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SUMMARY 

The P a c i f i c  Northwest Laboratory  (PNL) i s  conduc t ing  an ongoing p r o j e c t ,  

sponsored by t h e  Biomass Energy Technology D i v i s i o n  o f  t h e  U.S. Department of  

Energy, on t h e  g a s i f i c a t i o n  o f  biomass i n  t h e  presence of c a t a l y s t s .  The pur-  

pose o f  t h e  p r o j e c t  i s  t o  eva lua te  t h e  t e c h n i c a l  and economic f e a s i b i l i t y  o f  

produc ing s p e c i f i c  gas products  v i a  t h e  c a t a l y t i c  g a s i f i c a t i o n  o f  biomass. 

Th is  r e p o r t  presents  t h e  r e s u l t s  of research conducted from October 1980 t o  

November 1982. 

The p r o j e c t  was comprised o f  l a b o r a t o r y  s tud ies ,  process devel opment , and 

economic analyses. The l a b o r a t o r y  s tud ies  were conducted t o  develop o p e r a t i n g  

cond i t i ons  and c a t a l y s t  systems f o r  genera t ing  methane- r i  ch gas, syn thes is  

gases, hydrogen, and carbon monoxide. The process devel  opment u n i t  (PDU) , 
p r e v i o u s l y  used f o r  t e s t s  a t  atmospheric pressure, was mod i f i ed  f o r  ope ra t i on  

a t  abso lu te  pressures o f  up t o  10 atm (1000 kPa). A program f o r  use on a 

microcomputer was w r i t t e n  t o  determine t h e  e f f ec t  of y i e l d  changes a t  e l eva ted  

pressures on process economi cs. 

I n  t h e  l a b o r a t o r y  sca le  s tud ies ,  a c t i v e  c a t a l y s t s  were developed f o r  gen- 

e r a t i o n  o f  syn thes is  gases f rom wood by steam g a s i f i c a t i o n .  A t r i m e t a l l i c  

c a t a l y s t ,  Ni -Co-Mo on s i  1  ica-a1 umina doped w i t h  2  w t %  Na, was found t o  r e t a i n  

a c t i v i t y  i n d e f i n i t e l y  f o r  generat ion o f  a  methanol syn thes is  gas f rom wood a t  

1380°F (750°C) and 1 atm (100 kPa) abso lu te  pressure. C a t a l y s t s  f o r  genera t ion  

o f  a  methane- rich gas were deac t i va ted  r a p i d l y  and cou ld  no t  be regenerated as 

requ i red  f o r  economic a p p l i c a t i o n .  Sodium carbonate and potassium carbonate 

were e f f e c t i v e  as c a t a l y s t s  f o r  convers ion o f  wood t o  syn thes is  gases and 

methane- rich gas and should be economica l ly  v iab le .  C a t a l y t i c  g a s i f i c a t i o n  

cond i t i ons  were found t o  be s u i t a b l e  f o r  p rocess ing  o f  a l t e r n a t i v e  feed-  

stocks:  bagasse, a l f a l f a ,  r i c e  h u l l s ,  and almond h u l l s .  

The PDU was operated s u c c e s s f u l l y  a t  abso lu te  pressures o f  up t o  10 atm 

(1000 kPa) and temperatures o f  up t o  1380°F (750°C)- Y ie lds  o f  syn thes is  gases 

a t  e leva ted  pressure were g rea te r  than those used f o r  p rev ious  economic evalua-  

t i o n s  (Mudge e t  a1 . 1981)- A t r i m e t a l l  i c  c a t a l y s t ,  N i  -Cu-Mo on s i l  ica-alumina, 

d i d  no t  d i s p l a y  a l ong  l i f e  as d i d  t h e  doped t r i m e t a l l i c  c a t a l y s t  used i n  



l a b o r a t o r y  s tud ies .  The c a t a l y s t  was a c t i v e  f o r  a  weight  r a t i o  o f  wood-to- 

c a t a l y s t  o f  about 6 compared t o  over  1400 i n  t h e  l abo ra to r y .  I n i t i a l  r e s u l t s  

on t h e  e f f e c t s  o f  va r ious  process v a r i a b l e s  (pressure, temperature,  wood par-  

t i c l e  s i z e )  a re  i n c o n c l u s i v e  because o f  t h e  l i m i t e d  number o f  t e s t s  t h a t  were 

completed w i t h  a c t i v e  c a t a l y s t s .  No at tempt  was made t o  regenerate t h e  

c a t a l y s t .  

A computer program f o r  a  Radio Shack TRS-80 Model I microcomputer was 

developed t o  eva lua te  r a p i d l y  t h e  economics o f  produc i  ng e i t h e r  methane o r  

methanol f rom wood. The program i s  based on economic eva lua t i ons  repo r ted  i n  

p rev ious  s tud ies  (Mudge e t  a1 1981). Improved y i e l d s  f rom t h e  PDU s tud ies  were 

found t o  r e s u l t  i n  a  r e d u c t i o n  o f  about 9  c e n t s l g a l  i n  methanol cost .  
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INTRODUCTION 

The P a c i f i c  Northwest Laboratory  (PNL) i s  conduct ing s tud ies  on steam 

g a s i f i c a t i o n  o f  biomass i n  t h e  presence o f  c a t a l y s t s .  These s t u d i e s  a re  spon- 

sored by t h e  Biomass Energy Technology D i v i s i o n  of t h e  U.S. Department of 

Energy (DOE). 

G a s i f i c a t i o n  processes a re  commonly used t o  conver t  carbonaceous mat ter ,  

i n c l u d i n g  biomass, i n t o  gases and some condensib le  l i q u i d s  (Von F r e d e r s d o r f f  

e t  a1 . 1963, F r i t z  e t  a1 . 1979). Al though t h e r e  a re  except ions w i t h  some 

r e f r a c t o r y  carbonaceous ma te r i a l s ,  t h e  res idues f rom such g a s i f i c a t i o n  p ro-  

cesses comprise p r i n c i p a l l y  t h e  i n e r t  minera l  c o n s t i t u e n t s  o f  t h e  feed mate- 

r i a l .  These res idues a re  e s s e n t i a l l y  devoid o f  s i g n i f i c a n t  q u a n t i t i e s  o f  

carbon o r  char. I n  con t ras t ,  t h e  res idues from many so- ca l led  p y r o l y s i s  pro-  

cesses a re  c l a s s i f i e d  as chars because they  con ta in  a  s u b s t a n t i a l  f r a c t i o n  o f  

t h e  carbon from t h e  o r i g i n a l  carbonaceous feed ma te r i a l .  

Both g a s i f i c a t i o n  and p y r o l y s i s  o f  carboneous ma te r i  a1 s  produce a  m i x t u r e  

o f  gaseous products  as a  r e s u l t  o f  t h e  complex para1 1  e l  , competi t i  ve, and 

sequent ia l  chemical reac t ions .  The p r e f e r r e d  reac t ions ,  those  t h a t  produce t h e  

most des i  r a b l  e  products,  a re  1  i m i  t e d  and slow a t  convent ional  process ing tem- 

peratures.  However, t h e  r a t e s  can be enhanced by i n c l u s i o n  o f  c e r t a i n  ca ta-  

l y s t s .  Furthermore, a  v a r i e t y  o f  c a t a l y s t s  a re  used i n d u s t r i a l l y  t o  promote 

c e r t a i n  r e a c t  ions t o  emphasi ze f o r m a t i  on o f  des i  red products  f rom o t h e r  gas 

mix tures.  For example, methanat ion c a t a l y s t s  promote t h e  f o rma t i on  o f  hydrogen 

from water and carbon monoxide, and g a s i f i c a t i o n  c a t a l y s t s  promote t h e  break-  

down of carbonaceous mat te r  t o  gases. 

The s ta te- o f- the- a r t  procedure f o r  convers ion o f  a  carbonaceous ma te r i a l  

t o  a  syn thes is  gas i nvo l ves  severa l  steps: 

1. g a s i f i c a t i o n  w i t h  pure oxygen and steam t o  form a  m ix tu re  o f  gases 

(CO, Hz, cop, CHq, H2S) 

2. s h i f t  convers ion t o  y i e l d  t h e  requ i red  ~ ~ - t o - C o  r a t i o  i n  t h e  gas 

m i  x t u r e  

3. a c i d  gas removal 



4. re fo rming  hydrocarbons 

5. mo is tu re  removal 

6. f u r t h e r  gas cleanup t o  remove t r a c e s  of s u l f u r  compounds t h a t  would 

o therw ise  po ison c a t a l y s t s .  

P a r t i a l  combustion o f  t h e  carbonaceous feed m a t e r i a l  w i t h  pure oxygen t o  

p rov ide  hea t  f o r  t h e  endothermic steam-carbon r e a c t i o n  i s  c u r r e n t l y  used t o  

produce t h e  gas mix tu re .  Such p r a c t i c e  r e s u l t s  i n  a  r e l a t i v e l y  s imp le  g a s i f i e r  

des ign bu t  r equ i res  an oxygen p lan t .  Processes such as t h e  C02 Acceptor (F i nk  

1973), Ash Agglomerat ion (Goodridge 1973), and E lec t ro the rma l  (01 i v e i  r a  1980) 

o f f e r  schemes t h a t  avo id  use o f  an oxygen p lan t .  

Use o f  c a t a l y s t s  f o r  r e a c t i o n  o f  steam w i t h  wood t o  produce a  syn thes i s  

gas m ix tu re  a l l ows  ope ra t i on  a t  temperatures under 750°C w i t h  good carbon con- 

ve rs i on  (Mudge e t  a l .  1979, M i t c h e l l  e t  a l .  1980, Mudge e t  a l .  1981). The 

requ i red  heat  i s  p rov ided  i n d i r e c t l y  w i t h  hea t  exchanger bundles i n  a  f l u i d - b e d  

system. No pure oxygen i s  used. 

The o v e r a l l  o b j e c t i v e  o f  t h e  PNL s tud ies  i s  t o  eva lua te  t h e  t e c h n i c a l  and 

economic f e a s i  b i  1  i t y  o f  produc ing spec i  f i c  gas p roduc ts  v i a  t h e  c a t a l y t i c  

g a s i f i c a t i o n  o f  biomass. S p e c i f i c  products  t h a t  a re  be ing  s t u d i e d  i nc l ude :  

1 )  methane, 2)  syn thes i s  gases f o r  p roduc t i on  o f  ammonia, methanol, and hydro-  

carbons, 3) hydrogen, and 4)  carbon monoxide. I n  t h e  s tud ies ,  y i e l d s  o f  h i g h -  

value, gaseous p roduc ts  f rom a  s i n g l e- r e a c t i o n  stage a re  enhanced by t h e  p roper  

cho ice  o f  reac tan ts ,  ope ra t i ng  cond i t i ons ,  and c a t a l y s t  combinat ions. Gaseous 

products ,  s u c c e s s f u l l y  produced by t h e  var ious  steam g a s i f i c a t i o n  systems 

employed t o  date,  i n c l u d e  syn thes is  gases f o r  hydrocarbon, methanol, and 

ammoni a  gene ra t i  on and a  methane- r i  ch gas. 

Resu l t s  o f  e a r l i e r  s t ud ies  (Mudge e t  a l .  1981) show t h a t  c a t a l y t i c  pro-  

cesses f o r  convers ion o f  wood t o  va luab le  p roduc ts  a re  t e c h n i c a l l y  and eco- 

nomi c a l  l y  f e a s i  b l  e. Economic f eas i  b i  l i t y  depends on favorabl  e  y i e l d s  a t  a  

pressure o f  10 atm (1000 kPa). Th i s  r e p o r t  presents  r e s u l t s  o f  process deve l-  

opment u n i t  (PDU) opera t ions  a t  10 atm (1000 kPa) pressure and t h e i r  e f f e c t  on 

economic f e a s i  b i l  i t y .  A1 so i nc l uded  a r e  r e s u l t s  of recen t  l abo ra to r y  s t u d i e s  

on c a t a l y s t  development. 



CONCLUSIONS 

PDU opera t ions  were completed a t  10 atm (1000 kPa) abso lu te  pressure, and 

economic eva lua t i ons  a re  based on y i e l d s  a t  t h i s  pressure. The f o l l o w i n g  con- 

c l u s i o n s  a re  based on r e s u l t s  o f  l abo ra to r y ,  PDU, and f e a s i b i l i t y  s tud ies .  

a A t r i m e t a l l i c  c a t a l y s t  (Ni-Co-Mo on s i l i c a - a l u m i n a  doped w i t h  2% 

sodium) r e t a i n e d  a c t i v i t y  i n d e f i n i t e l y  i n  l a b o r a t o r y  t e s t s  f o r  gen- 

e r a t i o n  of a methanol syn thes is  gas. 

Bagasse, a l f a l f a ,  r i c e  straw, and almond h u l l s  a re  p o t e n t i a l l y  s u i t -  

ab le  a1 t e r n a t i  ve feedstocks f o r  g a s i f i c a t i o n  i n  t h e  presence o f  ca ta-  

l y s t s .  Laboratory  t e s t s  conducted i n  t h e  cont inuous f l o w  r e a c t o r  

w i t h  these feedstocks showed t h a t  y i e l d s  increased w i t h  i n c r e a s i n g  

b u l k  dens i ty .  

o Cata l ys t s  t e s t e d  i n  t h e  l a b o r a t o r y  f o r  genera t ion  of a methane- rich 

gas were a c t i v e  bu t  s h o r t - l i v e d  and cou ld  no t  be regenerated. Loss 

o f  metal su r face  area ( s i n t e r i n g )  appeared t o  be a major cause o f  

deact i v a t  i on. 

G a s i f i c a t i o n  o f  wood w i t h  steam i n  a f l u i d  bed a t  10 atm (1000 kPa) 

absol u t e  pressure and 1380°F (750°C) was demonst ra ted.  These condi - 
t i o n s  w i t h  an a c t i v e  c a t a l y s t  a re  s u i t a b l e  f o r  genera t ion  o f  a 

methanol syn thes is  gas. 

Gas c l ean ing  a t  h i g h  temperature w i t h  a cyc lone and a porous metal 

f i l t e r  was e f f e c t i v e  and r e l i a b l e  i n  PDU operat ions.  Th i s  cleanup 

system i s  recommended f o r  any f u t u r e  PDU, o r  p i l o t  scale,  opera t ions  

s i nce  m a t e r i a l  accountabi  1 i t y  i s  good. 

An abso lu te  pressure o f  10 atm (1000 kPa) f o r  wood g a s i f i c a t i o n  was 

found t o  inc rease  t h e  methane concen t ra t i on  ( 6  vo l%  was t h e  lowes t  

concen t ra t i on  w i t h  a c t i v e  c a t a l y s t )  i n  t h e  product  gas and t o  reduce 

t h e  y i e l d  o f  condensib le  o rgan ics  r e l a t i v e  t o  ope ra t i on  a t  atmo- 

spher ic  pressure. 

Potassium carbonate was an a c t i v e  pr imary c a t a l y s t  f o r  genera t ion  of 

a methanol syn thes is  gas from wood i n  PDU t e s t s .  Sodium carbonate 



d i d  no t  show s i g n i f i c a n t  a c t i v i t y  i n  PDU t e s t s  bu t  was a c t i v e  i n  

1  abora to ry -sca l  e  t e s t s .  Aggl omerat i  on was a  p rob l  em when a1 k a l  i 

carbonates were used i n  t h e  PDU b u t  cou ld  perhaps be avoided w i t h  

cool  down o f  t h e  bed be fo re  gas f l o w  i s  shut  o f f .  

A t r i m e t a l l i c  c a t a l y s t  (Ni-Co-Mo on s i l i c a - a l u m i n a )  was a c t i v e  i n  PDU 

t e s t s  f o r  an exposure o f  6 1b wood/lb c a t a l y s t ,  f a r  below t h e  l i f e  o f  

t h e  c a t a l y s t  i n  l a b o r a t o r y  t e s t s  (1400 1b wood/lb c a t a l y s t ) .  Cata- 

l y s t  a c t i v i t y  was dep le ted  d u r i n g  t h e  t h i r d  t e s t .  Repeated tempera- 

t u r e  cyc les  and exposure t o  a i r  may have c o n t r i b u t e d  t o  c a t a l y s t  

deac t i va t i on .  Doping t h e  c a t a l y s t  w i t h  a1 k a l  i carbonate may he1 p  

extend t h e  exposure t ime  be fo re  deac t i va t i on .  Carbon d e p o s i t i o n  

appeared t o  be a  major  cause o f  l o s s  i n  c a t a l y s t  a c t i v i t y .  No 

at tempt  was made t o  regenerate t h e  c a t a l y s t .  

Synthes is  gas y i e l d s  a t  10 atm (1000 kPa) abso lu te  pressure and 

1380°F (750°C) were g rea te r  than p r o j e c t e d  y i e l d s  from ope ra t i ons  a t  

atmospheric pressure. The methanol y i e l d  w i  11, t h e r e f o r e ,  be g r e a t e r  

than  p r e v i o u s l y  r epo r ted  (Mudge e t  a l .  1981). 

PDU opera t ions  a t  10 atm (1000 kPa) abso lu te  p ressure  showed 

inc reased  y i e l d s  w i t h  increased wood p a r t i c l e  s i z e  f rom 1/16 i n .  

(1.5 mm) t o  114 i n .  ( 8  mm) average s ize.  The inc reased  y i e l d s  

p robab ly  r e s u l t  f rom an inc rease  i n  char res idence t ime  s i n c e  t h e  

f i n e r  p a r t i c l e  s i z e  was p a r t i a l l y  en t ra i ned  i n  the  p roduc t  gas. 

The s u p e r f i c i a l  l i n e a r  v e l o c i t y  r e q u i r e d  f o r  f l u i d i z a t i o n  was above 

1 f t / s e c  (0.3 m/sec) a t  a l l  process c o n d i t i o n s  up t o  10 atm 

(1000 kPa) . 
Operat ions a t  10 atm (1000 kPa) showed y i e l d s  t h a t  cou ld  reduce ear-  

l i e r  r epo r ted  methanol cos ts  (Mudge e t  a l .  1981) by about 9  c e n t s l g a l  

w i t h  opera t ions  ad jus ted  t o  g i v e  t h e  p roper  H2:C0 r a t i o  i n  t h e  prod-  

u c t  gas. 



RECOMMENDATIONS 

Conversion o f  wood t o  va luab le  chemical products  hy steam g a s i f i c a t i o n  i n  

t h e  presence o f  c a t a l y s t s  appears t o  be t e c h n i c a l l y  and economica l ly  f e a s i b l e .  

Y ie l ds  from g a s i f i c a t i o n  a t  10 atm (1000 kPa) abso lu te  pressure and 1380°F 

(750°C) exceed t h e  y i e l d s  t h a t  were p r o j e c t e d  f rom atmospheric s tud ies .  These 

r e s u l t s  enhance t h e  t e c h n i c a l  and economic f e a s i b i l i t y  o f  c a t a l y t i c  g a s i f i c a -  

t i o n ;  however, f u r t h e r  s tud ies  a re  recommended t o  reduce t h e  r i s k  f o r  l a r g e -  

scale,  commercial use. Development o f  c a t a l y s t  systems t o  d e f i n e  techniques 

f o r  c a t a l y s t  hand l i ng  t o  avo id  losses  i n  l a rge- sca le  systems i s  needed. We 

recommend s tud ies  t o  determine c a t a l y s t  mechanisms, develop c a t a l y s t  systems, 

and eva lua te  t h e  e f f e c t  o f  v a r i a b l e s  on y i e l d s  a t  e leva ted  pressure. Updat ing 

of process economics i s  a l s o  recommended. 

Labora to ry  s tud ies  on devel opment o f  c a t a l y s t  systems f o r  genera t i  on o f  

d i f f e r e n t  gas products  i s  needed. C a t a l y t i c  mechanisms i nvo l ved  i n  convers ion  

o f  wood t o  s p e c i f i c  products  should be i nves t i ga ted .  Understanding these 

mechanisms would h e l p  develop secondary c a t a l y s t s  t h a t  are a c t i v e  and r e s i s t a n t  

t o  deac t i va t i on .  Development o f  methods f o r  regenera t ion  of secondary ca ta-  

l y s t s  would be a ided w i t h  knowledge o f  c a t a l y t i c  mechanisms. Pr imary ca ta-  

l y s t s ,  such as t h e  a1 k a l i  carbonates, should be s tud ied  t o  determine r e a c t i o n  

mechanisms. Requi red concent ra t ions  f o r  use of p r imary  c a t a l y s t s  and appl  i c a -  

t i o n  methods should be def ined.  Methods f o r  separa t ion  and recovery o f  ca ta-  

l y s t s  f rom char  should be developed. 

Many problems were so lved  i n  complet ion o f  pressure opera t ions  i n  t h e  

PDU. Operat ion a t  abso lu te  pressures o f  up t o  10 atm (1000 kPa) are now 

t r oub le- f ree .  The PDU should be operated t o  d e f i n e  f u l l y  t h e  e f f e c t  o f  

va r i ab les  such as wood p a r t i c l e  s ize ,  wood mo is tu re  content ,  and o p e r a t i n g  

temperature on gas y i e l d s .  Cond i t ions  t h a t  use a i r  o r  oxygen i n  t h e  b l a s t  

should be s tud ied  t o  compare y i e l d s  t o  steam-only ope ra t i on  and t o  develop 

cond i t i ons  f o r  genera t ion  o f  ammonia syn thes is  gas. Energy requ i  rements should 

be determined by conduc t ing  long- term (5-day) t e s t s .  The e f f e c t s  o f  tempera- 

t u r e  c y c l i n g  and exposure t o  a i r  on c a t a l y s t  l i f e  should be determined i n  long-  

te rm tes t s .  A t r i m e t a l l i c  c a t a l y s t  doped w i t h  a l k a l i  should be prepared f o r  



t e s t i n g  i n  t h e  PDU. An a c t i v e  c a t a l y s t  r e s i s t a n t  t o  po i son ing  i s  t h e  major  

need f o r  con t inued  process development. A l k a l i  carbonates, a  p romis ing  

a l t e r n a t i v e  t o  t r i m e t a l  l i c  c a t a l y s t s ,  should be t e s t e d  t o  determine i f  f u s i o n  

i n  t h e  f l u i d  bed can be prevented. 

C a t a l y s t s  a re  e f f e c t i v e  f o r  re fo rming  and c rack ing  vo l  a t i  1  e  p roduc ts  from 

biomass g a s i f i c a t i o n .  Schemes t h a t  employ c a t a l y s t s  i n  separate vessels  should 

be i nves t i ga ted .  Bench-scal e  s tud ies  should be conducted t o  devel  op economic 

systems f o r  genera t ion  of va luab le  gas products.  The s t u d i e s  should employ 

f l u i d- b e d  reac to r s  f o r  s i m u l a t i o n  of s ing le- vesse l  and dual - vessel  operat ion.  

These s tud ies  would e f f e c t i v e l y  eva lua te  c o n d i t i o n s  and c a t a l y s t s  f o r  gas i  f i c a -  

t i o n  o f  biomass t o  produce va luab le  gas products.  Promis ing systems developed 

i n  t h e  bench-scale s tud ies  cou ld  be t e s t e d  i n  t h e  PDU. 

A  program t o  eva lua te  t h e  e f f e c t  o f  y i e l d  changes on process economics and 

t o  update economics i s  ava i l ab le .  New r e s u l t s  should be used as t h e y  become 

avai  1  ab le  t o  assess t h e i  r impact on process economics. Methods f o r  eva l  u a t i o n  

o f  t h e  economics o f  new p l a n t  con f i gu ra t i ons  should be developed. 



LABORATORY STUDIES 

The pr imary o b j e c t i v e s  o f  t h e  l a b o r a t o r y  s t u d i e s  were t o  o b t a i n  a  funda- 

mental understanding o f  t h e  c a t a l y t i c  g a s i f i c a t i o n  o f  biomass and develop 1  ong- 

l i v e d  c a t a l y s t  systems f o r  use i n  t h e  f l u i d - b e d  PDU and e v e n t u a l l y  i n  a  f u l l -  

sca le  p l an t .  Resu l ts  o f  these  s tud ies ,  presented i n  t h e  f o l l o w i n g  sec t ions ,  

serve as a  bas is  f o r  PDU ope ra t i on  and p rov ide  key t e c h n i c a l  i n p u t s  f o r  process 

economic eval  u a t  i ons . 
EXPERIMENTAL EQUIPMENT AND FEED MATERIALS 

Experimental  equipment used i n  t h e  1  abora to ry  s tud ies  i n c l u d e  t h e  

l abo ra to r y- sca le  g a s i f i e r s  and a n a l y t i c a l  systems f o r  p roduc t  and c a t a l y s t  

ana lys is .  Wood was t h e  pr imary feed m a t e r i a l  used, a1 though severa l  a g r i -  

c u l t u r a l  res idues were a l s o  tes ted .  

Labora to ry  Gasi f i  e r s  

Labora to ry  s tud ies  were conducted p r i m a r i l y  i n  two continuous-wood- feed 

reactors .  These reac to rs ,  cons t ruc ted  of qua r t z  g lass  and operated a t  atmo- 

sphe r i c  pressure, a re  shown i n  F i g u r e  1. Wood i s  f e d  i n t o  t h e  t o p  o f  t h e  

r e a c t o r  and g a s i f i e d  i n  t h e  presence o f  va r ious  reac tan ts .  Water, t a r s ,  and 

wate r- so lub le  o rgan ics  a re  condensed and c o l l e c t e d  before t h e  gas i s  metered 

and analyzed. Char and ash accumulate on a  suppor t  j u s t  above t h e  c a t a l y s t  bed 

and a re  vacuumed ou t  p e r i o d i c a l  l y  . 
The r e a c t o r  system i s  f l e x i b l e  w i t h  respect  t o  exper imenta l  v a r i a b l e s  

i n c l u d i n g :  1 )  wood feed ra te ,  8-12 g /h r ;  2)  steam ra tes ,  3-60 g/hr ;  3) ca ta-  

l y s t  weight, 10-30 g/hr ;  4) temperature,  500-850°C, and 5) a d d i t i o n  of r eac tan t  

gases ( a i r ,  oxygen, C02, r e c y c l e  gas). 

Desp i te  t h e  d i f f e r e n c e s  i n  g a s l s o l i d  c o n t a c t i n g  between t h e  l a b o r a t o r y -  

sca le  reac to r s  and f l u i d - b e d  PDU, s i m i l a r  r e s u l t s  a re  obtained. The space 

v e l o c i t y  o f  t h e  h o t  gases over t h e  c a t a l y s t  i n  t he  l a b o r a t o r y  r eac to r s  i s  
3  t y p i c a l l y  1000-2000 cm /g  c a t a l y s t l h r  w i t h  corresponding res idence t i m e  o f  

1.5-3.0 sec. These a re  s i m i l a r  t o  t h e  g a s l c a t a l y s t  con tac t  t imes achieved i n  

t h e  PDU and t h e  composi t ion o f  gases produced i n  both systems under s i m i l a r  
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cond i t i ons  i s  nea r l y  i d e n t i c a l .  Char res idence t ime  i s  s i g n i f i c a n t l y  l onge r  i n  

t h e  1 abora to ry  g a s i f i e r s  and t o t a l  carbon convers ion i s  co r respond ing ly  h i g h e r  

than  t h a t  achieved i n  t h e  PDU. 

Feed Ma te r i  a1 s 

Three d i f f e r e n t  types o f  wood were used i n  t h e  l a b o r a t o r y  s tud ies .  The 

p r imary  feedstock was a map le la lder  head r i g  sawdust which has been t h e  p r imary  

feedstock f o r  t h e  PDU. Labora to ry  samples were ob ta ined  by screening t h e  PDU 

feedstock m a t e r i a l  and sepa ra t i ng  t h e  -7 + 40 mesh f r ac t i on ,  Other wood 

spec ies t h a t  were used were maple and Douglas F i r .  Wood was t h e  feedstock f o r  

a1 1 t e s t s  discussed unless o therw ise  i nd i ca ted .  

Tests  were a1 so performed on f o u r  a g r i c u l t u r e  residues. Bagasse pe l  l e t s  

were ob ta ined  from Davies Hamakau, Inc.  i n  Hawaii and ground t o  t h e  a p p r o p r i a t e  

s ize.  R ice  straw, a l f a l f a ,  and almond h u l l s  were ob ta ined  as cubes from Warren 

& Baerg, Inc., Dinuba, C a l i f o r n i a .  They were a l s o  ground t o  t h e  a p p r o p r i a t e  

s ize.  With t h e  feed system on t h e  l a b o r a t o r y  g a s i f i e r  we were unable t o  feed 

a g r i c u l t u r a l  res idues t h a t  had no t  been densi  f i e d .  

The chemical and phys ica l  c h a r a c t e r i s t i c s  o f  these m a t e r i a l s  a re  shown i n  

Table 1, The elemental  composi t ion i s  determined w i t h  a Perkin-Elmer 240 e l e -  

mental analyzer.  U l t i m a t e  ana l ys i s  i s  based on ASTM D3175. The p r imary  

d i f f e r e n c e s  between t h e  m a t e r i a l s  are t h e  ash con ten t  and t h e  dens i ty .  On a 

mo is tu re  and ash- f ree bas is  t h e  m a t e r i a l s  have n e a r l y  i d e n t i c a l  e lemental  

composi t i on. 

