

Analytic and Experimental Decay Heat Determinations of 800-MeV Proton Irradiated Aluminum

L. N. Kmetyk *
W. F. Sommer

DISCLAIMER

This book was prepared in an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

*Sandia National Laboratories, Albuquerque, NM 87145.

This report was prepared at Sandia National Laboratories, Albuquerque, New Mexico, for the
Los Alamos National Laboratory.

Los Alamos Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ANALYTIC AND EXPERIMENTAL DECAY HEAT DETERMINATIONS
OF 800-MeV PROTON IRRADIATED ALUMINUM

by

L. N. Kmetyk and W. F. Sommer

ABSTRACT

Postirradiation radiochemistry analysis of 800-MeV proton irradiated ultrahigh purity aluminum has been done with standard gamma-ray counting equipment determining the Na^{22} activity in the activated aluminum. The results of these measurements are compared in this paper to the predicted values obtained from CINDER, a general nuclide depletion and fission-product code. This program can be used easily to calculate the activity of materials under arbitrary irradiation, provided that the source terms for the various radionuclides produced are known. The required production cross sections have been calculated by using the nucleon-meson transport code NMTC to determine the nuclear reactions produced by the protons, and the theory of Lindhard et al. to evaluate the resultant damage energy deposited in the target.

I. INTRODUCTION

A 5- μ A beam of 800-MeV protons, generated at the Clinton P. Anderson Neutron Physics Facility (LAMPF), has been used to conduct a materials science radiation damage experiment.¹ The results of postirradiation radiochemistry analysis of 800-MeV proton irradiation of ultra high purity aluminum have already been reported.² Standard gamma-ray counting equipment, including a Ge-Li detector, a multichannel analyzer and associated electronics, was employed to count the Na²² activity in the aluminum. Because activation is proportional to proton fluence, relative dose levels could be determined; also, use of a selected production cross section³ for Na²² in aluminum and a calculated damage energy cross section^{4,5} for 800-MeV proton bombardment allowed determination of a calculated value for the number of displacements per atom (dpa) that the material received.

This calculation has now been augmented by a more detailed analysis of the irradiation and decay heat using the depletion and fission-product code CINDER, which allows the production and subsequent decay of all the many radionuclides produced during high-energy bombardment of any material to be modelled in detail. In aluminum, because all but two radionuclides produced are extremely short-lived, and because those two are independently formed, the increased complexity of the model thus available is not really necessary. However, in heavier materials such as copper, molybdenum, and stainless steel, the characteristic half-lives of many of the radionuclides formed are comparable to the problem time;

thus no analytic solution for activity and decay heat is obtainable readily. Also, the effects of arbitrary combinations of different irradiation and annealing times can be determined accurately (important in long intermittent irradiations). Benchmarking the results obtained for 800-MeV proton aluminum irradiation from the CINDER code against experiment helps validate the application of such an analysis to other materials for decay heat and activity calculations.

II. CINDER

CINDER^{6,7} originally was developed to model the rate of production and buildup of various fission-product nuclides during the operation of a power reactor to optimize the utilization of nuclear fuel. Also it provided information about the heat generated during the radioactive decay of such nuclides, required for loss of coolant and safety analyses.

The temporal concentrations of fission-product nuclei produced in a nuclear reactor are described by a large set of coupled differential equations, each nuclide concentration being determined by a history of gains from direct fission yield, transmutation and radioactive decay from parent nuclei, and losses from its own decay and particle absorption. The depletion and fission-product computer code CINDER simplifies the solution for fission-product concentrations by resolving the complicated nuclide couplings into linear chains. Each linear chain represents a unique linear path from nuclide to nuclide, resulting in small independent sets of coupled differential equations describing the rate of change of partial concentrations of nuclides in each chain. The solution of a large set of coupled differential equations thus is reduced to the solution of a number of small sets of coupled differential equations, each characterized by a single generalized form. Because of the linear nature of the chain (a result of the Markov process), the generalized equations may be solved sequentially for the partial concentration of each nuclide in the chain. Nuclide

concentrations are then obtained by summing partial concentrations. The mathematical treatment is described in detail in Ref. 8.

The CINDER program easily can be used to calculate the activity of materials under arbitrary irradiation (such as the 800-MeV proton beam at LAMPF) provided the source terms for the various radionuclides produced are known. The calculation of the required production cross sections is described in the next section and the resultant CINDER-7 input⁹ for aluminum irradiated at LAMPF is given in Appendix A. This is a relatively simple case, with only 56 linear chains. (Molybdenum irradiated at LAMPF, for example, requires 211 linear chains.)

III. PRODUCTION CROSS SECTIONS FOR PROTON-IRRADIATED ALUMINUM

Because there has been little or no theoretical information available concerning the damage effects of medium-energy protons in metals, a general characterization of proton damage⁴ was attempted to determine damage energy and impurity deposition. One of the main effects of the protons is to generate inelastic nuclear interactions in the target, with the consequent production of heavy spallation and light evaporation nuclei covering a large part of the periodic table below the target nucleus mass numbers. Except for targets made from the lightest metals, the species produced in this fashion will number in the hundreds. For each such nuclide produced in significant amounts, the production cross section, the recoil energy distribution, and the damage efficiency of the nuclide in the target material must be determined.

The nucleon-meson transport code NMTC¹⁰ incorporates Bertini's intranuclear cascade-nuclear evaporation code¹¹ as a key element. It calculates the reactions produced when a nucleon or charged pion is incident on a given target, which may consist of several different spatial regions of various shapes, each containing a variety of specified nuclides with assigned densities. In generating a nuclear interaction, the program first allows the primary particle to interact with a target nucleus in an intra-nuclear cascade in which scattering, possibly inelastic, of the primary particle from individual nucleons occurs. The scattering events are calculated by Monte Carlo methods according to experimentally determined cross sections in energy regions where these

cross sections are available, and according to certain theoretical estimates of these cross sections in regions where they are not. At the completion of the intranuclear cascade, the resultant excited nucleus is allowed to evaporate neutrons and light nuclei (p , n , H^2 , H^3 , He^3 , and He^1); no nuclei more massive than He^4 are emitted in the evaporation model used. The helium and heavy hydrogen isotopes and the spallation nucleus remaining after the evaporation phase are dropped by the code after the data characterizing them are recorded. Charged pions ejected from the nucleus in the intranuclear cascade phase, and nucleons emitted in either the cascade or evaporation phase, are transported further and allowed to have additional nuclear interactions with target nuclei. This is continued as long as their energies remain above certain cutoffs, required because the intranuclear cascade-nuclear evaporation model ceases to yield acceptably accurate results for incident nucleon energies below a few tens of MeV, and for charged pion energies below a few MeV. Nucleons and charged pions that drop below their respective cutoff energies are not transported further by the code, except that stopped negative pions may be required to have nuclear interactions. Transported charged particles experience energy losses to electrons and optional Coulomb spreading of their trajectories. For the purposes of this calculation Coulomb recoil of the target nuclei has also been included in the code although it is not part of the standard version of NMTC. Various types of events are calculated including nuclear interactions with and without emission of high-energy particles, particle crossings

of internal or external boundaries, and slowing of a charged particle to cutoff. In addition, points on the trajectories of above-cutoff protons and charged pions can be made available for tabulation of electronic energy losses and similar quantities.

