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INTRODUCTION 

Youngs Jescribes the development of the Rayleigh-Taylor instability 
in terras of three stages: stage 1, the linear growth phase; stage 2, an 
interval where the development is nonl inear but predictable from 
computation given the initial condition ; and stage 3, where all memory 
of the initial conditions is lost and the flow becomes turbulent. 
The time interval that stage 2 can be predicted is finite because no 
matter how accurate the computational method and computer, the accuracy 
with which the initial conditions can be specified is limited by the 
experimental noise level and the surface roughness. Although- not 
turbulent, stage 2 very much resembles chaotic motion because what 
happens in any given run depends sensitively on the initial 
conditions. There is a new body of theory for treating similar kinds 
of nonlinear evolution problems and some recent developments in methods 
for computing Lyapunov exponents may offer a way to describe the stage 
2 phase in quantitative statistical terms. Using these methods one can 
estimate how long the evolution can be predicted given an infinitely 
accurate computation but some uncertainty in the initial conditions. 

Lyapunov "exponents measure the average rate at which trajectories 
in phase space diverge or converge. In a chaotic system the largest 
Lyapunov exponent tells how fast information is created in bits/sec, 
and how fast, on average, two solutions with slightly different initial 
conditions diverge with time. Wolf et al. have recently worked out a 
way to compute Lyapunov exponents from experimental or computer model 
generated time series. To get the largest Lyapunov exponent 
X^ they move along the trajectory for a reference solution and 
compute the quantity, 

A i - v ( t m - t 0 ) x±

m iog2 rL-ctp/ut^)] (i) 
where i(t) is the distance between solution i and the reference 
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solution. They pick a point on the reference trajectory, perturb it a 
little bit, compute L(t), and use that as a starting point for a naw 
solution. They move along this new solution over a short time 
interval, then stop and compute L(t+At). Whenever the new solution 
begins to diverge too far from the reference solution they stop the 
calculation, and move back toward the reference trajectory along the 
line between the two solutions. They ke«ip repeating this proctss until 
eventually they have moved over the whole of phase space covered by the 
reference trajectory. The average rate of divergence converges to 
it. 

Lyapunov exponents are not local quantities; they give the average 
rate over all of the phase space covered by the given chaotic nonlinear 
system. But one can use them to get a good estimate for how long one 
can predict an individual trajectory given a small uncertainty in the 
initial conditions. Suppose, for example, the initial conditions are 
specified to 1 part in 1024, ie. , with 10 bits of accuracy, and that 
A^ ~ 2 bits/s, then we can only predict the future trajectory for 
a time interval t - 10 / 2 = 5 sec. 

It may be possible to apply similar ideas to the Rayleigh-Taylor 
instability evolution to compute 3 quantity like a largest Lyapunov 
exponent. In experiments the initial conditions are not known exactly; 
we only have, at best, a statistical description of the roughness of 
the interface, but we need to estimate the evolution nevertheless. 
Every slightly different initial configuration for the interface is 
going to lead to a much different final configuration. In fact, 
numerical experimentation shows that each possible solution for some 
small random initial perturbation of the interface tends to diverge 
exponentially from every other solution, ie., in Lagrange hydrodynamic 
computations the mesh configurations diverge. In this context the 
average we would be interested in would be over the range of all 
possible final configurations that could evolve starting from a 
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neighborhood of uncertainty about the initial position. If over this 
space we had an estimate for a quantity like the largest Lyapunov 
exponent, then given a parameter describing the roughness, and the 
largest Lyapunov exponent we would be able to determine how far the 
interface motion could be computed, and on a more practical level how 
far in time a layer of material might be expected to stay a layer 
before becoming a turbulent mix of the adjacent materials. 

COMPUTATIONS 

One raeasMre of tiovf fir apart two solutions are is the rms 
difference in the position of the lagrange coordinates defining the 
interface or layer, 

Li:J(t) - 7[ S n
N ( ( X i(n,t)- X j(n,t)) 2 + ( y i(n,t)- y j(n,t)) 2 ) ] (2) 

where Xi(n,t) and yj(n,t) are the coordinates of the n lagrange 
point of the i solution at time t, and K is the total number of 
lagrange points in each solution. 