Product Ana lys is  

Gases from t h e  l a b o r a t o r y  g a s i f i e r s  a re  c o l l e c t e d  i n  p l a s t i c  ( ~ e d l  a r ) ( a )  

bags and analyzed w i t h  a Ca r l e  AGC-S gas chromatograph. Char i s  vacuumed f rom 

t h e  g a s i f i e r s ,  weighed, and then analyzed w i t h  t h e  Perkin-Elmer 240. Tar i s  

separated from t h e  water,  weighed, and analyzed w i t h  t h e  Perkin-Elmer 240. A 

Dohrmann DC80 carbon ana lyzer  i s  used t o  determine t h e  carbon con ten t  o f  t h e  

product  water. 

( a )  Trademark o f  DuPont. 
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C a t a l y s t  Prepara t ion  and Ana lys is  

E a r l y  s tud ies  p r i m a r i  l y  used commerci a1 c a t a l y s t s .  It became apparent 

t h a t  use o f  these c a t a l y s t s  was no t  i d e a l ,  p a r t i c u l a r l y  i n  t h e  f l u i d - b e d  PDU. 

W. R. Grace, Inc. supp l i ed  severa l  c a t a l y s t s  prepared t o  our s p e c i f i c a t i o n s  and 

many o the r  c a t a l y s t s  were prepared a t  PNL. 

Ca ta l ys t s  were prepared a t  PNL us ing  two techniques: 1 )  metal impregna- 

t i o n  by t h e  i n c i p i e n t  wetness method on commercial suppor t  m a t e r i a l s ,  and 

2) c o p r e c i p i t a t i o n  o f  h igh- sur face- area,  h i  gh ly- dispersed metal c a t a l y s t s .  A1 1  

supported metal c a t a l y s t s  were reduced f o r  18 h r  a t  450°C i n  hydrogen p r i o r  t o  

s t a r t - u p  o f  t e s t i n g .  

An Aminco-Dietz Sor-BET su r face  area meter was used t o  determine t o t a l  

su r face  area. Metal su r f ace  area based on hydrogen chemisorpt ion was d e t e r -  

mined us ing  t h e  apparatus shown i n  F igu re  2. Sur face area measurements were 

made on both f r e s h  and used c a t a l y s t s .  Used c a t a l y s t s  were a l s o  analyzed w i t h  

a  Perkin-Elmer 240 t o  determine carbon depos i t ion .  

PRELIMINARY CATALYST SCREENING RESULTS 

E a r l y  l a b o r a t o r y  s tud ies  w e r e ' d i r e c t e d  a t  ga in i ng  a  bas i c  understanding o f  

biomass g a s i f i c a t i o n  and s e l e c t i n g  app rop r i a te  c a t a l y s t s  and ope ra t i ng  cond i-  

t i o n s  f o r  t h e  p roduc t i on  o f  s p e c i f i c  gas products  by steam g a s i f i c a t i o n .  

Resu l ts  o f  these s tud ies  a re  i nc l uded  i n  t h e  i n t e r i m  r e p o r t  " I n v e s t i g a t i o n s  on 

Catalyzed Steam Gasi f i c a t i  on o f  Biomass," PNL-3695 (Mudge e t  a1 . 1981) and w i  11 

on l y  be summarized here. 

Gasi f i c a t  i on o f  biomass w i t h  steam i n v o l  ves a  combi n a t i  on o f  t h r e e  types 

o f  r eac t  i ons : 

1. P y r o l y s i s  t o  produce gaseous products  (Hz, CO, C02, CH4 and some 

heav ie r  hydrocarbons),  t a r ,  water s o l u b l e  o rgan ics  ( a c e t i c  ac id ,  

methanol, acetone, es te rs ,  and aldehydes), and char 

2. React ion o f  char f rom 1. w i t h  H20, C02, and Hz t o  produce Hz, CO, 

CH4, and C02 
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FIGURE 2. Chemisorpt ion Apparatus 

3. Reforming and condensat ion o f  t h e  p roduc ts  o f  1. and 2. t o  produce 

a d d i t i o n a l  gas products,  t a r s ,  and char. 

I n  s tudy ing  c a t a l y t i c  steam gas i  f i  c a t i o n  we have used a1 k a l  i carbonates impreg-  

na ted  o r  mixed w i t h  t h e  wood t o  enhance t h e  steam char reac t ion .  These were 

r e f e r r e d  t o  as p r imary  c a t a l y s t s .  Supported metal  c a t a l y s t s  were used t o  ca ta-  

l y z e  t h e  gas phase reac t i ons  and were r e f e r r e d  t o  as secondary c a t a l y s t s .  

Pr imary Ca ta l ys t s  

The e f f e c t i  veness o f  f o u r  d i f f e r e n t  c a t a l y s t s  ( po tass i  urn carbonate, sodi  um 

carbonate, t rona ,  and borax)  was eva lua ted  (Mudge e t  a l .  1981). These ca ta-  

l y s t s  were chosen because: 1 )  exper imenta l  i n v e s t i g a t i o n s  showed them t o  be 



e f f e c t i v e  c a t a l y s t s  f o r  o t h e r  m a t e r i a l s  (coal  char) ,  and 2 )  they  a r e  r e l a t i v e l y  

inexpensive. Two d i f f e r e n t  c a t a l y s t  concen t ra t ions ,  3  x  10'' and 3 x  

g-mol es/g wood, were s tud ied  a t  550°C, 650°C, and 750°C. These concen- 

t r a t i o n s  correspond t o  0.159 t o  0.0159 g Na2C03/g wood and 0.207 t o  0.0207 g 

K2C03/g wood. The main conc lus ions o f  these s tud ies  on p r imary  c a t a l y s t s  were: 

a A l k a l i  c a t a l y s t s  s i g n i f i c a n t l y  inc rease  t h e  y i e l d  o f  gases f rom pyro-  

l y s i s  o f  biomass p r i m a r i l y  a t  t he  expense of l i q u i d ' y i e l d .  

a The o rde r  o f  c a t a l y s t  e f f e c t i v e n e s s  i s  K2C03, Na2C03, t rona ,  borax. 

a The char remain ing a f t e r  p y r o l y s i s  i s  more r e a c t i v e  w i t h  respec t  t o  

steam g a s i f i c a t i o n  a t  temperatures g rea te r  t han  550°C. 

The steam-char r e a c t i o n  r a t e  increases w i t h  i n c r e a s i n g  a l k a l i  

concent r a t i o n .  

The c a t a l y s t  appears t o  inc rease  t h e  steam-char r e a c t i o n  r a t e  by 

i nc reas ing  t h e  carbon sur face  area a v a i l a b l e  f o r  r eac t i on .  

Secondary Ca ta l ys t s  

The main gas phase reac t i ons  t h a t  occur d u r i n g  steam g a s i f i c a t i o n  a re  

shown i n  Table 2. The c o n d i t i o n s  and c a t a l y s t s  used f o r  these  r e a c t i o n s  i n  t h e  

hydrocarbon process ing i n d u s t r i e s  a re  a l s o  included. Us ing t h i s  and e q u i l i b -  

r ium da ta  on t h e  C-H-0 system as a bas i s  we se lec ted  ope ra t i ng  c o n d i t i o n s  and 

c a t a l y s t s  f o r  p roduc t ion  o f  methane, methanol syn thes i s  gas (2H2/CO), ammonia 

syn thes is  gas (3H2/N2), and hydrogen. 

Gasi f i  c a t i  on o f  biomass w i t h  steam i s  endothermic. At temperatures above 

about 500°C, hea t  must be added t o  t h e  g a s i f i e r  t o  ma in ta i n  t h e  r e a c t i o n  tem- 

perature.  Whi le t h i s  i s  n o t  a  problem i n  l a b o r a t o r y  s tud ies ,  i n  a  commercial- 

sca le  u n i t  t h e  amount of hea t  t h a t  can be added economica l ly  i s  l i m i t e d .  

Experience w i t h  t h e  PDU and economic eva lua t i ons  o f  l a r g e  g a s i f i e r s  i n d i c a t e d  

t h a t  750°C i s  t h e  maximum p r a c t i c a l  upper l i m i t .  We a l s o  s e t  550°C as t h e  

minimum g a s i f i c a t i o n  temperature. Produc t ion  of methane i s  thermodynamical ly 

more f avo rab le  a t  lower  temperatures; however, carbon convers ion and t h e  r a t e  

o f  gas p roduc t i on  a re  t o o  low t o  be economica l ly  feas ib le .  



TABLE 2. Gas Phase React ions i n  Steam G a s i f i c a t i o n  o f  Biomass 
(Thomas 1970; Venuto 1979; Rost rup-Nie lson 1975) 

Temp (OC) Press (atm) C a t a l y s t s  

1. S h i f t  React ion 315-485 1-20 Metal  ox ides:  Fe, 

(CO + H20 2 C02 + H2) Cr, Cu, Zn 

2. Methanat ion 230-450 1-300 N i  on a suppor t  

(CO + 3H2 f CH4 + H20) ( s i l i c a ,  alumina, 

r e f r a c t o r y  ) 

3. Hydrocarbon Reforming 550-1000 1-40 Ni on ox ides 

(CnHm + n H20 f n CO + (a1 umina, magnesia) 

(n  + m/2)H2) 

4. Crack ing 2-200 S i  1 i ca-a1 umi na, N i  

and W on s i  1 i c a -  

a1 umi na 

Table 3 shows t y p i c a l  r e s u l t s  ob ta ined  f o r  each case a t  t h e  optimum con- 

d i t i o n s  determined by our s tud ies.  The gasi f i c a t i o n  temperature was con- 

s t r a i n e d  t o  550-750°C as p r e v i o u s l y  i n d i c a t e d ,  and a l l  t e s t s  were run  a t  

atmospheric pressure. No t a r  o r  condensib le  o rgan ics  were produced i n  any o f  

t h e  cases as l ong  as t h e  c a t a l y s t  was a c t i v e ;  char was t h e  o n l y  byproduct.  

G a s i f i c a t i o n  t e s t s  made us ing  a combinat ion o f  p r imary  and secondary 

c a t a l y s t s  showed l i t t l e  improvement over us ing  secondary c a t a l y s t s  alone, so 

pr imay c a t a l y s t s  were dropped f rom cons idera t ion .  Subsequently, it was found 

t h a t  a1 k a l i  carbonates were as e f f e c t i v e  as secondary c a t a l y s t s  f o r  p r o d u c t i o n  

o f  methanol syn thes i s  gas, and they were used i n  t h i s  manner. 

CATALYST LIFETIME STUDIES 

An e f f e c t i v e  c a t a l y s t  f o r  t h e  p roduc t i on  of s p e c i f i c  gases by c a t a l y t i c  

steam g a s i f i c a t i o n  o f  biomass wi 11 : 

have t h e  r i g h t  chemical and phys i ca l  p r o p e r t i e s  t o  promote t h e  

des i  red  r e a c t i  ons 
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a be r e s i s t a n t  t o  d e a c t i v a t i o n  o r  be e a s i l y  regenerated 

a be p h y s i c a l l y  durab le  i n  f l u i d  bed opera t ions .  

Pre l  i m i  na ry  c a t a l y s t  screening s tud ies  i d e n t i f i e d  numerous a c t i v e  c a t a l y s t  

systems f o r  t h e  p roduc t i on  o f  methanol syn thes i s  gas, methane- r ich gas, ammonia 

syn thes is  gas, and a  hydrogen- r ich gas. For  t h e  past  18 months l a b o r a t o r y  

s tud ies  have concent ra ted  on e v a l u a t i n g  d e a c t i v a t i o n  and regene ra t i on  of p ro-  

spec t i ve  c a t a l y s t s  and s tudy ing  t h e i r  durabi  1  i t y  i n  f l u i d - b e d  systems. Cata- 

l y s t s  f o r  a  methanol syn thes is  gas and a  methane- r ich gas have been emphasized. 

Because p roduc t i on  o f  ammonia syn thes is  gas and a  hydrogen- r ich gas i s  s i m i l a r  

t o  p roduc t i on  o f  methanol syn thes i s  gas, c a t a l y s t  l i f e t i m e  i n f o r m a t i o n  f o r  

these  systems can be e x t r a p o l a t e d  from t h e  methanol syn thes i s  gas case. 

I n  a l l  o f  t h e  cases no t a r  was formed as l ong  as t h e  c a t a l y s t  was ac t i ve .  

Appearance o f  t a r s  i n  t h e  r e a c t o r  condenser (see F i g u r e  1) was one o f  t h e  f i r s t  

s igns  o f  l o s s  o f  c a t a l y s t  a c t i v i t y .  Some d e t e r i o r a t i o n  i n  t h e  gas q u a l i t y  was 

u s u a l l y  noted p r i o r  t o  t h e  appearance o f  t a r s ;  however, once t a r s  began appear- 

i n g  i n  t h e  p roduc t  gas, gas q u a l i t y  d e t e r i o r a t e d  q u i t e  r a p i d l y .  We d e f i n e d  

c a t a l y s t  1  i f e t i m e  as t h e  weight o f  wood processed per  u n i t  weight  o f  c a t a l y s t  

p r i o r  t o  t h e  appearance of t a r  i n  t h e  p roduc t  gas. 

E a r l y  i n  t h e  1  i f e t i m e  s tud ies  it became apparent t h a t  carbon d e p o s i t i o n  

was a  ser ious  problem w i t h  respec t  t o  c a t a l y s t  deac t i va t i on .  React ions which 

depos i t  carbon i nc l ude :  

3. CnHm - polymers - coke + XH2 

4. Phenols - coke + gases 

Carbon i s  removed f rom t h e  c a t a l y s t s  by t h e  carbon-steam reac t i on :  

5. C + Hz0 $ H2 + C O  

and by t h e  reverse  o f  r e a c t i o n  1. 



Even though t h e  e q u i l i b r a t e d  gas may show no a f f i n i t y  f o r  carbon forma- 

t i o n ,  i n  an open thermodynamic system carbon may be s t a b l e  i n  a  steady s t a t e ,  

and t h e  accumulat ion o f  carbon may cont inue.  The ques t ion  o f  whether t h e r e  i s  

a  ne t  bu i l dup  o f  carbon, and subsequent c a t a l y s t  d e a c t i v a t i o n ,  i s  thus  a 

k i n e t i c  one and i s  i n f l u e n c e d  by t h e  cho ice  o f  c a t a l y s t s  (Rost rup-Nie lsen 1974, 

Wang 1982). 

Another cause o f  l o s s  o f  a c t i v i t y  i s  thermal s i n t e r i n g .  S i n t e r i n g  i s  t h e  

l o s s  o f  metal su r f ace  area due t o  growth i n  n i c k e l  p a r t i c l e  s i z e  on t h e  ca ta-  

l y s t .  Th is  i s  p a r t i c u l a r l y  t roublesome w i t h  h igh- sur face- area,  dispersed-metal  

c a t a l y s t s  such as those used f o r  methanat ion (Reucro f t  1980). Support mate- 

r i a l s  can a l so  l ose  t h e i r  p o r o s i t y  and sur face  area when sub jec ted  t o  h i gh  

temperatures, p a r t i c u l a r l y  i n  t h e  presence o f  steam. I n  general ,  suppor t  

s t a b i l i t y  increases i n  t h e  f o l l o w i n g  se r i es :  s i l i c a ,  alumina, s i l i ca- a lum ina ,  

ceramic supports.  

S u l f u r  compounds a re  no to r i ous  f o r  d e a c t i v a t i o n  o f  Ni c a t a l y s t s  by forma- 

t i o n  by s u l f i d e s  (Rost rup-Nie l  sen 1975). With wood as t h e  feedstock, s u l f u r  

was no t  a  cause o f  c a t a l y s t  d e a c t i v a t i o n  as determined f rom a n a l y s i s  o f  t h e  

c a t a l y s t  f o r  s u l f u r  a f t e r  exposure. With bagasse as a feedstock, po ison ing  o f  

t h e  c a t a l y s t  by su l  f i da t  i on was noted. 

Ca ta l ys t  f o r  Methanol Synthes is  Gas (MSG) 

P re l  im ina ry  screening s tud ies  showed supported n i c k e l  c a t a l y s t s  t o  be t h e  

most e f f e c t i v e  f o r  p roduc t i on  o f  methanol syn thes is  gas (MSG). Dur ing  t h e  

course o f  t h e  l i f e t i m e  s tud ies  we d iscovered t h a t  a l k a l i  carbonates a re  e f f e c-  

t i v e  c a t a l y s t s  f o r  t h e  p roduc t i on  o f  MSG. Table 4 shows t y p i c a l  r e s u l t s  

ob ta ined  w i t h  severa l  types o f  c a t a l y s t s  a t  750°C and atmospheric pressure. We 

determined t h e  c a t a l y s t  l i f e t i m e  f o r  many d i f f e r e n t  c a t a l y s t  systems and t r i e d  

t o  d e f i n e  t h e  mechanism o f  c a t a l y s t  deac t i va t i on .  The c a t a l y s t s  l i s t e d  i n  

Table 4 a l l  show t h e  p o t e n t i a l  f o r  a  l ong  l i f e t i m e  i n  l a b o r a t o r y  s tud ies.  

The l i f e t i m e s  o f  c a t a l y s t s  t e s t e d  f o r  methanol syn thes i s  gas a re  shown i n  

Table 5. Ca ta l ys t s  w i t h  a  h i g h  n i c k e l  l o a d i n g  and a h i g h  metal  su r f ace  area 

gene ra l l y  had l i f e t i m e s  o f  l e s s  than  100. Examples a re  Harshaw Ni-3266, 



TABLE 4. Methanol Synthesis Gas Product ion from Wood w i t h  Various Ca ta l ys t s  a t  750°C, 1 atm 

17 w t %  K2C03 
Impregnated N i  , Na2C03/ 

on Wood A1 ,01 - - 
United, G-90C 

N i  /Ceramic 

S teamlwood , g l g  

Gas Composition, vo l% 

Carbon Conversion, w t %  

To gas 

To char  

To l i q u i d s  

Synthesis Gas Y ie ld ,  nm3 

(Hz + CO)/kg feed 

( a )  Average o f  f o u r  t e s t s .  



TABLE 5. L i f e t i m e  o f  Ca ta l ys t s  Tested f o r  t h e  Produc t ion  
o f  Methanol Synthes is  Gas a t  750°C, 1 atm 

C a t a l y s t  L i  fe t i rne 
N icke l  Ca ta l ys t s  

Harshaw N i  /Support, N i  -1404 

N i  /Support, N i  -3266 

~i r d l e r ( ~ )  N i  /Re f rac to r y  , C-13-3 

Un i ted  Ca ta l ys t s  N i  /Re f rac to r y  , G-90C 

PNL N i  /A1 203 

Grace Ni /A1 203 

Combination N icke l  Ca ta l ys t s  and Cracking Ca ta l ys t s  

Harshaw N i  -1404 and Grace S i  02-A1 203 

N icke l  A1 1 oy Ca ta l ys t s  

Harshaw N i  -Cu-Mo/A1 203, N i  -XL-664A 

Grace Ni -Cu-Mo/A1 203, SMR- 1 

N i  -Cu-Mo/Si 02-A1 203 , SMR-2 

N i  -Co-Mo/A1 203, SMR-3 

N i  -Co-Mo/Si 02-A1 203, SMR-4 

PNL Ni -Cu-Mo/A1 

A1 k a l  i Carbonate C a t a l y s t  

PNL N i  /Na2C03/A1 203 

PNL K2C03/A1 203 

Others 

~i r d l e r ( ~ )  

Harshaw 

Strem 

Grace 

Cu-Zn 

Fe203 
CoMo/Al 203 MT-40 

rnordenite mo lecu la r  s i e v e  

t y p e  y rnol ecu l  a r  s i eve  

S i  02-A1 203 

g woodig c a t a l y s t  

52, 

( a )  S t i l l  a c t i v e  when t e s t  was terminated.  
(b )  Impregnated w i t h  2% Na a t  PNL. 
( c )  Now p a r t  o f  Un i ted  Cata lys ts .  
NA Not ac t i ve .  



Ni-1404, and G i r d l e r  C-13-3. These c a t a l y s t s  a re  hydrogenat ion and methanat ion 

c a t a l y s t s  and a r e  g e n e r a l l y  no t  t o  be used above 500°C. 

A s e r i e s  o f  t r i m e t a l l i c  n i c k e l  a l l o y  c a t a l y s t s  developed by PNL w i t h  t h e  

a i d  o f  W. R. Grace had s i g n i f i c a n t l y  l onge r  l i f e t i m e s  as shown i n  Table 5. One 

o f  these c a t a l y s t s ,  N i  -Co-Mo on a  s i  1  ica- alumina support .  doped w i t h  2 w t %  Na, 

ran  f o r  over a  year  i n  a l a b o r a t o r y  r e a c t o r  w i t h o u t  deac t i va t i on .  A l i f e t i m e  

o f  1470 g  wood/g c a t a l y s t  was achieved be fo re  t h e  t e s t  was t e rm ina ted  w i t h  t h e  

c a t a l y s t  s t i l l  ac t i ve .  Table 6  shows t h e  progress o f  t h i s  t e s t .  

A t  t h e  s t a r t  o f  a  t e s t  t h e  t r i m e t a l l i c  c a t a l y s t s  a re  no t  q u i t e  as a c t i v e  

as t h e  h i gh  metal  su r f ace  area c a t a l y s t s  i n  terms o f  t h e  y i e l d  o f  syn thes i s  gas 

pe r  gram o f  wood. The t r i m e t a l l i c  a l l o y  c a t a l y s t s  ma in ta i n  t h e i r  a c t i v i t y  f o r  

a  much l onge r  p e r i o d  o f  t ime,  as shown i n  F i g u r e  3. 

Several o the r  supported c a t a l y s t s  which show p o t e n t i a l  f o r  l o n g  l i f e  t imes  

inc lude :  1) Un i ted  G-90C, a  steam re fo rming  c a t a l y s t  f o r  severe cok ing  cond i-  

t i o n s ,  2) a1 k a l  i carbonates supported on alumina o r  s i l i c a  alumina, and 3)  sup- 

po r ted  a1 k a l  i carbonates doped w i t h  smal l  q u a n t i t i e s  o f  n i c k e l  . 
Another o p t i o n  f o r  p roduc t i on  o f  MSG i s  t h e  use o f  a l k a l i  carbonates 

impregnated o r  d r y  mixed w i t h  t h e  biomass. These c a t a l y s t s  were o r i g i n a l l y  

t e s t e d  f o r  t h e i r  c a t a l y t i c  e f f e c t  on t h e  carbon-steam reac t i on ,  b u t  s t u d i e s  i n  

t h i s  and o t h e r  p r o j e c t s  a t  PNL i n d i c a t e  t h a t  they  a l s o  c a t a l y z e  gas phase reac-  

t i o n s  (Ha l l en  e t  a l .  1982). Labora to ry  s tud ies  i n d i c a t e  these  c a t a l y s t s  a re  as 

e f f e c t i v e  as n i c k e l  c a t a l y s t s  f o r  t h e  p roduc t i on  o f  methanol syn thes i s  gas (see 

Table 4). Recovery o f  these c a t a l y s t s  f rom t h e  char has been demonstrated 

(Mudge e t  a1 . 1981). 

A l l  supported metal c a t a l y s t s  t e s t e d  were deac t i va ted  t o  some degree com- 

pared t o  t h e i r  a c t i v i t y  a t  s t a r t up .  Table 7  shows t h e  BET and metal  su r f ace  

areas o f  severa l  c a t a l y s t s  tested.  The metal  su r f ace  area o f  t h e  Harshaw 

Ni-3266 was reduced from about 50 m2/g t o  0.3 m2/g a f t e r  a  l i f e t i m e  o f  74. The 

Grace SMR-4 had on l y  4 m21g o f  metal sur face area o r i g i n a l l y ,  b u t  s t i l l  had 

1.1 m2/g a f t e r  a  l i f e t i m e  o f  670 and 0.4 m21g a f t e r  a  l i f e t i m e  o f  1470. 

Th i s  l o s s  o f  su r f ace  area i s  probably  due t o  bo th  thermal s i n t e r i n g  and 

carbon depos i t ion .  Both t h e  Harshaw Ni-3266 and t h e  Grace SMR-4 l o s t  over  50% 



TABLE 6. L i f e t i m e  Study w i t h  Ni-Co-Mo/Si02-A1203 

Date 

4/2/81 5/8/81 8/13/81 11/17/81 2/22/82 3/17/82 4/8/82 

L i fe t ime ,  g wood/ S t a r t  100 580 816( b, 1197 1358 1469 
g c a t a l y s t  

Steam Rate, g/g wood 0.8 0.9 1.6 1.1 0.9 0.9 0.9 

Gas Composition, vol% 

Carbon Co v r s t i o n  
Pa7 

91 90 95 98 98 9 5 90 
t o  Gas, % 

Sy t h e s i s  Gas Yie ld,  9 1.41 1.24 1.09 1.08 1.10 1.33 1.21 
nm /kg wood 

( a )  Conversion t o  l i q u i d  i s  very small, l e s s  than 0.1%. The r e s t  o f  the carbon i s  converted t o  char. 
(b )  A t  a 1 i f e t i m e  o f  802 the reac tor  plugged and the c a t a l y s t  had t o  be removed from the reac tor .  

A f t e r  being replaced i n  the reac to r  and reduced the  c a t a l y s t  had l o s t  a c t i v i t y  and a s i g n i f i c a n t  
quan t i t y  o f  t a r  was formed. The c a t a l y s t  was regenerated w i t h  steam a t  800°C and then reduced. 
A c t i v i t y  was restored t o  the l e v e l  p r i o r  t o  shutdown. 

( c )  Doped w i t h  2 w t %  Na as Na2C03. 





TABLE 7. Typ ica l  Sur face Areas o f  C a t a l y s t s  Used f o r  Methanol Syn thes is  Gas 

Fresh  Used 

BET Sur face Metal  BET Sur face Metal  Sur face 
C a t a l y s t  Area, m 2 /g Area, m 2 /g Area, m 2 /g Area, m 2 / g  

Harshaw Ni-3266 150 58,48 75,47 0,0.3 

N 
U n i t e d  C-13-3 

i3 
Harshaw Ni-XL-6644 129 6 

Harshaw Ni-1401 125 - - - - - - 
Grace N i  -Co-Mo/Si02-A1 203 204,209 

Grace Ni-Cu-Mo/A1 203 109,117 

( a )  For  a l l o y  c a t a l y s t s ,  t h i s  i s  t he  e q u i v a l e n t  N i  su r face  area. 



o f  t h e i r  metal su r f ace  area a f t e r  steaming a t  550°C f o r  48 h r .  Both c a t a l y s t s  

a l s o  had carbon on them a f t e r  t h e i r  l i f e t i m e  t e s t s ,  as shown i n  Table 8. The 

Harshaw Ni-3266 had 20 wt% carbon on t h e  c a t a l y s t  a f t e r  a  l i f e t i m e  o f  74. The 

Grace SMR-4 had 7 w t %  a f t e r  a  l i f e t i m e  o f  100, 5  w t %  a f t e r  a  l i f e t i m e  o f  670, 

and 4 wt% a f t e r  a  l i f e t i m e  o f  1470. I n t e r i m  r e p o r t  PNL-3695 (Mudge e t  a l .  

1981) represents  scanning e l e c t r o n  microscope micrographs, which show a gradual 

b u i l d u p  o f  carbon on t h e  su r f ace  of t h e  Ni-3266 c a t a l y s t  d u r i n g  a l i f e t i m e  . 
t e s t .  

We at tempted t o  regenerate t h e  Ni-3266 c a t a l y s t  by pass ing  steam over  t h e  

c a t a l y s t  a t  750-800° f o r  64 h r .  Steam was con t inued  u n t i l  no more carbon 

ox ides were p resen t  i n  t h e  o f f  gas. The c a t a l y s t  su r face  area a f t e r  regenera- 

t i o n  was b a s i c a l l y  t h e  same as t h e  "cokedn c a t a l y s t .  Th i s  i n d i c a t e s  t h a t  t h e  

c a t a l y s t  was s in te red .  The c a t a l y s t  had a l i f e t i m e  o f  on l y  4  g  wood/g c a t a l y s t  

a f t e r  r egene ra t i  on. 

TABLE 8. Carbon Depos i t ion  on C a t a l y s t s  Used f o r  Methanol 
Synthes is  Gas a t  750°C, 1 atm 

Carbon on Used 
C a t a l y s t  Ca ta lys t ,  w t %  

Harshaw N i  -3266 

Un i t ed  C-13-3 

Grace N i  -Co-Mo/Si 02-A1 3, 2% Na 

Ni -Cu-MoIA1 203, 2% Na 

N i  -Co-Mo/A1203 

N i  -Co-Mo/A1 203, 2% Na 

N i  -Cu-Mo/Si 02-A1 203 

N i  -Cu-MolSi 02-A1 203(a) 

Un i ted  G-90C 

PNL K2C03/Si 02-A1 203 

PNL N i  /Na2C03/A1 203 

( a )  Tested a t  650°C. 



The Grace SMR-4 c a t a l y s t  had t o  be removed f rom t h e  r e a c t o r  a f t e r  a  l i f e -  

t ime  o f  800 due t o  a  p l u g  i n  t h e  reac to r .  When t h e  c a t a l y s t  was rep laced  and 

reduced, i t  was no t  ac t i ve .  We then passed steam over t h e  c a t a l y s t  a t  750- 

800°C f o r  72 h r  u n t i l  t h e r e  were o n l y  smal l  q u a n t i t i e s  o f  carbon ox ides i n  t h e  

o f f  gas. A f t e r  be ing reduced, t h e  c a t a l y s t  regained i t s  o r i g i n a l  a c t i v i t y  

p r i o r  t o  t h e  shutdown and remained a c t i v e  u n t i l  t h e  t e s t  was te rmina ted  a f t e r  a  

l i f e t i m e  o f  1470 g  wood/g c a t a l y s t .  

