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SNEX: SEMIANALYTIC SOLUTION OF THE ONE-DIMENSIONAL 
DISCRETE ORDINATES (S ) TRANSPORT EQUATIONS WITH DIAMOND 

DIFFERENCED ANGULAR FLUXES

by

B. R. Wienke

ABSTRACT

SNEX is a code which exactly solves the spatial single 
group, one-dimensional (plane, cylinder, sphere) discrete 
ordinates transport equations with diamond approximation for 
the angular fluxes. Its purposes are to provide a standard 
for comparisons of spatial differencing schemes as well as 
an exact numerical solution to the discrete ordinates equa­
tions in one-dimensional geometries. Full solutions are 
generated by numerically integrating the inhomogeneous 
source terms and adding them to the homogeneous (analytic) 
solutions in the standard fashion. Simple relationships 
between angular quadratures permit application of the 
method to plane, cylindrical and spherical geometries. 
Analysis is confined to isotropic scattering. Simple 
theory and methodology are presented and discussed. A 
code listing and sample problems are also included.

I. INTRODUCTION
Typically, multigroup discrete ordinates codes solve the transport equations 

by using finite difference or finite element techniques on compatible meshes.
As the meshes are refined, solutions converge to the exact values. An alterna­
tive, exact (but more time consuming) approach consists in solving the transport 
equations numerically by formal inversion of differential operators. Such pro­
cedure also has the advantage that exact solutions are generated independently 
of mesh size for given convergence criteria. In the following, we describe and 
detail SNEX, a transport equation solver which can be used to provide exact
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numerical solutions to the linear transport equation in one dimensional plane, 
cylindrical and spherical geometries.

SNEX solves the single group transport equation with isotropic scattering 
for specified left and right boundary conditions. It is structured closely to 
ONETRAN"*" as far as input/output formats. Coarse and fine meshes are defined 

with material zones specified on the coarse mesh. External sources of any 
functional form are admissible. Both the standard diamond and step starting 
schemes are options. Iteration on the scattering source is controlled by a 
convergence parameter computed from the difference in successive scalar flux 
estimates. To stabilize scattering iteration cycles, weighted averages of flux 
iterates may be employed. The code is structured for arbitrary S order, de­
pending, of course, on available core storage (which scales roughly as the fine 
mesh size times the order). All angular quadrature data, such as directions 
cosines, weights and angular coefficients, are read into the code directly.
Output consists of pointwise angular and scalar fluxes computed on the fine mesh, 
as well as a listing of all input parameters and options. The solution algo­
rithm requires numerical integration of an inhomogeneous source term (composed
of external, scattering and angular edge components) and is effected with an

2adaptive Newton-Cotes (7-point) routine .
SNEX serves to provide an exact numerical solution to the monoenergetic dis­

crete ordinates equations and a standard for comparison of differencing schemes.

II. TRANSPORT EQUATION, DISCRETE ORDINATES APPROXIMATION AND 
PHENOMENOLOGY

The time independent transport (linear) equation is written in the mono- 
energetic case.

+ Olp 4’’ + q (i)

where ip is the particle flux 

ing cross sections, are 
and q is the external source 
the explicit form in the one

(density times speed), are the total, scatter-
unit vectors in the directions of particle travel 
of particles. The streaming operator, takes
dimensional geometries.
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v-n i/; = y (plane)

i

= p ^ (cylinder)

= -^(r2^) +-^ !^(l-y2H, (sphere)

where y is the angle between the position vector (in the three systems) and the 
direction of travel. The direction cosines satisfy.

y2 + n2 + 52 = (3)

and.

tan * - i • (4)

The discrete ordinates approximation assume that the value of the angular
flux, or ordinate, is determined at sets of discrete directions, ft =m
(ym> rim* with m = 1> 2, 3, ... M. The corresponding angular flux is denoted 

generally by,

V(t) = ’ (5)

and angular integrals and moments involving ^ are evaluated with quadrature 
weights, w , such that

(6)

for,
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1 (7)£
i=l

w = m

Differencing of the angular variable is based upon the diamond approxi- 
3

mation between edge, ^m+i/2’ anc* ce-*--*- centered, fluxes,

' Vn/2 + Vl/2' (8)

which yields a simple recursion relationship for the edge (entering) flux in the
i_T_

nr angular cell.

Vi/2 ■ 2Vl - 2Vz + + 2^, ± 1/2 (9)

The angular differenced form of the transport equation in each of the three 
geometries is written.

^m -|^m + aij> = S 
3x m m (plane)

3 1+ (amfl/2 ^m+1/2 " am-l/2 Vl/2>wm + pa^m = p Sm

(cylinder)

li 3 2 12Pm (r il; ) + (a /0 ip.-, /0 -a i /o 'I' i /o)w r +r 9r rm nri-1/2 rm+l/2 m-1/2 Ym-l/2 m o\pm m
(sphere) (10)

with am+i/2 sets angular coefficients satisfying,

“nri-l/2 ' Vl/2 ’ 0 (Plane)

Vl/2 - Vl/2 ’ -"m “m (cylinder)
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(sphere)/O “ a n /o = -2w p mfl/2 m-1/2 m m

ai/2 aM+l/2 0’ (all geometries) (11)

and S the sum of external and scattering sources, m

M
Sm = q + V' wo (p -hi H m Mm / ^ m s n m yn

n=l
(12)

Using Eqs. (8) and (11), we can rewrite Eqs. (10) into the simple general form,

P a ^m M -5—m + p y 4* +qa^ = qS +p y \p ,/0 9q m m m M m ^ m m m m-1/2 (13)

where in the various geometries,

q = x 

^m °« (plane)

q = p

-l
\ • (Vl/2 + Vl/2' (umV (cylinder)

q=r

-1ym ■ (“m+l/2 + Vl/2> (wmV • (sPhere) (14)

and the am+2_/2 still satisfy Eq. (11).
Equation (13) is easily inverted, with the result.

