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ABSTRACT 

The derivation of the wave equation which governs ICRF wave propagation, 

absorption, and mode conversion within the kinetic layer in tokamaks has been 

extended to include diffrartion and focussing effects associated with the 

finite transverse dimensions of the incident wavefronts. The kinetic layer 

considered consists of a uniform density, uniform temperature slab model in 

which the equilibrium magnetic field is oriented in the z-direccion and varies 

linearly in the x-direction. An equivalent dielectric tensor as well as a 

two-dimensional energy conservation equation are derived from the linearized 

Vlasov-Maxwell system of equations. The generalized form of the mode 

conversion-tunneling equation is then extracted from the Maxwell equations, 

using the parabolic approximation method in which transverse variations of the 

wave fields are assumed to be weak in comparison to the variations in the 

primary direction of propagation. Methods of solving the generalized wave 
. . . A i| A Is* "•«" mm a^ 

equation are dLscussed. I%ei . . * 3 1 
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I. INTRODUCTION 

Recently, the parabolic approximation method has been applied to the cold 

plasma wave equation, in a cylindrical tokamak geometry in order to analyze 

fast magnetosonic wave propagation in the region bounded by the plasma-antenna 

interaction ione at the edge of the discharge and the mode conversion-
1 2 absorption layer located about the magnetic axis of the discharge. ' The 

physical motivation for this approximation is that the fast wave propagates 

primarily in the radial direction uithin this region, if surface mode 

excitation, which is characterized by large poloidal mode numbers, is 

ignored. By treating poloidal derivatives as small perturbations and 

factoring the poloidal component of the wave electric field, Eg, into a 

rapidly varying radial waveform, u(r), multiplied by a slowly varying 

amplitude function, a(r,e), the Maxwell equations which determine the 

structure of the wave fields simplify considerably. In particular, the radial 

component of the wave electric field, E , is determined from an algebraic 

equation, u(r) is determined by a second-order ordinary differential equation, 

and a(r,9) is determined by a parabolic diffusion-type equation. Since 

continuous solutions for the wave fields are constructed directly from an 

approximate form of the wave equation, diffraction, refraction, and focussing 

effects are treated self-consistently. 

The parabolic approximation method may also be applied within the mode 

conversion-absorption layer in order to gain some insight into the diffraction 

effects associated with a finite size wavefront propagating at near normal 

incidence onto the layer. The finite transverse dimension of the incident 

wavefront is limited by focussing induced by the launcher geometry and the 

refractive properties of the equilibrium. In the simplest case, the layer is 

modelled as a slab of uniform density and temperature in which the x direction 
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corresponds to the major radial direction of the tokamak, the y direction 

corresponds to the vertical direction, and the z axis corresponds Co the 

toroidal direction. The equilibrium magnetic field is aligned solely in the z 

direction but varies linearly in the x direction. For this case, the problem 

of an incident wavefront, which is of finite size in the y and a directions, 

may be treated exactly by Fourier decomposing the wavefront into a set of 

plane waves characterized by k and k , the wave numbers in the y and z 

directions, respectively. Each incident plane wave may then be treated with 

the standard linear fourth-order mode conversion-tunneling equation and 

the results summed over k and k_ to obtain the overall wave structure and the 
y z 

net absorption profile for the wavefront within the layer. Numerically, this 

exact procedure may get expensive if it becomes necessary to include many 

different values of k„ and/or k„. Furthermore, it is difficult to extend the y a 
exact analysis to the case in which equilibrium gradients exist in the y or z 

directions. For incident wavefronts which vary slowly in the y direction 

relative to the x direction and hence are composed primarily of plane waves 

which satisfy the paraxial propagation constraint, i.e., k « k x, the 

parabolic approximation can be used to avoid solving the fourth-order equation 

for each value of k present in the wavefront. 

In this report, a derivation of the linear fourth-order mode conversion-

tunneling equation appropriate for wavefronts with a finite transverse extent 

is presented, starting from the linearized Vlasov-Maxviell system of equations 

and using the parabolic approximation. The basic model and assumptions are 

described in Sec. II. An equivalent dielectric tensor is developed in Sec. 

Ill in a manner closely resembling the derivation by Swanson, except that 

derivatives of the wave fields with respect to vertical distance in the layer 

are retained. In Sec. IV, the appropriate form of the mode conversion-
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tunneling equation in the paraxial propagation limit is derived from che 

Maxwell equations using the parabolic approximation method. Power 

conservation is discussed in Sec. V, and Che concluding remarks are summarized 

in Sec. VI. 