This code has been shown to be reasonably accurate in calculating inelastic nuclear interactions produced by protons and neutrons in the energy range from ~100 MeV to 3.5 GeV. The code determines numbers and kinetic energies of spallation nuclei, light nuclei, and neutrons produced by the interactions, and so yields impurity production directly. A separate determination of damage energy deposited in the target is then necessary, using as input data the production cross section and energy distribution information generated by NMTC, as shown in the listing of results for 800-MeV proton irradiated aluminum in Appendix B. These production cross sections can also be used by the CINDER code to calculate target activity and decay heat.

IV. RESULTS

A 5- μ A beam of 800-MeV protons generated at LAMPF was used to conduct a materials science radiation damage experiment in which thin aluminum targets were irradiated. Because of the length of the experiment, the down times are significant and the actual irradiation history is shown in Fig. 1. (Any structure whose time constant is minutes or hours rather than days has been averaged out.) The samples were then removed and 228 days later the Na^{22} activity in the central, most heavily irradiated region was experimentally found to be 1.79 mCi/g. Simple calculations related this to a total proton fluence of $3.07 \cdot 10^{19} \text{ p/cm}^2$ and an implied damage level of 0.0454 dpa.

This analysis has now been augmented by a more detailed study of the irradiation and decay heat using the depletion and fission-product code CINDER. A description of the CINDER-7 input data for the irradiation shown in Fig. 1, followed by a 228-day cooling period, is given in Appendix A. The flux history according to the experimental specifications is:

<u>Period (days)</u>	<u>Flux</u>	
13	$3.5 \mu\text{A} \Rightarrow 1.7724 \cdot 10^{13}$	$\frac{\text{p}}{\text{cm}^2 \text{ s}}$
11.5	0	
3	$5 \mu\text{A} \Rightarrow 2.5321 \cdot 10^{13}$	$\frac{\text{p}}{\text{cm}^2 \text{ s}}$
6.5	0	
5.5	$6 \mu\text{A} \Rightarrow 3.0385 \cdot 10^{13}$	$\frac{\text{p}}{\text{cm}^2 \text{ s}}$
228	0	

The CINDER-7 activity results for this flux history, clearly showing the irradiation and annealing periods, are:

<u>Period (days)</u>	<u>Activity</u>	
13	$4.561 \cdot 10^{10}$	$\frac{\text{atoms}}{\text{s} - \text{cm}^3}$ 456.6 mCi/g
11.5	$1.917 \cdot 10^8$	$\frac{\text{atoms}}{\text{s} - \text{cm}^3}$ 1.92 mCi/g
3	$6.470 \cdot 10^{10}$	$\frac{\text{atoms}}{\text{s} - \text{cm}^3}$ 647.6 mCi/g
6.5	$2.613 \cdot 10^8$	$\frac{\text{atoms}}{\text{s} - \text{cm}^3}$ 2.62 mCi/g
5.5	$7.821 \cdot 10^{10}$	$\frac{\text{atoms}}{\text{s} - \text{cm}^3}$ 782.9 mCi/g
228	$3.032 \cdot 10^8$	$\frac{\text{atoms}}{\text{s} - \text{cm}^3}$ 3.04 mCi/g

The calculated activity (3.04 mCi/g) is quite a bit larger than the 1.79 mCi/g experimental value. However, re-examination showed that the total proton fluence was determined using a Na^{22} production cross section² of 13.6 mb, whereas the CINDER program is using a production cross section of 23.65 mb for Na^{22} (as seen in Appendixes A and B). When this discrepancy is taken into account, the CINDER result for the last time calculated becomes

$$3.04 \text{ mCi/g} \cdot \left(\frac{13.6 \text{ mb}}{23.65 \text{ mb}} \right) = 1.75 \text{ mCi/g.}$$

This is only 2% lower than the experimental value and verifies that the fission-product CINDER code can be used for decay heat calculations for irradiation in the LAMPF 800-MeV proton beam.

REFERENCES

1. W. V. Green, W. F. Sommer, and C. A. Coulter, "An In-Situ Cyclic Stress Experiment at the Clinton P. Anderson Meson Physics Facility (LAMPF) for Determining the Effect of Dislocation Vibration on Void Growth in Metals during Irradiation," Los Alamos Scientific Laboratory report LA-8035-MS (October 1979).
2. W. F. Sommer, "Post Irradiation Dose Determination of 800 MeV Proton Irradiated Aluminum from LAMPF Experiment 407," Los Alamos Scientific Laboratory report LA-8351-MS (May 1980).
3. H. R. Heydecker et.al., "Production of Be, ^{22}Na , and ^{28}Mg from Mg, Al, and SiO_2 by protons between 82 and 800-MeV," *Phys. Rev. C*, 14, 1506 (1976).
4. C. A. Coulter, D. M. Parkin, and W. V. Green, "Calculation of Radiation Damage Effects of 800 MeV Protons in a 'Thin' Copper Target," *J. Nucl. Mater.* 67, 140-154 (1977).
5. C. A. Coulter, unpublished results for Al.
6. T. R. England, "CINDER - A One-Point Depletion and Fission Product Program," Bettis Atomic Power Laboratory report WAPD-TM-334 (Rev) (June 1964).
7. T. R. England, "An Investigation of Fission Product Behavior and Decay Heating in Nuclear Reactors," Thesis, University of Wisconsin, 1969.
8. T. R. England, W. B. Wilson, and M. G. Stamatelatos, "Fission Product Data for Thermal Reactors," Electric Power Research Institute report EPRI NP-356, (December 1976).
9. T. R. England, R. Wilczynski, and N. Whittemore, "CINDER-7: An Interim Users' Report," Los Alamos Scientific Laboratory report LA-5885-MS (April 1975).
10. W. A. Coleman and T. W. Armstrong, *Nucl. Sci. Eng.* 43, 353 (1971), Oak Ridge National Laboratory report ORNL-4606 (October 1970).
11. H. W. Bertini, *Phys. Rev.* 188, 1711 (1969); also H. W. Bertini and M. P. Guthrie, *Nucl. Phys.* A169, 670 (1971).

