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Argonne Nat iona l  Laboratory,  Argonne, I l l i n o i s  60439 

ABSTRACT 

Li th iumlmeta l  s u l f i d e  b a t t e r i e s  a r e  be ing  developed by Argonne National  Laboratory 
and i n d u s t r i a l  c o n t r a c t o r s  f o r  e l e c t r i c - v e h i c l e  p ropu l s ion  and f o r  s ta t ionary-energy-  
s t o r a g e  a p p l i c a t i o n s  such a s  l oad  l e v e l i n g .  The b a t t e r y  c e l l s  c o n s i s t  of l i thium- 
aluminum o r  l i t h i u m - s i l i c o n  nega t ive  e l e c t r o d e s ,  i r o n  s u l f i d e  (FeS o r  FeS2) p o s i t i v e  
e l e c t r o d e s ,  and molten LiC1-KC1 e l e c t r o l y t e .  The c e l l s  a r e  enclosed i n  a thermal ly  
i n s u l a t e d  j a c k e t  t o  ma in t a in  a n  ope ra t ing  temperature of 400-500°C. A 40-kW-hr 
e l e c t r i c - v e h i c l e  b a t t e r y  c o n s i s t i n g  of 120  Li-Al/FeS c e l l s  i s  c u r r e n t l y  being f a b r i c a t e d  

. ... .. . . .and i s  scheduled '  for.. . l abo ra to ry  and 4 i i ~ - v e h i c l e  t e s t i n g  i n  1979. 



r 

INTRODUCTION 

L i t h i d m e t a l  s u l f i d e  b a t t e r i e s  a r e  being devel- 
oped by Argonne Laboratory and s e v e r a l  subcon- 
t r a c t o r s  f o r  e l ec t r i c -veh ic le  propuls ion  and 
f o r  s t a t i o n a r y  energy-storage a p p l i c a t i o n s  such 
as load l eve l ing .  The use of a  l a r g e  number of 
e z e c t r i c  v e h i c l e s  would r e s u l t  i n  a  s i g n i f i c a n t  
decrease i n  the  consumption of petroleum f u e l s  
[1,2] ,  s i n c e  the  energy f o r  charging t h e  b a t t e r -  
i e s  could be provided by coa l ,  nuclear ,  hydro- 
e l e c t r i c ,  o r  o t h e r  sources;  a  s ide-benef i t  
would be decreased a i r  p o l l u t i o n  i n  congested 
urban a reas .  Load-leveling b a t t e r i e s  on elec-  
t r i c - u t i l i t y  systems could conserve petroleum 
by reducing t h e  need f o r  gas tu rb ines  t o  meet 
peak power demands [3,4]. The s t a t i o n a r y  bat- 
teries may a l s o  f i n d  a p p l i c a t i o n s  i n  systems 
us ing s o l a r ,  wind, o r  o t h e r  c y c l i c  o r  i n t e r -  
m i t t e n t  energy sources. 

I n  t h e  i n i t i a l  s t ages  of t h i s  program, a t tempts  
were made t o  develop b a t t e r y  c e l l s  us ing  e le -  
mental l i th ium a s  t h e  negat ive  e l ec t rode ,  e le-  
mental s u l f u r  a s  the  p o s i t i v e  e l ec t rode ,  and 
molten LiC1-KC1 a s  the  e l e c t r o l y t e .  The elec-  
t rochemical  r eac t ion  t h a t  occurs during t h e  
d ischarge  of t h i s  type of c e l l  

has a ve ry  high t h e o r e t i c a l  s p e c i f i c  energy of 
about 2600 W-hr/kg [5] and an emf of 2.2 V a t  

.400°C. Although t h e  thermodynamic p r o p e r t i e s  
of t h e  l i th ium/su l fu r  system a r e  very  favorable  
f o r  high-performance . app l i ca t ions ,  s e v e r a l  ? .  ' 

p r a c t i c a l  d i f f i c u l t i e s  have discouraged t h e  de- 
. v e l o p m e n t o f a p r a c t i c a l c e l l [ 6 ] .  The l i th ium 

meta l ,  which i s  l i q u i d  a t  the  opera t ing  tempera- 
t u r e , a t t a c k s  most ceramic m a t e r i a l s  t h a t  might 

