

Received by OSTI

MAR 29 1991

NUREG/CR-5656
PNL-7510

EXTRAN: A Computer Code for Estimating Concentrations of Toxic Substances at Control Room Air Intakes

Prepared by
J. V. Ramsdell

Pacific Northwest Laboratory
Operated by
Battelle Memorial Institute

Prepared for
U.S. Nuclear Regulatory Commission

**DO NOT MICROFILM
COVER**

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555
2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free, to the extent of supply, upon written request to the Office of Information Resources Management, Distribution Section, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

DISCLAIMER NOTICE

DO NOT MICROFILM
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

EXTRAN: A Computer Code for Estimating Concentrations of Toxic Substances at Control Room Air Intakes

Manuscript Completed: February 1991
Date Published: March 1991

Prepared by
J. V. Ramsdell

Pacific Northwest Laboratory
Richland, WA 99352

Prepared for
Division of Safety Issue Resolution
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555
NRC FIN B2929

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ABSTRACT

This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions.

The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files.

EXECUTIVE SUMMARY

The U.S. Nuclear Regulatory Commission (NRC) staff assesses the potential effects of accidental releases of radioactive material and toxic and hazardous substances on habitability of nuclear facility control rooms. This report, prepared by the Pacific Northwest Laboratory (PNL), provides the NRC staff with improved information and a new tool for use in those assessments. It proposes a new procedure for estimating the concentrations of gases or volatile liquids at nuclear facility control room air intakes that might result from accidental releases. The procedure is incorporated in a computer code called EXTRAN. A second report (Owczarski 1990) describes a procedure for estimating the transport and deposition of material within buildings.

The PNL developed EXTRAN after reviewing procedures used by the NRC for estimating atmospheric transport and diffusion for control room habitability assessments (Murphy and Campe 1974). The review showed that those procedures do not predict variations in the concentrations in building wakes associated with changes in meteorological conditions (Ramsdell 1988). New building-wake diffusion algorithms (Ramsdell 1988, 1990a, 1990b) predict more than half the observed variability. The EXTRAN code combines procedures for estimating the amount of airborne material, a Gaussian puff model, and the most recent of the building-wake diffusion coefficient algorithms.

Given hazardous material in a tank, users postulate a release scenario, the environmental conditions, and the physical and chemical characteristics of the material. From this information, EXTRAN computes a concentration time history at the control room air intake. Specifically, it estimates concentrations from the time the substance first arrives at the air intake until actions can be taken to protect control room occupants.

EXTRAN is a modular computer code that runs on personal computers using the MSDOS operating system. It is written in FORTRAN-77 and uses a math coprocessor, if present. It does not require a coprocessor. Code output may be directed to a printer or disk files. The "Good Practices Standard" of the PNL Quality Assurance program governed development of the EXTRAN computer code. Early versions of the code were tested by the NRC staff. This version incorporates revisions based on their comments and suggestions.

The three major components of the report are found in Chapters 2 through 4. Chapter 2 is a user's guide to the EXTRAN code. Chapter 3 describes the technical bases for the EXTRAN code, and Chapter 4 describes the code.

ACKNOWLEDGMENTS

This report was prepared for the Division of Reactor Accident Analysis, Office of Nuclear Regulatory Research, of the U.S. Nuclear Regulatory Commission. The NRC Project Manager was Charles Ferrell. Charles Ferrell and other members of the NRC staff contributed significantly to the development of the EXTRAN computer code. They tested and suggested revisions to various versions of the code. Their assistance is appreciated.

CONTENTS

ABSTRACT	iii
EXECUTIVE SUMMARY	v
ACKNOWLEDGMENTS	vii
1.0 INTRODUCTION	1.1
2.0 USER'S GUIDE	2.1
2.1 OUTPUT OPTIONS	2.1
2.1.1 Concentration Units	2.3
2.1.2 Primary Output	2.3
2.1.3 Concentration Chronology	2.7
2.1.4 Mass and Energy Balance	2.9
2.2 DATA ENTRY	2.12
2.2.1 Release Scenario	2.12
2.2.2 Environmental Conditions	2.15
2.2.3 Effluent Characteristics	2.18
2.3 RERUN OPTION	2.21
2.4 OUTPUT INTERPRETATION	2.21
2.4.1 Model Uncertainty	2.22
2.4.2 Dense Gases	2.23
2.5 EXAMPLES	2.24
3.0 EXTRAN TECHNICAL BASIS	3.1
3.1 SOURCE TERM MODELS	3.1
3.2 MASS BALANCE FOR LIQUEFIED GASES AND VOLATILE LIQUIDS	3.2
3.2.1 Flashing Mass	3.2
3.2.2 Liquid Pool	3.2
3.2.3 Evaporation	3.3

3.3 ENERGY BUDGET	3.5
3.3.1 Solar Radiation	3.5
3.3.2 Long-Wave Radiation	3.6
3.3.3 Air Convection	3.7
3.3.4 Ground Conduction	3.7
3.3.5 Latent Heat Transfer	3.8
3.4 TRANSPORT AND DIFFUSION	3.9
3.4.1 Puff Model	3.9
3.4.2 Source Term	3.11
3.4.3 Diffusion Coefficients	3.11
3.4.4 Transport	3.12
4.0 THE EXTRAN COMPUTER CODE	4.1
4.1 PROGRAM ELEMENTS	4.1
4.2 PROGRAM ORGANIZATION	4.3
5.0 REFERENCES	5.1
APPENDIX A - EXAMPLE INPUT AND OUTPUT	A.1
APPENDIX B - CODE LISTINGS	B.1

FIGURES

2.1	EXTRAN Version 1.2 Work Sheet	2.2
2.2	EXTRAN Primary Output	2.5
2.3	EXTRAN Concentration Chronology Plot	2.8
2.4	EXTRAN Concentration Chronology File Listing	2.9
2.5	EXTRAN Mass and Energy Balance File Listing (Catastrophic Tank Failure)	2.10
2.6	EXTRAN Mass and Energy Balance File Listing (Tank Leak)	2.11
2.7	Estimated Probability of Exceeding the Predicted 2-min Concentration	2.23
4.1	EXTRAN Flow Chart	4.4

TABLES

2.1	Maximum Noon Solar Radiation Flux	2.17
2.2	Average Solar Radiation in Watts/m ² and Cloud Cover in Tents at the Hanford Meteorology Station	2.18
2.3	The EXTRAN Chemical Library	2.19
4.1	The EXTRAN Program Element Calling Sequence	4.2
4.2	Interrelationship Between EXTRAN Program Elements and INCLUDE files	4.3

1.0 INTRODUCTION

The U.S. Nuclear Regulatory Commission (NRC) staff assesses the potential effects of accidental releases of radioactive and toxic substances on the habitability of nuclear facility control rooms. This report proposes a new procedure for estimating the concentrations at nuclear facility control room air intakes. A computer code called EXTRAN presents the procedure in an easy-to-use form. EXTRAN runs on personal computers using the MSDOS operating system.

The Pacific Northwest Laboratory developed EXTRAN after reviewing procedures used by the NRC for estimating atmospheric transport and diffusion for control room habitability assessments (Murphy and Campe 1974). The review showed that those procedures do not predict variations in the concentrations in building wakes associated with changes in meteorological conditions (Ramsdell 1988). New building-wake diffusion algorithms (Ramsdell 1988, 1990a, 1990b) predict more than half the observed variability. The EXTRAN code combines procedures for estimating the amount of airborne material, a Gaussian puff model, and the most recent of the building-wake diffusion coefficient algorithms.

Given hazardous material in a tank, users postulate a release scenario, the environmental conditions, and the physical and chemical characteristics of the material. From this information, EXTRAN computes a concentration time history at the control room air intake. Specifically, it estimates concentrations from the time the substance first arrives at the air intake until actions can be taken to protect control room occupants.

This report has three main parts. Chapter 2 is a user's guide to the EXTRAN code. Chapter 3 describes the technical bases for the EXTRAN code, and Chapter 4 describes the code.

The user's guide discusses the code options and the required input. Using the code options, users may send the results to a printer or to disk files for retention. Following selection of the output options, input occurs in three stages. The first stage establishes the physical relationship between the tank and air intake. The second stage sets the environmental conditions, and the third stage establishes the physical characteristics of the material to be released. Each stage ends by listing the input and providing an opportunity to change it.

Chapter 3 presents the equations EXTRAN uses to estimate the transfer of material from the tank to the atmosphere. This transfer may occur in one step, as in release of a gas. Alternatively, it may involve the formation and evaporation of a liquid pool. EXTRAN then calculates transport and diffusion of the material in the atmosphere using a puff dispersion model. The puff model includes a new algorithm (Ramsdell 1990a,b) for estimating diffusion in building wakes.

EXTRAN is a modular computer code. Chapter 4 discusses the organization of the code and describes the code modules. The code is written in FORTRAN-77. The compiled version of the code uses a math coprocessor, if present, but it doesn't require one. Code output may be directed to a printer or disk files.

EXTRAN has several features that allow users to check their work. The code checks for input errors. These checks include type and range checks where appropriate. EXTRAN echoes entries that appear to be correct. As users complete each input stage, EXTRAN lists the entries for review and possible modification. All computer output contains a title entered by the user and the program execution date and time. The output includes a plot of the concentration at the intake and an output file that contains mass and energy balances for the source.

The "Good Practices Standard" of the PNL Quality Assurance program governed development of the EXTRAN computer code. The NRC staff tested and commented on early versions of the code. This version of the code incorporates revisions based on their comments and suggestions.

2.0 USER'S GUIDE

The physical setting assumed in the EXTRAN code is simple. It is a tank containing a hazardous substance that is directly upwind of a control room air intake. The hazardous substance may be gas, a liquefied gas, a volatile liquid, or fine particulate material suspended in a gas. As the simulation begins, the tank fails, releasing the toxic material to the environment. When you run EXTRAN, you will be asked to describe the tank failure, the physical relationship between the tank and the intake, the environmental conditions, and the physical characteristics of the material in the tank.

The work sheet shown in Figure 2.1 will help you in using the EXTRAN code. It lists the model options and input. You can record the information that will be needed by the program in the space provided on the work sheet. If you do, you will have organized the information in the order in which the program requests it.

When you start EXTRAN, the first thing that you will see is a screen containing information about the program. This information includes the program title and version, the NRC organization sponsoring the work, the date of the version, and names of contacts for questions about the code. The program pauses at this point to allow you time to read the information.

To continue program execution, press the space bar or the ENTER (RETURN) key. EXTRAN will request a program title. This is your opportunity to enter a short description of the problem that you are modeling. The description is a single line of text that may contain up to 70 characters and blanks. Whatever you enter will appear on all EXTRAN output. If you choose, the title may be blank.

When you press the ENTER key after entering the title, EXTRAN asks you to select from among the options available for output of the results. You will then select a release type and enter input data corresponding to the release type. The four columns on the left side of the work sheet show the status of each input item--required (R), optional (O), or not used (N). Required items must be entered. A zero may be entered or the ENTER key may be pressed for optional items, if no better information is available. You will not see prompts for the information marked as not used.

The remainder of the User's Guide describes the output options and the data to be entered.

2.1 OUTPUT OPTIONS

There are three types of output from the EXTRAN computer code. The first type is a listing of the input data followed by a summary of the predicted concentrations. This is the primary output of the program. The other two types of output provide more detailed information. The second type is a chronology of the predicted concentrations at the control room air intake. It may be used as input to codes that estimate concentrations within the control

Run Title: _____

Output Options: Concentration Units g/m³ ppm mCi/m³
Primary Output Printer File
Plot Printer File
Conc. Chronology Printer File
Mass & Energy Bal. Printer File
Release Type: (1) Liquid Tank Burst _____
(2) Liquid Tank Leak _____
(3) Gas Tank Burst _____
(4) Gas Tank Leak _____

Release Type

1	2	3	4
---	---	---	---

R	R	R	R	Initial Mass (kg or Ci)	_____
N	R	N	R	Release Rate (kg/sec or Ci/sec)	_____
O	O	O	O	Release Height (m)	_____
R	R	R	R	Storage Temp. (°C)	_____
O	O	N	N	Max. Pool Radius (m)	_____
R	R	R	R	Distance to Intake (m)	_____
O	O	O	O	Intake Height (m)	_____
O	O	O	O	Building Area (m ²)	_____
N	N	N	O	Vent Flow (m ³ /sec)	_____

R	R	R	R	Wind Speed (m/s)	_____	_____	_____
R	R	R	R	Atmospheric Stability	_____	_____	_____
R	R	R	R	Air Temperature (°C)	_____	_____	_____
R	R	R	R	Atm. Pressure (mm Hg)	_____	_____	_____
R	R	N	N	Solar Radiation (w/m ²)	_____	_____	_____
R	R	N	N	Cloud Cover (tenths)	_____	_____	_____
R	R	N	N	Ground Temperature (°C)	_____	_____	_____

O	O	O	O	Chemical Name	_____
R	R	R	R	Molecular Wt. (g/mole)	_____
R	R	N	N	Boiling Point (°C)	_____
R	R	N	N	Liq. Heat Cap. (j/g-°C)	_____
R	R	N	N	Heat of Vap. (j/g)	_____
R	R	N	N	Spec. Gravity	_____
O	O	N	N	Mol. Diff. Coef. (cm ² /sec)	_____

Output File Names:

Primary Output EXPR _____. _____. EXPR _____. _____. EXPR _____. _____. _____

Conc. Chronology EXCR _____. _____. EXCR _____. _____. EXCR _____. _____. _____

Mass & Energy Bal. EXMB _____. _____. EXMB _____. _____. EXMB _____. _____. _____

Date: _____

Time: _____

FIGURE 2.1. EXTRAN Version 1.2 Work Sheet

room. The third type of output contains mass balances for the source and the pool and an energy budget for the pool. It provides details that may be used to check EXTRAN computations for liquid releases.

2.1.1 Concentration Units

Prior to selecting from among the output types, you will be asked to select concentration units for the output. EXTRAN may be used to estimate concentrations of either toxic or radioactive materials. It includes three sets of units for expressing concentrations. The default set of units is grams per cubic meter. It may not be convenient to compare results expressed in these units with standards or to use the results as input to dose models. Therefore, you have the option of two alternate methods of expressing concentrations. EXTRAN can compute concentrations of toxic materials in parts per million, and it can compute concentrations of radioactive materials in millicuries per cubic meter.

You will be asked if you want the concentrations expressed as parts per million. If you respond with a Y or y, output will be in parts per million. If you respond with an N or n, you will be asked if you want concentrations in millicuries per cubic meter. If you respond with a Y or y, output will be in millicuries per cubic meter. Otherwise, the output will be in grams per cubic meter. In any case, the remaining program prompts will reflect your choice of output type.

2.1.2 Primary Output

EXTRAN's primary output is a summary that begins with a header. The header contains the title given to the model run as a part of the input and the date and time of the EXTRAN run. A complete listing of the input data follows the heading. Computed model parameters follow the heading. Then in the first 2 min come the average concentration and exposure (time-integrated concentration). Finally, EXTRAN lists the time from plume arrival to the maximum concentration and the maximum concentration. The primary output ends with a listing of the names of files containing the model results.

The input data lists are in sections that correspond to the types of information required by the model. The first block of data describes the SCENARIO, the second the ENVIRONMENTAL CONDITIONS, and the third the EFFLUENT CHARACTERISTICS. Data in these lists should be identical with the data you enter. The next section discusses these data in detail.

The MODEL PARAMETERS section of the summary lists information computed from the input data. Parameters in the list include the interval between puffs, the time step used in the concentration and exposure computations, the time delay between the release and the arrival of the substance at the air intake, and the concentration used as an indicator of the arrival of the plume at the intake. It also contains a concentration conversion factor if you chose concentration units of grams per cubic meter or parts per million.

EXTRAN simulates plumes with a series of puffs. The numerical accuracy of the simulation is a function of the spacing between puffs. If the puffs

are too far apart or the time step is too large, there can be large differences between concentrations estimated with the puff model and those estimated with plume models. EXTRAN uses the criteria discussed in Ramsdell et al. (1983) for determining appropriate spacing between puffs and sampling intervals. The minimum interval between puffs is 1 sec. This interval increases with increasing distance between the release point and the air intake. The maximum interval is 10 sec if the distance to the intake is less than 1000 m and 30 sec if the distance is 1000 m or greater. The first item in the list of model parameters is the puff release interval selected by the model.

The next item in the list is the concentration computation interval. It is called the time step. EXTRAN generally computes concentrations at twice the puff release frequency. But, if it releases puffs at 1-sec intervals, it will use 1-sec intervals in concentration calculations.

Except in unusual circumstances there will be a delay between the accidental release of toxic substances and the arrival of the substance at the air intake. The time delay listed in the summary output is an estimate of this interval. After the data input is complete, EXTRAN estimates the magnitude of the maximum concentration in the first puff to reach the intake. The intake concentration threshold is four orders of magnitude lower than this maximum. The time delay is the elapsed time between the release and the time the concentration at the intake exceeds the threshold. It also serves as time zero for the concentration chronologies.

The threshold concentration is just below the time delay in the listing in the primary output. It is generally lower than the first concentration listed in the chronology because there is a large concentration gradient on the leading edge of the first puff. In addition, overlapping puffs overlap give concentrations that are higher than the concentration computed for a single puff.

The last section of the summary output gives results of the computations for the 2 min immediately following the arrival of the plume. These 2 min are an estimated response time for taking protective actions in the control room. The first item in the list is the average concentration at the air intake during this period. The concentration may be in grams per cubic meter, parts per million, or millicuries per cubic meter. The exposure, which follows the average concentration, is the product of the average concentration and time. In this case, the time is 2 min. The last two lines give the time of occurrence of the maximum concentration and the maximum concentration in the first 2-min period. The time of occurrence of the maximum is seconds after the arrival of the plume at the intake. The scenario determines the time of the maximum concentration. If the scenario involves a catastrophic failure of a liquefied gas tank and a short distance, the maximum will occur within a few seconds after the arrival of the plume. If the scenario is a tank leak or the distance between the release point and intake is large, the maximum is likely to occur after the 2-min period.

You may choose the disposition of the primary output, but you can't choose to bypass it. The primary output may be written to a printer as the

code executes. It may be written to a file, or it may be printed and written to a file. Figure 2.2 shows an example of output written to a printer.

If you choose to have EXTRAN create a file with the primary output, the file will be written to the active disk drive. If you are running the program from a floppy disk, the file will be written to that disk. EXTRAN generates file names as it runs. Names for the primary output have the form EXPRhhmm.nnn. The hh and mm give the hour and minute of the day of the execution of EXTRAN. The nnn is a three digit number that shows the set of environmental conditions for the program execution beginning at hhmm. For example, consider the file name EXPR1118.001. The EXPR shows that the file contains the primary output from EXTRAN. The 1118 shows that the EXTRAN run started at 11:18 am, and the .001 shows that the output is for the first set of environmental conditions submitted during the run. If you choose to rerun EXTRAN with different environmental conditions without quitting, the primary output for the second set of conditions would have a file name EXPR1118.002.

Program Title: EXTRAN VERSION 1.2

Developed For: U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Division of Reactor Accident Analysis

Date: October 1990

Code Documentation:

EXTRAN: A Computer Code For Estimating
Concentrations Of Toxic Substances At
Control Room Air Intakes
NUREG/CR-5656

The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such use, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

FIGURE 2.2. EXTRAN Primary Output

Example 1 -- EXTRAN Version 1.2

RUN DATE = 10/11/1990 RUN TIME = 15:34:24

SCENARIO:

Release Type	=	Liquid Tank Burst
Initial Mass	(kg)	= 1000.
Release Height	(m)	= .0
Storage Temperature	(C)	= 20.0
Maximum Pool Radius	(m)	= 10.0
Intake Distance	(m)	= 250.
Intake Height	(m)	= 25.0
Building Area	(m**2)	= 100.

ENVIRONMENTAL CONDITIONS:

Wind Speed	(m/sec)	= 3.0
Atmospheric Stability Class	=	4
Air Temperature	(C)	= 20.0
Atmospheric Pressure	(mm Hg)	= 760.0
Solar Radiation	(watts/m**2)	= 650.0
Cloud Cover	(tenths)	= 2
Ground Temperature	(C)	= 25.0

EFFLUENT CHARACTERISTICS:

Material Released	=	CHLORINE
Molecular Weight	(gm/mole)	= 70.9
Initial Boiling Point	(C)	= -34.1
Heat Capacity	(j/gm-C)	= .946
Heat of Vapor.	(j/gm)	= 288.0
Specific Gravity	=	1.570
Diffusion Coef.	(cm**2/sec)	= .079

MODEL PARAMETERS:

Puff Release Interval	(sec)	= 10
Time Step	(sec)	= 5
Delay Between Release and Intake	(sec)	= 50
Threshold Concentration	(g/m**3)	= 7.08E-05
To convert g/m**3 to ppm, multiply by		3.39E+02

RESULTS:

Average Concentration During First Two Minutes		
After Arrival of Plume	(g/m**3)	= 1.93E-01
Exposure Two Minutes After Arrival	(g-sec/m**3)	= 2.41E+01
Time From Plume Arrival to Max. Conc.	(sec)	= 30.
Max. Conc. in Two Minutes After Arrival	(g/m**3)	= 6.12E-01

ADDITIONAL OUTPUT FILES:

EXCR1534.001
EXMB1534.001

FIGURE 2.2. (contd)

2.1.3 Concentration Chronology

The primary output lists the time required to travel from the tank to the intake, the threshold concentration that marks the arrival of the plume, and the average and maximum concentrations during the first 2 min after plume arrival. It doesn't provide the details of the concentration variation following plume arrival at the air intake. EXTRAN generates a concentration chronology that provides this information. The chronology is the second type of output generated by EXTRAN.

EXTRAN has three ways to present the concentration chronology. The chronology may be printed; it may be written to a file, and it may be plotted by the printer. The plot provides a quick indication of the concentrations, while the other two forms provide numerical values.

Figure 2.3 shows a typical concentration plot. Elapsed time, on the horizontal axis, starts at zero with the arrival of the plume at the intake. The left axis gives logarithms (base 10) of the instantaneous and average concentrations. The symbol used for the instantaneous concentration is a "C," and an "A" is used for the average concentration. The right axis gives logarithms of the exposure (time-integrated concentration). An "E" is the symbol for exposures. Occasionally, when the curves cross, more than one symbol would occupy the same location on the graph. Only one symbol is plotted in these cases. The order of precedence for plotting symbols is instantaneous concentration, exposure, then average concentration.

The numerical values along the left and right axes are logarithms, but they are also powers of 10. For example, a logarithm of 3 is equivalent to 10^3 , and a logarithm of 3.5 is equivalent to a concentration of 3.2×10^3 . In contrast, a logarithm of -3.5 is equivalent to a concentration of 3.2×10^{-4} .

The printer listing and file output provide the details of the chronology. They contain the instantaneous concentration, exposure, and average (mean) concentration at the intake each time step after the concentration exceeds the threshold. They also list the total number of number of puffs since the beginning of the release. The times and concentrations in these listings are more precise than those estimated from the graph. The length of the chronology is a function of the distance between release point and intake, wind speed and atmospheric stability. If the release occurs in a building wake, the length is also a function of the building area. The listing may extend for as many as three pages. Figure 2.4 shows part of a listing as an example of the printer and file output.

If you choose to have EXTRAN create a chronology file, the file will be written to the active disk drive. If you are running the program from a floppy disk, the file will be written to that disk. Names for chronology files have the form EXCRhhmm.nnn, where hh and mm are the hour and minute of the day that the program started, and nnn is a three digit number that shows the set of environmental conditions. The numerical portions of the chronology files have the same values as the corresponding parts of the primary output file. For example, if the primary output file has the name EXPR1435.001, the corresponding chronology file will have the name EXCR1435.001.

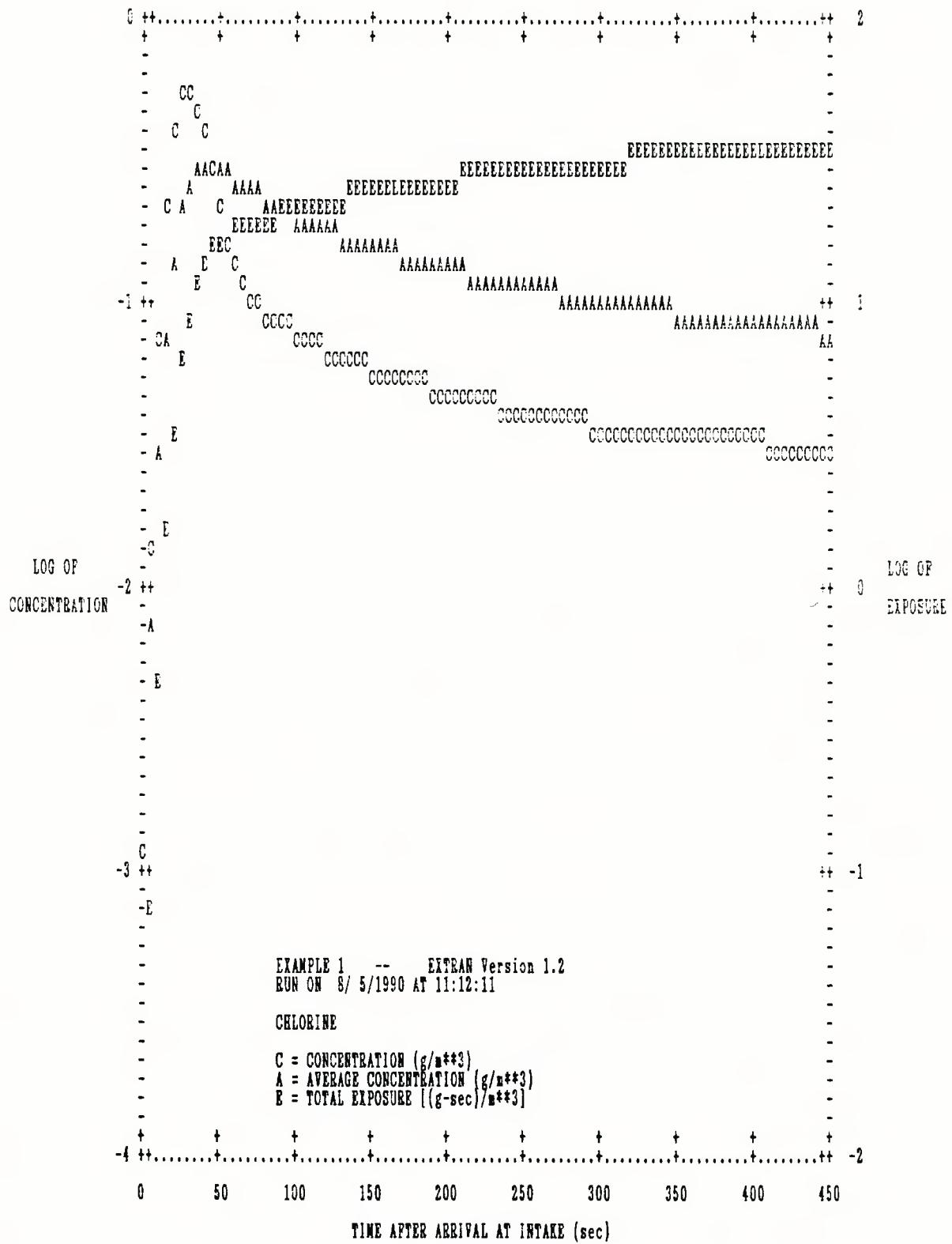


FIGURE 2.3. EXTRAN Concentration Chronology Plot

Example 1 -- EXTRAN Version 1.2
Run on 10/11/1990 at 15:34:24

TIME (sec)	CONCENTRATION (g/m**3)	EXPOSURE (g-sec/m**3)	MEAN CONC. (g/m**3)	NUM OF PUFFS
0	1.27E-03	6.35E-03	1.27E-03	7
5	1.50E-02	8.13E-02	8.13E-03	7
10	7.92E-02	4.77E-01	3.18E-02	8
15	2.32E-01	1.64E+00	8.18E-02	8
20	4.35E-01	3.81E+00	1.52E-01	9
25	5.85E-01	6.74E+00	2.25E-01	9
30	6.12E-01	9.80E+00	2.80E-01	10
35	5.32E-01	1.25E+01	3.11E-01	10
40	4.11E-01	1.45E+01	3.22E-01	11
45	2.99E-01	1.60E+01	3.20E-01	11
50	2.19E-01	1.71E+01	3.11E-01	12
55	1.69E-01	1.80E+01	2.99E-01	12

FIGURE 2.4. EXTRAN Concentration Chronology File Listing

2.1.4 Mass and Energy Balance

The third type of output generated by EXTRAN contains a mass and energy balance for the source at each puff release time. This information is useful in understanding the changes in the physical scenario that take place during releases of liquids. It isn't particularly useful for gaseous releases.

If you choose to have EXTRAN create a mass and energy balance file, the file will be written to the active disk drive. If you are running the program from a floppy disk, the file will be written to that disk. Names for mass and energy balance files have the form EXMBhhmm.nnn, where hh and mm are the hour and minute of the day that the program started, and nnn is a three digit number that shows the set of environmental conditions. The numerical values in the file name are the same as those in the primary output file name. For example, if the primary output file has the name EXPR1435.001, the corresponding mass and energy balance file will have the name EXMB1435.001.

Figures 2.5 and 2.6 show portions of mass and energy balance files. The example in Figure 2.5 is for a catastrophic failure of a 1000-kg liquid chlorine tank, and the example in Figure 2.6 is for a leak from a tank with 3000 kg of carbon tetrachloride. Each mass and energy balance file starts with a heading. The heading includes the run title, the date and time EXTRAN started, and a data format description. Each time EXTRAN releases a puff, it writes an entry to the file. After each 10 entries, it repeats the heading.

There are four lines in each entry in the mass and energy balance file. The first line gives the time after the beginning of the release and the total number of puffs released. The second line contains a mass balance for the

Example 1 -- EXTRAN Version 1.2
Run on 10/11/1990 at 15:34:24

DATA FORMAT:

MASS BALANCE: TANK, CURRENT RELEASE, POOL, FLASHED, EVAPORATED

POOL STATUS: VOLUME, RADIUS, AREA, DEPTH, TEMPERATURE

ENERGY BUDGET: NET SW, NET LW, ATM CONV, GRND COND, NET FLUX

TIME SINCE RELEASE =	0	TOTAL NUMBER OF PUFFS RELEASED =				2
MASS BALANCE	.00	1000.00	785.73	177.70	36.57	
POOL STATUS	.52	4.08	52.38	.01	-34.10	
ENERGY BUDGET	585.00	133.89	699.67	18689.06	20107.62	
TIME SINCE RELEASE =	10	TOTAL NUMBER OF PUFFS RELEASED =				3
MASS BALANCE	.00	.00	760.30	.00	25.43	
POOL STATUS	.50	3.99	50.05	.01	-34.10	
ENERGY BUDGET	585.00	133.89	699.67	13215.16	14633.72	
TIME SINCE RELEASE =	20	TOTAL NUMBER OF PUFFS RELEASED =				4
MASS BALANCE	.00	.00	739.77	.00	20.53	
POOL STATUS	.48	3.93	48.43	.01	-34.10	
ENERGY BUDGET	585.00	133.89	699.67	10790.13	12208.69	
TIME SINCE RELEASE =	30	TOTAL NUMBER OF PUFFS RELEASED =				5
MASS BALANCE	.00	.00	722.16	.00	17.61	
POOL STATUS	.47	3.87	47.12	.01	-34.10	
ENERGY BUDGET	585.00	133.89	699.67	9344.53	10763.09	

FIGURE 2.5. EXTRAN Mass and Energy Balance File Listing
(Catastrophic Tank Failure)

source and puffs. The third line describes the pool status, and the last line gives the energy budget for the pool.

There are five elements listed in the mass balance line. All entries are masses in kilograms. The first element is the mass remaining in the tank. If the scenario involves a catastrophic tank failure, the mass remaining in the tank should be zero. The second element is the mass released from the tank in the current interval. The third element is the mass remaining in the pool after evaporation. Finally, the last two elements give the mass assigned to the new puffs. The first of these elements (fourth element on the line) is the mass of a liquefied gas that flashes on release from the tank. If the material released is a volatile liquid, the mass in this puff will remain zero. Finally, the last element in the mass balance line is the mass evaporating from the pool. EXTRAN computes this mass from the area of the pool, the pool energy budget, and the puff release interval. If both the fourth and fifth elements are greater than zero, two puffs will be released.

The sum of the mass in the tank and the mass released in each entry should equal the mass in the tank in the previous entry. Similarly, the mass in the pool in an entry should equal the mass in the pool in the previous

Example 2 -- EXTRAN Version 1.2
Run on 10/11/1990 at 15:22:11

DATA FORMAT:

MASS BALANCE: TANK, CURRENT RELEASE, POOL, FLASHED, EVAPORATED
POOL STATUS: VOLUME, RADIUS, AREA, DEPTH, TEMPERATURE
ENERGY BUDGET: NET SW, NET LW, ATM CONV, GRND COND, NET FLUX

TIME SINCE RELEASE =	0	TOTAL NUMBER OF PUFFS RELEASED =				1
MASS BALANCE	2940.00	60.00	59.90	.00	.10	
POOL STATUS	.04	1.09	3.75	.01	14.60	
ENERGY BUDGET	225.00	-111.24	-87.86	.00	25.90	
TIME SINCE RELEASE =	6	TOTAL NUMBER OF PUFFS RELEASED =				2
MASS BALANCE	2880.00	60.00	119.70	.00	.19	
POOL STATUS	.07	1.54	7.49	.01	14.46	
ENERGY BUDGET	225.00	-110.16	-84.36	57.53	88.02	
TIME SINCE RELEASE =	12	TOTAL NUMBER OF PUFFS RELEASED =				3
MASS BALANCE	2820.00	60.00	179.43	.00	.28	
POOL STATUS	.11	1.89	11.23	.01	14.33	
ENERGY BUDGET	225.00	-109.29	-81.54	84.75	118.91	
TIME SINCE RELEASE =	18	TOTAL NUMBER OF PUFFS RELEASED =				4
MASS BALANCE	2760.00	60.00	239.07	.00	.36	
POOL STATUS	.15	2.18	14.96	.01	14.21	
ENERGY BUDGET	225.00	-108.53	-79.05	102.28	139.70	

FIGURE 2.6. EXTRAN Mass and Energy Balance File Listing (Tank Leak)

entry plus the mass released from the tank minus the mass in the puffs. Occasionally, round-off and truncation will keep the equalities from being satisfied. When differences occur they should be small.

The pool status line also includes five elements. The first four elements are the pool volume, radius, area, and thickness. Volume is in cubic meters, area is in square meters, and radius and thickness are in meters. The last element in the pool status line is the pool temperature. It is in degrees Celsius. All values represent the conditions at the end of the period, after evaporation has taken place.

The last line of each entry is the energy budget of the pool. All entries in this line are fluxes in watts per square meter. Positive values indicate energy transfer to the pool, and negative values indicate energy transfer from the pool.

The first element in the pool energy budget is the net solar radiation flux. It is the solar radiation adjusted for the albedo of the pool. EXTRAN assumes an albedo of 0.1. This assumption, based on the albedo of water, should be conservative. Long-wave radiation flux to the pool from the atmosphere is the second element in the energy budget. It is a function of the air temperature. Long-wave radiation from the pool computed from the pool temperature is the third element. The difference between the incoming and

outgoing long-wave radiation (i.e., the net long-wave radiation) is the fourth element in the line. In general, the net long-wave radiation should be less than the net solar radiation during the day. The last two elements in the energy budget line are the heat flux to the pool from the air and from the ground, respectively. Typically the heat flux from the ground is the dominant term in energy budget.

The energy budget line doesn't include one important term. That term is the latent heat flux associated with evaporation from the pool. EXTRAN computes the latent heat flux from the mass evaporating from the pool and the rate of evaporation from the vapor pressure of the liquid in the pool. It then adjusts the temperature of the pool to account for the difference between the latent heat loss and the net energy gained from radiation, conduction, and convection. If there is a net energy loss from the pool, the temperature of the pool will decrease. If there is a net gain of energy by the pool, the temperature will increase until it reaches the boiling point. After the pool temperature reaches the boiling point, all additional energy increases evaporation.

