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PARAMAGNETIC FORM FACTORS FROM ITINERANT ELECTRON THEORY
J. F. Cooke, S. H. Liu, and A. J. Liu

Solid State Division, Oak Ridge National Laboratory™
Oak Ridge, TN 37831

ABSTRACT

Elastic neutron scattering experiments performed over the past two
decades have provided accurate information about the magnetic form
factors of paramagnetic transition metals. These measurements have
traditionally been analyzed in terms of an atomic-like theory. There
are, however, some cases where this procedure does not work, and there
remains the overall conceptual problem of using an atomistic theory
for systems where the unpaired-spin electrons are itinerant. We have
recently developed computer codes for efficiently evaluating the
induced magnetic form factors of fcc and bcc itinerant electron para-
magnets. Results for the orbital and spin contributions have been
obtained for Cr, Nb, V, Mo, Pd, and Rh based on local density bands.
By using calculated spin enhancement parameters, we find reasonable
agreement between theory and neutron form factor data. In addition,
these zero parameter calculations yield predictions for the bulk
susceptibility on an absolute scale which are in reasonahle agreement

with experiment in all treated cases except palladium.

PACS numbers: 75.10.Lp, 75.20.-g



-2-

A uniform magnetic field induces in a nonmagnetic metal a magne~
tization density which has the periodicity of the lattice. The bulk
susceptibility is proportional to the average of the moment density,
and the magnetic form factor as measured by the polarized neutron
scattering technique gives the Fourier transform of the moment distri-
bution. In the past two decades the induced moment form factor has been
measured for a large number of transition metals, and these data pro-
vide detailed information on the response of the metals to an external
magnetic field. In principle one should be able to relate the moment
distribution to the energy levels and wave functions of the metallic
electrons. In practice, however, the orbital part of the magnetic
response of the itinerant electrons presents a major obstacle. The
difficulty is well-known. In short, the magnetic field B enters the
Hamiltoniar of the electron system via the vector potential A = %-E x F,
where T is the spatial coordinate. In an infinite crystal the vector
potential diverges so that a perturbative treatment of the field effect
fails. An exact treatment is possible only in the free electron limit,
which is not applicable to transition metals.

0h et al.l circumvented the divergence problem and derived an exact
expression for the generalized susceptibility FO(G), which is propor-

tional to the orbital contribution of the magnetic form factor:!
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In the above expression g is a reciprocal lattice vector perpendicular
to B, 6 = |G|, g1, ug is the Bohr magneton, N is the number of unit
cells in the sample, EnF is the energy of the state |nF> in the band n
and wavevector E, and an is the states occupation number. The matrix
elements are evaluated in the unit cell. It remains difficult to
evaluate this expression, but Oh et al.! suggested an approximation
scheme and applied it to Cr. Their scheme involved the neglect of
certain surface integrals over the unit cell boundary, and they argued
that it was justifiable for Cr but not for other transition metals.

An alternative to this approach is to formulate the magnetic
response problem in real space, as was done by Benkowitsch and Winter.2
The orbjtal part of the bulk susceptibility of Al, V, Nb, and Mo has
been calculated by these authors, but no form factor calculation was
attempted. In close analogy with Ref. 1, the authors of Ref. 2 also
separated the total susceptibility into Van Vleck, Landau and dia-
magnetic contributions. It was shown in Ref. 1 that such o procedure
inevitably generates a number of unit cell surface integrals which are
small for Cr and Mec but not small for V and Nb. It appears that these
surface integrals were ignored in the algebraic manipulations in Ref. Z.
Consequently the expression for XL in Ref. 2 is incomplete, and this
is the reason for their unphysical result of large "paramagnetic"
Landau susceptibility in V and Nb.

We present in this peper a different method to evaluate approximately
the expression in Eq. (1). The method is based on two observations:
(1) that the largest contribution to the sum comes from states near the

Fermi level, and in transition metals these are largely d states; and
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(2) that the dipole matrix elements <nK|-iv|n'K> between states in the
d bands are very small., Consequently, in carrying out the differentiation
with respect to q, we may neglect all terms which contain the dipole

matrix element as a factor. The result has a simple form:
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Unlike the method in Ref. 1, we do not need to evaluate any surface
integrals on the unit cell boundary. As & result, the new scheme is
applicable to all transition metals. Neither method is applicable to
simple metals, however, because they both neglect the Landau diamagnetism.
The evaluation of the expression for the orbital susceptibility given
in Eq. (2), remains nontrivial. Because of limited space we will only
outline the numerical procedure. Given the crystal potential, the
electronic band structure and wave functions are generated from a KKR
formalism. Inside the muffin-tin sphere the wave functions can be
expanded in terms of symmetry orbitals, ¢U(F), where ¢ is the symmetry

index:

K)o (F) . (3)
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The {anu(k)} are the relevant expansiocn coefficients. The matrix

element of an arbitrory operator O can then be written in the general

form
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<k |oIn'k> = 3 a:u(E)an.v(E)Duv(O) . (4)
nv
Duv(O) = [ ¢:(F)O¢v(F)d3r . (5)

A Wigner-Seitz (WS) approximation is used to evaluate the Duv. That
is, the unit cell is approximated by a sphere and the wave function in
Eq. (3) is extrapolated to the WS sphere radius. Then, by using standard
.numerical techniques, the Duv integrals can be written in terms of
products of Clebsch-Gordon matrices, spherical harmonics, and appropriate
radial integrals. In this way, the matrix elements in Eq. (2) can be
evaluated for a given band structure. Once the matrix elements are
known, the Brillouin zone sums can be obtained using well established
analytic integration techniques.

We have used the approach outlined above to calculate the total

magnetic form factor
F(8) = agFg(8) + Fo(B) + F(B) , (6)

based on local density theory. FS(G) is the unenhanced spin suscept-
ibility?, ag is the corresponding spin enhancement factor, and FC is
the diamagnetic susceptibility for the core electrons (i.e., electrons
not included in the calculation of Fo). A1l of the quantitites in

Eq. (6) are completely determined from the band structure, i.e., there
are no adjustable parameters. To date, numerical results for Nb, Mo,
Cr, V, Pd, and Rh have been obtained on an absolute scale using poten-
tials and spin enhancement factors determined by Moruzzi, Janak, and

Williams.3 A comparison of our results for Cr and Nb with experiment
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are shown in Figs. 1 and 2, respectively. These represent the best
and worst cases found so far. The results for Cr are in excellent
agreement with those of Oh et al.! This provides an important
crosschack on our calculations.

The results for Cr are dominated by the orbital contribution and
are obviously in excellent agreement with experiment. WNiobium is a
case where the spin and orbital contributions are comparable at § =0,
However, the orbital term dominates for & # O because of the rapid
decrease of the spin term with increasing IE]. The poor agreement
with experiment indicates a problem with the wave functions generated
by the local density approximation. A word of caution about com-
parisons of the type given in Figs. 1 and 2. Experimental form factor
results are usually given on a relative scale with F(0)=1. Since F(0)
cannot be determined from neutron measurements some sort of extrapolated
value must be used to normalize the data. It would be preferable for
form factor data to be given on an absolute basis (disregarding F(0))
since this would allow a more detailed test of theoretical predictions.

Calculated resuits for the bulk susceptibility, F(0), are given in
Table 1. Our results for Nb and V are quite different from those of
Benkowitsch and Winter2 while results for Mo are in close agreement.
In all cases the difference is almost exactly equal to their value for
XL+ This reinforces our point of view that their final expression for
XL is incorrect. ({We expect XL to be quite small and negative.) The
reason the Mo results agree is because, unlike Nb and V, the Mo wave
functions are approximateiy zero at the Wigner-Seitz sphere radius and

the neglected sur©ace integrals are likewise small. Unfortunately,
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there is not space here to give a detailed comparison with experiment.
Experimental data for the bulk susceptibility for most paramagnetic
materials ranges over a wide range of values. Withkin these Timits, it
appears that, except for Pd our results are reasonable.

In summary, our first principle calculations appear to he in rea-
sonable agreemenf with experimental results. There are, however, certain
discrepancies which appear to be outside combined numerical and exper-
imental uncertainties. In order to help ¢larify the current situation
it is important that we have more accurate form factor data (in absolute
not relative units) as well as reliable bulk susceptibility data on a

wide range of pure materials at low temperatures.
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Table 1

Calculated values of the spin (agFg), orbit (Fgy),
and core (F.) contributions to the bulk
susceptibility (x).
A1l values are in 106 emu/mole.

asFsg Fo Fe X
Cr 30 138 -7 161
) 126 113 -8 231
Nb 82 94 -14 162
Mo . 25 98 -13 110
Pd 352 28 -10 370

Rh 82 51 -10 123
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FIGURE CAPTIONS

Fio. 1. Form factor for chremium. Experimental data from Stassis et al.“

Fig. 2. Form factor for niobium. Experimental data from Moon et al.5
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