Th i s  i n d i c a t e s  t h a t  s i n t e r i n g  i s  a  severe problem f o r  t h e  h i g h l y  loaded, 

h i gh  metal su r face  area c a t a l y s t s ,  b u t  no t  as se r i ous  f o r  t h e  lower  metal su r-  

face  area ca ta l ys t s .  Carbon d e p o s i t i o n  occurs on both c a t a l y s t s  bu t  appears t o  

s t a b i l i z e  a t  3-6 w t %  on t h e  SMR-4. B i m e t a l l i c  and t r i m e t a l l i c  c a t a l y s t s  a r e  

known t o  be more s t a b l e  than n i c k e l  c a t a l y s t  w i t h  respect  t o  both s i n t e r i n g  

(Cusumano 1978) and carbon d e p o s i t i o n  (Van Hook 1980, Arak i  1976). 

Two types o f  c a t a l y s t s  had l i t t l e  o r  no carbon deposi ted on them a t  t h e  

end o f  a  t e s t .  Un i ted  Ca ta l ys t s  G-90C i s  a  c a t a l y s t  developed s p e c i f i c a l l y  f o r  

d i f f i c u l t  re fo rming  cond i t ions .  It con ta ins  n i c k e l  on a  ceramic support. 

Ca ta l ys t s  c o n t a i n i n g  25 wt% a1 k a l  i carbonate (K2C03 o r  Na2C03) impregnated on 

alumina a l s o  have l i t t l e  o r  no carbon on them a t  t h e  end of a  t e s t .  Th i s  i s  

probably due t o  t h e  c a t a l y t i c  e f f e c t  o f  t h e  a l k a l i  on t h e  carbon-steam reac-  

t i o n .  These c a t a l y s t s  a re  no t  as a c t i v e  as Ni c a t a l y s t s  w i t h  respect  t o  t h e  

y i e l d  o f  syn thes is  gas per  gram o f  wood. We doped one o f  these c a t a l y s t s  w i t h  

10 wt% Ni t o  inc rease  i t s  a c t i v i t y  as shown i n  Table 4. The a c t i v i t y  was 

improved, bu t  a  longer  t e s t  i s  needed t o  see i f  t h e  a c t i v i t y  i s  maintained. 

The temperature i n  t h e  r e a c t o r  i s  s i g n i f i c a n t  w i t h  respect  t o  d e a c t i v a t i o n  

o f  supported ca ta l ys t s .  A t  650°C t h e  SMR-2 c a t a l y s t  o n l y  had a  l i f e t i m e  o f  

59 g  wood/g c a t a l y s t  and had 15 wt% carbon on i t  a t  t h e  end of t h e  t e s t .  A t  

550°C t h e  l i f e t i m e  o f  t h e  c a t a l y s t  i s  on l y  about 5 g  wood/g c a t a l y s t .  

Conclusions de r i ved  from s tud ies  on c a t a l y s t s  f o r  p roduc t i on  o f  methanol 

syn thes is  gas are:  



H i g h l y  loaded, h i g h  metal su r face  area n i c k e l  c a t a l y s t s ,  such as 

those used f o r  hydrogenat ion and methanat ion, have s h o r t  a c t i v e  l i f e -  

t imes. Loss o f  a c t i v i t y  appears t o  be due t o  both s i n t e r i n g  and 

carbon depos i t ion .  

T r ime ta l  l i c  n i c k e l  c a t a l y s t s  a re  more s t a b l e  w i t h  respec t  t o  s i n t e r -  

i n g  and carbon d e p o s i t i o n  and have l o n g  a c t i v e  l i f e t i m e s  i n  t h e  

1  abora to ry  . 
C a t a l y s t s  developed f o r  severe steam a p p l i c a t i o n s  such as Un i t ed  

G-90C a l s o  have t h e  p o t e n t i a l  f o r  l o n g  l i f e t i m e s .  

C a t a l y s t  1  i f e t i m e  i s  s e n s i t i v e  t o  g a s i f i e r  ope ra t i ng  temperature.  

Supported a l k a l i  carbonate c a t a l y s t s  have t h e  p o t e n t i a l  f o r  l o n g  

1  i f e t i m e s  bu t  must be doped w i t h  Ni t o  i nc rease  t h e i r  a c t i v i t y .  

A l k a l i  carbonates impregnated on t h e  biomass feedstock a re  n e a r l y  as 

e f f e c t i v e  as n i c k e l  ca ta l ys t s .  

Ca ta l ys t s  f o r  Methane-Ri ch Gas (MRGL 

Resu l t s  o f  t h e  e a r l y  c a t a l y s t  screening s tud ies  i n d i c a t e d  t h a t  t h e  most 

e f f e c t i v e  c a t a l y s t s  f o r  p roduc t i on  o f  a  methane- rich gas (MRG) have t h e  f o l -  

1  owing p r o p e r t i e s :  

a  n i c k e l  l o a d i n g  o f  25 wt% o r  g rea te r  . a  BET su r face  area o f  100 m21g c a t a l y s t  o r  g r e a t e r  

a  n i c k e l  su r f ace  area o f  30 m21g c a t a l y s t  o r  g rea te r .  

The r e s u l t s  ob ta ined  w i t h  these c a t a l y s t s  a t  550°C and atmospheric p ressure  a r e  

q u i t e  s i m i l a r  t o  those  shown f o r  Harshaw Ni-3266 i n  Table 3. 

The l i f e t i m e  o f  c a t a l y s t s  t e s t e d  f o r  p roduc t i on  o f  MRG ranged f rom 1 t o  

78 g  wood/g c a t a l y s t .  Most o f  t h e  commercial c a t a l y s t s  t e s t e d  had l i f e t i m e s  

under 10 g  wood/g c a t a l y s t ,  as shown i n  Table 9. Ca ta l ys t s  w i t h  t h e  l o n g e s t  

1  i f e t i m e s  were c a t a l y s t s  prepared a t  PNL by c o p r e c i p i t a t i o n  (see Tab1 e  10). 

These gene ra l l y  con ta ined  40-50 wt% n i c k e l .  Th i s  i s  t h e  t y p e  o f  c a t a l y s t  t h a t  

i s  be ing  developed f o r  methanat ion f o r  p roduc t i on  o f  SNG. A d d i t i o n  o f  about 

10 w t %  Fe t o  t h e  c a t a l y s t  increased t h e  c a t a l y s t  l i f e t i m e  somewhat. Other 



TABLE 9. L i f e t i m e  o f  Commercial Ca ta l ys t s  Tested f o r  Produc t ion  
o f  a Methane-Rich Gas a t  550°, 1 atm 

C a t a l y s t  L i f e t i m e  
N icke l  Ca ta l ys t s  

Harshaw 

Harshaw 

Harshaw 

Harshaw 

Harshaw 

Grace 
~ i r d l e r ( ~ )  

Un i ted  C a t a l y s t  

Un i ted  C a t a l y s t  

N i cke l  A1 1 oy Ca ta l ys t s  

Grace 

Grace 

Grace 
Harshaw 

Harshaw 

Harshaw 

~i r d l e r ( d )  

Others 

S t  rem 

S t  rem 
S t  rem 

Harshaw 
Grace 

Harshaw 
Union Carbide 

N i  /Support, N i  -1404 

N i  /Support, Ni -3210 

N i  /Support, Ni  -5124 

N i  / K i  ese l  guh r, Ni -0101 

N i  /A1 203 
N i  /Re f rac to ry ,  G-56B 

N i  /Ref ractory  + N i  /A1 203, 

G-90C + C150-4-03 

N i  /Re f rac to ry ,  G-90C 

N i  -Cu-Mo/A1 203 

N i  -Cu-Mo/Si O3-A1 203 

N i  -Co-Mo/A1 203 
N i  -Cu-Mo/A1 203, N i  -XL-664A 

N i  -Mo/A1 203, HT-500 

N i  -\/A1 203, N i  -4301 
N i  -Co/Ref r a c t o r y  , 6-87 

Ru/A1 203 

RR /A1 203 
Pd/A1203 

Co-Mo/A1 203, HT-400 
S i  02-A1 203, 980-13 

S i  02-A1 203 
S i  02-A1 203 , Zeol i t e ,  LZY -82 

g w o o h ~ ~  c a t a l y s t  

l o ,  5 ~ , ( ~ )  2 ( a )  

. ( a )  Impregnated w i t h  2% Na. 
( b )  Impregnated w i t h  2% K. 
( c )  Impregnated w i t h  2% Fe. 
(d )  Now p a r t  o f  Un i ted  Cata lys t .  
( e )  A f t e r  regenerat ion.  
NA Not ac t i ve .  



TABLE 10. L i f e t i m e  of Ca ta l ys t s  Prepared a t  PNL and Tested f o r  
Produc t ion  o f  a Methane-Rich Gas a t  550°C, 1 atm 

C a t a l y s t  L i f e t i m e  
Prepared by Impregnat ion on a Commercial Support g wood/g c a t a l y s t  

Prepared by C o p r e c i p i t a t i  on 

N i  -Fe/A1 203 

N i  -Fe-Mg/A1 203 

N i  -Co/Al 203 

N i  -Cu-Fe/A1 203 

N i  -Fe-CalAl 203 ( impregnated w i t h  2% K )  

N i  -Fe/Al 203 ( impregnated w i t h  2% Pb) 

N i  -Cu/A1 203 

Ni/A1203 ( impregnated w i t h  1% P t )  

N i  / S i  O2 

N i  - F e / S i  O2 

N i  -Fe/A1 203 ( impregnated w i t h  2% Na) 

N i  -/A1203 ( impregnated w i t h  0.5% Ru) 

N i  /S i02  ( impregnated w i t h  1% P t )  

a d d i t i v e s  such as Co, Cu, Mg, Na, K, Pt ,  Ru, and Pb had l i t t l e  o r  no e f f e c t .  

The p r o p e r t i e s  o f  t h e  Ni-Fe/A1203 c a t a l y s t  which had t h e  l onges t  l i f e t i m e  a re  

shown i n  Table 11. 

The a c t i v e  l i f e t i m e  o f  t h e  c a t a l y s t  seems t o  be r e l a t e d  p r i m a r i l y  t o  t h e  

amount o f  a c t i v e  metal  sur face area on t h e  c a t a l y s t  as shown i n  F i g u r e  4. Work 

a t  t h e  U n i v e r s i t y  o f  L o u i s v i l l e  i n d i c a t e s  t h e  maximum metal  su r f ace  area t h a t  



TABLE 11. Prope r t i es  o f  N i  -Fe/A1 203 C a t a l y s t  Used 
f o r  Produc t ion  o f  Methane-Rich Gas 

Composi t i  on BET Sur face Area Metal  Sur face Area 

52 w t %  N i  150 m21g c a t a l y s t  59 m21g c a t a l y s t  

13 w t %  Fe 

35 w t %  A1203 

can be achieved w i t h  c o p r e c i p i t a t e d  n i c k e l  c a t a l y s t s  i s  i n  t h e  range o f  40- 

60 m21g (Reucro f t  1980). Other methods o f  c a t a l y s t  p r e p a r a t i o n  r e s u l t  i n  even 

l e s s  surface area. 

D e a c t i v a t i o n  o f  h i gh  su r f ace  area, d ispersed  metal c a t a l y s t s  i s  a  compl i-  

cated phenomenon i n  which chemical po ison ing  (carbon d e p o s i t i o n  i n  our  case) 

and thermal s i n t e r i n g  may both be i nvo l ved  (Reucro f t  1980). A t  temperatures 

over 500°C, s i n t e r i n g  ( t h e  l o s s  o f  metal su r f ace  area due t o  growth i n  n i c k e l  

p a r t i c l e  s i z e  on t h e  c a t a l y s t )  may be a  s i g n i f i c a n t  cause o f  deac t i va t i on .  Two 

c o p r e c i p i t a t e d  c a t a l y s t s  were steamed a t  550°C f o r  48 h r  and t h e i r  su r f ace  area 

was reduced by 50-70%. Th is  r a t e  o f  sur face area l o s s  corresponds approx i-  

mate ly  t o  t h e  r a t e  o f  l o s s  o f  a c t i v i t y .  

Deac t i va ted  c a t a l y s t s  gene ra l l y  had 15-30 w t %  carbon on them, i n d i c a t i n g  

carbon d e p o s i t i o n  may a l s o  be a  problem. Some c a t a l y s t s  were t e s t e d  i n  both 

t h e  methane case and t h e  methanol syn thes is  gas case a t  750°C, and i n  a l l  

ins tances had longer  a c t i v e  l i f e t i m e s  a t  750°C where s i n t e r i n g  should be more 

severe than  a t  550°C. It i s  l i k e l y  t h a t  both s i n t e r i n g  and carbon d e p o s i t i o n  

c o n t r i b u t e  t o  c a t a l y s t  d e a c t i v a t i o n  a t  550°C. 

An at tempt was made t o  regenerate t h e  Ni-Fe/Al 203 c a t a l y s t  by pass ing 

steam over it a t  550-600°C. It took  over  240 hours before t h e  amount o f  carbon 

ox ides i n  t h e  o f f  gas began t o  drop s i g n i f i c a n t l y  i n d i c a t i n g  most of t h e  carbon 

had been removed. The regenerated c a t a l y s t  o n l y  had a  l i f e t i m e  o f  4  g  wood/ 

g  c a t a l y s t .  Attempts were made t o  regenerate severa l  o t h e r  c a t a l y s t s .  The 

best  r e s u l t s  were achieved w i t h  Ni-3266 which had a  l i f e t i m e  o f  52 g  wood/ 

g  c a t a l y s t  a f t e r  regenera t ion  compared t o  10 g  woodlg c a t a l y s t  as a  f resh 

c a t a l y s t .  





The l i f e t i m e s  achieved w i t h  even t h e  best  c a t a l y s t s  f o r  p roduc t i on  o f  MRG 

are no t  economica l ly  a t t r a c t i v e .  I n  add i t i on ,  regenera t ion  i s  no t  very  e f f e c -  

t i v e  and takes a  l ong  t ime. Development o f  a  l o n g - l i v e d  c a t a l y s t  system f o r  

p roduc t i on  o f  MRG d i r e c t l y  f rom biomass w i l l  r e q u i r e  a  b e t t e r  understanding o f  

t h e  mechani sm o f  deac t i va t i on ,  and probably  a  novel c a t a l y t i c  system. 

Ca ta l ys t s  f o r  Hydrogen-Rich Gas and Ammonia Synthes is  Gas 

Screening s tud ies  were conducted t o  i d e n t i f y  c a t a l y s t s  t o  produce a  

hydrogen- r ich gas and ammonia syn thes is  gas (Table 3 ) .  No l i f e t i m e  s tud ies  

were performed; however, based on t h e  r e s u l t s  o f  l i f e t i m e  s tud ies  f o r  methanol 

syn thes i s  gas i t  i s  u n l i k e l y  t h a t  any of t h e  c a t a l y s t  systems suggested f o r  

these  cases (see Table 5)  w i l l  have l ong  l i f e t i m e s .  

The t r i m e t a l l  i c  c a t a l y s t s  developed f o r  methanol syn thes is  gas can be used 

f o r  p roduc t i on  o f  hydrogen- r ich gas and ammonia syn thes i s  gas a t  750°C and 

1 atm, as shown i n  Table 12. Based on t h e  methanol syn thes is  gas s t u d i e s  t h e  

c a t a l y s t s  should have good l i f e t i m e s ;  however, t h e  e f f e c t  o f  oxygen on c a t a l y s t  

l i f e t i m e  i n  t h e  ammonia case and t h e  l i f e t i m e  of t h e  s h i f t  c a t a l y s t  i n  t h e  

hydrogen case a re  unknown. I n  t h e  f i  xed-bed 1  abora to ry  g a s i f i e r ,  1  i t t l e  oxygen 

reached t h e  c a t a l y s t  bed i n  t h e  ammonia case. But i n  a  f l u i d i z e d  bed u n i t  t h e  

c a t a l y s t  would be exposed t o  some oxygen f rom a i r  i n  t h e  f l u i d i z i n g  gas. 

A l k a l i  carbonates impregnated on t h e  wood a re  a l so  e f f e c t i v e  c a t a l y s t s  f o r  

p roduc t i on  o f  hydrogen and ammonia syn thes is  gas, as shown i n  Table 12. Other 

c a t a l y s t  p o s s i b i l i t i e s  i n c l u d e  supported a1 k a l  i carbonates and steam re fo rming  

c a t a l y s t s  such as Un i ted  G-90C. 

C a t a l y s t  A t t r i t i o n  

One problem encountered i n  ope ra t i on  o f  t h e  f l u i d i z e d  bed PDU i s  c a t a l y s t  

a t t r i t i o n .  Most commercial c a t a l y t i c  f l u i d - b e d  r e a c t o r s  use a  f i n e r  mesh ca ta-  

l y s t  than i s  used i n  t h e  PDU g a s i f i e r .  With small c a t a l y s t  p a r t i c l e s ,  c i r c u -  

l a t i o n ,  f l o w  and mix ing  a re  good and a t t r i t i o n  i s  low. Al though da ta  a r e  

l i m i t e d ,  i t  appears t h a t  f l u i d i z a t i o n  i s  not  as good and a t t r i t i o n  i s  appre- 

c i a b l y  h i g h e r  w i t h  l a r g e  p a r t i c l e s  (Kono 1980, Wen 1977). 



TABLE 12. Produc t ion  o f  Hydrogen-Rich Gas and Ammonia Synthes is  Gas 
a t  750°C, 1 atm 

Ca ta l ys t  

Product 

Steam Rate, g/g wood 

A i r  Rate, g/g wood 

Carbon ~ o n v e r s i  on (a )  
t o  Gas, wt% 

Gas Composit ion, vo l  % 

"2 

co2 

CH4 
co 

c2+ 

2 
P o t e n t i a l  NH3 

kg/kg wood 

Hydr gen Y i e l d  8 ( c / b )  
nm /kg 

N i  -Cu-Mo/Si07-A1 

NH7 SynGas H 7 

2.1 2.9 

0.7 - - 
97 91 

17 wt% K2C03 

Impregnated on Wood 

NH7 SynGas H7 

( a )  The remainder i s  conver ted t o  char, no l i q u i d s  were formed. 
(b )  Inc ludes  s h i f t i n g  CO t o  make a d d i t i o n a l  Hz, no re forming.  
( c )  Wi thout  s h i f t i n g .  

Two d i f f e r e n t  l a b o r a t o r y  f l u i d i z e d  beds were used t o  screen c a t a l y s t s  f o r  

t h e i r  r es i s tance  t o  a t t r i t i o n :  1 )  a 5-cm I.D. model i n  which t h e  c a t a l y s t  was 

f l u i d i z e d  w i t h  a i r  a t  ambient temperature,  and 2 )  a heated 2-cm I.D. model 

which was f l u i d i z e d  w i t h  steam and hydrogen a t  750°C. Three d i f f e r e n t  ca ta-  

l y s t s ,  shown i n  Table 13, were used f o r  t h e  t e s t s .  I n  t h e  f i n a l  e v a l u a t i o n  

c a t a l y s t s  are t e s t e d  i n  t h e  PDU a t  expected process cond i t i ons .  

I n  most o f  t h e  t e s t s ,  a t t r i t i o n  was h i g h  a t  f i r s t  and then  l e v e l e d  o f f  t o  

a lower  s teady- s ta te  r a t e  w i t h i n  t h e  f i r s t  24 hours. The r a t e  o f  a t t r i t i o n  f o r  

a l l  o f  t h e  c a t a l y s t s  was low a t  t h e  lowest  f l u i d i z a t i o n  v e l o c i t y  tes ted ,  bu t  
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i nc reased  q u i t e  r a p i d l y  as t h e  v e l o c i t y  was increased. The s teady- s ta te  r a t e  

o f  a t t r i t i o n  was found t o  be a  f u n c t i o n  o f  v e l o c i t y  i n  t h e  f o l l o w i n g  manner: 

K = 0.10 v3 f o r  Grace SMR-2 

K = 0.0076 v 2 * l  f o r  Grace Ni/A1203 

where K i s  t h e  r a t e  o f  a t t r i t i o n  (percen t  of o r i g i n a l  c a t a l y s t  charge reduced 

t o  f i n e s  i n  one hou r )  and V i s  t h e  gas v e l o c i t y  ( f t l s e c ) .  F ines were de f i ned  

as c a t a l y s t  p a r t i c l e s  sma l l e r  than  100 mesh. 

The r a t e  o f  a t t r i t i o n  f o r  t h e  SMR-2 c a t a l y s t  was h i g h e r  than  t h e  r a t e  o f  

a t t r i t i o n  f o r  a  Ni/A1203 c a t a l y s t  and a  p l a i n  alumina c a t a l y s t  t e s t e d  a t  s i m i -  

1  a r  v e l o c i t i e s ,  and was much more s e n s i t i v e  t o  changes i n  v e l o c i t y .  However, 

t h e  SMR-2 c a t a l y s t  has a  lower  bu l k  d e n s i t y  than t h e  o t h e r  two c a t a l y s t s  (see 

Table 14) so i t  can be f l u i d i z e d  a t  lower  v e l o c i t i e s  where t h e  r a t e  o f  a t t r i -  

t i o n  i s  s i m i l a r  t o  t h e  o t h e r  two c a t a l y s t s .  

An ac tua l  measurement o f  c a t a l y s t  a t t r i t i o n  i n  t h e  PDU has no t  been made, 

b u t  i t  appears t o  be somewhat h i ghe r  than  t h a t  observed i n  t h e  5-cm model. A 

rev iew o f  t h e  l i t e r a t u r e  suggested two p o s s i b l e  reasons f o r  t h e  inc reased  

a t t r i t i o n  i n  t h e  PDU: 1 )  steam may reduce t h e  s t r e n g t h  o f  t h e  c a t a l y s t  sup- 

p o r t ,  and 2) f o rma t i on  o f  elemental  carbon w i t h i n  t h e  c a t a l y s t  p a r t i c l e  may 

weaken i t  (Zenz 1960). To t e s t  these  p o s s i b i l i t i e s ,  t e s t s  were made i n  t h e  

2-cm I .D. heated model f l u i d i z e d  w i t h  steam and hydrogen. Tests  used f r e s h  

SMR-2 and "coked" SMR-2 (6% carbon on t h e  c a t a l y s t )  ob ta ined  f rom a  l a b o r a t o r y  

g a s i f i e r .  The f r e s h  c a t a l y s t  showed no i nc rease  i n  a t t r i t i o n  compared t o  t e s t s  

us ing  a i r  a t  ambient temperature. The r a t e  o f  a t t r i t i o n  inc reased  somewhat 

TABLE 14. C h a r a c t e r i s t i c s  o f  C a t a l y s t s  Used f o r  A t t r i t i o n  Tes ts  

Grace Alcoa F-100 Grace SMR-2 
C a t a l y s t  N i  /A1 A1 umi na N i  -Cu-Mo/Si 07-A1703 

Bu lk  Densi ty ,  g/cm 3  1.3 0.72 0.62 

P a r t i c l e  Size, U.S. -36 + 70 -48 + 80 
Screen 

Minimum F l u i d i z a t i o n  18 
Vel o c i  t y  , cm/sec 



w i t h  t h e  "coked" c a t a l y s t ,  bu t  p a r t  o f  t h i s  was due t o  removal o f  carbon from 

t h e  c a t a l y s t .  We now b e l i e v e  t h a t  t h e  feed screw causes most o f  t h e  a t t r i t i o n  

i n  t h e  PDU by c rush ing  t h e  c a t a l y s t  t h a t  f a l l s  back i n t o  it. 

EVALUATION OF ALTERNATIVE FEEDSTOCKS 

Bagasse, r i c e  straw, a l f a l f a ,  and almond h u l l s  were g a s i f i e d  i n  a  con t i nu-  

ous l a b o r a t o r y  r e a c t o r  t o  eva lua te  t h e  p o t e n t i a l  o f  a l t e r n a t i v e  feedstocks f o r  

p roduc t i on  o f  syn thes is  gas. A l l  samples used were ob ta ined  i n  p e l l e t e d  o r  

cubed form and ground t o  about 14 mesh f o r  use i n  t h e  l a b o r a t o r y  reac to rs .  

Other m a t e r i a l s  t h a t  had no t  been d e n s i f i e d  cou ld  not  be f ed  i n t o  t h e  reac to r .  

Table 1 shows t h e  composi t ion o f  a l l  f o u r  ma te r i a l s .  The samples a l l  con- 

t a i n e d  cons iderab le  ash ( f rom 6-20%) and about 10% moisture.  On a mo is tu re  and 

ash- f ree bas i s  t h e  chemical composi t ion o f  t h e  a l t e r n a t i v e  feedstocks i s  q u i t e  

s i m i l a r  t o  wood. The b igges t  d i f f e r e n c e  between t h e  feedstocks i s  t h e i r  bu lk  

dens i t y ,  which ranges f rom 0.14 t o  0.65 g/cc. 

Table 15 shows t h e  r e s u l t s  obta ined w i t h  t h e  f o u r  feedstocks a t  about 

750°C w i t h  1 gram o f  steam per  gram o f  feedstock, us i ng  a Ni-Cu-Mo/Si02-A1203 

(SMR-2) c a t a l y s t .  Almond h u l l s  were t l i e  best  feedstock w i t h  respect  t o  both 

carbon convers ion and gas composit ion, f o l l owed  by a l f a l f a .  Carbon convers ion 

and gas q u a l i t y  appear t o  be r e l a t e d  more t o  t h e  bu l k  dens i t y  of t h e  m a t e r i a l  

than t o  any o the r  proper ty .  Th is  appears t o  be due t o  t h e  des ign o f  t h e  

l a b o r a t o r y  r eac to r  and would not  necessa r i l y  be t h e  case i n  a  f l u i d i z e d  bed. 

The m a t e r i a l s  w i t h  t h e  lowest  bu l k  d e n s i t i e s  have more s t r i n g y ,  f i b r o u s  p ieces,  

which cause channel ing and b r i d g i n g  i n  t h e  l a b o r a t o r y  reac to r .  When t h i s  

occurs, carbon convers ion and gas q u a l i t y  a r e  adverse ly  a f f ec ted .  

Overa l l ,  t h e  r e s u l t s  w i t h  t h e  a1 t e r n a t i  ve feedstocks were q u i t e  s im i  1  a r  t o  

those ob ta ined  w i t h  wood. The y i e l d  da ta  shown i n  Table 15 a re  based on t h e  

weight  o f  t h e  feed m a t e r i a l  as processed. When conver ted t o  a  mo i s tu re  and 

ash- f ree bas is ,  r e s u l t s  are about t h e  same as those  achieved w i t h  wood. 

Resu l ts  i n  t h e  case of almond h u l l s  a re  g rea te r  than those w i t h  wood. With 





both a l f a l f a  and bagasse, a s l i g h t  s u l f u r  odor was not iced.  No H2S was 

de tec ted  i n  t h e  gas; however, t h e  gas chromatograph used f o r  a n a l y s i s  was n o t  

s e n s i t i v e  t o  l e s s  than 100 ppm o f  H2S. 



PROCESS DEVELOPMENT UNIT STUDIES 

The main ob jec t i ves  o f  t h e  process development u n i t  (PDU) s tud ies  a re  t o  

determine t h e  y i e l d s  f rom g a s i f i c a t i o n  o f  wood w i t h  steam i n  t h e  presence of 

c a t a l y s t s  a t  10 atm (1000 kPa) abso lu te  pressure and t o  p rov ide  i n f o r m a t i o n  on 

equipment performance f o r  sca l  i ng t o  p i  l o t  p l a n t  s ize.  Prev ious s tud ies  (Mudge 

e t  a l .  PNL-3695 1981) determined y i e l d s  a t  atmospheric pressure which were 

ex t rapo la ted  t o  10 atm (1000 kPa) abso lu te  pressure f o r  economic eva lua t ions .  

Equipment i n  t h e  PDU was mod i f ied  t o  a1 low ope ra t i on  a t  pressure condi-  

t i ons .  Equipment design and ope ra t i ng  r e s u l t s  a re  presented i n  t h e  f o l l o w i n g  

sec t i ons  along w i t h  cons ide ra t i ons  necessary t o  a l l o w  operat ion.  

DESIGN CONSIDERATIONS FOR PRESSURE OPERATION 

Operat ion a t  10 atm (1000 kPa) abso lu te  pressure i nvo l ves  spec ia l  proce-  

dures t o  assure cont inued sa fe ty .  Equipment must be designed t o  e s t a b l i s h e d  

codes. Process gas f lows  change s i g n i f i c a n t l y  w i t h  pressure. The r e s u l t i n g  

reduc t i on  i n  equipment s i z e  i s  a  pr ime i n c e n t i v e  f o r  pressure operat ion.  The 

f o l l o w i n g  sec t ions  summarize cons idera t ions  f o r  p ressure  opera t ion .  

Equipment Design 

Many PDU components t h a t  were used f o r  atmospheric pressure opera t ions  

needed t o  be redesigned and replaced. The g a s i f i e r  and t h e  gas- f i red  h e a t e r  

d i d  no t  r e q u i r e  replacement. The g a s- f i r e d  hea te r  had not  been used p r e v i -  

ously.  Design c r i t e r i o n  f o r  t h e  p ressur ized  PDU equipment were based on 

ANSI  631.1 f o r  t h e  process p i p i n g  and t h e  ASME u n f i r e d  pressure vessel code f o r  

process vessels. 