-tf(q-q0)
v-Y.

'Pm =m Ym
ip° e
tti

m m

5



+ e + (15)

~£R 
Pm q m / dqT

ym m m
m

Ym^m-l/2

for ij;® the boundary angular flux at q^Q- The content of Eq. (15) is straight­

forward. The first term on the right hand side is the homogeneous solution 
and the second term is the inhomogeneous integral. The pseudosource angular 
flux term, if; aPPearing in ^q^ i-8 generated recusively from lower
order solutions by means of Eq. (9). SNEX solves Eq. (15) by numerically inte­
grating the source terms and adding them to the homogeneous solutions. If 
scattering is present, iteration takes place on the scattering term, Eq. (12), 
subject to satisfaction of the convergence criterion for the scalar flux.

The angular parameters cx^, w^, p^ are user specified. Typically in
applications, the quadrature sets (p , w } are chosen to be Gaussian and them m

are generated recursively from Eqs. (11) in the three geometries. The 
coefficients Ym ate automatically computed by SNEX.

III. METHODOLOGY

Equation (15) is evaluated numerically once boundary conditions and
starting direction options are specified. Space/angle sweeps start at the right
boundary for specified incoming boundary fluxes (p < 0) and proceed to the leftm
boundary for specified incoming boundary fluxes (p > 0) and then return to them
right boundary. Directions are angularly coupled through Eq. (9). In addition 
to boundary values, the value of must be specified to "start" the calcula­
tion. In cylindrical and spherical geometry, corresP°nds to the angular
flux at y = -1, n = 0. Examination of Eqs. (2) reveals that ^2/2 t^ieri satisfies 
the slab-like equation in all three geometries,

3^1/2
9q + ^1/2 ~ Sl/2 (16)

which can be simply integrated for constant source Alternatively, one
might make the step approximation,
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+1/2 ' +1’ (17)

in which case the angular coupling is somewhat simplified in higher orders.
Both options are available in SNEX. In the case of pure absorbing regions, the 
computation is completed after one space/angle sweep. If scattering is present, 
the scattering source, Eq. (12), is updated with the new angular flux iterate at 
the end of each space/angle sweep until convergence is met, or the iteration 

limit is exceeded.
The integral over the angular flux ^m+;L/2 on t*ie r:*-8^lt hand side of Eq. (15) 

could be generated numerically from a corresponding lower order, l _< m-1, equa­
tion of the same functional form. Thus, each angular flux term of order l <_ m-1, 
appearing on the right hand side of Eq. (15) would be the result of ^-dimensional 
nested integrations. Such procedure would be extremely time consuming and prone
to divergence, particularly if negative fluxes occur either at cell edges or in

4
the integrand. Early investigations have demonstrated the occurrence of nega­
tive fluxes (due to the angular diamond approximation) for highly localized 
sources in absorbing regions. To avoid this situation, the effective source 

fluxes, ’J;m+2y2, aPPeari-ng i-n Eq* (15) were approximated as piecewise linear 
functions on the fine mesh. That is, for given m in Eq. (15), each lower order 
flux term, l <_ m-1 computed earlier, is linearly interpolated across the mesh 
cell. As the mesh size decreases, the solutions converge to the exact result.
For this reason, the overall approach in cylindrical and spherical geometries 
(y^O) is termed semianalytic.

IV. INPUT AND CODE PARAMETERS

Input to SNEX consists of the following parameters and arrays:

ANAME - title
A - S^ order (arbitrary)

ICT - coarse mesh intervals (arbitrary)
IACC - acceleration parameter (100-0)
IGEOM - geometry (1-plane, 2-cylinder, 3-sphere)

IBL - left boundary condition (0-specified 
flux, 1-reflective)
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IBR - right boundary condition (O-specified 
flux)

IL - iteration limit (arbitrary)
ISTEP - starting direction option (0-slab 

exact, 1-step)
CS(A) - direction cosines 
W(A) - weights

B(A+l) - angular coefficients 
X(ICT+1) - coarse mesh
IIT(ICT) - fine mesh intervals/coarse mesh 
SG(ICT) - total cross sections/coarse mesh 
ST(ICT) - scattering cross sections/coarse mesh 
Q(ICT) - external source/coarse mesh 

FB(l,A/2) - left boundary flux,
FB(IFT+l,A/2) - right boundary flux

with IFT the number of fine mesh points. Additionally the following parameters 
and arrays are employed in SNEX:

Z(IFT+1) - 
DX(ICT) - 

FB(IFT+1,A+l) - 
SF(IFT+1) - 

PB(IFT+1,A+l) - 
CV - 
IN - 

RIACC -

fine mesh points
fine mesh interval widths/coarse mesh 

angular flux 
scalar flux
previous iterate angular flux 
convergence parameter 
iteration count
acceleration parameter (IACC/100).

In present form, A+l, IFT+1 are set at 17 and 301 in array statements, while 
ICT is set to 10. The user is free to change these parameters to suit his needs. 
The left boundary flux FB(l,A/2) for outgoing directions is only read if 
IGEOM = 1 (plane). Otherwise, in curved (cylinder, sphere) geometries 
(IGEOM = 2,3), a reflective boundary condition is assigned at the origin (left 
boundary). The acceleration parameter IACC is used to fractionally weight pre­
sently computed values of the angular flux with the previous flux iterates. The 
weighting parameter used on the flux iterate is RIACC = IACC/100 while the
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parameter RIACCM = 1.-RIACC is used on the (k-l)t^ flux iterate. In most appli­

cations, successive flux iterations monotonically approach the convergence 
criterion and one uses IACC = 100. In oscillatory situations, further mesh 
refinement and/or taking IACC<100 will aid convergence. If ISTEP=0 is chosen as 

the starting direction option, 4^ = ^1^2* yielding a slab solution for 4^ as 
seen from Eq. (13). If ISTEP = 1, 4^ T4 anc* t^e s^-a^ equation for ^1/2 Pro-
vides the starting point for space/angle sweeps.

