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INTRODUCTION

- Youngs Jescribes the development of the Rayleigh-Taylor instability
in terms of three stages: stage 1, the linear growth phase; stage 2, an
interval where the development is nonlinear but predictable from
computation given the initial condition:; and stage 3, where all memory
of the initial conditions is lost and the flow becomes turbulent. !
The time interval that scage 2 can be predicted is finite because no
matter how accurate the computational method and computer, the accuracy
with which the initial conditions can be specified is limited by the
experimental noise level and the surface roughness. Although nat
turbulent, stage 2 very much resembles chaotic motion because what
happens in any given run depends sensitively on the initial

conditions. There is a new body of theory for treating similar kinds
of nonlinear evolution problems and some recent developments in methods
for computing Lyapunov exponents may offer a way to describe the stage
2 phase in quantitative statistical terms. Using these methods one can
estimate how long the evolution can be predicted given an infinitely

accurate computation but some uncertainty in the initial conditions.

Lyapunov ®xponents measure the average rate at which trajectories
in phase space diverge or converge. In a chaotic system the largest
Lyapunov exponent tells how fast information is created in bits/sec,
and how fast, on average, two solutions with slightly different initial
conditions diverge with time. Wolf et al. have recently worked ocut a
way to compute Lyapunov exponents from experimental or computer model
genarated time series.2 To get the largest Lyapunov exponent .
Ay they move along the trajectory for a reference solution and
compute the guantity,

Ap = LCt ) 25T logy [LY(t5)/L(t5 )] (L

where L{t) is the distance between solution i and the reference
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solution. They pick a point on the reference trajectory, perturb it a
little bit, compute L(t), and use that as a starting point for a naw
solution. They move along this new solution over a short time
interval, then stop and compute L(t+At). Whenever the new solution
begins to diverge toa far from the reference solution they stop the

calculatisn, and move back toward the reference trajectory along the

line between the two solutions. They keep repeating this process until

eventually they have moved over the whole of phase space covered by the

reference trajectory. The average rate of divergence converges to

Ar.

Lyapunev exponents are not local quantities; théy give the average

rate over all of the phase space covered by the given chaotic nonlinear

system. But one can use them to get a govd estimate for how long one
can predict an individual trajectory givem a small unceitainty in the
initial conditions. Suppose, for example, the initial conditions are
specified te 1 part in 1024, fe., with 10 bits of accuracy, and thatc
A; = 2 bits/s, then we can only predict the future trajectory for

a time interval t = 10 / 2 = 5 sec,

It may be possible to applv similar ideas to the Rayleigh-Taylor
instability evolution to compute & guanticty like a largest Lyapunowv
exponent. In experiments the initial conditions are not known exactly;
we only have, at best, a statistical description of the roughness of
the interface, but we need to estimate the evolution nevertheless.
Every slightly different iritial configuration for the interface is
going to lead to a much different final configuration. 1n fact,
numerical experimentation shows that each possible solution for some
small random initial perturbation of the interface tends to diverge
exponentially from every other solution, ie., in Lagrange hydrodynamic
computations the mesh configurations diverge. In this context the
average we would be interested in would be over the range of all

possible final configuratious that could evolve starting from a
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neighborhood of uncertainty about the initial position. If over this
space we had an estimate for a quantity like the largest Lyapunov
exponent, then given a parameter describing the roughﬁess, and the
largest Lyapunov exponent we would be able to determine how far the
interface motion could be computed, and on a more practical level how
far in time a layer of material might be expected to stay a layer
before becoming a turbulent mix of the adjacent materials.

COMPUTATIONS

Qne measure of how far apart two solutions are is the rms
difference in the position of the lagrange coordinates defining the

interface cr layer,

L (8) = /1 E) € xymer-xymen? + vy, -yymen? ) )

where x;(n,t) and yj(n,t) are the coordinates of the nth lagrange

th

point of the i*" solution at time ¢, and N is the toral number of

lagrange points in each solution.