2.2 DATA ENTRY

EXTRAN uses a series of prompts to obtain the information needed for program execution. The prompts requesting data are arranged in three groups. The first of these groups defines the physical characteristics of the scenario. The second group defines environmental conditions, and the last group defines the characteristics of the material. When appropriate, the prompts show the required units for numerical input. If the prompt doesn't specify units, the input is dimensionless.

In general, you will enter data on the same line as the prompt so the input appears to follow the prompt. Pressing the ENTER key signals the end of an entry. Input may be changed at any time prior to pressing the ENTER key by using the BACKSPACE or DEL key and retyping the input. EXTRAN performs range checks on data entries. If an entry is within the acceptable range, the entry will be rewritten below the prompt, and the next prompt will appear. Otherwise, the prompt will reappear, or an error message will appear. If the prompt reappears, the program had a problem reading the input. For example, the letter o may have been input in a numeric response instead of a zero. If the input is out of range, an error message will state the nature of problem.

2.2.1 Release Scenario

The input used to define the physical scenario associated with a potential accident is discussed below. This input deals with the type of accident, amount of material, where the release occurs in relation to the intake, and how the material enters the atmosphere.

Failure Mode

EXTRAN has four options for release of hazardous material. The first two deal with materials stored as liquids, and the other two deal with materials

stored as gases. In both cases there is one option in which the tank fails catastrophically and another option in which the tank develops a leak. In the first of these options, the tank empties instantaneously. In the second, it doesn't. Generally, the catastrophic failure results in a greater maximum concentration than the tank leak mode. But, the tank leak may be the more realistic failure mode. It is possible to approximate a catastrophic failure in the leak failure mode by increasing the magnitude of the leak rate.

The four combinations of material and tank failure are a part of the prompt that requests a release type. The only acceptable responses are 1, 2, 3, or 4. If you make any other response, the prompt will be repeated.

Initial Mass

After you select a tank failure mode, you will be asked to enter the amount of material in the tank. The specific wording of the prompt depends on the concentration units that you chose as an output option. If you requested concentrations in millicuries per cubic meter, you will be asked to enter the amount of material in curies. Otherwise, you will be asked to enter the amount of material in kilograms. In either case, enter the amount in tank at the time of the failure, not the amount of material that the tank could contain.

If you are entering curies, any positive number greater than zero and less than 1.0×10^6 will be accepted. If you are entering kilograms, numbers between 1 and 1×10^6 will be accepted. As a point of reference, the 1 m^3 of water has a mass of about 1000 kg.

Release Rate

If you select a leak failure mode, you will be asked to enter a release rate. Acceptable responses to the release rate prompt range from near zero (but not zero) to a rate one half of the total mass per second. The release rate will remain constant at the entered value until the tank is empty. When the tank is empty, the release rate will be set to zero. If you enter a release rate that is too small or too large, the prompt will be repeated until you make an acceptable response.

Release Height

Following the request for the tank temperature, you will be asked to enter a release height. For a liquid, this is the height of the pool above the ground and not the height of the hole in the tank. For a gas, the release height may be the height of the hole. Release heights greater than zero may result from failure of a tank on a flat roof or loss of the top of a large tank. In the first of these situations the pool might be formed on the roof, and in the second, the pool may be within the original tank. The range of acceptable responses to the request for release height is 0.0 to 100.0 m. You may enter a zero or press RETURN if the release height is zero. Use ground level at the control room air intake as a reference point.

Tank Temperature

You must enter a temperature for the storage tank for all release types. This temperature determines the expansion of gases and the rate of evaporation of liquids. The prompt and output refer to this temperature as the tank temperature. The tank temperature should be near the air temperature unless the tank is cooled or heated. The range of acceptable tank temperatures is -40 to 50°C.

Consider factors such as the size of the tank, the exposure of the tank to solar radiation, the insulation of tank, and perhaps the time of day and time of year in estimating the tank temperature. A temperature near the day time high temperature for the season may be reasonable choice for the tank temperature.

Maximum Pool Radius

Berms frequently surround large tanks to contain spills. If you specify a liquid tank burst or leak, you will be asked to specify a maximum pool radius. The acceptable responses are from 0 through 50. If you enter a zero or press RETURN, EXTRAN will assume that a berm does not exist. The liquid will spread without horizontal restriction until the pool depth decreases to 0.01 m.

Intake Distance

Concentrations in plumes decrease as the distance from the release point increases. When asked for the intake distance, enter the distance between the tank and the control room air intake. If there are structures between the tank and the intake, enter a distance corresponding to the shortest possible path. The range of acceptable distances is 5 to 1999 m.

Intake Height

The reference plane for heights in EXTRAN is ground level near the control room air intake. When asked to enter the intake height, enter the height of the control room air intake above to this reference plane. The range of acceptable values for the intake heights is 0.0 to 100.0 m.

Concentration estimates are sensitive to the difference between the release height and the intake height when distance between the tank and intake is small. As the distance increases, this sensitivity decreases. Maximum concentration estimates can be obtained by setting both the release height and intake height to zero. If the release and intake heights are the same, but are not equal to zero, the concentration will be up to a factor of two lower than when the heights are equal to zero.

Building Area

EXTRAN includes a new model to estimate diffusion in the wakes of structures. To use this model, you must enter an estimate of the cross-sectional

area of the structure projected on a plane perpendicular to the wind direction. The acceptable range for building areas is 0 to 3000 m². Note that the area requested is the area of the tank or a structure near the tank. It is not necessarily the area of the reactor containment building or of the control room air intake structure. If the area is zero, the enhanced diffusion due to the wake of the structure will be neglected.

Vent Flow

If the release type you selected is a gas tank leak, you will be asked to enter a vent flow. This prompt allows you to model releases through building vents. If the release is through a vent enter the vent flow. Otherwise enter a zero or press RETURN. Acceptable flows range from zero through 50 m³/sec.

The vent flow is particularly important when the distance between the release point and air intake is small. It prevents the concentration at the intake from becoming unreasonably large. When the vent flow is greater than zero, concentrations in the environment can't become larger than the concentration in the vent.

2.2.2 Environmental Conditions

After you define the physical scenario, the next group of prompts requests information on the environmental conditions at the time of the release. These conditions remain constant during the model run. The environmental variables used in EXTRAN enter the calculations in various ways. As a result, no single set of variables can be given the label "worst case." Worst case conditions must be determined by trial and error considering the physical scenario and the material. For example, sometimes worst case conditions involve low wind speeds. However, if the release is in a building wake and involves a volatile liquid, worst case conditions involve high wind speeds.

In selecting a set of conditions for EXTRAN, maintain consistency within the set. For example, a combination of high temperature, high solar radiation, and strongly stable atmospheric conditions leads to larger concentrations than high temperature, high solar radiation, and unstable atmospheric conditions. But, the latter combination is realistic, while the former is not. Thus, the former set ought not to be used in control room habitability assessments.

Wind Speed

The first environmental variable entered is the wind speed. When requested, enter the wind speed at a height of 10 m above ground level. The range of acceptable wind speeds is from 0.5 to 20.0 m/s.

The wind speed is used in computing evaporation rates, diffusion, and transport. Depending on the specific scenario, increasing the wind speed may increase or decrease the predicted maximum concentration. If the scenario involves evaporation or wake diffusion, increasing the wind speed is likely to result in an increase in the maximum concentration. Otherwise, an increase in wind speed will decrease the concentration.

Atmospheric Stability Class

Atmospheric stability classes defined in Regulatory Guide 1.23 are used in EXTRAN. Enter the class designation as a number rather than as a letter. The prompt requesting stability class gives a key for translating the letter designation in Regulatory Guide 1.23 to numerical values. When requested enter the number for the appropriate stability class. The only acceptable entries are the integers 1 through 7. Any other response will result in an error message and will cause the prompt to be repeated.

Atmospheric stability is a factor in determining the dilution of the plume between the pool and the air intake. If there isn't a wake involved, the stability has a significant effect on the maximum concentration. Otherwise, the effect of stability on concentration is small.

Air Temperature

After you enter the atmospheric stability, you will be asked for the ambient air temperature. The ambient air temperature determines if a liquid will flash or not. It is a factor in the energy balance that determines the rate of evaporation from pools, and it determines the volume occupied by gases. In general, increasing the air temperature increases the maximum concentration at the air intake following liquid releases and decreases the concentrations following gas releases.

The acceptable range of air temperature entries is -40°C to $+50^{\circ}\text{C}$. EXTRAN converts the air temperature to degrees Kelvin as needed within the code.

Atmospheric Pressure

Atmospheric pressure is last of the environmental variables used in all scenarios. It is used in adjusting the air density, the boiling point of liquids, and the saturation vapor pressure. When requested, enter the pressure in millimeters of mercury. Pressures in inches, millibars, pounds per square inch, or other units must be converted to millimeters of mercury.

The range of acceptable pressures is from 600 to 800 mm Hg. This range is larger than would be reasonable for a single location because pressure is a function of elevation. The upper end of the range (720 to 800 mm Hg) is appropriate for sea-level locations. The lower end of the range (600 to 670 mm Hg) is appropriate for elevations of 5000 to 6000 ft above sea level.

Solar Radiation

If you have selected a liquid release scenario, you will be asked to enter information for three additional environmental variables. Solar radiation is the first of the three. During the day, solar radiation adds energy to the liquid pool, thereby increasing the evaporation rate.

Enter solar radiation in units of watts/square meter. The range of acceptable entries is 0 to 1200 w/m^2 . Enter a zero or press RETURN if you want to simulate a night-time release.

During the day, solar radiation is a function of latitude, season, and time of day. The data in the following two tables provide some guidance for selection of reasonable solar radiation values. Table 2.1 presents noon-time maximum solar radiation fluxes for the first day of each month based on Weather Bureau Records (Langhaar 1953). The values are for clear days and are rarely exceeded. Table 2.2 presents the average solar radiation for the Hanford Meteorological Station ($46^\circ 34' \text{N}$, $119^\circ 36' \text{W}$) for 9:00 a.m., 12:00 p.m., and 3:00 p.m. for each month. The Hanford Meteorological Station is in a semi-arid region in southcentral Washington State.

Cloud Cover

The second additional variable you will be asked to enter if you have selected a liquid release scenario is cloud cover. Cloud cover is the fraction of the sky covered by clouds. Enter it in tenths. For example, if clouds cover half sky, the cloud cover would be entered as 5. EXTRAN converts the 5 to 0.5. The range of acceptable cloud cover entries is 0 to 10.

Cloud cover is used in calculating the long-wave radiation from the atmosphere. The program makes an initial estimate of the long-wave radiation from the air temperature. It then refines this estimate using the cloud cover. Cloud cover increases the long-wave radiation flux to the liquid pool. This increase ranges from 0 to 60 w/m^2 .

Table 2.2 presents the average cloud cover, in tenths, for each month at the Hanford Meteorology Station. These values provide some guidance in observed values. You will also want to run the model with zero and 10/10 cloud cover.

TABLE 2.1. Maximum Noon Solar Radiation Flux (watts/m^2)

Month	Latitude			
	30	35	40	45
January	760	650	540	430
February	850	760	660	550
March	960	900	800	730
April	1070	1010	950	880
May	1140	1100	1060	1010
June	1150	1140	1090	1060
July	1150	1140	1100	1070
August	1140	1100	1070	1030
September	1100	1060	990	950
October	990	930	850	770
November	850	770	680	580
December	760	660	550	440

TABLE 2.2. Average Solar Radiation (SR) in watts/m² and Cloud Cover (CC) in Tenths at the Hanford Meteorology Station. Based on data from Ramsdell (1978).

Month	9:00		12:00		3:00	
	SR	CC	SR	CC	SR	CC
January	136	8.2	255	8.1	79	8.0
February	230	7.6	385	7.4	181	7.4
March	410	6.7	560	6.9	307	6.9
April	574	6.3	671	6.7	396	6.9
May	674	5.5	741	6.0	489	6.3
June	714	4.8	804	5.2	537	5.4
July	738	2.4	858	2.8	589	3.1
August	645	3.0	768	3.3	491	3.6
September	531	4.2	646	4.3	342	4.4
October	367	5.8	463	6.0	172	6.4
November	198	7.6	267	7.6	65	7.5
December	113	8.3	201	8.3	40	8.1

Ground Temperature

Ground temperature is the last of the additional environmental variables needed for liquid releases. Along with the pool temperature, it controls the energy flux from the ground to the pool. Increasing the ground temperature increases evaporation.

During the day, the ground temperature in the shade is about the same as the air temperature, while the ground temperature in the open is several degrees warmer than the air temperature. At night the ground temperature is generally lower than the air temperature.

Enter the ground temperature in degrees Celsius. The range of acceptable ground temperatures is -40 to +60°C.

2.2.3 Effluent Characteristics

The last group of data entries defines the physical characteristics of the effluent. These characteristics include the boiling point, heat capacity, heat of vaporization, and specific gravity (or density) of the liquid phase, and the density of the vapor phase. The initial prompt for the group lists 19 chemicals and an option to enter data manually. If you select one of the 19 chemicals, the properties of the chemical will be drawn from the chemical library that accompanies the EXTRAN code. You won't need to enter any further data.

Table 2.3 shows the chemical library supplied with EXTRAN. The first line of the library gives the number of entries (20) and headings for the data columns. The library file is named CHEMICAL.DAT. It can be edited with any ASCII text editor.

TABLE 2.3. The EXTRAN Chemical Library

NCHEM =	20	MW	BP	CP	HV	SG	DC
CHLORINE		70.9	-34.1	0.946	288.	1.57	0.0792
AMMONIA		17.0	-33.4	4.60	1370.	0.674	0.139
SULFUR DIOXIDE		64.1	-10.0	1.32	397.	1.46	0.0906
ACETONE		58.1	56.2	2.21	536.	0.791	0.109
BENZENE		78.1	80.1	1.75	434.	0.880	0.077
BROMINE		159.8	58.7	0.448	188.	3.12	0.0755
CARBON DISULFIDE		76.1	46.5	1.01	352.	1.29	0.0892
CARBON TETRACHLORIDE		153.8	76.8	0.841	198.	1.60	0.0579
DIETHYLAMINE		73.1	55.5	2.36	403.	0.685	0.0884
ETHYL ACETATE		88.1	77.2	1.92	427.	0.895	0.0715
ETHYL BENZENE		106.2	136.2	1.71	398.	0.867	0.0658
ETHYL ETHER		74.1	36.4	2.29	351.	0.708	0.0666
HYDROGEN		2.02	-252.7	8.4	452.	0.07	0.0047
HYDROGEN CYANIDE		27.0	25.7	2.62	1034.	0.687	0.173
ISOPROPYL ALCOHOL		60.1	80.3	3.26	667.	0.785	0.0818
METHANOL		32.0	64.7	2.51	1100.	0.792	0.132
PHOSGENE		98.9	8.2	1.02	247.	1.42	0.095
PROPANE		44.1	-44.5	2.13	429.	0.585	0.0622
TOLUENE		92.1	110.	1.76	412.	0.866	0.076
OTHER							

BP = BOILING POINT, DEGREES C

CP = HEAT CAPACITY OF LIQUID, JOULES/(GRAM DEGREE K)

HV = HEAT OF VAPORIZATION OF LIQUID, JOULES/GRAM

MW = MOLECULAR WEIGHT, GRAMS/MOLE

SG = SPECIFIC GRAVITY OF LIQUID

DC = DIFFUSION COEFFICIENT, CM**2/SEC, AT 0 C OR BP IF BP < 0 C

If you select "OTHER," you will need to enter additional information. The information required depends on the type of release selected. For gaseous releases, the only other information required is the molecular weight. For liquid releases, you will be asked to enter the boiling point, heat capacity, heat of vaporization, specific gravity (density), and molecular diffusion coefficient in addition to the molecular weight. Descriptions of these data entries follow.

Name

The first entry is the chemical name. Entry of a name is optional. Names only identify the chemical in the code output. The name may consist of as many as 20 characters. The character count includes blank spaces. A string of 20 blanks will be used if you don't enter a name.

Molecular Weight

EXTRAN uses the molecular weight in thermodynamic computations for volatile liquids and in estimating the initial volume of gases. It must be greater than 1.0.

Boiling Point

Enter boiling point temperatures in degrees Celsius. Absolute boiling point temperatures are computed within the program as needed. The acceptable range of boiling point temperatures is -100 to +200°C. Boiling point temperatures are a function of pressure. The value entered should be the boiling point at 1 atmosphere pressure (760 mm Hg). It will be adjusted to the boiling point at the actual pressure within the program.

Heat Capacity

The heat capacity determines the fraction of a liquefied gas that flashes on release and the temperature change in pools. It must be in units of joules per gram per degree Celsius. The heat capacity must be greater than zero. Heat capacities given in calories per gram per degree Celsius may be converted to the required units by multiplying by 4.184. Within EXTRAN, the heat capacity is a constant, independent of temperature and pressure.

Heat of Vaporization

The heat of vaporization is the energy used in calculation of the evaporation of liquids. It must be in units of joules per gram and must have a value greater than zero. Within EXTRAN, the heat capacity is constant.

Specific Gravity

EXTRAN uses density in calculation of the volume and area of the pool formed by a release of liquids. You may enter either the density, in grams per milliliter, or specific gravity of the liquid when requested. EXTRAN assumes that the density of water is 1 g/ml. Thus, the density and specific gravity are numerically identical.

Enter the specific gravity of the liquid or the density in grams per milliliter. The range of acceptable entries is from 0.1 to 4.0.

Diffusion Coefficient

The rate of evaporation of the pool depends in part on diffusion of the vapor near the pool surface. This diffusion is characterized by a molecular diffusion coefficient. If the substance is a volatile liquid, a diffusion coefficient in units of square centimeters per second must be entered when requested. Molecular diffusion coefficients typically have values near 0.1 cm²/sec. The range of acceptable values is 0.0 to 0.3.

If you enter a zero, EXTRAN will estimate the molecular diffusion coefficient from kinetic theory.

2.3 RERUN OPTION

When EXTRAN has completed computations for a scenario, it closes all the output files and requests directions. At this point you will see the prompt:

EXTRAN RUN COMPLETE. DO YOU WISH TO REVISE THE ENVIRONMENTAL CONDITIONS AND RUN ANOTHER CASE? Y OR N?

At this point, you have the option of changing the environmental conditions and running the code again. If you choose to rerun the model, you won't need to re-enter the data on the physical scenario or the effluent.

This option exists because you may want to run several sets of environmental conditions to determine the range of potential concentrations at the intake. There is no single set of worst case environmental conditions for EXTRAN. In some scenarios, high concentrations will be associated with low wind speeds, and in others, high concentrations will be associated with high wind speeds. For gases released outside a wake, high concentrations will be associated with low wind speeds. However, if a release occurs in a wake or involves a volatile liquid, the highest concentrations are likely to occur with high wind speeds. In other conditions, you will need to search for the environmental conditions that give the highest concentrations.

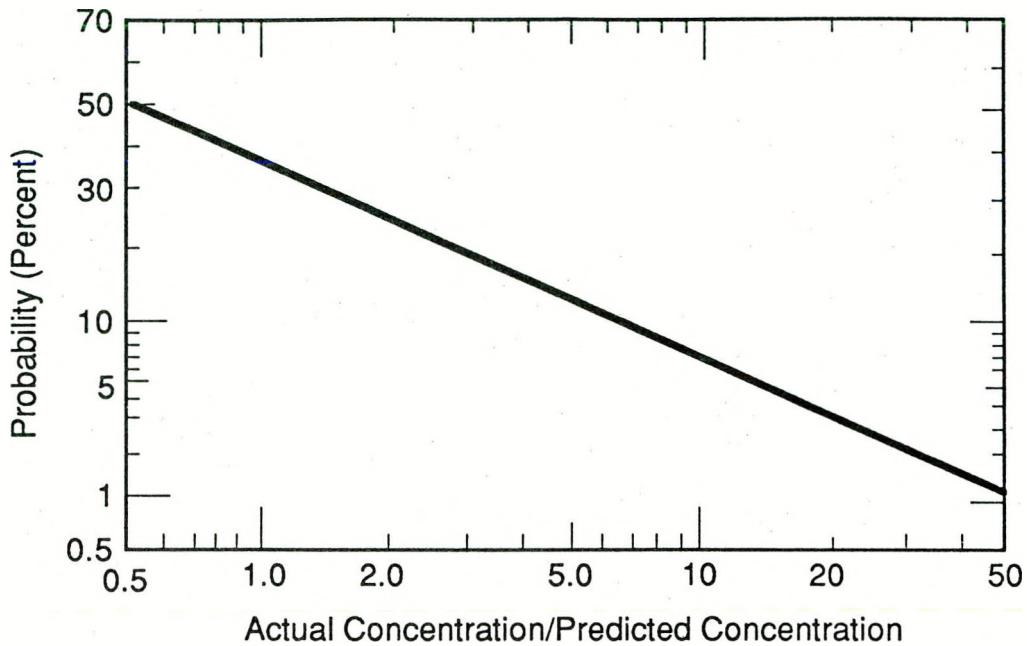
If you respond with an N when you are given the opportunity to modify the environmental data, execution of EXTRAN will end, and you should see the prompt from your computer operating system or shell program. If you respond with a Y, EXTRAN will restore data to their initial values. When this is complete, you will see a list of the environmental data. The list will be the same as the list you saw during data entry, and the data will be the data for the case just run. At this time you may change any or all the environmental data by following the instructions on the screen.

When you complete revision of the environmental data, the code renames the output files and opens the new files. The names of the new files will be the same as the names as the previous files except they will have a different extension. For example, if the first set of files had the names EXPRhhmm.001 and EXCRhhmm.001, the new file names will be EXPRhhmm.002 and EXCRhhmm.002. The hhmm portion of the name remain the same for both sets of environmental conditions in the session.

2.4 OUTPUT INTERPRETATION

EXTRAN is based on a generally conservative set of assumptions that tend to maximize estimates of concentrations at the control room air intake. The most important of these assumptions is that the wind is blowing directly from the tank to the control room air intake when a release occurs. Even if the tank or release point were in the worst possible position with respect to the intake, the likelihood that the wind would be blowing directly toward the intake at the time of an accidental release is only a few percent. The likelihood that wind direction would remain constant for more than a few seconds is also small. The conservative nature of the model is enhanced by

not including several physical processes that would tend to reduce concentrations. Processes not in EXTRAN include plume rise, deposition on surfaces, washout, and chemical transformations. In addition, the model neglects radioactive decay.


Concentrations estimated with EXTRAN should be considered typical concentrations that might be observed given the conditions you specify in the model input. However, it is highly unlikely that concentrations observed following an actual release would be the same as the concentration predicted by the model. There are many reasons not to expect the predicted and observed concentrations to be identical. These reasons include the random nature of the atmospheric dispersion process and the very simple nature of the mathematical representations of the process in the EXTRAN code. This section discusses interpretation of the EXTRAN output in light of the uncertainty of the concentration estimates. It also discusses likely errors associated with the use of EXTRAN to predict concentrations downwind of large releases of liquefied gases.

2.4.1 Model Uncertainty

The method of estimating diffusion coefficients was developed from data obtained in experiments with releases that were generally 15 min to 1 hr in duration. As a result, the coefficients are more appropriate for estimating 15- to 60-min average concentrations than they are for estimating 2-min average concentrations. Experimental data (e.g., Hinds 1969; Ramsdell and Hinds 1971) show the variation of short-term concentrations within a longer averaging period. The uncertainty in average concentrations estimated by the wake diffusion model in EXTRAN has also been determined experimentally (Ramsdell 1990a). Assuming that these sources of uncertainty are independent, it is possible to make a rough estimate of the probability that a 2-min average concentration at an air intake following an accidental release would exceed the concentration predicted by EXTRAN.

Figure 2.7 shows an estimate of the percentage of the time 2-min average concentrations at an air intake might exceed EXTRAN concentration predictions. The probability that the ratio between an average concentration during a specific 2-min period and the predicted concentration exceeds 1 (i.e., that the 2-min average is greater than the predicted concentration) is less than 40%. You will note that the probability decreases as the concentration ratio increases. The probability that the ratio will exceed 2 is about 25%, and the probability it will exceed 5 is less than 15%. The following examples illustrate two uses of Figure 2.7.

Suppose that EXTRAN predicts a chlorine concentration of 15 ppm at a control room air intake. The figure shows that there is about a 50% chance that the maximum observed 2-min concentration at the intake following the release would be less than 7.5 ppm. It also shows that there is about a 25% chance that the concentration might exceed 30 ppm. To get these numbers, select the probability of exceeding the predicted concentration, and then use that probability to find the approximate ratio between actual and predicted concentrations that corresponds to the probability. Finally, you multiply the predicted concentration by the ratio.

FIGURE 2.7. Estimated Probability of Exceeding the Predicted 2-min Concentration

You can also use the figure to estimate the probability of exceeding a concentration threshold given a predicted concentration. Suppose that the short-term (2 min) exposure limit for ammonia is 300 ppm and that EXTRAN predicts a 2-min average concentration of 10 ppm. The ratio between the threshold and the predicted concentration is 30. Entering Figure 2.7 with this ratio as if it were an actual/predicted concentration ratio, you will find that the ratio has a probability of about 2%. Thus, given the scenario that you modeled, the chance of exceeding the 2-min ammonia exposure limit at the air intake would be about 2%.

2.4.2 Dense Gases

EXTRAN treats the movement and diffusion of airborne material as if the material is a trace gas. The gas temperature and density do not affect dispersion in the EXTRAN code. However, temperature and density do affect atmospheric dispersion of large quantities of liquefied gases. You should consider the probable effects of the temperature and density on dispersion if you are attempting to model the release of a large quantity of a liquefied gas.

Dickerson and Ermak (1988) list three ways in which dispersion of dense gases differs from dispersion of trace gases. Dense gas clouds are lower and wider than trace gas clouds. Dense gas clouds move slower than trace gas clouds, and gravity affects dense gas cloud movement in addition to the wind.

The first of these differences may result in a significant difference between predicted and actual concentrations at an air intake. Assume a ground-level release and an elevated intake. If the distance between the

release point and intake is small (perhaps up to a few hundred meters), actual concentrations at the intake are likely to be less than the predicted concentration. At larger distances, the actual concentrations may be consistently larger than the predicted concentrations.

The second difference affects the time required for the cloud to move from the release point to the intake. EXTRAN is likely to underestimate the travel time. Similarly, it will underestimate the time required for the cloud to pass the intake. Further, if the intake structure is in a depression, the cloud may stagnate near the intake.

Finally, the third difference in dispersion is important if the terrain is uneven. During low wind speeds, the movement of the cloud will have a downhill component. If the intake structure is in a depression, and the tank is on higher ground, the probability of a cloud reaching the intake following an accident may be significantly higher than would be predicted from the wind direction frequency. On the other hand, if the intake structure is on high terrain, the probability of a cloud reaching the intake may be significantly lower than estimated from the wind direction.

2.5 EXAMPLES

This report includes five examples to allow you to practice running the EXTRAN code and check code operation. They cover each of release types for toxic chemicals and the use of the OTHER option in the chemical list for modeling dispersion of radionuclides. They also show the use of the rerun option.

Appendix A contains the input and output for each example. If your results aren't the same as those given in the appendix, you should look for the cause of the difference by comparing the data in your input summary with the data in the input summaries in the appendix.

As an exercise, you might vary the input for one variable at a time and observe the sensitivity of the model concentration prediction to the variation in the input. Compare the model response to changes in wind speed for gas and liquid releases in the absence of a building wake. Repeat the comparison for releases in a building wake.

3.0 EXTRAN TECHNICAL BASIS

The EXTRAN computer code is a tool to estimate short-term concentrations at a single location downwind of a release of toxic or radioactive material. The code estimates the amount of material entering the atmosphere and then moves the material downwind as it diffuses. This part of the report describes the technical basis for the EXTRAN code. It includes descriptions of the equations and continuous mass and energy balances used to estimate the source term for the dispersion model. It also includes a description of the dispersion model.

3.1 SOURCE TERM MODELS

EXTRAN deals with releases of two types of material, gases and liquids. You specify the source term for releases of material stored as a gas when you enter the mass of material in the tank and the leak rate. The mass balance associated with gaseous releases is simple. All of the material leaving the tank enters the atmosphere immediately. EXTRAN does not maintain an energy balance for gaseous releases.

When you model the release of material stored as a liquid, specifying the amount of liquid in the tank and the release rate doesn't completely determine the source term for atmospheric dispersion. EXTRAN computes the atmospheric source term from information you supply about the material, its storage conditions, and the environment. The material released from the tank must be partitioned between the atmosphere and the pool, material in the pool evaporates in response to the vapor pressure of the liquid, and the temperature of the pool is adjusted to maintain an energy balance between the pool and the environment.

If you model a catastrophic failure of a tank containing a gas, all of the gas enters the atmosphere at the time of the failure. Otherwise, you must supply a leak rate as part of the scenario. This leak rate is used to determine the amount of the gas in each puff and the amount remaining in the tank. This information is shown in the first line of each entry in the mass balance file. The remaining lines of the entries in the mass balance file are zero because there is no pool.

EXTRAN assumes that when a tank containing liquefied gases or volatile liquids fails, the material is distributed between the tank, a pool in the vicinity of the tank, and in a plume in the atmosphere downwind of the tank. A reasonable estimate of the concentrations at a receptor downwind of the tank can only be made if material can be realistically distributed between these locations as a function of time following the release. Mass must not be gained or lost between the release point and the receptor. The next section describes the mass balance for materials that are stored as liquids. Before any of the material can enter a plume it must change to the vapor phase. This change involves energy transfers and transformations. Thus the mass balance depends on a scenario dependent energy budget. The energy budget will be described in Section 3.3.

3.2 MASS BALANCE FOR LIQUEFIED GASES AND VOLATILE LIQUIDS

As an initial condition, a known mass of the material is assumed to be in a tank. When the tank fails, the material is released to the environment. If the material is a liquefied gas, part of the material leaving the tank flashes at the time of release; the remaining material forms a pool at the base of the tank. The amount of material that flashes can be determined from thermodynamic considerations. If the material is a volatile liquid, all of the material leaving the tank is assumed to gather in a pool at the base of the tank. Material entering the pool is assumed to enter the plume by evaporation. The equations used in EXTRAN to compute the mass of a liquefied gas that flashes and the evaporation of the pool were presented by Wing (1979).

3.2.1 Flashing Mass

The mass of liquefied gas that flashes when the material is released can be computed from the mass of the liquid released, its heat capacity and heat of vaporization, and the difference between the boiling point of the liquid and the temperature of the air. The relationship is

$$m_f = m_r c_p (T_a - T_b) / h_v \quad (1)$$

where m_f = mass that flashes (kg)

m_r = mass released (kg)

c_p = heat capacity (j/g°C)

T_a = air temperature (°C)

T_b = boiling point (°C)

h_v = heat of vaporization (j/g).

Any liquid that does not flash forms a pool at the base of the tank.

3.2.2 Liquid Pool

The liquid pool is assumed to be cylindrical with a volume that is determined by the mass and density of the liquid in the pool. The area of the pool is estimated in two ways. It is estimated as a function of time using

$$A = \pi \{ r_0^2 + [2t(gV/\pi)^{1/2}] \} \quad (2)$$

where A = area of the pool at time t (m^2)

r_0 = an initial radius estimate (m)

t = time since tank failure (sec)

g = gravitational constant (m^2/s)

V = pool volume (m^3).

The relationship for pool area given by Wing has an additional term that involves the densities of the liquid and air. The value of that term does not deviate significantly from 1. Consequently, the term has been dropped from Equation (2). Pool area is also estimated from the pool volume (mass divided by density) assuming a thickness of 0.01 m. These two area estimates are compared with the maximum pool area specified in the input; the smallest value is used as the pool area.

An initial estimate of the pool temperature is made by averaging the temperature of the material being released (boiling point if it flashes) and the temperature of the material already in pool. This temperature is used to estimate the saturation vapor pressure of the material for use in evaporation calculations.

3.2.3 Evaporation

Evaporation of the pool is driven by the difference between the saturation vapor pressure of the liquid in the pool and the vapor pressure in the atmosphere. For the materials of concern, the vapor pressure in the atmosphere may be assumed to be zero. Therefore, the relationship used to compute the mass of volatile liquid evaporating in an interval Δt is

$$m_v = (h_d A \Delta t P_s) / (R_g T_p) \quad (3)$$

where h_d = mass transfer coefficient (m/sec)

P_s = saturation vapor pressure (atm)

R_g = specific gas constant ($\text{atm}\cdot\text{m}^3\text{kg}^{-1}\text{K}^{-1}$)

T_p = pool temperature ($^{\circ}\text{K}$).

The mass transfer coefficient is a function of the radius of the pool, a diffusion coefficient, and the dimensionless Reynolds and Schmidt numbers associated with the air flow across the pool. In EXTRAN, the mass transfer coefficient is computed using the relationship given by Wing for turbulent flow. That relationship is

$$h_d = 0.037 (D/2r) Re^{4/5} Sc^{1/3} \quad (4)$$

where D = molecular diffusion coefficient (m^2/s)

r = pool radius (m)

Re = Reynolds Number

Sc = Schmidt Number.

Molecular diffusion coefficients for many substances have been determined experimentally. They are listed in reference works (e.g., Reid et al. 1987). However, there are many substances for which molecular diffusion coefficients are not readily available. If you don't enter a diffusion coefficient as part of the effluent characteristics, EXTRAN will compute one from kinetic theory (Bird et al. 1960). The equation used in computing the molecular diffusion coefficient is

$$D = \frac{0.001853 [T_r^3 (1/mw_a + 1/mw_g)]^{1/2}}{P \sigma_{ag} \Omega_{ag}} \quad (5)$$

where T_r = temperature ($^{\circ}$ K)

mw_a , mw_g = molecular weights of air and the material in the pool

P = pressure (atmospheres)

σ_{ag} = effective collision diameter for molecules of air and the gas (\AA)

Ω_{ag} = dimensionless function of temperature and intermolecular potential field.

An effective collision diameter for the combination of air and a second gas can be estimated by averaging the collision diameters for air and the gas. The collision diameter for air is 3.617 \AA . For a liquid, the collision diameter may be estimated from the normal boiling point. EXTRAN estimates the collision diameter for the material in the tank from

$$\sigma_g = 1.166 V^{1/3} \quad (6)$$

where V is the molecular volume in cubic centimeters per gram-mole (Bird et al. 1960). The molecular volume is computed from the molecular weight and the liquid density.

The dimensionless function Ω_{ag} in Equation (5) is estimated using interpolation equations derived from data presented by Bird et al. (1960, Table B-2). Data in the table indicate that Ω_{ag} can be estimated adequately as

$$\Omega_{ag} = \alpha (kT/\epsilon_{ag})^{\beta} \quad (7)$$

where α, β = constants defined for three ranges of kT/ϵ

k = Boltzmann's constant

T = temperature ($^{\circ}$ K)

ϵ_{ag} = a characteristic energy of interaction between molecules of air and the gas.

Finally, ϵ_{aq} is the geometric mean of the characteristic energies for air and the gas. The ratio ϵ_g/k can be estimated from

$$\epsilon_g/k = 1.15 T_b \quad (8)$$

where T_b is the boiling point of the liquid ($^{\circ}\text{K}$). For air ϵ/k is approximately 97.0.

The boiling point of liquids depends on atmospheric pressure. Tabled boiling points are generally for a pressure of one atmosphere (760 mm Hg). EXTRAN adjusts the boiling point to account for departures from the standard pressure using an integrated form of the Clausius-Clapeyron equation. The adjusted boiling point is given by

$$T_b^* = T_b / [1 + R_g T_b \ln(760/P)/h_v] \quad (9)$$

where T_b^* = adjusted boiling point ($^{\circ}\text{K}$)

T_b = boiling point at 760 mm Hg ($^{\circ}\text{K}$)

P = atmospheric pressure (mm Hg).

Similarly, the saturation vapor pressure in Equation (3) is computed for pool temperature from the boiling point and atmospheric pressure using another form of the integrated Clausius-Clapeyron equation. The equation for saturation vapor pressure is

$$P_v = P \exp[h_v(1.0 - T_b^*/T_p)/R_g T_b^*] \quad (10)$$

where all terms are as previously defined.