The origin is a singular point in curved geometries, as seen from Eq. (13) 
or (15). Integrations over the origin diverge (overflow). In these cases, the 
origin is automatically set to 1x10 ^ for computational simplicity.

The data are read into SNEX in the following order and formats:

ANAME(10) 10A8
A,ICT,IACC,IGEOM,IBL,IBR,ISTEP 10(17,lx)
CS (A) 5(E14.8,2x)
W(A) 5(E14.8,2x)
B(A) 5(E14.8,2x)
X(ICT) 5(E14.8,2x)
IIT(ICT) 10 (17,lx)
SG(ICT) 10(F7.2,lx)
ST(ICT) 10(F7.2,lx)
Q(ICT) 10(F7.2,lx)
FB(l,A/2) 5(E14.8,2x)
FB(IFTP,A/2) 5(E14.8,2x)

V. SAMPLE PROBLEM

As a sample problem, we consider a scattering/absorbing sphere (IGE0M=3) 1
mean free path (mfp) thick with uniform a /a = .5. An isotropic source iss t
placed in a localized slice of thickness .00002 mfp at unit distance from the 
origin. Reflective boundary conditions are automatically assigned at the left 
boundary and the incoming right boundary flux is taken to be zero. An S^ an­
gular quadrature (Gaussian) is assigned and the slab starting direction option 
is used (ISTOP=0). The acceleration parameter is set to maximum value (IACC=100) 
and the iteration limit to 30 (1L=30). The sphere is coarse meshed into 3 
regions of approximately .1 mfp (fine mesh) intervals.
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The input file for the above sample problem is given below.

A9S3R3ER/SC4TTSR61? SOURCE TEST P^OStEI
A 3

-.TfellSSSOE+OT 
. 17392 700 = 00 
.00030000E*-00 
.10000000E-05 

1 1
. 10 . 10

0.05 0.05
0.00 1.00
0.00 1 .00
0.00 1.00
0.00 1 . DO

00000000 E + 00

100 3
33998100EO0 

. 32507200E + 00 

.29955000E03 

.990 00000 E-0 2 
10 
.10 

0.05 
0.00 
0. 00 
0.00 
0. 00

. OOOOOOOOE + OO

1 0 
. 339931OOE+OO 
. 325O72O0E + 00 
.57126700=>00 
. 10100000E-01

30 0
. 36113630EO0 
. 17392700E + 00
. 29955000E»00 .OOOOOOOOE+OO
.10000000E+02

The corresponding output is listed below. Entries are self-explanatory. 
Angular and scalar fluxes are given. For a given order A, there are A+l angular 
fluxes printed, with the (A+l) entry the starting direction flux, ^2/2' 
last two (unlabeled), numbers are the iteration count (IN) and acceleration para­
meter (RIACC).

A3S3R3ER/SCATTERER S0JRCE TEST PROBLEM

A ORDER 
3 INTERVALS 

100 ACCELERATION
3 PLANE/CYLINDER/SPHERE 
1 LEFT SOY/SPECIFIEO/REFLECTIVE 
0 RIGHT 33Y/SPEC IFIE0 

30 ITERATION LIMIT 
0 SIARTING/STEP

COARSE MESH
.10000000E-05 

FINE MESH
99000000E-02 .10100000E-0I 10000000E+02

1 1
.10000000E-05 
. 30070 700E +01 
.30020200E+01

10
. 99000000E-02 
. A0060600E+01 
•90010103E+01

CROSS SECTIONS

. 13100000E-01 

. 50050500E+01 

. 10000000E + 02
.10090900E+01 .20030300E+01
•60OAOA0OE+O1 .70030300E+01

. 10 . 10 .10

.05 .05 .05
sour: E

0.00 1.00 0.00
0.00 1 .00 0.00
0.00 1.00 0.00
0.00 1 .00 0.00
QUADRATURE!3AMMA/3ETA/C0SINE/WEIGHT)

.172227A3E+01
0.
-.36113630E+00 
.17392700E+00

.25172375E+01 

.29955000E+00 
-.33993100E+00 
.32507200E+00

.25172876E+01 

. 52126700E +00 

. 33998100E+OQ 

. 32607200E+00

.172227^3E+01 

.29955000E+00 0.

.36113630E+00 

.17392700E+00
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IEFTMIGHT SOUNDARr FLJXES

0. 0.

PaSITUN 
.100000E-05
.990000E-02
. 10100DE-31
. 100909E + 31
.233303E+01
. 333737E4-31
.A03636E *31
.503535E+31
.633A3AE>31
.733303E+01

.833232E+01 

.900131E+31 

.103330E+G2

A9GJLAR FLUX 
.22A131E-03 
.22A131E-33 
.255937E-03 
,22<rl99E-33 
.2A3263E-OA 
.2A1952E-3A 
.732370E-05 
.739365E-35 
.23A3A7E-35 
.262563E-35 
. 153357E-05 
.13931AE-35 
.911333E-3b 
.3Alb56E-36 
.531303E-06 
. 53A353E-36 
. 375995E-36 
.3A2763E-36 
.23b725E-Ob

.22A132E-03 

.539312E-33 

.2A5563E-3A 

.134132E-3A 

.331333E-05 

.23A513E-05 

.125765E-05 

.82A681E-06 

.555322E-06 

.372099E-06

.22A132E-03 

. 312321E-03 

.130919E-02 

. 166963E-04 

.799981E-05 

.'V07675E-05 

. 252053E-05 

.169865E-35 

. U99G9E-05 
•367638E—3b

.22A131E-33 

. 5b303bE-03 
• 3 3A320E-03 
•3A2342E-33 
.20327bE-03 
.3612b3E-3A 
.A5b2b7E-0A 
.273AbbE-0<t 
. l77189E-3<» 
.121113E-3A

.21355AE-3b 

. 13b2A3E-3b 

. 121278E-3b 
•599937E-37 
•525233E-37 
3.