With the above definition for the distance between any two
.
P : ; -
501ut1on‘»1 and j, we can compute a quantity like the largest Lyapunov
exponent from,
t

Y
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A = ii){mbt) zijm logy {1y 5 (AT)/L;510)) (3 .

where the sum is over all m independent pairs of trial solutions, each
with a random perturbation of the initial surface roughness. If we had
infinite computer time we could run all possible initrial conditions and
sa carry the average over all solution space. In practice we run a
small number of trial problems with random initial conditions and take
the result as an approximate estimate of the average. If we applied
eq. (3) to a chaotic attractor and if we took care to pick only random
initial points on the attractor then eq. (3) should be equivalent te
eq. (1). !
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1 have carried out numerical experiments modeling the Rayleigh
Taylor instability using a two-dimensional incompressible Eulerian
hydrodynamic code VFTS. The method of integrating the Navier-Stckes
equations including the viscous terms is similar to that described in
Kim & Moin [3], except that I have added Lagrange particles, and
provision for body forces. The Eulerian method is 2" order accurate
in both space and time, and the Poission equation for the effective
pressure field is solved exactly at each tim: step using a cyclic

reduction method.

For the Rayleigh-Taylor computations a Boussinesq forcing term is
added that is valid for small Atwood numbers. The density field can be
cracked with the Lagrange points znd is used to comﬁhte the Boussinesq
forcing term. Wich only :wo different demsities it is not necessary to
cover more than one of the regions with points, usually the one with
the smaller area so as to maximize the resolution. The density to use

in computing the Boussinesy forcing term is ¢btained from,

pij(t) = ( ppnij(c) + (no'nij(t))pa ) / ng (4)

where ’p is the density of the ligquid covered by the Lagrange net
of points, Py is the ambient Iiquid density, nij(t) is the
number of Lagrange peints in Eulerian zone ij, and n, is the initial

numbetr of points per zowne.

A slightly different approach is to replace the Boussinesq term
with a body foree that is equal to a constant cimes the number of
lagrange points in each Eulerian zone. 1In that case the density is
everywhere the same buz the body force is applied only over the region
covered by the ser of lagrange poiats. The two methods are
computationally equivalent. The advantage of the body force is that
the whole of the fluid can be accelerated relative to the rest frame

yielding the partition of the work done on the fluid between the
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kinetic energy of directed motion and the kinetic energy of the chaotic

or turbulent metion.

Area is conserved py the Eulerian velocity field, in some cases to
better than one part in 108 even after several thousand integracion
steps, due to the accuracy of the solution for the pressure field. As
a result motion of the lagrange points also preserves atea quite well,
although further improvement could protably be obtained by using higher
order methods to interpeolate the velocity from the Eulerian mesh. One
advantage of this methed is that it can follow the evolution of the

Rayleigh-Taylor instability well into the chaotic or turbulent regime.

The case I have experimented with consists of a thin, 3 m, layer.
imbedded in an ambient licuid of unit demsity. A constant body force
acts on the layer, accelerating it and the rest of the ligquid through
the forces transmitted across the interface. The kinematic viscosity
is constant and equal to .01 cmZ/s, ie., the physical values are for
water. The code has periodic boundary conditions at herizental and
vertical intervals of 1.5 em, A 60 x 60 Eulerian mesh was used, with
6480 Lagrange points covering the accelerated layer. The physical
dimensions and constants of this case were chosen such that the

computations should be ablz to accurately model wviscous effects.

Some have reservations about the accuracy of combined lagrange
particle-Eulerian methods. My experience is that they can maintain
reasonably good accuracy in problems such as the Rayleigh Taylor
instability provided the Eulerian zeme size is kept in the viscous
scale range. and provided the initial perturbation is not so small as
to be guickly swamped by truncation error growth. Im more quantitative
terms It is desirable to keep the mesh size smaller than the wave
iength of the most rapidly pgrowing disturbance predicted from linear

analysis of the viscous case,

ox < ay = tm GP/ap) Rt 2071y 1/ (5)



where f is the bhody force per unit volume, A is the Atwood number, g is
cthe acceleration, v is the kinematic viscosity, and )m is the

wave length of the most rapidly growing perturbation.

There is always noise from round off and truncation error no matter
whiat the computational method, and in Rayleigh Taylor unstable flows
soon enough that noise will grow to a point that swamps all memory of
the initial conditions. One can still estimate the average growth rate
of the noise; [t is just necessary to start with a big enough
perturbation and keep the mesh size small etough to resolve the viscous

scales of motion.

The results of the computations can be put in dimensionless form by

normalizing the time by,

T = [(pd/E) = J(ds2ag) (6)

where d is the thickness of the layer.