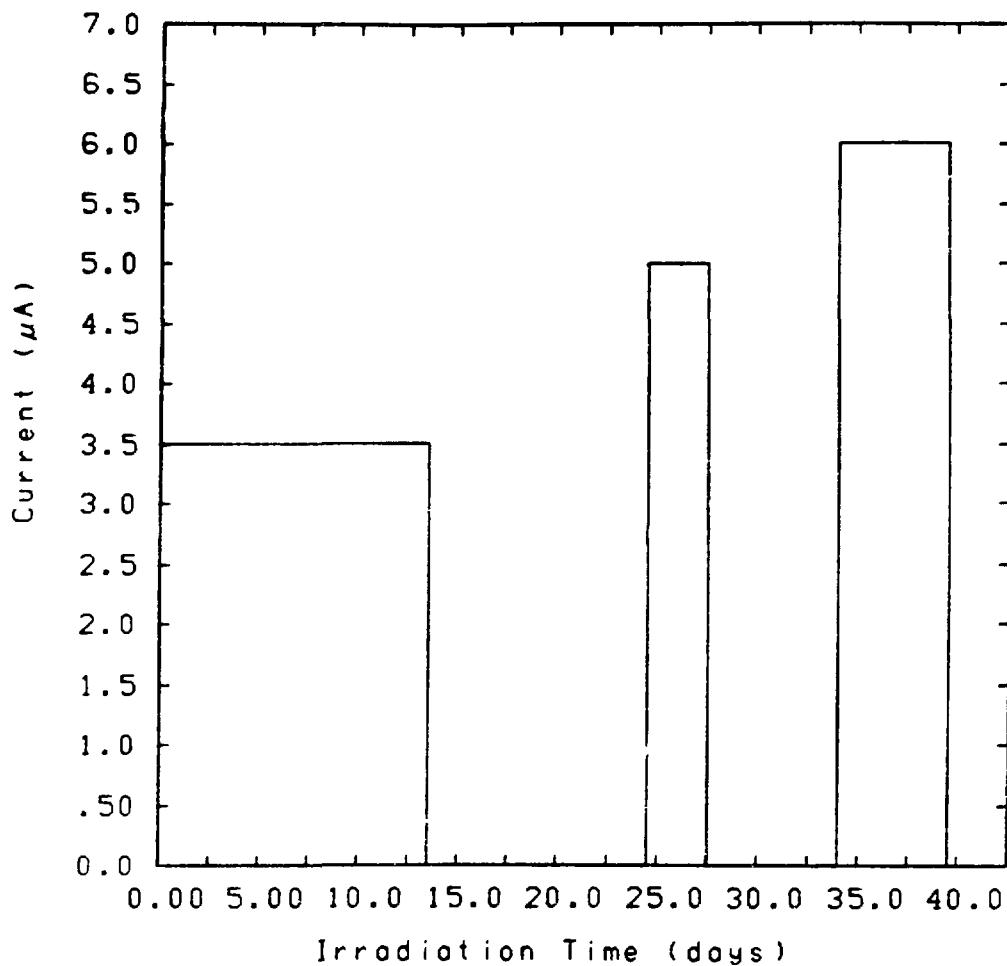


FIG. 1. Irradiation History

ACKNOWLEDGEMENTS

The authors would like to thank T. R. England and N. Whittemore for their help in getting the CINDER code running, and D. M. Parkin and C. A. Coulter for their help in doing the cross-section calculations.

APPENDIX A

CINDER-7 INPUT FOR 800-MeV PROTON IRRADIATED ALUMINUM

Table A-I lists the CINDER-7 input data for the irradiation shown in Fig. 1, followed by a 0.624-yr (228-day) cooling period.

The yield fractions of the various nuclei produced are found by normalizing the individual production cross sections given in Appendix B by the total production cross section summed over the various nuclei produced.

There are 10 energy groups modelled:

Group	Content
1	betas
2	positrons
3	0-0.5 MeV gammas
4	0.511 MeV gammas
5	0.511-1.0 MeV gammas
6	1.0-1.5 MeV gammas
7	1.5-2.0 MeV gammas
8	2.0-2.5 MeV gammas
9	2.5-3.0 MeV gammas
10	3.0 MeV and up gammas

TABLE A-I

CINDER-7 INPUT FOR 800-MeV PROTON IRRADIATED ALUMINUM

LISTING OF INPUT DATA FOR CASE 1

- * CINDER 7 RUN FOR ALUMINUM TARGET AT EXP 407
- * TIME AND FLUX CARDS
- **** 100001, 1.0,1.0,0.0,0.0,0.0,0.0
- **** 200001, 312.,0.0,0.0,0.0,0.0,1.0,0.1,2997+13,1.0
- **** 200002, 276.,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0
- **** 200003, 72.,0.0,0.0,0.0,0.0,1.0,1.0558+13,1.0
- **** 200004, 156.,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0
- **** 200005, 132.,0.0,0.0,0.0,0.0,1.0,0.2,2222+13,1.0
- **** 200006, 5472.,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0
- * FUEL CARDS
- **** 1100101, AL-27,6.0?-?,1.0-30,1.0
- **** 2100101, 0.0,0.0,0.0,0.0,0.0,0.4357375
- **** 3100101, 0.0,0.0,0.0,0.0,0.0,0.4357375
- **** 100008,00101
- **** 100009,1
- * A=27 DECAY CHAINS
- **** 1200101, MG-27,0.0,1.21695-3,1.0
- **** 9200101, 0.555324,0.0,0.1.26-?,0.0,0.529,0.303,74/0.0
- **** 1200102, AL-27,5.0?-?,1.0-30,1.0
- **** 920102, /10/0.0
- **** 900111,0.007173*44,0.0
- **** 1200201, AL-27,6.0?-?,1.0-30,1.0
- **** 9200201, /10/0.0
- **** 800211,0.0322464
- **** 1200301, SI-27,0.0,0.145034,1.0
- **** 92J0301, 0.0,1.2375,0.0,1.0?,/5/0.0
- **** 12J0302, AL-27,6.0?-?,1.0-30,1.0
- **** 9200302, /10/0.0
- **** 800311,6.41-3,0.0
- * A=24 DECAY CHAINS
- **** 1200401, NA-25,0.0,0.513167,1.0
- **** 9200401, 2.211,0.0,0.0,0.0,1.84,0.0,0.0
- **** 1200402, MG-26,0.0,0.1.0-30,1.0
- **** 9200402, /10/0.0
- **** 900411,0.995-4,0.0
- **** 1200501, MG-25,0.0,0.1.0-30,1.0
- **** 9200501, /10/0.0
- **** 900511,0.11993044
- **** 1200601, AL-26,0.0,0.2.094?-14,1.0
- **** 9200601, 0.0,0.3841,0.0,0.4697,0.0,0.0449,1.01,0.0,0.0
- **** 1200602, MG-25,0.0,0.1.0-30,1.0
- **** 9200602, /10/0.0
- **** 800611,0.08907,0.0
- **** 1200701, SI-25,0.0,0.3455,1.0
- **** 9200701, 0.0,1.2539,0.0,0.1.0?,/6/0.0
- **** 12007C2, AL-254,0.0,0.10443,1.0
- **** 92007C2, 0.0,1.0533,0.0,1.0?,/6/0.0
- **** 1200703, MG-26,0.0,0.1.0-30,1.0
- **** 9200703, /10/0.0
- **** 800711,2.095545-3,0.0,0.0
- * A=25 DECAY CHAINS
- **** 1200801, NA-25,0.0,0.31145,1.0
- **** 9200801, 1.2637,0.0,0.0545,0.0,0.2292,0.0,0.0956,0.0,0.0
- **** 1200802, MG-25,0.0,0.1.0-30,1.0
- **** 9200802, /10/0.0
- **** 800811,0.65221-3,0.0
- **** 1200901, MG-25,0.0,0.1.0-30,1.0
- **** 9200901, /10/0.0
- **** 800911,0.0953571?
- **** 12J1001, AL-25,0.0,0.09427,1.0
- **** 92J1001, 0.0,1.0492,0.0,1.0?,/5/0.0
- **** 12J1002, MG-25,0.0,0.1.0-30,1.0
- **** 9201002, /10/0.0