3.

,235955E-Ob 
. 1208A8E-0b

3.

.b31b22E-Ob 

. AA3721E-0b 
• 23 5307E-0b

. 3b05A5E-05 
•b295bAE-35 
.A71163E-05

P3SITI3N 
.10G03G33E-05 
.99330033E-32 
.1010G330E-31 
.10093933E+31 
. 20333333E +31 
.33073700E+31 
.A30b3b33E+31 
.50353503E+31 
. b30A3<r33EOl 
.730303G3E+01 
.83323233E+31 
.93313133E+31 
.13333333E+32

SCALAR FLJX 
.22A18371E-33
• 599bAb9AE-3 3 
.58A18792E-03
• 15b70912 E-03
• 39733923E-3A 
.17233235E-3A 
.932bl353E-35 
.5b332532E-35 
.37192blbE-35 
•25518933E-B5 
.1833333bE-35 
•12911359E-35 
.91253Ab2E-36

9 1.333333

VI. CODE LISTING

The present code listing of SNEX used on the CDC 7600 under the Livermore 
Time Sharing System (LTSS) is listed below. All reads and writes to unit 59 are 

commands to a terminal. Units 5 and 6 are the standard input and output devices.
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LASL Identification No. LP-1066.

PR3G3A* SNEX {I NP'JT. 3UTP JT. TTY» T AP E 5* I NPUT» T AP ES-3UT P UT » T A P E 59* T T Y 
1 )
cannaN /aNC/our/ hs^fa?. valu?
SOHNGN Z ( 3 0 1 ) > S S ( 1 0 ) » =3(301,17), CSdS), 3(16), $9( 300, 16), ST(1 

1 0)
CQNNON PB(301,17>, ^(16), K, N, KC, AH, ISTEP 
DIMENSION S F(301 ) , ANAME(10 )
DIMENSION X(ll), DX(10), IIT(IO), 0(10,16), 9(17), KG(300)
INTEGER A, AP, AH, AHP 

C READ DATA
READ ( 5,280) (ANAME(I ) ,I■1,10):v*i.e-a
T M AX * 1.0
READ (5,290) A,ICT,IACS,IGEOM,I3L,I3R,IL,ISTEP
AH-A/2
A P » A ♦ 1
AHP-AH♦1
RIACC-IACC
RIACC-RIACC/IOO.
RIACCM-1.-RIACC
READ ( 5,390) (CS( I), I-1,A )
READ ( 5,390 ) U(I>,I»1,A)
READ ( 5,390 ) ( 9 ( I ) , I * 1,AP )
ICTP-ICT+l
READ ( 5, 390) ( X ( I ) , I-l,ICTP)
IF (X(l).EO.O.00.A4D.IGEOM.NE.l) X(l)-l.F-6 
READ ( 5,290) ( IIT(I),1*1,ICT)
READ ( 5,270 ) (SG (I ) .I-l,ICT)
READ ( 5,270) (ST( I) , I•1,ICT)
DO 10 N-1, A

10 READ ( 5,270 ) (0( I ,N).I-1,ICT)
C FORM MESH,MATERIAL REGIONS

IFT-0
DO 20 I-l,A

20 G(I)-19(I)*B(I*1))/A[l)
DO 30 I -1, ICT 
F T * 11 T (I )
IFT-IFT*IIT(I)

30 DX(I> » < X(1 + 1>-X(I))/FT 
IFTP-IFT+1
READ ( 5, 390 ) ( F9 ( IFTP,I),I=1,AH)
F B(IFTP,AP)*F3( IFTP, 1 )
IF (IGEOM.SO.2.OR.IGEOM.EO.3) IBL-1
IF (IBL.E3.1) GO TO AO
READ ( 5,390 ) (F9(1,I ) ,I - AHP . A )
FB(1,AP)»F3(1,1)

AO CONTINJE
DO 50 I-l,IFTP 
DO 50 J = 1, A 

50 P B(I,J)-0.00 
L-0
DO 70 1*1,ICT 
IT-11T (I )
DO 70 J-1,IT 
L-L + l
DO 60 N-1,A 

60 SR(L,N)-3(I,N)
KG ( L ) • I

70 Z(l)*X(I)+(J-l)*DX(I)
Z(IFTP)»X(ICTP)

C WRITE DATA
WRITE ( 6,290) ! AN AME( I ),I * 1,10)
WRITE (6,A 10)
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WRITE (‘>,330 ) 4, ICT,IACC,IGEON, IBL »I 3R , IL,ISTEP
WRITE (bt300)
WRITE (6,390) (X(I),1*1,ICTP)
WRITE (6.310)
WRITE (6,290) (IIT(I),1*1,ICT)
WRITE (6,390) (Z(I),1*1,IFTP)
WRITE (6,320)
WRITE (6,270) (SG(I)»I«1»ICT)
WRITE (6,270) (ST(I)»I*1»ICT)
WRITE (6,330)
DO 90 N * 1, 4