3.3 ENERGY BUDGET

Several terms in the mass balance just discussed are functions of energy transfer in the environment. This section discusses the components of energy budget of the pool. These components include solar and long-wave radiation, sensible and latent heat exchange with the atmosphere, and heat transfer between the pool and the ground.

3.3.1 Solar Radiation

The solar radiation balance associated with the liquid pool has two terms, incoming solar radiation and reflection from the surface. The net solar radiation, R_{sn} , is estimated as

$$R_{\text{sn}} = (1 - a)R_s \quad (11)$$

where R_s is the incoming solar radiation, and a is the albedo of the pool. An estimate of the incoming solar radiation is required as part of the model

input. Tables 2.1 and 2.2 provide some guidance on the values of solar radiation observed in the latitude band occupied by the contiguous United States.

The albedo of a pool of any of the materials of concern is unknown. Consequently, a default albedo has been assumed. The default albedo is 0.1. The assumption of this value is based on albedos reported for sea surfaces (Rosenberg et al. 1983, p. 44). This justification is relatively weak, but the net energy budget is not particularly sensitive to the value assumed. The assumption of a relatively low albedo should be conservative. That is, a low albedo is associated with high absorption of solar radiation, which will tend to maximize evaporation.

3.3.2 Long-Wave Radiation

The long-wave radiation balance of the pool is more complicated than the short-wave balance. The long-wave radiation that the pool receives from the atmosphere is a function of the temperature and humidity near the ground and the amount and type of clouds. This is countered by long-wave radiation from the pool, which is a function of the pool temperature.

A number of empirical expressions have been developed to estimate the long-wave radiation from the atmosphere. Swinbank (1963) proposed an equation relating the long-wave radiation only to the air temperature based on an analysis of data collected at night. This relationship is reasonable because the humidity at night is also a function of temperature. However, the relationship has been found to systematically overestimate the long-wave radiation during the day. Paltridge (1970) suggests reducing day-time atmospheric long-wave radiation estimates made using Swinbank's relationship by 30 w/m². The same correction to Swinbank's relationship is suggested by Idso (1972). A further correction to Swinbank's relationship to account for the effects of clouds is discussed by Paltridge and Platt (1976). In its simplest form, this correction increases the atmospheric long-wave radiation by 6 w/m² for each tenth of the sky covered by clouds. Combining these relationships, the long-wave radiation flux to the pool from the atmosphere is estimated using

$$R_{1a} = 5.31 \times 10^{-13} T_a^6 + 60 \text{ cc} \quad (12)$$

where R_{1a} is the long-wave radiation flux from the atmosphere (w/m²), and CC is the cloud cover in tenths. If the solar radiation is greater than 100 w/m², the long-wave radiation flux estimated by Equation (12) is reduced by 30 w/m².

The long-wave radiation from the pool is a function only of the pool temperature. It is given by

$$R_{1p} = \sigma T_p^4 \quad (13)$$

where σ is the Stephan-Boltzmann constant, which has a value of $5.67 \times 10^{-8} \text{ w}/(\text{m}^2 \text{ }^{\circ}\text{K}^4)$.

The net long-wave radiation flux to the pool, R_{ln} , is then

$$R_{ln} = R_{la} - R_{lp}. \quad (14)$$

Estimating this flux requires both the air and pool temperatures. If it is estimated using only the air temperature, the result will be an under estimate of the true flux because the pool temperature will be lower than the air temperature. This will tend to decrease the rate of evaporation and is therefore not conservative.

3.3.3 Air Convection

Radiation is only one of the energy transfer mechanisms in the EXTRAN model. The model also includes sensible heat transfer between the pond and the atmosphere due to convection, heat transfer between the pond and the ground due to conduction, and the transfer of latent heat from the pond to the atmosphere due to evaporation.

The heat flux between the pool and the atmosphere is computed as the product of a heat transfer coefficient and the temperature difference between the pool and the atmosphere. The equation for this flux is

$$Q_a = h_c(T_a - T_p) \quad (15)$$

where Q_a is the heat flux due to convection and h_c is the heat transfer coefficient. The heat transfer coefficient is a function of the thermal conductivity of the air, the air density and viscosity, the heat capacity of the air, a characteristic length, and the wind speed. Assuming that all of these factors are constant except the wind speed, the heat transfer coefficient is computed by

$$h_c = 6.69U^{0.6} \quad (16)$$

where U is the wind speed. This relationship is based on an extrapolation by Wing (1979) to a wind speed of 1 m/sec of values published by Bolz and Tuve (1973).

3.3.4 Ground Conduction

The heat flux between the ground and the pool is estimated in a manner that is similar to the method used to estimate the heat flux from the air. The flux is proportional to a thermal conductivity and the temperature difference between the ground and the pool. However, unlike the air that passes over the pool, the ground beneath the pool cools as a function of time, which reduces the flux. The equation used to estimate the heat flux from the ground is

$$Q_g = k(T_g - T_p)t^{-1/2} \quad (17)$$

where Q_g is the flux, and k is a constant that incorporates the thermal conductivity, heat capacity, and density of the ground. The derivation of Equation (17) and k is discussed by Bird et al. (1960). Following Wing,

when values of the thermal conductivity, heat capacity, and density that are typical of the earth's surface are used, the value of k is approximately $824 \text{ j-sec}^{1/2}/(\text{°K})$. However, k is a strong function of surface type. When the characteristics of specific surface types reported by Oke (1978) are used to compute k , the values obtained range from 190 for dry peat to 2560 for wet sandy soil. The value for dense concrete is 1780, and bricks and stone have values near 1000. As a result of this diversity, a mid-range value of 1000 has been assumed for k rather than 824.

3.3.5 Latent Heat Transfer

As liquid evaporates, it carries energy from the pool to the atmosphere. The energy lost is equal to the product of the heat of vaporization and the mass evaporated. Thus,

$$Q_h = h_v m_v \quad (18)$$

where Q_h is the latent heat lost. When the pool consists of boiling liquefied gas, the evaporation is determined by the energy entering the pool. As a result, the latent heat loss exactly balances the net energy gained from solar and long-wave radiation, convection, and conduction. This balance may be written as

$$Q_h = (R_{sn} + R_{ln} + Q_a + Q_g)A\Delta t. \quad (19)$$

We have assumed that evaporation is determined by vapor pressure. Consequently, the latent heat loss is not necessarily equal to the input of energy by other mechanisms. If the latent heat loss does not balance the energy gained from other mechanisms, then the temperature of the pool must change as a result of the imbalance. The energy stored or lost by the pool is given by

$$m_p c_p \Delta T_p = (R_{sn} + R_{ln} + Q_a + Q_g)A\Delta t - Q_h. \quad (20)$$

Solving for the temperature change yields

$$\Delta T_p = [(R_{sn} + R_{ln} + Q_a + Q_g)A\Delta t - Q_h]/m_p c_p. \quad (21)$$

Common experience indicates that evaporation leads to cooling. Therefore ΔT_p may be expected to be negative. However, when the pool is extremely cool, the energy balance may be positive.

In EXTRAN, the initial pool temperature is assumed to be equal to the boiling point or temperature of the liquid in the tank, whichever is lower. The temperature of the pool is adjusted as a function of time to maintain the energy balance. Equation (21) is used to estimate the change in temperature due to evaporation. If the temperature change is negative, the pool temperature is adjusted accordingly. EXTRAN does not permit the pool to freeze.

If the temperature change is positive, EXTRAN makes an initial estimate of the new pool temperature and then compares the estimate with the boiling point of the liquid. Should the estimated temperature exceed the boiling point, the pool temperature is set at the boiling point. The energy not used

in raising the temperature of the pool to the boiling point is treated as latent heat of evaporation, and mass associated with evaporation is increased.

If the accident scenario involves a leak, the temperature of the pool is also adjusted to account for the difference in temperature between the tank and the pool. In making this adjustment, it is assumed that the liquid entering the pool mixes instantaneously with the liquid already in the pool.

3.4 TRANSPORT AND DIFFUSION

EXTRAN includes a Gaussian puff dispersion model. This approach was selected because puff models permit more realistic treatment of temporal variations in release terms and concentrations. It is consistent with the Gaussian plume models used by the NRC for other licensing applications and the puff models used for emergency response applications.

3.4.1 Puff Model

The derivation of the Gaussian plume model starts with a specific solution to the one-dimensional diffusion equation. A three-dimensional puff diffusion model is then produced by superposition of solutions to the one-dimensional equation. If it is assumed that diffusion proceeds independently in the longitudinal, lateral, and vertical directions, and that the center of the puff is at position x_0, y_0, z_0 ; then, in the absence of boundaries, the concentration at position x, y, z is given by

$$C(x, y, z) = \frac{Q}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_z} \exp\left[-\frac{1}{2}\left(\frac{x - x_0}{\sigma_x}\right)^2\right] \exp\left[-\frac{1}{2}\left(\frac{y - y_0}{\sigma_y}\right)^2\right] \exp\left[-\frac{1}{2}\left(\frac{z - z_0}{\sigma_z}\right)^2\right] \quad (22)$$

where $C(x, y, z)$ = the concentration at x, y, z

Q = the mass of material in the puff

$\sigma_x, \sigma_y, \sigma_z$ = diffusion coefficients in the longitudinal, lateral, and vertical directions.

The diffusion coefficients are characteristic dimensions of the puff. They are functions of the distance (or time) from the release point, the atmospheric stability, and the surface roughness.

Next, a Cartesian coordinate system is defined that has its origin at the ground directly below the release point with the x-axis parallel to the wind vector, the y-axis directed cross wind, and the z-axis vertical. With this definition, the center of the puff can now be allowed to move with the wind. At any moment t following the release, the coordinates of the center of the puff are $x_0 = Ut$, $y_0 = 0$, $z_0 = h$ where U is the wind speed and h is the height of release. This results in

$$C(x,y,z) = \frac{Q}{(2\pi)^{3/2} \sigma_x \sigma_y \sigma_z} \exp\left[-\frac{1}{2}\left(\frac{x - Ut}{\sigma_x}\right)^2\right] \exp\left[-\frac{1}{2}\left(\frac{y}{\sigma_y}\right)^2\right] \exp\left[-\frac{1}{2}\left(\frac{z - h}{\sigma_z}\right)^2\right] \quad (23)$$

The final step in derivation of the plume model is integration of Equation (23) from $t = 0$ to $t = \infty$. This step makes the plume model a steady-state model. The time delay between the source and the receptor does not appear explicitly in the model, and temporal variations in the source can only be modeled by assuming a sequence of steady-state releases.

The puff model alternative chosen for EXTRAN stops at Equation (23). Using the puff model, a plume is approximated by releasing a sequence of puffs at small time intervals. The concentration at a point in the plume is then calculated by summation of the concentrations at the point resulting from all puffs. In essence, the integration that leads to the plume model is replaced by

$$C(x,y,z) = \sum_i C_i \quad (24)$$

where $C(x,y,z)$ is the concentration at x,y,z , and the C_i are the contributions to the total concentration of the individual puffs given by Equation (23). It is common to assume that σ_x and σ_y are equal and to substitute σ_y for σ_x . Equations (23) and (24) retain the ability to model the temporal variation in concentrations at an air intake realistically because the concentration will not increase until a puff approaches receptor, and the values of Q may be varied as function of time.

The accuracy of the puff approximation can be checked by modeling a steady-state release. It is a function of the distance between puffs. The approximation can be made as accurate as desired by reducing this distance. Ramsdell et al. (1983) show that if the distance between adjacent puffs is less than σ_y , concentrations estimated by the puff model are within 1 or 2% of those estimated by a plume model. Puff release rates in EXTRAN are adjusted to maintain this accuracy.

Equation (23) assumes that the diffusion takes place without the interference of boundaries. That assumption is not tenable for releases at or near ground level. It is common to assume that the ground acts as a reflecting surface. This assumption is incorporated into puff and plume models by assuming an imaginary second source of equal strength located at or below ground level. Concentrations are then computed by adding the contributions from the real and imaginary sources. Mathematically this is accomplished by replacing the term

$$\exp\left[-\frac{1}{2}\left(\frac{z - h}{\sigma_z}\right)^2\right]$$

in Equation (23) with

$$\left\{ \exp\left[-\frac{1}{2}\left(\frac{z-h}{\sigma_z}\right)^2\right] + \exp\left[-\frac{1}{2}\left(\frac{z+h}{\sigma_z}\right)^2\right] \right\}$$

3.4.2 Source Term

Concentrations in the puffs are directly proportional to the mass that is included in the puff. In the EXTRAN code, puffs are released at regular intervals of length Δt where Δt is determined by the distance between the release point and the air intake, the wind speed, and the atmospheric stability. The mass in a puff released at time t is the mass entering the atmosphere in the period between t and $t + \Delta t$.

If the toxic substance is a liquefied gas and both flashing and evaporation are occurring, two puffs will be released simultaneously. One of these puffs will have the mass of the liquid that has flashed [Equation (1)], and the other will have the mass that has evaporated [Equation (3)]. Otherwise only one puff will be released, and the mass in the puff will be determined using Equation (3).

3.4.3 Diffusion Coefficients

Equation (23) shows that the decrease in concentrations in puffs as they move downwind is due only to increases in the magnitudes of the diffusion coefficients. Relationships describing the increase in these coefficients in flat terrain under normal atmospheric conditions are readily available in the literature. The coefficients increase with increasing distance and generally decrease as the atmosphere becomes more stable.

These standard relationships do not adequately describe the growth of diffusion coefficients in the wakes of structures. The effect of wakes is to increase the rate of diffusion, but the effect is limited to the vicinity of the structure. As result, composite diffusion coefficients that include both normal diffusion and wake effects are used in EXTRAN. These coefficients are computed using

$$\sigma_c^2 = (\sigma_n^2 + \sigma_w^2)^{1/2} \quad (25)$$

where σ_c = the composite diffusion coefficient

σ_n = a normal diffusion coefficient

σ_w = a wake diffusion coefficient.

Normal diffusion coefficients are computed with the Eimutis and Konicek (1972) relationships used in the NRC PAVAN (Bander 1982) and X0QDOQ (Sagendorf et al. 1982) codes. In these relationships the diffusion coefficients are functions of distance and atmospheric stability. The wake diffusion coefficients are computed using equations derived by Ramsdell following an analysis

of data from building-wake diffusion experiments (Ramsdell 1988). Ramsdell (1990a,b) present derivations of the equations for the wake diffusion coefficients.

The puff diffusion equation was derived for point-source releases. The point source equations are reasonable as long as the distance between the release point and the receptor is large. In the current application, the point source assumption may not be appropriate. Consequently, an adjustment is made to the diffusion coefficients to account for the size of the source. The diffusion coefficients are given initial values that result in concentrations at the center of the puff that are no greater than the concentration the pure vapor would have been at the atmospheric conditions. These dimensions are related to the density of the vapor and the area of the pool. If a wake is a factor, the adjustment is made to the wake diffusion coefficients. Otherwise, the adjustment is made to the normal coefficients.

3.4.4 Transport

The transport of material is completely defined during model input. Puffs are assumed to move with the wind directly from the release point to the air intake. The time required for material to arrive at the intake is determined by the wind speed and the growth of the puffs. It is somewhat less than the time estimated by x/U where x is the distance to the intake, and U is the wind speed.

4.0 THE EXTRAN COMPUTER CODE

EXTRAN is an interactive computer code to model the EXternal TRANsport of toxic materials from a release point to a control room air intake. It is written in the FORTRAN-77 programming language. The code generally conforms to the ANSI standard (ANSI 1978). However, it does use several common extensions, including long names and INCLUDE statements. These extensions should not cause any problems because the compiled code is transferable among personal computers using the MSDOS operating system. EXTRAN has been compiled to run on computers with and without math coprocessors. A math coprocessor will significantly reduce the time required to complete a simulation.

4.1 PROGRAM ELEMENTS

The EXTRAN code consists of a main program, 16 subroutines, and one function. The main program primarily serves as a control program and generates much of the output. The subroutines perform specific functions. For example, seven subroutines obtain input from the user, and three subroutines compute different types of diffusion coefficients, etc. The function UC converts user input from lower case to upper case letters. In general, the program passes data among the program elements using NAMED COMMON BLOCKS. There are seven named common blocks. The common blocks are in the INCLUDE files that are incorporated in the appropriate program elements when the code is compiled.

The calling sequence of the EXTRAN program elements is shown in Table 4.1. Program element names are in upper case letters, and indentation shows the nesting of the elements. Brief descriptions of the use of the elements follow the colons. The table also lists the INCLUDE files and their contents. Table 4.2 shows the interrelationships between the program elements and INCLUDE files.

The list of program elements in these tables does not include the function UC. The input subroutines that request letter responses to prompts use the function UC.

Subroutines GETDAT and GETTIM called by EXTRAN are systems subroutines supplied with the Microsoft® FORTRAN, Version 5.0. FORTRAN compilers from other vendors may have subroutines that perform the same function but have different names.

®Microsoft is a registered trademark of Microsoft Corporation.

TABLE 4.1. The EXTRAN Program Element Calling Sequence

EXTRAN	: Main program, control model, primary output of model results
GETDAT	: Get the date of model execution from system clock
GETTIM	: Get the time from the system clock
INPUT	: Select scenario type, print input data
INPUTO	: Establish output options
INPUTS	: Establish source - receptor geometry, release rate, storage tank temperature
INPUTE	: Enter required environmental data
INPUTEF	: Select effluent, enter effluent physical properties if necessary
DIFCOEF	: Compute molecular diffusion coefficient if required by scenario and not included in physical properties
MODELPAR	: Determine the diffusion model parameters (puff release interval, time step, etc.)
NSIG	: Compute normal diffusion coefficient at intake distance for use in determining model time step
WSIG	: Compute wake diffusion coefficient at intake distance for use in determining model time step
PUFFMASS	: Compute mass in each puff from effluent characteristics, release rate, pool conditions, and energy balance
PUFFINIT	: Compute initial puff dimensions and virtual travel time
RELPUFF	: Assign characteristics to puff at release time
NSIG	: Compute normal diffusion coefficients for puff
WSIG	: Compute building wake diffusion coefficients for puff
CHIT	: Compute concentrations at intake from all nearby puffs
CEPLOT	: Plot chronology of concentration, exposure and average concentration on printer... ASCII codes used
RINPUT	: Reset variables, open new files if model is to be rerun with different environmental conditions
RINPUTE	: Revise environmental conditions

INCLUDE BLOCKS

EFFLUENT	: Physical properties of the effluent
ENVIRON	: Environmental information
OPTIONS	: Control variables for model output, output file names
POOL	: Pool dimensions, status, energy flux data
PRINT	: Data to be plotted
PUFF	: Data on individual puffs
SCENARIO	: Scenario description, geometry, model parameters

TABLE 4.2. Interrelationship Between EXTRAN Program Elements and INCLUDE Files

Program Element	INCLUDE FILE						
	EFFLUENT	ENVIRON	OPTIONS	POOL	PRINT	PUFF	SCENARIO
EXTRAN	XXX	XXX	XXX	XXX	XXX	XXX	XXX
CEPLOT			XXX		XXX		
CHIT		XXX			XXX	XXX	XXX
DIFCOEF	XXX	XXX					
INPUT	XXX	XXX		XXX			XXX
INPUTE		XXX					
INPUTEF	XXX	XXX					
INPUTO				XXX			XXX
INPUTS				XXX			XXX
MODELPAR		XXX	XXX				XXX
NSIG		XXX					
PUFFINIT	XXX	XXX		XXX		XXX	XXX
PUFFMASS	XXX	XXX		XXX			XXX
RELPUFF						XXX	
RINPUT	XXX	XXX		XXX			XXX
RINPUTE	XXX	XXX					
WSIG		XXX					XXX

4.2 PROGRAM ORGANIZATION

EXTRAN is a simple puff dispersion model with a built-in module for estimating source terms of liquid releases from limited data supplied by the user. The model begins with user input and computation of model control variables based on the input. EXTRAN then enters a loop. In the loop it estimates the mass entering the atmosphere in the current time step, releases new puffs, moves the new and old puffs, and computes the concentration at the control room air intake from the concentrations in the puffs. This loop repeats until the model predicts that the concentration at the air intake has been above background level for at least three minutes. When this computation loop is complete, EXTRAN generates the output requested by the user. It then asks if the user wishes to revise the environmental input and rerun the model. Figure 4.1 shows a general flow chart for EXTRAN.

With one exception, interactions between EXTRAN and the user take place in the seven input subroutines. The first five of these subroutines obtain the input for the initial model run. The other two input subroutines are used to reset the model and revise the environmental data when the model is to be rerun with different environmental data. The only user interaction that takes place outside the input subroutines is the selection of the rerun option; that selection is made in the main program. The input subroutines perform initial adjustments of the air density, the liquid vapor pressure, and the boiling point for the ambient atmospheric pressure and temperature. When all input and adjustments are complete, they write the input data to the primary output file.

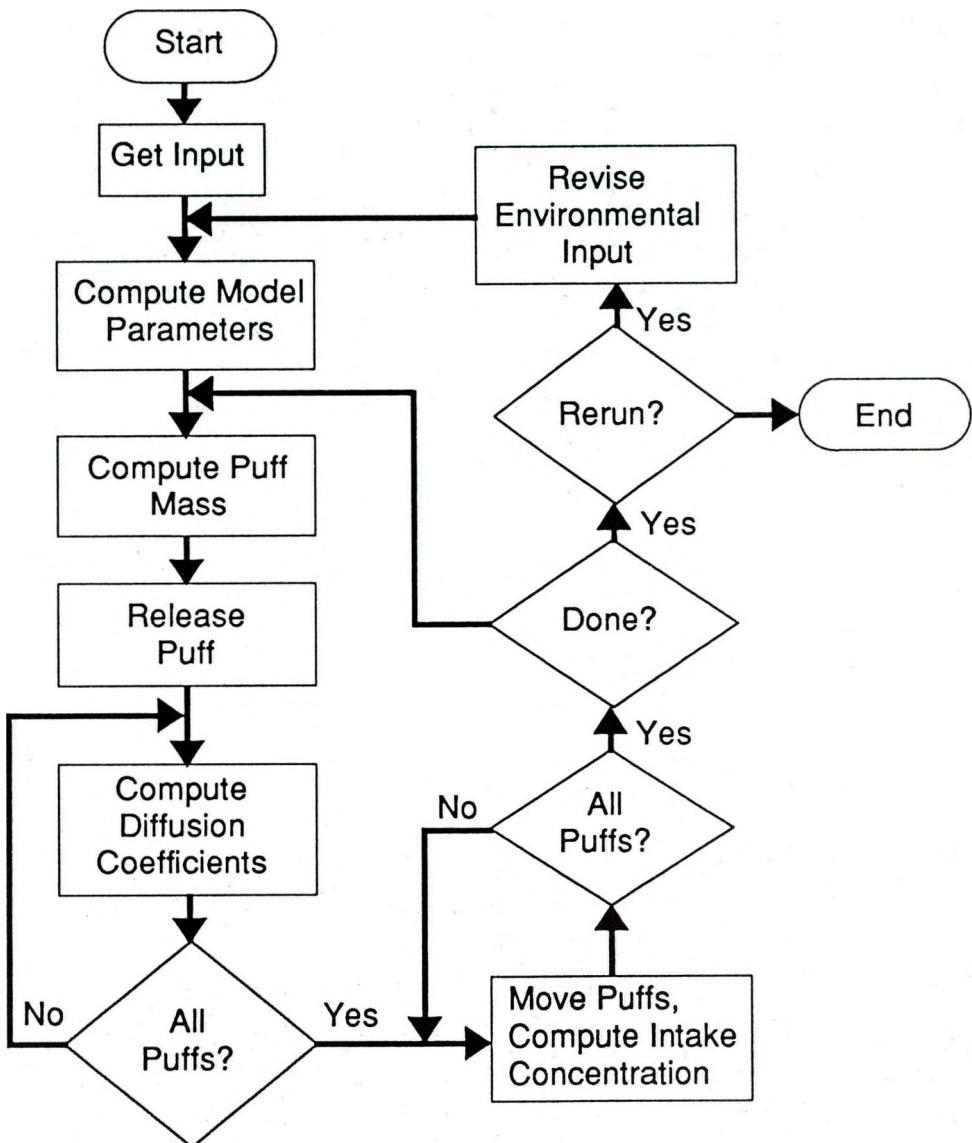


FIGURE 4.1 EXTRAN Flow Chart

When data entry is complete, EXTRAN calls subroutine MODELPAR. MODELPAR computes the intervals for releasing puffs and computing concentrations. The distance between the release point and the intake, the wind speed, and the atmospheric stability determine these intervals. The minimum interval for both puff releases and concentration computations is 1 sec. If the distance between release point and intake is less than 1000 m, the maximum interval between puffs is 10 sec. Otherwise it is 30 sec. The interval between concentrations is one half the puff release interval unless the puff release interval is 1 sec.

After setting the model parameters, EXTRAN enters the first of a pair of nested DO loops. The outer loop deals with puff releases, while the inner

loop deals with puff movement and concentration computations. Three subroutines deal specifically with releasing puffs. They are subroutines PUFFMASS, PUFFINIT, and RELPUFF. Similarly, there are three subroutines associated with the concentration computations. These subroutines are NSIG, WSIG, and CHIT.

The outer loop establishes and maintains the time of the simulation. It starts at $t = 0$ and increments in time steps that are equal to the interval between concentration computations. Puffs releases occur when the ratio between the time and the puff release interval has an integer value. At intermediate times the puff release portion of the program is skipped.

When puff releases occur, subroutine PUFFMASS determines the mass to be included in each puff. It is also the subroutine that makes the mass balance and energy budget computations. Subroutine PUFFINIT determines the initial dimensions for each puff. The mass to be included in the puff and the dimensions of the liquid pool determine the initial puff dimensions. Finally, subroutine RELPUFF creates the puffs by incrementing the puff counter and assigning the initial characteristics to each puff. Prior to entering the inner loop, EXTRAN writes a record to the mass and energy balance file, if the user has requested creation of the file.

The inner DO loop is the loop that makes the transport and diffusion coefficient computations. The loop index is puff number. Starting with the first puff released, the position of each puff is updated for movement in the current interval, and new diffusion coefficients are computed. Subroutine NSIG computes the normal diffusion coefficients for the puffs from the coefficient values in the previous time step and the distance moved in the current step. Wake diffusion coefficients are computed in subroutine WSIG from the current puff age. EXTRAN leaves the inner loop when all puffs have been moved and their diffusion coefficients have been updated.

At this time, EXTRAN calls subroutine CHIT to compute the concentration at the air intake. It only computes the contributions to the concentration from those puffs that are sufficiently close to the intake to make significant contributions to the total concentration. A puff is sufficiently close if its center is within $4.24 \sigma_y$ of the intake. If the puff center is farther from the intake, the concentration at the intake will be less than 1/10000 of the concentration at the center of the puff.

Computation of the intake concentration completes the outer loop. If sufficient time has elapsed since the arrival of the plume at the intake EXTRAN will leave the loop and output the results. Otherwise, it will return to the beginning of the loop and continue with the next time step.

After EXTRAN leaves the transport and diffusion computation loops, the main program will complete printing the summary page of the primary output. If a plot has been requested, EXTRAN calls subroutine CEPILOT, which will plot the chronology of the instantaneous and average concentrations and the exposure at the intake. Finally, the program will create a chronology file

and print the numerical chronology of the concentrations and exposure as requested. When model output is complete, the program closes all output files.

EXTRAN then requests directions from the user. If the user wishes to revise the environmental data and rerun the program, EXTRAN resets variables to their initial values and calls the subroutines used to revise the environmental data. After data revision is complete, the program returns to computation of model parameters.

Appendix B contains listings of the EXTRAN program, the subroutines, and the INCLUDE files.

5.0 REFERENCES

American National Standards Institute (ANSI). 1978. American National Standard FORTRAN, X3.9-1978 (FORTRAN 77). American National Standards Institute, New York.

Bander, T. J. 1982. PAVAN: An Atmospheric Dispersion Program for Evaluating Design Basis Accidental Releases of Radioactive Materials from Nuclear Power Stations. NUREG/CR-2858, PNL-4413. Prepared by Pacific Northwest Laboratory for the U.S. Nuclear Regulatory Commission, Washington, D.C.

Bird, R. B., W. E. Stewart, and E. N. Lightfoot. 1960. Transport Phenomena. John Wiley & Sons, New York.

Bolz, R. E., and G. L. Tuve. 1973. Handbook of Tables for Applied Engineering Science. CRC Press, Cleveland, Ohio.

Dickerson, M. H., and D. L. Ermak. 1988. "The Evaluation of Emergency Response Trace Gas and Dense Gas Dispersion Models." UCRL-99348, Lawrence Livermore National Laboratory, Livermore, California. Presented at the American Meteorological Society Sponsored Advanced Studies Institute Short Course on the Meteorological Aspects of Emergency Response, September 28-29, 1988.

Eimutis, E. C., and M. G. Konicek. 1972. "Derivations of Continuous Functions for the Lateral and Vertical Atmospheric Dispersion Coefficients." Atmos. Environ. 6:859-863.

Hinds, W. T. 1969. "Peak-to-Mean Concentration Ratios from Ground Level Sources in Building Wakes." Atmos. Environ. 3:145-156.

Idso, S. B. 1972. "Systematic Deviations of Clear Sky Atmospheric Thermal Radiation from Predictions of Empirical Formulae." Q. J. Roy. Meteorol. Soc. 98:399-401.

Langhaar, J. W. 1953. "Cooling Pond May Answer Your Water Cooling Problem." Chem. Eng. 60(8):194-198.

Murphy, K. G., and K. M. Campe. 1974. "Nuclear Power Plant Control Room Ventilation System Design for Meeting General Design Criterion 19." In Proceedings of the 13th AEC Air Cleaning Conference, August 12-15, 1974, San Francisco, California, CONF-740807, U.S. Atomic Energy Commission, Washington, D.C.

Oke, T. R. 1978. Boundary Layer Climates. Methuen & Co., New York.

Owczarski, P. C., K. W. Burk, J. V. Ramsdell, and D. D. Yasuda. 1990. FPFP 2: A Code for Following Airborne Fission Products in Generic Nuclear Plant Flow Paths. NUREG/CR-5658, PNL-7513. Prepared by Pacific Northwest Laboratory for the U.S. Nuclear Regulatory Commission, Washington, D.C.

Paltridge, G. W. 1970. "Daytime Long-Wave Radiation from the Sky." Q. J. Roy. Meteorol. Soc. 96:645-653.

Paltridge, G. W., and C. M. R. Platt. 1976. Radiative Processes in Meteorology and Climatology. Elsevier Scientific Publishing Company, New York.

Ramsdell, J. V. 1978. Impact of a Hanford Nuclear Energy Center on Cloudiness and Insolation. PNL-2638, Pacific Northwest Laboratory, Richland, Washington.

Ramsdell, J. V. 1988. Atmospheric Diffusion for Control Room Habitability Assessments. NUREG/CR-5055, PNL-6391. Prepared by Pacific Northwest Laboratory for the U.S. Nuclear Regulatory Commission, Washington, D.C.

Ramsdell, J. V. 1990a. "Alternatives to Current Procedures Used to Estimate Concentrations in Building Wakes." PNL-SA-17941, Pacific Northwest Laboratory, Richland, Washington. Presented at the 21st DOE/NRC Nuclear Air Cleaning Conference, August 13-16, 1990, San Diego, California.

Ramsdell, J. V. 1990b. "Diffusion in Building Wakes for Ground-Level Releases." Atmos. Environ. 24B(3):377-388.

Ramsdell, J. V., and W. T. Hinds. 1971. "Concentration Fluctuations and Peak-to-Mean Concentration Ratios in Plumes from a Ground-Level Continuous Point Source." Atmos. Environ. 5:483-495.

Ramsdell, J. V., G. F. Athey, and C. S. Glantz. 1983. MESOI Version 2.0: An Interactive Mesoscale Lagrangian Puff Dispersion Model With Deposition and Decay. NUREG/CR-3344, PNL-4753. Prepared by Pacific Northwest Laboratory for the U.S. Nuclear Regulatory Commission, Washington, D.C.

Reid, R. C., J. M. Prausnitz, and B. E. Poling. 1987. The Properties of Gases & Liquids. McGraw-Hill Book Company, New York, 741 pp.

Rosenberg, N. J., B. L. Blad, and S. B. Verma. 1983. Microclimate The Biological Environment. John Wiley & Sons, New York.

Sagendorf, J. F., J. T. Goll, and W. F. Sandusky. 1982. XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations. PNL-4380. Prepared by Pacific Northwest Laboratory for the U.S. Nuclear Regulatory Commission, Washington, D.C.

Swinbank, W. C. 1963. "Long-Wave Radiation from Clear Skies." Q. J. Roy. Meteorol. Soc. 89:339-348.

Wing, J. 1979. Toxic Vapor Concentrations in the Control Room Following a Postulated Accidental Release. NUREG/CR-0570, U.S. Nuclear Regulatory Commission, Washington, D.C.

APPENDIX A

EXAMPLE INPUT AND OUTPUT

APPENDIX A

EXAMPLE INPUT AND OUTPUT

This appendix contains EXTRAN output for five example problems. The output for each example includes the summary page that lists the input data and 2-min average concentration, a plot, the first part of the chronology file, and the first part of the mass and energy balance file. Only the first example includes the output title page that contains program information.

Note that there are two sets of output for Example 5. The environmental conditions were changed for the second set. You might also note the variations in the intake concentration in the plot and chronology in the first part of this example. This variation is an artifact of puff models that occurs occasionally. It happens when the separation between puffs approaches the upper limit in the model.

Program Title: EXTRAN VERSION 1.2

Developed For: U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Division of Reactor Accident Analysis

Date: October 1990

Code Documentation:

EXTRAN: A Computer Code For Estimating
Concentrations Of Toxic Substances At
Control Room Air Intakes
NUREG/CR-5656

The program was prepared for an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibilities for any third party's use, or the results of such use, of any portion of this program or represents that its use by such third party would not infringe privately owned rights.

Example 1 -- EXTRAN Version 1.2

RUN DATE = 10/11/1990 RUN TIME = 15:34:24

SCENARIO:

Release Type = Liquid Tank Burst
Initial Mass (kg) = 1000.
Release Height (m) = .0
Storage Temperature (C) = 20.0
Maximum Pool Radius (m) = 10.0
Intake Distance (m) = 250.
Intake Height (m) = 25.0
Building Area (m**2) = 100.