TABLE A-I (Cont.)

***** 801011,1.1953-2,0.0
 ***** 1201101,5I-25,0.0,3.0136415,1,2
 ***** 9201101,6,0,1.3,0.0,1.0?,/5/0.0
 ***** 1201102,4G-26,0.0,1.0-39,1,1
 ***** 9201102,10/0.0
 ***** 801111,8.2554,0.0
 * A=24 DECAY CHAINS
 ***** 1201201,NE-26,0.0,3.6178444-3,1,2
 ***** 9201201,6333547,0.0,474,0.0,0.0774,1/1/0.0
 ***** 1201202,NA-26,0.0,1.2838549-5,1,2
 ***** 9201202,4534,0.0,1.349,1/2/0.0,2.774,0.0
 ***** 1201203,MG-24,0.0,1.0-39,1,1
 ***** 9201203,10/0.0
 ***** 801211,2.5016646-3,1/3,0
 ***** 1201301,NA-24,0.0,1.2534042-5,1,2
 ***** 9201301,4534,0.0,1/2/0.0,1.349,1/2/0.0,2.774,0.0
 ***** 1201302,4G-24,0.0,1.0-39,1,1
 ***** 9201302,10/0.0
 ***** 801311,022,0.0
 ***** 1201401,4G-24,0.0,1.0-39,1,1
 ***** 9201401,10/0.0
 ***** 801411,07254
 ***** 1201501,4L-24,0.0,33037,1,2
 ***** 9201501,0.0,2.935,0.0,1.0?,0.0,1.359,1/2/0.0,2.774,0.0
 ***** 1201502,4G-24,0.0,1.0-39,1,1
 ***** 9201502,10/0.0
 ***** 801511,2.53462-3,0.0
 * A=23 DECAY CHAINS
 ***** 1201601,NE-23,0.0,0142697,1,2
 ***** 9201601,1.4,0.0,0.145,1/3/0.0,0.01475,1/3/0.0
 ***** 1201602,NA-23,0.0,1.0-39,1,1
 ***** 9201602,10/0.0
 ***** 801611,5.207-3,0.0
 ***** 1201701,NA-23,0.0,1.0-39,1,1
 ***** 9201701,10/0.0
 ***** 801711,065278
 ***** 1201801,4G-23,0.0,05774,1,2
 ***** 9201901,0.0,1.64,0.2394,1.0?,/4/0.0
 ***** 1201902,NA-23,0.0,1.0-39,1,1
 ***** 9201902,10/0.0
 ***** 801911,7.107868-3,0.0
 * A=22 DECAY CHAINS
 ***** 1201901,F-22,0.0,1733,1,2
 ***** 9201901,3.1875,1/4/0.0,1.0?,0.0,2.05,1/2/0.0
 ***** 1201902,NE-22,0.0,1.0-39,1,1
 ***** 9201902,10/0.0
 ***** 801911,7.52-4,0.0
 ***** 1202001,NE-22,0.0,1.0-39,1,1
 ***** 9202001,10/0.0
 ***** 802011,1.2946-2
 ***** 1202101,NA-22,0.0,4.647899-0,1,2
 ***** 9202101,0.0,56,0.0,0.919,0.0,1.275,1/4/0.0
 ***** 1202102,NE-22,0.0,1.0-39,1,1
 ***** 9202102,10/0.0
 ***** 802111,5.42856-2,0.0
 * A=21 DECAY CHAINS
 ***** 1202201,F-21,0.0,1575334,1,2
 ***** 9202201,1.722,0.0,3449,1/2/0.0,0.15926,0.016,1/2/0.0
 ***** 1202202,4E-21,0.0,1.0-39,1,1
 ***** 9202202,10/0.0
 ***** 802211,1.77804-3,0.0
 ***** 1202301,4E-21,0.0,1.0-39,1,1
 ***** 9202301,10/0.0
 ***** 802311,0.045581

TABLE A-I (Cont.)

