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Solid State Division, Oak Ridge National Laboratory*

Oak Ridge, TN 37831

ABSTRACT

Elastic neutron scattering experiments performed over the past two

decades have provided accurate information about the magnetic form

factors of paramagnetic transition metals. These measurements have

traditionally been analyzed in terms of an atomic-like theory. There

are, however, some cases where this procedure does not work, and there

remains the overall conceptual problem of using an atomistic theory

for systems where the unpaired-spin electrons are itinerant. We have

recently developed computer codes for efficiently evaluating the

induced magnetic form factors of fee and bec itinerant electron para-

magnets. Results for the orbital and spin contributions have been

obtained for Cr, Nb, V, Mo, Pd, and Rh based on local density bands.

By using calculated spin enhancement parameters, we find reasonable

agreement between theory and neutron form factor data. In addition,

these zero parameter calculations yield predictions for the bulk

susceptibility on an absolute scale which are in reasonable agreement

with experiment in all treated cases except palladium.

PACS numbers: 75.10.Lp, 75.20.-g
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A uniform magnetic f ie ld induces in a nonmagnetic metal a magne-

t izat ion density which has the periodicity of the l a t t i ce . The bulk

susceptibil ity is proportional to the average of the moment density,

and the magnetic form factor as measured by the polarized neutron

scattering technique gives the Fourier transform of the moment d i s t r i -

bution. In the past two decades the induced moment form factor has been

measured for a large number of transit ion metals, and these data pro-

vide detailed information on the response of the metals to an external

magnetic f i e l d . In principle one should be able to relate the moment

distribution to the energy levels and wave functions of the metallic

electrons. In practice, however, the orbital part of the magnetic

response of the itinerant electrons presents a major obstacle. The

di f f i cu l ty is well-known. In short, the magnetic f i e ld $ enters the

Hamiltonian of the electron system via the vector potential A" = -j 6 x f ,

where r is the spatial coordinate. In an in f in i te crystal the vector

potential diverges so that a perturbative treatment of the f ie ld effect

fa i l s . An exact treatment is possible only in the free electron l im i t ,

which is not applicable to transit ion metals.

Oh et a l . 1 circumvented the divergence problem and derived an exact

expression for the generalized susceptibi l i ty F0(S), which is propor-

tional to the orbital contribution of the magnetic form factor:1

1 i m ' L E • - - r •
q+0 nn1 £ V,i<+q "nit

(1)
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In the above expression § is a reciprocal lattice vector perpendicular

to S, G = |ta|, q»f5, Vg is the Bohr magneton, N is the number of unit

cells in the sample, E * is the energy of the state |n£> in the band n

and wavevector t, and f * is the states occupation number. The matrix

nK

elements are evaluated in the unit cell. It remains difficult to

evaluate this expression, but Oh et al.1 suggested an approximation

scheme and applied it to Cr. Their scheme involved the neglect of

certain surface integrals over the unit cell boundary, and they argued

that it was justifiable for Cr but not for other transition metals.

An alternative to this approach is to formulate the magnetic

response problem in real space, as was done by Benkowitsch and Winter.2

The orbital part of the bulk susceptibility of Al, V, Nb, and Mo has

been calculated by these authors, but no form factor calculation was

attempted. In close analogy with Ref. 1, the authors of Ref. 2 also

separated the total susceptibility into Van Vleck, Landau and dia-

magnetic contributions. It was shown in Ref. 1 that such o procedure

inevitably generates a number of unit cell surface integrals which are

small for Cr and Mo but not small for V and Nb. It appears that these

surface integrals were ignored in the algebraic manipulations in Ref. 1.

Consequently the expression for X|_ in R e f« 2 is incomplete, and this

is the reason for their unphysical result of large "paramagnetic"

Landau susceptibility in V and Nb.

We present in this paper a different method to evaluate approximately

the expression in Eq. (1). The method is based on two observations:

(1) that the largest contribution to the sum comes from states near the

Fermi level, and in transition metals these are largely d states; and
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(2) that the dipole matrix elements <nl< | - iv |n'l<> between states in the

d bands are very small. Consequently, in carrying out the dif ferent iat ion

with respect to q, we may neglect a l l terms which contain the dipole

matrix element as a factor. The result has a simple form:

nkF ( G ) *
0F ( ) I I
0 ^ nV \

nk "

'itKGxB.vJCG.fJInb . (2)

Unlike the method in Ref, 1, we do not need to evaluate any surface

integrals on the unit cell boundary. As a result, the new scheme is

applicable to a l l transition metals. Neither method is applicable to

simple metals, however, because they both neglect the Landau diamagnetism.