ENVIRONMENTAL CONDITIONS:

Wind Speed (m/sec) = 3.0
Atmospheric Stability Class = 4
Air Temperature (C) = 20.0
Atmospheric Pressure (mm Hg) = 760.0
Solar Radiation (watts/m**2) = 650.0
Cloud Cover (tenths) = 2
Ground Temperature (C) = 25.0

EFFLUENT CHARACTERISTICS:

Material Released = CHLORINE
Molecular Weight (gm/mole) = 70.9
Initial Boiling Point (C) = -34.1
Heat Capacity (j/gm-C) = .946
Heat of Vapor. (j/gm) = 288.0
Specific Gravity = 1.570
Diffusion Coef. (cm**2/sec) = .079

MODEL PARAMETERS:

Puff Release Interval (sec) = 10
Time Step (sec) = 5
Delay Between Release and Intake (sec) = 50
Threshold Concentration (g/m**3) = 7.08E-05
To convert g/m**3 to ppm, multiply by 3.39E+02

RESULTS:

Average Concentration During First Two Minutes
After Arrival of Plume (g/m**3) = 1.93E-01
Exposure Two Minutes After Arrival (g-sec/m**3) = 2.41E+01
Time From Plume Arrival to Max. Conc. (sec) = 30.
Max. Conc. in Two Minutes After Arrival (g/m**3) = 6.12E-01

ADDITIONAL OUTPUT FILES:

EXCR1534.001
EXMB1534.001

Example 1 -- EXTRAN Version 1.2

Run on 10/11/1990 at 15:34:24

TIME (sec)	CONCENTRATION (g/m**3)	EXPOSURE (g-sec/m**3)	MEAN CONC. (g/m**3)	NUM OF PUFFS
0	1.27E-03	6.35E-03	1.27E-03	7
5	1.50E-02	8.13E-02	8.13E-03	7
10	7.92E-02	4.77E-01	3.18E-02	8
15	2.32E-01	1.64E+00	8.18E-02	8
20	4.35E-01	3.81E+00	1.52E-01	9
25	5.85E-01	6.74E+00	2.25E-01	9
30	6.12E-01	9.80E+00	2.80E-01	10
35	5.32E-01	1.25E+01	3.11E-01	10
40	4.11E-01	1.45E+01	3.22E-01	11
45	2.99E-01	1.60E+01	3.20E-01	11
50	2.19E-01	1.71E+01	3.11E-01	12
55	1.69E-01	1.80E+01	2.99E-01	12
60	1.40E-01	1.87E+01	2.87E-01	13
65	1.23E-01	1.93E+01	2.75E-01	13
70	1.12E-01	1.98E+01	2.64E-01	14
75	1.04E-01	2.03E+01	2.54E-01	14
80	9.87E-02	2.08E+01	2.45E-01	15
85	9.41E-02	2.13E+01	2.37E-01	15
90	9.01E-02	2.18E+01	2.29E-01	16
95	8.66E-02	2.22E+01	2.22E-01	16
100	8.34E-02	2.26E+01	2.15E-01	17
105	8.06E-02	2.30E+01	2.09E-01	17
110	7.80E-02	2.34E+01	2.03E-01	18
115	7.56E-02	2.38E+01	1.98E-01	18
120	7.34E-02	2.41E+01	1.93E-01	19
125	7.13E-02	2.45E+01	1.88E-01	19
130	6.94E-02	2.48E+01	1.84E-01	20
135	6.77E-02	2.52E+01	1.80E-01	20
140	6.60E-02	2.55E+01	1.76E-01	21
145	6.44E-02	2.58E+01	1.72E-01	21
150	6.30E-02	2.62E+01	1.69E-01	22
155	6.16E-02	2.65E+01	1.65E-01	22
160	6.03E-02	2.68E+01	1.62E-01	23
165	5.90E-02	2.71E+01	1.59E-01	23
170	5.78E-02	2.73E+01	1.56E-01	24
175	5.67E-02	2.76E+01	1.54E-01	24
180	5.56E-02	2.79E+01	1.51E-01	25
185	5.46E-02	2.82E+01	1.48E-01	25
190	5.36E-02	2.85E+01	1.46E-01	26
195	5.27E-02	2.87E+01	1.44E-01	26
200	5.18E-02	2.90E+01	1.41E-01	27
205	5.09E-02	2.92E+01	1.39E-01	27
210	5.01E-02	2.95E+01	1.37E-01	28
215	4.93E-02	2.97E+01	1.35E-01	28
220	4.85E-02	3.00E+01	1.33E-01	29
225	4.77E-02	3.02E+01	1.31E-01	29
230	4.70E-02	3.04E+01	1.30E-01	30
235	4.63E-02	3.07E+01	1.28E-01	30

Example 1 -- EXTRAN Version 1.2
Run on 10/11/1990 at 15:34:24

DATA FORMAT:

MASS BALANCE: TANK, CURRENT RELEASE, POOL, FLASHED, EVAPORATED

POOL STATUS: VOLUME, RADIUS, AREA, DEPTH, TEMPERATURE

ENERGY BUDGET: NET SW, NET LW, ATM CONV, GRND COND, NET FLUX

TIME SINCE RELEASE =	0	TOTAL NUMBER OF PUFFS RELEASED =			2
MASS BALANCE	.00	1000.00	785.73	177.70	36.57
POOL STATUS	.52	4.08	52.38	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	18689.06	20107.62
TIME SINCE RELEASE =	10	TOTAL NUMBER OF PUFFS RELEASED =			3
MASS BALANCE	.00	.00	760.30	.00	25.43
POOL STATUS	.50	3.99	50.05	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	13215.16	14633.72
TIME SINCE RELEASE =	20	TOTAL NUMBER OF PUFFS RELEASED =			4
MASS BALANCE	.00	.00	739.77	.00	20.53
POOL STATUS	.48	3.93	48.43	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	10790.13	12208.69
TIME SINCE RELEASE =	30	TOTAL NUMBER OF PUFFS RELEASED =			5
MASS BALANCE	.00	.00	722.16	.00	17.61
POOL STATUS	.47	3.87	47.12	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	9344.53	10763.09
TIME SINCE RELEASE =	40	TOTAL NUMBER OF PUFFS RELEASED =			6
MASS BALANCE	.00	.00	706.55	.00	15.61
POOL STATUS	.46	3.83	46.00	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	8358.00	9776.56
TIME SINCE RELEASE =	50	TOTAL NUMBER OF PUFFS RELEASED =			7
MASS BALANCE	.00	.00	692.41	.00	14.14
POOL STATUS	.45	3.78	45.00	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	7629.78	9048.34
TIME SINCE RELEASE =	60	TOTAL NUMBER OF PUFFS RELEASED =			8
MASS BALANCE	.00	.00	679.42	.00	12.99
POOL STATUS	.44	3.75	44.10	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	7063.80	8482.36
TIME SINCE RELEASE =	70	TOTAL NUMBER OF PUFFS RELEASED =			9
MASS BALANCE	.00	.00	667.36	.00	12.06
POOL STATUS	.43	3.71	43.28	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	6607.58	8026.14
TIME SINCE RELEASE =	80	TOTAL NUMBER OF PUFFS RELEASED =			10
MASS BALANCE	.00	.00	656.07	.00	11.29
POOL STATUS	.43	3.68	42.51	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	6229.69	7648.25
TIME SINCE RELEASE =	90	TOTAL NUMBER OF PUFFS RELEASED =			11
MASS BALANCE	.00	.00	645.44	.00	10.63
POOL STATUS	.42	3.65	41.79	.01	-34.10
ENERGY BUDGET	585.00	133.89	699.67	5910.00	7328.56

Example 2 -- EXTRAN Version 1.2

RUN DATE = 10/11/1990 RUN TIME = 15:22:11

SCENARIO:

Release Type = Liquid Tank Leak
Initial Mass (kg) = 3000.
Release Rate (kg/sec) = 1.00E+01
Release Height (m) = .0
Storage Temperature (C) = 15.0
Maximum Pool Radius (m) = 10.0
Intake Distance (m) = 400.
Intake Height (m) = 25.0
Building Area (m**2) = 10.

ENVIRONMENTAL CONDITIONS:

Wind Speed (m/sec) = 5.0
Atmospheric Stability Class = 6
Air Temperature (C) = 10.0
Atmospheric Pressure (mm Hg) = 775.0
Solar Radiation (watts/m**2) = 250.0
Cloud Cover (tenths) = 6
Ground Temperature (C) = 15.0

EFFLUENT CHARACTERISTICS:

Material Released = CARBON TETRACHLORIDE
Molecular Weight (gm/mole) = 153.8
Initial Boiling Point (C) = 77.5
Heat Capacity (j/gm-C) = .841
Heat of Vapor. (j/gm) = 198.0
Specific Gravity = 1.600
Diffusion Coef. (cm**2/sec) = .058

MODEL PARAMETERS:

Puff Release Interval (sec) = 6
Time Step (sec) = 3
Delay Between Release and Intake (sec) = 69
Threshold Concentration (ppm) = 4.69E-05
To convert ppm to g/m**3, multiply by 6.75E-03

RESULTS:

Average Concentration During First Two Minutes
After Arrival of Plume (ppm) = 2.69E-02
Exposure Two Minutes After Arrival (g-sec/m**3) = 2.23E-02
Time From Plume Arrival to Max. Conc. (sec) = 120.
Max. Conc. in Two Minutes After Arrival (ppm) = 5.11E-02

ADDITIONAL OUTPUT FILES:

EXCR1522.001
EXMB1522.001

Example 2 -- EXTRAN Version 1.2

Run on 10/11/1990 at 15:22:11

TIME (sec)	CONCENTRATION (ppm)	EXPOSURE (g-sec/m**3)	MEAN CONC. (ppm)	NUM OF PUFFS
0	4.90E-05	9.91E-07	4.90E-05	12
3	5.27E-04	1.17E-05	2.88E-04	13
6	1.97E-03	5.15E-05	8.47E-04	13
9	3.67E-03	1.26E-04	1.55E-03	14
12	5.41E-03	2.35E-04	2.32E-03	14
15	7.02E-03	3.77E-04	3.11E-03	15
18	8.61E-03	5.52E-04	3.89E-03	15
21	1.01E-02	7.56E-04	4.67E-03	16
24	1.16E-02	9.92E-04	5.44E-03	16
27	1.31E-02	1.26E-03	6.20E-03	17
30	1.45E-02	1.55E-03	6.96E-03	17
33	1.59E-02	1.87E-03	7.71E-03	18
36	1.73E-02	2.22E-03	8.44E-03	18
39	1.87E-02	2.60E-03	9.18E-03	19
42	2.00E-02	3.01E-03	9.90E-03	19
45	2.14E-02	3.44E-03	1.06E-02	20
48	2.27E-02	3.90E-03	1.13E-02	20
51	2.40E-02	4.38E-03	1.20E-02	21
54	2.52E-02	4.89E-03	1.27E-02	21
57	2.66E-02	5.43E-03	1.34E-02	22
60	2.78E-02	5.99E-03	1.41E-02	22
63	2.91E-02	6.58E-03	1.48E-02	23
66	3.03E-02	7.20E-03	1.55E-02	23
69	3.15E-02	7.84E-03	1.61E-02	24
72	3.27E-02	8.50E-03	1.68E-02	24
75	3.40E-02	9.19E-03	1.74E-02	25
78	3.51E-02	9.90E-03	1.81E-02	25
81	3.64E-02	1.06E-02	1.88E-02	26
84	3.75E-02	1.14E-02	1.94E-02	26
87	3.87E-02	1.22E-02	2.00E-02	27
90	3.98E-02	1.30E-02	2.07E-02	27
93	4.11E-02	1.38E-02	2.13E-02	28
96	4.21E-02	1.47E-02	2.19E-02	28
99	4.34E-02	1.55E-02	2.26E-02	29
102	4.44E-02	1.64E-02	2.32E-02	29
105	4.56E-02	1.74E-02	2.38E-02	30
108	4.66E-02	1.83E-02	2.44E-02	30
111	4.79E-02	1.93E-02	2.51E-02	31
114	4.89E-02	2.03E-02	2.57E-02	31
117	5.01E-02	2.13E-02	2.63E-02	32
120	5.11E-02	2.23E-02	2.69E-02	32
123	5.23E-02	2.34E-02	2.75E-02	33
126	5.32E-02	2.45E-02	2.81E-02	33
129	5.44E-02	2.56E-02	2.87E-02	34
132	5.54E-02	2.67E-02	2.93E-02	34
135	5.66E-02	2.78E-02	2.99E-02	35
138	5.75E-02	2.90E-02	3.05E-02	35

Example 2 -- EXTRAN Version 1.2
 Run on 10/11/1990 at 15:22:11

DATA FORMAT:

MASS BALANCE: TANK, CURRENT RELEASE, POOL, FLASHED, EVAPORATED
 POOL STATUS: VOLUME, RADIUS, AREA, DEPTH, TEMPERATURE
 ENERGY BUDGET: NET SW, NET LW, ATM CONV, GRND COND, NET FLUX

TIME SINCE RELEASE = 0	TOTAL NUMBER OF PUFFS RELEASED = 1			
MASS BALANCE 2940.00	60.00	59.90	.00	.10
POOL STATUS .04	1.09	3.75	.01	14.60
ENERGY BUDGET 225.00	-111.24	-87.86	.00	25.90
TIME SINCE RELEASE = 6	TOTAL NUMBER OF PUFFS RELEASED = 2			
MASS BALANCE 2880.00	60.00	119.70	.00	.19
POOL STATUS .07	1.54	7.49	.01	14.46
ENERGY BUDGET 225.00	-110.16	-84.36	57.53	88.02
TIME SINCE RELEASE = 12	TOTAL NUMBER OF PUFFS RELEASED = 3			
MASS BALANCE 2820.00	60.00	179.43	.00	.28
POOL STATUS .11	1.89	11.23	.01	14.33
ENERGY BUDGET 225.00	-109.29	-81.54	84.75	118.91
TIME SINCE RELEASE = 18	TOTAL NUMBER OF PUFFS RELEASED = 4			
MASS BALANCE 2760.00	60.00	239.07	.00	.36
POOL STATUS .15	2.18	14.96	.01	14.21
ENERGY BUDGET 225.00	-108.53	-79.05	102.28	139.70
TIME SINCE RELEASE = 24	TOTAL NUMBER OF PUFFS RELEASED = 5			
MASS BALANCE 2700.00	60.00	298.64	.00	.43
POOL STATUS .19	2.44	18.69	.01	14.10
ENERGY BUDGET 225.00	-107.83	-76.78	115.08	155.47
TIME SINCE RELEASE = 30	TOTAL NUMBER OF PUFFS RELEASED = 6			
MASS BALANCE 2640.00	60.00	358.13	.00	.51
POOL STATUS .22	2.67	22.41	.01	13.99
ENERGY BUDGET 225.00	-107.18	-74.67	125.07	168.21
TIME SINCE RELEASE = 36	TOTAL NUMBER OF PUFFS RELEASED = 7			
MASS BALANCE 2580.00	60.00	417.56	.00	.58
POOL STATUS .26	2.88	26.13	.01	13.89
ENERGY BUDGET 225.00	-106.58	-72.69	133.18	178.91
TIME SINCE RELEASE = 42	TOTAL NUMBER OF PUFFS RELEASED = 8			
MASS BALANCE 2520.00	60.00	476.91	.00	.65
POOL STATUS .30	3.08	29.85	.01	13.79
ENERGY BUDGET 225.00	-106.00	-70.82	139.96	188.13
TIME SINCE RELEASE = 48	TOTAL NUMBER OF PUFFS RELEASED = 9			
MASS BALANCE 2460.00	60.00	536.19	.00	.72
POOL STATUS .34	3.27	33.56	.01	13.70
ENERGY BUDGET 225.00	-105.46	-69.04	145.73	196.23
TIME SINCE RELEASE = 54	TOTAL NUMBER OF PUFFS RELEASED = 10			
MASS BALANCE 2400.00	60.00	595.41	.00	.78
POOL STATUS .37	3.44	37.26	.01	13.61
ENERGY BUDGET 225.00	-104.94	-67.34	150.73	203.45

Example 3 -- EXTRAN Version 1.2

RUN DATE = 10/11/1990 RUN TIME = 15:28:54

SCENARIO:

Release Type = Gas Tank Burst
Initial Mass (kg) = 500.
Release Height (m) = 3.0
Storage Temperature (C) = 20.0
Intake Distance (m) = 200.
Intake Height (m) = 20.0
Building Area (m**2) = 10.

ENVIRONMENTAL CONDITIONS:

Wind Speed (m/sec) = 2.0
Atmospheric Stability Class = 3
Air Temperature (C) = 20.0
Atmospheric Pressure (mm Hg) = 760.0

EFFLUENT CHARACTERISTICS:

Material Released = HYDROGEN
Molecular Weight (gm/mole) = 2.0

MODEL PARAMETERS:

Puff Release Interval (sec) = 10
Time Step (sec) = 5
Delay Between Release and Intake (sec) = 55
Threshold Concentration (ppm) = 2.99E+00
To convert ppm to g/m**3, multiply by 8.40E-05

RESULTS:

Average Concentration During First Two Minutes
After Arrival of Plume (ppm) = 7.74E+03
Exposure Two Minutes After Arrival (g-sec/m**3) = 8.12E+01
Time From Plume Arrival to Max. Conc. (sec) = 40.
Max. Conc. in Two Minutes After Arrival (ppm) = 2.77E+04

ADDITIONAL OUTPUT FILES:

EXCR1528.001
EXMB1528.001

Example 3 -- EXTRAN Version 1.2

Run on 10/11/1990 at 15:28:54

TIME (sec)	CONCENTRATION (ppm)	EXPOSURE (g-sec/m**3)	MEAN CONC. (ppm)	NUM OF PUFFS
0	1.42E+01	5.98E-03	1.42E+01	1
5	1.55E+02	7.10E-02	8.45E+01	1
10	9.21E+02	4.58E-01	3.63E+02	1
15	3.40E+03	1.88E+00	1.12E+03	1
20	8.55E+03	5.47E+00	2.61E+03	1
25	1.59E+04	1.21E+01	4.82E+03	1
30	2.30E+04	2.18E+01	7.41E+03	1
35	2.74E+04	3.33E+01	9.91E+03	1
40	2.77E+04	4.49E+01	1.19E+04	1
45	2.47E+04	5.53E+01	1.32E+04	1
50	1.99E+04	6.36E+01	1.38E+04	1
55	1.47E+04	6.98E+01	1.39E+04	1
60	1.02E+04	7.41E+01	1.36E+04	1
65	6.68E+03	7.69E+01	1.31E+04	1
70	4.21E+03	7.87E+01	1.25E+04	1
75	2.56E+03	7.97E+01	1.19E+04	1
80	1.52E+03	8.04E+01	1.13E+04	1
85	8.90E+02	8.08E+01	1.07E+04	1
90	5.12E+02	8.10E+01	1.01E+04	1
95	2.92E+02	8.11E+01	9.66E+03	1
100	1.65E+02	8.12E+01	9.20E+03	1
105	9.34E+01	8.12E+01	8.79E+03	1
110	5.27E+01	8.12E+01	8.41E+03	1
115	2.97E+01	8.12E+01	8.06E+03	1
120	1.68E+01	8.12E+01	7.74E+03	1
125	9.57E+00	8.12E+01	7.44E+03	1
130	5.46E+00	8.12E+01	7.17E+03	1
135	3.14E+00	8.12E+01	6.91E+03	1
140	1.81E+00	8.12E+01	6.67E+03	1
145	1.05E+00	8.12E+01	6.45E+03	1
150	6.17E-01	8.12E+01	6.24E+03	1

Example 3 -- EXTRAN Version 1.2

Run on 10/11/1990 at 15:28:54

DATA FORMAT:

MASS BALANCE: TANK, CURRENT RELEASE, POOL, FLASHED, EVAPORATED

POOL STATUS: VOLUME, RADIUS, AREA, DEPTH, TEMPERATURE

ENERGY BUDGET: NET SW, NET LW, ATM CONV, GRND COND, NET FLUX

TIME SINCE RELEASE =	0	TOTAL NUMBER OF PUFFS RELEASED =	1
MASS BALANCE	.00	500.00	.00
POOL STATUS	.00	.00	.00
ENERGY BUDGET	.00	.00	.00

Example 4 -- EXTRAN Version 1.2

RUN DATE = 10/11/1990 RUN TIME = 15:39:30

SCENARIO:

Release Type = Gas Tank Leak
Initial Mass (kg) = 2000.
Release Rate (kg/sec) = 1.00E+01
Release Height (m) = 5.0
Storage Temperature (C) = 10.0
Intake Distance (m) = 300.
Intake Height (m) = 20.0
Building Area (m**2) = 50.
Vent Flow (m**3/s) = .00

ENVIRONMENTAL CONDITIONS:

Wind Speed (m/sec) = 2.0
Atmospheric Stability Class = 6
Air Temperature (C) = 5.0
Atmospheric Pressure (mm Hg) = 760.0

EFFLUENT CHARACTERISTICS:

Material Released = AMMONIA
Molecular Weight (gm/mole) = 17.0

MODEL PARAMETERS:

Puff Release Interval (sec) = 10
Time Step (sec) = 5
Delay Between Release and Intake (sec) = 95
Threshold Concentration (ppm) = 6.78E-02
To convert ppm to g/m**3, multiply by 7.45E-04

RESULTS:

Average Concentration During First Two Minutes
After Arrival of Plume (ppm) = 1.21E+03
Exposure Two Minutes After Arrival (g-sec/m**3) = 1.13E+02
Time From Plume Arrival to Max. Conc. (sec) = 120.
Max. Conc. in Two Minutes After Arrival (ppm) = 1.97E+03

ADDITIONAL OUTPUT FILES:

EXCR1539.001
EXMB1539.001

Example 4 -- EXTRAN Version 1.2
 Run on 10/11/1990 at 15:39:30

TIME (sec)	CONCENTRATION (ppm)	EXPOSURE (g-sec/m**3)	MEAN CONC. (ppm)	NUM OF PUFFS
0	4.10E-01	1.53E-03	4.10E-01	10
5	2.03E+00	9.08E-03	1.22E+00	11
10	8.14E+00	3.94E-02	3.52E+00	11
15	2.55E+01	1.34E-01	9.02E+00	12
20	6.65E+01	3.82E-01	2.05E+01	12
25	1.47E+02	9.28E-01	4.15E+01	13
30	2.80E+02	1.97E+00	7.57E+01	13
35	4.72E+02	3.73E+00	1.25E+02	14
40	7.13E+02	6.39E+00	1.91E+02	14
45	9.79E+02	1.00E+01	2.69E+02	15
50	1.24E+03	1.46E+01	3.58E+02	15
55	1.47E+03	2.01E+01	4.50E+02	16
60	1.65E+03	2.63E+01	5.42E+02	16
65	1.78E+03	3.29E+01	6.31E+02	17
70	1.87E+03	3.98E+01	7.13E+02	17
75	1.92E+03	4.70E+01	7.88E+02	18
80	1.94E+03	5.42E+01	8.56E+02	18
85	1.96E+03	6.15E+01	9.17E+02	19
90	1.96E+03	6.88E+01	9.73E+02	19
95	1.97E+03	7.61E+01	1.02E+03	20
100	1.97E+03	8.35E+01	1.07E+03	20
105	1.97E+03	9.08E+01	1.11E+03	20
110	1.97E+03	9.81E+01	1.15E+03	20
115	1.97E+03	1.05E+02	1.18E+03	20
120	1.97E+03	1.13E+02	1.21E+03	20
125	1.97E+03	1.20E+02	1.24E+03	20
130	1.97E+03	1.27E+02	1.27E+03	20
135	1.97E+03	1.35E+02	1.29E+03	20
140	1.97E+03	1.42E+02	1.32E+03	20
145	1.97E+03	1.49E+02	1.34E+03	20
150	1.97E+03	1.57E+02	1.36E+03	20

Example 4 -- EXTRAN Version 1.2
 Run on 10/11/1990 at 15:39:30

DATA FORMAT:

MASS BALANCE: TANK, CURRENT RELEASE, POOL, FLASHED, EVAPORATED

POOL STATUS: VOLUME, RADIUS, AREA, DEPTH, TEMPERATURE

ENERGY BUDGET: NET SW, NET LW, ATM CONV, GRND COND, NET FLUX

TIME SINCE RELEASE =	0	TOTAL NUMBER OF PUFFS RELEASED =	1
MASS BALANCE	1900.00	100.00	.00
POOL STATUS	.00	.00	.00
ENERGY BUDGET	.00	.00	.00
TIME SINCE RELEASE =	10	TOTAL NUMBER OF PUFFS RELEASED =	2
MASS BALANCE	1800.00	100.00	.00
POOL STATUS	.00	.00	.00
ENERGY BUDGET	.00	.00	.00

Example 5 -- EXTRAN Version 1.2

RUN DATE = 10/11/1990 RUN TIME = 16:07:49

SCENARIO:

Release Type = Gas Tank Leak
Initial Activity (Ci) = 1000.
Release Rate (Ci/sec) = 5.00E-01
Release Height (m) = 25.0
Storage Temperature (C) = 20.0
Intake Distance (m) = 50.
Intake Height (m) = 25.0
Building Area (m**2) = 2000.
Vent Flow (m**3/s) = 10.00

ENVIRONMENTAL CONDITIONS:

Wind Speed (m/sec) = 2.0
Atmospheric Stability Class = 3
Air Temperature (C) = 25.0
Atmospheric Pressure (mm Hg) = 730.0

EFFLUENT CHARACTERISTICS:

Material Released = KRYPTON-85
Molecular Weight (gm/mole) = 84.9

MODEL PARAMETERS:

Puff Release Interval (sec) = 10
Time Step (sec) = 5
Delay Between Release and Intake (sec) = 10
Threshold Concentration (mCi/m**3) = 1.28E-05

RESULTS:

Average Concentration During First Two Minutes
After Arrival of Plume (mCi/m**3) = 1.93E-01
Exposure Two Minutes After Arrival (mCi-sec/m**3) = 2.42E+01
Time From Plume Arrival to Max. Conc. (sec) = 115.
Max. Conc. in Two Minutes After Arrival (mCi/m**3) = 2.23E-01

ADDITIONAL OUTPUT FILES:

EXCR1607.001
EXMB1607.001

Example 5 -- EXTRAN Version 1.2
 Run on 10/11/1990 at 16:07:49

TIME (sec)	CONCENTRATION (mCi/m**3)	EXPOSURE (mCi-sec/m**3)	MEAN CONC. (mCi/m**3)	NUM OF PUFFS
0	3.87E-02	1.93E-01	3.87E-02	2
5	1.45E-01	9.18E-01	9.18E-02	2
10	1.52E-01	1.68E+00	1.12E-01	3
15	2.04E-01	2.70E+00	1.35E-01	3
20	1.80E-01	3.60E+00	1.44E-01	4
25	2.17E-01	4.68E+00	1.56E-01	4
30	1.87E-01	5.62E+00	1.60E-01	5
35	2.21E-01	6.72E+00	1.68E-01	5
40	1.89E-01	7.66E+00	1.70E-01	6
45	2.22E-01	8.77E+00	1.75E-01	6
50	1.90E-01	9.72E+00	1.77E-01	7
55	2.22E-01	1.08E+01	1.81E-01	7
60	1.90E-01	1.18E+01	1.81E-01	8
65	2.23E-01	1.29E+01	1.84E-01	8
70	1.90E-01	1.38E+01	1.85E-01	9
75	2.23E-01	1.50E+01	1.87E-01	9
80	1.90E-01	1.59E+01	1.87E-01	10
85	2.23E-01	1.70E+01	1.89E-01	10
90	1.90E-01	1.80E+01	1.89E-01	11
95	2.23E-01	1.91E+01	1.91E-01	11
100	1.90E-01	2.00E+01	1.91E-01	12
105	2.23E-01	2.12E+01	1.92E-01	12
110	1.90E-01	2.21E+01	1.92E-01	13
115	2.23E-01	2.32E+01	1.94E-01	13
120	1.90E-01	2.42E+01	1.93E-01	14
125	2.23E-01	2.53E+01	1.95E-01	14
130	1.90E-01	2.62E+01	1.94E-01	15
135	2.23E-01	2.74E+01	1.95E-01	15
140	1.90E-01	2.83E+01	1.95E-01	16
145	2.23E-01	2.94E+01	1.96E-01	16
150	1.90E-01	3.04E+01	1.96E-01	17

Example 5 -- EXTRAN Version 1.2
 Run on 10/11/1990 at 16:07:49

DATA FORMAT:

MASS BALANCE: TANK, CURRENT RELEASE, POOL, FLASHED, EVAPORATED

POOL STATUS: VOLUME, RADIUS, AREA, DEPTH, TEMPERATURE

ENERGY BUDGET: NET SW, NET LW, ATM CONV, GRND COND, NET FLUX

TIME SINCE RELEASE = 0	TOTAL NUMBER OF PUFFS RELEASED = 1
MASS BALANCE 995.00	5.00 .00 5.00 .00
POOL STATUS .00	.00 .00 .00 .00
ENERGY BUDGET .00	.00 .00 .00 .00
TIME SINCE RELEASE = 10	TOTAL NUMBER OF PUFFS RELEASED = 2
MASS BALANCE 990.00	5.00 .00 5.00 .00
POOL STATUS .00	.00 .00 .00 .00
ENERGY BUDGET .00	.00 .00 .00 .00

Example 5 -- EXTRAN Version 1.2

RUN DATE = 10/11/1990 RUN TIME = 16:07:49

SCENARIO:

Release Type = Gas Tank Leak
Initial Mass (Ci) = 1000.
Release Rate (Ci/sec) = 5.00E-01
Release Height (m) = 25.0
Storage Temperature (C) = 20.0
Intake Distance (m) = 50.
Intake Height (m) = 25.0
Building Area (m**2) = 2000.
Vent Flow (m**3/s) = 10.00

ENVIRONMENTAL CONDITIONS:

Wind Speed (m/sec) = 4.0
Atmospheric Stability Class = 5
Air Temperature (C) = 15.0
Atmospheric Pressure (mm Hg) = 730.0

EFFLUENT CHARACTERISTICS:

Material Released = KRYPTON-85
Molecular Weight (gm/mole) = 84.9

MODEL PARAMETERS:

Puff Release Interval (sec) = 2
Time Step (sec) = 1
Delay Between Release and Intake (sec) = 7
Threshold Concentration (mCi/m**3) = 2.09E-05

RESULTS:

Average Concentration During First Two Minutes
After Arrival of Plume (mCi/m**3) = 3.80E-01
Exposure Two Minutes After Arrival (mCi-sec/m**3) = 4.60E+01
Time From Plume Arrival to Max. Conc. (sec) = 23.
Max. Conc. in Two Minutes After Arrival (mCi/m**3) = 3.93E-01

ADDITIONAL OUTPUT FILES:

EXCR1607.002
EXMB1607.002

Example 5 -- EXTRAN Version 1.2
 Run on 10/11/1990 at 16:07:49

TIME (sec)	CONCENTRATION (mCi/m**3)	EXPOSURE (mCi-sec/m**3)	MEAN CONC. (mCi/m**3)	NUM OF PUFFS
0	4.53E-04	4.53E-04	4.53E-04	4
1	1.29E-02	1.34E-02	6.68E-03	5
2	7.37E-02	8.71E-02	2.90E-02	5
3	1.71E-01	2.58E-01	6.44E-02	6
4	2.60E-01	5.18E-01	1.04E-01	6
5	3.22E-01	8.40E-01	1.40E-01	7
6	3.58E-01	1.20E+00	1.71E-01	7
7	3.76E-01	1.57E+00	1.97E-01	8
8	3.85E-01	1.96E+00	2.18E-01	8
9	3.90E-01	2.35E+00	2.35E-01	9
10	3.91E-01	2.74E+00	2.49E-01	9
11	3.93E-01	3.13E+00	2.61E-01	10
12	3.93E-01	3.53E+00	2.71E-01	10
13	3.93E-01	3.92E+00	2.80E-01	11
14	3.93E-01	4.31E+00	2.87E-01	11
15	3.93E-01	4.71E+00	2.94E-01	12
16	3.93E-01	5.10E+00	3.00E-01	12
17	3.93E-01	5.49E+00	3.05E-01	13
18	3.93E-01	5.88E+00	3.10E-01	13
19	3.93E-01	6.28E+00	3.14E-01	14
20	3.93E-01	6.67E+00	3.18E-01	14
21	3.93E-01	7.06E+00	3.21E-01	15
22	3.93E-01	7.46E+00	3.24E-01	15
23	3.93E-01	7.85E+00	3.27E-01	16
24	3.93E-01	8.24E+00	3.30E-01	16
25	3.93E-01	8.64E+00	3.32E-01	17
26	3.93E-01	9.03E+00	3.34E-01	17
27	3.93E-01	9.42E+00	3.37E-01	18
28	3.93E-01	9.82E+00	3.39E-01	18
29	3.93E-01	1.02E+01	3.40E-01	19
30	3.93E-01	1.06E+01	3.42E-01	19

Example 5 -- EXTRAN Version 1.2
 Run on 10/11/1990 at 16:07:49

DATA FORMAT:

MASS BALANCE: TANK, CURRENT RELEASE, POOL, FLASHED, EVAPORATED

POOL STATUS: VOLUME, RADIUS, AREA, DEPTH, TEMPERATURE

ENERGY BUDGET: NET SW, NET LW, ATM CONV, GRND COND, NET FLUX

TIME SINCE RELEASE = 0	TOTAL NUMBER OF PUFFS RELEASED = 1
MASS BALANCE 999.00	1.00 .00 1.00 .00
POOL STATUS .00	.00 .00 .00 .00
ENERGY BUDGET .00	.00 .00 .00 .00
TIME SINCE RELEASE = 2	TOTAL NUMBER OF PUFFS RELEASED = 2
MASS BALANCE 998.00	1.00 .00 1.00 .00
POOL STATUS .00	.00 .00 .00 .00
ENERGY BUDGET .00	.00 .00 .00 .00

APPENDIX B

CODE LISTINGS

APPENDIX B

CODE LISTINGS

PROGRAM EXTRAN

```
C*****  
C  
C      EXTRAN                                VERSION 1.2  
C      External Transport Dispersion Model For Control Room  
C      Habitability Assessments  
C  
C      J.V. Ramsdell  
C      Pacific Northwest Laboratory  
C      PO Box 999  
C      Richland, Washington 99352  
C  
C      Created: 11/88  
C      Updated: 10/90  
C  
C      Description: Controlling program for estimating concentration  
C                      time histories following release of a gas or  
C                      volatile liquid. Based on NUREG/CR-5055 and  
C                      NUREG-0570.  
C  
C      Relationship to other modules:  
C  
C      Makes calls to: CEPLOT, CHIT, INPUT, MODELPAR, NSIG, PUFFINIT,  
C                      PUFFMASS, RELPUFF, RINPUT, WSIG  
C  
C      Called from:      NONE  
C*****
```

```
INCLUDE 'EFFLUENT.INC'  
INCLUDE 'ENVIRON.INC'  
INCLUDE 'OPTIONS.INC'  
INCLUDE 'POOL.INC'  
INCLUDE 'PRINT.INC'  
INCLUDE 'PUFF.INC'  
INCLUDE 'SCENARIO.INC'  
  
INTEGER*2 time, time_one, puffid, i, iflg, ITER,  
.      YY, MM, DD, HH, MIN, SS, HS  
  
REAL*4 wsigy, wsigz, delta_dist, maxconc, maxtime, cur_rel,  
.      tty, ttz, chimin
```

```

CHARACTER formfeed, linefeed, yn, UC
CHARACTER*8 RTIME
CHARACTER*10 RDATE
CHARACTER*20 gname
CHARACTER*70 title

formfeed = CHAR(12)
linefeed = CHAR(10)

PRTFILE = 'EXPRO000.000'
CRONFILE = 'EXCR0000.000'
MBFILE = 'EXMB0000.000'

CALL GETDAT( YY,MM,DD )
CALL GETTIM( HH,MIN,SS,HS )

RDATE = ' / / '
WRITE( RDATE(1:2), '(I2)' ) MM
WRITE( RDATE(4:5), '(I2)' ) DD
WRITE( RDATE(7:10), '(I4)' ) YY

RTIME = ' : : '
WRITE( RTIME(1:2), '(I2.2)' ) HH
WRITE( RTIME(4:5), '(I2.2)' ) MIN
WRITE( RTIME(7:8), '(I2.2)' ) SS

WRITE(*,11) RDATE, RTIME
11 FORMAT(10X,'PROGRAM RUN ', A10, ' AT ', A8)

```

```
run_count = 1
```

C NAME AND OPEN OUTPUT FILES

```

WRITE( PRTFILE(5:6), '(I2.2)' ) HH
WRITE( CRONFILE(5:6), '(I2.2)' ) HH
WRITE( MBFILE(5:6), '(I2.2)' ) HH

WRITE( PRTFILE(7:8), '(I2.2)' ) MIN
WRITE( CRONFILE(7:8), '(I2.2)' ) MIN
WRITE( MBFILE(7:8), '(I2.2)' ) MIN

WRITE( PRTFILE(10:12), '(I3.3)' ) run_count
WRITE( CRONFILE(10:12), '(I3.3)' ) run_count
WRITE( MBFILE(10:12), '(I3.3)' ) run_count

CALL input(title,RDATE,RTIME,gname)

```

C RE-ENTRY POINT FOR MULTIPLE MODEL RUNS

```
1000 CONTINUE
```

```
iflg = 0
time_one = 0
```