. b e  used a s  i n s u l a t o r  o r  e l e c t r o d e  separa to r s ,  
and i t  becomes d i f f i c u l t  t o  . r e t a i n  i n  t h e  po- 
rous  metal  e l ec t rode  during extended cycl ing  of 
t h e  c e l l .  Lithium a l s o  d i s s o l v e s  i n  t h e  LiC1- 
KC1  e l e c t r o l y t e  t o  t h e  ex ten t  of about 0.13 mol 

. .  '%  a t  400°C [7,8],  which r e s u l t s  i n  se l f -d is -  
charge of t h e  c e l l .  The m e t a l l i c  l i th ium a l s o  
r e a c t s  wi th  K C 1  i n  t h e  e l e c t r o l y t e  t o  form po- 
tassium vapor having an 'equi l ibr ium p a r t i a l  

. . pressure  of 0.05 kPa a t  425'OC [9]. 

The elemental  s u l f u r  e l ec t rode  a l s o  poses a  
number of p r a c t i c a l  problems. I n  a d d i t i o n  t o  
i t s  cor ros ive  behavior toward most meta ls ,  t h e  
s u l f u r  tends  t o  reac t .  wi th  t h e  Li2S r e a c t i o n  
product  t o  form po lysu l f ides  t h a t  a r e  so lub le  
i n  t h e  LiC1-KC1 e l e c t r o l y t e  ['6], thereby provi- 
ding a mechanism of s u l f u r  escape from t h e  elec-  
t rode .  Su l fu r  a l s o  has  a  r a t h e r  high vapor 
p ressu re  of 77 kPa, a t  425°C [ l o ] .  



I n  t h e  c e l l s  cu r ren t ly  under development, these  
problems have been overcome by using Li-A1 o r  
Li-Si a l l o y s ,  r a t h e r  than l i th ium i n  t h e  nega- 
t i v e  e lec t rode  [11,13] and i r o n  s u l f i d e s  (FeS 
o r  FeS2), r a t h e r  than s u l f u r  i n  t h e  p o s i t i v e  
e lec t rode  [14,15]. The l i th ium a l l o y s  and i r o n  
s u l f i d e s  are s o l i d  m a t e r i a l s  a t  t h e  c e l l  opera- 
t i n g  temperature. These systems c o n s i s t  of two 
s o l i d  phases (e lec t rodes)  and one l i q u i d  phase 
( e l e c t r o l y t e ) ,  r a t h e r  than th ree  l i q u i d  phases,  
which i s  a much more favorable  s i t u a t i o n  i n  t h e  
f a b r i c a t i o n  of a p r a c t i c a l  c e l l .  

I LITHIUM-ALLOY/METAL SULFIDE CELLS 

Although t h e  s u b s t i t u t i o n  of l i th ium a l l o y s  f o r  
elemental l i th ium and metal  s u l f i d e s  f o r  s u l f u r  
.has r e s u l t e d  i n  a p r a c t i c a l -  c e l l  system, i t  in-  
vokes a se r ious  penal ty  i n  t h e  t h e o r e t i c a l  spe- 
c i f i c  energy and the  c e l l  voltage.  The most 
t echn ica l ly  advanced c e l l  of t h i s  type 'is t h e  
L I A ~ / . L ~ c ~ - K c ~ / F ~ s  system, which involves t h e  
following o v e r a l l  electrochemical  reaction.:. 

2LiAl + FeS 2 LigS + Al + Fe ( 2). 

This  i s  a two-electron reac t ion  with a theore t -  
i c a l  s p e c i f i c  energy of 458 W-hr/kg and an  emf 

. o f 1 . 3 3  V. T h e r e a c t i o n a t t h e L i - A l e l e c t r o d e  
i s  r e l a t i v e l y  s t ra ight forward,  s i n c e  t h e  e lec-  
t rode  i s  operated over a range from about 10 t o  
48 a t .  % l i th ium,  which i s  wi th in  a two-phase 
f i e l d .  i n  t h e  Li-Al phase diagram (a + BLiAl) 
[16]. 'The r e s u l t  i s  t h a t  t h e  same two phases 
are ,always.present  wi th  a change only i n  t h e i r  