The gas- f i r ed  hea te r  d i d  no t  qua1 i f y  under any o f  t h e  s tandard codes. An 

ana l ys i s  of t h i s  hea te r  was prepared and presented t o  t h e  Washington S t a t e  

B o i l e r  Board. A spec ia l  1  icense a1 l ow ing  3000 h r  o f  ope ra t i on  a t  up t o  

170 p s i g  (1170 kPa) was ob ta ined  f o r  t h e  heater .  

Flow Requi rements 

The most c r i t i c a l  design c r i t e r i o n  i s  t h e  f l o w  i n  t h e  g a s i f i e r .  The 

wood/steam m ix tu re  must f l u i d i z e  i n  o rde r  t o  a l l o w  feed a d d i t i o n ,  c a t a l y s t  gas 



mix ing,  and hea t  t r a n s f e r  f rom t h e  c a r t r i d g e  heaters .  Cons t ra i n t s  i n  t h e  

des ign were (1) g a s i f i e r  c o n f i g u r a t i o n ,  ( 2 )  c a r t r i d g e  h e a t e r  capac i t y ,  and 

( 3 )  gas hea te r  capaci ty .  S p e c i f i c a l l y ,  t h e  i n s i d e  diameter of t h e  g a s i f i e r  i s  

7.75 in .  (19.7 cm). The maximum capac i t y  o f  t h e  c a r t r i d g e  hea te rs  i s  

119,000 B tu /h r  (35 kW); however, hea t  t r a n s f e r  l i m i t s  t h e  des ign capac i t y  f o r  a  

750°C bed temperature t o  48,000 B tu /h r  (14 kW). The gas h e a t e r  has a 

48,000 B tu /h r  (14 kW) ra t i ng .  Conversat ions w i t h  t h e  manufacturer  i n d i c a t e d  

t h e  gas hea te r  du ty  cou ld  be increased by us ing  a l a r g e r  burner  o r i f i c e .  

Es t imat ions  o f  g a s i f i e r  hea t  requirements were made from equi 1  i br ium c a l -  

cu la t i ons .  A t  1380°F (750°C) bed temperature and 10 atm (1000 kPa) abso lu te  

pressure w i t h  0.75 l b  steam/lb wood and 100% carbon conversion, t h e  s tandard 

heat  o f  r e a c t i o n  i s  400 t o  600 B t u / l b  (930 t o  1400 kJ /kg)  o f  wood. A t  75% 

convers ion t h e  r e a c t i o n  should be c l ose  t o  autothermal.  Therefore,  based on 5% 

wood mo is tu re  and 0.75 weight  r a t i o  o f  steam t o  wood, 150 t o  200 1 b /h r  (70 t o  

90 kg /h r )  o f  wood i s  t h e  maximum process ing ra te ,  and 50 1b /h r  (23 k g / h r )  would 

be a reasonable des ign ra te .  

From atmospheric t e s t i n g ,  a  0.7 weight  r a t i o  o f  steam t o  d r y  wood was 

determined f o r  methanol syn thes is  gas product ion.  Th is  va lue  was reasonable 

f o r  t h e  pressure des ign case, as h i g h e r  steam r a t e s  would be l e s s  economical. 

For t h e  des ign bas is ,  38 1b /h r  o f  steam would be used. Th is  equals a  bed 

v e l o c i t y  o f  o n l y  0.24 f t / s e c  (7 cm/sec) which i s  no t  h i gh  enough t o  f l u i d i z e  a 

wood lca ta lys t  m ix tu re .  Un fo r t una te l y ,  t h e  c o n s t r a i n t  of t h e  e x i s t i n g  

g a s i f i e r - c a r t r i d g e  combinat ion cou ld  no t  be resolved. Therefore,  we had t o  

cons ider  h i g h e r  steam ra tes ,  sma l l e r  c a t a l y s t  p a r t i c l e  s ize ,  and r e c y c l e  of 

p roduc t  gas. 

A c a t a l y s t  o f  about 250 microns (- 40 + 80 U.S. Screen) i n  s i z e  was ordered 

f o r  use i n  t h e  PDU. Th i s  s i z e  should a l l ow  f l u i d i z a t i o n  a t  about 0.5 f t / s e c  

(15 cm/sec) as compared t o  a  v e l o c i t y  of 1.5 f t / sec  (46 cmlsec) i n  t h e  atmo- 

spher ic  cases. P o t e n t i a l  advantages would be l e s s  c a t a l y s t  a t t r i t i o n  and h i g h  

gas and char res idence t imes. From f l u i d i z a t i o n  t e s t s  i n  a  c o l d  model, a  gas 

v e l o c i t y  o f  0.5 f t / s e c  (15 cm/sec) appeared t o  f l u i d i z e  a bed o f  c a t a l y s t  and 

head r i g  sawdust. 



A compressor was procured f o r  r e c y c l e  o f  p roduc t  gas. Gas was recyc led  

f o r  s t a r t ups ,  c a t a l y s t  reduc t ion ,  and i n c r e a s i n g  v e l o c i t i e s  i n  t h e  g a s i f i e r .  

The gas hea te r  was es t imated  t o  be overdesigned. It appeared t h a t  i t  

would handle t h e  e x t r a  hea t  l o a d  f o r  increased steam f l o w  and product  gas 

r e c y c l e  flow. 

The r e s t  o f  t h e  equipment was designed based on a v e l o c i t y  o f  0.5 f t l s e c  

(15 cm/sec) i n  t h e  bed, a bed temperature o f  1380°F (750°C), and a maximum wood 

r a t e  o f  150 1b/hr  (68 k g l h r ) .  

Sa fe ty  Systems 

Pressure ope ra t i on  posed a number o f  d i f f e r e n t  p o t e n t i  a1 hazards compared 

t o  atmospheric operat ion.  O f  pr imary concern were inc reased  leak  p o t e n t i a l  and 

f a i l u r e  o f  pressure containment p ipes and vessels. 

An Operat ional  Readiness Plan (ORP) was developed which c a l l e d  f o r  an 

Operat ional  Sa fe ty  Ana lys is  Review (OSAR) d i scuss ing  p o t e n t i a l  hazards, and 

Safe Operat ing Procedures (SOP) f o r  s t a r t u p ,  shutdown, normal opera t ion ,  and 

emergencies. An Operat ional  Readi ness Revi ew board was appoi n ted  t o  s c r u t i  n i  ze 

t h e  ORP, OSAR, and SOP. When t h e  board recommendations and t h e  ORP were 

completed, approval  was granted t o  operate. 

Sa fe ty  f ea tu res  i n  t h e  p l a n t  i n c l u d e  r u p t u r e  d iscs ,  r e l i e f  valves, f i x e d  

and p o r t a b l e  carbon monoxi de a1 arms, over- temperature c o n t r o l  l e r s  on c r i t i c a l  

p ieces o f  equipment, i n t e r l o c k s  on lockhopper systems, backf low p reven t i on  

devices, i n t e r l o c k s  between c e r t a i n  p ieces o f  equi pment , and cont inuous gas 

monitors.  

A r e l i a b l e  da ta l ogg ing  system was used t o  shut  down t h e  p l a n t  i f  pro-  

grammed temperature l i m i t s  on c r i t i c a l  p ieces of equipment were exceeded o r  

pressures exceed programmed l i m i t s .  The p l a n t  was designed so opera to rs  a re  

no t  r equ i red  t o  be on t h e  s t r u c t u r e  d u r i n g  r o u t i n e  opera t ion .  

Qua1 i t y  Assurance 

A qua1 i t y  assurance program was developed f o r  t h e  PDU t h a t  scheduled per-  

i o d i c  ins t rument  c a l i b r a t i o n  and machinery maintenance. 



D e s c r i p t i o n  o f  t h e  Pressur ized  PDU 

The process f l o w  diagram f o r  t h e  PDU i s  shown i n  F i g u r e  5. Steam i s  

superheated i n  t h e  gas hea te r  and con tac t s  wood i n  t h e  g a s i f i e r .  Product gas 

and char  e x i t i n g  t h e  g a s i f i e r  are separated by a cyc lone  and f i l t e r .  A hea t  

exchanger condenses steam and o rgan ic  compounds which a re  then  separated f rom 

t h e  gas i n  t h e  demister.  The gas can be recyc led  t o  t h e  gas h e a t e r  v i a  t h e  

r e c y c l e  compressor. Product gas i s  re leased  through a le tdown valve. A pa r-  

a l l e l  o f f- gas  system employs a v e n t u r i  scrubber;  however, i t  was never r equ i red  

and w i l l  no t  be discussed. A l l  o t h e r  components a re  d iscussed i n  d e t a i l .  

G a s i f i e r  

The g a s i f i e r  i s  t h e  same vessel used f o r  p rev ious  atmospheric t e s t s ,  w i t h  

a  mod i f i ed  gas i n l e t ,  d i s t r i b u t o r  p l a t e ,  and cover. The g a s i f i e r  i s  a  24- in. 

(0.61 m) carbon s t e e l  pipe, 10 f t  (3 m) long, w i t h  b l i n d  f l anges  a t  each end 

and a f langed connect ion near t h e  midd le  o f  t h e  vessel .  A schematic i s  shown 

i n  F igu re  6. The g a s i f i e r  has ceramic f i b e r  i n s u l a t i o n  [approx imate ly  2  in .  

(5  cm) t h i c k ]  and a c a s t  r e f r a c t o r y  l i n i n g  1.5 in .  (4.25 cm) t h i c k .  The reac-  

t i o n  zone (bed) i s  i n  an 8 in .  (20 cm) d i  ameter tube  o f  s t a i n l e s s  s tee l .  The 

bed i s  3  ft (0.91 m) deep when s tagnant  and 4 f t  (1.21 m) deep when f l u i d i z e d .  

The react ion- zone l i n e r  has hea te rs  s t rapped on i t s  e x t e r i o r .  These e l e -  

ments p rov ide  energy t o  ma in ta i n  t h e  bed temperature d u r i n g  i d l e  per iods.  How- 

ever, these elements f a i l e d  be fo re  t e s t s  were complete. F a i l u r e  was p robab ly  

due t o  moi s t u r e  accumulat ion where t e r m i n a l s  a re  connected t o  t h e  e l e c t r i c a l  

g l  ands on t h e  g a s i f i e r  vessel . Carbon accumul a t i  on i s  another  p o s s i b l e  exp l  a- 

nat ion.  Al though these  hea te rs  a re  a d e s i r a b l e  f e a t u r e  needed t o  m a i n t a i n  

temperatures between t e s t s ,  they  a re  no t  e s s e n t i a l  f o r  success fu l  ope ra t i on  o f  

t h e  PDU. S i x  c a r t r i d g e  elements C0.75 i n .  (1.9 cm) d iameter ]  a re  i n s e r t e d  i n t o  

t h e  r e a c t i o n  zone. T h e i r  heated l eng th  i s  4 f t  (1.21 m) and they  a re  capable 

o f  m a i n t a i n i n g  1600°F (870°C) s k i n  temperature.  To ta l  capac i t y  was 

100,000 B tu /h r  (30 kW). These elements p rov ide  energy t o  hea t  r e a c t a n t s  (wood) 

t o  t h e  bed temperature and energy f o r  t h e  hea t  o f  reac t ion .  Energy consumption 

by these  elements i s  measured by a wat t- hour  meter. A seventh c a r t r i d g e  hea te r  

element was added d u r i n g  t h e  t e s t i n g  per iod,  which inc reased  t h e  capac i t y  t o  

120,000 B tu /h r  (35 kW) t o t a l .  Our exper ience showed t h a t  t h e  hea t  t r a n s f e r  



HEAT LET DOWN VALVE 
EXCHANGER TO FLARE 

STEAM 

F I G U R E  5. PDU Schematic 



15 cn 
TUBE 
FEED 

PRODUCT GAS 
OUTLET 

KAOWOOL BLANKET 
8 cm THICK 

CASTABLE REFRACTORY 
3 cm THICK 

n PIPE WITH CERAMIC 
LINERS - 8 cm 

6 EACH SUBMERGED 
CARTRIDGE HEATERS 

PORT 

EXTERNAL BED 
HEATERS 

FEED PORT - 

120 cm BED CATALYST 
A N D  CHAR 

METAL LINER 
20 cm I D  x 137 cm DISTRIBUTOR PLATE 
LONG 

BED SAMPLING DEVICE 

GAS INLET NOZZLE 

0 

FIGURE 6. Schematic of F l u i d  Bed G a s i f i e r  



f rom t h e  elements t o  t h e  bed l i m i t e d  t h e  ou tpu t  from t h e  c a r t r i d g e  hea te r  e l e -  

ments t o  about 75,000 B tu /h r  (22 kW) output .  The e f f e c t i v e  hea t  t r a n s f e r  coe f-  

f i c i e n t  i s  about 80 B t u l h r - f t P O ~  (1600 k ~ / h r - m ~ - ' ~ ) .  

Gas en te r s  t h e  g a s i f i e r  through a  r e f r a c t o r y  l i n e d  p ipe  tee. A d i s t r i b u -  

t o r  p l a t e  made o f  I nco loy  800H ( t r a d e  name of Hunt ington Stee l  Corp.) i s  p laced  

j u s t  below t h e  wood feed i n l e t .  The d i s t r i b u t o r  p l a t e  has 144 ho les  o f  

0.05 i n .  (1.3 mn) diameter. 

A f reeboard  d i s e n t r a i n i n g  area 6  ft (1.3 m) l ong  i s  above t h e  f l u i d  bed. 

The diameter was 14 in .  (36 cm); however, d u r i n g  t e s t i n g  a  12 i n .  (30 cm) 

diameter s t a i n l e s s  s t e e l  l i n e r  was added t o  ( 1 )  p reven t  spa1 l i n g  r e f r a c t o r y  

f rom fa1  1  i n g  i n t o  t h e  bed and des t roy ing  t h e  f l u i d i z a t i o n  and (2 )  t o  i n h i b i t  

steam d i f f u s i o n  t o  t h e  g a s i f i e r  wa l l .  

Thermocouples and pressure probes a re  i n s e r t e d  v i a  a  0.25 i n .  (6.4 mm) 

t u b i n g  from t h e  r e a c t o r  t o p  t o  t h e  des i r ed  l e v e l  i n  t h e  g a s i f i e r .  

Biomass Lockhopper and Feeder 

The f u e l  feed ing  system i s  shown i n  F igu re  7. The des ign i s  b a s i c a l l y  t h e  

same as t h e  des ign used f o r  atmospheric t e s t s ;  however, t h e  feeder  i s  en la rged  

t o  handle a  v a r i e t y  o f  feedstocks and i s  designed f o r  h i gh  pressure. The 

lockhopper va lves are s e l f - c l e a n i n g- k n i f e  gate valves. The lockhopper i s  a  

12 in .  (0.3 m) diameter pipe, 4 ft (1.22 m) long. 

The l i v e  b i n  i s  2  f t  (0.61 m) i n  d iameter  and about 6  f t  (1.8 m) t a l l .  It 

con ta ins  t h r e e  meter ing screws o f  6  in .  (15 cm) diameter. These meter ing  

screws push biomass i n t o  an i n j e c t o r  screw 3.5 i n .  (8.9 cm) diameter which 

r a p i d l y  conveys t h e  f u e l  i n t o  t he  f l u i d  bed. The i n j e c t o r  screw t y p i c a l l y  

operates a t  150 rpm. 

Levels  o f  wood i n  t h e  l i v e  b i n  a re  i n d i c a t e d  by two types o f  sensors: a  

v i b r a t i n g  p l a t e  dev ice  and an energy t ransmiss ion  device. The antenna f o r  t h e  

energy t ransmiss ion  dev ices needed t o  be v e r t i c a l l y  o r i e n t e d  i n  t h e  wood b i n  

be fo re  s a t i s f a c t o r y  c a l i b r a t i o n  and ope ra t i on  were a t t a i ned .  
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FIGURE 7. Wood Feeder and Lockhopper 

A n i t r o g e n  purge i n  t h e  feeder  i s  used d u r i n g  a l l  t e s t s  t o  a t tempt  t o  p re-  

vent  any f l o w  o f  steam from t h e  g a s i f i e r  i n t o  t h e  l i v e  bin.  Th is  techn ique  

apparen t l y  was successfu l  because wood removed from t h e  1  i v e  b i n  a t  t h e  end o f  

t e s t s  was never moist .  

C a l i b r a t i o n  o f  t h e  feeder  w i t h  head r i g  sawdust showed t h a t  d r y  head r i g  

sawdust bypassed t h e  meter ing  screws and f e l l  on to  t h e  i n j e c t o r  screw. Th i s  

r e s u l t e d  i n  i n t e r m i t t e n t l y  h i gh  wood feed r a t e s  which were respons ib l e  f o r  many 



o f  t h e  d i f f i c u l t i e s  observed i n  t he  shakedown t e s t s .  A d d i t i o n  o f  a  b a f f l e  t o  

t h e  l i v e  b i n  area e l im ina ted  t h i s  feeder problem when us ing  head r i g  sawdust. 

When dense wood f l a k e s  were used, t h e  bypassing problem appeared again and t h e  

b a f f l e  was extended t o  remedy t h e  problem. 

The feeder  i s  d r i ven  h y d r a u l i c a l l y  w i t h  manual c o n t r o l s  f o r  i n j e c t o r  and 

meter ing screw speeds. The i n j e c t o r  screw can be moved i n  and ou t  w h i l e  i n  

operat ion.  The 6  i n .  (15 cm) t r a v e l  on t h e  i n j e c t o r  i s  use fu l  d u r i n g  s t a r t u p  

when stagnant c a t a l y s t  has s e t t l e d  on t h e  screw and i n  t h e  i n j e c t o r  sha f t .  

The meter ing screws a re  e l e c t r i c a l l y  i n t e r l o c k e d  w i t h  t h e  i n j e c t o r  so t hey  

cannot operate w i t hou t  t h e  i n j e c t o r .  The feeder i s  i n t e r l o c k e d  w i t h  t h e  da ta-  

l ogge r  t o  s top  feeding i n  alarm cond i t i ons .  

The 1  ockhopper i s  manual ly operated w i t h  e l e c r i c a l  i n t e r l o c k s  which p re-  

vent  both hopper valves from opening a t  t h e  same time. I n t e r l o c k s  a l s o  p reven t  

t h e  t o p  va l ve  from opening w i t hou t  t h e  pressure vent  l i n e  open. A d i f f e r e n t i a l  

pressure sw i tch  prevents opening t h e  bottom hopper va lve  u n t i l  pressures i n  t h e  

1  i v e  b i n  and t h e  hopper a re  equal ized. 

Wood i s  conveyed from ground l e v e l  t o  t h e  lockhopper charge b i n  w i t h  a  

pneumatic conveying system. Besides eas ing t h e  opera to r  work load,  t h i s  system 

i s  essen t i a l  i n  m in im iz ing  opera to r  t ime  on t h e  PDU s t ruc tu re .  

Gas Preheater 

The gas preheater f u n c t i o n  i s  t o  heat  steam and/or r ecyc le  gas t o  t h e  

des i r ed  bed temperature ( o r  h i ghe r  i f  poss ib le ) .  The preheater  was designed t o  

heat  steam (60 1b per h r )  a t  2  p s i g  f rom 212°F (100°C) t o  1800°F (980°C). Th i s  

i s  a  du ty  o f  48,000 B tu /h r  (50,000 kJ /h r ) .  The h e a t e r  i s  a  propane f i r e d ,  

annular  f i n n e d  tube made o f  s t a i n l e s s  s t e e l  and a  cas t  chrome-nickel a l l o y .  

A f t e r  a  thorough s t r e s s  ana lys is ,  a  permi t  was issued by t h e  Washington 

S ta te  B o i l e r  Board a l l ow ing  opera t ion  a t  170 p s i g  (1200 kPa) f o r  3000 h r .  Heat 

t r a n s f e r  c a l c u l a t i o n s  showed t h a t  t h e  convec t i ve  hea t  t r a n s f e r  c o e f f i c i e n t  

remains nea r l y  constant f o r  equal mass f low r a t e s  a t  d i f f e r e n t  pressures. The 

needed maximum steam temperature i s  o n l y  1380°F (750°C), so t h e  du t y  i s  

decreased f o r  t h e  design mass f l ow  ra te ,  o r  t h e  s team/recyc le  r a t e  can be 

increased. The steam/recycle r a t e s  needed t o  be inc reased  a t  10 atm (1000 kPa) 



t o  p rov ide  s u f f i c i e n t  f l u i d i z a t i o n  v e l o c i t y  i n  t h e  bed. I n  ac tua l  ope ra t i on  

t h e  gas hea te r  never performed t o  des ign c o n d i t i o n s  d u r i n g  atmospheric o r  p res-  

sure ope ra t i  on, 

The gas hea te r  and t h e  l i n e  between t h e  hea te r  and t h e  r e a c t o r  [3 i n .  

(7.5 cm) 316 s t a i n l e s s  s t e e l ]  were both h e a v i l y  i n s u l a t e d  and waterproofed.  

Heat l o s s  i n  t h e  l i n e  causes ext remely  slow heatups, so h i g h  temperature hea t  

tapes were e v e n t u a l l y  i n s t a l l e d ,  e f f e c t i v e l y  e l i m i n a t i n g  hea t  losses  i n  t h e  

l i n e ,  

Con t ro l s  on t h e  gas hea te r  i n c l u d e  a  three-mode temperature c o n t r o l l e r  

which a c t i v a t e s  a  propane va lve  p o s i t i o n e r .  A h i  gh- temperature c o n t r o l l e r  

shuts  down t h e  hea te r  i f  t h e  f i nned  tube  temperature exceeds 1490°F (810°C). 

High and low pressure swi tches on t h e  propane supply  a re  a d d i t i o n a l  s a f e t y  

fea tu res .  

Product Gas Cleaning 

Gas scrubbing was always a  problem i n  atmospheric t e s t s .  Poor sc rubb ing  

caused some u n c e r t a i n t y  i n  t h e  mass and energy balances and a l s o  caused opera- 

t i o n a l  problems. Scrubbing systems used i n  atmospheric t e s t s  i nc l uded  a  

cyc lone f o l l owed  by e i t h e r  a  v e n t u r i  scrubber  o r  e l e c t r o s t a t i c  p r e c i p i t a t o r .  

The problems w i t h  these systems centered around char c o n t a c t i n g  water  and con- 

densed o rgan ic  l i q u i d s .  When t h i s  happened, a  s t i c k y  mass developed and grew, 

e v e n t u a l l y  p lugg ing  l i n e s  and decreas ing scrubber e f f i c i e n c y  even f u r t h e r .  

The problem was s u c c e s s f u l l y  e l i m i n a t e d  i n  t h e  des ign o f  t h e  p ressu r i zed  

PDU. Most o f  t h e  char  i s  separated f rom t h e  gas i n  an e f f i c i e n t  3  i n .  (7.5 cm) 

d iameter  h i g h  temperature cyclone. The char  which passes through t h e  cyc lone  

i s  separated us ing  seven h i  gh- temperature s i n t e r e d  s t a i n l e s s  s t e e l  fi 1 t e r s  

2.6 in .  C6.5 cm) o u t s i d e  d iameter  by 3.3 f t  ( 1  m) long. F i l t e r  pore s i z e  i s  

10 microns. The f i l t e r  vessel houses t h e  f i l t e r s  and i s  equipped w i t h  a  d i f -  

f e r e n t i a l  pressure gauge t o  measure pressure drop across t h e  f i l t e r  elements. 

A n i t r o g e n  pu lse  back f lush  system i s  used t o  remove t h e  char cake f rom t h e  

elements. The cyc lone  and f i l t e r  vessel a re  i n s u l a t e d  and a re  operable a t  

1000°F (540°C). Gas l e a v i n g  t h e  f i l t e r s  passes through a  heat  exchanger where 

steam and any o rgan ic  compounds condense. The condensate i s  c o l l e c t e d  i n  a  



demister  column w i t h  a  4  in .  (10 cm) diameter t e f l o n  packed demister.  Clean 

gas pass ing through t h e  demi s t e r  screen i s  e i t h e r  r ecyc led  o r  re leased  t o  a  

f l a r e  v i a  a  pneumat ica l l y  c o n t r o l l e d  letdown valve. 

The cyc lone hopper system i s  t h e  b i gges t  ope ra t i ona l  problem i n  t h e  o f f -  

gas system. The bottom hopper va lve  had a tendency t o  leak,  thereby  a l l o w i n g  

steam t o  condense i n  t h e  hopper forming a muddy m i x t u r e  o f  char  o r  i n h i b i t i n g  

t h e  f l o w  o f  t h e  char du r i ng  hopper d r a i n i n g  a c t i v i t i e s .  Th is  was e l i m i n a t e d  t o  

some ex ten t  by purg ing  t h e  hopper w i t h  n i t rogen .  Pressure sens ing and vent  

1  i nes  a l s o  had a tendency t o  p l ug  w i t h  char. It i s  recommended t h a t  f u t u r e  

vent systems be c a r e f u l l y  s i zed  t o  prevent  ent ra inment  o f  char when depres- 

s u r i z i n g  t h e  hopper and sensing l i n e s  be equipped w i t h  f i l t e r s  t o  prevent  char 

f rom en te r ing .  Another p o t e n t i  a1 improvement would be s e l  f - c l  eani  ng k n i  f e  ga te  

va lves i ns tead  o f  b a l l  va lves on both ends o f  t h e  hopper. Heat t r a c i n g  may be 

requ i  red  t o  prevent  moi s t u r e  condensat i  on. 

The cyc lone hopper was dra ined,  and t h e  d ischarge  weighed, a t  h o u r l y  

i n t e r v a l s  du r i ng  t es t s .  Samples were taken and analyzed f o r  mois ture,  ash, 

carbon, hydrogen, n i t rogen ,  heat  o f  combustion, and potassium o r  sodium when 

carbonate c a t a l y s t s  were used. The f i l t e r  vessel was emptied o n l y  a f t e r  com- 

p l e t i o n  o f  a  t e s t .  S i m i l a r  sample analyses were performed on f i l t e r  vessel 

sampl es. 

The demister  was equipped w i t h  two thermal c o n d u c t i v i t y  t ype  l e v e l  i n d i c a -  

t o r s  which a c t i v a t e d  a d r a i n  va lve  l e a d i n g  t o  a  condensate rece iver .  The 

1 i q u i d  i n  t h e  rece i ve r  was d ra ined  and weighed a t  20 minute i n t e r v a l s .  Samples 

were taken and analyzed f o r  o rgan ic  carbon. The condensates were saved i n  

s t e e l  drums and decanted a f t e r  s e t t l i n g  overn igh t .  The t a r  ( i f  any) a t  t he  

bottom o f  t h e  drum was weighed and sampled, and analyzed f o r  carbon, hydrogen, 

and n i t rogen.  

Product Gas Recycle System 

Gas i s  recyc led  du r i ng  s ta r t up ,  c a t a l y s t  reduc t ion ,  and ope ra t i on  by a 

p i s t o n  t ype  r e c y c l e  compressor. I n i t i a l l y  a  120 gal  (450 a )  surge tank was 

used t o  dampen p i s t o n  pulses; however, t h i s  tank was removed t o  e l i m i n a t e  t h e  

l a r g e  amount o f  gas needed t o  p ressu r i ze  t h e  p l a n t  and t o  decrease t i m e  



r e q u i r e d  t o  reach steady s t a t e  gas composi t ions when r e c y c l i n g  p roduc t  gas 

d u r i n g  operat ion.  The r e c y c l e  f l o w  i s  measured w i t h  an o r i f i c e  meter and i s  

manual l y  c o n t r o l  1 ed by a v a r i a b l e  speed d r i ve .  When requ i  r e d  r e c y c l e  f l o w  

r a t e s  a re  below t h e  compressor's minimum capac i ty ,  a va lve  i n  a bypass l oop  i s  

manual ly opened and adjusted. 

Cont ro l  Ins t rumentat ion-  

System pressure i s  c o n t r o l  1 ed w i t h  a p r o p o r t i o n a l  pneumatic c o n t r o l  l e r .  A 

s t a i n l e s s  s tee l  diaphragm t r a n s m i t s  pressure t o  a Bourdon tube  v i a  a g l y c e r i n  

f i l l e d  l i n e .  A remote s e t  p o i n t  f o r  t h e  c o n t r o l l e r  i s  l o c a t e d  i n  t h e  labora-  

to r y .  The c o n t r o l l e r  d r i v e s  a pneumat ica l ly- operated 2 i n .  ( 5  cm) p ressure  

letdown va lve  w i t h  s t a i n l e s s  s t e e l  t r i m  and a maximum o r i f i c e  o f  0.38 i n .  

(0.96 cm). On l o s s  o f  a i r ,  t h e  va lve  f a i l s  t o  t h e  open p o s i t i o n .  

Steam f l o w  i s  measured by d i f f e r e n t i a l  pressure across an o r i f i c e  meter. 

The d i  f f e r e n t i  a1 pressure i s  conver ted t o  a s i gna l  by a pneumatic d i f f e r e n t i a l  

pressure c e l l .  The s i  gnal feeds a pneumatic, three-mode c o n t r o l  1 e r  i n s i d e  t h e  

1 aboratory .  The c o n t r o l  1 e r  operates a 1 i n .  (2.5 cm) pneumatic c o n t r o l  va l ve  

which f a i l s  t o  a c losed  p o s i t i o n  on l o s s  o f  s igna l .  