***** 1202401, N4-21, 0.0, .010137, 1, 2
 ***** 9202401, 0.0, .829, * .05-3, 1, 92, /6/0.0
 ***** 1202402, N6-21, 0.0, 1.0-30, 1, 1
 ***** 9202402, /10/0.0
 ***** 802411, 5.332-3, 0.0
 * A=20 DECAY CHAINS
 ***** 1202501, D-20, 0.0, .0499, 1, 2
 ***** 9202501, .9075, /4/0.0, 1.06, /4/0.0
 ***** 1202502, F-20, 0.0, .053, 1, 2
 ***** 9202502, 1.7853, /4/0.0, 1.53, /3/0.0
 ***** 1202503, NE-20, 0.0, 1.0-30, 1, 1
 ***** 9202503, /10/0.0
 ***** 802511, 5.71512-4, /2/0.0
 ***** 1202501, F-20, 0.0, .053, 1, 2
 ***** 9202501, 1.7853, /5/0.0, 1.43, /3/0.0
 ***** 1202502, NE-20, 0.0, 1.0-30, 1, 1
 ***** 9202502, /10/0.0
 ***** 802611, 8.4453-3, 0.0
 ***** 1202701, 4E-20, 0.0, 1.0-30, 1, 1
 ***** 9202701, /10/0.0
 ***** 802711, .33924
 * A=19 DECAY CHAINS
 ***** 1202801, D-19, 0.0, .0239, 1, 2
 ***** 9202801, 1.25, 0.0, 1.9109, /2/0.0, .3091, /4/0.0
 ***** 1202802, F-19, 0.0, 1.0-30, 1, 1
 ***** 9202802, /10/0.0
 ***** 802811, 1.079522-3, 0.0
 ***** 1202901, F-19, 0.0, 1.0-30, 1, 1
 ***** 9202901, /10/0.0
 ***** 802911, .0119356
 ***** 1203001, NE-19, 0.0, .7385, 1, 2
 ***** 9203001, 0.0, .74, 0.0, 1.02, /5/0.0
 ***** 1203002, N-19, 0.0, 1.0-30, 1, 1
 ***** 9203002, /10/0.0
 ***** 803011, 1.524-3, 0.0
 * A=18 DECAY CHAINS
 ***** 1203101, N-18, 0.0, 1.1, 1, 2
 ***** 9203101, 3.102, /1/0.0, .4438, 0.0, 2.9535, 1.0127, /2/0.0
 ***** 1203102, D-18, 0.0, 1.0-30, 1, 1
 ***** 9203102, /10/0.0
 ***** 803111, 2.54-4, 0.0
 ***** 1203201, D-18, 0.0, 1.0-30, 1, 1
 ***** 9203201, /10/0.0
 ***** 803211, 3.176445-3
 ***** 1203301, F-18, 0.0, 1.050223-4, 1, 2
 ***** 9203301, 0.0, .2032635, 0.0, .7994, /6/0.0
 ***** 1203302, D-18, 0.0, 1.0-30, 1, 1
 ***** 9203302, /10/0.0
 ***** 803311, .0162447, 0.0
 ***** 1203401, NE-18, 0.0, .474755, 1, 2
 ***** 9203401, 0.0, 1.104575, 0.0, 1.02, 0.0, .0724, /4/0.0
 ***** 1203402, F-18, 0.0, 1.050223-4, 1, 2
 ***** 9203402, 0.0, .2032635, 0.0, .7994, /5/0.0
 ***** 1203403, D-18, 0.0, 1.0-30, 1, 1
 ***** 9203403, /10/0.0
 ***** 803411, 2.54-4, /2/0.0
 * A=17 DECAY CHAINS
 ***** 1203501, N-17, 0.0, .015727, 1, 2
 ***** 9203501, 1.4, 0.0, /2/0.0, .7251, /2/0.0, .01095, /2/0.0
 ***** 1203502, D-17, 0.0, 1.0-30, 1, 1
 ***** 9203502, /10/0.0
 ***** 803511, 1.90504-4, 0.0
 ***** 1203601, N-17, 0.0, 1.0-30, 1, 1
 ***** 9203601, /10/0.0

TABLE A-I (Cont.)

**** 803611, .0135258
 **** 1203701, F-17, 0.0, .01250233, 1, 2
 **** 9203701, 0.0, .5742, 0.7, 1.0?, /5/0.0
 **** 1203702, 0-17, 0.0, 1.0-30, 1, 1
 **** 9203702, /1C/0.0
 **** 803711, 1.651-3, 0.0
 * A=15 DECAY CHAINS
 **** 1203801, N-16, 0.0, .0975, 1, 2
 **** 9203801, 1.86067, 0.0, /5/0.0, .0275, 4.5452
 **** 1203802, 0-16, 0.0, 1.0-30, 1, 1
 **** 9203802, /10/0.0
 **** 803911, 1.916-3, 0.0
 **** 1203901, 0-16, 0.0, 1.0-30, 1, 1
 **** 9203901, /10/0.0
 **** 803911, .0582
 * A=15 DECAY CHAINS
 **** 1204001, C-15, 0.0, .3780454, 1, 2
 **** 9204001, 2.049, 0.0, /7/0.0, 4.0332
 **** 1204002, N-15, 0.0, 1.0-30, 1, 1
 **** 9204002, /10/0.0
 **** 904011, 6.35-5, 0.0
 **** 1204101, N-15, 0.0, 1.0-30, 1, 1
 **** 9204101, /10/0.0
 **** 804111, .0262234
 **** 1204201, 0-15, 0.0, 5.59-3, 1, 2
 **** 9204201, 0.0, .5742, 0.0, 1.0?, /5/0.0
 **** 1204202, N-15, 0.0, 1.0-30, 1, 1
 **** 9204202, /10/0.0
 **** 804211, 4.-3, 0.0
 * A=14 DECAY CHAINS
 **** 1204301, C-14, 0.0, 3.-12, 1, 2
 **** 9204201, .05148, /5/0.0
 **** 1204302, N-14, 0.0, 1.0-30, 1, 1
 **** 9204302, /1C/0.0
 **** 804311, 1.04-3, 0.0
 **** 1204401, N-14, 0.0, 1.0-30, 1, 1
 **** 9204401, /1C/0.0
 **** 804411, .052
 **** 1204501, 0-14, 0.0, 7.74-3, 1, 2
 **** 9204501, 0.0, .5041, 0.0, 1.0?, /3/0.0, 2.29, /2/0.0
 **** 1204502, N-14, 0.0, 1.0-30, 1, 1
 **** 9204502, /1C/0.0
 **** 804511, 6.35013-5, 0.0
 * A=13 DECAY CHAINS
 **** 1204601, C-13, 0.0, 1.0-30, 1, 1
 **** 9204601, /10/0.0
 **** 804611, .0239375
 **** 1204701, N-13, 0.0, 1.15-7, 1, 2
 **** 9204701, 0.0, .394, 0.0, 1.0?, /5/0.0
 **** 1204702, C-13, 0.0, 1.0-30, 1, 1
 **** 9204702, /10/0.0
 **** 804711, 3.90961-3, 0.0
 * A=12 DECAY CHAINS
 **** 1204801, 8-12, 0.0, 36.45, 1, 2
 **** 8204301, 4.345, 0.0, /7/0.0, .2451237
 **** 1204802, C-12, 0.0, 1.0-30, 1, 1
 **** 9204902, /10/0.0
 **** 804811, 3.9101-4, 0.0
 **** 1204901, C-12, 0.0, 1.0-30, 1, 1
 **** 9204901, /10/0.0
 **** 804911, .0483141
 **** 1205001, N-12, 0.0, 5.63, 0.0, 0.0, 1, 2
 **** 9205001, 0.0, 5.301?, /7/0.0, .471
 **** 1205002, C-12, 0.0, 1.0-30, 1, 1