. r e l a t i v e  amounts, which r e s u l t s  i n  a c o n s t a n t '  
p o t e n t i a l  of the  L i -A1  e l ec t rode  (+ 294 mV vs 
L i  a t  427OC) [17]. Reaction 2 i s  a c t u a l l y  much 
more complex than shown; f o r  example an  i n t e r -  

. mediate compound, LiK6Feg4Sg6Cl, i s  formed by a 
. . . r eac t ion  with.KC1 i n  t h e  e l e c t r o l y t e  [16], and ; 

in termedia te  t e rna ry  compounds .such a s  LipFeS2 
have a l s o  been i d e n t i f i e d  [18]. F u r t h e r . s t u -  
d i e s  have shown t h a t  a s  many a s  s i x  e l e c t r o -  

: chemical r eac t ions  and four-chemical  r e a c t i o n s  
may be involved i n  the  charging-and discharging 
of t h e  FeS e lec t rode  1181. Overcharging of t h e  
FeS e lec t rode  appears t o  r e s u l t  i n  t h e  forma- 

. t i o n  of elemental s u l f u r ,  FeClg ( a s  KXFeC1,+g), 
and poss ib ly  FeSg [19]. .Overcharging' i s  .- 

avoided i n  t h e  opera t ion of L ~ A ~ / L ~ c ~ - K c ~ / F ~ s  
c e l l s  by l i m i t i n g  t h e  charge cutoff p o t e n t i a l  
t o  about 1.65 V, 

The L i - A l / ~ i c l - K ~ l / ~ e ~ ~  and L ~ - s ~ / L ~ c ~ - K c ~ / F ~ s ~  
. systems a r e  considered t o  have a long-range po- 

.' t e n t i a l  f o r  higher than can be 
achieved with FeS p o s i t i v e  e lec t rodes .  The 
o v e r a l l  r eac t ion  f o r  a L ~ - A ~ / L ~ c ~ - K C ~ / F ~ S ~  c e l l  
is: 



This is a four-electron reac t ion  w i t h . a  theo- 
r e t i c a l  s p e c i f i c  energy of about 650 W-hrlkg. 
The vo l t age  v s  capaci ty  curves show two vo l t age  
p la teaus  a t  1.67 and 1.33 V,  respect ively .  The 
L i - A l / L i ~ l - ~ C l / ~ e s ~  c e l l s  a r e  o f t e n  designed t o  
opera te  only on the  higher vol tage  p la teau ;  
these  a r e  ' r e fe r red  t o  a s  "upper-plateau" c e l l s .  
Reaction 3 a l s o  involves a number 'of s t e p s  and 
va r ious  in termedia tes  (genera l ly  t e rna ry  com- 
pounds of l i th ium,  i r o n  and s u l f u r ) ,  some of 
which have not  y e t  been f u l l y  i d e n t i f i e d .  The 
overcharge products of t h e  FeS2 e lec t rode  are 
s u l f u r  and FeC12 (KXFeClx+2) [19] ,' and t h e  . '.:. 
charge cutoff  p o t e n t i a l  of L ~ ' - A ~ / L ~ C ~ - K C ~ / F ~ S ~  
cells i s  usua l ly  set a t  2.1 V. Two major pro- 
blems t h a t  have slowed t h e  development of cells 
having FeS2 e lec t rodes  a r e  a l o s s  of cel l  capa- 
c i t y  on cycl ing-and t h e  lack of m e t a l l i c  mate- 
r i a l s . t h a t  a r e  compatible with . the  FeS2 a t  c e l l  
opera t ing temperatures. Both of these  problems 
are. under a c t i v e  inves t iga t ion .  