Temperature c o n t r o l l e r s  a re  used on t h e  in-bed, c a r t r i d g e  heaters .  The 

hea te r  elements c o n t a i n  i n t e r n a l  thermocouples which measure t h e  s k i n  tempera- 

tu re .  A h igh- temperature l i m i t  c o n t r o l  i s  used on t h i s  c i r c u i t r y .  To maximize 

h e a t e r  l i f e  and t o  p rov ide  steady energy i n p u t ,  s i l i c o n  c o n t r o l  r e c t i f i e r s  a re  

used. 

Other h e a t i  ng c i  r c u i  t r y  (heat  tapes)  a re  c o n t r o l  1 ed manual l y  w i t h  

rheos ta ts .  

Steam Generat i  on 

Packaged e l e c t r i c  b o i l e r s  a re  used f o r  steam supply. O r i g i n a l l y ,  two 

p a r a l l e l  generators,  each w i t h  50 l b / h r  (23 kg /h r )  capac i ty ,  were used. How- 

ever, they  could no t  generate a steady 100 1b /h r  (45  kg /h r )  steam f low.  A 

300 1 b /h r  generator  was procured, and steady steam f l o w  was a t t a i ned .  



Gas Sampling 

Gas samples can be drawn f rom t h e  f i l t e r  vessel o u t l e t  o r  f rom t h e  demis- 

t e r  (see F igu re  5). The gas i s  cooled i n  a  smal l  heat  exchanger and f i l t e r e d .  

Gas pressure i s  reduced t o  2  p s i g  (14 kPa). The low pressure l i n e s  convey gas 

t o  t h e  l a b o r a t o r y  gas a n a l y s i s  equipment. 

The gas sample f l o w  i s  cont inuous (about 0.1% o f  product  f l ow)  d u r i n g  PDU 

operat ion.  Readings f rom cont inuous CO, C02, H2, 02, and CH4 analyzers  a r e  

recorded by opera to rs  every 20 minutes. A gas chromatograph w i t h  a  thermal 

c o n d u c t i v i t y  de tec to r  i s  used f o r  gas ana lys is .  Th is  u n i t  determines concen- 

t r a t i o n s  o f  N2, C2H4, C2H6, C3H8, acety lene and normal-butane as w e l l  as t h e  

gases moni tored by t h e  c o n t i  nuous analyzers.  Samples a re  automati  c a l  l y  

i n j e c t e d  i n t o  t h e  gas chromatograph f o r  ana l ys i s  on 20 minute i n t e r v a l s .  

Product gas f l o w  r a t e  i s  measured w i t h  a  d i f f e r e n t i a l  pressure gauge and 

an e l e c t r o n i c  d i  f f e r e n t i  a1 pressure t ransducer  connected w i t h  an o r i f i c e  meter. 

Data Acaui s i t i o n  

On 30 minute i n t e r v a l s  opera to rs  t ake  readings o f  c o n t r o l l e r  i n d i c a t o r s ,  

meters, pressure gauges and d i f f e r e n t i a l  pressure gauges. I n  add i t i on ,  t h e  

da ta logger  con t inuous ly  mon i to rs  32 thermocouples, 4  pressure t ransducers,  and 

t h e  product  gas d i f f e r e n t i a l  pressure t ransducer .  The data1 ogger p r i n t s  on 

15 minute i n t e r v a l s  and p l o t s  impor tan t  p o i n t s  on 2 minute i n t e r v a l s .  Impor- 

t a n t  da ta  p o i n t s  a re  recorded on magnetic tape  on 2 minute i n t e r v a l s .  

Data Ana lys is  

A f t e r  a  PDU t e s t ,  p r e l i m i n a r y  r e s u l t s  a re  determined us ing  est imated com- 

p o s i t i o n s  (moisture,  ash, C, H, 0, and t o t a l  o rgan i c  con ten t ) .  Then, when 

chemical analyses a re  complete, a  f i n a l  a n a l y s i s  o f  t h e  t e s t  i s  made us ing  

measured values. Th is  ana l ys i s  i s  programmed on a microcomputer. The ca lcu-  

1 a ted  r e s u l t s  i n c l u d e  e l  emental mass balances, energy balances, conversions, 

and e f f i c i e n c i e s .  Summaries o f  data from a l l  t e s t s  except shakedowns a re  

i nc l uded  i n  t h e  appendix. 



OPERATION OF THE PRESSURIZED PDU 

Opera t i  on a t  e leva ted  pressures i s  descr ibed i n  t h e  f o l  1  owing sect ions.  

Many shakedown t e s t s  were made be fo re  usab le  data were obtained. The PDU i s  

now operable a t  10 atm (1000 kPa) abso lu te  pressure and 1380°F (750°C) tempera- 

t u r e  on a  r o u t i n e  basis.  Time and funds f o r  ope ra t i on  and p r e p a r a t i o n  o f  t h i s  

r e p o r t  exp i  r ed  be fo re  a1 1  va r i ab les  cou ld  be i n v e s t i g a t e d  thoroughly .  

Safe Operat ing Procedure 

A Safe Operat ing Procedure (SOP) cove r i ng  s t a r t u p ,  normal opera t ion ,  shu t-  

down, and maintenance was developed. The s t a r t u p  and shutdown procedures were 

p laced i n  each t e s t  data book i n  c h e c k l i s t  form t o  assure t h a t  they  were 

f 01 1  owed. 

Operat ions t y p i c a l l y  cons i s ted  o f  about 5  h r  o f  heatup, f o l l  owed by 3  t o  

5 h r  o f  ope ra t i on  and 1 h r  f o r  p l a n t  shutdown. Three opera to rs  were used t o  

conduct t h e  t es t s .  

N i cke l  c a t a l y s t s  requ i  r ed  about 12 h r  of r educ t i on  i n  a  hydrogen- ni t rogen 

atmosphere a t  750°F (400°C). Th is  was performed w i t h  a  two-man crew. 

Feedstock D e s c r i p t i o n  

Two types  o f  feedstock were used i n  t h e  p ressu r i zed  PDU t e s t i n g  program: 

a l d e r  head r i  g  sawdust and softwood densi  f i  ed f l  akes. These feedstocks a re  

shown i n  F igu re  8 a long  w i t h  whole t r e e  ch ips  which were t o  be tested.  The 

densi  f i e d  f l a k e s  a re  made w i t h  broken pe l  l e t s  from a  wood pe l  l e t i n g  opera t ion .  

These r e j e c t s  a re  a t t r i t e d  on a  d i s k  m i l l .  

Average wood composit ions are shown i n  Table 16 a long  w i t h  r e s u l t s  o f  

screen t es t s .  For  PDU t e s t s  wood i s  d r i e d  t o  l e s s  than  5% mo is tu re  on a  d r y  

bas i  s  . 
Cor ros ion  

Al though t h e  PDU has o n l y  l i m i t e d  hours o f  opera t ion ,  i t  i s  wo r thwh i l e  

n o t i n g  t h a t  d u r i n g  maintenance on t h e  p l a n t ,  no c o r r o s i o n  has been observed. 

The p laces w i t h  t h e  most severe cond i t i ons  a re  t h e  gas hea te r  (Dura l  l o y  HP-40), 

t h e  h o t  feed 1  i n e  (316 s t a i n l e s s  s t e e l  ), t h e  d i s t r i b u t o r  p l a t e  ( I n c o l o y  800H), 

t h e  r e a c t o r  l i n e r  (310 s t a i n l e s s  s t e e l  ) , and I n c o l o y  sheathed c a r t r i d g e  





TABLE 16. Typ ica l  Wood Composit ions and S ize  D i s t r i b u t i o n s  

Dense Flakes Headri  g  Sawdust Whole Tree Chips 
(P ine)  (A1  der  ) (Pop1 a r )  

W t  f r a c t i o n  C 0.503 

W t  f r a c t i o n  H 0.064 

W t  f r a c t i o n  o ( ~ )  0.427 

W t  f r a c t i o n  Ash 0.006 

HHV, B t u / l b  8770 

U.S. Screen wt% U.S. Screen wt% U.S. Screen wt% 

( a )  By d i f fe rence .  

heaters.  The cyc lone (304 s t a i n l e s s  s t e e l  ) ope ra t i ng  a t  up t o  1000°F (540°C) 

showed no s igns  o f  c o r r o s i o n  o r  erosion. 

Operat ing Resu l ts  

Tests  P1 through PI1 were shakedown t e s t s  and l i t t l e  i n f o r m a t i o n  can be 

drawn f rom them. Tests P I2  through P21 generated use fu l  data. Summaries o f  

da ta  from Tests P12 t o  P21 a re  i nc l uded  i n  t h e  appendix. 

E f f e c t  o f  Pressure on Y ie l ds  

Opera t ing  Resu l ts  a t  5  and 10 atm (500 and 1000 kPa) abso lu te  p ressure  a re  

compared w i t h  those  a t  atmospheric p ressure  i n  Table 17. When comparing these  

data,  d i f f e r e n c e s  i n  ope ra t i on  need t o  be considered. Tests a t  atmospheric 

pressure used on l y  steam as a feed gas whereas a t  e l eva ted  pressure, t e s t s  used 

steam and r e c y c l e  gas. K i n e t i c  data show t h a t  steam i s  more r e a c t i v e  than  

hydrogen and carbon d i o x i d e  f o r  convers ion o f  carbonaceous s o l i d s  and vapors. 

Methane and carbon monoxide a re  non- reac t i  ng species w i t h  nega t i  ve e f f e c t s  on 



TABLE 17. E f f e c t  o f  Pressure i n  Tests  w i t h  Spent C a t a l y s t  

T e s t  No. 
P14A P14B P15 P I9  P 12 P13 P18 

Pressure, atm absol u t e  1 1 5.1 5.8 10 10 10 

Wood 

T, "C 

head r i g  head r i g  head r i g  head r i g  head r i g  head r i  g headr i  g 

745 743 740 740 735 730 740 

Steam-to-Wood W t .  R a t i o  1.1 0.53 1.5 1.2 3.5 1.6 1.4 

Normal ized Carbon Conver- 
Cn 
Cn 

sion, wt% 

To Gas 7 6 7 5 7 3 76 7 2 7 1 6 5 

To Sol i d  17 18 18 21 26 2 2 3 3 

To L i q u i d  7 6 9 3 2 7 2 

Gas Composit ion, vo l% 
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carbon convers ion as a r e s u l t  o f  e q u i l i b r i u m  and k i n e t i c s .  Because t h e  steam 

was d i l u t e d  w i t h  r e c y c l e  gas a t  e leva ted  pressure, one might  expect  t h e  atmo- 

sphe r i c  pressure r e s u l t s  t o  be more favorab le  f o r  carbon convers ion t o  gas. We 

measure more carbon convers ion t o  gas and l e s s  t a r  a t  pressure cond i t i ons .  

The exp lana t i on  i s  t h a t  t h e  g a s i f i c a t i o n  r a t e  i s  p r o p o r t i o n a l  t o  steam 

p a r t i a l  pressure t o  some power. Even though t h e  steam i s  d i l u t e d  w i t h  r e c y c l e  

gas i n  t h e  h i gh  pressure t e s t s ,  t h e  p a r t i a l  pressure u s u a l l y  i s  about 2  t o  

3 atm (200 t o  300 kPa) compared t o  1 atm (100 kPa) d u r i n g  atmospheric t e s t s .  

From t h e  data, we can conclude t h a t  pressure opera t ion :  

a decreases convers ion o f  carbon t o  l i q u i d s  

a i nc reases  carbon convers ion t o  gas t o  as h i gh  as 86% 

a causes an i nc rease  i n  methane concen t ra t i on  t o  7% i n  ca ta l yzed  t e s t s  

and t o  20% i n  uncata lyzed t e s t s  

a decreases t h e  s tandard heat  o f  r e a c t i o n  and decreases r e a c t o r  energy 

requ i  rements. 

It i s  expected t h a t  carbon convers ion w i l l  be f u r t h e r  inc reased  i f  t h e  use 

o f  r e c y c l e  gas i s  e l  i m i  nated. 

Feedstock Size Versus Y i e l d  

Y ie l ds  f rom dense f l a k e s  and head r i g  sawdust i n  t h e  presence of sodium 

carbonate c a t a l y s t  a re  shown i n  Table 18, Tests P20 and P21. Gas Y i e l d  

decreases and char y i e l d  increases w i t h  t h e  smal l e r ,  dense f lakes. The char  

res idence t ime  f o r  t h e  l a r g e  head r i g  sawdust was about 16 min. The char  r e s i -  

dence t ime  f o r  dense f l a k e s  was lower  than  16 min s i nce  t h e  char i n v e n t o r y  i n  

t h e  f l u i d  bed decreased. Data were i n s u f f i c i e n t  t o  c a l c u l a t e  a char  res idence  

t i m e  f o r  dense f l akes .  A t i m e  o f  l e s s  than  1 min i s  probable. 

The gas y i e l d  increases w i t h  t h e  l a r g e r  feedstock p robab ly  because o f  

inc reased  char res idence t ime. More t e s t i n g  o f  t h e  e f f e c t  o f  feedstock s i z e  i s  

needed be fo re  a d e f i n i t e  conc lus ion  can be made. 



E f f e c t  o f  Pr imary Ca ta l ys t s  

Pr imary c a t a l y s t  r e f e r s  t o  an a l k a l i  carbonate fed w i t h  t h e  wood, e i t h e r  

d r y  mixed o r  impregnated i n t o  t h e  wood. Tests have been performed w i t h  sodium 

and potassium carbonates a t  13 and 16 w t %  concen t ra t i ons  respec t i ve l y .  

Wet wood can be mixed w i t h  anhydrous potassium carbonate. I f  t h e  wood i s  

mo is t  enough (>20 wt%), t h e  wood p a r t i c l e s  w i l l  absorb t h e  carbonate. We d i d  

not  see t h i s  e f f e c t  w i t h  sodium carbonate. Th is  s a l t  was d r y  mixed w i t h  wood 

and then water was added t o  enhance i t s  absorp t ion  i n t o  wood p a r t i c l e s .  The 

wood-carbonate mix tu res  were d r i e d  be fo re  use i n  a t e s t .  

Resu l ts  a re  summarized i n  Table 18. The potassium carbonate promotes t h e  

water-gas s h i f t  r e a c t i o n  and reduces methane f o rma t i on  (Sealock e t  a l .  1982); 

TABLE 18. Comparison o f  A l k a l i  Carbonate Ca ta l ys t s  With No Ca ta l ys t s  

Test Number 

PI6 P20 P21 P12 P13 

Pressure, atm abso lu te  10 10 10 10 10 

Wood 

C a t a l y s t  

T, O C  

dense dense 
f l a k e s  head r i g  f l  akes head r i  g head r i  g 

K2C0 3 Na2C03 Na~C03 None None 

745 730 7 50 735 730 

Steam-to-Wood W t  Rat i o 1.2 0.8 1.2 3.4 1.6 

Normalized Carbon Conversion, 
w t % :  

To Gas 74 7 4 64 7 2 7 1 

To Sol i d  2 6 2 0 33 26 22 

To L i q u i d  0.5 6 3 2 7 

Gas Composi t i on, vo l  % 



however, sodium carbonate had on l y  a  smal l  e f f ec t  on methane content .  

Increased y i e l d s  o f  t a r s  and wate r- so lub le  o rgan ics  occurs when sodium c a r -  

bonate i s  used i n  p l ace  o f  potassium carbonate. The i n e f f e c t i v e n e s s  o f  t h e  

sodium carbonate may be due t o  t h e  f a c t  t h a t  i t  d i d  no t  absorb i n t o  t h e  wood 

p a r t i c l e s  compl e t e l y .  Sodium carbonate forms hydra ted  so l  i d s  (Na2C03. 10 H20) 

r e q u i r i n g  much more water  t o  get  them i n t o  a  s o l u t i o n  t h a t  cou ld  permeate t h e  

wood p a r t i  c l  es . 
Dur ing  t h e  f i r s t  potassium carbonate t e s t ,  a  s u p e r f i c i a l  gas v e l o c i t y  a t  

c o n d i t i o n s  o f  l e s s  than  1 f t / s e c  (30 cmlsec) was used, r e s u l t i n g  i n  app rec iab le  

accumulat ion o f  t h e  s a l t  i n  t h e  bed i n  t h e  form o f  f r i t t e d  chunks, which began 

t o  i n t e r f e r e  w i t h  f l u i d i z a t i o n  as can be seen i n  t h e  temperature p r o f i l e  shown 

i n  F igure  9. A l o s s  o f  isothermal  c o n d i t i o n s  was ev iden t  as t h e  t e s t  pro-  

ceeded. Some agglomerat ion o f  char was noted a t  t h e  end o f  t hese  t e s t s .  More 

t e s t i n g  i s  needed t o  see i f  ope ra t i on  w i t h o u t  agglomerat ion can be sustained. 

Secondary C a t a l y s t  Tests 

Secondary c a t a l y s t s  a re  those c a t a l y s t s  supported on porous ceramic 

spheres i n  t h e  f l u i d  bed. The l a b o r a t o r y  c a t a l y s t  development s t u d i e s  showed 

t h a t  n i c k e l  a1 1  oy c a t a l y s t s  on s i  1  i ca- a lumina  suppor ts  p o t e n t i a l  l y  have an 

a c t i v e  1  i f e t i m e  s u f f i c i e n t  t o  be economica l ly  f e a s i b l e  i n  a  commercial process. 

A nickel-copper-molybdenum a l l o y  (12% N i O ,  4.5% CuO, 9% Moo3) on a  p r o p r i e t a r y  

s i l i c a - a l u m i n a  s u b s t r a t e  was used i n  PDU t e s t s .  

Two p o t e n t i a l  problems a r i s e  when us ing  secondary c a t a l y s t s :  a t t r i t i o n  

and deac t i va t i on .  Labora to ry- sca le  t e s t s  a t  PNL conf i rmed t h a t  a t t r i t i o n  was a  

f u n c t i o n  o f  s u p e r f i c i a l  gas v e l o c i t y  t o  t h e  t h i r d  power and t h a t  a t t r i t i o n  was 

minimal a t  t h e  minimum f l u i d i z a t i o n  v e l o c i t y .  Zenz (1982) s t a t e s  t h a t  f l u i d  

c a t a l y t i c  c rack ing  (FCC) c a t a l y s t s  ' phys i ca l  s t r eng th  decreases as t h e  carbon 

con ten t  increases. I n  t h e  PDU, secondary c a t a l y s t  losses  a re  l a r g e ;  however, 

t h i s  may be due t o  t h e  c a t a l y s t  c o n t i  n u a l l y  g r i n d i n g  a t  t h e  t i p  o f  t h e  wood- 

feed auger. 

C a t a l y s t  d e a c t i v a t i o n  may occur by carbon bu i  1  dup, thermal c y c l  i ng, metal 

m ig ra t i on ,  and l o s s  o f  su r f ace  area. Ca ta l ys t s  i n  t h e  PDU showed r e l a t i v e l y  



r a p i d  d e a c t i v a t i o n  compared t o  t h e  l abo ra to r y- sca le  t es t s .  The c a t a l y s t  i s  

exposed t o  much more thermal c y c l i n g  i n  t h e  PDU than  t h e  smal l  s c a l e  systems. 

We have seen a  l a r g e  bu i l dup  o f  carbon (about 20 wt%) on deac t i va ted  c a t a l y s t  

sampl es. 

Resu l ts  from one t e s t  us i ng  t h e  a1 l o y  c a t a l y s t  a re  t a b u l a t e d  i n  Table 19. 

The a l l o y  c a t a l y s t  has s i m i l a r  e f f e c t s  as t h e  potassium carbonate. Gas y i e l d s  

a re  e s s e n t i a l l y  t h e  same. S l i g h t l y  lower  methane concen t ra t i ons  a re  seen w i t h  

t h e  a l l o y  c a t a l y s t .  Note t h a t  both c a t a l y s t s  decrease t h e  convers ion  o f  carbon 

t o  l i q u i d s .  

One p o t e n t i a l  improvement on t h e  a1 l o y  c a t a l y s t  may be a  s o l u t i o n  t o  t h e  

d e a c t i v a t i o n  problem. Th is  i s  t o  impregnate t h e  c a t a l y s t  w i t h  an a l k a l i  

carbonate t o  h e l p  reduce carbon depos i t ion .  

TABLE 19. Comparison o f  an A1 l o y  C a t a l y s t  Test w i t h  an A1 k a l i  
Carbonate Test and an Uncatalyzed Test 

Cat a1 y s t  N i  CuMo 16% K2C03 None 

Pressure, atm abso lu te  10 10 10 

T, "C 730 745 740 

Steam-to-Wood W t  . R a t i o  2.2 1.2 1.4 

Wood dense f l a k e s  dense f l a k e s  head r i  g  

Normal i zed Carbon Conversion, 

Gas 

Sol i d  

L i  q u i d  

Gas Composi t i on, ~ 0 1 % :  



Temperature E f f e c t  

The t e s t s  were r e s t r i c t e d  t o  1380°F (750°C) p r i m a r i l y  because carbon con- 

ve rs i on  t o  gas decreases w i t h  temperature. Higher  temperatures a re  d i f f i c u l t  

t o  achieve by i n d i r e c t  heat ing.  High carbon convers ion  i s  an impor tan t  eco- 

nomic f ac to r .  Also, a l l o y  c a t a l y s t  d e a c t i v a t i o n  i s  more r a p i d  a t  lower  tem- 

peratures,  as i l l u s t r a t e d  i n  some shakedown t e s t s .  Methane con ten t  increases 

w i t h  lower  temperatures, which i s  undes i rab le  f o r  a  methanol syn thes is  gas. 

Steam-to-Wood R a t i o  

I nc reas ing  t h e  steam-to-wood r a t i o  should promote t h e  carbon-steam reac-  

t i o n ,  t h e  s h i f t  r eac t i on ,  and t h e  steam reforming and c rack ing  reac t ions .  The 

des i red  hydrogen t o  carbon-monoxide r a t i o  i s  s l i g h t l y  g rea te r  than two f o r  

methanol syn thes is  gas. I f  methane i s  steam reformed, t h i s  stream w i l l  p rov ide  

a  H2:C0 r a t i o  o f  three,  so an even sma l le r  r a t i o  would be acceptable f rom t h e  

g a s i f i e r .  

Atmospheric PDU t e s t s  showed t h a t  a  0.7 steam-to-wood r a t i o  produced 

proper  product  gas composit ions. At 10 atm (1000 kPa) abso lu te  pressure t h e  

PDU requ i res  excess ive ly  h i gh  steam r a t e s  t o  f l u i d i z e  t h e  bed. Therefore,  

steam-to-wood r a t i o s  a re  u s u a l l y  g rea te r  than  one and t h e  steam i s  s t i l l  

d i l u t e d  w i t h  r e c y c l e  gas. P r e d i c t a b l y  h i g h  H2:C0 r a t i o s  a re  observed. F i g-  

u r e  10 shows t h e  e f f e c t  o f  t h e  steam-to-wood r a t i o s  i n  uncata lyzed t es t s .  The 

e f f e c t  i s  probably  even g rea te r  i n  ca ta l yzed  cases. 

G a s i f i e r  Energy Requi rements 

I n  a  phys ica l  sense, energy must be supp l i ed  t o  t h e  g a s i f i e r  t o  heat  t h e  

reac tan ts  (wood and steam) t o  t h e  r e a c t i o n  temperature,  compensate f o r  hea t  

1  osses, and sus ta i n  t h e  endothermic reac t ions .  Thermodynamically , t h e  process 

i s  a  s t a t e  funct ion.  Therefore,  t h e  hea t  requirement can be c a l c u l a t e d  f rom 

t h e  standard heat  o f  r e a c t i o n  a t  77OF (25OC) and t h e  mass and s p e c i f i c  heat  o f  

t h e  r e a c t i o n  products. The c a l c u l a t i o n  procedure t h e o r e t i c a l l y  i n v o l v e s  t a k i n g  

c r e d i t  f o r  t h e  sens ib l e  heat  above 77OF (25OC) i n  t h e  reac tan t s  and adding t h e  

standard hea t  o f  r e a c t i o n  a t  77OF (25"C), t h e  hea t  losses,  and t h e  s e n s i b l e  

heat  needed t o  hea t  t h e  products  t o  t h e  g a s i f i e r  ope ra t i ng  temperature. 
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FIGURE 10. E f f e c t  of Steam-to-Wood R a t i o  



The s tandard hea t  o f  r e a c t i o n  a t  77°F (25°C) i s  t h e  d i f f e r e n c e  between t h e  

heats  o f  combustion o f  r eac tan t s  and products.  The h i g h e r  t h e  p o t e n t i a l  energy 

i n  t h e  products,  t h e  more endothermic t h e  reac t ion .  High carbon conversion, 

h i gh  gas y i e l d ,  and low hydrocarbon y i e l d  g i v e  a  h i g h l y  endothermic reac t i on .  

The r e a c t i o n  i s  u s u a l l y  endothermic f o r  genera t ion  of syn thes is  gas bu t  can be 

exothermic f o r  generat ion o f  a  methane- rich gas. The s tandard hea t  o f  r e a c t i o n  

a t  77°F (25°C) i s  p o s i t i v e  f o r  an endothermic r e a c t i o n  and nega t i ve  f o r  an 

exothermic reac t ion .  

The energy f l o w  f o r  t h e  g a s i f i e r  i s  shown schema t i ca l l y  i n  F i g u r e  11. The 

d i r e c t i o n  o f  energy f l o w  f o r  t h e  s tandard heat  o f  r eac t i on ,  AH", i s  f rom t h e  

g a s i f i e r  f o r  an endothermic r e a c t i o n  and i n t o  t h e  g a s i f i e r  f o r  an exothermic 

reac t ion .  The requ i  red  hea t  i npu t ,  Qi (p rov ided  by e l e c t r i c a l  c a r t r i d g e  

hea te rs  i n  t h e  PDU g a s i f i e r ) ,  i s  c a l c u l a t e d  from t h e  f o l l o w i n g  equat ion: 

Q i 

FIGURE 11. G a s i f i e r  Energy Flow 
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where ms = mass f low r a t e  o f  steam, 1b /h r  

mf = mass f l o w  r a t e  o f  d r y  wood, l b / h r  

mp = mass f l o w  r a t e  o f  product  gas, 1b/hr 

mc = mass f l o w  r a t e  o f  char,  1  b /h r  

C = s p e c i f i c  hea t  o f  steam, B t u / l b  OF 
p s  

C = s p e c i f i c  hea t  o f  wood, B t u / l b  O F  

p  f 
C = average s p e c i f i c  heat  o f  p roduc t  gas, B t u / l b  OF 

P~ 
C = s p e c i f i c  hea t  o f  char, B t u / l b  OF 

PC 
Ts = i n l e t  steam temperature, OF 

Tf = i n l e t  wood temperature,  OF 

Tg = g a s i f i e r  ope ra t i ng  temperature,  OF 

AH' = s tandard heat  of r e a c t i o n  a t  77OF (25OC) per  u n i t  mass o f  wood, 

B t u / l  b 

Q1 = hea t  l o s s  f rom g a s i f i e r  sur face,  B tu /h r .  

Recycle gas i s  used t o  inc rease  bed v e l o c i t y .  The amount o f  steam t h a t  

r eac t s  v a r i e s  f rom t e s t  t o  t e s t .  We assume no steam reacts ,  wood en te r s  t h e  

g a s i f i e r  a t  77OF (25OC), and wood mo is tu re  must be heated t o  t h e  g a s i f i e r  

ope ra t i ng  temperature.  Although steam does reac t  i n  t h e  g a s i f i e r ,  we assume no 

r e a c t i o n  t o  get  a  h i gh  es t ima te  o f  t h e  hea t  requirement. The equat ion  becomes: 

where m, = mass f l o w  r a t e  o f  wood mo is tu re  i n t o  t h e  g a s i f i e r ,  l b / h r  

AH, = entha lpy change f o r  water between i n l e t  and o u t l e t  c o n d i t i o n s ,  

B t u / l  b  

C = heat  capac i t y  o f  r ecyc le  gas, B t u / l  b  OF 
P r 
Tr = r e c y c l e  gas temperature,  OF. 

The heat  loss ,  Q1, i s  c a l c u l a t e d  from g a s i f i e r  surface and ambient temperatures 

us ing  s tandard hea t  1  oss c o r r e l a t i o n s .  



Examinat ion o f  t h e  above equat ion shows t h a t  t h e  g a s i f i e r  energy requ i re-  

ment, Qi , can be reduced by severa l  methods. I nc reas ing  t h e  i n l e t  steam tem- 

perature,  TS, above t he  g a s i f i e r  opera t ing  temperature,  Tg, w i l l  produce a  ne t  

hea t  inpu t .  We were unable t o  do t h i s  w i t h  t h e  g a s- f i r e d  preheater.  Also, t h e  

wood mo is tu re  con ten t  should be as low as poss ib le .  I n  a  commercial system 

some energy cou ld  be saved by us ing  h o t  wood a t  210°F (lOO°C) f rom t h e  wood 

d r y e r  t o  feed t h e  g a s i f i e r .  

The equat ion  i s  used t o  f i n d  AH" f o r  t e s t s  P12 t o  P17. Resu l ts  a re  com- 

pared w i t h  AH" c a l c u l a t e d  by t h e  d i f f e r e n c e  i n  hea ts  o f  combustion o f  r e a c t a n t s  

and products  i n  Table 20. There i s  r e l a t i v e l y  poor c o r r e l a t i o n  i n  t h e  heat  o f  

r e a c t i o n  by t h e  two methods due t o  t h e  s e n s i t i v i t y  o f  t h e  heat  o f  r e a c t i o n  t o  

hea t  losses by t h e  f i r s t  method and t o  t h e  carbon convers ion by t h e  second 

method. The r e l a t i v e  magnitude o f  t h e  terms i n  Equat ion 2  f o r  two ca ta l yzed  

t e s t s  i s  shown i n  Table 21. Energy balance r e s u l t s  a re  impor tan t  des ign con- 

s ide ra t i ons .  The requ i red  hea t  i n p u t  f o r  l a r g e  g a s i f i e r  w i l l  decrease as a  

r e s u l t  o f  lower  heat  l o s s  per  u n i t  weight o f  wood. 