TABLE A-I (Cont.)

```

***** 9205002,/10/0.0
***** 805011,6.35013-4,0.0
*      A-11 DECAY CHAINS
***** 1205101,9-11,0.0-1.0-30,1,1
***** 9205101,/10/0.0
***** 905111,4.5056-3
***** 1205201,C-11,0.0-4.434-6,1,2
***** 9205201,0.0-3291-0.0-1.0-7/0.0
***** 1205202,9-11,0.0-1.0-30,1,1
***** 9205202,/10/0.0
***** 805211,1.968543-3,0.0
*      FINAL DECAY CHAINS
***** 1205301,8-10,0.0-1.0-30,1,1
***** 9205301,/10/0.0
***** 805311,.61022372
***** 1205401,LI-9,0.0-4.155,1,2
***** 9205401,4.0095,/0/0.0
***** 1205402,BE-8,0.0-1.0-30,1,1
***** 9205402,/10/0.0
***** 805411,6.35013-5,0.0
***** 1205501,LI-7,0.0-1.0-30,1,1
***** 9205501,/10/0.0
***** 805511,5.715-4
***** 1205601,BE-7,0.0-1.5137-7,1,2
***** 9205601,0.0,6.3-0.49131,7/0.0
***** 1205602,LI-7,0.0-1.0-30,1,1
***** 9205602,/10/0.0
***** 805611,4.-4,0.0
***** 1205701,LI-6,0.0-1.0-30,1,1
***** 9205701,/10/0.0
***** 805711,4.6356-3

```

APPENDIX B

PRODUCTION CROSS SECTION AND DAMAGE ENERGY CALCULATIONS FOR 800-MeV PROTON IRRADIATED ALUMINUM

The results of the NMTC calculation described in Sec. III are given in Table B-I. The production cross sections required by CINDER are on the third through sixth page, and need only be normalized by summing over all the nuclides produced.

TABLE B-1
PRODUCTION CROSS SECTION AND DAMAGE ENERGY CALCULATIONS
FOR 800-MeV PROTON IRRADIATED ALUMINUM

THE NUCLEON-MESON TRANSPORT CODE AND THE LINDHARD THEORY HAVE BEEN USED TO ESTIMATE DAMAGE EFFECTS PRODUCED AT 800-MeV PROTONS INCIDENT VERTICALLY ON A ALUMINUM TARGET 1.62 CM THICK. THE AVERAGED AND RMS VARIATIONS OBTAINED FOR SEVERAL DAMAGE-RELATED QUANTITIES THREE-ANALYSIS OF 40 BATCHES OF 19400 PROTONS EACH ARE SHOWN BELOW.

QUANTITY	AVERAGE	RMS VARIATION
TOTAL CHARGED-PARTICLE DAMAGE ENERGY CROSS SECTION (BARN-KEV)	82.4468	12.8911
SPALLATION NUCLEUS DAMAGE ENERGY CROSS SECTION (BARN-KEV)	48.6629	9.4560
ENERGETIC PROTON COULOMB DATA OF ENERGY CROSS SECTION (BARN-KEV)	18.1102	2.2530
SPALLATION NUCLEUS PRODUCTION CROSS SECTION (BARNs)	.93822	.09382
SPALLATION NUCLEUS RECOIL ENERGY CROSS SECTION (BARN-KEV)	1052.2027	291.0252
HEAVY NUCLEUS ELASTIC RECOIL ENERGY CROSS SECTION (BARN-KEV)	28.6136	4.4945
LIGHT NUCLEUS DAMAGE ENERGY CROSS SECTION (BARN-KEV)	3.6792	.7592
LIGHT NUCLEUS PRODUCTION CROSS SECTION (BARNs)	.96205	.28122
NEUTRON KINETIC ENERGY CROSS SECTION (BARN-KEV)	3.10502	.63033
NEUTRON PRODUCTION CROSS SECTION (BARNs)	.61244	.12569

THE AVERAGE KINETIC ENERGIES AND PRODUCTION CROSS SECTIONS FOR THE LIGHT PARTICLES AND LIGHT NUCLES, TOGETHER WITH THE DAMAGE ENERGY CROSS SECTIONS FOR THE LIGHT NUCLES, ARE GIVEN BELOW.

PARTICLE/NUCLEUS	AVERAGE KINETIC ENERGY (MEV)	PRODUCTION CROSS SECTION (BARNs)	DAMAGE ENERGY CROSS SECTION (BARNs-KEV)
PROTON	10.67237	.7983310	2.892638
DEUTERIUM	10.67472	.9853612E-01	.2977269
TRITIUM	11.62694	.9980724E-02	.9110129E-01
HELJUM 3	14.34879	.8139833E-02	.1874319
HELJUM 4	9.888888	.95818841F-01	.6863103
NEUTRON	5.135216	.9620501	.61244
PT+	2.942768	.17313602E-01	
PT-	2.924617	.6927375E-02	
MU+	0.	0.	
MU-	0.	0.	

TABLE B-I (Cont.)

THE AVERAGE NUMBERS AND KINETIC ENERGIES OF PARTICLES ESCAPING THE BACK SURFACE OF THE TARGET PER INCIDENT PROTON ARE SHOWN IN THE FOLLOWING TABLE. AVERAGE MASS ENERGY LOSS IS ALSO GIVEN FOR THE MUONS AND PIONS.

PARTICLE	AVERAGE NUMBER PER PROTON	AVERAGE KINETIC ENERGY PER PROTON (MEV)	AVERAGE MASS ENERGY PER PROTON (MEV)
PROTON	1.057327	821.9313	
NEUTRON	.4024571E-01	6.666536	
PI ⁺	.0012181E-02	.5085794	.4717814
PI ⁻	.11085361E-02	.5104055	.1607750
MU ⁺	0.	0.	0.
MU ⁻	0.	0.	0.

THE TOTAL ELECTRONIC ENERGY LOSS CROSS SECTION IN THE TARGET IS .12114E+03 BARN-MEV, WITH .99846E+02 BARN-MEV CONTRIBUTED BY ABOVE-CUTOFF LIGHT PARTICLES, .18157E+02 BARN-MEV CONTRIBUTED BY BELOW-CUTOFF LIGHT PARTICLES AND LIGHT NUCLEI, .14034E+00 BARN-MEV CONTRIBUTED BY SPALLATION NUCLEI, .10537E+05 BARN-MEV CONTRIBUTED BY ELASTICALLY-SCATTERED NUCLEI, AND .62605E+02 BARN-MEV CONTRIBUTED BY STOPPING TARGET NUCLEI. INDIVIDUAL CROSS SECTIONS FOR THE LIGHT PARTICLES AND NUCLEI ARE SHOWN BELOW.