Although t h e  Li-Al e lec t rode  i s  used i n  t h e  more 
advanced l i th ium a l l o y / m e t a l . s u l f i d e  c e l l s  a t  
the  p r e s e n t . t i m e ,  the  Li-Si system is a l s o  under 
s e r i o u s  considera t ion and i s  being used i n  some 
experimental c e l l s .  From a t h e o r e t i c a l  stand- 
p o i n t ,  t h e  f u l l y  charged Li-Si e l ec t rode  corre-  
sponds t o  t h e  compound LigSi, and t h e  f u l l y  d i s -  
charged e lec t rode  i s  elemental s i l i c o n .  Four 
in termedia te  li thium-silicon. compounds appear 
t o  be formed a s  the  e 1 e c t r o d e . i ~  charged and 
di'scharged; however, t h e r e  i s  some disagreement 
a s  t o  t h e  exact  compositions of these  compounds 
[20,21]. I n  p r a c t i c e ,  t h e  composition range ' 

t h a t  can be used s a t i s f a c t o r i l y .  f a l l s  between 
, . 

LiqSi (charged) and LiSi  (discharged). Unlike 
the  Li-Al e lec t rode ,  t h e  Li-Si e l ec t rode  shows 
s e v e r a l . v o l t a g e  p la teaus  between about ,+45 and 
+330 mV Vs .L i  a s  a r e s u l t  of the  l i th ium-s i l i con  
in termedia te  compounds. The Li-Si e l ec t rode  
has  about twice the  capaci ty  of t h e  Li-Al.elec-  
t rode  (1.44 vs  0.70 A-hrlg), which gives  it an 
advantage i n  s p e c i f i c  energy and volumetric 
energy densi ty .  Several  p rac t i . ca l  problems 
associa ted  wi th  i ts use ,  however, have no t  been 
f u l l y  resolved.  One such problem i s  i t s  corro- 
s iveness  toward i r o n ,  n icke l  and chromium, 
which a r e  used f o r  c e l l  housings and e lec t rode  
cur ren t  c o l l e c t o r s .  Also, it i s  not  compatible 
wi th  BN e lec t rode  separa to r s ,  which.are  usua l ly  
used i n  c e l l s  of t h i s  type. Further develop- 
ment work w i l l  be required  t o  take advantage of 
the  favorable  t h e o r e t i c a l  c h a r a c t e r i s t i c s  of t h e  
Lf-Si e l ec t rode .  
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CELL DESIGN AND PERFORMANCE 

Up t o  about a year ago, near ly '  a l l  of the  c e l l s  
t h a t  had been b u i l t  and t e s t e d  were of a rectan- 
g u l a r ,  pr ismat ic  b i c e l l  design with a c e n t r a l  
p o s i t i v e  e lec t rode  and two fac ing  negative e lec-  
t rodes .  The more recent  c e l l s  a r e  of a mult i-  
p l a t e  design with two o r  more (usua l ly  three)  
p o s i t i v e  e lec t rodes  and fac ing negative elec-  
t rodes .  The two ou t s ide  e lec t rodes  i n  t h e  c e l l  
s t ack  a r e  normally of ha l f - , th ickness  and a r e  
grounded t o  t h e  c e l l  housing. The p o s i t i v e  
e lec t rodes  a r e  connected by a bus b a r  t o  t h e  
p o s i t i v e  terminal  t h a t  extends through the  top 
of t h e  c e l l  housing v i a  an i n s u l a t i n g  feed- 

' 

through. The mul t ip la te  c e l l  design permits  a 
. . s i g n i f i c a n t l y  higher s p e c i f i c  energy, s p e c i f i c  

- . power, and volumetric energy d e n s i t y . t h a n  a bi-  
c e l l  design wi th  t h e  same e lec t rode  loadings. 

.In a l l  of t h e  c e l l  designs,  porous separa to r  
s h e e t s  between t h e  e lec t rodes  serve  a s  e lec t ro -  
n i c  i n s u l a t o r s ,  while a t  t h e  same t ime.  providing 
a path  f o r  t h e  migrat ion of l i t h i u m ' i o n s  through 
t h e  LiC1-KC1 e l e c t r o l y t e  absorbed i n  t h e  sepa-. - 

" r a t o r  mate r i a l .  Most of t h e  .cell designs employ 
BN . f abr ic  o r  f e l t  a s  t h e  separa to r  mate r i a l ,  
although powder separa to r s  formed by .p ress ing  
o r  v i b r a t o r y  compaction of MgO, AlN,,Si3B4, 'or  
o the r  p a r t i c u l a t e  materials ,have been used suc- 
c e s s f u l l y  i n  experimental '  c e l l s  [22 ] .  Since 

