

Con

SAND--90-2883C

DE91 004723

PULSED POWER PERFORMANCE OF THE NEW RLA *

David L. Smith, Michael G. Mazarakis, Lawrence F. Bennett,
and Walter R. Olson
Sandia National Laboratories
Albuquerque, NM

The Recirculating Linear Accelerator (RLA) is returning to operation with a new electron beam injector and a modified accelerating cavity. Upon completion of our experimental program the RLA will capture the injected beam on an IFR guiding plasma channel in either a spiral or a closed racetrack drift tube. The relativistic beam will be efficiently recirculated for up to four passes through two or more accelerating cavities, in phase with the ringing cavity voltage waveforms, and thereby increased in energy to 10 MeV before being extracted. The inductively isolated four-stage injector was designed to produce beam parameters of 4 MeV, 10-20 kA, and 40-55 ns FWHM. The three-line radial cavity is being modified to improve the 1-MV accelerating voltage pulse shape while an advanced cavity design study is in progress. The actual versus predicted pulsed-power performance of the RLA injector and cavity and the associated driving hardware will be discussed in this paper.

This work was funded by Navy SPAWAR under SPACETASK No. 145-SNL-1-8-1, DARPA/AFWL-ARPA Order 5789, DARPA/NSWC-ARPA Order 4395, and by DOE under contract DE-AC04-76DPO0789.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

PULSED POWER PERFORMANCE OF THE NEW RLA *

David L. Smith, Michael G. Mazarakis, Lawrence F. Bennett,
and Walter R. Olson
Sandia National Laboratories
Albuquerque, NM

The Recirculating Linear Accelerator (RLA) is returning to operation with a new relativistic electron beam (REB) injector and a modified accelerating cavity. Upon completion of our experimental program the RLA will capture the injected beam on an IFR guiding plasma channel in either a spiral or a closed racetrack drift tube. The REB will be efficiently recirculated for up to four passes through two or more accelerating cavities, in phase with the ringing cavity voltage waveforms, and thereby increased in energy to about 10 MeV before being extracted. This is a continuation of the Sandia program to develop compact, high-voltage gradient, linear induction accelerators.

We are installing the new REB injector because of the need for a higher amplitude, longer duration, and more flat-topped pulse shape with a colder beam than that produced by the previous injector. We designed the Metglas¹ ribbon-wound core, inductively isolated, four-stage injector to produce beam parameters of 4 MeV, 10-20 kA, and 40-55 ns FWHM. The more constant REB energy can be more efficiently matched to the IFR plasma channel and turning section magnetic fields. The three-line radial ET-2 cavity² is being modified to improve the 1-MV accelerating voltage pulse shape while an advanced cavity design study is in progress. A longer, flatter accelerating pulse with a minimum degradation in shape and amplitude of the repeating pulses is desired.

We have made extensive use of computer simulations in the form of network solver and electrostatic field stress analysis codes to aid in the design and modifications for the new RLA. The actual versus predicted pulsed-power performance of the RLA injector and cavity and the associated driving hardware will be discussed in this paper.

This work was funded by Navy SPAWAR under SPACETASK No. 145-SNL-1-8-1, DARPA/AFWL-ARPA Order 5789, DARPA/NSWC-ARPA Order 4395, and by DOE under contract DE-AC04-76DP00789.

1 Metglas is Allied Corporation's registered trademark for an amorphous alloy of metals.

2 D. Ecclehall and J. K. Temperly, *J. Appl. Phys.* 49, 1981, p. 3649.

END

DATE FILMED

05 / 14 / 91