The evaluation of the expression for the orbital susceptibi l i ty given

in Eq. (2), remains nontr ivial. Because of l imited space we w i l l only

outline the numerical procedure. Given the crystal potential , the

electronic band structure and wave functions are generated from a KKR

formalism. Inside the muffin-tin sphere the wave functions can be

expanded in terms of symmetry orbi ta ls , $ ( r ) , where y is the symmetry

index:

|nt> = I a ( * ) * ( ? ) . (3)
v

The {a (k)} are the relevant expansion coefficients. The matrix

element of an arbitrary operator 0 can then be written in the general

form
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•* (*)«n.v(*)DvvW , (4)

A Wigner-Seitz (WS) approximation is used to evaluate the D . That

i s , the unit cell is approximated by a sphere and the wave function in

Eq. (3) is extrapolated to the WS sphere radius. Then, by using standard

numerical techniques, the D integrals can be written in terms of

products of Clebsch-Gordon matrices, spherical harmonics, and appropriate

radial integrals. In this way, the matrix elements in Eq. (2) can be

evaluated for a given band structure. Once the matrix elements are

known, the Bri l louin zone sums can be obtained using well established

analytic integration techniques.

We have used the approach outlined above to calculate the total

magnetic form factor

F(6) = a sF s(£) + Fo(5) + Fc(5) , (6)

based on local density theory. Fg($) is the unenhenced spin suscept-

ibility1, o is the corresponding spin enhancement factor, and Fc is

the diamagnetic susceptibility for the core electrons (i.e., electrons

not included in the calculation of F ). All of the quantitites in

Eq. (6) are completely determined from the band structure, i.e., there

are no adjustable parameters. To date, numerical results for Nb, Mo,

Cr, V, Pd, and Rh have been obtained on an absolute scale using poten-

tials and spin enhancement factors determined by Moruzzi, Janak, and

Williams.3 A comparison of our results for Cr and Nb with experiment
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are shown in Figs. 1 and 2, respectively. These represent the best

and worst cases found so far. The results for Cr are in excellent

agreement with those of Oh et al.1 This provides an important

crosschack on our calculations.

The results for Cr are dominated by the orbital contribution and

are obviously in excellent agreement with experiment. Niobium is a

case where the spin and orbital contributions are comparable at 2 = 0.

However, the orbital term dominates for $ * 0 because of the rapid

decrease of the spin term with increasing |&j. The poor agreement

with experiment indicates a problem with the wave functions generated

by the local density approximation. A word of caution about com-

parisons of the type given in Figs. 1 and 2. Experimental form factor

results are usually given on a relative scale with F{0)=l. Since F(0)

cannot be determined from neutron measurements some sort of extrapolated

value must be used to normalize the data. It would be preferable for

form factor data to be given on an absolute basis (disregarding F(0))

since this would allow a more detailed test of theoretical predictions.

Calculated results for the bulk susceptibility, F(0), are given in

Table 1. Our results for Nb and V are quite different from those of

Benkowitsch and Winter2 while results for Mo are in close agreement.

In all cases the difference is almost exactly equal to their value for

XL* This reinforces our point of view that their final expression for

X, is incorrect. (We expect xi to be quite small and negative.) The

reason the Mo results agree is because, unlike Nb and V, the Mo wave

functions are approximately zero at the Wigner-Seitz sphere radius and

the neglected surrace integrals are likewise small. Unfortunately,
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there is not space here to give a detailed comparison with experiment.

Experimental data for the bulk susceptibility for most paramagnetic

materials ranges over a wide range of values. Within these limits, it

appears that, except for Pd our results are reasonable.

In summary, our first principle calculations appear to be in rea-

sonable agreement with experimental results. There are, however, certain

discrepancies which appear to be outside combined numerical and exper-

imental uncertainties. In order to help clarify the current situation

it is important that we have more accurate form factor data (in absolute

not relative units) as well as reliable bulk susceptibility data on a

wide range of pure materials at low temperatures.
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Table 1

Calculated values of the spin (a sF s), orbit (F o),
and core (Fc) contributions to the bulk

susceptibility (x)«
All values are in 10~6 emu/mole.

Cr

V

Nb

Mo

Pd

Rh

asFs

30

126

82

. 25

352

82

Fo

138

113

94

98

28

51

-7

-8

-14

-13

-10

-10

X

161

231

162

110

370

123
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FIGURE CAPTIONS

Fig. 1. Form factor for chromium. Experimental data from St'assis et a"!.4

Fig. 2. Form factor for niobium. Experimental data from Moon et al.5
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