. . t h e  negative and posi . t ive e lec t rodes  both con- . 

sist b a s i c a l l y  of p a r t i c l e  beds o r  porous s t ruc-  
t u r e s  of t h e  a c t i v e  m a t e r i a l s  (e.g., ~ f - A l * F e s ) ,  
m e t a l l i c  screens  a r e  usua l ly .used  t o  prevent t h e  
escape of p a r t i c u l a t e  m a t e r i a l  from t h e  elec-  

. . t rodes  i n t o  t h e  separa tor .  Meta l l i c  . cu r ren t  
co l l ec to r s ,  a r e  normally placed ' in.  t h e  e lec t rodes  
t o ' p r o v i d e  a low-resistance cur ren t  path f r o m ' a l l  

' . areas  of t h e  e lec t rode t o . t h e  terminal .  

The l i th ium/met i l  s u l f i d e  ' d e l l  can be assembled 
i n  a charged, uncharged, o r  p a r t i a l l y  charged 

. s t a t e .  To assemble a L ~ - A ~ / F ~ s  o r  L i - A l l ~ e S ~  
. c e l l  i n  the 'charged s t a t e ,  t h e  negative elec- 

' . t rodes  a r e  normaLly .cold- o r  hot-pressed from 
. . Li-Al powder (usual ly  .46-50 at .  % l i th ium) ,  

which may o r  may no t  be mixed wi th  some of t h e  
.LiCl-KC1 e lec t ro lyte 'powder .  The p o s i t i v e  elec-  
t rodes  are formed s i m i l a r l y  by cold- o r  hot- 
press ing FeS o r .  FeSg powder wi th  o r  without 
added e l e c t r o l y t e  powder. I n  t h e  case of t h e  
uncharged c e l l s ,  t h e  e lec t rode  plaque i s  pressed 
from a mixture of Li2S and i r o n  powder i n  the  
appropr ia te  proport ions;  t h e  negat ive  e lec t rode  
i n  t h i s  c a s e ' i s  an  aluminum s t r u c t u r e  (e.g., 
pressed w i r e ,  porous metal ,  s o l i d  p l a t e )  which 
i s  conver ted . to  t h e  Li-Al a l l o y  electrochemi- 
c a l l y  when the  c e l l  i s  charged. P a r t i a l l y  
charged c e l l s  can ,be  fabr ica ted  from mixtures 
of t h e  above mate r i a l s  i n  in termedia te  r a t i o s .  



Representat ive performance da ta  from severa l  
L i - k l / L i ~ l - ~ C l / F e S  c e l l s  a r e  presented i n  Table 
I [23] .  The da ta  a r e  mean va lues  from severa l  
c e l l s  of s i m i l a r  o r  i d e n t i c a l  design.  The I- 
s e r i e s  a r e  b i c e l l s  f a b r i c a t e d  by Eagle-Picher 
I n d u s t r i e s ,  Inc. The M-series a r e  b i c e l l s  fab- 
r i c a t e d  a t  Argonne; the  PW-series were a l s o  
fab r i ca ted  a t  Argonne, but  with MgO-powder ra-  
t h e r  than BN-fabric sepa ra to r s .  The EPMP se- 
ries a r e  mul t ip le-e lec t rode  ( t h r e e  p o s i t i v e ,  
four  negative)  c e l l s  f a b r i c a t e d  by Eagle-Picher. 
The improvement i n  s p e c i f i c  energy and s p e c i f i c  
power t h a t  r e s u l t s  from t h e  use  of mul t ip le-  
e l e c t r o d e  c e l l s  is  evident  from these  
r e s u l t s .  The energy e f f i c i e n c i e s  (W-hr d i s -  
charged/W-hr charged) f o r  c e l l s  of t h i s  type 
genera l ly  f a l l  i n  the  range of 80-85%. 