With the above definition for the distance between any two 
. \ . ation* 1 ar< 

exponent from, 
solution* i and j, we can compute a quantity like the largest Lyapunov 

where the sum is over all m independent pairs of trial solutions, each 
with a random perturbation of the initial surface roughness. If we had 
infinite computer time we could run all possible initial conditions and 
so carry the average over all solution space. In practice we run a 
small number of trial problems with random initial conditions and take 
the result as an approximate estimate of the average. If we applied 
eq. (3) to a chaotic attractor and if we took care to pick only random 
initial points on the attractor then eq. (3) should be equivalent to 
eq. (1). * 
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I have carried out numerical experiments modeling the Rayleigh 
Taylor instability using a two-dimensional incompressible Eulerian 
hydrodynatnic code VFTS . The method of integrating the Navier-Stokes 
equations including the viscous terms is similar to that described in 
Kim & Moin [3], except that I have added Lagrange particles, and 
provision for body forces. The Eulerian method is 2 order accurate 
in both space and time, and the Poission equation for the effective 
pressure field is solved exactly at each time step using a cyclic 
reduction method. 

For the Rayleigh-Taylor computations a Boussinesq forcing term is 
added that is valid for small Atwood numbers. The density field can be 
tracked with the Lagrange points and is used to compute the Boussinesq 
forcing term. With only ;wo different densities it is not necessary to 
cover more than one of the regions with points, usually the one with 
the smaller area so as to maximize the resolution. The density to use 
in computing the Eoussinesq forcing term is obtained from, 

Pij(t) - ( V i j C C ) + < no- nlj ( t ) )' ,a > / no <4> 

where p is the density of the liquid covered by the Lagrange net 
of points, p is the ambient liquid density, n-^(t) is the 
number of Lagrange points in Eulerian zone ij, and n is the initial 
rtumber of points per z.cme. 

A slightly different approach is to replace the Boussinesq term 
with a body force that is equal to a constant times the number of 
lagrange points in each Eulerian zane. In that case the density is 
everywhere the same but the body force is applied only over the region 
covered by the set of lagrange points. The two methods are 
computationally equivalent. The advantage of the body force is that 
the whole of the fluid can be accelerated relative to the rest frame 
yielding the partition of the work done on the fluid between the 
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kinetic energy of directed motion and the kinetic energy of the chaotic 
or turbulent motion. 

Area is conserved oy the Eulerian velocity field, in some cases to 
8 better than one part in 10 even after several thousand integration 

steps, due to the accuracy of the solution for the pressure field. As 
a result motion of the lagrange points also preserves area quite veil, 
although further improvement could probably be obtained by using higher 
order methods to interpolate the velocity from the Eulerian mesh. One 
Advantage of this method is that it can follow the evolution of the 
Rayleigh-Taylor instability well into the chaotic or turbulent regime. 

The case I have experimented with consists of a thin, 3 ,im, layer, 
imbedded in an ambient liquid of unit density. A constant body force 
acts on the layer, accelerating it and the rest of the liquid through 
the forces transmitted across the interface. The kinematic viscosity 
is constant and equal to .01 cm /s, ie., the physical values are for 
water. The code has periodic boundary conditions at horizontal and 
vertical intervals of 1.5 cm. A 6f x 60 Eulerian mesh was used, with 
6680 Lagrange points covering the accelerated layer. The physical 
dimensions and constants of this case were chosen such that the 
computations should be abl^ to accurately model viscous effects. 

Some have reservations about the accuracy of combined lagrange 
particle-Eulerian methods. My experience is that they can maintain 
n-asonably good accuracy in problems such as the Rayleigh Taylor 
instability provided the Eulerian zone size is kept in the viscous 
scale range, and provided the initial perturbation is not so small as 
to be quickly swamped by truncation error growth, J"n more quantitative 
terms it is desirable to keep the mesh size smaller than the wave 
iengtii of the most rapidly growing disturbance predicted from linear 
analysis of the viscous case, 

to < An| - '<* ̂ 2 / A g > 1 / 3 - 4* (2 p i/ 2/f) 1 / 3 (5) 
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where f is the body force per unit volume, A is the Atwood number, g is 
Che acceleration, v is the kinematic viscosity, and A m is the 
wave length of the most rapidly growing perturbation. 

There is always noise from round off and truncation error no matter 
what the computational method, and in Rayleigh Taylor unstable flows 
soon enough that noise will grow to a point that swamps all memory of 
the initial conditions. One ran still estimate the-average growth rate 
of the noise; it is just necessary to start with a big enough 
perturbation and keep the mesh size small enough to resolve the viscous 
scales of motion. 

The results of the computations can be put in dimensionless form by 
normalizing the time by, 

r = /(pd/f) - 7(d/2Ag) (6) 

where d is the thickness of the layer. 