80 WRITE (6,270) (0(I.N),1*1,ICT)
WRITE (6,340)
WRITE (6,390) (G( I). 1*1,4)
WRITE (6,390) (9(1),1*1,4P)
WRITE (6,390) (CS(I).I*1,4)
WRITE (6,390) (wm,1*1,4>
WRITE (6,370)
IF (IBL.E3.0) WRITE (6,390) (F9(1,I).I* 4H P » 4 )
WRITE (6,390) (F 8( I FTP,I ) ,I*1,4H)
WRITE (59,280) (4N4NE(I)»I*1»10)
WRITE (59,410)
WRITE (59,390) 4, ICT,I4CC, IGEOM, IBL.IBR ,IL,ISTEP
WRITE (59,300 )
WRITE (59.390) ( X ( I), 1*1, ICT? )
WRITE (59.310)
WRITE (59,290) ( IIT(I),I*1,ICT)
WRITE (59. 390 ) (Z (I ),1*1.IFTP)
WRITE (59,320)
WRITE (59,270) (SGI I),1*1.ICT)
WRITE (59,270) (S T(I),1*1,ICT)
C H* 0 • 00
DO 90 1*1, ICT

90 IF <ST(I>.ME.0.00) :h«STII) 
WRITE (59.330)
00 100 N*l.&

100 WRITE (59.270) (3(I.N).I«1.ICT) 
WRITE (59.3^0)
WRITE (59.390) (G(I).1*1.4) 
WRITE ( 59. 390 ) ( 3 (I ).I * 1.4P) 
WRITE ( 59.390) (CS( I).I * 1.4) 
WRITE (59.390) (W(I)»I*1»4) 

SP4CE/4NGIE SWEEPS
1 N* 0

110 COMTIN'JE 
IN*IM+1
WRITE (59.420) IN.T14X 
KC * 1
DO 120 1*1. IFT 
K-IFT-I+1 
Y * Z ( < )
*i*KG (K )
FB(<>4?)*S1(Y)

120 CONTINUE
DO 140 1*1.IFT 
K*IFT-I+1 
Y*Z(K)
M*KG(K)
DO 130 J *1.4H 
KC* J
FB(K.J)»FF(Y)
IF (J.EQ.1.4N0.

130 CONTINUE
ISTEP.EQ.l) FB(K.1)«S1(Y)



c

c

c

140 OOSTINJE
IF (IBL.NE.l) GO TO 160 
00 1 50 I *AHP,A 

150 FB(1,I)*F9(1.A-I+1)
160 CONTINUE

DO 180 1*1,IFT 
K * I
r-zu + i)
N*K3(K >
DO 170 J * AHP,A 
KC* J

170 F B(K +1,J)*FF(r)
190 CONTINUE

IF (CH.EO.O.OO) GO TO 220 
CONVERGENCE TEST 

TMAX-C V
DO 200 1*1,IFT’
T P * 0.0 
T F * 0.0
DO 190 J *1,A 
TP.TP + PB(I,J)* V(J )
TF*TF + F9( I,J)*W(J)

190 CONTINUE
CHAX*A8S((TP-TFI/TF)
IF (CNAX.GT.TNAX) TNAX*CMAX 

200 CONTINUE
IF (TNAX.LE.CV) GO TO 220 
DO 210 1*1 . IFTP 
DO 210 J * 1,A

210 PB(I,J>*FB<I»J>*RIACC+PB(I.J)*RIACCN 
IF (IN.GT.IL) GO TO 220 
GO TO 110 

223 CONTINUE
WRITE OUTPUT 

WRITE (59,410)
DO 240 1*1,IFTP 
S F(I)*0.0 
DO 230 J * 1,A

230 SF(I)*SF(I)+FB(I,J)*W(J>
240 CONTINUE

WRITE (6,350)
DO 250 1*1, IFTP

250 WRITE (6,400) (Z(I),(F3(I,K>,K*1,AP>) 
WRITE (6,360)
DO 260 1*1,IFTP

260 WRITE (6,390) (Z(I),SF(I>)
WRITE (6,410)
WRITE (6,420) IN,RIACC 
STOP

270
280
290
300
310
320
330
340
350
360
370
380

FORNAT (10(F7.2,1X) )
FORHAT (10 A3)
FORNAT (10(17,1X1)
FORNAT <1X,4X,11HCDARSE NESH/)
FORMAT ( 1X,4X,9HFINE MESH/)
FORNAT (1X,4X»14HCR3S$ SECTIONS/)
FORMAT (1X,4X,6HS0URCE/)
FORMAT (1X,4X,36HQUADRATURE(GAMMA/BETA/COSINE/WEIGHT)/)
FORMAT (//2X,8HPOSITION,7X,12HANGULAR FLUX)
FORMAT (/1X,3HP0SITI3N,8X,11HSCALAR FLUX)
FORMAT (IX,4X» 26HLEFT/RIGHT BOUNDART FLUXES/)
FORMAT (1X,4X,I3,6H ORDER/5X,I 3,1 OH I NTERVALS/5X,I 3,13H ACCELERAT I 

10N/5X,I 3,22H PL ANE/CTLI NOER/SPHERE/5X,I 3,30H LEFT BDY/SPEC I F IED / RE



2FLE:TI VE/5X»I3.20H RIGHT 9 0 T / S » EC I F I E 0 / 5 X»I 3.1 6H ITER4TI3'I LIHIT/S 
3 X.I3.14H STARTING/STEP//)

390 FORHAT (5(E14.0>2X))
A00 FORHAT (lX»EI2.6»3X*A(E12.(>»lX)/16X»A(E12t6»IX)/16X»A(E12.6»IX)/16 

X X»5(E12.6.1X1)
A10 FORMAT (/)
A20 FORHAT (1X. I 6.2X,FI 0.6 )

E NO
FUNCTION 0NC7 (FOF.Y1.Y2.FERR.MXEVALS.K0UN71

AOAPTIYE NEKTON-COTES INTEGRATION ROUTINE 
INTEGER DELTEV
COMMON /QNC70UT/ H0KF47, VALU7
DIMENSION FOT(20). F1T(20). F2T(20), F3T(20). FAT(20). F5T<20).