TABLE 20. Standard Heat o f  React ion 

AH", B t u / l b  Wood 
Test No. C a t a l y s t  Pressure Method 1 Method 2  

P 12 None 10 418 -944 

P13 None 10 340 6 87 

P14A None 1 1305 -444 

P14B None 1 -411 -751 

P  15 None 5 62 1 -246 

P16 K2C03 10 1039 2 94 

P17 T r i m e t a l l  i c  10 1294 45 1 

Method 1 - c a l c u l a t e d  from Equat ion 2. 
Method 2  - d i f f e r e n c e  between hea t  o f  combustion o f  r eac tan t s  

and products.  



TABLE 21. Value o f  Terms i n  Energy Balance Equat ion 

B t u / l  b  
Term P 16 P17 

Heat T rans fe r  Cons idera t ions  

E l e c t r i c a l  c a r t r i d g e  hea te rs  (7  c a r t r i d g e s )  a re  immersed i n  t h e  f l u i d  bed 

t o  p rov ide  energy f o r  t h e  PDU g a s i f i e r  (see F i g u r e  6). A wat t- hour  meter i s  

used t o  measure t h e  energy i n p u t  t o  t h e  g a s i f i e r  d u r i n g  a  t e s t .  Each c a r t r i d g e  

hea te r  i s  0.75 i n .  (1.9 cm) i n  d iameter  by 11 ft (3.4 m) l o n g  w i t h  t h e  lower  

4 f t (1.2 m) heated by res i s tance  elements. 

Ove ra l l  heat  t r a n s f e r  c o e f f i c i e n t s  from t h e  su r f ace  o f  t h e  c a r t r i d g e  

hea te rs  t o  t h e  f l u i d  bed a re  c a l c u l a t e d  by t h e  f o l l o w i n g  equat ion:  

where Uoa = o v e r a l l  hea t  t r a n s f e r  c o e f f i c i e n t ,  ~ t u / h r - f t ~ - ' ~  

Qi = energy i n p u t  t o  t h e  g a s i f i e r ,  B tu /h r  (3413 t imes  t h e  k i l o w a t t  

i n p u t )  
2  A, = heated su r f ace  area of seven elements (5.5 f t  ) 

Te = average su r f ace  temperature o f  t h e  elements, OF 

Tb = s o l i d s  temperature i n  t h e  f l u i d  bed, OF. 

A l l  data needed t o  c a l c u l a t e  Uoa a re  recorded f o r  each t e s t .  Values 

ob ta ined  f o r  Tests  P12 through P22 a re  p l o t t e d  aga ins t  t h e  s u p e r f i c i a l  l i n e a r  

v e l o c i t y  o f  gases i n  F igu re  12. 



The c o e f f i c i e n t  i nc l udes  convect ive,  conduct ive,  and r a d i a n t  heat  t r a n s f e r  

f rom t h e  i n t e r i o r  element metal  su r face  t o  t h e  bed s o l i d s  and gases. These 

da ta  i n d i c a t e  t h a t  a  c o e f f i c i e n t  o f  80 ~ t u / h r - f t ' - ' ~  (1600 k ~ / h r - m ' - ' ~ )  may be 

a  reasonable, conserva t i ve  design va lue f o r  a  g a s i f i e r  ope ra t i ng  a t  s i m i l  a r  

v e l o c i t i e s  and temperatures w i t h  v e r t i c a l  hea te r  o r i e n t a t i o n .  

ECONOMIC EVALUATIONS 

The economics o f  produc ing e i t h e r  methane o r  methanol can be evaluated 

r a p i d l y  f o r  small o r  1  arge p lan ts .  A  computer program t o  do t h e  eva lua t i ons  

was developed f o r  a  Radio Shack TRS-80 Model I microcomputer, us i ng  a  commer- 

c i a l  l y - a v a i l  ab le  software package, v i s i ~ a l  c . ( ~ )  V i  s i  Calc b a s i c a l l y  generates 

an e l e c t r o n i c  sheet o f  paper con ta in i ng  a  g r i d  o f  columns and rows. The i n t e r -  

s e c t i  ng 1  i nes  o f  t h e  columns and rows de f ine  p o s i t i o n  addresses. A t  each 

p o s i t i o n  one can en te r  an a l phabe t i c  t i t l e ,  a  number, o r  a  formula t o  be c a l -  

cu la ted.  The power o f  V i s iCa l c  i s  t h a t  t h e  computer remembers formulas and 

c a l c u l a t i o n s  used as a  problem i s  solved. I f  one number on t h e  sheet i s  

changed, V i s i  Calc automati  c a l  l y  r e c a l c u l a t e s  a1 1  re1 a ted  numbers from s p e c i f i e d  

formulas. Th is  r e c a l c u l a t i o n  f e a t u r e  makes V i s iCa l c  a  powerful  f o r e c a s t i n g  

t o o l .  

The programs f o r  methane p roduc t ion  and methanol p roduc t ion  a re  based on 

da ta  f rom t h e  Davy McKee s tud ies  f o r  2000 ton-per-day d r y  wood p lan ts .  Re fe r-  

ence data f o r  c o n s t r u c t i o n  cos ts  o f  t h e  methane and methanol p l a n t s  a re  shown 

i n  Tables 22 and 23, r espec t i ve l y .  These t a b l e s  remain as f i x e d  constants  f o r  

each analys is .  The sca le  f a c t o r s  f o r  each p l a n t  segment a re  those recommended 

by Davy McKee i n  t h e i r  ana l ys i s  of 200 ton-per-day f a c i l i t i e s  (Mudge e t  a l .  

1981). They a re  t he  exponents used i n  t h e  cos t / capac i t y  re1 a t i o n s h i  ps. 

Another se t  o f  f i x e d  constants  a l s o  e x i s t s  f o r  each program. These a re  

t h e  base case annual raw m a t e r i a l  and u t i l i t y  requirements f o r  t h e  2000 ton-  

per-day f a c i l i t i e s .  The $ / u n i t  values a re  i n p u t  i tems which should be changed 

w i t h  each run t o  r e f l e c t  t r u e  costs  a t  t h e  t ime  o f  t h e  ana lys is .  

( a )  V i s iCa l c  i s  a  r e g i s t e r e d  trademark o f  V i s i c o r p  Software, Inc.  It i s  
ava i  1  ab le  f o r  o t h e r  microcomputers, a1 so. 
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TABLE 22. Reference Case f o r  Methane Produc t ion  

2,000 TPD Wood t o  Methane 
Newport, Oregon 

Code Descr ip t i on  - 

201 Wood Storage & S iz ing  

202 Wood Dry ing 

203 G a s i f i c a t i o n  

204 Compression 

205 S h i f t  Conversion 

Primary Methanation 

Acid Gas Removal 

F i n a l  Mthn & Gas Dry ing 

Ca ta lys t  Regeneration 

Waste Water Treat ing 

Raw Water & Cooling Wtr. 

B o i l e r s  & BFW System 

Misc. U t i l i t y  Systems 

Capacity ( D a i l y )  = 2,000 dry tons Gas Btu Y i e l d  = 6,810,000 MMBtuIyr 

CE P l a n t  CST Index = 266 (Sept. 1980) Labor Index = 208.7 

D i r e c t  PO 
Mate r ia l  
Tota l ,  f 

Subcontract  . - - . . . . - - - - 

Ma te r ia l  , Labor Grand 
f Man-hours Rate To ta l  f Tota l ,  f 

D i r e c t  H i r e  Labor 
Man-hours Rate To ta l  .$  

Grand 
To ta l ,  f 

Exp. Scale 
Factors 

TOTAL 23,603 20.991 384.6 10,369 31,360 684.50 8,789 63,752 



TABLE 23. Reference Case f o r  Methanol P roduc t i on  

2.000 TPD Wood t o  Methanol 
Newport, Oregon 

Code Descr ip t i on  

101 Wood Storage 8 S i z i n g  

102 Wood Dry ing 

103 G a s i f i c a t i o n  

104 S h i f t  Conversion 
V 
o 105 Acid Gas Removal 

106 Compression 

107 MeOH Syn. & D i s t i l l a t i o n  

108 Purge Gas Reforming 

109 Waste Water T rea t ing  

110 Raw Water Treatment 
& Cool ing Water 

111 B o i l e r s  & BFW System 

112 Misc. U t i l i t y  Systems 

113 S t o r i n g  and Loading-Product 
& U t i l i t i e s  

Capacity ( D a i l y )  = 2.000 dry tons MeOH Y i e l d  = 98,810,000 g a l / y r  

CE P lan t  CST Index = 266 (Sept. 1980) Labor Index = 208.7 

D i r e c t  PO 
Mater i  a1 
To ta l ,  S 

Subcontract 
Mater ia l  , Labor Grand 

s Man-hours Rate To ta l  S Tota l ,  $ 

26.96 

9,598 156.4 4,216 13,814 

4,730 77.6 2,091 6,821 

1,322 56 1.509 2.831 

15 1.3 34 49 

2,914 60.3 1,625 4,539 

58 3.8 102 160 

0.0001 0.0001 0 0 

25 2.2 59 84 

1,255 17.6 475 1,730 

587 10.9 293 880 

D i r e c t  H i r e  Labor 
Man-hours Rate To ta l  $ 

12.84 

206.5 2,651 

0.0001 0 

231.2 2.968 

11.7 150 

0.0001 0 

61.8 793 

Grand 
To ta l ,  S 

Exp. Scale 
Fac to rs  

TOTAL 38,177 23,743 430.3001 11,595 35,338 664.5 8,530 82,045 



Several  k inds  of analyses can be done w i t h  these programs: 

a Simple s c a l i n g  t o  another  p l a n t  capac i t y  

Sca l i ng  t o  another p l a n t  capac i t y  and updated d o l l a r s  

o Scal ing,  bu t  changing base-case constants  a l s o  

a Es t ima t i ng  c a p i t a l  f o r  d i f f e r e n t  p l a n t  con f i gu ra t i ons  (s tanda l  one 

versus coupled t o  e x i s t i n g  f a c i  1  i t i e s ) .  

The base-case data (2000 t o n l d a y )  a re  cons idered accurate t o  k251. Addi-  

t i o n a l  u n c e r t a i n t i e s  i n  some o f  t h e  s c a l i n g  f a c t o r s  would reduce t h e  accuracy 

o f  est imates from these programs t o  f30-40%. 

An exp l  ana t ion  o f  t y p i c a l  i nput r equ i  rements and examples o f  se lec ted  

ou tpu ts  f o l l  ows. 

Simple Sca l i ng  t o  Another P l a n t  Capaci ty 

Only one data i t em needs t o  be changed. A  new p l a n t  capac i t y  i s  entered, 

then a l l  cos ts  are sca led  accord ing ly  and a  p r i c e  f o r  methanol ( o r  methane) i s  

computed. The cos ts  remain i n  September 1980 d o l l a r s ,  which i s  t h e  base case 

month and year. Th is  p rov ides  a  r a p i d  way o f  seeing r e l a t i v e  t r ends  i n  p r i c e  

o f  product  as a  f u n c t i o n  o f  p l a n t  capaci ty .  Actua l  cos t s  f o r  any g iven 

capac i t y  w i l l ,  o f  course, be low. 

Sca l i ng  t o  Another P lan t  Capaci ty  and Update Do1 l a r s  

I n p u t  data requ i red  here  are: (a )  new p l a n t  capac i ty ,  (b )  Chemical Engi-  

neer ing  p l a n t  cos t  index  f o r  month o f  i n t e r e s t ,  ( c )  Chemical Engineer ing l a b o r  

cos t  index f o r  month o f  i n t e r e s t ,  and (d )  c u r r e n t  u t i l i t y  and raw m a t e r i a l  u n i t  

costs.  The program then  sca les  cos t s  based on s i ze ,  b u t  a l s o  esca la tes  equip-  

ment and l a b o r  cos ts  us ing  p l a n t  and l a b o r  index  r a t i o s  f rom Chemical Engineer- 

&magazine. The index values f o r  September 1980 a re  p a r t  o f  t h e  f i x e d  

constants  tab1 es. 

For  t h i s  op t ion ,  t h e  d o l l a r  f i g u r e s  generated a r e  r e a l i s t i c  and should 

p rov ide  a  bas is  f o r  d e c i s i o n  making. The f i r s t  t i m e  t h i s  o p t i o n  i s  se lected,  



i t ems (a )  through (d )  must be entered. A f t e r  t h a t ,  o n l y  i t e m  ( a )  need be 

changed t o  c a l c u l a t e  and observe t h e  e f f e c t  o f  p l a n t  c a p a c i t y  on p roduc t  c o s t  

i n  t oday ' s  d o l l a r s .  

Scal ing,  But Changing Base Constants Also 

Th i s  o p t i o n  a l lows  a  g rea t  deal o f  f l e x i b i l i t y  i n  a n a l y s i s  o f  t h e  p lan ts .  

Normal-ly, a l l  t h e  da ta  i n p u t s  shown i n  Opt ion 2 a re  a l s o  r e q u i r e d  here. Other 

i nput  changes p rov ide  a d d i t i o n a l  economic in fo rmat ion .  The approximate e f f e c t  

o f  h i gh  y i e l d s  i s  es t imated  by s imply  changing t h e  base y i e l d  f i g u r e .  [If t h e  

y i e l d  ( o r  gas composi t ion change) a f f e c t s  equipment s i z i n g  s i g n i f i c a n t l y ,  new 

base cos t  f i g u r e s  i n  app rop r i a te  p l a n t  sec t i ons  a re  required.]  I f  o n l y  one 

s e c t i o n  o f  t h e  p l a n t  i s  t o  t ake  on a  new con f i gu ra t i on ,  i t s  c o s t  i s  es t imated  

f o r  t h e  s i z e  p l a n t  o f  i n t e r e s t  and i n s e r t e d  i n  t h e  Grand To ta l  column o f  t h e  

worksheet. 

D e f a u l t  values f o r  r a t e  o f  r e t u r n  and i n t e r e s t  on debt  a re  15% and 10% f o r  

u t i l i t y  f inanc ing.  These can be changed e a s i l y  t o  r e f l e c t  c u r r e n t  money 

values . 
Es t ima t i ng  C a p i t a l  f o r  D i f f e r e n t  P lan t  Con f i gu ra t i ons  

When a  biomass g a s i f i c a t i o n  f a c i l i t y  i s  t o  be b u i l t  as an a d d i t i o n  t o  

another wood p rocess ing  f a c i l i t y ,  savings w i l l  r e s u l t  i n  both c a p i t a l  and 

ope ra t i ng  expenses. Actua l  amounts a re  very s i  t e - s p e c i f i  c. The programs 

developed here  a re  use fu l  i n  comparing r e l a t i v e  m e r i t s  o f  severa l  op t ions .  As 

t h e  p l a n t  c o n f i g u r a t i o n  dev ia tes  more and more from t h e  base-case, t h e  abso lu te  

numbers generated become 1  ess and 1  ess re1  i ab l  e. S t i  11, t h e  program q u i c k l y  

shows s e n s i t i v i t y  o f  product  cos ts  t o  changes e i t h e r  i n  c a p i t a l ,  ope ra t i ng  

costs ,  o r  both. 

A d d i t i o n a l  (beyond t h a t  r equ i red  f o r  Opt ion 2 )  i n p u t  da ta  f o r  t h i s  o p t i o n  

cou ld  be as l i t t l e  as changing one f i g u r e  i n  t h e  base constants .  It cou ld  a l s o  

be as compl icated as changing nea r l y  a l l  t h e  d i r e c t  cos t  e n t r i e s  f o r  t h e  v a r i -  

ous p l a n t  sec t ions .  G e t t i n g  t h e  new cos t  f i gu res  f o r  comple te ly  new p l a n t  con- 

f i g u r a t i o n s  i s  beyond t h e  c a p a b i l i t y  o f  these  programs. The t o t a l l y  r e v i s e d  



f i g u r e s  would have t o  come f rom o the r  cos t  e s t i m a t i n g  sources. I f  t h a t  amount 

o f  e f f o r t  i s  requi red,  t h e  r e a l  u t i l i t y  o f  these programs i s  quest ionable.  

E f f e c t  o f  Y i e l d  Changes 

The j u s t i f i c a t i o n  f o r  w r i t i n g  t h i s  program was t o  be a b l e  t o  compare r e a l  

exper imental  da ta  taken a t  10 atm (1000 kPa) abso lu te  pressure w i t h  t h a t  used 

by Davy McKee i n  t h e i r  economic s tud ies.  The data used by Davy McKee were 

r e a l  l y  ex t rapo l  a ted  f rom atmospheric t e s t s  u s i  ng equi  1  i b r i  um da ta  t o  p r e d i c t  

t h e  h i gh  pressure y i e l d s .  Now r e a l  exper imental  data e x i s t ,  and y i e l d s  look  

b e t t e r  than those p r e d i c t e d  e a r l i e r .  

Using t h e  V i s iCa l c  program and exper imental  data from Test P17 (shown i n  

Table 24 w i t h  data used by Davy McKee), we p r o j e c t e d  new methanol cos t s  f o r  

t h r e e  d i f f e r e n t  assumptions: 

1. Methanol y i e l d s  were 20% h ighe r  than those used by Davy McKee bu t  

c a p i t a l  requ i  rements remai ned t h e  same. (Th is  f i g u r e  was chosen 

because d ry  gas y i e l d s  r e a l l y  were about 20% h ighe r  than those g iven  

t o  Davy McKee. Composit ions d i f f e r e d  some, as shown i n  Table 24.) 

2. Methanol y i e l d s  were 50% h ighe r  than those used by Davy McKee bu t  

equipment cos ts  were s i g n i f i c a n t l y  h igher .  

3. Methanol y i e l d s  were 50% h i g h e r  than those used by Davy McKee bu t  

equipment cos ts  remained t h e  same. 

The pr imary change i n  t h e  economic p i c t u r e  f o r  a l l  t h e  cases i s  due t o  

increased revenue f rom t h e  a d d i t i o n a l  methanol. The 50% f i g u r e  f o r  Cases 2 and 

3 was a r r i v e d  a t  by assuming a l l  t h e  carbon i n  t h e  gases cou ld  be conver ted t o  

methanol by s u i t a b l e  s h i f t i n g  and reforming. As a p r a c t i c a l  mat te r  t h i s  i s  

unrea l  i s t i c ,  bu t  does p lace  a lower bound on t h e  methanol p r i ce .  Case 3 was 

simple t o  run bu t  i s  t h e  l e a s t  r e a l i s t i c  o f  t h e  three.  I n  Case 2 new equipment 

cos ts  were est imated because o f  t h e  a d d i t i o n a l  s h i f t i n g  and reforming requi red.  

Appropr ia te  ope ra t i ng  cos ts  were a l s o  adjusted. The t o t a l  c a p i t a l  r e q u i r e d  

increased by 25% and t o t a l  gross ope ra t i ng  cos ts  inc reased  by 15%. A l l  t h r e e  



TABLE 24. P lan t  Design Bases 

Temperature, O C  

Pressure, atm abso lu te  

Steam Rate, w t l w t  Dry Wood 

Char Y ie ld ,  w t l w t  MAF Wood 

Char Heat ing  Value, B t u l l b  

Wet Gas Yie ld ,  w t l w t  MAF Wood 

Cold Gas E f f i c i e n c y ,  % ( c )  

Gas Composit ion, vo l  % 

"2 

CH4 

co2 
C 0 

Lb moles (H2+CO)/ton MAF Wood 

Wood Composi t i  on, w t %  

C 

H 

0 

Ash 

B t u l l  b 

Davy McKee PDU Data (Test  P17) 

( a )  E x t r a  steam needed t o  ma in ta in  f l u i d i z a t i o n .  
(b )  Inc ludes  ash f rom h igh  ash feed. 
( c )  Combust ib le energy i n  a u n i t  of product  gas d i v i d e d  by t h e  energy i n  t h e  

wood needed t o  generate t h a t  u n i t  of gas t imes 100. 
( d )  Does no t  i n c l u d e  CH4, which i s  s l i g h t l y  h i g h e r  i n  PDU data. 



cases s t i l l  used September 1980 do1 l a r s  and assumed a $20/dry t o n  cos t  f o r  

wood, as d i d  Davy McKee. For comparison, t h e  methanol cos t s  ( $ / g a l )  were: 

U t i l  i t y  E q u i t y  
F inanc ing  F inanc ing  

Davy McKee Base Case 0.55 

Case 1 0.47 

Case 2 

Case 3 

A l l  comparisons used t h e  same assumptions f o r  c o s t  o f  borrowed c a p i t a l  and 

requ i  red  r a t e  o f  r e t u r n  (Mudge e t  a l e  1981). 

A s i m i l a r  comparison was t o  be completed f o r  methane product ion.  Un fo r-  

tuna te l y ,  none o f  t h e  h i g h  pressure t e s t s  were completed w i t h  t h e  goal o f  

produc ing h i gh  methane. Some uncata lyzed t e s t s  gave h igh  methane p roduc t  

gases, bu t  p o t e n t i a l  methane y i e l d s  were s l i g h t l y  lower  than those used by 

Davy McKee. A good methane-forming c a t a l y s t  w i t h  l o n g  l i f e  was no t  found, so 

i t  cou ld  no t  be tested.  
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APPENDIX 

TEST SUMMARIES 

Fo l l ow ing  a re  summaries o f  Tests P12 through P21. Three sheets o f  i n f o r -  

mat ion and one page o f  temperature p r o f i l e s  a re  generated f o r  each t e s t .  Most 

o f  t h e  terms from t h e  computer ou tpu t  need no f u r t h e r  exp lana t ion .  The f o l l o w-  

i n g  l i s t  i s  a  key t o  terms t h a t  may need f u r t h e r  d e f i n i t i o n .  

BED - s o l  i d s  f rom t h e  r e a c t o r  

BED GAS VELOCITY - s u p e r f i c i a l  l i n e a r  v e l o c i t y  i n  f t / s e c  a t  r e a c t o r  
cond i t i ons  

BURNER TRAP - condensate l i q u i d  c o l l e c t e d  from t h e  product  gas down- 
stream from t h e  demister  

CART HEAT COEFE - o v e r a l l  heat  t r a n s f e r  c o e f f i c i e n t  from hea te rs  i n  
Rtu/h r-ft -OF 

CCHAR - char from t h e  cyclone, a l s o  c a l l e d  CYCLONE SOLIDS 

DRY MOL WT - molecu la r  weight  o f  t h e  d r y  product  gas 

FCHAR - char from t h e  f i l t e r ;  a l s o  c a l l e d  FILTER SOLIDS 

METHANOL # / #  WOOD - t o t a l  poss ib l e  y i e l d  i n  1  b  methanol /l b d ry  wood 
i f  (1) a l l  H2+C0 were conver ted and (2 )  i f  a l l  H2+CO+CH4 were 
conver ted 

N2-02 FREE MW - molecular  weight of dry ,  02-N2 f r e e  product  gas 

RECYCLE - r e f e r s  t o  t h e  r e c y c l e  gas stream 

STANDARD HT OF R X  - standard heat  of r e a c t i o n  i n  B t u l l b  d r y  wood 

STEAM - r e f e r s  t o  steam f rom generator ;  heated t o  r e a c t o r  i n l e t  tem- 
pe ra tu re  i n  t he  gas preheater  

TAR - t a r s  f rom t h e  demister  

TOC-DEMISTER (PPM) - t o t a l  o rgan ic  carbon i n  t h e  demister  l i q u i d  
(aqueous) i n  ppm by weight  

WET MOL WT - molecular  weight  o f  product  gas sa tu ra ted  w i t h  water 
(used t o  c a l  c u l  a t e  f l o w  r a t e )  

WT FRAC CAT-CCHAR - weight  f r a c t i o n  o f  c a t a l y s t  i n  t h e  cyc lone char 

WT FRAC CAT-FCHAR - weight  f r a c t i o n  of c a t a l y s t  i n  t h e  f i l t e r  char  

YH20 - mole f r a c t i o n  o f  water determined by assuming s a t u r a t i o n  i n  
t h e  gas stream 



RUN#: F'12 
D A T E  : (:~Q!:I 162 
WOOD TYPE:  H E A D R I G  

T I  ME : 1500 
T O T A L  RUN T I M E I H R S ,  :4.2 
C A T A L Y S T  : D E A C T I V A T E D  N I CUM0 

:;#PRODUCT GAS C O M F O S I T I O N S t t  
(MOLE FRAC.5 j 

r.12, 0 2  F R E E  
+{ 2 . c, ~ b i ~  ' c . . i392 .349 . 3 6 S  

i 12H4  . 9!33 . (:)!:)s 
r_'2H& . (1) 1 3 . (I! 1 4 
-, 'I 
1 L . [:I 4 !:j . (:)(:I !:I 

I i j 3  . . L . CIS5 (1) . (1) (1) (1) 
C H 4  . I 95  .217 
CO . 1 0 1 . I 12  
:.3H6 . (:)!:I(] . (:>(:I (1) 
:33H8 . 0(:)(:) . (:! (I)(:) 
Y H 2 0  ,065' . 069 

REACTOR I N L E T  h08 
C A T A L Y S T  BED 735 
REACTOR O U T L E T  690 
ESTECiM 183 
C A R T R I D G E  H T R S  815 
F'RODUCT METER 39 
D E M I S T E R  5 9 

iz'F:CIDUCT 4. 8 IP,I H 2 0  
:TEAM 55 I N  H 2 0  
RECYCLE 5 ]:/\I H 2 0  

t l 0 R I F I C E  S I Z E S  AND CONSTA?JTS$t 

O R I F I C E  1::: P ' 7  .a1 L E  
.................... 
'='ROEUCT 1 I!:). 9 c - 

= d (-1 

ZTEAM 32 . (1) . 3 (3 
i i E C Y C L E  1 I &. C' . 5 0 

:?TEAFl 145 
3 E i l l  STEF: 145 
REACTOF: 135 
PRODUCT (1) 

# / H R  CYCLONE 1.9 
+I.iHF: F I LTEF: 1.2 
fl./HR TAF: .1  



:+. .:t SOLIDS **  
I S  COMPOSITIONS 8 t  

............................................................... 
CARBON HYDROGEN OXYGEN ASH MOISTURE 

--------------------------------.------------------------------- 

i.10 00 .472 . !:)59 .456 . [:) 1 3 . 042 
';'C;HAR . 9C!5 . 0 1 6 . I 4 9  . 1:) 3 0 . !:I59 
FCHAR . 7 1 (1) . (1) 1 6 . 044 . ( jS9  . (;I 1 (1) 
BED . 8Zt:) . (:)3(:) . 130 . (:)2(:) (1) . 00 
'TAR . 840 . (:)SO . 130 (1) . c)(:) (:) t:) . (1) (1) (1) 

WOOD 830(j 
SYCLONE CHAR 12630 
F I L T E R  CH4R 13460 
BED 1 (1) (1) (1) (1) 
TAR 1 5 0 (1) 4:) 

* * * a * * * * f t t * * * * * * * * Y * * f t * * t L * X *  
Y d a  INPUT STREkMS d*S 
* * * * * * * * * * * * * t * * ~ l * * d f * f ~ * X t * X d  

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
1.100D (DRY ! 30. 36 14.33 1.79 13.84 . S9 
WOOD MOISTURE 1.54 (1) . (1) 0 .15 1.1$ !:) . ci O 
STEAM 104. 64 fi. 11.65 $3 . (32 (3 . (:j (2 
............................................................................ 
TOTAL INPUTS 136.34 14.33 13.57 1 0E. 05 u 3s 

* * * * * * f * * * * * * * * * * * * * 9 * * * * * * * t * *  
Y t 9  OUTPUT STREAMS S t t  
* * * * * * * * X t * * t * t * * * * f * * t * * * * f * * *  

TOTAL CARBON HYDROGEN OXYGEN 4SH 
............................................................................ 
DRi'GASES 26. (54 9.52 1.59 15 . (39 (:) . c) (:> 
MOISTURE I N  PRODUCT 1.56 (1) . i:)(:) .17 i . 3 9  (11 . !:I(:) 
CYCLONE SOLIDS 1 . 90 1.34 . I:)Z -25 c:fz 
F I L T E R  SOLIDS 1 . 3 (1) 1 u (1) 2 . (:)2 . (55 . (:)Z 
T'ED BUILDUP 1.41 1 . (11 4 . (34 .17 . I ?  
ZEM I STER L I DUIDS 95 . !:)iI) .23 1 (1) . 5 6 El4.44 (1) . (:)[:) 
DEMISTER TAR . 1 (1) . (1) 8 . ~ c ]  . (1) 1 (1) . (3 t:) 
BURNER TR&P 4.2$ . 1 .49 3.81 (1) . (1) 
............................................................................ 
TOTAL UUTPUTS 13 1 . 5(:) 13.25 12. G 7  li1)5. 21 7s . .Ld 
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RUN#: P 1 3  
DATE: 070982 
WOOD TYPE: HEADRIG 

TIME: 13: (:I(] 

TOTAL RUN TIMECHRS) :3.5 
CATALYST: Deactivated NICUMO 

%Xtl='RODUCT GAS UOMPOSITIONSYX 
(MOLE FRACS) 

1'42, (112 FREE 
32 . 3 1 9  . T7-l .:'I.-,- 

COZ . .314 ..327 
.- CI . . -,-H4 . (503 . (:)(:I 3 
=:ZH& . (1) 1 3 . (1) 1 3 
:j 2 . O(:,il. (3 . (:)(:)(:I 
1.12 .0.35 (1) . (1) (1) (1) 
i IH4 . 1 9 8  . 2(:)6 
.:; 0 . I 1 4  . I19  
-7 - *L.LHCI . (I)(:)(:) . (I)(:) 0 
C 3 HS (1) . (11 (;HZ) (1) . (:I c:, (1) 
YH20 . (1) 1 7 . 0 1 7  

REACTOR I N L E T  531 
CATALYST BED 730 
KEACTOR OUTLET 7(:)0 
ESTEAN 1 8 2  
::ARTRIDGE HTRS 850 
PEODUCT METER 15 
DEM LSTER 1 7  

PRODUCT 5 I N  H20 
STEkM 15 I N  H 2 0  
EECYCLE 1(l I N  HZ0 

t 8 O R I F I C E  S I Z E S  AND CONSTANTS** 

r l R I F I C E  I::: S I Z E  .................... 
PRODUCT 1 1 (I). 9 . 5 (1) 
STEAM 32. (2 7 - . .-rV 
FECYCLE 110.(11 . 50 

%%PRESSURES% 8 
i FS I G) 

':?TEGM 1 4 0  
DEN I STER 1 4 0  
F.:Ec?CTOF: 1 3 5  
PRODUCT C) 

#/HR CYCLONE 2.5 
# / H R  F I L T E R  .5 
#/HE TAR . I 4  



tt SOLIDS bS 
* t  COMPOSITIONS t t  

............................................................... 
CARBON HYDROGEN OXYGEN ASH MOISTURE ............................................................... 