I looked for a largest Lyapunov exponent like quantity by plotting
the log(base 2} of the separation between pairs of solutions Lij(t).
If there are N sclutions, each for a different seed in the random
number generator for the initial surface roughness, then there are
N(N-1}/2 independent pairs of solutions. The separation between any
two pairs of solutions has a large random component, but by including
many cases on the same semilog plot, these random fluctuations can be
averaged out leaving an approximation to the statistical limit. Six
independent solutions is enough to give a good estimacte when all

fifteen possible pairs are plotted.

One example of the evolution of the inscabllity and the breakup and
rupture of the layer are shown in Fig. 1. Both the top and bottom

suriaces of the layer have the same initial roughness, however only the
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top surface goes unstable. The bottom surface remains stable and
perturbations there decay in time because the computations include
viscosity. All 6480 lagrange particles defining the layer are
piotted. These are the coordinates used in Eq. (2) for computing the

separation between two pairs of solutions.

The separation between any two pairs of solutions does appear to
nave a well defined statistical limiting curve. This can be seen in
Fig. 2, where the log, of the separation between the fifteen possible
pairs of solutions for the case where the body force is 117.6
dynes/cm3 are plotted, The dead space at the beginning of the runs
(where Lij(t) is just equal to the initial separation due to a
different seed in the ipitial roughness gemerator) is a numerical
artifact; before anything can happen the layer has to move a sufficient
distance for the initial roughness to show up as a perturbation on the
underlying Eulerian mesh. Once the instability starts the separation
between solutions Lij(t) grows rapidly - in these examples at a rate
of about 125 bits/s - corresponding to the rate of growch derived frem
the linearized Rayleigh Taylor theory for the smallest wave length
perturbation that can fit into the Eulerian mesh. This phase lasts
only a very short time interval and results in an information growth of
about 1.9 bits. After the initial transient, Logy [L(t)/1(0)]
approaches a straight line asymptote with a slope of about 10 bits/s.
Reference to Fig. 1 shows that most of the mixing leading to rupture of
the layer takes place during this nonlinear asymptotic phase. When the
time is put in dimensionless units by dividing by + from Eg. (6)

then the asymwptotic slope is 0.5 bits per unit time interval.

Similar results are obtained when the force is increased to 940.8
dynes/cm3. corresronding te shortening the wave length of most raplid
growth (in the viscous linear analysis) to 3 zones, or .075 cm. The
time scale is shortened by a factor of /¥ and the asymptotic slope
increases to 28 bits/s; however in dimensionless units che slope

remains 0.5 bits per unit time interval.



In fact, the behavior of all of the runs accumulated thuc far is
summarized by a single L(t) curve if the time is measured in units of

r. After adjusting the time origin to the take off point in Fig. 2
Logy [L(E)/L(0)Y] = 0.5t + 1.9 [1 - & 3F) (N

seems to be a good estimate of the statistical limit. Eq. (7) only
predicts the behavior in the sense that it approximates the most likely
outcome for the rate of growth of information. Any individual
numerical model run or experiment is likely to deviate significantly

-from Eq. (7) as can be seen from the variation in the runs shown in

Fig. 2.

To show how Eg. (7) can be used to estimate the time a layer with
given surface roughness will last before breaking up we apply it to the
example in Tig. 1. 1In this case the initial pesition of the interface,
measured in units of the thickness of the layer, is not very well
defined, ie., the interface position is specified to only about 1 part
in 12 or with about 3.6 bits of information. According to Eg. (7)
approximately 3.6 bits of information (log,[L(t)/L(0)] = 3.6) are
generated by t = 3.4, or on converting to dimensional units by
multiplying by r, by roughly 0.17 seconds. Reference to Fig. 1
shows this is just about the time the layer begins to break up, after
compensating for the .05 sec delay in starting. For every additional
bit of information added in reducing the initial surface roughness or
uncertainty in position the predictability time increases by 2r or,

in this case, by about 0.1 seconds.