C COMPUTE MODEL PARAMETERS

```
WRITE(*,'(/10X,A)') 'COMPUTING MODEL RUN PARAMETERS '
```

```
CALL modelpar(chimin)
```

```
12 IF( statflg ) WRITE(12,12) TITLE, RDATE, RTIME
  FORMAT( /7X, A70, /7X, 'Run on ', A10, ' at ', A8,
.   //7X, 'DATA FORMAT:', /7X,
.   'MASS BALANCE: TANK, CURRENT RELEASE, POOL',
.   ' FLASHED, EVAPORATED', /7X, 'POOL STATUS: VOLUME, RADIUS',
.   ' AREA, DEPTH, TEMPERATURE', /7X, 'ENERGY BUDGET: NET SW, NET LW',
.   ' ATM CONV, GRND COND, NET FLUX' / )
```

C ENTERING TIME STEP LOOP

```
ITER = 0
count = 0
numpuffs = 0
maxconc = 0.0
pool_mass = 0.0
```

```
WRITE(*,'(/10X,A)') 'ENTERING DIFFUSION COMPUTATION LOOP '
```

```
DO time = 0, 1800, delta_time
```

C DETERMINE IF IT IS TIME TO RELEASE ANOTHER PUFF

```
. IF( (MOD(time,pri) .EQ. 0) .AND.
.   ( (tank_mass .GT. 0.0) .OR. (pool_mass .GT. 0.0) ) ) THEN
  pmass1 = 0.0
  pmass2 = 0.0
  CALL puffmass( pmass1, pmass2, time )
  IF( numpuffs .EQ. 0 ) THEN
    chimin = chimin * AMAX1( pmass1, pmass2 )
  ENDIF
  CALL puffinit
  CALL relpuff
```

C OUTPUT MASS AND ENERGY BALANCE

```
  IF( rel_type .LE. 2 ) THEN
    cur_rel = rel_mass + pmass1
  ELSE
    cur_rel = pmass1
  ENDIF

  IF( statflg ) THEN
    ITER = ITER + 1
    IF( MOD(ITER,11) .EQ. 0 ) THEN
      WRITE(12,12) TITLE, RDATE, RTIME
      ITER = 0
    ENDIF
```

```

        WRITE(12,15) time, numpuffs,
        .      tank_mass, cur_rel, pool_mass, pmass1, pmass2,
        .      pool_vol, pool_radius, pool_area, pool_thick, pool_temp,
        .      net_swrad, net_lwrad, air_conv, grnd_cond, net_flux
15     FORMAT(7x,'TIME SINCE RELEASE = ',I4,5X,
        .      'TOTAL NUMBER OF PUFFS RELEASED = ',
        .      I4, /7X, 'MASS BALANCE ', 5F10.2, /7X,'POOL STATUS  ',
        .      5F10.2, /7X, 'ENERGY BUDGET', 5F10.2)
        ENDIF

        ENDIF

C      MOVE AND DIFFUSE ALL PUFFS USING NRC SIGMA CURVES AND
C      BUILDING WAKE IF TV >= 0

        DO puffid=1, numpuffs
            puffage(puffid) = puffage(puffid) + FLOAT(delta_time)
            delta_dist = delta_time *ubar

            CALL nsig(delta_dist, puffnsigy(puffid), puffnsigz(puffid))

            IF( (pufftvx(puffid) .GE. 0.0) .AND.
                .      (pufftvz(puffid) .GE. 0.0) ) THEN
                tty = puffage(puffid) + pufftvx(puffid)
                ttz = puffage(puffid) + pufftvz(puffid)
                CALL wsig(tty, ttz, wsigy, wsigz)
            ELSE
                wsigy = 0.0
                wsigz = 0.0
            ENDIF

            pufftsigy(puffid) = SQRT(puffnsigy(puffid)**2 + wsigy**2)
            pufftsigz(puffid) = SQRT(puffnsigz(puffid)**2 + wsigz**2)

        ENDDO

C      COMPUTE CONCENTRATION, EXPOSURE, AND MEAN CONCENTRATION

        CALL chit( time, time_one, chimin )

        IF( (iflg .EQ. 0) .AND. (time_one .GT. 0) ) THEN
            iflg = 1
            IF( prtf1g1 ) THEN

C      OUTPUT TO PRINTER

            WRITE(3,'(10X,A,I4)')
            .      ' Delay Between Release and Intake (sec) = ', time_one
            IF( ppmflg ) THEN
                WRITE(3,'(10X,A,1PE11.2)')
                .      ' Threshold Concentration (ppm) = ',
                .      chimin * 1.0E3 * ppmconv

```

```

        WRITE(3,'(10X,A,1PE11.2)')
        ' To convert ppm to g/m**3, multiply by      ', 1./ppmconv

        ELSE IF( ciflg ) THEN
            WRITE(3,'(10X,A,1PE11.2)')
            ' Threshold Concentration      (mCi/m**3) = ',
            chimin * 1.0E3
        ELSE
            WRITE(3,'(10X,A,1PE11.2)')
            ' Threshold Concentration      (g/m**3) = ',
            chimin * 1.0E3
            WRITE(3,'(10X,A,1PE11.2)')
            ' To convert g/m**3 to ppm, multiply by      ', ppmconv
        ENDIF
    ENDIF

    IF( prtflg2 ) THEN

        C          OUTPUT TO FILE

            WRITE(10,'(10X,A,I4)')
            ' Delay Between Release and Intake (sec) = ', time_one
            IF( ppmflg ) THEN
                WRITE(10,'(10X,A,1PE11.2)')
                ' Threshold Concentration      (ppm) = ',
                chimin * 1.0E3 * ppmconv
                WRITE(10,'(10X,A,1PE11.2)')
                ' To convert ppm to g/m**3, multiply by      ', 1./ppmconv

            ELSE IF( ciflg ) THEN
                WRITE(10,'(10X,A,1PE11.2)')
                ' Threshold Concentration      (mCi/m**3) = ',
                chimin * 1.0E3
            ELSE
                WRITE(10,'(10X,A,1PE11.2)')
                ' Threshold Concentration      (g/m**3) = ',
                chimin * 1.0E3
                WRITE(10,'(10X,A,1PE11.2)')
                ' To convert g/m**3 to ppm, multiply by      ', ppmconv
            ENDIF
        ENDIF

        ENDIF

        IF(count .LE. 90) THEN
            CYCLE
        ELSE IF(count .EQ. 181) THEN
            GOTO 2001
        ELSE IF( (count .EQ. 91) .AND. (ttime(count) .GT. 270) ) THEN
            GOTO 2001
        ENDIF
    ENDDO

```

2001 CONTINUE

```
IF( ppmflg ) THEN
C   CONVERT g/m**3 TO ppm
      DO i = 1, count
          conc(i) = conc(i) * ppmconv
          avconc(i) = avconc(i) * ppmconv
      ENDDO
  ENDIF

  WRITE(*,'(/10X,A)') 'WRITING OUT RESULTS'
  IF( prtflg1 ) WRITE(3,'(/10X,A)') ' RESULTS:'
  IF( prtflg2 ) WRITE(10,'(/10X,A)') ' RESULTS:'

  DO i=1, count
      IF( (ttime(i) .LE. 120) .AND. (conc(i) .GT. maxconc) ) THEN
          maxconc = conc(i)
          maxtime = ttime(i)
      ENDIF
      IF( ( (i .LE. 180) .AND.
.          (ttime(i) .LE. 120) .AND. (ttime(i+1) .GT. 120) )
.          .OR. ( (i .EQ. 181) .AND. (ttime(i-1) .LT. 120) ) ) THEN
          IF( prtflg1 ) THEN
              IF( ppmflg ) THEN
                  WRITE(3,40)
                  ' Average Concentration During First Two Minutes',
                  ' After Arrival of Plume           (ppm) = ', avconc(i)
40              FORMAT(10x,A,/10x,A,1PE11.2)
              ELSE IF( ciflg ) THEN
                  WRITE(3,40)
                  ' Average Concentration During First Two Minutes',
                  ' After Arrival of Plume           (mCi/m**3) = ', avconc(i)
              ELSE
                  WRITE(3,40)
                  ' Average Concentration During First Two Minutes',
                  ' After Arrival of Plume           (g/m**3) = ', avconc(i)
              ENDIF
              IF( ciflg ) THEN
                  WRITE(3,60)
                  ' Exposure Two Minutes After Arrival (mCi-sec/m**3) = ', expos(i)
              ELSE
                  WRITE(3,60)
                  ' Exposure Two Minutes After Arrival (g-sec/m**3) = ', expos(i)
              ENDIF
          ENDIF
      ENDIF
  END
```

```

        ENDIF
    ENDIF

    IF( prtflg2 ) THEN
        IF( ppmflg ) THEN
            WRITE(10,40)
        ' Average Concentration During First Two Minutes',
        ' After Arrival of Plume (ppm) = ', avconc(i)
        .
        ELSE IF( ciflg ) THEN
            WRITE(10,40)
        ' Average Concentration During First Two Minutes',
        ' After Arrival of Plume (mCi/m**3) = ', avconc(i)
        .
        ELSE
            WRITE(10,40)
        ' Average Concentration During First Two Minutes',
        ' After Arrival of Plume (g/m**3) = ', avconc(i)
        .
        ENDIF

        IF( ciflg ) THEN
            WRITE(10,60)
        ' Exposure Two Minutes After Arrival (mCi-sec/m**3) = ', expos(i)
        .
        ELSE
            WRITE(10,60)
        ' Exposure Two Minutes After Arrival (g-sec/m**3) = ', expos(i)
        .
        ENDIF
    ENDIF

    GOTO 3001

    ENDIF
ENDDO

3001 CONTINUE

    IF( prtflg1 ) THEN
        WRITE(3,50)
        ' Time From Plume Arrival to Max. Conc. (sec) = ', maxtime
    .
    50 FORMAT(10X,A,F5.0)

        IF( ppmflg ) THEN
            WRITE(3,60)
            ' Max. Conc. in Two Minutes After Arrival (ppm) = ', maxconc
    .
    60 FORMAT(10x,A,1PE11.2)
        ELSE IF( ciflg ) THEN
            WRITE(3,60)
            ' Max. Conc. in Two Minutes After Arrival (mCi/m**3) = ',
```

```

        .                                         maxconc
        ELSE
        WRITE(3,60)
        ' Max. Conc. in Two Minutes After Arrival (g/m**3) = ', maxconc
        .
        ENDIF
ENDIF

IF( prtflg2 ) THEN
WRITE(10,50)
' Time From Plume Arrival to Max. Conc. (sec) = ', maxtime
.

IF( ppmflg ) THEN
WRITE(10,60)
' Max. Conc. in Two Minutes After Arrival (ppm) = ', maxconc
.
ELSE IF( ciflg ) THEN
WRITE(10,60)
' Max. Conc. in Two Minutes After Arrival (mCi/m**3) = ', maxconc
.
ELSE
WRITE(10,60)
' Max. Conc. in Two Minutes After Arrival (g/m**3) = ', maxconc
.
ENDIF
ENDIF

IF( prtflg1 .AND. (prtflg2 .OR. histflg2 .OR. statflg) ) THEN
WRITE(3, '(/10X,A)' ) 'OUTPUT FILES: '
IF( prtflg2 ) WRITE(3,'(15X,A)' ) PRTFILE
IF( histflg2 ) WRITE(3,'(15X,A)' ) CRONFILE
IF( statflg ) WRITE(3,'(15X,A)' ) MBFILE
ENDIF

IF( prtflg2 .AND. (histflg2 .OR. statflg) ) THEN
WRITE(10, '(/10X,A)' ) 'ADDITIONAL OUTPUT FILES: '
IF( histflg2 ) WRITE(10,'(15X,A)' ) CRONFILE
IF( statflg ) WRITE(10,'(15X,A)' ) MBFILE
ENDIF

C PLOT DATA TO PRINTER
IF( pltflg ) CALL ceplot( title,RDATE,RTIME,gname )
C WRITE INFORMATION TO THE PRINTER IF histflg1 IS TRUE
IF( histflg1 ) THEN
WRITE(3,*) formfeed
WRITE(3,19) TITLE, RDATE, RTIME
19 FORMAT( 7X, A70, /7X, 'Run on ', A10, ' at ', A8 )
WRITE(3,*) linefeed

```

```

      WRITE(3,20)
20   FORMAT(7X, ' TIME', 3X, 'CONCENTRATION', 4X, '      EXPOSURE',
        .           4X, '  MEAN CONC.', 3X, 'NUM OF PUFFS')

      IF( ppmflg ) THEN
        WRITE(3,30)
30   FORMAT(7X, '(sec)', 11X, '(ppm)', 4X, '(g-sec/m**3)', 11X, '(ppm)')
        WRITE(3,*) 1inefeed
      ELSE IF( ciflg ) THEN
        WRITE(3,37)
37   FORMAT(7X, '(sec)', 6X, '(mCi/m**3)', 2X, '(mCi-sec/m**3)', 5X,
        .           '(mCi/m**3)')
        WRITE(3,*) 1inefeed
      ELSE
        WRITE(3,31)
31   FORMAT(7X, '(sec)', 8X, '(g/m**3)', 4X, '(g-sec/m**3)', 8X,
        .           '(g/m**3)')
        WRITE(3,*) 1inefeed
      ENDIF

      DO i=1, 55
        WRITE(3,32) ttime(i), conc(i), expos(i), avconc(i), npuffs(i)
32   FORMAT( 8X, I4, 3(4X, 1PE12.2), 6X, I4 )
        IF(i .GE. count) GOTO 6001
      ENDDO

      WRITE(3,*) formfeed
      WRITE(3,19) TITLE, RDATE, RTIME
      WRITE(3,20)
      IF( ppmflg ) THEN
        WRITE(3,30)
      ELSE IF( ciflg ) THEN
        WRITE(3,37)
      ELSE
        WRITE(3,31)
      ENDIF

      DO i=56, 111
        WRITE(3,32) ttime(i), conc(i), expos(i), avconc(i), npuffs(i)
        IF(i .GE. count) GOTO 6001
      ENDDO

      WRITE(3,*) formfeed
      WRITE(3,19) TITLE, RDATE, RTIME
      WRITE(3,20)
      IF( ppmflg ) THEN
        WRITE(3,30)
      ELSE IF( ciflg ) THEN
        WRITE(3,37)
      ELSE
        WRITE(3,31)
      ENDIF

```

```

DO i=112, 167
  WRITE(3,32) ttime(i), conc(i), expos(i), avconc(i), npuffs(i)
  IF(i .GE. count) GOTO 6001
ENDDO

  WRITE(3,*) formfeed
  WRITE(3,19) TITLE, RDATE, RTIME
  WRITE(3,20)
  IF( ppmflg ) THEN
    WRITE(3,30)
  ELSE IF( ciflg ) THEN
    WRITE(3,37)
  ELSE
    WRITE(3,31)
  ENDIF

  DO i=168, 181
    WRITE(3,32) ttime(i), conc(i), expos(i), avconc(i), npuffs(i)
    IF(i .GE. count) GOTO 6001
  ENDDO
6001  CONTINUE
  WRITE(3,*) formfeed
ENDIF

C      WRITE RESULTS TO A FILE IF histflg2 IS TRUE

  IF( histflg2 ) THEN
    WRITE(11,19) TITLE, RDATE, RTIME
    WRITE(11,20)
    IF( ppmflg ) THEN
      WRITE(11,30)
    ELSE IF( ciflg ) THEN
      WRITE(11,37)
    ELSE
      WRITE(11,31)
    ENDIF
    DO i = 1, count
      WRITE(11,32) ttime(i), conc(i), expos(i), avconc(i), npuffs(i)
    ENDDO
  ENDIF

9000 CONTINUE

  IF( prtflg1 ) CLOSE(3)
  IF( prtflg2 ) CLOSE(10)
  IF( histflg2 ) CLOSE(11)
  IF( statflg ) CLOSE(12)

  WRITE(*,'(//10X,A,/10X,A\)')
  . 'EXTRAN RUN COMPLETE. DO YOU WISH TO REVISE THE ENVIRONMENTAL',
  . 'CONDITIONS AND RUN ANOTHER CASE? Y OR N? '

```

```

READ(*,'(A)') yn
IF( UC( yn ) .EQ. 'Y' ) THEN
    run_count = run_count + 1
C..... RESET ARRAYS TO ZERO
    WRITE(*,'(/10X,A\')') 'RESETTING ARRAYS'

    DO i = 1,181
        conc(i) = 0.0
        avconc(i) = 0.0
        expos(i) = 0.0
        ttime(i) = 0
        npuffs(i) = 0
    ENDDO

    DO i = 1,500
        puffm(i) = 0.0
        puffage(i) = 0.0
        pufftvy(i) = 0.0
        pufftvz(i) = 0.0
        puffnsigy(i) = 0.0
        puffnsigz(i) = 0.0
        pufftsigy(i) = 0.0
        pufftsigz(i) = 0.0
    ENDDO

    exposure = 0.0
    start = 0
    tank_mass = init_tank_mass
    rel_rate = init_rel_rate
    rel_mass = 0.0
    pool_mass = 0.0
    pool_temp = 0.0
    pool_vol = 0.0
    pool_radius = 0.0
    pool_area = 0.0
    pool_thick = 0.0
    net_swrad = 0.0
    net_lwrad = 0.0
    lw_in = 0.0
    lw_out = 0.0
    air_conv = 0.0
    grnd_cond = 0.0
    net_flux = 0.0

C..... START DATA REVISION
    CALL RINPUT( title, RDATE, RTIME, gname )
    GOTO 1000

```

```
ELSE IF( UC( yn ) .NE. 'N' ) THEN
  GOTO 9000
ENDIF

END
```

```

SUBROUTINE CEPLOT( title, RDATE, RTIME, gname )

C*****
C
C      CEPLOT                      EXTRAN  Version 1.2
C      Plotting Subroutine
C
C      J. V. Ramsdell
C      Pacific Northwest Laboratory
C      PO Box 999
C      Richland, Washington  99352
C
C      Created: 11/88 from EVPLOT written 8/85 for Extreme Wind Analysis
C      Updated: 10/90
C
C      Relationship to other modules:
C
C          Makes calls to:  NONE
C
C          Called from:      EXTRAN
C*****
C
INCLUDE 'OPTIONS.INC'
INCLUDE 'PRINT.INC'

INTEGER CMAG, EMAG, IN, IP

CHARACTER*1 LPI8(2), LPI6(2), GRAPH(132,66),
+           LFEED, FFEED, PRCOND, PRNORM, GNAME1(20),
+           GTITLE(70)
CHARACTER*1 LEGEND1(40), LEGEND2(40), LEGEND3(40)
CHARACTER*2 L8,L6
CHARACTER*3 TEMP3
CHARACTER*4 TEMP4
CHARACTER*6 YAXIS1
CHARACTER*8 RTIME, YAXIS3
CHARACTER*10 RDATE
CHARACTER*13 YAXIS2
CHARACTER*20 GNAME
CHARACTER*29 DATTIM
CHARACTER*34 XAXIS
CHARACTER*40 LGND1, LGND2, LGND3
CHARACTER*70 TITLE

EQUIVALENCE (L8,LPI8(1)),(L6,LPI6(1))
EQUIVALENCE (GRAPH(40,51),GTITLE(1)), (GRAPH(40,54),GNAME1(1))
EQUIVALENCE (GRAPH(40,56),LEGEND1(1)), (GRAPH(40,57),LEGEND2(1)),
+           (GRAPH(40,58),LEGEND3(1))

```

```

DO J = 1,66
  DO I = 1,132
    GRAPH(I,J) = ' '
  ENDDO
ENDDO

DO I = 1,20
  GNAME1(I) = ' '
ENDDO

IF( ppmflg ) THEN
  LGND1 = 'C = CONCENTRATION (ppm)'
  LGND2 = 'A = AVERAGE CONCENTRATION (ppm)'
ELSE IF( ciflg ) THEN
  LGND1 = 'C = CONCENTRATION (mCi/m**3)'
  LGND2 = 'A = AVERAGE CONCENTRATION (mCi/m**3)'
ELSE
  LGND1 = 'C = CONCENTRATION (g/m**3)'
  LGND2 = 'A = AVERAGE CONCENTRATION (g/m**3)'
ENDIF
IF( ciflg ) THEN
  LGND3 = 'E = TOTAL EXPOSURE [(mCi-sec)/m**3]'
ELSE
  LGND3 = 'E = TOTAL EXPOSURE [(g-sec)/m**3]'
ENDIF

C   SET PRINTER CONTROLS

LFEED = CHAR(10)
FFEED = CHAR(12)

C   CONDENSED PRINT

PRCOND = CHAR(15)

C   NORMAL PRINT

PRNORM = CHAR(18)

C   6 LINES/INCH

LPI6(1) = CHAR(27)
LPI6(2) = '2'

C   8 LINES /INCH

LPI8(1) = CHAR(27)
LPI8(2) = '0'

C   SET BORDERS FOR PLOT

```

```

C      HORIZONTAL BORDERS
DO 100  N = 22,112
  K = MOD( N-22,10 )
  IF( K .NE. 0 ) THEN
    GRAPH(N,1) = '·'
    GRAPH(N,61) = '·'
  ELSE
    GRAPH(N,1) = '+'
    GRAPH(N,2) = '+'
    GRAPH(N,60) = '+'
    GRAPH(N,61) = '+'
  ENDIF
100 CONTINUE

C      VERTICAL BORDERS
DO 101  N = 1,61
  K = MOD( N-1,15 )
  IF( K .NE. 0 ) THEN
    GRAPH(22,N) = '-'
    GRAPH(112,N) = '-'
  ELSE
    GRAPH(22,N) = '+'
    GRAPH(23,N) = '+'
    GRAPH(111,N) = '+'
    GRAPH(112,N) = '+'
  ENDIF
101 CONTINUE
GRAPH(22,2) = '+'
GRAPH(22,60) = '+'
GRAPH(112,2) = '+'
GRAPH(112,60) = '+'

C      ADD TIME SCALE

IF( count .GT. 91 ) THEN
  ISTEP = 2
ELSE
  ISTEP = 1
ENDIF
K1 = 10 * ISTEP + 1
K2 = 90 * ISTEP + 1
KSTEP = 10 * ISTEP

GRAPH(22,63) = '0'
DO 105  K = K1,K2,KSTEP
  WRITE( TEMP4(1:4), '(I4)' ) TTIME(K)
  IF( ISTEP .EQ. 1 ) THEN
    I1 = K + 18
  ELSE
    I1 = K / ISTEP + 19
  ENDIF
  DO 104  II = 1,4
    GRAPH(I1+II,63) = TEMP4(II:II)

```

```
104  CONTINUE
105  CONTINUE
```

C DETERMINE RANGES FOR CONCENTRATION AND EXPOSURE SCALES

```
CMAX = -99.0
EMAX = -99.0
DO 110  I = 1,count
    CMAX = AMAX1(conc(I),CMAX)
    EMAX = AMAX1(expos(I),EMAX)
110  CONTINUE

IF( CMAX .LT. 1. ) THEN
    ICMIN = IFIX( ALOG10(CMAX) ) - 4
ELSE
    ICMIN = IFIX( ALOG10(CMAX) + 1. ) - 4
ENDIF
IF( EMAX .LT. 1. ) THEN
    IEMIN = IFIX( ALOG10(EMAX) ) - 4
ELSE
    IEMIN = IFIX( ALOG10(EMAX) + 1. ) - 4
ENDIF
```

C PLACE SCALE VALUES IN CHARACTER STRINGS

```
K = 4
DO 120  J = 1,61,15
    CMAG = ICMIN + K
    EMAG = IEMIN + K
    WRITE( TEMP3(1:3), '(I3)' ) CMAG
    DO 118  II = 1,3
        GRAPH(17+II,J) = TEMP3(II:II)
118  CONTINUE
    WRITE( TEMP3(1:3), '(I3)' ) EMAG
    DO 119  II = 1,3
        GRAPH(113+II,J) = TEMP3(II:II)
119  CONTINUE
    K = K - 1
120  CONTINUE
```

C COMPUTE NORMALIZED PLOTTING POSITIONS AND PLACE SYMBOLS IN GRAPH

```
DO 200  I= 1,count,ISTEP

    IF( ISTEP .EQ. 1 ) THEN
        IP = 21 + I
    ELSE
        IP = 21 + (I+1)/2
    ENDIF

    IF( avconc(I) .GT. 0.0 ) THEN
        ALGAC = ALOG10( avconc(I) )
        JA = 61 - INT( 15.0 * ( ALGAC - ICMIN ) )
```

```

    IF( JA .GE. 1 .AND. JA .LE. 61 ) GRAPH(IP,JA) = 'A'
ENDIF

IF( expos(I) .GT. 0.0 ) THEN
    ALOGE = ALOG10( expos(I) )
    JE = 61 - INT( 15.0 * ( ALOGE - IEMIN ) )
    IF( JE .GE. 1 .AND. JE .LE. 61 ) GRAPH(IP,JE) = 'E'
ENDIF

IF( conc(I) .GT. 0.0 ) THEN
    ALOGC = ALOG10( conc(I) )
    JC = 61 - INT( 15.0 * ( ALOGC - ICMIN ) )
    IF( JC .GE. 1 .AND. JC .LE. 61 ) GRAPH(IP,JC) = 'C'
ENDIF

```

200 CONTINUE

C ADD AXIS LABELS, TITLE AND LEGEND

```

DATTIM = 'RUN ON           AT           '
WRITE( DATTIM(8:17), '(A10)' ) RDATE
WRITE( DATTIM(22:29), '(A8)' ) RTIME

XAXIS = 'TIME AFTER ARRIVAL AT INTAKE (sec)'
YAXIS1 = 'LOG OF'
YAXIS2 = 'CONCENTRATION'
YAXIS3 = 'EXPOSURE'

IN = 1
DO 205 II = 1,70
    GTITLE(II) = TITLE(II:II)
    IF( II .LE. 6 ) THEN
        GRAPH(7+II,30) = YAXIS1(II:II)
        GRAPH(119+II,30) = YAXIS1(II:II)
    ENDIF
    IF( II .LE. 8 ) GRAPH(119+II,32) = YAXIS3(II:II)
    IF( II .LE. 13 ) GRAPH(4+II,32) = YAXIS2(II:II)
    IF( II .LE. 20 ) THEN
        GNAME1(II) = GNAME(II:II)
    ENDIF
    IF( II .LE. 29 ) GRAPH(39+II,52) = DATTIM(II:II)
    IF( II .LE. 34 ) GRAPH(49+II,65) = XAXIS(II:II)
    IF( II .LE. 40 ) THEN
        LEGEND1(II) = LGND1(II:II)
        LEGEND2(II) = LGND2(II:II)
        LEGEND3(II) = LGND3(II:II)
    ENDIF

```

205 CONTINUE

C PREPARE FOR PLOTTING DATA

```

WRITE(3,*) FFEED,L8,PRCOND
WRITE(3,*) LFEED,LFEED,LFEED,LFEED,LFEED,LFEED

```

```
C      PLOT GRAPH
      DO 301  J = 1,66
            WRITE(3,300) (GRAPH(I,J), I=1,132)
300      FORMAT(15X,132A1)
301  CONTINUE

C      RESTORE PRINTER
      WRITE(3,*) L6, PRNORM
      RETURN
      END
```

```
SUBROUTINE CHIT(time, time_one, chimin)
```

```
*****  
C  
C  
C     CHIT                               EXTRAN  Version 1.2  
C     Computes Puff Concentration  
C  
C     J.V. Ramsdell  
C     Pacific Northwest Laboratory  
C     PO Box 999  
C     Richland, Washington  99352  
C  
C     Created: 10/88  
C     Updated: 10/90  
C  
C     Description: Computes concentration within the puffs.  
C  
C     Relationship to other modules:  
C  
C     Makes calls to:  NONE  
C  
C     Called from:      EXTRAN  
C*****
```

```
INCLUDE 'ENVIRON.INC'  
INCLUDE 'PRINT.INC'  
INCLUDE 'PUFF.INC'  
INCLUDE 'SCENARIO.INC'
```

```
REAL*4  chi_cc, f_of_y, g_of_h, radius, chimin,  
.      meanchi, chi, leadedge, twopi, chiprint,  
.      meanchiprint, exposprint, center, trailedge
```

```
INTEGER*2 i, time, time_one, pstart
```

```
C..... COMPUTE CONCENTRATION, EXPOSURE, AND MEAN CONCENTRATION
```

```
twopi = 2.0 * 3.14159  
chi  = 0.0  
pstart = MAX0(1,start)  
DO 1000 i=pstart, numpuffs  
    center = puffage(i) *ubar  
    radius = 4.24 * pufftsigy(i)  
    leadedge = center + radius  
    trailedge = center - radius  
  
    IF(leadedge .GE. intake_dist)  THEN  
  
        chi_cc  = puffm(i) / (twopi**1.5  
        .          * pufftsigy(i)**2 * pufftsigz(i) + pri * vent_flow )  
        f_of_y = EXP(-.5 * ((intake_dist -  
        .          (puffage(i) *ubar) / pufftsigy(i))**2)
```

```

g_of_h = EXP(-.5 * ((rel_height - intake_height) /
                     pufftsigz(i))**2) +
                     EXP(-.5 * ((rel_height + intake_height) /
                     pufftsigz(i))**2)

chi = chi + (chi_cc * f_of_y * g_of_h)

IF( time_one .EQ. 0 ) THEN
  IF( chi .GE. chimin ) THEN
    time_one = time
  ELSE
    RETURN
  ENDIF
ENDIF

ENDIF

IF( trailedge .GT. intake_dist ) start = start + 1

1000 CONTINUE

exposure = exposure + (chi * delta_time)
meanchi = exposure / (time - time_one + delta_time)

C..... CONVERT FROM KG/M**3 TO GM/M**3

chiprint = chi * 1000.0
exposprint = exposure * 1000.0
meanchiprint = meanchi * 1000.0

IF((time_one .GT. 0) .AND. (count.LE.181))THEN
  count = count + 1
  npuffs(count) = numpuffs
  ttime(count) = time - time_one
  conc(count) = chiprint
  expos(count) = exposprint
  avconc(count) = meanchiprint
ENDIF

RETURN
END

```

SUBROUTINE DIFCOEF

```
*****
C
C      DIFCOEF                               EXTRAN Version 1.2
C      Computes Molecular Diffusion Coefficient
C
C      J.V. Ramsdell
C      Pacific Northwest Laboratory
C      PO Box 999
C      Richland, Washington 99352
C
C      Created: 10/89
C      Updated: 10/90
C
C      Description: DIFCOEF computes molecular diffusion coefficient
C      in estimating evaporation rate when a diffusion
C      coefficient is not provided in model input. The
C      Diffusion coefficient is computed at the liquid
C      boiling point for liquids with boiling points
C      below 0C and at 0C for other liquids. The method
C      is based on kinetic theory as described in Bird,
C      Stewart and Lightfoot 1960.
C
C      Relationship to other modules:
C
C      Makes calls to: NONE
C
C      Called from:     INPUTEF
*****

```

```
INCLUDE 'EFFLUENT.INC'
INCLUDE 'ENVIRON.INC'

REAL mwair, ekair, r0air, ekgas, r0gas, r012, tref3,
.      ek12, kte, colint

DATA mwair / 29.87 /, ekair / 97.0 /, r0air / 3.617 /
C      COMPUTE THE COLLISION DIAMETER
C      BS&L Equations 1.4-15 and 16.4-15

r0gas = 1.166 * ( molec_wt / src_density )**(1./3.)

r012 = (r0air + r0gas) / 2.

C      COMPUTE THE epsilon/k RATIO FOR THE MATERIAL
C      BS&L Equations 1.4-14 and 16.4-16

ekgas = 1.15 * (boil_point + 273.16)

ek12 = SQRT( ekair * ekgas )
```

```

C ESTIMATE THE COLLISION INTEGRAL FROM THE epsilon/k RATIO AND
C REFERENCE TEMPERATURE. THE VALUES IN B S AND L'S TABLE B-2
C ARE REPRESENTED BY POWER FUNCTIONS FOR THREE RANGES OF
C kT/epsilon.

tref3 = tref**3

kte = tref/ek12

IF( kte .LE. 1.6 ) THEN
  colint = 1.471 * kte**(-0.4926)
ELSE IF( kte .LE. 5.0 ) THEN
  colint = 1.3351 * kte**(-0.2863)
ELSE
  colint = 1.0946 * kte**(-0.1629)
ENDIF

C COMPUTE DIFFUSION COEFFICIENT
C B S & L Equation 16.4-13

diff_coef = 0.0018583 * SQRT( tref3 * (1.0/mwair + 1.0/molec_wt) )
.           / ( (air_press/760) * r012**2 * colint)

RETURN
END

```

```
SUBROUTINE INPUT(title,RDATE,RTIME,gname)
```

```
C*****  
C  
C      INPUT                                EXTRAN  Version 1.2  
C      Prompts User For Input Data  
C  
C      J.V. Ramsdell  
C      Pacific Northwest Laboratory  
C      PO Box 999  
C      Richland, Washington  99352  
C  
C      Created: 11/88  
C      Updated: 10/90  
C  
C      Description: Prompts user for input data into the WAKE model.  
C                  There are four types of input data:  
C                  1)  output control options  
C                  2)  release and receptor geometry  
C                  3)  source and effluent characteristics  
C                  4)  environmental data.  
C  
C      Relationship to other modules:  
C  
C      Makes calls to:  INPUTE, INPUTEF, INPUTO, INPUTS  
C  
C      Called from:    EXTRAN  
C*****
```

```
INCLUDE 'EFFLUENT.INC'  
INCLUDE 'ENVIRON.INC'  
INCLUDE 'OPTIONS.INC'  
INCLUDE 'SCENARIO.INC'  
  
REAL*4 air_dens_stp, std_temp, std_press, log_sat_press, ugcnst,  
.     pi, mol_vol  
  
CHARACTER formfeed, UC, yn  
CHARACTER*8 RTIME  
CHARACTER*10 RDATE  
CHARACTER*20 gname  
CHARACTER*70 title  
  
formfeed = CHAR(12)  
air_dens_stp = 1.29  
std_temp = 273.16  
std_press = 760.  
ugcnst = 8.3144  
pi = 3.14159
```

```

        WRITE(*,1)
1 FORMAT('' Program Title:  EXTRAN VERSION 1.2'//
+ ' Developed For:  U.S. Nuclear Regulatory Commission'/
+ '                               Office of Nuclear Regulatory Research'/
+ '                               Division of Reactor Accident Analysis'//
+ ' Date:          October 1990'//
+ ' NRC Contact(s): C. Ferrell      Phone: (FTS) 492 3944'/
+ ' Code Developer: J. V. Ramsdell  Phone: (509) 376-8626'/
+ '                               (FTS) 444-8626'//
+ ' Code Documentation: '/
+ '                               EXTRAN: A Computer Code For Estimating'
+ '                               Concentrations Of Toxic Substances At'
+ '                               Control Room Air Intakes'
+ '                               NUREG/CR-5656 '///
+ ' The program was prepared for an agency of the United States',
+ ' Government. Neither'/' the United States Government nor any',
+ ' agency thereof, nor any of their'/' employees, makes any',
+ ' warranty, expressed or implied, or assumes any legal',
+ ' liability or responsibilities for any third party' 's use',
+ ' or the results of such'/' use, of any portion of this',
+ ' program or represents that its use by such third'/' party',
+ ' would not infringe privately owned rights. '// )