WOOD . 450 . 0.5 0 . 480 , (1) 1 (:) . 1 
CCHAR . 62~:) . 030 . (348 . (:)3 (1) (1) . (:) (1) (1) 
FCHAR . 820 . (j30 . 075 . (1) 3 (1) 0 . (>(:)(:I 

BED . 82(:) . (1) 3 (1) . 1 .z (1) . (:)2(:) (1) . 0 i:) (1) 
TAR . 840 . 03 (2 . 1 3 t:) (1) . (1) (:) (1) (3. cj(:)(:) 

NOOD 83(:)0 
!ZYCLONE CHAR 125(:)C) 
I LTER CHAR 1350O 

SED 1 (:)(:I (1) (3 
TAR 1 5 8 0 

*ttttmt**xttttt*~ttxxx*txfx*mtt 
* a *  I I'4F'UT STREAMS t * * 
* * * * t * ~ t * * t t * t * X t t t a t t * t t t * a t t ~  

TOTAL CFIRBON HYDROGEN OXYGEN ASH 
. . ............................................................................ 

IrlOOD (DRY ) 34.65 15.59 2.08 16.63 TI= . .-ld 
WOOD MOISTURE 3.85 (1) . (:)(:) .43 3.42 4:) , c:) 0 
STEAM c- d.2.84 (2 . (1~:) 5.98 47.86 (3 . Tji:) 

I TOTAL INF'UTS 92.34 15.59 8.47 67.?2 7c . .-ld 

* * t * * * f f * * * * t t * * t * * * * * * * * * * t * t *  
t S S  OUTPUT STREAMS f t t  
t t t t * a m t ~ t * r n t * t t t t t t * t t ~ t x t ~ x t *  

I TOTAL CARBON HYDROGEN OXYGEN ASH 

DAYGASES 
MOISTURE I N  PRODUCT 
CYCLONE SOLIDS 
F ILTER SaL IDS 
EED BUILDUP 
i)EMISTER L I Q U I D S  
DEMISTER TAR 
ECIRNER TF:AF 
............................................................................ 
TOTAL OUTPUTS 04.11 14.41 8.95 7(:) . 53 . 3~ .. .-' 



L 8 t t l * t t t 8 f t 8 X l b 8 t * t X t X f t X I t * b  
t*  PRODUCT GAS i N 2 - 0 2  F R E E )  t t  
X * * * b * * b * * Y * * l * t t t t * L t t t * t * * 8 *  

SCFM (DRY a. 65 
LE G A S / L B  DRY WOOD . E 5  
I N S T  S C F / #  DRY WOOD 14.46 
AVG S C F / #  DRY WOOD 12. $7 

'TOTAL FLOW I S C F )  16.34. 37 

. . 
T O T A L  WOOD F E D  126. (:H> 

Y H 2 0  A T  PRODUCT . (:)2 
Y H 2 0  A T  REACTOR OUT .72 
aTCI /SCF 380. 95 

WT F R A C  CAT-CCHAR . 0 5 
WT F R A C  CAT- FCHAR . 0 1 
#CAT L O S S  T H I S  RUN . I 3  

STEAM/WOOD R A T I O  1.55 

DRY MOL WT 
WET N O L  WT 
N 2 - 0 2  F R E E  MW 

E L E C  I N P U T  (b::W 1 26. (:)2 
(based on 7 elements) 
t:::WHR/LB DRY WOOD .64 
E L E C T R I C  B T U / L B  DRY 2197.18 

f % C O N V E R S I O N S  & B A L A N C E S t t  
H E A T  GASi 'HEAT WOOD -66  
GAS B T U S / L B  WOOD 5507 

C A R B O N  CONVERSION 
----------------- 
TO GAS I:/.) 67.64 
TO S O L I D ( % )  21 . 1:)s 
TO L I Q U I D ( % )  1.72 
SUM CONVERS I: ONS 92.39 

METHANOL #/#WOOD . 1645 17764576 TO .354 13!:)772459 

B E D  GAS V E L O C I T Y  1 . (I8 
CART H E A T  COEFF 74.83 
STANDARD H T  O F  RX -686.74 





RUN#: P 1 4 A  
DATE:  0 9 1 6 8 A  
WOOD TYPE:  H E A D R I G  

T I M E :  13: (I)(:) 
T O T A L  RUN T I M E ( H R S )  :2.5 
CATALYST:  DEACT N ICUMO 

t t P R O D U C T  GAS CUMF 'OSIT IONS##  
(MOLE F R A C S )  

N 2 , 0 2  F R E E  
y 2 .544 .356 

333 . &A& . 231)  
. . S 2 H 4  . (12 1 . 022 

r'? . - L H ~  . (:)(:)4 . (:I(:) 4 
"3 
U i  . (:)(:)4 (1) . (1) (1) 0 
N 2  . (:)Z8 (11 . (3 (:)(:) 
C H 4  . 123 . I 2 7  
i: 0 . 250 .259 
iZZH6 0 . (:)(:)(:I (1) . (1) (1) (1) .-. 7. 9,.itH8 . (](:I.: . (:)(:)z 
YHZO . 020 . r., 2 (1) 

9EACTOR I N L E T  713 
C A T A L Y S T  B E D  745 
KEACTOR O U T L E T  652 
STEAM 11 1 
C A R T R I D G E  H T R S  8 10 
PRODUCT METER 18 
DEM I S T E R  58 

PRODUCT 2.8 Itil H Z 0  
STEAM 26 I N  H 2 U  
R E C Y C L E  (1) I N  H Z 0  

t t O R I F L C E  S I Z E S  AND CONSTANTS*$ 

O R I F I C E  K S I Z E  .................... 
PRODUCT 1 1 C!. 9 . 50 
STEAM 32. (1) . 3 (11 
RECYCLE 1 16.0 != - . d (-) 

t t P R E S S U R E S t t  
( F ' S I G )  

STEAM 1 
D E M I S T E R  1 
REACTOF: 1 
PRODUCT (1) 

# / H R  CYCLONE 1.59 
# / H E  F I L T E R  .56 
# / H R  T A R  .61 



t X  SOLIDS $ 8  * *  COMPOSITIONS * a  

............................................................... 
CARFON HYDROGEN OXYGEN ASH MOISTURE ............................................................... 

WOOD ,470 . 062 .462 . (:)(:ib . 048 
CCHAR . El76 . (1; 1 2 . (1182 . (1) 3 (1) (1) . (1) (1) (1) 
FCHAR .887 . 11) 1 6 . 1:)62 . (335 .(I21 
EEL? . Y ~ c : !  . (:!.:(:I . 1 3:) . (:)2(:) (1) . (1) (1) (1) 
TAR . 840 . (:)3(:) . 1 3 (:) . (1) (1) 1 0 . (:)(:)(:I 

WOOD 8425 
CYCLONE CHAR 13914 
F I LTER CHAR 14 100 
EiED 1 (:)(:I (:I(:) 

TAR 1 5 8 (1) 0 

............................... 
$ 8 8  INPUT STREAMS t * t  
............................... 

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
WOOD !DRY ) 23.14 l(5. 87 1.44 10.69 .14 
WOOD MOISTURE 1.16 (1) . I:)(:) . i z  1 . 03 (1) . (:I!:) 
STEAM 24.58 (:I . (1)~:) 2 - 7 5  21.85 (1) . (>(I) ............................................................................ 
TOTAL INPUTS 48.88 10. 87 4. 315 .J .:, 58 .14 7 Y .  

* * * * * * * * * * * * t * * t * * * * * * * * t * * * * d *  
*** OUTPUT STREAMS X * b  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
DRYGASES 21.26 8.23 1.38 11.78 0 . 0(:> 
MOISTURE IN PRODUCT -39  (1) . (I)(:) . 04 . .-#.A (1) . (1) (:I TC 

CYCLONE SOLIDS 1.59 1.32 . 02 .12 . (115 
FILTER SOLIDS .56 .50 . 0 1 . (:)3 . 0 2  
EED BUILDUP (1 . (:)I:) (1; . (1) C) 0 . 0(:) 6 . (:)0 (1) . (1) (:I 
ZENISTER LIQUIDS .? 1 . & t:) .21 3.51 2 8 . (1) 9 (1; . (1) (1) 
DEMISTEH TAR . i l  .51 . (32 . (:)ti i:) . (I)(:) 
FURPdER TRAP 1 . (:)(:) . (1) 1 .11 .8$ (1) . (:)(:I ............................................................................ 
TOTAL OUTPUTS 57. (:)I 10. 79 5. (39 41.35 . 0 6 



t t t * t t * t * t t * s * t t * t t X 1 d * t t f t X * t  
X X  PRODUCT GAS (N2-02 FREE) t t  
t t t t t t t t t t t * t t t t t ~ t t a t t x t t t t t x  

SCFM (DRY 6.39 
LE GAS/LB DRY WOOD . 9 2  
I N S T  SCF/#  DRY WOOD 1 6 . 6 2  
AVG SCF/#  DRY WOOD 1 6 . 4 2  

TOTAL FLOW (SCF) 1016.37 

, . 
TOTAL WOOD FED 6 1 . 8 9  
YH20 AT PRODUCT . 
YH20 AT REACTOR OUT .65 
E'TU/SCF 375. 4~:) 

WT FRAC CAT-CCHAR . 05 
WT FRAC CAT-FCHAR (1) . (:I(:> 
#CAT LOSS THIS RUN . oa 

STEAM/WOOD RAT I D  1 . 06 

DRY MOL WT 
MET MOL WT 
N2-02  FREE MW 

ELEC INPUT ( t < W  ) 17. 50 
!based on 7 elements) 
t::WHR:'LB DRY WOOD .65 
ELECTR I C ETU/LB DRY 22 13.20 

tXC0NVERSIONS Z< BALANCES*# 
HEAT GAS/HE&T WOOD .74 
GAS BTUS/LB WOOD 6259 

CARBON CONVERSION ----------------- 
'TO GkS ( X )  7 5 . 7 6  
TO S O L I D ( % )  1C1.75 
TO L I Q U I D ! % )  . 6.76 
SUM CONVERSIONS 09. 20 

METHANOL #/'#WOOD .2856?5521577 TO . 4  1 &4.96235(55 1 

BED GAS VELOCITY 1 .47 
CART HEAT COEFF 92.93 
STANDARD HT, OF RX - 444.38 



RUN#: P14B 
DfiTE : 09 1 6 8 B  
WOOD TYPE: HEADRIG 

TIME: 15: 00 
TOTAL RUN TIME(HRS)  : 1 . 4 2  
CATALYST: DEAC NICUMO 

%SPRODUCT GAS COMPOSITIONSSS 
(MOLE FRACS) 

N2, (112 FREE 
HZ . 37~:) - 3 7 2  
C 0 2  .228 . 23(:) 
P-t l-.~H4 . (325 . (:)25 
C2Hb . (:)(:I& . (1) (1) 6 
rJ2 . 0 1 (1) . (1) 0 c:, 
i-4 2 . 1:)(:)6 (1) . (I)(:) 0 
CH4 . I 4 7  . I 4 8  
CO . r3(:,8 . .3 1 (1) 
C3H6 . 0 0 4  . (:)(I4 
C3H8 . 0()5 . (:I05 
YHZO . (:)Z(:) . (>2(:, 

REACTOR I N L E T  7 1 6  
ZGTALYST BED 7 4 3  
REACTOR OUTLET 652 
STEAM 111 
CARTRIDGE HTRS 810 
PRODUCT METER 18 
DEM I STER 58 

PRODUCT 7 . 2  I N  H2G 
STEAM 26 I N  HZ0 
RECYCLE (1) I N  H 2 0  

t * O R I F I C E  S I Z E S  AND COI\ISTANTS** 

O R I F I C E  1::: S I Z E  -------------------- 
?ROD!JCT 1 1 0 . 9  . 50 
3TEfiM 32. (1 . 3 (1) 
RECYCLE 1 16.0 . Ei (1) 

STEAM 1 
DEMISTER 1 
REACTOF: 1 
FRUDUCT (1) 

#/HR CYCLONE 3.18 
# I H R  F I L T E R  1.12 
#/HR TAR 1-22 



$ 8  SOL I D S  * *  
t *  COMPOSITIONS f t  

............................................................... 
CARBON HYDROGEN OXYGEN ASH MOISTURE 

............................................................... 

~>JOOD .470 . (1162 .462 . (3i:ib . (1148 
::CHAR .876 . (1) 12 . (1182 . ()3(1) . (1) 5 (1) 
FCHAF: . ii87 . (1) 1 5 . (363 . 035 . [I)? 1 

. . BED . s2(:) . (11 3 (1) . 1 3 (1) . (11 2 (1) (1) . (1) (1) (1) 
TAR . E340 . (1) 3 (1) . 1 3:) . (I)(:) 1 (1) . (1) (1) (1) 

WOOD 8425 
CYCLONE CHAR 13914 
F I LTER CHAR 14 1(1)0 
BED 1 (1) (1) (1) (1) 
TAR 1 5 0 (1) (1) 

a * t * * t t t t t * t t t * * t t t * t x * t * * t t a a *  
t ~ t  INPUT STREGMS a * a  
t * * * * * a * * t * * * * a * * * * * t * * t * * * * * * *  

TOTAL CARBON H'iDROGEN OXYGEN ASH ............................................................................ 
WOOD (DRY) 46.37 21.78 2. 88 .-i 11.43 .28 
WOOD MOISTURE .-i -- L . . ,  . t  (1) . (:)(:I . & 36 2. ()7 <:I . (1) (I! 
STEAM 24.58 . (:)(:I 2 - 7 3  21 "85  (1) . 
............................................................................ 
TOTAL INPUTS 73.28 21.78 5.87 45.35 .26 

* t t * * * * * x a t t L * * t * * * * * * * I * * * * t * *  
M O I  OUTPUT STREAMS * a #  
* t** t**** t*~a~******** t* t***** t  

TOTAL CARBON HYDROGEN OXYGEN ASH 

DRYGASES 36.81 14. 7.3 
MOISTURE I N  PRODUCT -61  (1) , (:I (1) 
CYCLONE SOL I D S  3. 18 2.65 
F I L T E R  SOLIDS 1. i 2  .99 
3ED BUILDUP (2 . <:> (11 (11 . (1) (1) 
DEMISTER LLBUIDS 3 1 . 6(1) .24 

1 STER TAR 1.22 1 . (Ij2 
E!JRt\JER TRAP 1 . (:)(:I . (3 1 
............................................. 
TOTAL OUTPUTS 75.54 19.84 



t******#t*t$t****l t*t********t  
I t  PRODUCT GAS ( N 2 - 0 2  F R E E )  t t  
t t f t * * t * a * * $ $ * t ~ * t * t * * t * * t t * L t  

SCFM !DRY 1 1 0 . 1 9 
LB G A S / L B  DRY WOOD .79 
I N S T  S C F / #  DRY WOOD 1 2 . 1 (1) 
AVG S C F / #  DRY WOOD 13.62 

T O T A L  FLOW ( S C F )  972.92 

T O T A L  !MOOT3 F E D  71.42 
Y H 2 0  A T  PRODUCT . 0 2 
YHZO A T  REGCTOR OUT .54 
F T U /  S C F  4()8. 22 

WT FRAC CAT-CCHAR . 05 
WT F R A C  CAT- FCHAR (1) . 0(:) 
# C A T  L O S S  T H I S  RUN .16 

TOC-DEM I S T E R  ( F F M  ? 7577. (:it2 

STEAM/WOOD R A T I O  .53 

DRY MOL WT 
WET MOL WT 
N 2 - 0 2  F R E E  MW 

E L E C  I N P U T  (KW) 2 . Of:) 
!based on 7 elements) 

I-:::WHR/LB DRY WOOD -59  
E L E C T R I C  B T U / L B  DRY 1 3 2 5 . 1 ' 7  

t t C O N V E R S I O N S  8~ B A L A N C E S X t  
H E A T  GAS/HEAT WOOD .63 
S ~ S  BTUS/LB WOOD 5347 

CARBON CONVERS I ON 

B E D  GAS V E L O C I T Y  1.47 
CART H E A T  COEFF l ( 3 8 .  19 
STANDARD H T  OF RX -75?.4(:) 





RUN#: PI5 TIME: 14: (I)(:) 
DATE: 091762 TOTAL RUN TIME(HRS) :2.3 
WOOD TYPE: HEADRIG SAWDUST CATALYST: DEACTIVATED GRACE 

ltPRODUCT GAS COMPOSITIONSft 
(MOLE FRACS) 

N2,(:)2 FREE 
H 2  .426 .442 
C 0 2  .276 .286 
C2H4 . (:)(:I 7 . (:I(:) 8 
C'?H&, - . t:tr:,q . (1) 1 (1) 
C32 . (:)(:)3 (1 . c jc:>c:, 

N2 . 033 (1) . (1) t:) (:I 
CH4 . 1 .I35 
CO .I14 ,119 
C3H6 . (3 0 1 . O(:) 1 
C3H8 . (:)(:)(:I . (:)(:)(:I 
YHZO - -c . o.:*.J . (335 

REACTOR INLET 740 
CATALYST BED 740 
REACTOR OUTLET 670 
STEAM 156 
CARTRIDGE HTRS 820 
PRODUCT METER 28 
DEMISTER 55 

##DIFFERENTIAL PRESSURESXX 

F'RUDUCT 8 IN HZ0 
STEAM 26 IN H20 
HECYCLE 4 IN HZ0 

%%ORIFICE SIZES &ND CONSTANTSXt 

ORIFICE t:: SIZE .................... 
PRODUCT 1 1 (I). 9 . 50 
STECSM 52. (1) 7 - . .-# V 
RECYCLE 1 16.0 . 50 

STEAM 65 
DEMISTER 6.3 
REACTOR 60 
PRODUCT 1 

#/HR CYCLONE 2.17 
#/HR FILTER .65 
#/HR TAR 1.52 



LX SOLIDS 8 4  
L4 COMPOSITIONS * X  

............................................................... 
CARBON HYDROGEN OXYGEN ASH MOISTURE ............................................................... 

WOOD . 470 . !I) 6 0 . 47C! . (110 1 . (:)a3 
CCHAR . 920 . 0 1 7 . 04.3 . (1) 2 (:) . 161 
IF  CHAR . 920 . (1) L 7 . 043 . 02!:) 0 . 0(:)(:) 
BED . Sjz(:) . !:I 3 (1) . 1 3:) . (1) 2 (11 0 . (:)!:)(:I 

, * 
'TAR . 84Ci (:) 3 (1) . 130 . 0 (1) 1 (5. 0(:>(:) 

bJa0D 8379 
CYCLONE CHAR 12500 
F I L T E R  CHAR 12500 
BED 1 $1) (1) (3 (1) 
TAR 1 5 (j(:) (1) 

m t t t s t * t t x * t t t t * a t * t t m ~ x * ~ * ~ x t *  
8  a 8  INPUT STREAMS t b  t 
t ~ t t * * t t * * t * t t * t * t * * t t * * ~ t * * * * ~  

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
KOOD (DRY) 35.89 16.87 2.15 16.87 . 04 
WOOD MOISTURE 3.24 (1) . (:)(:I .36 2.88 (1) . (:I!:) 
STEAM 52.  4(:) (1) . ()(:) 5.82 46.58 (11 . (1) (1) 
TOTAL INPUTS 91.53 16.87 8.34 66.32 . 04 

t t t $ t l t 6 M t t t X t t * * t t X * f S t t t t t t t t  
t t t  OUTPUT STREAMS X t S  
t t t t t t* t t t* t t t t* t t t* t tm**tx* t t t  

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
DRYGASES 34.49 12.24 2.68 19.75 (3. (5r1i 
IYOISTURE I N  PRODUCT 1 . 3:) (1) . (:I (1) .13 1 . (116 (1) . (1) (1) 
CYCLONE SOL I D S  2.17 1.88 . 113 -09 . 04 
F I L T E R  SOLIDS "65 "56 . (1) 1 . 03 . 0 1 
BED BUILDUP .67 . 3 1 )  . 1-j - A  3 . (38 . (38 
DEMISTER L I B U I D S  4 7 . 6 (1) .1Q 5.29 42.31 (1) . (1) (1) 
DEMISTER TAR 1.52 1.28 . . 2 (1) (1) . (2 (1) 
FURNER TRAP 3.91 . .43 3.48 (1) . 00 
............................................................................ 
TOTAL OUTPUTS 92.22 16.65 8.65 66.99 . 1 5 



* * * * * * * * ~ * * ~ * * * * * * t * ~ * t * * * ~ * t *  
* t  PRODUCT GAS (N2-02 FREE) t t  
* t * * * * ~ * ~ * * * * ~ t X t t t ~ t t * * * * * * * *  

SCFM (DRY) 11.55 
L E  GAS/'LE DRY WOOD .96 
I N S T  SCF/'# DRY WOOD 18.67 
AVG SCF/# DRY WOOD 1 6 . 8 2  

TOTAL FLOW (SCF) 1 3 8 8 . 4 5  

TOTAL WOOD FED 82.56 
'{HZ0 AT PRODUCT . 0 4  
YH2O AT REACTOR OUT .6.3 
ETU/SCF 3 4 7 . 2 3  

WT FRAC CAT-CCHAR . 06 
WT FRAC CAT-FCHAR . 06 
#CAT LOSS T H I S  RUN . 1 7  

TOC-DEM I STER (PPM) 38 9 9 . (1) (1) 
STEAM/WOOD RATIO 1 . 4 6  

DRY MOL WT 
WET MOL WT 
N2- 02 FREE MW 

ELEC INPUT (C::W) 1 2 . 4 5  
!based on 7 elements) 
i:::WHR/LB DRY WOOD . 3 (1) 
ELECTRIC B T U i L B  DRY 1 0 1 4 . 8 6  

t fCONVERSIONS & BALANCES#* 
HEAT GAS/HEAT WOOD .77 
GAS ETUS/'LB WOOD 6 4 8 4  

CARBON CONVERSION 
----------------- 
TE! GkS!iL) 7- 

/i. 56 
TO S O L I D ( % )  17. 4 0  
TO L I B U I E ( % )  €3.76 
SUM COblVERS I ONS 98.72 

METHANOL #/'#WOOD . 2 6 5 4 5 4 0 3 9  107 TO .4(11$18?5 1 1 3 4 7  

BED GAS VELOCITY 1.33 
CART HEAT COEFF 53.71 
STANDARD HT OF RX - 246 .08  
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HUN#: P l b  TIME: 16 :  18 
DGTE: 100582 TOTAL RUN TIME(HRS)  : 3 . 4 5  
WOOD TYPE: DENSE FLAKES-K2COS CATALYST: DEACT NICUMO 

t*F'RODUCT GAS COMFOSITIOI\ISt* 
(MOLE FRACS) 

N2 .02  FREE 
HZ . 508 .526 
~r32 . 2 4 1:) . 2 4 7  
e-, l d iH4 . (:>:>(3(:, . (:I(:)(:) 
C2H6 . r:)(:)5 . (1) 05 
42 2 . (1) 04 (1) . (1) (:I 0 
1'..[ 2 . (1) . (1) (1) (1) 
C H 4  . 075 . 078 
i: 0 . I38 . I 4 2  
C 3 H  6 (1) . !:)!:) (1) (1) . (1) (1) (1) 
C .3 H 8 (1) . (:)(:)(:) (1) . (1) (j (1) 
YH20 . 028 . (:)28 

AEACTOR I N L E T  737 
2ATGL'fST BED 7 4 5  
KEACTOR OUTLET 687 
STEAM 183 
CARTRIDGE HTRS 825 
FRODUCT METER 23 
DEB I STER 23 

F'RODUCT 7 I N  H2C) 
STEAM 10 I N  H 2 0  
RECYCLE 10 I N  H 2 G  

X t O R I F I C E  S I Z E S  AND CONSTANTStt 

CiRIFICE t:: S I Z E  .................... 
PRODUCT 1 I!:). S . 5 0 
STEAM 3 2 .  0 . 3 (1) 
RECYCLE 1 16.0 . 5 (1; 

P T  z I EAM 135 
OEMISTER 135 
REGCTOR 130 
F'RODUCT (:I 

#/HR CYCLONE 1 . 1 3  
#/HR F I L T E R  1 . 4 5  
# /HR TAR (1) 



$8 SOLIDS S t  
$ 8  COMPOSITIONS t *  

CARBON HYDROGEN OXYGEN ASH MOISTURE ............................................................... 

NOOD -422 . (:I56 ,565 .I57 . (:)26 
c- P . d ~ H k R  .6&7 . (:)(:I 1 . 08? ,233 . 1 06 
IFCHAR .565 . 0 1 1 . (376 . &(-I (1. (XI(:) 7c - 

. EED . 43i:i . (:)09 . 1 3 (1) ,423 (1) . (1) (1) (1) 
'TAR . 840 . 030 . 13(:) . [:)(:I 1 (1) , (1) (1) (:) 

WOOD 7531 
CYCLONE CHAR 9526 
F I L T E R  CHAR 9526 
EED 1 4 (:I (:I 

TAR 1 5(:)0 (:I 

* * * t * * * * * * * * * x t t * * * * * * t f * * t * x t x  
a x *  INPUT STREAMS akX 
t t t t * t t x t m m t t * x t * * a t * x t * a * a * * t t  

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
WOOD (DRY) ?-c 

4 .-I . 0 1 14.77 1.96 12.78 5. 50 
WOOD MOISTURE .93 (11 . (1) (1) . 10 .83 (:) . (:)(:I 
STEAM , 43.3:) (5 . 0 (:) 4. 8(:! 38.4(3 1:) . (:)(:I ............................................................................ 
TOTAL INPUTS 7?. 14 14.77 6.86 5 2 . (:I 1 e 

.J _r. 50 

* * t m t x t * t t t t x * t t s * * ~ * x t r a t t t t t x  
L # t OUTPUT STREAMS t r *  
S t * * S S f t t S t b t t t S t t * ; k t t t f * Y t # t t X  

TOTkL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
DRYGASES -C-L 17.83 9. 89 2. 40 17.32 (1) . (:)(I) 
MC! I STURE I I\I PRODUCT .?2 (1) . (1) (1) . 1 (1) .81 (2 . 00 
CYCLONE SOLIDS 1. 13 . /.A . (:I(:) . 1 (3 .26 -,I= 

F I L T E R  SOLIDS 1.45 .82 . 02 .ll .51 
EED BUILDUP 6.29 2.45 . 05 .74 5. (:)2 
DEMISTER L I B U I D S  3(:) . (:)(I! . 02 .-, . .:,.-\ 26.67 (1) . -7 

DEM I STER TAR (1) . (1) (1) (1) . <:I(:> (1) . O(:! (1) . l:)(:) (1) . (1) (1) 
BURNER TRAP 2. 7(:) . (:)(:I . 3<:) 2 . 4 (1:. (1) . (:)(:I 
............................................................................ 
TOTAL OUTPUTS 72.58 13.92 6 . 2(:) 48.65 3.79 



~ * * * t t ~ * t ~ t t t t t t t t a * r n ~ * t t t t ~ x t  
t t  PRODUCT GAS ( N 2 - 0 2  F R E E )  * X  
t t * * t x x t t * t t x t f * t t t a a t * t x * * t ; e : r  

SCFM ( D R Y )  11. 20 
i E  G A S / L B  DRY WOOD . 6 5  
I N S T  S C F / #  DRY WOOD 16.62 
AVG S C F / #  DRY WOOE 18.98 

T U T A L  FLOW ( S C F )  1733. .3ej 

T O T A L  WOOD F E D  101.88 
><HZ0 A T  F'RODUCT . (:)z 
Y H 2 0  A T  REACTOR OUT .53 
B T U / S C F  502. 52 

WT F R A C  CAT-CCHAR (1) (:) (1) 
WT FRAC CAT- FCHAR (1) . (?(:) 
%CAT L O S S  T H I S  RUN 0 . (1) 1:) 

STEAM/WOOD R A T I O  1.23 

DRY N O L  WT 17.75 
WET MOL WT 17.76 
N 2 - 0 2  F R E E  MW 17.38 

E L E C  I NPUT ( t:::W ) 25-28 
!based on 7 e l e m e n t s )  
t:::WHR/LE DRY WOOD .62 
E L E C T R I C  B T U / L E  DRY 2113.42 

t t C O N V E R S I O N S  & B A L A N C E S * *  
H E A T  G A S / H E A T  WOOD 7c . I 4  

GAS E T U S / L B  WOOD 5633 

CARBON CONVERSION 
----------------- 
TO G A S ! X )  66.96 
7°C) S O L I D ! % )  -7 i,. 13 
TO L I C ! U I D ( % )  .16 
SUM CONVERSIONS 94.25 

METHANOL #/#WOOD .356374582$63 TO . 4 5 0 5 1 8 5 Z 7 @ 5  

B E D  GAS V E L O C I T Y  1 . 1 4  
C A R T  H E A T  COEFF 1 (39 . 08 
STANDARD H T  O F  RX -712.66 





FUN#: P17 TIME: 15: (:)(I) 
DGTE : 10 1482 TOTAL RUN T I  ME (HRS) : 2.95 
IQJOOD TYPE: DENSE FLAKES CATALYST: GOOD NICUMO 

*#F'RODUCT GAS COMF'OSITIONSIt 
(MOLE FRACS) 

N2, (52 FREE 
2 . 5 2 8  .569 

502 . 2 2 4  - 2 4 2  
E 2H4 (1) . (:)<:)(2 (1) . (I(:) (1) 
C2H6 . (:I(:) 1 . 00 1 
!I 2 . 00 4 (1) . (:)(> 0 
I\/ 2 . 0 6 8  (1) , (11 1:) (:I 

CH4 . (:)53 . (357 
P. LO . I 3 1  
C SH 6 (1) , (:I c:)(:) (:I . (1) (1) (1) 
CSHG i:).(:)(:)fi (1) . (1) (:) (1) 
'{H20 . (1123 .023 

ZEACTOR INLET 730 
CATALYST BED 730 
REACTOR OUTLET 6 8 0  
STEAM 1 8 3  
CARTRIDGE HTRS 8 2 5  
F'RDDUCT METER 20 
DEMISTER 7 - .J (-1 

%#DIFFERENTIAL PRESSURESXI 

FRODUCT b I N  H20 
STEAM 1 6  I N  HZ0 
RECYCLE 8 I N  H20 

t # O R I F I C E  S IZES AND CONSTANTS%4 

ORIF ICE I.::: S I Z E  -------------------- 
PRODUCT 110.9 . 50 
STEAM 3 2 . 0  . s 
F:EC1r'CLE 1 1 6  . (1) . 5 (5 

STEAM 138  
DEMISTER 136  
REACTOR 132  
PRODUCT (1) 

#/Hi? CYCLONE 1 
Y , I  lr-8 r T I Trrl T,-, 



tt! nt-. r L L I . .-to 
#/HR TAR 1:) 

t *  SOLIDS X X  
Mt COMPOSITIONS t t  

............................................................... 
CARBON HYDROGEN OXYGEN ASH NO I STURE ............................................................... 