To demonstrate that the chaotic behavior seen in Figs. 1 and 2 is
not due to some numerical artifact I have included & case where the
parameters are the same exc;pt that the initial surface perturbation is
limited to a single cosine wave. Figure 3 shows a case with wave
length 3 mm, and initial amplitude the same as the peak to peak limit

in the white noise roughness cases. The wave length with the most
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rapid rate of growth derived from viscous linear theory is 1.5 mm, same
as for the cases in.Fig. 2., Viscosity prevents singularites from
developing, and the dimensions are small enough that one gets skirt
formation along the sides of the bubbles instead of Kelvin-Helwholtz
roll up . In the Boussinesq limit the Rayleigh—Tayibr unstable upper
surface should be symmetrical about its mid line until the amplitude
grows to the point where the lower surface begins to affect the
evolution. The computation should also maintain symmetry along the
horizontal axis. Both these requirements are satisfied by the test

computation.
CONCLUSION

Looked at from the viewpoint discussed ;bove the Rayleigh-Taylor
problem is similar to examples discussed in the nonlinear dynamics
literature. I found, in the runs completed thus far, that the
separation between any pair of solutions, after an initial transient,
approaches an asymptotic rate of growth during the nonlinear stages of
the evolution. On a semilog plot, except for individual statistical
fluctuations, the curves of separation between any pair of solutions
rapidly approach a single straight line asymptote. The constant rate
of divergence in the nonlinear regime is more apparent when the
statistical fluctuations are averaged out by plotting batches of pairs
of runs together. Most of the mixing and rupture of the layer occurs
during the asymptotic phase. In other words, during Youngs stage 2 -
the nonlinear regime existing before fully developed turbulence, the
flow seems to behave like a nonlinear chaotic system evolving on a low
dimensional attractor. Worded in the terminology of nonlinear dynamics
theory; there appears to be a statistically well defined rate of

information production during this phase.
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If such a largest Lyapunov exponent like quantity does exist it has
several implications for the mix problem. For one it means there are
inherent limits to the predictability of mix no matter how accurately
the hydrodynamic equations are integrated. In particular it implies
that Young’s stage 2 is not much more predictable than the final
turbulent stage. On the other hand, for giving something up you get
something back; in this case the theory gives a statistical handle on
the problem of estimating how rapidly mix will occur during the stage 2
phase. In these examples once the rate of Information production has
been determined its a simple calculation to estimate how long the layer
will hang together, on average, given a specified amplitude of initial

surface roughness.
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Figure 1

Typical evolution for the Rayleigh-Taylor mixing and rupture of the
thin layers. The dimensions of the 60 x 60 computational grid are 1.5
cm by 1.5 em with periodic boundary conditions at the edges. Thickness
of the thin layer is 3 mm, megn density of the liquid is I g/cm”,
kinematic viscosity is .01 cm®/s, and the body force (twice the
Atwood number times the acceleration_times the average density) applied
to the thin layers is 117.6 dynes/cm”. The surfaces of the layer are
perturbed by a white noise roughness distribution with maximum
amplitude .05 em. The most rapidly growing wave length derived from
linear analysis of the viscous Rayleigh-Taylor instability is .15 em,
or half the thickness of the layer. The layer appears to rupture well
before Young's stage 3 (the fully developed turbulence regime) is
reached. The results can be scaled to a range of other parameter
values by dimensional analysis.
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Figure 2

The log (base 2) of the separation L{t) between pairs of solutions
normalized by the initial separation plottad versus time. L(t) is
determined from the time history of Lagrange particles embedded in the
layer and saved from each 2D solution of the Navier-Stokes equations.
It is equal to the square root of the sum over all 6480 labeled
particles of the squares of the differences in coordinates of each pair
of particles with the same initial coordinates (bafore adding
roughening) taken from a given pair of 2D solutions. Each 2D solution
is different because each run starts with a different seed in the
random number generator for the initial white noise roughening of the
layer surfaces, The dead interval at the beginning results from the
time it takes for the layer to translate approximately one zone
starting from rest, ie., nothing happens on scales less than can be
resolved by the mesh. The maximum roughness variation is .05 em or two
zones, swamping any perturbations due to spatial truncation effects,.

Curves for the 15 different pairings possible from 6 different
solutions are included o:: one plot to give a bettgr idea of the
underlying statistiecs. The Iinitial slope of the plet is approximately
125 bits/s. After the initlel steep rise there is a rapid approach to
an asymptotic rate of growth of approximately 10 bits/s. Reference to
Figure 1 shows that most of the evolution of the mix - befcre rupture
of the layer - occurs during this nenlinear asymptotie pha:=z. If the
asymptotic state represents evolution along a low dimensior.al
attractor, then the slope - 10 bits/s - should be the approximate value
of the largest Lyapunov expeonent.
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Figure 3

Demonstration that the chaotic evolution seen in the random surface
roughness trials is not due to numerical effects. Same parameters as
in the roughness cases, with same anplitude of initial surface
pertnrbation, but single wave length cosine perturbation of the
surface.
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