'PROGEND') A 0004
end A 0005

Figure 2. Program Before and After Cleaning

M~8008002

WSRC-MS-90-150

Modules
Description (purpose, history, theory, algorithm)
Called modules | 8
Variables (external or internal, referenced or set)
Parameters ‘

Data Dictionary of Variables
Definition
Dimensions
T

ype
Modules Using (in case of duplicates)

Common Blocks
Description
Module
Variables

Figure 3. ARCHY Database Structure

The structure chart output by the STRUCT program of ARCHY in PostScript format is
extremely useful to the maintenance programmer. An example of such a structure chart is shown
in Figure 4. Each box in the chart represents a module, and boxes under a box are the ones called
from that module. In this example, CLEAN, ALPHA, and LABEL are all modules that are called
by the BEAUTIFY module. The descriptions in each box are stored in the database and must be
input by the user. ‘

As the maintainer gains understanding of the program, variable definitions, common block
descriptions, maintenance history, and information about the theory and algorithm used in the <odc
may be entered into the database. This descriptive information is then transferred to the progran: in
the form of module headers by using the INCORP program. An example of 2 module header is
shown in Figure 5. The header format can also be read by the DECIFE program, which stores the
descriptive information in the ARCHY database. This feature is useful for two reasons:

o It allows the programmer to modify descriptions in the header as the program is modified and
then feeds the modified header information to the database instead of modifying database
descriptions separately from the program modification; and

o It provides the ability to read database information from module headers thus allowing the
maintenance programmer to make use of an existing header at the beginning of the task of
maintaining a program.

The maintainer simply edits the header of the program to make it conform to the ARCHY format,

then runs DECIFE, and the descriptions are stored in the appropriate fields in the new ARCHY
database. .

M9008002

WSRC-MS-90-150

WSRC-MS-90-150

c**#”

a0 0000O0

Module name:
GETCALLS

Purpose:

Read XRF file and store the modules called by each module.

History: _
John Aull; WSRC; 6/01/90 Mod- SDCN#17;6/28/90;JEA

Structure chart description:
GET LIST OF WHAT MODULES ARE CALLED.

Called modules:
FINDLEN132 FINDCHAR

External variables - used:
NMOD
NUMBER OF MODULES

External variables - set:

MODULE (100, 50)

MODULE NAME ALONG WITH ALL THE MODULES IT CALLS.

Internal variables:
ACHAR
Line read from .XRF file.

IST
Starting point for scan.

LENL
LENGTH OF A STRING.

I*x4

CHAR*32

CHAR*132

I*4

I*4

c***k**#

Figure 5. Module Header

M9008002

| WSRC-MS-90-150
ARCHY Database Is Maintained as the System Is Modified

The ARCHY database is easily updated as the program goes through extensive modification. The
procedure for updating the database during this program modification is shown in Figure 6. The

first transform represents the modification of a program by a programmer. As the program is = -

modified, the programmer may not bother to make the corresponding changes to the ARCHY
database. After completing the modification, a new database is generated using DECIFE, and then

the MIX program is executed, which is able to extract the descriptive material from the old database
~ and merge it with the new database.

File 2
PROG.FOR;2

DECIFE
Make Database
from Existing
Program

1
USER EDIT
 Edit Program

/

File 4 File 3
PROG.RCH;2 PROG.RCH;1

2
€
g
‘ &
File 1 \ § b&
PROG.FOR;1 !

Merge Two
Differsnat
Databases

File §
PROG.RCH;3

Figure 6. Major Program Modification Using ARCHY

M$008002

3 ‘ WSRC-MS-90-150
ARCHY Is Used For Development of New Software

ARCHY is also useful in development of new applications as illustrated in Figure 7. This
process begins with the entry of descriptive information about files, transforms, and dataflows,
which are stored in separate tables in the database. The designer must also specify the location of
these symbols, which are stored in a fourth table. The DATAFLOW utility then generates a

- dataflow diagram in a PostScript file. In fact, Figure 7 is a dataflow diagrani that was generated by
the DATAFLOW program. Next, the designer enters modules and variables into the database.
The SKELETON utility generates a skeleton program consisting of subroutine calls to each defined
module along with the the SUBROUTINE statement for the module and type statements for the
variables within that module. Descriptive information like that in the module headers is printed
out. This information is referred to as a module design sheet and serves as an instruction sheet for
the programmer developing the. module. :

1 SKELT
DB
Design Dgta program

ele(q welselq

%
File 1 o

DATABASE g
— =

=)

£ 3

a :

5 1

g File 2

| PROGRAM

Dataflow
Diagram

Figure 7. New Development with ARCHY

10

M9008002

WSRC-MS-90-150

TRAMP is another ARCHY utility that is useful in new code development. As development
proceeds, it is often found that a variable that exists in one module is needed in another module.

TRAMP adds the missing variable to all the intervening subroutine calls so that it is delivered to the
module that needs it.

Details of ARCHY Ecxecution

ARCHY runs on 2 VAX under VMS 5.3. It is written in VAX FORTRAN and each of the
utilities mentioned previously is actually a FORTRAN program. The system is menu-driven and

" the menu program makes use of the DEC SMG library. As previously mentioned, the ARCHY

database is actually an ASCII file. There is one database for each program file and by default, the
database is named with the same name as the program with an ".RCH" extension. ARCHY is
used to analyze IBM FORTRAN and Cray FORTRAN files but they must be copied to the VAX
before being fed into ARCHY. ' ‘ ‘

SUMMARY

ARCHY comprises a useful set of software tools that ease maintenance of existing FORTRAN

~ programs by making programs more readable as well as providing the means for documenting

programs and the underlying design within programs. ARCHY provides a relatively painless entry
into the realm of computer-assisted software engineering and, in addition, provides an environment
for development of new software. '

ACKNOWLEDGEMENT

The information in this article was developed during the course of work under Contract DE-AC09-
89SR18035 with the U.S. Department of Energy.

REFERENCES

1. S.A. Stern. "CASE and Software Re-Engineering". Languages and Tools SIG Session
Notes, U.S. DECUS Symposium, New Orleans, LA, pp. 156-163 (1990).

2. J. M. Levesque and J.W. Williamson. A Guidebook to Fortran on Supercomputers.
Academic Press, CA (1989).

3. "Justifying Technology Decisions". Digiial Review, pp. 34-38 (Oct. 2, 1989).

11
M9006002

sy