II. THE BASIC MODEL 

During RF heating of cokamak plasmas. mode conversion and absorption 

processes are generally important only in a chin layer Located abouc che 

cycLotron resonance layer for the waves. As a first approximation, the mode 

conversion-absorption layer may be Created using a uniform density, uniform 

temperature slab model in which Che x, y, and z directions are directed along 

the major radial, the vertical, and the toroidal directions of the torus. 

Neoclassical effects, magnetic field curvature effects, and rotational 

transform effects are neglected by assuming Che equilibrium magnetic field is 

of the form: 

B = B (1 + x/L) z , (1) 

where |LJ is equal to R , che major radius of the torus. 

For notational ease, only second harmonic heating of a single ion species 

plasma will be considered explicitly, with the wave frequency, ID, equal to 

twice the fundamental ion cyclotron frequency, w , evaluated at x = 0. The 

generalization to multiple ion species plasmas and minority heating schemes is 

self-evident. 

A Fourier decomposition of che incident wavefront in time and in the z 

direction is taken, but only a single value of k = k will be treated 
z 

explicitly in the remaining sections. Furthermore, by neglecting effects 
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related to finite electron inercia, the parallel component of Che wave 
elecCric field, E , can be neglected Co lowest order in m /m-, where m and m-

are the electron and ion masses, respectively. Under these assumptions, the 
total eleccric and magnecic fields in the plasma may be written as: 

E = [E (x,y)x + E (x,y)y] exp[i(kz - at)] , (2) 
x y 

B = B (1 + x /L)z + B ( x , y ) x + B ( x , y ) y + B < x , y ) z e x p [ i ( k z - U)C>] 
o ' x y ' ' z ' ' r 

(3) 

Similarly, the particle distribution functions may be written in the form, 

f = f (x,y,v ,v ,v ) + f (x,y,k,uj,v ,v ,v ) exp[i(kz - lot)] , (4) 
where f. represents the perturbed component caused fay the presenci: of the 
waves in the plasma and f is normalized such that 

n = / f d 3v , (5) 

with n denoting the species density. 
Using Eqs. (1-4), the Vlasov-Maxvell equations for che plasma-wave system 

may be written as J 

2 2 
o o •> 3 E IE , -

[k* _ R* / c2] E, - - ^ • ̂  - *=p J, (6, 
3y ' c 

and 

2 2 
[k 2- U

2/c Z|E Z + _ * a ± I | « j , ( 7 ) 
1 y 3x Z 3 x 3 y c 2 y 
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where the currents J x and J arising from the plasma response are. given by 

3 (8) 

J = 7 q. X v f . d 3v , (9) 
y 4 H j J y lj 

with a sum over species denoted by the subscript j. 

The corresponding kinetic equation for each species, which describes the 

response of the plasma to the applied fields, is given by 

| £ + ~ . 7 f + I . j f = 0 (10) 
a t HI v 

where 

F = q E + 3 _ v x B . ( 11 ) 
mc 

Using Eq. (4), the kinetic equation may be separated into an equation for 

the unperturbed particle distribution function, 

v ! f + u v * z-7 f = 0 , (12) 
o c v o ' 

and an equation governing the development of the perturbed distribution 

function, 

-iu f, + v-V f. • « v * s-7 f = - S. E-7 f , (13) 
1 l c v l m v o ' 
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where 

q B (1 • x/L) 
u = . (14) 
c me 

Ignoring the VB drifts, which have been shown to be unimportant to lowest 

order in the small parameter (x/L) by Swanson, the solution for the zeroth-

order unperturbed particle distribution function becomes: 

fo=37f-3 "'I" K 2 + V y Z + V*X 2] • < 1 5 > 
IT V 0 

where 

2 2 V (16) 

with kg denoting Bolczmann's constant. 

By substituting Eq. (15) for £ into Eq. (13) for £,, and changing 

velocity space variables from v , v , v to v., v,,, and *, where v = v. cos*, 

v = v. sin*, and v., = v , the equation determining f, is transformed into: 

Hi 
3* 

+ inf. 
V C O S * 

HI 
c 

3 f l 
ax 

v s i n * 

u 
c 

3 £ 1 
ay 

2f v, 
0 1 

2 
V 

o 

c E cos* + E s i n * 
y 

B 
] , (17) 

where J2 = u-kv /u . This equation may be integrated once to yield: 

* v cos*' 3f v sin*' 3f. 
f. = exp(-iB*) J" d*' exp(in*') [^ — — + -± — — 
1 l w 3x a) 3y 



It v c E cosds' + E s ina 1 

- - J 4 - I - 5 r-1 n • da) 
V 

c 

Solutions of Eq. (18) may be developed in tarms of the perturbation expansion, 

<i - V°M^) ^ • £) V > 
c c 

as will be discussed in the next section. The procedure is identical to the 

one used by Swanson, with the exception of the presence of the extra term 

proportional to 3f,/3y in Eq. (18). 