1 F 6T(20). F{13 ) . W(A ), LEG(20), DXT(20), XMT(20). ART(20). EPST(20
2 ). E STT( 20 ) > SJMH20)
DATA W /A.9d0952330952380952AE-02.2.571A2S57IA29571A2957E-01,3.21A 

1 28571A28571A2957E-02.3.2390952380952390952AE-01/
DATA TKLTH /0.03333333333333333/
<IN0CR»*-1 
MAXEV*HXEYALS 
DELTEV*MXEYALS 
L HA X * 2 0 
A * Y 1 
8 * Y 2
EPS«FERR 
D A ■ 9 - A 
AR E A = 1 .
E ST*1.
L *0
H2*0A*TKLT H 
DO 10 1*1.13.2 
PT* A + H2A(I-l)
F(I)*FOF(PT)

10 CONTINUE 
K0JN7* 7 

20 DX*0.5*DA 
H2*DA*TKLTH 
XM*A4-DX
DO 30 1*2,12.2 
PT*A+H2*(I-l)
F (I)*F OF(? T )

30 CONTINJE 
ONC 7*0.
< OUN 7* ROUN 7 + 6
IF (K0UN7.GT.MAXEY) SO TO 100

AO ESTL*(K<l)MF{l)+Fm)*Wl2)*<F(2> + F(6))+W<3)MF(3) + F(5)) + W(A)*Fm 
1 ) *D X
ESTR»(K(l)*(F(7)+-Ftl3))+Wf2)*(F(8)+F(12))+W(3)*(F(9)+F(ll))+K(A)^F 

1 (10))»0X
AREA*AREA-ABS(EST)+A9SIESTL)*A3S(ESTR)
S UH* ES TL ■*•£ STR
IF (A9S(EST-SUH)-EPS*AREA) 50.50.60 

50 IF (EST-1. ) 80.60.90 
60 IF [L-LHAX) 70,30,30 
70 L *L + 1 

L EG t L)* 2 
F OT ( L ) * F ( 7 )
F 1 T t L ) * F t 3 )
F 2 T ( L ) * F ( 9 )
F 3T(L)»F(10)
F AT(L)*F(11)
F5T(L)*F(12)
F6T(L )*P(13)



DXT(L)» DX 
X MT ( L ) * X M 
ARKU -AREA 
EPST1L)’EPS/1.A 
ESTT(L)*ESTR 
DA-DX
F(13)=F(7)
F (11) ■ F ( 6 )
Fm«F(5>
F ( 7 ) * F ( ^ )
F(5)*F(3)
F ( 3) * F ( 2 )
EST’ESTL 
EPS-EPST(L)
30 TO 20

80 IF ( LE 5 ( L ) -2 ) H0»90»90 
90 SUM1 (L 

L E 3 ( L ) * 1 
A » X i T ( L )
D A* OXT(L )
F(1)*F0T(L )
F ( 3 ) * F 1T ( L )
F (5)»F2T(L )
F ( 7)*F 3T(L )
F ( 9 ) * F A T ( L )
F (11 ) * F 5 T ( 1_)
F(13)»F6T(L )
AREA*ART(L)
EST*ESTT(L)
EPS*EPST(L)
30 TO 20 

100 CONTINJE
IF (KINDER.EO.♦I) 30 10 120 

110 DELTEV*0.5*0ELTEV 
NAXEV^AXEVtOELTEV 
LMAX»10.*(T2-A)/(T2-Y1)+1.
< INDCR«-1 
GO TO AO 

120 ^0WC A7s A 
VAL'J 7*0.0 
IL *L

130 IF ( IL.lT.l) GO TO 110
IF (LEGdL I.EO.l) VALJ7*VALU7 + S'J*11 (IL )
IL*IL-l 
30 TO 130

1 AO Sin*SU'11(L)+SUN 
L*L-1
IF (L.LT.l) GO TO 150 
GO TO 30 

150 QNC7-S0N
K0UN7=I SIGN(<00N7, KINDER )
RETURN
END
FUNCTION R1 (T)

S L A 3 SOLUTION INTEGRAND
COMMON Z(301)» SG(10). F8(301»17). CS(16)» G(lb)» SR(300>16). ST(1 

1 0)
COMMON PB(301,17)» V(16)» K» M> KC» AH* ISTEP 
EXTERNAL SPUN* SSS 
INTEGER AH 
T 8 * Z(K + 1)
S 8 » S G ( M )
EB*-1.0
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IF (ISTEP.£0.1) CB-:S(1)
ss»SFusm *sssm ?i*exp(sb*y/:b )*ss/:b
RETURS
END
FUNCTIDN SI (Y)

C SLAB S3LUTIQN STARTINS DIRECTION
COMMON Z(3D1). SGUO). FB(B01,17), CS(16). GU6). SRI 300.16). ST(1 

1 0)
COMMON PB(301»17)# tf(16)» K, M» <C. AN, ISTEP
EXTERNAL 0NC7, R1
INTEGER AH
KP* 2*AH + 1
YB-Z(<♦!)
SB*SG(M )
C B* -1.0
IF (ISTEP.EQ.l) CB-CSd)
F»F3(<♦!,<»)
S1*F*EXP(-S3*(Y-Y3) / C 3 ) +E XP (-S B * Y / C 3 ) ♦ ON C 7 { R1, Y , Y B, 1 . E-4.5 0 0 , <0'JN7

1 )*(-!.)
RETURN
END
FUNCTIDN 00 (Y)

C INHOMOGENEOUS TOTAL SOURCE INTEGRAND
COMMON Z(301), SS(10), FB(301,17), CS(16), Glib), SR(300,1S>, ST(1 

1 0)
COMMON P3(301,17), 4llb)t <, M, KC, AH, ISTE®
EXTERNAL RR, SSS, SPUN 
INTEGER AH 
SB-SG(M )
C 8* C S(KC)
GB-3(KC )
SS»SFUN(Y)+SSS(Y)
OQ*Y**(G3/C3)*EXP(S3*Y/C3)*(SS/CB + GB/(C3*Y)*RR(Y) )
RETURN
END
FUNCTION FF (Y)