I looked for a largest Lyapunov exponent like quantity by plotting 
the log(base 2) of the separation between pairs of solutions L^=(t). 
If there are N solutions, each for a different seed in the random 
number generator for the initial surface roughness, then there are 
N(N-l)/2 independent pairs of solutions. The separation between any 
two pairs of solutions has a large random component, but by including 
many cases on the same semilog plot, these random fluctuations can be 
averaged out leaving an approximation to the statistical limit. Six 
independent solutions is enough Co give a good estimate when all 
fifteen possible pairs are plotted. 

One example of the evolution of the Instability and the breakup and 
rupture of the layer are shown in Fig. 1. Both the top and bottom 
surfaces of the layer have the same initial roughness, however only the 
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top surface goes unstable. The bottom surface remains stable and 
perturbations there decay in time because the computations include 
viscosity. All 6480 lagrange particles defining the layer are 
plotted. These are the coordinates used in Eq. (2) for computing the 
separation between two pairs of solutions. 

The separation between any two pairs of solutions does appear to 
have a well defined statistical limiting curve. This can be seen in 
Fig. 2, where the logo of the separation between the fifteen possible 
pairs of solutions for the case where the body force is 117.6 
dynes/era are platted. The dead space at the beginning of the runs 
(where L^j(t) is just equal to the initial separation due to a 
different seed in the initial roughness generator) is a numerical 
artifact; before anything can happen the layer has to move a sufficient 
distance for the initial roughness to show up as a perturbation on the 
underlying Eulerian mesh. Once the instability starts the separation 
between solutions L^j(t) grows rapidly - in these examples at a rate 
of about 125 bits/s - corresponding to the rate of growth derived from 
the linearized Rayleigh Taylor theory for the smallest wave length 
perturbation that can fit into the Eulerian mesh. This phase lasts 
only a very short time interval and results in an information growth of 
about 1.9 bits. After the initial transient, Log2[L(t)/L(0)] 
approaches a straight line asymptote with a slope of about 10 bits/s. 
Reference to Fig. 1 shows that most of the mixing leading to rupture of 
the layer takes place during this nonlinear asymptotic phase. When the 
time is put in dimensionless units by dividing by T from Eq. (6) 
then the asymptotic slope is 0.5 bits per unit time interval. 

Similar results are obtained when the force is increased to 940.8 
dynes/cm , corresponding to shortening the wave length of most rapid 
growth (in the viscous linear analysis) to 3 zones, or .075 cm. The 
time scale is shortened by a factor of Js and the asymptotic slope 
increases to 28 bits/s; however in dimensionless units che slope 
remains 0,5 bits per unit time interval. 
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In fact , the behavior of a l l of the runs accumulated thus far i s 
summarized by a single L(t) curve i f the time is measured in units of 
T. After adjusting the time origin to the take off point in Fig. 2 

Log 2 [L(t)/L(0)] - 0.5t + 1.9 [1 - e ' 3 t ] (7) 

seems to be a good estimate of the statistical limit. Eq. (7) only 
predicts the behavior in the sense that it approximates the most likely 
outcome for the rate of growth of information. Any individual 
numerical model run or experiment is likely to deviate significantly 
from Eq. (7) as can be seen from the variation in the runs shown in 
Fig. 2. 

To show how Eq. (7) can be used to estimate the time a layer with 
given surface roughness will last before breaking up we apply it to the 
example in Tig. 1. In this case the initial position of the interface, 
measured in units of the thickness of the layer, is not very well 
defined, ie., the interface position is specified to only about 1 part 
in 12 or with about 3.6 bits of information. According to Eq, (7) 
approximately 3.6 bits of information (Log2lL(t)/L(0)] =3.6) are 
generated by t = 3.4, or on converting to dimensional units by 
multiplying by T, by roughly 0.17 seconds. Reference to Fig. 1 
shows this is just about the time the layer begins to break up, after 
compensating for the .05 sec delay in starting. For every additional 
bit of information added in reducing the initial surface roughness or 
uncertainty in position the predictability time increases by 2T or, 
in this case, by about 0.1 seconds. 

To demonstrate that the chaotic behavior seen in Figs. 1 and 2 is 
not due to some numerical artifact I have included a" case where the 
parameters are the same except that the initial surface perturbation is 
limited to a single cosine wave. Figure 3 shows a case with wave 
length 3 mm, and initial amplitude the same as the peak to peak limit 
in the vhite noise roughness cases. The wave length with the most 
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rapid rate of growth derived from viscous linear theory is 1.5 ram, same 
as for the cases in .Fig. 2. Viscosity prevents siiigularites from 
developing, and the dimensions are small enough that one gets skirt 
formation along the sides of the bubbles instead of Kelvin-Helmholtz 
roll up . In the Boussinesq limit the Rayleigh-Taylor unstable upper 
surface should be symmetrical about its mid line until the amplitude 
grows to the point where the lower surface begins to affect the 
evolution. The computation should also maintain symmetry along the 
horizontal axis. Both these requirements are satisfied by the test 
computation. 