BATTERY GOALS AND STATUS 

I n  genera l ,  t h e  e l ec t r i c -veh ic le  b a t t e r y  must 
have a high s p e c i f i c  energy t o  permit an ade- 
quate  d r iv ing  range, and a high s p e c i f i c  power 
t o  mainta in  normal highway speeds and t o  pro- 
v i d e  s u f f i c i e n t  power f o r  passing and h i l l  
climbing [Z]. The volumetric  energy and power 
d e n s i t i e s  must a l s o  be high because of t h e  l i m -  
i t e d  space a v a i l a b l e  i n  most v e h i c l e s  f o r  in-  
s t a l l a t i o n  of the  b a t t e r y .  For la rge-sca le  
a p p l i c a t i o n  i n  e l e c t r i c  veh ic les ,  t h e  b a t t e r y  
w i l l  probably have t o  have. a maximum c o s t  of 
$40-50/k~-hr and a minimum . l i f e t i m e  of 1000 
equivalent  deep-discharge cycles .  The perfor-  
mance and l i f e t i m e  goals  f o r  t h e  electr ic-ve-  
h i c l e  b a t t e r y  a r e  presented i n  Table I1 [22]. , 

The progression :of performance goa l s  shown i n  
t h e  t a b l e  is  based on s p e c i f i c  improvements t h a t  
a r e  a n t i c i p a t e d  i n  t h e  c e l l  a n d . b a t t e r y  designs 
as t h e  technology i s  developed. 

A s i g n i f i c a n t  event i n  the  development of the  
e l ec t r i c -veh ic le  b a t t e r y  has been the  i n i t i a t i o n  
of a con t rac t  with Eagle-Picher I n d u s t r i e s ,  Inc.  
f o r  t h e  development, design,  and f a b r i c a t i o n  of,  
a 40-kW-hr b a t t e r y ,  designated Mark . I A ,  which i s  
scheduled f o r  an in-vehicle t e s t  i n  e a r l y  t o  
mid-1979. The Mark I A  b a t t e r y  w i l l  c o n s i s t  o f .  
m u l t i p l a t e  L i - k l / ~ e ~  c e l l s ,  and w i l l  be t e s t e d  
p r imar i ly  t o  evaluate  t h e  t echn ica l  f e a s i b i l i t y  
of t h e  l i th iumlmeta l  s u l f i d e  system f o r  use  i n  
e l e c t r i c  veh ic les .  The Mark I1 b a t t e r y  w i l l  
a l s o  c o n s i s t  of m u l t i p l a t e  ~ i - A l / F e s  c e l l s ,  bu t  
w i l l  have somewhat higher performance than Mark 
I A .  The primary purpose of the  Mark I1 b a t t e r y  
i s  t o  develop mate r i a l s  and f a b r i c a t i o n  methods 
t h a t  have a low c o s t  i n  mass production. The 
Mark I11 program, which i s  aimed a t  a high-per- 
formance b a t t e r y  f o r  passenger automobiles, i s  
expected t o  begin i n  1981. The type of c e l l s  
f o r  t h e  Mark I11 b a t t e r y  has not  y e t  been 



determined, but they will probably be multiplate 
Li-All~eS~ cells. 

The goals for the stationary energy-storage bat- 
tery are listed in Table I11 [3,4]. The speci- 
fic-energy and specific-power requirements for 
this application are less demanding than those 
for the electric-vehicle battery, but low cost 
(about $40-50lkW-hr) and long lifetime are es- 
sential. Most of the recent effort on the sta- . 
tionary energy-storage battery has involved 
conceptual design studies of a 100-MW-hr energy- 
storage plant. These studies, which were con- 
ducted as a cooperative effort between. the 
Energy Systqs Group of Rockwell International 
and A N . ,  have provided. a general basis for de- 
sign of a multiplate LiSiIFeS cell with a capa- 
city of 2.5 kW-hr. ' 

1 '. t:. . ,. !. ,:: .. ; I.:' CONCLUSIONS 
. .  . . 

At the present time, performance data have not 
yet been obtained on full-scale batteries,using 
lithiumlmetal sulfide cells. Information from 
tests of individual cells and small groups of 
cells has. indicated that the batteries .should 
meet the program goals. The -first full-scale 
battery to be evaluated will be the Mark IA 
electric-vehicle battery, which is scheduled 
for laboratory and in-vehscle testing in 1979. 

A major objective of this program is to transfer 
the technology to industrial. firms as it is de- . 