C INHOMOGENEOUS TOTAL SOURCE INTEGRAL
COMMON Z(301), SG(10), FB(301,17), CS(16), G(16), SR(300.16), ST(1 

1 0)
COMMON PB(301,17), W(16). K, M, KC, AH, ISTEP 
EXTERNAL 00, 0NC7 
INTEGER AH 
C 8*C S(KC )
GB*S(<C)
S 3 * S 3 ( M )
IF (KC.GT.AH) GO TO 10 
F*FB(K+1,<C)
Y B»Z(<♦1)
FF»F*EXP(-S3*(Y-YB)/CB)A(YB/Y)**(GB/CB)+EXP(-SB»Y/CB)*Y**(-G3/CB)

1 *0NC7(O0,Y,Y8,l.E-4,500,K0UN7)*(-l. )
GO TO 20 

10 F*FB(K»KC)
Y B * Z ( K )
FF»F*EXP(-SRY(Y-YB)/CB)♦(YB/Y)* *(G3/CB)♦EXP(-S3»Y/CB)♦Y**(-G3/CB)

1 ♦0NC7(00,Y3,Y,1.E-4,500,K0UN7)
20 CONTINUE 

RETURN 
END
FUNCTION RR (Y)

C LINEAR INTERPOLATION OF PSEJDOS0JRCE EDGE FLUX
COMMON Z(301), SG(IO), FB(301,17), CS(16>, G(16), SR(300,16), ST(1 

1 0)
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COMMON P3(301»17)> ,<(16), K, M, KC, 4H, ISTEP 
INTEGER AH 
DIMENSION R(17)
DO 20 KK-l.KC 
KT»KK-1
IF (KK.EO.l) KT»2*AH+1 
IF (KC.GT.AH) GO TO 10 
YB«Z(K+l)
R(KK)*(F3(<,<T)-FD(<+1,KT))/(Z(K)-Z(K+1))*(T-Y9)+FB(K+1,<T)
GO TO 20 

10 YB-Z(K )
R(KK)«(FB(K+1»KT)-FB(K»KT))/(Z(K+1)-Z(K))*(Y-YB)+FB(K»<T)

20 CONTINUE 
T OT* 0.00 
IC-1
DO 30 1*1,KC 
IC-IC+1 
J-KC-I+1 
^T-2.0
IF (J.ED.l) HT-1.0 
S N »(-1 )**1Z 

30 TOT*TOT<-SN*WT*R(J)
R R * T 0 T 
RETURN 
END
FUNCTION SSS (Y)

SCATTERING SOURCE FUNCTION
COMMON Z(301), SGI 10), FB(301,17), CS(16), G(16), SR( 300.16), ST(1 

1 0)
COMMON PB(301,17) , W(16), K, M. KC, AH, ISTEP 
INTEGER AH
IF (ST(M).EO.O.OO) RETURN
A * 0.00
NN» 2 * A H
DQ 20 J * 1,NN
IF (KC.GT.AH) GO TO 10
Y B* Z(K + l)
AB-(PB(K,J)-P3(K + 1,J))/(Z(K)-Z(K + 1))♦{Y-YB ) + PB(K♦1,J )
A = A + ST(M)*^(J ) ♦A B 
GO TO 20 

10 YB-Z(K)
AB-(PB(K + 1,J)-»3(K,J))/(Z(K«-1)-Z(K))*(Y-YB)+PB(<,J)
A-A + ST(M)*N(J J^AB 

20 CONTINUE 
SSS-A 
RETURN 
END
FUNCTION SFUN (Y)

EXTERNAL SOURCE FUNCTION
COMMON Z ( 3 01), SG(10), FB(301,17), CS(16)» G(16), SR(300,16 ), ST(1 

1 0)
COMMON P3(301,17), N(16), K, M, KC, AH, ISTE=
INTEGER AH 
SFUN*SR(K,KC>
RETURN
END
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APPENDIX A.
DIFFERENCE SCHEMES AND INVERSION OF THE ONE DIMENSIONAL

TRANSPORT EQUATION

As described in the foregoing, SNEX formally inverts the discrete ordinates 
equations with diamond approximation in angular variable by numerically inte­
grating the inhomogeneous term. Partitioning the spatial domain into i = 1, 2,
3, ... I, with cell boundaries at qi±l/2

qi-l/2 - qi - qi+l/2

A qi+l/2 qi-l/2 (A-l)

x.'Uin the i11 cell, the general solution can be written in the standard representa­

tion

-q(q-q1-i/2)
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Si,ni Ym^i.m-1/2 
Pm + q’
m J (A-2)

with i denoting the cell and i-1/2 the cell edge (left). The form of Eq. (A-2) 
suggests bases for differencing schemes.

In plane geometry, Ym = 0, and Eq. (A-l) reduces to

+ e

-££
% -Ym / dq ’ e

111

ym m

q-!-1 /?

'P.i,m 'l' i-1/2,m

-o(x-x1-1/2)

m ,e + e m
x ox1
/d*' e P'" 

Xi-l/2 (A-3)

For m a polynomial in x', the integrand in Eq. (A-3) can always be directly
inverted. Cases for S. a constant and linear function from the basis for thei,m
recently developed and investigated characteristic methodJ in slabs, an extremely 

accurate and efficient scheme.
Angular coupling (y ^0) in curvilinear geometries modifies the basicm

exponential scheme in plane geometry by powers of qYin. In cylindrical and 

spherical geometries, a basic difference scheme of the form,

-gCg-qj-x/z)
-Y

^i,m <'q) ^i-1/2. m
m , qi-l/2

m
+ Ti,m (qi-l/2’q) (A-4)

is advocated, where ^ represents the inhomogeneous source.