PARTICLE	ELECTRONIC ENERGY LOSS CROSS SECTION (BARN-MEV)	ELECTRONIC ENERGY LOSS PER PROTON (MEV)
PROTONS AND ABOVE-CUTOFF LIGHT PARTICLES		
PROTON	98.17651	5.913956
PI ⁺	1.025757	.0174954E-01
PI ⁻	.2839189	.1718271E-03
MU ⁺	0.	0.
MU ⁻	0.	0.
LIGHT NUCLEI AND BELOW-CUTOFF PROTONS		
PROTON	8.517591	.513827
DEUTERIUM	.5191610	.3247881E-01
TRITIUM	.1160007	.637764E-02
HELIUM 3	.11755124	.6499281E-02
HELIUM 4	.0699065	.5248621E-01

THE TOTAL MASS ENERGY LOSS PER INCIDENT PROTON DUE TO DECAYED PI-ONS AND MUONS DECAYING WITHIN THE TARGET IS .5722653E-03 MEV. THE CONTRIBUTIONS OF THE INDIVIDUAL PARTICLES ARE GIVEN IN THE FOLLOWING TABLE.

PARTICLE	MASS ENERGY LOSS PER PHOTON (MEV)
PI ⁺	.1730560E-03
PI ⁻	.9922921E-04
MU ⁺	0.
MU ⁻	0.

TABLE B-I (Cont.)

THE PRODUCTION CROSS SECTION, RMS VARIATION IN THE PRODUCTION CROSS SECTION, AVERAGE KINETIC ENERGY, RMS VARIATION AND SKENNESS IN THE KINETIC ENERGY, AND MAXIMUM AND MINIMUM KINETIC ENERGY ARE GIVEN BELOW FOR EACH SPALLATION NUCLEUS, IN ORDER OF DECREASING & INCREASING Z. (PAGE 1/4)

A	Z	PRODUCTION CROSS SECTION (MBARN)	RMS VARIATION IN CRSSC (MBARN)	AVERAGE KINETIC ENERGY (MEV)	RMS VARIATION IN ENERGY (MEV)	SKENNESS	MAXIMUM KINETIC ENERGY (MEV)	MINIMUM KINETIC ENERGY (MEV)
27	12	3.125695	1.710895	.427287	.0473891	2.117611	2.610198	.017637
27	13	10.050999	2.128145	.685729	.610592	1.913145	3.006651	.014062
27	14	2.792558	1.917418	.780053	.6648668	1.534235	2.709468	.065679
27	15	.055336	.241284	1.375159	.0548883	.0000000	1.429162	1.321156
26	11	.390348	.552068	.981987	1.152330	1.401931	3.574237	.063671
26	12	52.250686	8.791713	.443781	.597181	4.811367	6.230677	.000000
26	13	38.090615	3.488228	.028587	.012337	3.217198	9.290025	.011195
26	14	.913845	.054888	.950833	.012187	1.375014	3.300317	.010304
26	15	.027668	.172787	2.560257	.0000000	0.000000	2.560257	2.560257
25	10	.110672	.332816	2.851793	1.713145	.275122	5.300087	.639366
25	11	4.285548	1.529519	1.226588	1.074615	2.110538	7.350253	.011869
25	12	41.552186	5.997877	1.141928	1.197146	2.727126	13.360083	.003200
25	13	9.116662	1.252481	1.142268	1.122518	2.036602	7.735121	.007700
25	14	.359688	.797588	2.463005	2.817171	1.657177	18.490388	.056363
25	15	.055336	.201284	2.950088	2.102028	0.000000	4.663117	.450256
24	9	.027668	.172787	1.670091	0.000000	0.000000	1.670091	1.670091
24	10	1.133565	1.198886	1.680128	1.219284	.048178	4.500065	.070012
24	11	9.599662	2.792886	1.528205	1.585951	1.900571	9.710040	.015637
24	12	38.220479	5.810596	1.661353	1.613018	2.700512	18.460034	.011626
24	13	1.100352	.950882	1.813098	1.455169	1.895531	7.672675	.265138
24	14	.221364	.002688	2.052201	2.110107	1.272003	7.680681	.025017
23	9	.137442	.363673	2.000071	1.476356	.028187	4.710011	.205012
23	10	2.260278	1.465008	2.326132	2.066988	1.535161	9.172088	.040265
23	11	28.077015	4.227873	2.161000	2.197457	2.213632	28.312031	.002997
23	12	3.896052	1.467996	2.393023	2.275269	2.750494	16.490138	.001630

TABLE B-I (Cont.)

THE PRODUCTION CROSS SECTION, RMS VARIATION IN THE PRODUCTION CROSS SECTION, AVERAGE KINETIC ENERGY, RMS VARIATION AND SKENESS IN THE KINETIC ENERGY, AND MAXIMUM AND MINIMUM KINETIC ENERGY ARE GIVEN BELOW FOR EACH SPALLATION NUCLEUS, IN ORDER OF DECREASING AND INCREASING Z_2 . (PAGE 2/4)

A	Z	PRODUCTION CROSS SECTION (MBARN)	RMS VARIATION IN CRSSC (MBARN)	AVERAGE KINETIC ENERGY (MEV)	RMS VARIATION IN ENERGY (MEV)	SKENESS	MAXIMUM KINETIC ENERGY (MEV)	MINIMUM KINETIC ENERGY (MEV)
23	13	.384348	.644167	2.656378	1.643439	.970000	6.669710	.782892
22	7	.027668	.172787	11.454088	8.480000	0.000000	11.454088	11.454088
22	8	.055336	.241284	9.723479	3.787063	0.000000	13.430562	6.016416
22	9	.332016	.664033	3.381633	2.036816	1.251566	18.502266	.380725
22	10	5.640573	1.630320	2.876292	2.059000	1.822667	15.501500	.650027
22	11	23.652996	.252917	2.997682	2.482770	1.607106	16.786000	.873153
22	12	.553361	.782570	2.429510	2.433752	1.200777	9.118328	.110341
22	13	.130308	.366816	1.099859	2.346727	1.858265	6.557176	.450001
21	7	.027668	.172787	3.080078	8.000000	0.000000	3.080078	3.080078
21	8	.003800	.241501	2.523367	.970058	.503867	3.070070	1.575010
21	9	.774785	.964817	2.752853	2.251005	2.062333	11.287013	.020688
21	10	19.050970	2.659167	3.580526	3.124471	1.920170	21.553052	.000602
21	11	2.323220	1.327406	3.869835	4.000025	2.074900	26.168965	.220045
21	12	.209812	.520234	4.378149	2.440172	.320070	9.150201	.252510
20	6	.209812	.062107	2.672249	1.000700	.2300170	6.005200	.510000
20	7	3.670676	1.756467	4.326200	4.130247	1.900000	21.505050	.453100
20	10	17.006817	3.354589	4.107017	3.901973	2.2007120	26.600020	.023615
20	11	.384348	.741895	5.708297	5.708210	1.325066	20.019060	.367050
19	6	.055336	.241284	10.151881	5.012501	0.000000	15.364032	5.330250
19	8	.470356	.680066	4.760520	2.935700	.862100	18.635600	.023161
19	9	5.200066	2.574050	6.551920	3.065315	1.800010	26.130507	.055770
19	10	.664033	.050000	5.126240	5.200670	2.155061	26.000076	.376206
19	11	.883000	.291501	1.643775	.772006	.7007107	2.100066	.551994
18	7	.110672	.332016	6.890996	4.247613	.135700	15.165000	1.022032
18	8	1.303001	1.002611	5.796121	3.320410	.910051	14.701661	.031131

TABLE B-I (Cont.)