Once solutions to the integral equation for the perturbed distribution 

funccion have been found, the results may be used to compute the perturbed 

plasma, currents for use in the Maxwell equations governing the wave field. 

The parabolic approximation may then be applied to determine the wave 

structure and power deposition profiles within the mode conversion/absorption 

layer. 

III. DERIVATION OF THE EQUIVALENT DIELECTRIC TENSOR 

The coupled, linearized Vlasow-Maxwell system self-consistently 

determines the structure of small amplitude waves propagating within the mode 

conversion-absorption layer. In order to solve these equations, it is 

customary to solve for f, in terras of the wave electric field, E, and to use 

the result to define an equivalent dielectric tensor, K, using Eqs. (8) and 

(9) in the form: 

I * — J = K-E , (20) 
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where K may include differential operators with respect to x and y 

Substitution of £q. (*0) iiv.o the linearized MaxweLl equations, Eqs. (6) and 

(7), then yields a pair of coupled partial differential equations for E and 

E alone. In this section, the dielectric tensor, K, will be derived by 

solving for fi through secor.u order in the expansion parameter (v./u ). 

Returning to the integral equation for £,, Eq. (18), since the terms in 

the integnnd which are proportionaL to 3fi/3x and 3fi/3y are already of first 

order in (v,/^ ), only the zeroth- and first-order components of these terms 

need be retained so that: 

IT = -sir-+ vx k f -H • ( 2 1 ) 

and 

3 fl < 0 ) 3 *[" 

Substitution of the expansion, Eq. (19), into the integral equation, Ec. 

(18), and using Eqs. (21) and (22), then leads to the following expressions 

for the zeroth.- and first-order components of f,: 

(0) i f o q v i r < E * " i E v ) e x P f i * > l* * i E v } e x p ( - i * ) , 
£ i = — ^ i * y — c + —~ z ; } - <"> 

1 - . . 2 u + u - kv iu - ui - kv J ' mv o 

f ( l ) „ "c f Q q V X rf axp(2 i« ) + 1 • 3 _ f V I E y s 
1 "" •>-,„ 2 U cu + 2OJ - kv ID - kv ' 3x '•u + u - kv > 2mv c z z c z o 

i r -,• ^\ , E + iE 
• [ 1 + e x p ( - 2 i » ) i 3_ (• x y 1 1 '4 - kv u - 2u - kv ' J j ''u - u - kv ' z c z c z 

i / <% • . \ n E •• i E 

+ ; r___l exp(2a») 1 3_ / x y -I 
" l u - kv u + 2ui - kv ' 3y ûi + <J - kv ' z c 3 ' c z 
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/ , • \ i , E + iE 
+ i [ exP(-2ij>) 1 j 1_ r_x jr , , 

Ltu - 2u - kv w - kv ' ay lw - u - kv J f V 4 4 ' 
C Z 2 C 2 

Since the second-order contributions to £i will be small except for che 

resonant ion terms, in which the denominator u - 2u - kv becomes small, only 

the terms containing the resonant ion contributions will be retained in the 

second-order component of f̂ , leading to 

2 -
f ( 2 ) _ "c o q V l r exp(- i< i ) f_3 . 2_\ + exp(-3io) r3_ + . j)_yi 

1 . . 2 l u - <u - kv l 3 x 3 y J u - 3<n - kv "-ax l by'' 
4imv c z 7 c a ' o 

, , , E + iE J fi_ + ; i_U f 2 1 + i f ) } I— M • C25) ui — 2(0 - kv 3x 3y ui - <u - k v 
c z c 

The elements of the equivalent dielectric tensor, K, may now be 

identified by computing the average perturbed particle velocities, v and v , 
x y 

and using the results to form the perturbed particle currents, J and J , and 
x y 

the dielectric tensor, K. The average perturbed particle velocities are 

obtained by integrating over 4, v., and v so that 

<V = J"? d* J"o v i d v i J"-- d% f i v ± c o s * ' ( 2 6 ) 

and 

< V y > = J"o* d* ̂ 0 vl d v i C d v
3
 £l vi s i n* ' ( 2 7 ) 