```

```
PAUSE ' PRESS ENTER TO CONTINUE '
```

```
C   GET TITLE FOR RUN
```

```
WRITE(*,'(/A)') ' ENTER TITLE FOR OUTPUT -- 70 CHARACTER MAXIMUM'
READ(*,'(A)') title
```

```
C   GET INPUT OPTIONS
```

```
CALL INPUT0
```

```
C   PROMPT USER FOR GEOMETRY OF INTAKE AND RELEASE HEIGHT
```

```
WRITE(*,'(/A)') ' SCENARIO:'
```

```
100 CONTINUE
```

```
105 WRITE(*,'(/A,/A,/A,/A,/A,/A\')')
```

```
.
.           ' Available Release Scenarios ',
.           ' 1 = Liquid Tank Burst ',
.           ' 2 = Liquid Tank Leak ',
.           ' 3 = Gas Tank Burst',
.           ' 4 = Gas Tank Leak',
.           ' Enter Scenario Number; 1 Through 4 : '
```

```
READ(*,'(I2)',ERR=105) rel_type
```

```
IF( (rel_type .LT. 1 ) .OR. (rel_type .GT. 4) ) THEN
```

```
    WRITE(*,'(/A)') ' Out of Range; Enter 1 Through 4 '
```

```
    GOTO 105
```

```
ELSE
```

```
    WRITE(*,'(BN,I4)')      rel_type
```

```
ENDIF
```

```

106 WRITE(*,'(//A\)' ) ' The Scenario Selected is: '
  IF( rel_type .EQ. 1) THEN
    WRITE(*,'(30X,A)' ) ' Liquid Tank Burst '
  ELSE IF( rel_type .EQ. 2) THEN
    WRITE(*,'(30X,A)' ) ' Liquid Tank Leak'
  ELSE IF( rel_type .EQ. 3) THEN
    WRITE(*,'(30X,A)' ) ' Gas Tank Burst '
  ELSE IF( rel_type .EQ. 4) THEN
    WRITE(*,'(30X,A)' ) ' Gas Tank Leak'
  ELSE
    WRITE(*,'(//A,/A,/A//)' ) ' ****',
    ' Scenario Type Not Properly Defined',
    ' ****',
  .
  .
  .
  GOTO 105
ENDIF

IF( ciflg .AND. (rel_type .LE. 2) ) WRITE(*,'(//A/A/A/A//)' )
  .
  .
  .
  ' ****',
  ' ... WARNING ...',
  ' A Liquid Release in Ci will not give correct results',
  ' ****',
  .
  .
  .
  WRITE(*,'(A\)' ) ' IS SCENARIO CORRECT, Y or N? '
READ (*,'(A)',ERR=106) yn
IF( (UC(yn) .NE. 'Y') ) GOTO 100

CALL INPUTS

C..... PROMPT USER FOR ENVIRONMENTAL CONDITIONS
CALL INPUTE( rel_type )

C..... PROMPT USER FOR EFFLUENT CHARACTERISTICS
CALL INPUTEF( rel_type,gname)

C OPEN OUTPUT FILES
IF( prtflg1 .OR. pltflg .OR. histflg1 )
  .
  OPEN(UNIT=3, FILE='LPT1', STATUS='UNKNOWN')
IF( prtflg2 ) OPEN( UNIT=10,FILE=PRTFILE,STATUS='NEW' )
IF( histflg2 ) OPEN( UNIT=11,FILE=CRONFILE,STATUS='NEW' )
IF( statflg ) OPEN( UNIT=12,FILE=MBFILE,STATUS='NEW' )

C..... LIST INPUT DATA IN PRIMARY OUTPUT
IF( prtflg1 .OR. pltflg .OR. histflg1 ) THEN
  WRITE(3,2)
2  FORMAT(/10X,'Program Title: EXTRAN VERSION 1.2'//,
  + 10X,'Developed For: U.S. Nuclear Regulatory Commission'/
  + 10X,'                                Office of Nuclear Regulatory Research'/
  + 10X,'                                Division of Reactor Accident Analysis'//)

```

```

+ 10X,'Date:          October 1990'//
+ 10X,'NRC Contact(s): C. Ferrell      Phone: (FTS) 492 3944'/
+ 10X,'Code Developer: J. V. Ramsdell  Phone: (509) 376-8626'/
+ 10X,'                                         (FTS) 444-8626'//'
+ 10X,'Code Documentation: ' /
+ 10X,'                               EXTRAN: A Computer Code For Estimating'
+ 10X,'                               Concentrations Of Toxic Substances At'
+ 10X,'                               Control Room Air Intakes'
+ 10X,'                               NUREG/CR-5656'////
+ 10X,'The program was prepared for an agency of the United ',
+ 'States',//10X,'Government. Neither the United States ',
+ 'Government nor any',//10X,'agency thereof, nor any of their ',
+ 'employees, makes any',//10X,'warranty, expressed or implied',
+ 'or assumes any legal',//10X,'liability or responsibilities for',
+ 'any third party' 's use',//10X,'or the results of such use, of',
+ 'any portion of this program',//10X,'or represents that its use',
+ 'by such third party would not',//10X,'infringe privately',
+ 'owned rights. ' // )

      WRITE(3,3) title
3  FORMAT(/11X,A70)
      WRITE(3,4) RDATE, RTIME
4  FORMAT(/10X,' RUN DATE = ',A10,' RUN TIME = ',A8)
ENDIF

IF( prtflg1 ) THEN
      WRITE(3,*) formfeed
      WRITE(3,3) title
      WRITE(3,4) RDATE, RTIME

      WRITE(3,5)
5  FORMAT(/10X,' SCENARIO:')
      IF( rel_type .EQ. 1 ) THEN
          WRITE(3,6)
6      FORMAT(10X,' Release Type          = Liquid Tank Burst')
      ELSE IF( rel_type .EQ. 2 ) THEN
          WRITE(3,7)
7      FORMAT(10X,' Release Type          = Liquid Tank Leak')
      ELSE IF( rel_type .EQ. 3 ) THEN
          WRITE(3,8)
8      FORMAT(10X,' Release Type          = Gas Tank Burst')
      ELSE IF( rel_type .EQ. 4 ) THEN
          WRITE(3,9)
9      FORMAT(10X,' Release Type          = Gas Tank Leak')
      ELSE
          STOP ' !!!!!!! RELEASE TYPE ILL DEFINED !!!!!!! '
      ENDIF

      IF( ciflg ) THEN
          WRITE(3,10) tank_mass
10     FORMAT(10X,' Initial Activity (Ci) = ',F10.0)
          IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN
              WRITE(3,11) rel_rate

```

```

11      FORMAT(10X,' Release Rate      (Ci/sec) = ',1PE16.2)
      ENDIF
      ELSE
      WRITE(3,35) tank_mass
35      FORMAT(10X,' Initial Mass      (kg) = ',F10.0)
      IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN
      WRITE(3,36) rel_rate
36      FORMAT(10X,' Release Rate      (kg/sec) = ',1PE16.2)
      ENDIF
      ENDIF

      WRITE(3,12) rel_height
12      FORMAT(10X,' Release Height      (m) = ',F11.1)
      WRITE(3,13) tank_temp
13      FORMAT(10X,' Storage Temperature  (C) = ',F11.1)

      IF( rel_type .LT. 3 ) THEN
      WRITE(3,14) max_pool_rad
14      FORMAT(10X,' Maximum Pool Radius  (m) = ',F11.1)
      ENDIF

      WRITE(3,15) intake_dist
15      FORMAT(10X,' Intake Distance      (m) = ',F10.0)

      WRITE(3,16) intake_height
16      FORMAT(10X,' Intake Height      (m) = ',F11.1)

      WRITE(3,17) area
17      FORMAT(10X,' Building Area      (m**2) = ',F10.0)

      IF( rel_type .EQ. 4 ) THEN
      WRITE(3,18) vent_flow
18      FORMAT(10X,' Vent Flow      (m**3/s) = ',F12.2)
      ENDIF

      WRITE(3,19)
19      FORMAT(/10X,' ENVIRONMENTAL CONDITIONS:')
      WRITE(3,20)ubar
20      FORMAT(10X,' Wind Speed      (m/sec) = ',F10.1)
      WRITE(3,21)stab
21      FORMAT(10X,' Atmospheric Stability Class = ',I8)
      WRITE(3,22)air_temp
22      FORMAT(10X,' Air Temperature      (C) = ',F10.1)
      WRITE(3,23)air_press
23      FORMAT(10X,' Atmospheric Pressure      (mm Hg) = ',F10.1)
      IF( rel_type .LT. 3 ) THEN
      WRITE(3,24)sol_rad
24      FORMAT(10X,' Solar Radiation      (watts/m**2) = ',F10.1)
      iccover = ccover * 10
      WRITE(3,25)iccover
25      FORMAT(10X,' Cloud Cover      (tenths) = ',I8)
      WRITE(3,26)earth_temp
26      FORMAT(10X,' Ground Temperature      (C) = ',F10.1)

```

```

        ENDIF

        WRITE(3,27)
27      FORMAT(//10X,' EFFLUENT CHARACTERISTICS:')
        WRITE(3,28) gname
28      FORMAT(10X,' Material Released           = ',5X,A)
        WRITE(3,29) molec_wt
29      FORMAT(10X,' Molecular Weight      (gm/mole) = ',F10.1)
        IF( rel_type .LT. 3 ) THEN
          WRITE(3,30) boil_point
30      FORMAT(10X,' Initial Boiling Point      (C) = ',F10.1)
          WRITE(3,31) cp
31      FORMAT(10X,' Heat Capacity          (j/gm-C) = ',F12.3)
          WRITE(3,32) hv
32      FORMAT(10X,' Heat of Vapor.          (j/gm) = ',F10.1)
          WRITE(3,33) src_density
33      FORMAT(10X,' Specific Gravity        = ',F12.3)
          WRITE(3,34) diff_coeff
34      FORMAT(10X,' Diffusion Coef.          (cm**2/sec) = ',F12.3)
        ENDIF
      ENDIF

      IF( prtflg2 ) THEN
        WRITE(10,2)

        WRITE(10,3) title
        WRITE(10,4) RDATE, RTIME

        WRITE(10,5)
        IF( rel_type .EQ. 1 ) THEN
          WRITE(10,6)
        ELSE IF( rel_type .EQ. 2 ) THEN
          WRITE(10,7)
        ELSE IF( rel_type .EQ. 3 ) THEN
          WRITE(10,8)
        ELSE IF( rel_type .EQ. 4 ) THEN
          WRITE(10,9)
        ELSE
          STOP ' !!!!!! RELEASE TYPE ILL DEFINED !!!!!! '
        ENDIF

        IF( ciflg ) THEN
          WRITE(10,10) tank_mass
          IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN
            WRITE(10,11) rel_rate
          ENDIF
        ELSE
          WRITE(10,35) tank_mass
          IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN
            WRITE(10,36) rel_rate
          ENDIF
        ENDIF
      ENDIF

```

```

      WRITE(10,12) rel_height
      WRITE(10,13) tank_temp
      IF( rel_type .LT. 3 ) THEN
        WRITE(10,14) max_pool_rad
      ENDIF
      WRITE(10,15) intake_dist
      WRITE(10,16) intake_height
      WRITE(10,17) area
      IF( rel_type .EQ. 4 ) THEN
        WRITE(10,18) vent_flow
      ENDIF

      WRITE(10,19)
      WRITE(10,20) ubar
      WRITE(10,21) stab
      WRITE(10,22) air_temp
      WRITE(10,23) air_press
      IF( rel_type .LT. 3 ) THEN
        WRITE(10,24) sol_rad
        iccover = ccover * 10
        WRITE(10,25) iccover
        WRITE(10,26) earth_temp
      ENDIF

      WRITE(10,27)
      WRITE(10,28) gname
      WRITE(10,29) molec_wt
      IF( rel_type .LT. 3 ) THEN
        WRITE(10,30) boil_point
        WRITE(10,31) cp
        WRITE(10,32) hv
        WRITE(10,33) src_density
        WRITE(10,34) diff_coef
      ENDIF
    ENDIF

C   CORRECT FOR DEPARTURE FROM STANDARD CONDITIONS
C   Compute molar volume for conversion to ppm
    mol_vol = 22.414E-3 * ( std_press/air_press ) *
.          ( (air_temp + 273.16)/std_temp)

    IF( rel_type .LE. 2 ) THEN
C   Compute air_density at air_temp and air_press
.       air_density = air_dens_stp * (std_temp/(air_temp+273.16))
.           * (air_press/std_press)

C   Compute initial saturation vapor pressure
    IF( boil_point .GT. tank_temp ) THEN

```

```

    pconst = ( molec_wt * hv )
    .   / ( ugcnst * (boil_point+273.16) )
    log_sat_press = pconst
    .   * ( 1.0 - (boil_point+273.16) / (tank_temp+273.16) )
    sat_press = air_press * EXP( log_sat_press )
    ELSE
    sat_press = air_press
    ENDIF
ENDIF

C COMPUTE FACTOR TO CONVERT g/m**3 TO ppm
ppmconv = mol_vol * 1.0E6 / molec_wt

C CONVERT FROM CGS TO MKS
cp = cp * 1.0E3
hv = hv * 1.0E3
sat_press = sat_press / 1.0E3
src_density = src_density * 1.0E3
diff_coef = diff_coef / 1.0E4
air_press = air_press / 1.0E3

C SET MIXING LAYER
mix_depth = 1000.

C SET MAXIMUM POOL RADIUS TO DEFAULT IF RADIUS NOT SUPPLIED BY USER
C AND COMPUTE MAXIMUM POOL AREA
IF( max_pool_rad .EQ. 0.0 ) max_pool_rad = 9999.9
max_pool_area = pi * max_pool_rad**2

RETURN
END

```

```
SUBROUTINE INPUTE( rel_type )
```

```
*****  
C  
C      INPUTE                               EXTRAN Version 1.2  
C      Prompts User For Environmental Data  
C  
C      J.V. Ramsdell  
C      Pacific Northwest Laboratory  
C      PO Box 999  
C      Richland, Washington 99352  
C  
C      Created: 10/89 from INPUT  
C      Updated: 10/90  
C  
C      Description: Prompts user for environmental data input depending  
C                      on release type.  
C  
C      Relationship to other modules:  
C  
C          Makes calls to:  NONE  
C  
C          Called from:    INPUT  
C*****
```

```
INCLUDE 'ENVIRON.INC'
```

```
INTEGER*2 NN, NOPT, rel_type, iccover
```

```
CHARACTER UC, yn
```

```
NOPT = 0
```

```
NN = 4
```

```
WRITE(*,'(//A)') ' ENVIRONMENTAL CONDITIONS:'
```

```
100 CONTINUE
```

```
105 WRITE(*,'(/A\')') ' Enter Wind Speed (m/s) (e.g., 5.0) : '
```

```
READ(*,'(F15.0)',ERR=105) ubar
```

```
IF( (ubar .LT. 0.5) .OR. (ubar .GT. 20.0) ) THEN
```

```
    WRITE(*,'(/A)') ' Out of Range; Range is (0.5 - 20.0) '
```

```
    GOTO 105
```

```
ELSE
```

```
    WRITE(*,'(F15.1)') ubar
```

```
ENDIF
```

```
IF( NOPT .NE. 0 ) GOTO 800
```

```
200 CONTINUE
```

```
205 WRITE(*,'(/A)') ' Atmospheric Stability Classes '
```

```
    WRITE(*,'(A)') ' 1 = A, 2 = B, 3 = C, 4 = D, 5 = E, 6 = F, 7 = G'
```

```
    WRITE(*,'(A\')') ' Enter Stability Class Number : '
```

```
    READ(*,'(I1)',ERR=205) stab
```

```

IF( (stab .LT. 1) .OR. (stab .GT. 7) ) THEN
  WRITE(*,'(/A)') ' Out of Range; Range is (1 - 7)'
  GOTO 205
ELSE
  WRITE(*,'(11x,i4)') stab
ENDIF
IF( NOPT .NE. 0 ) GOTO 800

300 CONTINUE
305 WRITE(*,'(/A,A\)') ' Enter Ambient Air Temperature (C) ,
  ' (e.g., 10.0) : '
  READ(*,'(F15.0)',ERR=305) air_temp
  IF( (air_temp .LT. -40.0) .OR. (air_temp .GT. 50.0) ) THEN
    WRITE(*,'(/A)') ' Out of Range; Range is (-40.0 TO +50.0)'
    GOTO 305
  ELSE
    WRITE(*,'(F15.0)') air_temp
  ENDIF
  IF( NOPT .NE. 0 ) GOTO 800

400 CONTINUE
405 WRITE(*,'(/A,A\)') ' Enter Atmospheric Pressure (mm Hg) ,
  ' (e.g., 760.0) : '
  READ(*,'(F15.0)',ERR=405) air_press
  IF( (air_press .LT. 600.0) .OR. (air_press .GT. 800.0) ) THEN
    WRITE(*,'(/A)') ' Out of Range; Range is (600.0 - 800.0)'
    GOTO 405
  ELSE
    WRITE(*,'(F15.1)') air_press
  ENDIF
  IF( NOPT .NE. 0 ) GOTO 800

  IF( rel_type .GT. 2 ) GOTO 800
  NN = 7

500 CONTINUE
505 WRITE(*,'(/A,A\)')
  ' Enter Value for Solar Radiation ,
  '(watts/m**2) (e.g. 500.0) : '
  READ(*,'(F15.0)',ERR=505) sol_rad
  IF( (sol_rad .LT. 0.0) .OR. (sol_rad .GT. 1200.) ) THEN
    WRITE(*,'(A,A)') ' Solar Radiation Out of Range, Range is ',
    '0 to 1200. '
    GOTO 505
  ELSE
    WRITE(*,'(F15.0)') sol_rad
  ENDIF
  IF( NOPT .NE. 0 ) GOTO 800

600 CONTINUE
605 WRITE(*,'(/A\)')
  ' Enter Cloud Cover in tenths (e.g. 4 ) '
  READ(*,'(I4)',ERR=605) iccover

```

```

IF( (iccover .LT. 0 ) .OR. ( iccover .GT. 10 ) ) THEN
  WRITE(*,'(A,A)') ' Cloud Cover Out of Range, Range is ',
  '0 to 10 '
  GOTO 605
ELSE
  WRITE(*,'(10x,I4)')      iccover
ENDIF
ccover = FLOAT(iccover) / 10.
IF( NOPT .NE. 0 ) GOTO 800

700 CONTINUE
705 WRITE(*,'(/A,A\\)') ' Enter Temperature (C) of the Ground',
  ' (e.g., Air Temp. + 10.0) : '
  READ(*,'(F15.0)',ERR=705) earth_temp
  IF( (earth_temp .LT. -40.0) .OR. (earth_temp .GT. 60.0) ) THEN
    WRITE(*,'(A)') ' Out of Range; Range is (-40.0 to +60.0)'
    GOTO 705
  ELSE
    WRITE(*,'(F15.0)')      earth_temp
  ENDIF

  NOPT = 1

C..... REVIEW INPUT DATA AND REVISE AS NECESSARY

800 WRITE(*,'(//A)') ' ENVIRONMENTAL CONDITIONS REVIEW:'
  WRITE(*,'(A,F10.1)') ' 1  Wind Speed           (m/sec) = ',ubar
  WRITE(*,'(A,I8)')      ' 2  Atmospheric Stability Class = ',stab
  WRITE(*,'(A,F10.1)') ' 3  Air Temperature        (C) = ',air_temp
  WRITE(*,'(A,F10.1)') ' 4  Atmospheric Pressure   (mm Hg) = ',air_press
  IF( rel_type .LT. 3 ) THEN
    WRITE(*,'(A,F10.1)') ' 5  Solar Radiation     (watts/m**2) = ',sol_rad
    WRITE(*,'(A,I8)')      ' 6  Cloud Cover          (tenths) = ',iccover
    WRITE(*,'(A,F10.1)') ' 7  Ground Temperature   (C) = ',earth_temp
  ENDIF

  WRITE(*,'(1X,A)') ' C  CONTINUE WITH DATA ENTRY '
  WRITE(*,'(1X,A)') ' X  EXIT PROGRAM '

900 CONTINUE
  WRITE(*,901)
901 FORMAT(/' ENTER C TO CONTINUE IF DATA ARE CORRECT',
  '/' IF DATA ARE NOT CORRECT ENTER NUMBER OF ITEM TO BE CHANGED',
  '/' OR, ENTER X TO STOP PROGRAM : '\')
  READ(*,'(A)',ERR=800) yn

```

```
IF( UC(yn) .EQ. 'X' )
. STOP ' PROGRAM STOPPED AT ENVIRONMENTAL DATA ENTRY '
IF( UC(yn) .EQ. 'C' ) RETURN
IF( yn .EQ. '1' ) THEN
  GOTO 100
ELSE IF( yn .EQ. '2' ) THEN
  GOTO 200
ELSE IF( yn .EQ. '3' ) THEN
  GOTO 300
ELSE IF( yn .EQ. '4' ) THEN
  GOTO 400
ENDIF
IF( rel_type .LE. 2 ) THEN
  IF( yn .EQ. '5' ) THEN
    GOTO 500
  ELSE IF( yn .EQ. '6' ) THEN
    GOTO 600
  ELSE IF( yn .EQ. '7' ) THEN
    GOTO 700
  ENDIF
ENDIF
ENDIF
WRITE(*,'(A,I2,A)' )
.   ' ENTER A NUMBER FROM 1 THRU ', NN, ', A C, OR AN X. '
GOTO 800

RETURN
END
```

```

SUBROUTINE INPUTEF( rel_type, gname )

C*****
C
C      INPUTEF                               EXTRAN Version 1.2
C      Prompts User For Effluent Data
C
C      J.V. Ramsdell
C      Pacific Northwest Laboratory
C      PO Box 999
C      Richland, Washington 99352
C
C      Created: 10/89 from INPUT
C      Updated: 10/90
C
C      Description: Prompts user for effluent characteristics.
C
C      Relationship to other modules:
C
C          Makes calls to: DIFCOEF
C
C          Called from:    INPUT
C
C*****

```

```

INCLUDE 'EFFLUENT.INC'
INCLUDE 'ENVIRON.INC'

INTEGER*2 sel, I, NOPT, nchem, nchemlim,
.      nn, np, nend, indx, rel_type

REAL*4 phys_prop(6,30)

CHARACTER UC, yn
CHARACTER*20 gas(30), gname

nchemlim = 30

ugcnst = 8.3144

C      READ IN THE CHEMICAL DATA FILE

OPEN(UNIT=10,FILE='CHEMICAL.DAT',STATUS='OLD')
READ(10,'(15X,I5)') nchem

IF( nchem .GT. nchemlim ) THEN
    WRITE(*,'(//A)') ' ***** CHEMICAL FILE TOO LARGE *****'
    STOP
ENDIF

DO 10 nn = 1,nchem
    READ(10,9) gas(nn), (phys_prop(np,nn),np=1,6)
9   FORMAT(1X, A20, 6F8.0)

```

```

10 CONTINUE

      WRITE(*,'(/A)') ' CHEMICAL DATA FILE READ '
      CLOSE(10)

      WRITE(*,'(/A)') ' EFFLUENT CHARACTERISTICS:'

      NOPT = 0
      NN = 2
50 CONTINUE
55 WRITE(*,'(/A)') ' ***** MATERIAL RELEASED ***** '
      nend = nchem/2
      DO 60 I = 1,nend
      indx = 2 * I - 1
      WRITE(*,'(2x,A,A,I2,10x,A,A,I2)')
      .   gas(indx), ' ==> ', indx, gas(indx+1), ' ==> ', indx+1
60 CONTINUE
      IF( MOD(nchem,2) .EQ. 1 )
      .   WRITE(*,'(2x,A,A,I2)') gas(nchem), ' ==> ', nchem

      WRITE(*,'(/A\\)') ' ENTER SELECTION NUMBER : '
      READ(*,'(I4)',ERR=55) sel
      IF( sel .LT. 1 .OR. sel .GT. nchem ) THEN
      WRITE(*,'(A,I2)') ' SELECTION MUST BE IN THE RANGE 1 TO ',nchem
      GOTO 55
      ELSE
      WRITE(*,'(11X,I4)')           sel
      ENDIF

100 CONTINUE
      IF( sel .NE. nchem ) THEN
      gname = gas(sel)
      molec_wt = phys_prop(1,sel)
      std_boil_pt = phys_prop(2,sel)
      cp = phys_prop(3,sel)
      hv = phys_prop(4,sel)
      src_density = phys_prop(5,sel)
      idiff_coeff = phys_prop(6,sel)
      diff_coeff = idiff_coeff
C      Correct boiling point for atmospheric pressure
      boil_point = ( std_boil_pt+273.16 )
      .   / ( 1 + ugcnst * (std_boil_pt+273.16)
      .   * ( ALOG(760.)-ALOG(air_press) )
      .   / ( hv * molec_wt ) ) - 273.16

      IF( boil_point .LT. 0.0 ) THEN
      tref = boil_point + 273.16
      ELSE
      tref = 273.16
      ENDIF

```

```

    IF( (diff_coef .LE. 0.0) .AND. (rel_type .LT. 3) ) THEN
        WRITE(*,'(A,A,/A)') ' Diffusion coefficient in data file ',
        ' is zero. One will be computed',
        ' from molecular weight, boiling point and density.'
    CALL DIFCOEF
    WRITE(*, '(/A,F8.3)') ' Computed diffusion coefficient = ',
        diff_coef
    ENDIF
    GOTO 800

ELSE
    WRITE(*,'(/A,A,/A)')' See Perry and Chilton, or Handbook of ',
    ' Chemistry and Physics', ' for Physical Properties'
    WRITE(*,'(/A,/A,/A)') ' ***** WARNING *****',
    ' PROGRAM WILL NOT GIVE CORRECT RESULTS IF DATA ARE NOT ',
    ' ENTERED IN THE PROPER UNITS !!!!!!! '
105   WRITE(*,'(/A,A\')') ' Enter Name of Substance, ',
    '20 Character Maximum : '
    READ(*,'(A)',ERR=105) gname
    IF( NOPT .EQ. 1) GOTO 800
ENDIF

200 CONTINUE
205 WRITE(*,'(/A,A\')')
    ' Enter Molecular Weight (grams/mole) of Substance ',
    ' (e.g., 70.9) : '
    READ(*,'(F15.0)',ERR=205) molec_wt
    IF( molec_wt .LE. 1.0 ) THEN
        WRITE(*,'(A)') ' Molecular Weight Must Be > 1.0 '
        GOTO 205
    ELSE
        WRITE(*,'(F15.1)')      molec_wt
    ENDIF
    IF( NOPT .EQ. 1 ) GOTO 800

    IF( rel_type .GT. 2 ) GOTO 800
    NN = 7

300 CONTINUE
305 WRITE(*,'(/A,A\')') ' Enter Boiling Point (C) of Liquid ',
    ' at 760 mm Hg (e.g., -34.1) '
    READ(*,'(F15.0)',ERR=305) std_boil_pt
    IF( (std_boil_pt .LT. -270.) .OR. ( std_boil_pt .GT. 200.) ) THEN
        WRITE(*,'(A)') ' Boiling Point Range is -270C to +200C '
        GOTO 305
    ELSE
        WRITE(*,'(F15.1)')      std_boil_pt
    ENDIF

```

C Correct boiling point for atmospheric pressure

boil_point = (std_boil_pt+273.16)

```

.   / ( 1 + ugcnst * (std_boil_pt+273.16)
.   * ( ALOG(760.)-ALOG(air_press) )
.   / ( hv * molec_wt ) ) - 273.16

IF( boil_point .LT. 0.0 ) THEN
  tref = boil_point + 273.16
ELSE
  tref = 273.16
ENDIF

IF( NOPT .EQ. 1 ) GOTO 800

400 CONTINUE
405 WRITE(*,'(/A,A\)')
.   ' Enter Heat Capacity (j/gm-C) of Liquid Phase',
.   '(e.g., 0.946) : '
READ(*,'(F15.0)',ERR=405) cp
IF( cp .LE. 0.0 ) THEN
  WRITE(*,'(A)') ' Heat Capacity Must be > 0.0 '
  GOTO 405
ELSE
  WRITE(*,'(1PE15.2)')          cp
ENDIF
IF( NOPT .EQ. 1 ) GOTO 800

500 CONTINUE
505 WRITE(*,'(/A,A\)')
.   ' Enter Heat of Vaporization (j/gm) of Liquid Phase ',
.   '(e.g., 288.) : '
READ(*,'(F15.0)',ERR=505) hv
IF( hv .LE. 0.0 ) THEN
  WRITE(*,'(A)') ' Heat of Vaporization Must be > 0.0 '
  GOTO 505
ELSE
  WRITE(*,'(1PE15.2)')          hv
ENDIF
IF( NOPT .EQ. 1 ) GOTO 800

600 CONTINUE
605 WRITE(*,'(/A,A\)')
.   ' Enter Density or Specific Gravity of Liquid Phase ',
.   '(e.g., 1.57) : '
READ(*,'(F15.0)',ERR=605) src_density
IF( (src_density .LT. 0.1) .OR. (src_density .GT. 4.0) ) THEN
  WRITE(*,'(A)') ' Specific Gravity Range is 0.1 to 4.0 '
  GOTO 605
ELSE
  WRITE(*,'(1PE15.2)')          src_density
ENDIF
IF( NOPT .EQ. 1 ) GOTO 800

700 CONTINUE
705 WRITE(*,'(/A,A\)')

```

```

.      ' Enter Diffusion Coefficient (cm**2/sec) of Source',
.      ' (e.g., .0792) : '
READ(*,'(F15.0)',ERR=705) idiff_coef
diff_coef = idiff_coef
IF( diff_coef .GT. 0.4) THEN
  WRITE(*,'(A)') ' Diffusion coefficient too large, ',
  'maximum is 0.4'
.  GOTO 705
ELSE IF( diff_coef .LE. 0.0 ) THEN
  WRITE(*,'(A)') ' Diffusion coefficient will be computed '
  CALL DIFCOEF
  WRITE(*, '(F15.3)') diff_coef
ELSE
  WRITE(*,'(F15.3)') diff_coef
ENDIF

NOPT = 1

C..... REVIEW INPUT DATA AND REVISE AS NECESSARY

800 CONTINUE
  WRITE(*,'(//A)') ' EFFLUENT CHARACTERISTICS REVIEW:'

  WRITE(*,'(A,A)')      ' 1  Material Released      = ', gname
  . WRITE(*,'(A,1PE10.2)') ' 2  Molecular Weight (gm/mole) = ', molec_wt
  . IF(rel_type .GT. 2) GOTO 850

  WRITE(*,'(A,1PE10.2)') ' 3  Initial Boiling Point (C) = ', std_boil_pt
  . WRITE(*,'(A,1PE10.2)') ' 4  Heat Capacity (j/gm-C) = ', cp
  . WRITE(*,'(A,1PE10.2)') ' 5  Heat of Vapor. (j/gm) = ', hv
  . WRITE(*,'(A,1PE10.2)') ' 6  Specific Gravity = ', src_density
  . WRITE(*,'(A,1PE10.2)') ' 7  Diffusion Coef. (cm**2/sec) = ', diff_coef
  .

850 CONTINUE
  WRITE(*,'(1X,A)') ' C  BEGIN CALCULATIONS '
  WRITE(*,'(1X,A)') ' X  EXIT PROGRAM '

855 WRITE(*,856)
856 FORMAT(/' ENTER C TO CONTINUE IF DATA ARE CORRECT',
. /' IF DATA ARE NOT CORRECT ENTER NUMBER OF ITEM TO BE CHANGED',
. /' OR, ENTER X TO STOP PROGRAM : '\ )
READ(*,'(a)',ERR=855) yn

  IF( UC(yn) .EQ. 'X' )
. STOP ' PROGRAM STOPPED AT EFFLUENT DATA ENTRY '
  IF( UC(yn) .EQ. 'C' ) RETURN

```

```
IF( yn .EQ. '1' ) THEN
  GOTO 50
ELSE IF( yn .EQ. '2' ) THEN
  GOTO 200
ENDIF
IF( rel_type .LE. 2 ) THEN
  IF( yn .EQ. '3' ) THEN
    GOTO 300
  ELSE IF( yn .EQ. '4' ) THEN
    GOTO 400
  ELSE IF( yn .EQ. '5' ) THEN
    GOTO 500
  ELSE IF( yn .EQ. '6' ) THEN
    GOTO 600
  ELSE IF( yn .EQ. '7' ) THEN
    GOTO 700
  ENDIF
ENDIF
.
  WRITE(*,'(A,I2,A)' )
  '      ENTER NUMBER FROM 1 THRU ', NN, ', A C, OR AN X. '
GOTO 800
.
RETURN
END
```

SUBROUTINE INPUTO

```
C*****  
C  
C INPUTO EXTRAN Version 1.2  
C  
C J.V. Ramsdell  
C Pacific Northwest Laboratory  
C PO Box 999  
C Richland, Washington 99352  
C  
C Created: 7/90  
C Updated: 10/90  
C  
C Description: Allows user control of model output options  
C  
C Relationship to other modules:  
C  
C Makes calls to: NONE  
C  
C Called from: INPUT  
C*****
```

```
INCLUDE 'OPTIONS.INC'  
INCLUDE 'SCENARIO.INC'  
  
CHARACTER UC, yn, yn1  
  
WRITE(*,'(//A)')  ' OUTPUT OPTION SELECTION '  
  
NOPT = 0  
  
100 CONTINUE  
105 WRITE(*,'(/A,/A\')')  
.   ' Output concentrations may be expressed as g/m**3, ppm, or ',  
.   ' mCi/m**3.  Do you want concentrations in ppm? Y or N '  
READ(*,'(A)',ERR=105) yn  
  
IF( UC(yn) .EQ. 'Y' ) THEN  
  ppmflg = .true.  
ELSE IF( UC(yn) .EQ. 'N' ) THEN  
  ppmflg = .false.  
106  WRITE( *, '(/A\')' )  
.   ' Do you want concentrations in mCi/m**3? Y or N '  
READ(*,'(A)' ) yn1  
IF( UC(yn1) .EQ. 'Y' ) THEN  
  ciflg = .true.  
ELSE IF( UC(yn1) .EQ. 'N' ) THEN  
  ciflg = .false.  
ELSE  
  GOTO 106  
ENDIF
```

```

ELSE
  GOTO 105
ENDIF
IF( NOPT .NE. 0 ) GOTO 900

200 CONTINUE
205 WRITE(*,'(/A\)')
.  ' Do you want primary output to be sent to a printer? Y or N '
  READ(*,'(A)',ERR=205) yn

  IF( UC(yn) .EQ. 'Y' ) THEN
    prtflg1 = .true.

255  CONTINUE
  WRITE(*,'(/A\)')
.  ' Do you want a copy of the output sent to a file? Y or N '
  READ(*,'(A)',ERR=255) yn1
  IF( UC( yn1 ) .EQ. 'Y' ) THEN
    prtflg2 = .true.
  ELSE IF( UC( yn1 ) .EQ. 'N' ) THEN
    prtflg2 = .false.
  ELSE
    GOTO 255
  ENDIF
  ELSE IF( UC(yn) .EQ. 'N' ) THEN
    prtflg1 = .false.
    prtflg2 = .true.
  ELSE
    GOTO 205
  ENDIF
  IF( NOPT .NE. 0 ) GOTO 900

300 CONTINUE
305 WRITE(*,'(/A,/A\)')
.  ' Concentrations may be plotted. Do you want a plot of',
.  ' the output? Y or N '
  READ(*,'(A)',ERR=305) yn

  IF( UC(yn) .EQ. 'Y' ) THEN
    pltflg = .true.
  ELSE IF( UC(yn) .EQ. 'N' ) THEN
    pltflg = .false.
  ELSE
    GOTO 305
  ENDIF
  IF( NOPT .NE. 0 ) GOTO 900

400 CONTINUE
405 WRITE(*,'(/A/A\)')
.  ' A concentration chronology may be printed. Do you want a',
.  ' printer output of the concentration chronology? Y or N '
  READ(*,'(A)',ERR=405) yn

```

```

IF( UC(yn) .EQ. 'Y' ) THEN
  histflg1 = .true.
ELSE IF( UC(yn) .EQ. 'N' ) THEN
  histflg1 = .false.
ELSE
  GOTO 405
ENDIF
IF( NOPT .NE. 0 ) GOTO 900

500 CONTINUE
505 WRITE(*,'(/A,A\)')
.  ' Do you want a file with the concentration chronology?',
.  ' Y or N '
READ(*,'(A)',ERR=505) yn

IF( UC(yn) .EQ. 'Y' ) THEN
  histflg2 = .true.
ELSE IF( UC(yn) .EQ. 'N' ) THEN
  histflg2 = .false.
ELSE
  GOTO 505
ENDIF
IF( NOPT .NE. 0 ) GOTO 900

600 CONTINUE
605 WRITE(*,'(/A/A\)')
.  ' Do you want a file with details of the release and pool',
.  ' status and the energy balance of the pool? Y or N '
READ(*,'(A)',ERR=605) yn

IF( UC(yn) .EQ. 'Y' ) THEN
  statflg = .true.
ELSE IF( UC(yn) .EQ. 'N' ) THEN
  statflg = .false.
ELSE
  GOTO 605
ENDIF