THE PRODUCTION CROSS SECTION, RMS VARIATION IN THE PRODUCTION CROSS SECTION, AVERAGE KINETIC ENERGY, RMS VARIATION AND SKENNESS IN THE KINETIC ENERGY, AND MAXIMUM AND MINIMUM KINETIC ENERGY ARE GIVEN BELOW FOR EACH SPALLATION NUCLEUS, IN ORDER OF DECREASING A/INCREASING Z. (PAGE 3/4)

A	Z	PRODUCTION CROSS SECTION (MBARN)	RMS VARIATION IN CRSSC (MBARN)	AVERAGE KINETIC ENERGY (MEV)	RMS VARIATION IN ENERGY (MEV)	SKENNESS	MAXIMUM KINETIC ENERGY (MEV)	MINIMUM KINETIC ENERGY (MEV)
18	9	7.877930	2.887475	5.256176	4.567727	1.356647	23.133450	.099550
18	10	.118672	.332816	8.252067	10.580624	.993892	25.976720	.353153
17	6	.055336	.241284	23.768425	9.088888	-.000000	23.768425	23.768425
17	7	.083064	.382380	4.847133	3.244801	.438198	8.023374	.663403
17	8	5.893298	2.868816	5.706032	5.685.23	2.081937	43.058368	.063056
17	9	.719369	1.080751	5.107319	3.391125	.876238	13.568450	.766239
16	7	.442688	.691147	7.768396	7.147387	1.182182	26.858669	.302687
16	8	25.364088	2.884582	5.966284	5.168228	1.058679	30.895272	.022375
15	6	.0827668	.172787	4.170251	8.080000	0.000000	4.179051	.179051
15	7	11.451870	1.876617	6.768184	6.159359	1.977778	39.318555	.052394
15	8	1.741787	1.150541	7.523100	5.527624	1.666886	31.937101	.548034
14	6	.478356	.695813	8.172535	7.183127	1.258981	25.725409	.649151
14	7	22.657498	0.320445	7.191330	6.083651	1.568204	48.982760	.151785
14	8	.0827668	.172787	25.857253	8.080000	.000000	25.857253	25.857253
13	6	18.429797	3.019373	8.287517	6.014165	1.132264	33.428622	.151750
13	7	1.659826	.892140	7.921743	7.041377	2.325243	39.237832	.193296
12	5	.1668000	.466278	14.162163	5.055845	.297582	24.282671	.6780077
12	6	21.058823	1.500859	8.253851	8.038805	2.093181	49.638844	.025071
12	7	.0827668	.172787	5.11285	8.080000	-.000000	5.100205	.130205
11	5	1.964430	1.074215	11.635806	8.753417	1.702704	49.034928	.591781
11	6	.057709	.980043	10.900033	7.714900	1.549913	33.382807	1.093100
10	5	4.054552	2.135821	11.283550	7.041132	.855926	32.453450	.667161
9	5	.027668	.172787	6.776562	8.080000	.000000	6.776562	.776562
8	3	.027668	.172787	5.155562	8.080000	.000000	5.655562	.655562
7	3	.249012	.524234	16.396686	12.416333	.886879	39.492369	2.882918
7	4	.027668	.172787	9.050027	8.080000	-.000000	9.050027	.050027
6	3	2.019766	1.375354	8.730610	6.624577	1.174023	30.930270	.283326
6	4	.027668	.172787	5.815070	8.080000	0.000000	5.115070	.115070
6	5	.001804	.382380	3.755730	1.597260	.784929	8.013023	2.575500

TABLE B-I (Cont.)

DAMAGE ENERGY CROSS SECTIONS FOR THE SPALLATION NUCLEI IN ORDER OF DECREASING A/INCREASING Z. (PAGE 1/2)

A	Z	DAMAGE ENERGY CROSS SECTION (BARN-KEV)	A	Z	DAMAGE ENERGY CROSS SECTION (BARN-KEV)	A	Z	DAMAGE ENERGY CROSS SECTION (BARN-KEV)
27	12	.269271E	23	13	.481340E-01	18	9	.768431E
27	13	.147848E	22	7	.316909E	18	10	.1101431E-01
27	14	.353020E	22	8	.7554707E-02	17	6	.5227503E-02
27	15	.9676587E-02	22	9	.4805321E-01	17	7	.7078612E-02
26	11	.3231325E-01	22	10	.7146683	17	8	.5666081
26	12	.8316855	22	11	.3166938	17	9	.757A056E-01
26	13	.3598765	22	12	.7553200E-01	16	7	.3760446E-01
26	14	.1160576	22	13	.2615263	16	8	.2121089
26	15	.7003727E-01	21	7	.8324950E-01	15	6	.2050665E-02
25	10	.1610383E-01	21	8	.9391861E-02	15	7	.9210613
25	11	.5116251	21	9	.893899E-01	15	8	.1560789
25	12	.971366	21	10	.2584074	14	6	.3250780E-01
25	13	.663P628	21	11	.3084259	14	7	.1,719788
25	14	.51A6771E-01	21	12	.3625560E-01	14	8	.2570015E-02
25	15	.1416982	20	8	.2646562E-01	13	6	.4834219
24	9	.3562013E-02	20	9	.4274766	13	7	.1176385
24	10	.1364292	20	10	.2,085389	12	5	.9433543E-02
24	11	.1,160170	20	11	.3940650E-01	12	6	.1,250730
24	12	.4,503033	19	6	.572A301	12	7	.1830352E-02
24	13	.1612730	19	8	.511291AE-01	11	5	.1000332
24	14	.6313102	19	9	.5A8A057	11	6	.4000090E-01
23	9	.1622120E-01	19	10	.8845045E-01	10	5	.2000095
23	10	.282P746	19	11	.9207699E-02	9	5	.1100221E-02
23	11	.3,794123	18	7	.1A75111E-01	8	3	.5000053E-03
23	12	.4326849	18	8	.1446550	7	3	.5075546E-02
7	6	.7651759E-03	6	8	.6242470E-03	6	5	.3117489
6	3	.3887085E-01						