. . veloped, with the ultimate goal of competitive, 
. . self-sustaining industry for.the production of . . 

lithiumlmetal sulfide batteries. This techno- 
. . logy transfer.is implemented primarily by the 

use of industria1:participants and the subcon- 
tracting of development wark to industrial ' . : : I  
f inns. 

. . The first commercial production of 'batteries 
will probably be for limited (low volume, high 
cost) markets such as postal vans, buses, mining 
vehicles, and submarines [2] .  In these near- 

. .  ; term (1982-1990) markets, the relatively .high 
price of the batteries should..be offset by their 
favorable performance characteristics. In the 
longer range, it is anticipated that batteries 
suitable for passenger automobiles will be de- 
veloped, which could .cons'titute a very large 

; . . .market. In the case.of stationary-energy- 
storage batteries, it is more difficult to 
forecast future markets;'however, planned tests 
of these batteries in the BEST facility should 
provide information useful for marketability, 
as well as technical feasibility evaluations. 
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Tab1 e I .  Performance Data on Li-A1/FeS Cells 
- ~~ 

Speci f i  c Speci f i  c Energy 
Cell No. of Energy,a ~ower ,b  Efficiency. 
Type Cells W-hr/kg . W/kg. % CycT es 

PW, 3 41 3 0 .. 84 ' . 328 

EPMP 10 99 . 54C 8 0 275 .- 
a ~ t  4-hr discharge r a t e .  

I 

I . b~easured as 15-sec powerpbl se  a t  50% s t a t e  of charge. 

C ~ p e c i f i c  power of EPMP c e l l s  subsequently increased t o  
95 \ /kg by design changes to  decrease resistance. 



. . 

Tab1 e 11. Program ~ o a l  s fo r  L i  t h i  um/Metal 
Sul f i de  Elect r i  c-Vehicl e Bat ter ies  

. . 

Mark IA ' Mark I1 Mark I11 Range 

Specif ic  ~ n e r g y , ~  W-hr/kg 
Cell (average) 80 125 160 200 
Battery 60 100 130 . ' I 5 5  . 

Energy Densi t y  W-hr/L 
., Cell (average) ' . 320 400 
Battery 100 200 . 

Peak, Power, W/kg 
Cell (average) 
Battery 

Heat Loss through Jacket ,  W 400 950 , 

Life.time . , 

b Deep Discharges 200 500 1000 . 1000 
Equivalent Distance, km 20',000 . ' 68,000 1.50,000 200,000 

. . 

,Targe.t Dates 
1983 Battery Test 1979 ' . 1981 - 

Pi lo t  Manufacture - 1983 . I985  1990 . 

a ~ i . l c u l a t e d  a t  the  4-hr discharge r a t e .  . 

b ~ t i l i z a t i o n  of  mdre than 50% of the  theoret ical  capacity every 
10 cycles .  

. .. 



Tab1 e 111. Program Goals f o r  LithiumfMetal Su l f ide  
S t a t i  onary Energy-Storage Bat ter ies 

 BEST^ Demonstration 
Goal 1983 1987 . 

Battery Performance 
Energy Output, kW-hr 5,900 1 00,000 
Peak Power, kW 1,500 25,000 
SustaS ned Power, kW 1,000 10,000 
Cycle L i f e  500-1,000 3,000 
Discharge Time, h r  5 5-1 0 
Charge Time, h r  10 10  

Cel l  Performance 
Specif ic Energy, W-hr/kg 60-80 60-1 50 
Specif ic Power, W/kg 12-20 12-20 

Cel l  Cost, $TkW-hr 30-35b 25-3ob 

a ~ a t t e r y  Energy Storage Test Faci 1 i ty. This f a c i  1 i ty , 
which i s  being constructed under j o l n t  sponsorship by the  
U.S. Department o f  Energy, t he  E lec t r i c  Power Research 
I n s t i t u t e ,  and the  Public Service Co. o f  New Jersey w i l l  
be used t o  t e s t  various types o f  ba t te r ies  as load- 
l e v e l i n g  devices on an e l e c t r i c  u t i l i t y  system. 

b ~ r o j e c t e d  cost  f o r  a production r a t e  o f  2000 MW-hr/y i n  
1979 do1 1 ars . 