```

C..... REVIEW INPUT DATA AND REVISE AS NECESSARY

```

NOPT = 1
900 CONTINUE

WRITE(*,'(//A)') ' OUTPUT OPTION REVIEW:'
IF( ppmflg ) THEN
  WRITE(*,'(1X,A)') ' 1 Concentration output in ppm '
ELSE IF( ciflg ) THEN
  WRITE(*,'(1X,A)') ' 1 Concentration output in mCi/m**3'
ELSE
  WRITE(*,'(1X,A)') ' 1 Concentration output in g/m**3 '
ENDIF

```

```

IF( prtflg1 ) THEN
  WRITE(*,'(1X,A)') ' 2  Print primary results '
  IF( prtflg2 ) THEN
    WRITE(*,'(6X,A)') 'Create file with primary results '
  ELSE
    WRITE(*,'(6X,A)') 'Don''t create file with primary results '
  ENDIF
ELSE
  WRITE(*,'(1X,A)') ' 2  Don''t print primary results '
  WRITE(*,'(6X,A)') 'Create file with primary results '
ENDIF

IF( pltflg ) THEN
  WRITE(*,'(1X,A)') ' 3  Plot results '
ELSE
  WRITE(*,'(1X,A)') ' 3  Don''t plot results '
ENDIF

IF( histflg1 ) THEN
  WRITE(*,'(1X,A)')
.   ' 4  Write concentration chronology to printer '
ELSE
  WRITE(*,'(1X,A)')
.   ' 4  Don''t write concentration chronology to printer '
ENDIF

IF( histflg2 ) THEN
  WRITE(*,'(1X,A)')
.   ' 5  Create file with concentration chronology '
ELSE
  WRITE(*,'(1X,A)')
.   ' 5  Don''t create file with concentration chronology '
ENDIF

IF( statflg ) THEN
  WRITE(*,'(1X,A)')
.   ' 6  Create file with release, pool and energy balance data'
ELSE
  WRITE(*,'(1X,A,A)')
.   ' 6  Don''t create file with release, pool and energy balance'
.   ' data'
ENDIF
WRITE(*,'(1X,A)') ' C  CONTINUE WITH DATA ENTRY '
WRITE(*,'(1X,A)') ' X  EXIT PROGRAM '

WRITE(*,906)
906 FORMAT(/' ENTER C TO CONTINUE IF DATA ARE CORRECT,',
. /' IF DATA ARE NOT CORRECT ENTER NUMBER OF ITEM TO BE CHANGED',
. /' OR, ENTER X TO STOP PROGRAM : '\ )
READ(*,'(A)',ERR=900) yn

IF( UC(yn) .EQ. 'X' )
.   STOP '  PROGRAM STOPPED AT OUTPUT OPTION ENTRY '

```

```
IF( UC(yn) .EQ. 'C' )  RETURN
IF( yn .EQ. '1' ) THEN
  GOTO 100
ELSE IF( yn .EQ. '2' ) THEN
  GOTO 200
ELSE IF( yn .EQ. '3' ) THEN
  GOTO 300
ELSE IF( yn .EQ. '4' ) THEN
  GOTO 400
ELSE IF( yn .EQ. '5' ) THEN
  GOTO 500
ELSE IF( yn .EQ. '6' ) THEN
  GOTO 600
ELSE
  WRITE(*,'(/A )')
.  ' ENTER A NUMBER FROM 1 THRU 6, A C, OR AN X.'
  GOTO 900
ENDIF
RETURN
END
```

SUBROUTINE INPUTS

```
*****
C
C      INPUTS                               EXTRAN Version 1.2
C      Prompts User For Source Description
C
C      J.V. Ramsdell
C      Pacific Northwest Laboratory
C      PO Box 999
C      Richland, Washington 99352
C
C      Created: 10/89 from INPUT
C      Updated: 10/90
C
C
C      Description: Prompts user for release and receptor geometry
C
C      Relationship to other modules:
C
C          Makes calls to:  NONE
C
C          Called from:    INPUT
C
*****
```

```
INCLUDE 'OPTIONS.INC'
INCLUDE 'SCENARIO.INC'

INTEGER*2 NOPT, NN
CHARACTER UC, yn

WRITE(*,'(//A)')  ' RELEASE AND RECEPTOR GEOMETRY: '

NOPT = 0
NN = 1

100 CONTINUE

105 IF( ciflg ) THEN
    WRITE(*,'(A,A\')') ' Enter Total Activity (Ci) in Tank ',
    .                   '(e.g., 1000.0) : '
    READ(*,'(F15.0)',ERR=105) init_tank_mass
    tank_mass = init_tank_mass
    IF( ( tank_mass .LE. 0.0 ) .OR. ( tank_mass .GT. 1.0E6) ) THEN
        WRITE(*,'(A)') ' Out of Range; Range is 0.0 to 1,000,000 Ci '
        GOTO 105
    ELSE
        WRITE(*,'(G15.3)')      tank_mass
    ENDIF
    ELSE
        WRITE(*,'(A,A\')') ' Enter Total Mass (kg) in Tank ',
        .                   '(e.g., 1000.0) : '
```

```

READ(*,'(F15.0)',ERR=105) init_tank_mass
tank_mass = init_tank_mass
IF( tank_mass .LE. 1.0 ) .OR. ( tank_mass .GT. 1.0E6) ) THEN
  WRITE(*,'(/A)') ' Out of Range; Range is 1.0 to 1,000,000 kg '
  GOTO 105
ELSE
  WRITE(*,'(F15.1)') tank_mass
ENDIF
ENDIF

IF( NOPT .NE. 0 ) GOTO 900

200 CONTINUE
IF( NOPT .EQ. 0 ) NN = NN + 1
IF( rel_type .EQ. 2 .OR. rel_type .EQ. 4 ) THEN

205  IF( ciflg ) THEN
    WRITE(*,'(/A,A\')') ' Enter Release Rate in Ci/sec ',
    .                               '(e.g., 10.0) : '
    READ(*,'(F15.0)',ERR=205) init_rel_rate
    rel_rate = init_rel_rate
    IF( rel_rate .GE. tank_mass/2 ) THEN
      WRITE(*,'(/A,A)') ' Release Rate Too Large -- ',
      .                               'Catastrophic Failure '
      GOTO 205
    ELSE IF( rel_rate .LE. 0.0 ) THEN
      WRITE(*,'(7A\')') ' Release Rate must be greater than 0.0 '
      GOTO 205
    ELSE
      WRITE(*,'(G15.3)') rel_rate
    ENDIF
  ELSE
    WRITE(*,'(/A,A\')') ' Enter Release Rate in kg/sec ',
    .                               '(e.g., 100.0) : '
    READ(*,'(F15.0)',ERR=205) init_rel_rate
    rel_rate = init_rel_rate
    IF( rel_rate .GE. tank_mass/2 ) THEN
      WRITE(*,'(/A,A)') ' Release Rate Too Large -- ',
      .                               'Catastrophic Failure '
      GOTO 205
    ELSE IF( rel_rate .LE. 0.0 ) THEN
      WRITE(*,'(7A\')') ' Release Rate must be greater than 0.0 '
      GOTO 205
    ELSE
      WRITE(*,'(F15.3)') rel_rate
    ENDIF
  ENDIF
ENDIF

IF( NOPT .NE. 0) GOTO 900

300 CONTINUE
IF( NOPT .EQ. 0 ) NN = NN+1

```

```

305 WRITE(*,'(/A,A\')') ' Enter Height (meters) of Release ,
.                                '(e.g., 0.0) :
.      READ(*,'(F15.0)',ERR=305) rel_height
.      IF((rel_height .LT. 0.0) .OR. (rel_height .GT. 100.0)) THEN
.          WRITE(*,'(/A)') ' Out of Range; Range is (0.0 - 100.0)'
.          GOTO 305
.      ELSE
.          WRITE(*,'(F15.1)')      rel_height
.      ENDIF
.      IF( NOPT .NE. 0) GOTO 900

400 CONTINUE
.      IF( NOPT .EQ. 0 ) NN = NN + 1
405 WRITE(*,'(/A,A\')') ' Enter Storage Temperature in Tank in Degrees',
.                                ' C (e.g., 15.0) :
.      READ(*,'(F15.0)',ERR=405) tank_temp
.      IF( ( tank_temp .LT. -40.0 ) .OR. ( tank_temp .GT. 50.0 ) ) THEN
.          WRITE(*,'(/A)') ' Out of Range; Range is -40.0 to 50.0 C'
.          GOTO 405
.      ELSE
.          WRITE(*,'(F15.1)')      tank_temp
.      ENDIF
.      IF( NOPT .NE. 0) GOTO 900

500 CONTINUE
.      IF( rel_type .LT. 3 ) THEN
.          IF( NOPT .EQ.0 ) NN= NN + 1
505  WRITE(*,'(/A,A\')') ' Enter Maximum Radius of Pool',
.                                ' in Meters, if appropriate (e.g., 15.0) :
.      READ(*,'(F15.0)',ERR=505) max_pool_rad
.      IF( (max_pool_rad .LT. 0.0) .OR. (max_pool_rad .GT. 50.0) ) THEN
.          WRITE(*,'(/A)') ' Out of Range; Range is 0 to 50 m'
.          GOTO 505
.      ELSE
.          WRITE(*,'(F15.1)')      max_pool_rad
.      ENDIF
.      IF( NOPT .NE. 0) GOTO 900
.  ENDIF

600 CONTINUE
.      IF( NOPT .EQ. 0 ) NN = NN + 1
605  WRITE(*,'(/A,A\')') ' Enter Distance (meters) to Intake ',
.                                '(e.g., 100.0) :
.      READ(*,'(F15.0)',ERR=605) intake_dist
.      IF((intake_dist .LT. 5.0) .OR. (intake_dist .GT. 1999.0) ) THEN
.          WRITE(*,'(/A)') ' Out of Range; Range is (5.0 - 1999.)'
.          GOTO 605
.      ELSE
.          WRITE(*,'(F15.0)')      intake_dist
.      ENDIF
.      IF( NOPT .NE. 0) GOTO 900

```

```

700 CONTINUE
  IF( NOPT .EQ. 0 ) NN = NN + 1
705 WRITE(*,'(/A,A\)') ' Enter Height (meters) of Intake ',
.           ' (e.g., 25.0) : '
.   READ(*,'(F15.0)',ERR=705) intake_height
  IF((intake_height.LT.0.0) .OR. (intake_height.GT.100.0)) THEN
    WRITE(*,'(/A)') ' Out of Range; Range is (0.0 - 100.0)'
    GOTO 705
  ELSE
    WRITE(*,'(F15.1)')      intake_height
  ENDIF
  IF( NOPT .NE. 0) GOTO 900

800 CONTINUE
  IF( NOPT .EQ. 0 ) NN = NN + 1
805 WRITE(*,'(/A,A\)') ' Enter Area (m**2) of Building, ',
.           ' if release is in wake (e.g., 100.0) : '
.   READ(*,'(F15.0)',ERR=805) area
  IF( (area .LT. 0.0) .OR. (area .GT. 4000.0) ) THEN
    WRITE(*,'(/A)') ' Out of Range; Range is (0.0 - 4000.0)'
    GOTO 805
  ELSE
    WRITE(*,'(F15.0)')      area
  ENDIF
  IF( NOPT .NE. 0) GOTO 900

850 CONTINUE
  vent_flow = 0.0
  IF( rel_type .EQ. 4 ) THEN
    IF( NOPT .EQ. 0 ) NN = NN + 1
855  WRITE(*,'(/A,A,/A\)')
.    ' If Release is thru a short stack or vent enter flow ',
.    ' (m**3/sec). ', ' Enter zero if unknown or zero. (e.g. 10.0) '
.    READ(*,'(F15.0)',ERR=855) vent_flow
  IF( (vent_flow .LT. 0.0) .OR. (vent_flow .GT. 50.0) ) THEN
    WRITE(*,'(/A)') ' Out of Range; Range is (0.0 - 50.0)'
    GOTO 855
  ELSE
    WRITE(*,'(F15.2)')      vent_flow
  ENDIF
ENDIF

```

C..... REVIEW INPUT DATA AND REVISE AS NECESSARY

NOPT = 1

900 CONTINUE

```

  WRITE(*,'(//A)') ' SCENARIO DATA REVIEW:'
  IF( rel_type .EQ. 1 ) THEN
    WRITE(*,'(/A,A)')      ' Release Type          = ',
.           ' Liquid Tank Burst'
.  IF( ciflg ) THEN

```

```

        WRITE(*,'(A,G16.2)')' 1  Initial Activity      (Ci) = ',  

        .                           tank_mass
        ELSE
        WRITE(*,'(A,F11.1)')' 1  Initial Mass           (kg) = ',  

        .                           tank_mass
        ENDIF
        NN = 2

ELSE IF( rel_type .EQ. 2 ) THEN
        WRITE(*,'(7A,A)')' 1  Release Type           = ',  

        .                           ' Liquid Leak'
        IF( ciflg ) THEN
        WRITE(*,'(A,G16.2)')' 1  Initial Activity      (Ci) = ',  

        .                           tank_mass
        WRITE(*,'(A,G15.2)')' 2  Release Rate        (Ci/sec) = ',  

        .                           rel_rate
        ELSE
        WRITE(*,'(A,F11.1)')' 1  Initial Mass           (kg) = ',  

        .                           tank_mass
        WRITE(*,'(A,F12.2)')' 2  Release Rate        (kg/sec) = ',  

        .                           rel_rate
        ENDIF
        NN = 3

ELSE IF( rel_type .EQ. 3 ) THEN
        WRITE(*,'(7A,A)')' 1  Release Type           = ',  

        .                           ' Gas Tank Burst'
        IF( ciflg ) THEN
        WRITE(*,'(A,G16.2)')' 1  Initial Activity      (Ci) = ',  

        .                           tank_mass
        ELSE
        WRITE(*,'(A,F11.1)')' 1  Initial Mass           (kg) = ',  

        .                           tank_mass
        ENDIF
        NN = 2

ELSE IF( rel_type .EQ. 4 ) THEN
        WRITE(*,'(7A,A)')' 1  Release Type           = ',  

        .                           ' Gas Leak'
        IF( ciflg ) THEN
        WRITE(*,'(A,G16.2)')' 1  Initial Activity      (Ci) = ',  

        .                           tank_mass
        WRITE(*,'(A,G15.2)')' 2  Release Rate        (Ci/sec) = ',  

        .                           rel_rate
        ELSE
        WRITE(*,'(A,F11.1)')' 1  Initial Mass           (kg) = ',  

        .                           tank_mass
        WRITE(*,'(A,F11.1)')' 2  Release Rate        = ',  

        .                           rel_rate
        ENDIF
        NN = 3

```

```

ENDIF

WRITE(*,'(1X,I2,A,F10.0)') NN,' Release Height      (m) = ',
.                                rel_height
. NN = NN + 1
WRITE(*,'(1X,I2,A,F10.0)') NN,' Storage Temperature (C) = ',
.                                tank_temp
. NN = NN + 1

IF( rel_type .LT. 3 ) THEN
    WRITE(*,'(1X,I2,A,F10.0)') NN,' Maximum Pool Radius (m) = ',
.                                max_pool_rad
. NN = NN + 1
ENDIF

WRITE(*,'(1X,I2,A,F10.0)') NN,' Intake Distance      (m) = ',
.                                intake_dist
. NN = NN + 1
WRITE(*,'(1X,I2,A,F10.0)') NN,' Intake Height      (m) = ',
.                                intake_height
. NN = NN + 1
WRITE(*,'(1X,I2,A,F10.0)') NN,' Building Area      (m**2) = ',
.                                area

IF( rel_type .EQ. 4 ) THEN
    NN = NN + 1
    WRITE(*,'(1X,I2,A,F12.2)') NN,' Vent Flow      (m**3/s) = ',
.                                vent_flow
ENDIF

WRITE(*,'(1X,A)')  ' C  CONTINUE WITH DATA ENTRY '
WRITE(*,'(1X,A)')  ' X  EXIT PROGRAM '

WRITE(*,906)
906 FORMAT(/' ENTER C TO CONTINUE IF DATA ARE CORRECT',
. /' IF DATA ARE NOT CORRECT ENTER NUMBER OF ITEM TO BE CHANGED',
. /' OR, ENTER X TO STOP PROGRAM : '\ )
READ(*,'(A)',ERR=900) yn

IF( UC(yn) .EQ. 'X' )
. STOP ' PROGRAM STOPPED AT RELEASE AND RECEPTOR DATA ENTRY '
IF( UC(yn) .EQ. 'C' ) RETURN

IF( rel_type .EQ. 1) THEN
    IF( yn .EQ. '1' ) THEN
        GOTO 100
    ELSE IF( yn .EQ. '2' ) THEN
        GOTO 300
    ELSE IF( yn .EQ. '3' ) THEN
        GOTO 400
    ELSE IF( yn .EQ. '4' ) THEN
        GOTO 500

```

```

ELSE IF( yn .EQ. '5' ) THEN
  GOTO 600
ELSE IF( yn .EQ. '6' ) THEN
  GOTO 700
ELSE IF( yn .EQ. '7' ) THEN
  GOTO 800
ENDIF
ELSE IF( rel_type .EQ. 2) THEN
  IF( yn .EQ. '1' ) THEN
    GOTO 100
  ELSE IF( yn .EQ. '2' ) THEN
    GOTO 200
  ELSE IF( yn .EQ. '3' ) THEN
    GOTO 300
  ELSE IF( yn .EQ. '4' ) THEN
    GOTO 400
  ELSE IF( yn .EQ. '5' ) THEN
    GOTO 500
  ELSE IF( yn .EQ. '6' ) THEN
    GOTO 600
  ELSE IF( yn .EQ. '7' ) THEN
    GOTO 700
  ELSE IF( yn .EQ. '8' ) THEN
    GOTO 800
  ENDIF
ELSE IF( rel_type .EQ. 3 ) THEN
  IF( yn .EQ. '1' ) THEN
    GOTO 100
  ELSE IF( yn .EQ. '2' ) THEN
    GOTO 300
  ELSE IF( yn .EQ. '3' ) THEN
    GOTO 400
  ELSE IF( yn .EQ. '4' ) THEN
    GOTO 600
  ELSE IF( yn .EQ. '5' ) THEN
    GOTO 700
  ELSE IF( yn .EQ. '6' ) THEN
    GOTO 800
  ENDIF
ELSE IF( rel_type .EQ. 4 ) THEN
  IF( yn .EQ. '1' ) THEN
    GOTO 100
  ELSE IF( yn .EQ. '2' ) THEN
    GOTO 200
  ELSE IF( yn .EQ. '3' ) THEN
    GOTO 300
  ELSE IF( yn .EQ. '4' ) THEN
    GOTO 400
  ELSE IF( yn .EQ. '5' ) THEN
    GOTO 600
  ELSE IF( yn .EQ. '6' ) THEN
    GOTO 700

```

```
ELSE IF( yn .EQ. '7' ) THEN
  GOTO 800
ELSE IF( yn .EQ. '8' ) THEN
  GOTO 850
ENDIF
ENDIF

WRITE(*,'(A,I2,A)' )
.  ' ENTER A NUMBER FROM 1 THRU ', NN, ', A C, OR AN X.'
GOTO 900

RETURN
END
```

```

SUBROUTINE MODELPAR( chimin )

C*****
C
C      MODELPAR                         EXTRAN  Version 1.2
C      Computes Model Parameters
C
C      J.V. Ramsdell
C      Pacific Northwest Laboratory
C      PO Box 999
C      Richland, Washington  99352
C
C      Created: 11/88
C      Updated: 10/90
C
C      Description: Computes model parameters such as puff release interval,
C                     delta time, time one
C
C      Relationship to other modules:
C
C          Makes calls to:  NSIG, WSIG
C
C          Called from:      EXTRAN
C
C*****
INCLUDE 'ENVIRON.INC'
INCLUDE 'OPTIONS.INC'
INCLUDE 'SCENARIO.INC'

REAL*4  sigmay, sigmaz, tty, wsigy, wsigz, tsigy, chimin, pi,
.      tsigz

C..... COMPUTE PUFF RELEASE INTERVAL

pi = 3.14159
sigmay = 0.0
sigmaz = 0.0

CALL nsig(intake_dist, sigmay, sigmaz)
tty = intake_dist /ubar
wsigy = 0.0
wsigz = 0.0
IF( area .gt. 0.0 ) CALL wsig(tty,tty,wsigy,wsigz)
tsigy = SQRT( sigmay**2 + wsigy**2 )
tsigz = SQRT( sigmaz**2 + wsigz**2 )

chimin = 1.0E-4 * 1.0 / ( (2 * pi)** (1.5) * tsigy**2 * tsigz )
pri = INT(2.0 * tsigy /ubar)

IF(pri .LE. 1) THEN
  pri = 1

```

```

    ELSE IF( pri .GT. 10 ) THEN
        IF( intake_dist .GE. 1000.0 ) THEN
            pri = MIN0(30,pri)
        ELSE
            pri = 10
        ENDIF
    ELSE
        pri = pri - MOD(pri,2)
    ENDIF

C..... COMPUTE DELTA TIME

    delta_time = MAX0(pri/2,1)
    IF(delta_time .EQ. 0) delta_time = 1

C..... WRITE MODEL PARAMETER INFORMATION

    IF( prtflg1 ) THEN
        WRITE(3,'(//10X,A)')  ' MODEL PARAMETERS:'
        WRITE(3,'(10X,A,I4)')
        .    ' Puff Release Interval          (sec) = ', pri
        WRITE(3,'(10X,A,I4)')
        .    ' Time Step                      (sec) = ', delta_time
        ENDIF
        IF( prtflg2 ) THEN
        WRITE(10,'(//10X,A)') ' MODEL PARAMETERS:'
        WRITE(10,'(10X,A,I4)')
        .    ' Puff Release Interval          (sec) = ', pri
        WRITE(10,'(10X,A,I4)')
        .    ' Time Step                      (sec) = ', delta_time
        ENDIF

    RETURN
END

```

```
SUBROUTINE NSIG( DSMTRI, SIGMAY, SIGMAZ )
```

```
*****
C
C      NSIG                               EXTRAN Version 1.2
C      Diffusion Curves As Used In X0QDOQ, PAVAN, MESOI, and MESORAD
C
C      J.V. Ramsdell
C      Pacific Northwest Laboratory
C      PO Box 999
C      Richland, Washington 99352
C
C      Created: 6/83
C      Updated: 10/90
C
C      Description: Computes new diffusion coefficients given the
C                      last values, atmospheric stability, mixing layer
C                      thickness and distance moved.
C
C      Relationship to other modules:
C
C      Makes calls to:  NONE
C
C      Called from:      EXTRAN, MODELPAR
C*****

```

```
INCLUDE 'ENVIRON.INC'
```

```
REAL*4 AY(7), AZ(7,3), BZ(7,3), CZ(7,3), XVY, XEY, SZLIM,
.      XVZ, XEZ
```

```
DATA AY/ 0.3658, 0.2751, 0.2089, 0.1471, 0.1046, 0.0722, 0.0481/
DATA AZ/ 0.192, 0.156, 0.116, 0.079, 0.063, 0.053, 0.032,
+      0.00066, 0.0382, 0.113, 0.222, 0.211, 0.086, 0.052,
+      0.00024, 0.055, 0.113, 1.26, 6.73, 18.05, 10.83 /
DATA BZ/ 0.936, 0.922, 0.905, 0.881, 0.871, 0.814, 0.814,
+      1.941, 1.149, 0.911, 0.725, 0.678, 0.74, 0.74,
+      2.094, 1.098, 0.911, 0.516, 0.305, 0.18, 0.18 /
DATA CZ/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
+      9.27, 3.3, 0.0, -1.7, -1.3, -0.35, -0.21,
+      -9.6, 2.0, 0.0, -13., -34.0, -48.6, -29.2 /
```

```
XVY = ( SIGMAY/AY(STAB) )**(1.0/0.9031)
```

```
XEY = XVY + DSMTRI
```

```
SIGMAY = AY(STAB) * XEY**0.9031
```

```
C  ** SIGMA Z COMPUTATIONS
```

```
C  ** CHECK INITIAL SIGMA Z SIZE AGAINST MAXIMUM
```

```
SZLIM = 0.8 * mix_depth
```

```
IF ( SIGMAZ .GE. SZLIM) RETURN
```

```

C ** COMPUTE VIRTUAL DISTANCE

XVZ = ( SIGMAZ/AZ(STAB,1) )** (1.0 / BZ(STAB,1))
IF (SIGMAZ.GT.1.0) THEN
  IF ((XVZ+DSMTRI).GT.100.0.AND.SIGMAZ.GT.CZ(STAB,2)) THEN
    XVZ= ( ( SIGMAZ - CZ(STAB,2) ) / AZ(STAB,2) )**
+      ( 1.0/ BZ(STAB,2) )
    IF ((XVZ+DSMTRI).GE.1000.0.AND.SIGMAZ.GT.CZ(STAB,3)) THEN
      XVZ= ( ( SIGMAZ - CZ(STAB,3) ) / AZ(STAB,3) )**
+      ( 1.0 / BZ(STAB,3) )
    ENDIF
  ENDIF
ENDIF
XEZ = XVZ + DSMTRI
IF ( XEZ .LE. 100.0 ) THEN
  SIGMAZ = AZ(STAB,1) * XEZ ** BZ(STAB,1)
ELSEIF ( XEZ .LE. 1000.0 ) THEN
  SIGMAZ = AZ(STAB,2) * XEZ ** BZ(STAB,2) + CZ(STAB,2)
ELSEIF ( XEZ .GT. 1000.0 ) THEN
  SIGMAZ = AZ(STAB,3) * XEZ ** BZ(STAB,3) + CZ(STAB,3)
ENDIF
IF (SIGMAZ .GT. SZLIM) SIGMAZ = SZLIM

RETURN
END

```

SUBROUTINE PUFFINIT

```
C*****
C
C      PUFFINIT                               EXTRAN  Version 1.2
C
C      J.V. Ramsdell
C      Pacific Northwest Laboratory
C      PO Box 999
C      Richland, Washington  99352
C
C      Created: 11/88
C      Updated: 10/90
C
C      Description: Computes initial puff dimensions and virtual times
C
C      Relationship to other modules:
C
C          Makes calls to:  NONE
C
C          Called from:      EXTRAN
C
C*****
INCLUDE 'EFFLUENT.INC'
INCLUDE 'ENVIRON.INC'
INCLUDE 'POOL.INC'
INCLUDE 'PUFF.INC'
INCLUDE 'SCENARIO.INC'

REAL*4 constant, ftv, ftvprime, differ, pi, ustar, tsh, tsv,
.      c1, c2, zol(7), puff_vol, ugcnst

INTEGER*2 kount

DATA zol/ -1.00, -0.60, -0.33, -0.07, 0.09, 0.20, 0.50/

C      Constant in Wake Diffusion Equation
      constant = 0.5

C      Gas constant in (m^3 atm)/(kg-mole K)
      ugcnst = 8.2057E-2

      pi = 3.14159

C      COMPUTE INITIAL SIGMA Y AND Z FOR PUFF FROM FLASHING
      isigy1 = 0.0
      isigz1 = 0.0
      IF( pmass1 .GT. 0.0 ) THEN
          puff_vol = ugcnst * (pmass1/molec_wt) * (tank_temp+273.16)
```

```

.          / (air_press / .76 )
vapor_density = pmass1 / puff_vol
IF( vapor_density .LT. 2.0 ) THEN
  isigy1 = puff_vol**(.1/3.) / SQRT( 2 * pi )
  isigz1 = isigy1
ELSE
  isigz1 = 1.0
  isigy1 = SQRT(puff_vol / ( 2 * pi * isigz1 ) )
ENDIF
ENDIF

C COMPUTE INITIAL SIGMA Y AND SIGMA Z FOR EVAPORATION OF
C SPILLED LIQUID

isigy2 = 0.0
isigz2 = 0.0
IF( pmass2 .GT. 0.0 ) THEN
  isigy2 = SQRT( pool_area / ( 4.0 * pi ) )
  isigz2 = 0.1
ENDIF

z = 10.0
znot = .1
ustar = (.4 *ubar) / ALOG( z/znot )

C COMPUTE TIME SCALES FOR WAKE DIFFUSION MODEL
tsh = SQRT(area / ustar**2)
tsv = SQRT(area) / ((2.0+zol(stab)) * ustar)

C COMPUTE VIRTUAL TIMES FOR WAKE MODEL FOR PUFF FROM FLASHING

. IF( (isigy1**2) .GE. (constant*tsh**2) .OR.
.     (isigz1**2) .GE. (constant*tsv**2) ) THEN
  tvy1 = -1
  tvz1 = -1
ELSE

C USE NEWTON-RAPHSON METHOD TO ESTIMATE VIRTUAL TIMES FOR
C WAKE MODEL

C INITIAL GUESSES
  tvy1 = 1
  tvz1 = 1

C CONSTANT TERMS

  c1 = tsh * ALOG(1.0 - isigy1**2 / (constant * tsh**2) )
  c2 = tsv * ALOG(1.0 - isigz1**2 / (constant * tsv**2) )

C ESTIMATE VIRTUAL TIME FOR HORIZONTAL DIFFUSION
  kount = 0
110  CONTINUE
. kount = kount + 1

```

```

ftv = tvy1 - tsh * ALOG(1. + tvy1/tsh) + c1
ftvprime = tvy1 / ( tsh + tvy1 )
differ = - ftv / ftvprime
tvy1 = tvy1 + differ

IF( ABS( differ ) .LT. 0.01 ) GOTO 111
IF( kount .GT. 20 ) STOP 'NO CONVERGENCE IN NEWTON'
GOTO 110
111  CONTINUE

C      ESTIMATE VIRTUAL TIME FOR VERTICAL DIFFUSION

kount = 0
120  CONTINUE
kount = kount + 1
ftv = tvz1 - tsv * ALOG(1. + tvz1/tsv) + c2
ftvprime = tvz1 / ( tsv + tvz1 )
differ = - ftv / ftvprime
tvz1 = tvz1 + differ
IF( ABS( differ ) .LT. 0.01 ) GOTO 121
IF( kount .GT. 20 ) STOP 'NO CONVERGENCE IN NEWTON'
GOTO 120
121  CONTINUE

C      INITIAL PUFF SIZE INCLUDED IN WAKE MODEL DELETE FROM NORMAL
C      DIFFUSION

isigy1 = 0.0
isigz1 = 0.0

ENDIF

C      COMPUTE VIRTUAL TIMES FOR WAKE MODEL FOR PUFF FROM EVAPORATION

IF( (isigy2**2) .GE. (constant*tsh**2) .OR.
.   (isigz2**2) .GE. (constant*tsv**2) ) THEN
  tvy2 = -1
  tvz2 = -1
ELSE

C      USE NEWTON-RAPHSON METHOD TO ESTIMATE VIRTUAL TIMES FOR
C      WAKE MODEL

C      INITIAL GUESSES
  tvy2 = 1
  tvz2 = 1

C      CONSTANT TERMS

  c1 = tsh * ALOG(1.0 - isigy2**2 / (constant * tsh**2) )
  c2 = tsv * ALOG(1.0 - isigz2**2 / (constant * tsv**2) )

```

```

C      ESTIMATE VIRTUAL TIME FOR HORIZONTAL DIFFUSION
      kount = 0
130    CONTINUE
      kount = kount + 1
      ftv = tvy2 - tsh * ALOG(1. + tvy2/tsh) + c1
      ftvprime = tvy2 / ( tsh + tvy2 )
      differ = - ftv / ftvprime
      tvy2 = tvy2 + differ

      IF( ABS( differ ) .LT. 0.01 ) GOTO 131
      IF( kount .GT. 20 ) STOP 'NO CONVERGENCE IN NEWTON'
      GOTO 130
131    CONTINUE

C      ESTIMATE VIRTUAL TIME FOR VERTICAL DIFFUSION

      kount = 0
140    CONTINUE
      kount = kount + 1
      ftv = tvz2 - tsv * ALOG(1. + tvz2/tsv) + c2
      ftvprime = tvz2 / ( tsv + tvz2 )
      differ = - ftv / ftvprime
      tvz2 = tvz2 + differ
      IF( ABS( differ ) .LT. 0.01 ) GOTO 141
      IF( kount .GT. 20 ) STOP 'NO CONVERGENCE IN NEWTON'
      GOTO 140
141    CONTINUE

C      INITIAL PUFF SIZE INCLUDED IN WAKE MODEL DELETE FROM NORMAL
C      DIFFUSION

      isigy2 = 0.0
      isigz2 = 0.0

      ENDIF

      RETURN
      END

```

```
SUBROUTINE PUFFMASS( pmass1,pmass2,time )
```

```
C*****  
C  
C PUFFMASS EXTRAN Version 1.2  
C  
C J.V. Ramsdell  
C Pacific Northwest Laboratory  
C PO Box 999  
C Richland, Washington 99352  
C  
C Created: 10/88  
C Updated: 10/90  
C  
C Description: Computes the initial mass of material in a puff  
C  
C Relationship to other modules:  
C  
C Makes calls to: NONE  
C  
C Called from: EXTRAN  
C*****
```

```
INCLUDE 'EFFLUENT.INC'  
INCLUDE 'ENVIRON.INC'  
INCLUDE 'POOL.INC'  
INCLUDE 'SCENARIO.INC'
```

```
REAL*4 pi, g, hc, gas_const, hd, re_num, sc_num, init_radius,  
.      char_len, visc_air, sb_const, albedo, log_sat_press,  
.      temp_chg, est_p_temp, xs_energy, add_evap,  
.      dif_temp, adj_diff_coef, pool_area_1, pool_area_2
```

```
INTEGER*2 time
```

```
C..... INITIALIZE CONSTANTS -- ALL VALUES ARE IN MKS
```

```
sb_const = 5.67E-8  
pi = 3.14159  
g = 9.8  
gas_const = 0.0624  
visc_air = 2.0E-5
```

```
IF( (rel_type .EQ. 1) .OR. (rel_type .EQ. 3) ) THEN  
  rel_mass = tank_mass  
  tank_mass = 0.0  
  rel_rate = 0.0  
ELSE IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN  
  rel_mass = AMINO( rel_rate * pri, tank_mass )  
  tank_mass = tank_mass - rel_mass  
  IF( (tank_mass .LE. 0.0) .AND. (rel_rate .GT. 0.0) ) THEN  
    WRITE(*,'(A)') ' Last Puff, Tank Empty '
```

```

    tank_mass = 0.0
    rel_rate = 0.0
  ENDIF
ENDIF

IF( ( rel_mass .LE. 0.0 ) .AND. (pool_mass .LE. 0.0 ) ) THEN
  pmass1 = 0.0
  pmass2 = 0.0
  RETURN
ENDIF

IF( rel_type .GT. 2 ) THEN
  pmass1 = rel_mass
  pmass2 = 0.0
  RETURN
ENDIF

IF( boil_point .LE. air_temp ) THEN

C   COMPUTE PORTION OF RELEASE THAT FLASHES, ADD REMAINDER TO
C   POOL AND COMPUTE POOL TEMPERATURE

  IF( rel_mass .GT. 0.0 ) THEN
    pmass1 = cp * rel_mass * (air_temp - boil_point) / hv
    rel_mass = rel_mass - pmass1
  ENDIF

ENDIF

C   EVAPORATION FORCED BY VAPOR PRESSURE
C   POOL TEMPERATURE CHANGES CONTROLLED BY ENERGY BALANCE

C   COMPUTE POOL DIMENSIONS AND TEMPERATURE ASSUMING
C   UNIFORM MIXING IN POOL

  IF( boil_point .LE. air_temp ) THEN
    pool_temp = pool_temp * pool_mass + rel_mass * boil_point
  ELSE
    pool_temp = pool_temp * pool_mass + rel_mass * tank_temp
  ENDIF
  pool_mass = pool_mass + rel_mass

  IF( pool_mass .GT. 0.0 ) THEN
    pool_temp = pool_temp / pool_mass
    pool_vol = pool_mass / src_density
  ENDIF

C   ESTIMATE POOL AREA BY 2 METHODS AND COMPARE WITH MAXIMUM
C   AREA SUPPLIED BY USER -- CHOOSE SMALLEST VALUE

  init_radius = (pool_vol / pi)**(1.0/3.0)
  pool_area_1 = pi * (init_radius**2 + ( 2.0 * (time + pri) )
                      * SQRT( (g * pool_vol / pi) ) )
  pool_area_2 = pool_vol / 0.01