CONCLUSION 

Looked at from the viewpoint discussed above the Rayleigh-Taylor 
problem is similar to examples discussed in the nonlinear dynamics 
literature. I found, in the runs completed thus far, that the 
separation between any pair of solutions, after an initial transient, 
approaches an asymptotic rate of growth during the nonlinear stages of 
the evolution. On a semilog plot, except for individual statistical 
fluctuations, the curves of separation between any pair of solutions 
rapidly approach a single straight line asymptote. The constant rate 
of divergence in the nonlinear regime is more apparent when the 
statistical fluctuations are averaged out by plotting batches of pairs 
of runs together. Most of the mixing and rupture of the layer occurs 
during the asymptotic phase. In other words, during Youngs stage 2 -
the nonlinear regime existing before fully developed turbulence, the 
flow seems to behave like a nonlinear chaotic system evolving on a low 
dimensional attractor. Worded in the terminology of nonlineai dynamics 
theory; there appears to be a statistically well defined rate of 
information production during this phase. 
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If such a largest Lyapunov exponent like quantity does exist it has 
several implications for the mix problem. For one it means there are 
inherent limits to the predictability of mix no matter how accurately 
the hydrodynamic equations are integrated. In particular it implies 
that Young's stage 2 is not much more predictable than the final 
turbulent stage. On the other hand, for giving something up you get 
something back; in this case the theory gives a statistical handle on 
the problem of estimating how rapidly mix will occur during the stage 2 
phase. In these examples once the rate of information production has 
been determined its a simple calculation to estimate how long the layer 
will hang together, on average, given a specified amplitude of initial 
surface roughness. 
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Figure 1 

Typical evolution for the Rayleigh-Taylor mixing and rupture of the 
thin layers. The dimensions of the 60 x 60 computational grid are 1.5 
cm by 1.5 cm with periodic boundary conditions at the edges. Thickness 
of the thin layer is 3 mm, mean density of the liquid is 1 g/cm , 
kinematic viscosity is .01 cm /s, and the body force (twice the 
Atwood number times the acceleration times the average density) applied 
to the thin layers is 117.6 dynes/cm . The surfaces of the layer are 
perturbed by a white noise roughness distribution with maximum 
amplitude .05 cm. The most rapidly growing wave length derived from 
linear analysis of the viscous Rayleigh-Taylor instability is .15 cm, 
or half the thickness of the layer. The layer appears to rupture well 
before Young's stage 3 (the fully developed turbulence regime) is 
reached. The results can be scaled to a range of other parameter 
values by dimensional analysis. 
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Figure 2 

The log (base 2) of the separation L(t) between pairs of solutions 
normalized by the initial separation plotted versus time. L(t) is 
determined from the time history of Lagrange particles embedded in tho 
layer and saved from each 2D solution of the Navier-Stokes equations. 
It is equal to the square root of the sum over all 6480 labeled 
particles of the squares of the differences in coordinates of each pair 
of particles with the same initial coordinates (before adding 
roughening) taken from a given pair of 2D solutions. Each 2D solution 
is different because each run starts with a different seed in the 
random number generator for the initial white noise roughening of the 
layer surfaces. The dead interval at the beginning results from the 
time it takes for the layer to translate approximately one zone 
starting from rest, ie., nothing happens on scales less than can be 
resolved by the mesh. The maximum roughness variation is .05 cm or two 
zones, swamping any perturbations due to spatial truncation effects. 

Curves for the 15 different pairings possible from 6 different 
solutions are included o.i one plot to give a better idea of the 
underlying statistics. The initial slope of the plot is approximately 
125 bits/s. After the initial steep rise there is a rapid approach to 
an asymptotic rate of growth of approximately 10 bits/s. Reference to 
Figure 1 shows that most of the evolution of the mix - befrre rupture 
of the layer - occurs during this nonlinear asymptotic pha;s. If the 
asymptotic state represents evolution along a low dimensior.al 
attractor, then the slope - 10 bits/s - should be the approximate value 
of the largest Lyapunov exponent. 
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Figure 3 

Demonstration that the chaotic evolution seen in the random surface 
roughness trials is not due to numerical effects. Same parameters as 
in the roughness cases, with same amplitude of initial surface 
perturbation, but single wave length cosine perturbation of the 
surface. 
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