T
i ,m

-Oq.

qi-l/2

o^_ 
u

dq' m
t m
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(A-5)
’i.m

m
m-1/2

---- qT----

Some general comments about T. are obvious from Eq. (A-5) . If Y isl ,m m
integer, a simple polynomial representation for SJ and iK (in a') couldi,m i,m-i/z ' ^ '
permit direct integration of Eq. (A-5) . At best, all integrals could be ob­
tained. At worst, one functional integration, or table lookup of the exponential 
integral,

^ dqt

qi-l/2 q'

-2Si
m [E1 (aqi-l/2/ym) E1 (aq/v] ’

(A-6)

would be required. A constant or linear representation for S. and -,/o,
is used in slabs, might then extend slab methodology directly to cylinders and

The total source term forspheres (and would recover slab results for v =0)
th ^

Ym integer and ^1/2 orc^er polynomials is written symbolically.

■i,m (qi-l/2’ q) " e m 1 m
£=0 m,£

q/
qi-l/2

dq1 e m
(A-7)

with a appropriate constants from Eq. (A-5). Unfortunately, except for them j X/
case, Ym is not generally integer with Gaussian quadrature sets.
If one works on a very fine mesh, such that,

oM « 1,
m

(A-8)

in the exponential term, then a Taylor series expansion could be employed to 
facilitate the reduction.
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Ti,m ^i-1/2’^ ^ ^
-Ym

q
I dc^, c^,
qi-l/2

i _ 0(q-q') , q2(q-q')2
ym 2m2

m

x
Si,m Ym^itm-l/2

m (A-9)

Again, a polynomial representation for ^1/2 Permits direct evaluation.
As reported earlier^, the expansion to first order in (q-q1) was used near the 

spherical origin to check SNEX.

As both qi_1/2, q 00 , one has q' 00 and Eq. (A-5) approaches the expres­
sion,

T.
1 ,m (qi-l/2’

-£3. /
qi-l/2

dq'

£3.
Mm

e
(A-10)

which is the usual slab result. This result is of course required by the trans­
port. Eq. (1) when q -*- •» in cylindrical and spherical geometries.

Apart from the various situations described above, an explicity differenced 
source term based upon integration of ^ is difficult excepting for some 
possibly complicated hybrid respresentations of the external scattering and 
diamond edge flux sources. However, some simpler approaches can be made.

Removing q' m from inside the integrand and replacing it with q^. m on the 

outside of Eq. (A-5) yields,

"££
ym / VYm

Ti,m (qi-1/2’q) e / £3_

dq' e m

1i-l/2
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i »m +
m

which is slab-like, except for the additional term involving \h . ...Ti,m-l/z
factor scales the integrand and might be the cell center coordinate,
other appropriately averaged quantity. If we express Sj and \L. .. i,m Ti,m-l/2
linear functionals in the ic cell,

S. = S? + q'
i,m i,m i,m n

^i,m-l/2 ^i,m-l/2 + ^i,tn-l/2 q *

with the superscripted quantities constant, and take q = we can
Eq. (A-ll) in differenced form.

i,m (qi-l/2’ qi+l/2)
qi+l/2N\ Ym ,0 -oAqN

S. I u
\i_ e m

x / Z£M'
, ^i,m ( _ ^m

o \qi+l/2 " qi-l/2 e

Si,mtJm
-oAq >

.1 - e m

(A-ll)

The
or some 
as

(A-12)

write
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aql+l/2

for.

El(aqi+l/2y/m)]

'

1 / -oaA

| l,m-l/2 m m ^ _ £ m A, (A-13)

Aq qi+l/2 qi-l/2 

2qi = qi+l/2 + qi-l/2 

Since, from Eq. (A-A)

-CT(q-qi -1/2^
---------------- Yu 'm

, / s m q^i,m(q) ^ e

(A-1A)

(A-15)

it is tempting to assume a similar exponential representation for m-l/2
T. , (in contrast to the linear expression of Eq. (A-12). We take, i,m

n,n^l/2(q'> ^ ^i,m-l/2

-£ll.

(A-16)

and ^-^^2 some appropriately determined constant in the cell. Using the 
linear source of Eq. (A-12) and the exponential diamond edge flux of Eq. (A-16), 
another difference scheme is suggested. Inserting Eqs. (26), (A-14) and (30), 
(A-16) into Eq. (A-5) yields.
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t (q q ) s

~gAq\
i,m il - e m

i Si»ml
+ V_V1i+l/2

-obq\

qi-l/2
m

S1 um j ^

-aAa>

- e m

+ e

'oqi+l/2
u.m -Y /qi+l/2N-i+l/2 "inU^

(A-17)

which is simpler than Eq. (A-13) and exhibits the property that the term
3involving ^1/2 aPProaches zero as q gets large.

The basic differencing scheme suggested by Eq. (A-2) is exponential with 
modification of powers of q'^m.

'P, _(q)i ,m

rY
m m

i-1/2 ,m vqi-l/2/ (A-18)

while the diamond scheme relates cell centered and edge fluxes only.

2 'i'i,m(qi) ^i-1/2,m + ^i+1/2. m (A-19)

and the linear discontinuous scheme assumes a Lagrangian representation.

^i,m(q) = ^i-l/2,m(qi+l/2 ~ q) + ^i+1/2,m(q-qi-l/2)]
(A-20)
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Expanding Eq. (A-18) in Taylor series gives the result.

m

4 o_\j- + ^m(^nrll)
2
qi-l/2

aym
Pmqi-l/2

(q " qi-l/2) + (A-21)

Substituting the expansion Eq. (A-21) into the diamond Eq. (A-19) yields the 
identity relationship thru first order. Substituting Eq. (A-21) into Lagrangian 
Eq. (A-20) yields the identity relationship in zeroth order for q ^ q^ and first 

order at q = q..i
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