```

```

pool_area = AMINO( max_pool_area, pool_area_1, pool_area_2 )

pool_radius = SQRT( pool_area / pi )
pool_thick = pool_vol / pool_area

C COMPUTE SATURATION VAPOR PRESSURE AT POOL TEMPERATURE

log_sat_press = pconst *
.   (1.0 - (boil_point + 273.16) / (pool_temp + 273.16) )
sat_press = air_press * EXP( log_sat_press )

C ADJUST DIFFUSION COEFFICIENT FOR TEMPERATURE

dif_temp = (air_temp + pool_temp)/2 + 273.16
adj_diff_coef = diff_coef * (dif_temp / tref)**1.5

C COMPUTE REYNOLDS AND SCHMIDT NUMBER

char_len = 2.0 * pool_radius
re_num = (char_len *ubar * air_density) / visc_air
sc_num = visc_air / (adj_diff_coef * air_density)

C COMPUTE hd BASED FOR TURBULENT FLOW

hd = .037 * (adj_diff_coef/char_len)
.   * re_num**.8 * sc_num**(1.0/3.0)

C COMPUTE MASS EVAPORATED DURING PERIOD

pmass2 = hd * molec_wt * pool_area * pri * sat_press
.   / (gas_const * (pool_temp + 273.16) )
IF( pmass2 .GE. pool_mass ) THEN
  pmass2 = pool_mass
  pool_mass = 0.0
  WRITE(*,'(A)' ) ' POOL DRIED UP '
ELSE
  pool_mass = pool_mass - pmass2

C NET SHORT-WAVE RADIATION (watts/m**2)

albedo = 0.1
net_swrad = (1.0 - albedo) * sol_rad

C NET LONG-WAVE RADIATION (watts/m**2)

lw_in = 5.31E-13 * (air_temp + 273.16)**6 + 60 * ccover
IF( sol_rad .GT. 100.0 ) lw_in = lw_in - 30
lw_out = sb_const * (pool_temp + 273.16)**4
net_lwrad = lw_in - lw_out

```

```

C FORCED CONVECTION OF AIR OVER THE SPILL
  hc = 6.69 * ubar**0.6
  air_conv = hc * (air_temp - pool_temp)

C CONDUCTION FROM GROUND
  grnd_cond = (1000. * (earth_temp - pool_temp))
  / SQRT( FLOAT(time + pri) )

C NET ENERGY FLUX TO SPILL
  net_flux = net_swrad + net_lwrad + air_conv + grnd_cond

C CORRECT POOL TEMPERATURE
  temp_chg = pool_area * net_flux * pri / ( cp * pool_mass )
  - ( pmass2 / pool_mass ) * ( hv / cp )

  IF( temp_chg .LE. 0.0 ) THEN
    C POOL COOLS FROM EVAPORATION
    pool_temp = pool_temp + temp_chg
  ELSE
    C POOL WARMs FROM ENERGY INPUT
    est_p_temp = pool_temp + temp_chg
  C CHECK TO SEE IF BOILING POINT EXCEEDED AND CORRECT
  C EVAPORATION IF IT IS
    IF( est_p_temp .LE. boil_point ) THEN
      pool_temp = est_p_temp
    ELSE
      pool_temp = boil_point
      xs_energy = pool_mass * (est_p_temp - boil_point) * cp
      add_evap = xs_energy / hv
      IF( pool_mass .GT. add_evap ) THEN
        pmass2 = pmass2 + add_evap
        pool_mass = pool_mass - add_evap
      ELSE
        pmass2 = pmass2 + pool_mass
        pool_mass = 0.0
      ENDIF
    ENDIF
  ENDIF

```

ENDIF
ENDIF

RETURN
END

SUBROUTINE RELPUFF

```
C*****  
C  
C      RELPUFF                                EXTRAN Version 1.2  
C      Puff Release  
C  
C      J.V. Ramsdell  
C      Pacific Northwest Laboratory  
C      PO Box 999  
C      Richland, Washington 99352  
C  
C      Created: 10/88  
C      Updated: 10/90  
C  
C      Description: Assigns initial characteristics to a puff at release  
C                      time.  
C  
C      Relationship to other modules:  
C  
C          Makes calls to:  NONE  
C  
C          Called from:      EXTRAN  
C*****
```

INCLUDE 'PUFF.INC'

```
IF( pmass1 .GT. 0.0 ) THEN  
    numpuffs = numpuffs + 1  
    puffm(numpuffs) = pmass1  
    puffage(numpuffs) = 0.0  
    pufftvy(numpuffs) = tvy1  
    pufftvz(numpuffs) = tvz1  
    puffnsigy(numpuffs) = isigy1  
    puffnsigz(numpuffs) = isigz1  
    pufftsigy(numpuffs) = 0.0  
    pufftsigz(numpuffs) = 0.0  
ENDIF  
  
IF( pmass2 .GT. 0.0 ) THEN  
    numpuffs = numpuffs + 1  
    puffm(numpuffs) = pmass2  
    puffage(numpuffs) = 0.0  
    pufftvy(numpuffs) = tvy2  
    pufftvz(numpuffs) = tvz2  
    puffnsigy(numpuffs) = isigy2  
    puffnsigz(numpuffs) = isigz2  
    pufftsigy(numpuffs) = 0.0  
    pufftsigz(numpuffs) = 0.0  
ENDIF
```

RETURN
END

```
SUBROUTINE RINPUT( title,RDATE,RTIME,gnam )
```

```
C*****  
C  
C RINPUT  
C Prompts User For Input Data  
C  
C J.V. Ramsdell  
C Pacific Northwest Laboratory  
C PO Box 999  
C Richland, Washington 99352  
C  
C Created: 7/90  
C Updated: 10/90  
C  
C Description: Prompts user for revisions to the environmental  
C data for multiple runs.  
C  
C Relationship to other modules:  
C  
C Makes calls to: RINPUT  
C  
C Called from: EXTRAN  
C*****
```

```
INCLUDE 'EFFLUENT.INC'  
INCLUDE 'ENVIRON.INC'  
INCLUDE 'OPTIONS.INC'  
INCLUDE 'SCENARIO.INC'  
  
REAL*4 air_dens_stp, std_temp, std_press, log_sat_press, ugcnst,  
.     pi, mol_vol  
  
CHARACTER formfeed  
CHARACTER*8 RTIME  
CHARACTER*10 RDATE  
CHARACTER*20 gname  
CHARACTER*70 title  
  
formfeed = CHAR(12)  
air_dens_stp = 1.29  
std_temp = 273.16  
std_press = 760.  
ugcnst = 8.3144  
pi = 3.14159
```

```
C..... RESET ENVIRONMENTAL VARIABLES TO INITIAL cgs VALUES
```

```
cp = cp * 1.0E-3  
hv = hv * 1.0E-3  
src_density = src_density * 1.0E-3  
diff_coef = diff_coef * 1.0E4
```

```

air_press = air_press * 1.0E3

C..... PROMPT USER FOR ENVIRONMENTAL CONDITIONS

CALL RINPUTE( rel_type )

C RENAME OUTPUT FILES

WRITE( PRTFILE(10:12), '(I3.3)' ) run_count
WRITE( CRONFILE(10:12), '(I3.3)' ) run_count
WRITE( MBFILE(10:12), '(I3.3)' ) run_count

C OPEN OUTPUT FILES

IF( prtflg1 .OR. pltflg .OR. histflg1 )
. OPEN(UNIT=3, FILE='LPT1', STATUS='UNKNOWN')
IF( prtflg2 ) OPEN( UNIT=10,FILE=PRTFILE,STATUS='NEW' )
IF( histflg2 ) OPEN( UNIT=11,FILE=CRONFILE,STATUS='NEW' )
IF( statflg ) OPEN( UNIT=12,FILE=MBFILE,STATUS='NEW' )

C..... LIST INPUT DATA IN PRIMARY OUTPUT

IF( prtflg1 .OR. pltflg .OR. histflg1 ) THEN
  WRITE(3,*) formfeed
  WRITE(3,2)
2 FORMAT(/10X,'Program Title: EXTRAN VERSION 1.2'//,
+ 10X,'Developed For: U.S. Nuclear Regulatory Commission'/
+ 10X,'                                Office of Nuclear Regulatory Research'/
+ 10X,'                                Division of Reactor Accident Analysis'/
+ 10X,'Date:          October 1990'//,
+ 10X,'NRC Contact(s): C. Ferrell      Phone: (FTS) 492 3944'/
+ 10X,'Code Developer: J. V. Ramsdell  Phone: (509) 376-8626'/
+ 10X,'                                (FTS) 444-8626'//,
+ 10X,'Code Documentation: ' /
+ 10X,'                                EXTRAN: A Computer Code For Estimating'
+ 10X,'                                Concentrations Of Toxic Substances At'
+ 10X,'                                Control Room Air Intakes'
+ 10X,'                                NUREG/CR-5656'///,
+ 10X,'The program was prepared for an agency of the United ',
+ 'States',/10X,'Government. Neither the United States ',
+ 'Government nor any',/10X,'agency thereof, nor any of their ',
+ 'employees, makes any',/10X,'warranty, expressed or implied',
+ 'or assumes any legal',/10X,'liability or responsibilities for',
+ 'any third party',/10X,'or the results of such use, of',
+ 'any portion of this program',/10X,'or represents that its use',
+ 'by such third party would not',/10X,'infringe privately',
+ 'owned rights. '// )

  WRITE(3,3) title
3 FORMAT(/11X,A70)
  WRITE(3,4) RDATE, RTIME
4 FORMAT(/10X,' RUN DATE = ',A10,' RUN TIME = ',A8)

```

```

        WRITE(3,*)  formfeed
ENDIF
IF( prtflg1 ) THEN
    WRITE(3,3) title
    WRITE(3,4) RDATE, RTIME

    WRITE(3,5)
5   FORMAT(10X,' SCENARIO: ')
    IF( rel_type .EQ. 1 ) THEN
        WRITE(3,6)
6   FORMAT(10X,' Release Type           = Liquid Tank Burst')
    ELSE IF( rel_type .EQ. 2 ) THEN
        WRITE(3,7)
7   FORMAT(10X,' Release Type           = Liquid Tank Leak')
    ELSE IF( rel_type .EQ. 3 ) THEN
        WRITE(3,8)
8   FORMAT(10X,' Release Type           = Gas Tank Burst')
    ELSE IF( rel_type .EQ. 4 ) THEN
        WRITE(3,9)
9   FORMAT(10X,' Release Type           = Gas Tank Leak')
    ELSE
        STOP ' !!!!!!! RELEASE TYPE ILL DEFINED !!!!!!! '
    ENDIF

    IF( ciflg ) THEN
        WRITE(3,10) tank_mass
10  FORMAT(10X,' Initial Mass      (Ci) = ',F10.0)
        IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN
            WRITE(3,11) rel_rate
11  FORMAT(10X,' Release Rate      (Ci/sec) = ',1PE16.2)
        ENDIF
    ELSE
        WRITE(3,35) tank_mass
35  FORMAT(10X,' Initial Mass      (kg) = ',F10.0)
        IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN
            WRITE(3,36) rel_rate
36  FORMAT(10X,' Release Rate      (kg/sec) = ',1PE16.2)
        ENDIF
    ENDIF

    WRITE(3,12) rel_height
12  FORMAT(10X,' Release Height     (m) = ',F11.1)
    WRITE(3,13) tank_temp
13  FORMAT(10X,' Storage Temperature (C) = ',F11.1)

    IF( rel_type .LT. 3 ) THEN
        WRITE(3,14) max_pool_rad
14  FORMAT(10X,' Maximum Pool Radius (m) = ',F11.1)
    ENDIF

    WRITE(3,15) intake_dist
15  FORMAT(10X,' Intake Distance     (m) = ',F10.0)

```

```

16  WRITE(3,16) intake_height
    FORMAT(10X,' Intake Height      (m) = ',F11.1)

17  WRITE(3,17) area
    FORMAT(10X,' Building Area      (m**2) = ',F10.0)

18  IF( rel_type .EQ. 4 ) THEN
      WRITE(3,18) vent_flow
      FORMAT(10X,' Vent Flow      (m**3/s) = ',F12.2)
    ENDIF

19  WRITE(3,19)
20  FORMAT(//10X,' ENVIRONMENTAL CONDITIONS:')
21  WRITE(3,20) ubar
22  FORMAT(10X,' Wind Speed      (m/sec) = ',F10.1)
23  WRITE(3,21) stab
24  FORMAT(10X,' Atmospheric Stability Class = ',I8)
25  WRITE(3,22) air_temp
26  FORMAT(10X,' Air Temperature      (C) = ',F10.1)
27  WRITE(3,23) air_press
28  FORMAT(10X,' Atmospheric Pressure      (mm Hg) = ',F10.1)
29  IF( rel_type .LT. 3 ) THEN
30    WRITE(3,24) sol_rad
31    FORMAT(10X,' Solar Radiation      (watts/m**2) = ',F10.1)
32    iccover = ccover * 10
33    WRITE(3,25) iccover
34    FORMAT(10X,' Cloud Cover      (tenths) = ',I8)
35    WRITE(3,26) earth_temp
36    FORMAT(10X,' Ground Temperature      (C) = ',F10.1)
  ENDIF

37  WRITE(3,27)
38  FORMAT(//10X,' EFFLUENT CHARACTERISTICS:')
39  WRITE(3,28) gname
40  FORMAT(10X,' Material Released      = ',5X,A)
41  WRITE(3,29) molec_wt
42  FORMAT(10X,' Molecular Weight      (gm/mole) = ',F10.1)
43  IF( rel_type .LT. 3 ) THEN
44    WRITE(3,30) boil_point
45    FORMAT(10X,' Initial Boiling Point      (C) = ',F10.1)
46    WRITE(3,31) cp
47    FORMAT(10X,' Heat Capacity      (j/gm-C) = ',F12.3)
48    WRITE(3,32) hv
49    FORMAT(10X,' Heat of Vapor.      (j/gm) = ',F10.1)
50    WRITE(3,33) src_density
51    FORMAT(10X,' Specific Gravity      = ',F12.3)
52    WRITE(3,34) diff_coef
53    FORMAT(10X,' Diffusion Coef.      (cm**2/sec) = ',F12.3)
  ENDIF
ENDIF

```

```

IF( prtf1g2 ) THEN
  WRITE(10,2)

  WRITE(10,3) title
  WRITE(10,4) RDATE, RTIME

  WRITE(10,5)
  IF( rel_type .EQ. 1 ) THEN
    WRITE(10,6)
  ELSE IF( rel_type .EQ. 2 ) THEN
    WRITE(10,7)
  ELSE IF( rel_type .EQ. 3 ) THEN
    WRITE(10,8)
  ELSE IF( rel_type .EQ. 4 ) THEN
    WRITE(10,9)
  ELSE
    STOP ' !!!!!!! RELEASE TYPE ILL DEFINED !!!!!!! '
  ENDIF

  IF( c1f1g ) THEN
    WRITE(10,10) tank_mass
    IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN
      WRITE(10,11) rel_rate
    ENDIF
  ELSE
    WRITE(10,35) tank_mass
    IF( (rel_type .EQ. 2) .OR. (rel_type .EQ. 4) ) THEN
      WRITE(10,36) rel_rate
    ENDIF
  ENDIF

  WRITE(10,12) rel_height
  WRITE(10,13) tank_temp
  IF( rel_type .LT. 3 ) WRITE(10,14) max_pool_rad
  WRITE(10,15) intake_dist
  WRITE(10,16) intake_height
  WRITE(10,17) area
  IF( rel_type .EQ. 4 ) THEN
    WRITE(10,18) vent_flow
  ENDIF

  WRITE(10,19)
  WRITE(10,20) ubar
  WRITE(10,21) stab
  WRITE(10,22) air_temp
  WRITE(10,23) air_press
  IF( rel_type .LT. 3 ) THEN
    WRITE(10,24) sol_rad
    iccover = ccover * 10
    WRITE(10,25) iccover
    WRITE(10,26) earth_temp
  ENDIF

```

```

      WRITE(10,27)
      WRITE(10,28) gname
      WRITE(10,29) molec_wt
      IF( rel_type .LT. 3 ) THEN
        WRITE(10,30) boil_point
        WRITE(10,31) cp
        WRITE(10,32) hv
        WRITE(10,33) src_density
        WRITE(10,34) diff_coef
      ENDIF
    ENDIF

C   CORRECT FOR DEPARTURE FROM STANDARD CONDITIONS

C   Compute molar volume for conversion to ppm

  mol_vol = 22.414E-3 * ( std_press/air_press ) *
.   ( (air_temp + 273.16)/std_temp)

  IF( rel_type .LE. 2 ) THEN

C   Compute air_density at air_temp and air_press

    air_density = air_dens_stp * (std_temp/(air_temp+273.16))
.   * (air_press/std_press)

C   Correct boiling point for atmospheric pressure

    boil_point = ( std_boil_pt + 273.16 )
.   / ( 1 + ugcnst * ( std_boil_pt + 273.16 )
.   * ( ALOG(760.)-ALOG(air_press) )
.   / ( hv * molec_wt ) ) - 273.16

C   Compute initial saturation vapor pressure

    IF( boil_point .GT. tank_temp ) THEN
      pconst = ( molec_wt * hv )
.      / ( ugcnst * (boil_point+273.16) )
      log_sat_press = pconst
.      * ( 1.0 - (boil_point+273.16) / (tank_temp+273.16) )
      sat_press = air_press * EXP( log_sat_press )
    ELSE
      sat_press = air_press
    ENDIF
  ENDIF

C   COMPUTE FACTOR TO CONVERT g/m**3 TO ppm

  ppmconv = mol_vol * 1.0E6 / molec_wt

```

C CONVERT FROM CGS TO MKS

```
cp = cp * 1.0E3
hv = hv * 1.0E3
sat_press = sat_press / 1.0E3
src_density = src_density * 1.0E3
diff_coef = diff_coef / 1.0E4
air_press = air_press / 1.0E3
```

```
RETURN
END
```

```
SUBROUTINE RINPUTE( rel_type )
```

```
C*****  
C  
C      RINPUTE                               EXTRAN Version 1.2  
C      Allows User to Revise Environmental Data  
C  
C      J.V. Ramsdell  
C      Pacific Northwest Laboratory  
C      PO Box 999  
C      Richland, Washington 99352  
C  
C      Created: 7/90 from INPUT  
C      Updated: 10/90  
C  
C      Description: Prompts user for environmental data input depending  
C                      on release type.  
C  
C      Relationship to other modules:  
C  
C          Makes calls to:  NONE  
C  
C          Called from:      RINPUT  
C*****
```

```
INCLUDE 'EFFLUENT.INC'  
INCLUDE 'ENVIRON.INC'
```

```
REAL ugcnst
```

```
INTEGER*2 NN, rel_type, iccover
```

```
CHARACTER UC, yn
```

```
ugcnst = 8.3144
```

```
WRITE(*,'(//A)') ' REVISE ENVIRONMENTAL CONDITIONS:'
```

```
IF( rel_type .LE. 2 ) THEN  
    NN = 7  
ELSE  
    NN = 4  
ENDIF
```

```
10 CONTINUE
```

```
C..... REVIEW INPUT DATA AND REVISE AS NECESSARY
```

```
WRITE(*,'(//A)') ' ENVIRONMENTAL CONDITIONS REVIEW:'  
WRITE(*,'(A,F10.1)') ' 1 Wind Speed           (m/sec) = ',  
                           ubar
```

```

      WRITE(*,'(A,I8)')      ' 2 Atmospheric Stability Class      = ',
      .                           stab
      .
      WRITE(*,'(A,F10.1)')  ' 3 Air Temperature          (C) = ',
      .                           air_temp
      . WRITE(*,'(A,F10.1)')  ' 4 Atmospheric Pressure (mm Hg) = ',
      .                           air_press
      . IF( rel_type .LT. 3 ) THEN
      .   WRITE(*,'(A,F10.1)')  ' 5 Solar Radiation (watts/m**2) = ',
      .                           sol_rad
      .   iccover = 10*ccover
      .   WRITE(*,'(A,I8)')      ' 6 Cloud Cover (tenths) = ',
      .                           iccover
      .   WRITE(*,'(A,F10.1)')  ' 7 Ground Temperature (C) = ',
      .                           earth_temp
      . ENDIF
      .
      WRITE(*,'(1X,A)') ' C   START CALCULATIONS '
      WRITE(*,'(1X,A)') ' X   EXIT PROGRAM '
      .
      20 CONTINUE
      WRITE(*,21)
      21 FORMAT(/' ENTER C TO CONTINUE IF DATA ARE CORRECT',
      . /' IF DATA ARE NOT CORRECT ENTER NUMBER OF ITEM TO BE CHANGED',
      . /' OR, ENTER X TO STOP PROGRAM : '\ )
      .
      READ(*,'(A)',ERR=10) yn
      .
      IF( UC(yn) .EQ. 'X' )
      .   STOP ' PROGRAM STOPPED AT ENVIRONMENTAL DATA REVISION '
      IF( UC(yn) .EQ. 'C' ) RETURN
      .
      C..... DETERMINE ITEM TO BE REVISED
      .
      IF( yn .EQ. '1' ) THEN
      .   GOTO 100
      ELSE IF( yn .EQ. '2' ) THEN
      .   GOTO 200
      ELSE IF( yn .EQ. '3' ) THEN
      .   GOTO 300
      ELSE IF( yn .EQ. '4' ) THEN
      .   GOTO 400
      ELSE IF( yn .EQ. '5' ) THEN
      .   GOTO 500
      ELSE IF( yn .EQ. '6' ) THEN
      .   GOTO 600
      ELSE IF( yn .EQ. '7' ) THEN
      .   GOTO 700
      ENDIF
      .
      WRITE(*,'(A,I2,A) ')
      .   ' ENTER NUMBER FROM 1 THRU ', NN, ', A C, OR AN X.'
      GOTO 10

```

C..... DATA REVISION SECTION

```
100 CONTINUE
105 WRITE(*,'(/A\')') ' Enter Wind Speed (m/s) (e.g., 5.0) : '
    READ(*,'(F15.0)',ERR=105) ubar
    IF( (ubar .LT. 0.5) .OR. (ubar .GT. 20.0) ) THEN
        WRITE(*,'(/A')') ' Out of Range; Range is (0.5 - 20.0)'
        GOTO 105
    ELSE
        WRITE(*,'(F15.1)')      ubar
    ENDIF
    GOTO 10

200 CONTINUE
205 WRITE(*,'(/A')') ' Atmospheric Stability Classes '
    WRITE(*,'(A')') ' 1 = A, 2 = B, 3 = C, 4 = D, 5 = E, 6 = F, 7 = G'
    WRITE(*,'(A\')') ' Enter Stability Class Number : '
    READ(*,'(I1)',ERR=205) stab
    IF( (stab .LT. 1) .OR. (stab .GT. 7) ) THEN
        WRITE(*,'(/A')') ' Out of Range; Range is (1 - 7)'
        GOTO 205
    ELSE
        WRITE(*,'(11x,i4)')      stab
    ENDIF
    GOTO 10

300 CONTINUE
305 WRITE(*,'(/A,A\')') ' Enter Ambient Air Temperature (C) ',
    .      ' (e.g., 10.0) : '
    .      READ(*,'(F15.0)',ERR=305) air_temp
    IF( (air_temp .LT. -40.0) .OR. (air_temp .GT. 50.0) ) THEN
        WRITE(*,'(/A')') ' Out of Range; Range is (-40.0 TO +50.0)'
        GOTO 305
    ELSE
        WRITE(*,'(F15.0)')      air_temp
    ENDIF
    GOTO 10

400 CONTINUE
405 WRITE(*,'(/A,A\')') ' Enter Atmospheric Pressure (mm Hg) ',
    .      ' (e.g., 760.0) : '
    .      READ(*,'(F15.0)',ERR=405) air_press
    IF( (air_press .LT. 600.0) .OR. (air_press .GT. 800.0) ) THEN
        WRITE(*,'(/A')') ' Out of Range; Range is (600.0 - 800.0)'
        GOTO 405
    ELSE
        WRITE(*,'(F15.1)')      air_press
    ENDIF

C     Correct boiling point for atmospheric pressure
    .      boil_point = ( std_boil_pt+273.16 )
    .      / ( 1 + ugcnst * (std_boil_pt+273.16)
```

```

.  * ( ALOG(760.)-ALOG(air_press) )
.  / ( hv * molec_wt ) ) - 273.16

IF( boil_point .LT. 0.0 ) THEN
  tref = boil_point + 273.16
ELSE
  tref = 273.16
ENDIF

C      Reset diffusion coefficient

diff coef = idiff coef
IF( (diff_coef .LE. 0.0) .AND. (rel_type .LT. 3) ) THEN
  WRITE(*,'(A)') ' Computing revised diffusion coefficient '
  CALL DIFCOEF
ENDIF
GOTO 10

500 CONTINUE
505 WRITE(*,'(/A,A\)')
.  ' Enter Value for Solar Radiation ',
.  '(watts/m**2) (e.g. 500.0) : '
READ(*,'(F15.0)',ERR=505) sol_rad
IF( (sol_rad .LT. 0.0) .OR. (sol_rad .GT. 1200.) ) THEN
  WRITE(*,'(A,A)') ' Solar Radiation Out of Range, Range is ',
  '0 to 1200. '
  GOTO 505
ELSE
  WRITE(*,'(F15.0)')      sol_rad
ENDIF
GOTO 10

600 CONTINUE
605 WRITE(*,'(/A\)')
.  ' Enter Cloud Cover in tenths (e.g. 4 ) '
READ(*,'(I4)',ERR=605) iccover
IF( (iccover .LT. 0 ) .OR. ( iccover .GT. 10 ) ) THEN
  WRITE(*,'(A,A)') ' Cloud Cover Out of Range, Range is ',
  '0 to 10 '
  GOTO 605
ELSE
  WRITE(*,'(I4)')      iccover
ENDIF
ccover = FLOAT(iccover) / 10.
GOTO 10

700 CONTINUE
705 WRITE(*,'(/A,A\)')
.  ' Enter Temperature (C) of the Ground',
.  ' (e.g., Air Temp. + 10.0) : '
READ(*,'(F15.0)',ERR=705) earth_temp
IF( (earth_temp .LT. -40.0) .OR. (earth_temp .GT. 60.0) ) THEN
  WRITE(*,'(A)') ' Out of Range; Range is (-40.0 to +60.0)'
  GOTO 705

```

```
ELSE
  WRITE(*,'(F15.0)')           earth_temp
ENDIF
GOTO 10

END
```

FUNCTION UC(A)

```
C*****  
C  
C UC EXTRAN Version 1.2  
C  
C Return an upper case letter if input is lower case letter  
C  
C J.V. Ramsdell  
C Pacific Northwest Laboratory  
C PO Box 999  
C Richland, Washington 99352  
C  
C Created: 7/90  
C Updated: 10/90  
C  
C Description: The input character is examined. If has an ASCII  
C character in the range from 97 through 122, it is a  
C lower case letter. If it is a lower case letter  
C NN is set equal to the value minus 32. This is the  
C upper case equivalent to the letter. UC is set equal  
C to CHAR(NN)  
C*****
```

CHARACTER UC, A

INTEGER*2 NN

NN = ICHAR(a)

```
IF( (NN .GE. 97) .AND. (NN .LE. 122) ) THEN  
  NN = NN - 32  
  UC = CHAR( NN )  
ELSE  
  UC = A  
ENDIF
```

RETURN

END

```
SUBROUTINE WSIG( TTY, TTZ, wsigy, wsigz )
```

```
*****  
C  
C  
C      WSIG          EXTRAN Version 1.2  
C      Computes Building-Wake Diffusion Coefficients  
C  
C      J.V. Ramsdell  
C      Pacific Northwest Laboratory  
C      PO Box 999  
C      Richland, Washington 99352  
C  
C      Created: 11/88  
C      Updated: 10/90  
C  
C      Description: Computes Sigma YW and ZW for building wake  
C  
C      Relationship to other modules:  
C  
C          Makes calls to:  NONE  
C  
C          Called from:    EXTRAN, MODELPAR  
C*****
```

```
INCLUDE 'ENVIRON.INC'  
INCLUDE 'SCENARIO.INC'
```

```
REAL*4    ZOL(7), c, ustar, hts, vts, tty, ttz
```

```
DATA ZOL/ -1.0, -0.6, -0.33, -0.07, 0.09, 0.2, 0.5 /
```

```
C      Constant ==> includes sigv, sigw, lagrangian  
C      autocorrelations and calibration constant
```

```
C = 0.5
```

```
C      Horizontal Time Scale for Diffusion ==> HTS
```

```
USTAR = 0.4 * UBAR / ALOG(10.0/0.1)
```

```
HTS = SQRT(AREA) / USTAR
```

```
C      Vertical Time Scale for Diffusion ==> VTS
```

```
C      First find approximate z/L at 10 m given zo = 0.1 m and stability  
C      class
```

```
VTS = HTS / ( 2 + ZOL(STAB) )
```

```
C      Compute Wake diffusion Coefficients
```

```
WSIGY = C * HTS**2 * ( EXP(-TTY/HTS) * (-TTY/HTS - 1) + 1 )  
WSIGZ = C * VTS**2 * ( EXP(-TTZ/VTS) * (-TTZ/VTS - 1) + 1 )
```

```
WSIGY = SQRT(WSIGY)
WSIGZ = SQRT(WSIGZ)
```

```
RETURN
END
```

```
C*****
C
C      EFFLUENT.INC                               EXTRAN  Version 1.2
C
C      Created: 11/88
C      Updated: 10/90
C
C      Description: Contains effluent information and constants used
C                      throughout the EXTRAN code.
C
C      Included in modules: DIFCOEF, EXTRAN, INPUT, INPUTUF, PUFFINIT,
C                            PUFFMASS, RINPUT, RINPUTU
C
C*****
```

```
REAL*4  src_density, cp, hv, std_boil_pt, vapor_density, tref,
.      vapor_press, diff_coef, sat_press, molec_wt, pconst,
.      ppmconv, boil_point, idiff_coef

COMMON /effluent/ src_density, cp, hv, std_boil_pt, vapor_density,
.                  vapor_press, diff_coef, sat_press, molec_wt,
.                  pconst, tref, ppmconv, boil_point, idiff_coef
```

```
C*****
C
C      ENVIRON.INC                               EXTRAN  Version 1.2
C
C      Created: 11/88
C      Updated: 10/90
C
C      Description: Contains environmental information and constants
C                      used throughout the EXTRAN code.
C
C      Included in modules: CHIT, DIFCOEF, EXTRAN, INPUT, INPUTE,
C                            INPUTUF, MODELPAR, NSIG, PUFFINIT, PUFFMASS,
C                            RINPUT, RINPUTU, WSIG
C
C*****
```

```
REAL*4 ubar, z, znot, air_temp, air_press, mix_depth, earth_temp,
.      sol_rad, ccover, air_density

INTEGER*2 stab

COMMON /environ/ ubar, z, znot, air_temp, air_press, mix_depth,
.                  earth_temp, sol_rad, ccover, air_density, stab
```

```
C*****  
C  
C      OPTIONS.INC                               EXTRAN  Version 1.2  
C  
C      Created: 7/90  
C      Updated: 10/90  
C  
C      Description: Contains flags that control model output.  
C  
C      Included in modules: CEPLOT, EXTRAN, INPUT, INPUT0, INPUTS,  
C                            MODELPAR, RINPUT  
C*****
```

```
LOGICAL ppmflg, prtflg1, prtflg2, pltflg, histflg1, histflg2,  
.      statflg, ciflg  
  
INTEGER*2 run_count  
  
CHARACTER*12 PRTFILE, CRONFILE, MBFILE  
  
COMMON /options/ ppmflg, prtflg1, prtflg2, pltflg, histflg1,  
.      histflg2, statflg, ciflg, run_count  
  
COMMON /filenames/ PRTFILE, CRONFILE, MBFILE
```

```
C*****  
C  
C      POOL.INC                               EXTRAN  Version 1.2  
C  
C      Created: 11/88  
C      Updated: 10/90  
C  
C      Description: Contains information on the pool of material  
C  
C      Included in modules: EXTRAN, PUFFINIT, PUFFMASS  
C*****
```

```
REAL*4 rel_mass, pool_mass, pool_temp, pool_vol, pool_radius,  
.      pool_area, pool_thick, net_swrad, lw_in, lw_out,  
.      net_lwrad, air_conv, grnd_cond, net_flux  
  
COMMON /pool/ rel_mass, pool_mass, pool_temp, pool_vol,  
.      pool_radius, pool_area, pool_thick, net_swrad, lw_in,  
.      lw_out, net_lwrad, air_conv, grnd_cond, net_flux
```

```
C*****  
C  
C      PRINT.INC                      EXTRAN  Version 1.2  
C  
C      Created: 11/88  
C      Updated: 10/90  
C  
C      Description: Contains information for plotting.  
C  
C      Included in modules: CEPLOT, CHIT, EXTRAN  
C*****
```

```
REAL*4 conc(181), expos(181), avconc(181), exposure  
INTEGER*2 ttime(181), count, npuffs(181), start  
COMMON /print/ conc, expos, avconc, ttime, count, npuffs, start,  
+               exposure
```

```
C*****  
C  
C      PUFF.INC                      EXTRAN  Version 1.2  
C  
C      Created: 11/88  
C      Updated: 10/90  
C  
C      Description: Contains puff parameters  
C  
C      Included in modules: CHIT, EXTRAN, PUFFINIT, RELPUFF  
C*****
```

```
REAL*4 puffm(500), puffage(500), pufftvy(500), pufftvz(500),  
.      puffnsigy(500), puffnsigz(500), pufftsigy(500),  
.      pufftsigz(500), pmass1, pmass2, isigy1, isigz1, isigy2,  
.      isigz2, tvy1, tvz1, tvy2, tvz2
```

```
INTEGER*2 numpuffs  
COMMON /puff/ puffm, puffage, pufftvy, pufftvz, puffnsigy,  
.             puffnsigz, pufftsigy, pufftsigz, pmass1, pmass2,  
.             isigy1, isigz1, isigy2, isigz2, tvy1, tvz1, tvy2,  
.             tvz2, numpuffs
```

```
C*****
C
C      SCENARIO.INC                      EXTRAN  Version 1.2
C
C      Created: 11/88
C      Updated: 10/90
C
C      Description: Contains scenario information and constants used
C                      throughout the WAKE model.
C
C      Included in modules: CHIT, EXTRAN, INPUT, INPUTO, INPUTS,
C                            MODELPAR, PUFFINIT, PUFFMASS, RINPUT, WSIG
C
C*****
```

```
REAL*4    intake_dist, intake_height, area, rel_height, tank_mass,
.        tank_temp, rel_rate, max_pool_rad, max_pool_area,
.        init_tank_mass, init_rel_rate, vent_flow

INTEGER*2  rel_type, pri, delta_time

COMMON /scenario/ intake_dist, intake_height, area, rel_height,
.        tank_mass, tank_temp, rel_rate, max_pool_rad,
.        max_pool_area, rel_type, pri, delta_time,
.        init_tank_mass, init_rel_rate, vent_flow
```

DISTRIBUTION

No. of
Copies

OFFSITE

10 C. Ferrell
Division of Reactor Accident
Analysis
Office of Nuclear Regulatory
Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555

ONSITE

50 Pacific Northwest Laboratory

K. J. Allwine
C. M. Berkowitz
J. C. Doran
J. G. Droppo
C. E. Elderkin
J. W. Falco
C. S. Glantz
J. M. Hales
P. C. Hayes
D. J. Hoitink
L. A. Mahoney
P. C. Owczarski
W. T. Pennell
J. V. Ramsdell (27)
R. L. Skaggs
E. D. Skillingstad
L. L. Wendell
Publishing Coordination (2)
Technical Report Files (5)

DO NOT MICROFILM
THIS PAGE