WOOD . 5 0.3 . (1166 .425 . 0i36 . (1) 1 3 
CCHAR . 85~:) , (1) 1 .3 (1) . (1) (1) (1) . 1 4 (1) . (IS(:, 
FCHAR . 650 . (1) 1 3 (1) . (:)(:)(I .35(j . (588 

. I BED . . (1) 1 9 . (:)3(:i . 0 3:) 6 . (:I 01:) 
TAR . 840 . (330 . 1 . (:)(:) 1 (1) . 000 

MOOD 8774 
CYCLONE CHAR 1.7240 
F I L T E R  CHAR 8854 
EED 1 oo(:)(:) 
TAR 1500(1) 

******%**********t************* 
# a *  INPUT STREAMS X L S  
t * * * * * * * * f * * * * * * * * t * * * X * * * * t * * *  

TOTAL CARBON HYDROGEN OXYGEN GSH ............................................................................ 
CJOOD (DRY ) 24.87 12.51 1.64 l(3.57 .15 
WOOD MOISTURE TT . .-#.-a (1) . (3 (1) . (114 .29 (1) . (1) (1) 
STEAM 55. i9 (1) . (:tc:) 6.13 43. 06 (3 . (1) !:) 
............................................................................ 
TOTAL INPUTS €30. 39 12.51 7.81 59.92 .I5 

t*******ttL%********t***t****** 
*l% OUTPUT STREAMS X Y d  
t t t * f X t t * # d * ~ * * t * * f t t t f X f t t t * t f  

TOTAL CARBON HYDROGEN OXYGEN ASH 
............................................................................ 
DRY GASES 25.65 6.11 2.15 15.61 (1) . (1)~:) 
MOISTURE I N  PRODUCT 7-7 . I, L (:) . (:)(:I . 08 .64 (1) . (1) (11 
C'f CLONE SOL I D S  1 . (:I!:) .85 . (13 I (1) . (:!(I) .14 
F I L T E R  SOLIDS .38 .25 . (110 (11 . (13 (1) .I3 
BED BUILDUP 1 w 40 1.16 . (1) 2 . 04 .16 
DEMLSTER L I Q U I D S  48. 3:; . (1) 1 .-I . .A a 42.64 (11 . 1:) (1) C 7 ,  

DENISTER TAR (:i . (1) (1) (3 . 00 0 . 00 (3 . (1~:) 0 . (>(I 
BURNER TRAP 3.15 . (:)(:! . .-,a 2. 8(:! (1) . <:I (1) 7c 

TOTAL OUTPUTS 



# * t t # t t t t t * t S d b f t * t 4 t t t S t X ( X X * f  
% X  PRODUCT GAS (N2-02 F R E E )  X f  
t * * t t t t * * t * t t t t r ~ t * t x a X c a t t * t * t  

3 C F M  (DRY 1C) . 59 
iE G A S / L B  DRY WOOD 1 . (1) 
INST S C F / #  DRY WOOD 2.:. fib 
jG',~'G S C F / #  DRY WOOD 22-41 

T O T A L  FLOW ! S C F  ) 1 6 7 (1) . (5 1 

T O T A L  WOOD FED 74.. 52 
'{I-120 A T  PRODUCT . (:I 2 
YHZO AT REACTOR OUT 
-. 

.66 
kiTIJ/SCF 284.. 56 

WT FRAC CAT-CCHAR (1) . (1) (1) 
X T  FRAC CAT- FCHAR (1) . (1) (1) 
#CAT L O S S  T H I S  RUN (1) . (:)i:j 

STEAM/WOOD R A T I O  2 - 2 2  

DRY MOL WT 17.24 
WET N O L  WT 17.26 
N 2 - U 2  F R E E  MW l t . 3 8  

E L E C  I NPUT i t:::W? 2 1 . (:I(:> 

ibased G ~ I  7 elements) 
k::WHR/LE DRY WOOD .72 
E L E C T R I C  B T U / L B  DRY 2470.69 

$ t C O N V E R S I O N S  % B A L A N C E S * *  
H E k T  G A S i H E A T  WOOD .77 
;-, .* ,-. una ETUS/LE i  WOOD 6789 

CARHON CONVERSION 
----------------- 
70 G A S ( % )  64. 8s 
TO S O L I D ( % )  18. 04 
T O  L I B U I D ! % )  u 12 
.5iUM CONVERG I ONS ij2.39 

METHANOL #/#WOOD .441648712858 TO .523246627474 

B E D  GAS V E L O C I T Y  1. 10 
CART H E A T  COEFF 76. .3(:) 
STANDARD H T  O F  RX 451.43 





F:UN#: F'18 
DATE: 110182 
WOOD TYF'E: HEADRIG 

TIME: 15: (I)(:) 
TOT&L RUN TIME(HRS)  : 3 . 0  
CATALYST: NICUMO-DEAD 

tSF'RODUCT GAS CUMF'OSITIONSt l  
(MOLE FRACS) 

N2, 0 2  FREE 
. S F 1  . 4 2 3  

C 0 2  . 1 9 b  .212 
~ 2 ~ 4  . (1) (1:) 1. . (1) (1) 1 
(-. m 
i-, i H 6  . (:)(:!s . (11 1 (1) 
02 . (1) 1 11) (1, . (1) (1) 
k.12 . 007 0 . (1) (1) (1) 
CH4 . 158 . I72  
C13 . 168 . I 8 2  
7. T 

!L, .A H b C) . (1) (1) (1) (1 . (1) (:)(I! 
C 3 (1) . (1) Q (1) (1) . (1) (1) (1) 
'f H2O . (323 . 037 - -.- 

REACTOR I N L E T  6(:)0 
CATALYST BED 7 4 0  
REACTOR OUTLET 720 
STEAM 183 
CARTRIDGE HTRS 840 
F'RODUCT METER 21 
DEMISTER 7 - .-.CJ 

F'RUDUCT 5 I N  HZ0 
STEAM I(:) I N  H z 0  
RECYCLE 1 6  I N  H 2 0  

% # O R I F I C E  S I Z E S  AND CONSTANTStt 

O R I F I C E  1::: S I Z E  
.................... 
PRODUCT 1 10. '7 e - . J V  
STEAM 32. (1) 7 - . .do 
RECYCLE 1 1 6 . 0  . 50 

STEI?M 135 
DEMISTER 135 
RECiCTOR 135 
F'RODIJCT 1 

#/HR CYCLONE 2.93 
#/HR F I L T E R  1.17 
# /HE TAR . 16 



% *  SOLIDS X t  
t*  COMPOSITIONS ft 

............................................................... 
CARBON HYDROGEN OXYGEN ASH MOISTURE ............................................................... 

LJOOD .478 . 058 .438 . 026 . 088 
::CHAR .886 . (1) 12 (1) . (1) (1) 0 , 1 (:I(:) . (1) 3 (1) 
FCHAR . 805 . (1) 1 3 0 . 1:) 0 0 . 190 ,146 I .  PED . 821:) . (53 (:) . 1 3 (:) . (:)2(:) (1) . (1) (1) (1) 
TAR . 840 . 8 3(:1 , 1 sf:) . (:)(I 1 (3 . (>(I) 

t *HEATS OF COMBUST I ON t 

WOOD 8342 
CYCLONE CHAR 135(:)(3 
FILTER CHAR 1 1901:) 
BED 1 (:) (1) (3 (:I 
TAR 1 5 (1) (3 (1) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
a 8 * INPUT STREAMS t t X 
*********t*t*t***************** 

TOTAL CARBON HYDROGEN OXYGEN ASH 
------------------------------------------------------------------------L--- 

WOOD (DRY) 3(:). 7 1 14.68 1.78 13.45 . 80 
WOOD MOISTURE "1.96 (1) . (:)(:I . .-#.-' 2.63 (:I . (:)(:I 77 

STEAM 43. 20 . (:I(:) 4 . 8 (1) 38.4f:, c:t . i:) (1) ............................................................................ 
TOTGL INPUTS 76.87 14.68 6.71 54.48 . 80 

* * t * * * * * * * * * t * * * * * t * * * * *X* * * * * *  
t t S OUTPUT STREAMS at* 
* * * * * * * * * ~ x * * * * * * * * * * * t * * * * X * * *  

TOTAL CARBON HYDROGEN OXYGEN ASH 

DRY GGSES 25.59 9.84 2.23 13.97 (1) . OC:, 
MOISTURE IN PRODUCT .64 Ct . (:I(:) .07 .57 0 . 00 
CYCLONE SOLIDS 2.9.: 2. 6t:) . (34 (3 . (:)(:> .A 79 
FILTER SOLIDS 1.17 .94 . (32 (1) . (1) (:I -, -1 . LL 

EED BUILDUP 1.98 1.46 . 05 . 7~ A ._I .23 
OEM I STER LIQUIDS 52. 31:) . L5 5.81 46.49 0 . 01:) 

DEMISTEE TAR .I6 .13 . (:)(:I . 0 2  (3 . (:I 

BURNER ' TRAP 3.83 . 0 1 .43 3. 41:) (1) . (:)(I) 
............................................................................ 
TOTAL OUTPUTS 88. 60 15.13 8.154 64.71 -?c . i d  



t t l X # t * f t t t t X t X $ b # X * t d t X t X t ; C : X L  
t1 PRODUCT GAS (N2-02 FREE) t t  
~ t * t t X * * b t * t m t * * t t t t t t * * # t * * * X  

SCFM (DRY) 9 . 4 6  
L B  GAS/LB DRY WOOD . a3 
i N S T  SCF/# DRY WOOD 17.21 
AVG SCF/#  DRY WOOD 2 1 . 7 9  

TOTAL FLOW ! SCF) 2(:)(:)7. 2 6  

TOTAL WOOD FED 9 2 . 1 1  
\, t . 7  T ~ L O  AT PRODUCT . (:)a 
YH2O AT REACTOR OUT . 7 0  
BTCliSCF 387. (1) 1 

WT FRAC CAT-CCHAR (1) . (:I(:) 
WT FRAC CAT-FCHAR (3 . (jo 
#:CUT LOSS T H I S  RUN 0.  (:)(:) 

STEAM/WOOD RATIO 1 .41  

DRY MOL WT 
WET MOL WT 
N2-02 FREE MW 

ELEC INPUT (KW) 2 = j m 2 ~  
!based on 7 elements) 
t:::WYRILB DRY WOOD .71 
ELECTR I C BTU/LB DRY 2 4 0 9 . 2 6  

#*CONVERSIONS %< BALANCES** 
HEAT GAS/HEAT WOOD . 8 0  
GAS BTUS/LB WOOD 6 6 6 1  

CARBON CONVERSION 
----------------- 
TO GAS(%) 67. (33  
TO S O L I D ( % )  34 .  (:)& 
TO L I B U I D ( % )  2 . r:) 2 
SUM CONVERSIONS 1 (5.z. 1 1 

METHANOL #/#WOOD .37C)S26276851 TCI .6(:)67a45674.19 

BED GAS VELOCITY 1.26 
CART HEAT COEFF 8 7 . 2 6  
STANDARD HT OF RX 2 0 7 . 7 2  
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T I I I E :  13:35 
T O T A L  RUN T I .ME ( HRS ) : 3.0 
C A T A L Y S T :  NICUMO- DEAD 

t * P R O D U C T  G k S  C O M F O S I T I O N S t t  
(MOLE F R A C S )  

N 2 . 0 2  F R E E  
'A Z . ,115 . 7-7 .-I-.-. 

C 0 2  . 28(:1 .286 
C Z H 4  . c:)Ci6 . 0 C:) 6 
PT-) IL.LH& . 0 1 P . 0 1 9 
-r T ILJ d, , (:)() 1 (1) . (1) (:I (1) 
1;12 . (-) -A& 3 3 (1) . (:) (1) 
C H 4  . 177 . 181 
CO . 179 . I 8 4  
C S H 6  . (3(3(3 . (:I(:) (1 
C 3 H 8  . ( : ) ( I )  (1) . (:)(:)(:) 
Y H 2 0  . 0 1 6 . 0 1 6 

2EACTOR I N L E T  740 
C A T A L Y S T  RED 740 
REACTOR O U T L E T  680 
STEAM 160 
C A R T R I D G E  H T R S  820 
PRODUCT METER 15 
D E M I S T E R  2 (1) 

F'RODUCT 4 I N  H Z 0  
STEAM 15 I N  H 2 0  
R E C Y C L E  1.3 I N  H 2 0  

f . X , O R I F I C E  S I Z E S  AND CONSTANTS**  

{ I R I F I C E  1::: S I Z E  
.................... 
PRODUCT 1 10.3 . 5C) 
STEFIN '7, 

.-a * . (I! . 3 1 )  

R E C Y C L E  1 16.0 . 50 

STEAM 75 
DEM I S T E R  7(:) 
REACTOR ?(I) 
F'RODUCT 1 

# / H R  CYCLONE 2.42 
# / H R  F I L T E R  .5 
#/HR T A R  .16 



tf SOL I D S  f k  
t Y  COMF'OSITIONS t t  

............................................................... 
CARBON HYDROGEN OXYGEN ASH MOISTURE ............................................................... 

!MOOD .473 . (116 (:I .455 . (1) 1 2 . (1127 
CCHAR .863 . (1) 1 1 (1) . (1) (1) (1) .I27 . 046 
FCHAR m,  -001 . (1) 1 2 (1) . (:I(:)(> .I27 . 1 
BED .517 . (:)(:I '7 (1) . 1:) (1) (1) . 480 (1) . (1) (1) (:I " .  TAR .640 . (:)3 (1) . 1 3 (5 . C16 1 (1) . (:)<:)(:I 

t *HEATS OF COMBUSTI ON* t 

WOOD 852)(:) 
CYCLONE CHAR 125()(3 
F I L T E R  CHAR 12500 
BED 1 (1) (:I (1) (1) 
TAR 1 5 (3 (1) (1) 

t t * * * * * t * * P * * X t * t * * * * * * * I * * * * * *  
I x * INPUT STREAMS a t *  
t ~ ~ t ~ t t t ~ ~ t ~ * t t t t t * * a t t * t ~ t ~ x t t  

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
WOOD (DRY) 36.98 17.49 A m LL 16.82 .44 C. .-bm 

b1iOOD MOISTURE 1 . (11 2 (3 . (:I(:) .ll .91 (1) . (:)(:I 
STEAPl 42. (:)3 0 . (:)(:I 4.67 37.36 (1) . (:)(:I 
............................................................................ 
TOTAL INPUTS 8t:) . (1) 3 17.49 7 . (:)(I .A.J u (39 . 44. ce 

f**S***Xt**tlft***t*%*t*a*****R 
O t t  OUTPUT STREAMS * L t  
t t * t % t t t t l t t t b % t t t f t * X t M t f t t X t f  

TDTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
DRYGASES 27.51 1t:). 52 1.89 15.16 (1) . (1) (1) 
NO ISTURE IIV F'RODUCT 7 7 . .-. / (:I . (1) (1) . (1) 4 . .-, .-', (1) . (1) (1) 77 

CYCLONE SOLIDS 2.42 1.88 . 02 (1) . (:)(:I .28 
F I L T E R  SOLIDS . 5 (1) .41 . (3 1 (1) . (:)(:I . (1) 6 
EED BUILDUP 1.46 .68 . (1) 1 (:I . 00 .78 
DEMISTER L I Q U I D S  34' . (1~:) . TT -._- 4.33 34.67 (1) . (1) (1; 
OEMISTER TAR . 16 .13 . <:I(:) . [:)2 (1) . (1)s:) 
FURNER TRAP 2.67 . (112 . 3 (1) 2-37 (1) . (:)(:I 



# t * t * f * t * t t t t * t t t * t t # t t * d t t * * *  
PRODUCT GAS iN2-02 FREE) t t  

t * * * *X&t * * t * * t * * t * * t * * * * * * * t * *  

SCFM (DRY j 8. 05 
LB GASiLB DRY WOOD . 7 4  
INST SCF/# DRY WOOD 12 .78  
AVG SCF/# DRY WOOD 1 2 . (1) 1 

TOTAL FLOW (SCF) 1332 .64  

TOTGL WOOD FED 1 I(:). 93 
YHZO AT PRODUCT . 0 2  
YH20 AT REACTOR OUT .65 
BTU/SCF 3 8 9 . 8 5  

WT FRAC CAT-CCHAR . 1 (1) 
WT FRAC CAT-FCHAR . (35 
%CAT LOSS THIS  RUN .27 

TOC-DEM ISTER (F'FM) 61:) (:I (1) . (1) (1 

STEAM/WOOD RATIO 1 . 1 4  

DRY MOL WT 
NET MOL WT 
N2-02 FREE MW 

ELEC I NF'UT ( b::W 1 1 9 . 8 3  
(based on 7 elements) 
I.:::WHR,!LF DRY WOOD .46 
ELECTRIC BTU/LB DRY 1569 .54  

.%#CONVERSIONS Z< BALANCES*& 
HEfiT GASiHEAT WOOD . 5 9  
B A S  BTUS/LB WOOD 4 9 8 4  

CARBON CONVERSION 

T'U GAS ! : i : )  60 .  3. a 
Ti7 SOLID(%!  16.?8 
TO L I Q U I D  I%) 2. 2 0  
SUM CONVERSIONS Tr ,  7, 

/ 7 . .-'a 
METHANOL #/#WOOD . 1 7 1  3 2  1 3 0  1 9 2 2  TO . 3 0 9 5 5 8 3 8 3  1 0 5  

BED GAS VELOCITY 1 .59  
CART HEAT COEFF 8 5 . 5 7  
STANDARD H i  OF RX -387 .63  





RUN#: P2t3  T I M E :  14: 30 
W T E  : 1 10882 T O T A L  RUN T I M E  (HRS) : 3 
WOOD TYPE: H E A D R I G  W i N A C 0 3  C A T A L Y S T  : DEAD N I -CU-MO 

#*PRODUCT GAS C O M P O S I T I O N S t X  
( M U L E  F R A C S )  

N2, 02 F R E E  
H 2  . 302 . 330 
''02 
..2 

7 - T  . .:,(-).:o . 33 1 
~ 2 ~ 4  , (:)(:)x . (1) (1) 3 
1:2H6 . (1)  i 7 . (11 1 9 
r' 3 
'LJ =& . (:I03 i:) . (5(:)(1) 
p4 2 . Oi31 (11 . (:)c:l(:l 
C H 4  . 16El . I 8 3  
i3 0 -122 . I33 
iz3H& . (1) c:) c j . (:)(I(:) 
(:3Hi3 . (:>(:I (1) . (1) (1) (1) 
'\'HZ0 . (1) 1 3 . (313 

3EACTOR I N L E T  607 
C A T A L Y S T  BED 730 
REACTOR O U T L E T  7(1)(1) 
STEAM 183 
C A R T R I D G E  H T R S  840 
F'RODUCT METER 12 
D E M I S T E R  25 

F'RODUCT 4 I N  HZ13 
STEAM 8 I N  H20 
R E C Y C L E  14 I N  H Z 0  

# * O R I F I C E  S I Z E S  AND C O N S T f i N T S * t  

O R I F I C E  C:: S I Z E  
.................... 
F'F:ODUCT 1 1C). 9 . 5::1 
STEAM 32. (1) . 3 (1) 
E E C Y C L E  1 i 6. O c - . d(.) 

STEAM 14(3 
D E M I S T E R  135 
REACTOR 120 
FRODUCT 1 

# / H R  CYCLONE 3.67 
#/HR F I L T E R  1.6 
# /HR TAR ' .7 



t t  SOLIDS t*  
t t  COMPOSITIONS **  
............................................................... 

CARBON HYDROGEN OXYGEN ASH MOISTURE ............................................................... 

LJOOD . 34(:) . 042 . 505 . I14  . 084 
ilCHFiR -615 . (1) 1 (1) . (:132 .344 . (m$ 
FCHAR .653 . (2 1 1 . (:)24 . .-, .-, .-, . (1) (36 TTT 

. EED . 8 3:) . (1) z(:) . 1 30 . (:)2(3 (1) . (11 (1) (1) 
TAR . 54(:) . 050 . 130 . (1) (1) 1 (:I . (:)(:I (1) 

WOOD 7550 
CYCLONE CHAR 10050 
FILTER CHAR 1 1038 
BED 1 (1) (:I (1) (1) 
TAR 15(:1(j(:) 

............................... 
; k % l  INPUT STREAMS d t *  
t t * * S * * * t * S * * * % * * * t * f 6 * t * t t * f f f  

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
WOOD I DRY ) 44. 90 15.24 1.89 22.67 5 . 1 (I) 
1.4OUD MOISTURE 4 . 1 (:I (1) . (:I (1) .46 3.65 i:) . (:)(:I 
STEAM .:$. 28 (j . (:) (1) 4.36 54.91 (1) . (:>(I) 

TOTAL INPUTS 88.25 15.24 6.71 61.23 5 , i (1) 

*t%***tt~**tt**%*************** 
Xtt OUTPUT STREAMS t X * 
* t * * t * t t * * * * t *X t * * t t * * * * * * * * * * *  

TOTAL CARBON HYDROGEN OXYGEN ASH ............................................................................ 
DRl'GASES 26.12 3. 62 1.76 14.86 (:) . (:I 

ME 1 STURE I N  PRODUCT 7 .- . . , C J  (:) . (:)(I) . 03 .27 (I! . (1) (:I 
CYCLONE SOLIDS 3.67 2 - 2 6  . 04- .12 1.26 
FILTER SOLIDS 1 . 60 1 . (1) 1 . . (34 - 5 5  
BED EUILDUP -. 6(> -. 44 - . (1) 2 - u (37 - . 07 
OEMISTER L IQUIDS  55 . (1) (11 . 18 6.11 48. 89 (1) . (:)::! 
DEMISTER TAR . 70 .53 . (:!2 . 04 (1) . ij (2 
SURNEF TRAP 5 . (1) (1) . .56 4.44 C i  . (1) (1) 
............................................................................ 
TOTAL OUTPUTS $1.78 13.23 a. 52 68.64 1.72 



~ ~ * * * * * * * * * * $ ~ * * * * t * * t t * * t t * X t  
:*X F'RODUCT GAS (N2-02 FREE) t X  
t f t * * * t * * t ~ * * * * t t t t * x * a t * t t t * x ~  

SCFM (DRY ) 7. 91:) 
LB GAS'LB DRY WOOD - 5 8  
I N S T  SCF/#  DRY WOOD 3.77 
&VG SCF/# DRY WOOD it:). 3:) 

TOTAL FLOW i SCF) 1573.56 

TDTAL WOOD FED 1 3 4  . 7(:) 
YH2O AT PRODUCT . (1) i 
YH20 f iT REACTOF: OUT .75 
E;TU/SCF 372.76 

t t t t ~ t t ~ t ~ * ~ * t ~ ~ t t t t t a ~ t t  
t tMISCELLANEOUS T I D B I T S X I  
$ t * * t t t t # t * X * * t L # * t t * * * * t  

WT FRAC CAT-CCHAR (:I . (:)(I> 
WT FRAC CAT-FCHaR (1) . (1) (1) 
#CAT LOSS T H I S  RUN (:I . (1) (1) 

TOC-DEM ISTER (FPM) 77c .-,.-,a 6 . (1) (2 

STEAM,<' WOOD RAT I 0  . 8 7  

DRY MOL WT 23. (:)3 
WET MOL WT 22.96 
b d 2 - 0 2  FREE MW 22.55 

ELEC INPUT i t:::W) 2 5 . 6 7  
(based on 7 elements) 
KWHR/LH DRY WOOD .4$  
ELECTRIC BTU/LE DRY 1 6 7 2 . 8 3  

t tCONVERS I Q N S  Z.: BALANCES* X 
HEAT GAS/HEAT WOOD . 4 8  
GAS BTUS/LB WOOD 3 6 4 4  

CARBON CONVERSION 
----------------- 
Trj G A S ( % )  6 3 . 1 5  
TO SOLICI(X) 1 8 . 5 2  
TO L I Q U I D ! % )  5. 18 
SUM CONVERSIONS 86. B2 

$#DESIGN INFORMATIGNSI 

SED GAS VELOCITY 1.1.3 
CART HEFIT COEFF 80. 5 4  
STANDARD HT OF HX -1984.23 





;TUN#: 21 TIME: 14 :30  
DGTE: 1 1 0 9 E 2  TOTAL RUN TIME(HRS)  : 3  
t:.JOOD TY F'E: DENSE FLAKES CATALYST: 13% NAC03 

.$<bPRODUCT GAS COMPOSITIONS** 
!MOLE FRACS! 

N2 ,02  FREE 
i 

1L . sx(:t .343 
9 0 2  .285 . 3 C r . 5  
:2H4 . (1) (5 3 . (:)(:)3 
7' 7 
:-, i H 6 . 0 1 7 . (3 1 6 
,rJ 2 . (>()2 (1) . (1) (1) (3 
1;[2 . (1ki.5 (1) . (1) [:I (1) 
:EH4 . I 7 4  . 1 8 7  
3 U . 13.3 . 1 4 3  
33H6 (:).(:)(:)() (:, . (:,(:> (1) 
T7' , .J H8 (1) . (1) (1) (1) (1) . (1) (1) (1) 
~ H Z O  . (1, 1 4 . (1) 1 4 

REFtCTCIR I N L E T  6 6 ( )  
CATALYST BED 7 5 0  
REACTOR OUTLET 7 4 0  
STEAM 1 8 4  
CARTRIDGE HTRS 840 
F'RC3DUCT METER 1.55 
3EMISTEE -?.(c -.I 

%%DIFFERENTIAL  PRESSURESIX 

F'RUDUCT 2 I N  HZO 
STEAM 3 I N  H 2 0  
F.ECYCLE 13 I N  HZ0 

*%ORIFICE SIZES AND CONSTANTS** 

O R I F I C E  1:: S I Z E  
.-------------------- 

F'F;UDUCT 1 1(5. 9 , 5(:) 
2TEAM 32.  (2 . 3 (1) 
!;IEC'{CLE 1 I&. i:) . 5 0 

LIPRESSIJRESI* 
I P S  I G 

C- r .-:, I EAM 1 4 (1) 
BEMISTER 135 
REACTOR 1.30 
PRODUCT 1 

#/HR CYCLONE 6 .67  
#/HR F I L T E R  1 
#/HR TAR 1.17 
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