Corresponding to the perturbation expansion, Eq. (19), for £., the average 

velocities may also be expanded as: 



11 

< v> = < v
( 0 ) > + p^ < v

( 1>> + 0£ < v(2>> + ,,, (28) 

with pT = v„"> „• The zeroth-order components of <v > and <v > are given by: 
ij O CO X J 

< v ( 0 ) > = ^ M < E - iE ) ZCt.) + (E + iE ) Z(c ,)] , (29) 
x 2rftkv x y 1 x y -1 

-v(°>> = m. [(£ - iE ) Z(e,) - (E + iE ) Z(c ,)] , (30) 
y 2mkv l x y 1 x y -1 ' 

where Che plasma dispersion function, Z(t n), is defined by: 

and the argument, ? n, is equal to: 

u + nu c = . (32) n kv o 

The first-order components of <v > and <v > vanish because of Che 
x y 

integration over the angle $ of orthogonal functions, so 

<!>> = <VW> = o . (33) x 

la, evaluating the second-order terms, the contribution of kv to the 
nonresonant denominator, u> - a - kv , will be neglected, since u - LO » kv 
and this term does not contribute to the absorption processes. Furthermore, 
using the variation in the equilibrium magnetic field such that u = a (1 + 
x/L) and u = 2u ', so that z,_^ = -iWkLv o, the second-order components of <v > 

and <v > may be written as: 
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<v ( 2 )> = | S a _ {Z(C „) [(li. + ̂ ) ( E + iE j + 2 f- ft ^ ^y) 
o 3x 3y y 

£_ + iE__ E + iE 

~2 rt J T 

and 

y -i < v< 2>> (35) 

Examination of the type of terms present in <v > and <v > indicates that 
x y 

the product, K-E, may be written as 

3E 3E 
E + — J = K E + K E + K , — * + K , , x tii x xxo x xyo y xxl 3x xyl 3x 

32E *h 3E 
* K + K — z 2 - + M — -

xx2 3 j (2 xy2 ^ 2 xxl 3y 

3£ 32E 32E 
+ M xyl 3y xx2 ^2 xy2 3 y 2 ( 3 6 ) 

and 

E * - ^ i j 
3E 3E 

+ K 
3 2 E 

+ K K E + K E + K , - • •- , „ • ~ „ 
y <d y y x o x y y o y y x l 3x y y l 3x yxl 2 

32E 
+ K 

3E a£ 
+ H , — — + H , — ^ + M 

3' E 
yy 2

 3 x 2 yxl 3y yyl 3y yx2 3 y 2 

3 2E 
+ M yy2 , 2 " ay 

C37) 
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Electrons contribute on'y to K x x 0 and K , by virtue of Che expansion of f, 
in powers of (v./oi ) and because u - 2 cu • « iu_„, so there are no resonant r X c ci ce* 
contributions from electrons to the higher order cerms in Che expansion of 
<v > and <v >. Finally, performing the sum over electrons and ions, as x y 
indicated in Eqs. (8)-(9), and noting that the large argument expansion for 
Z(?|) and Z(c_.) may be used, the elements of the equivalent dielectric 
tensor, as denoted in Eqs. (36)-{37) may be written as follows: 

ui . 2 <u . o, F 
K = K - i ^ - E i , *.+ P 1 , L, , (38) x x o ™° u } - J 4 U

2 X 2 

ci 
2 2 2 P, 

K =-K = i ^ - E i - - + i - £ i L _ , (39) 
xyo yxo uc. o 2 _ ̂ 2 2^2 • 

ci 
u - 2p T

2LF' 3K 
K = K = P 1 L = x* 2 (40) 
" 1 Kyyl , U 2 X 2 ax • «°> 

K = -K , = i K , (41) 
;:yl yxl xxl 

2 2 
-oi . o T LF 

Kxy2 = " Kyx2 = i Kx*2 » < 4 3 ) 

M = M 1 = - i M = i M , = K , , (44) 
xxl yyl xyl yxl xyl 

M , = M , = K „ , (45) 
xx2 yy2 xx2 

V - -"yx2 = iMxx2 > <«> 

where 
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F = -c_2 Z U _ 2 ) , (47) 

and 

F' = c_ 2
2 Z'(e.2>. • («8> 

The elements as defined in Eqs. (38-43) are identical to those found by 

Swanson for a plane wave incident normally onto the mode conversion-

absorption layer. The additional eLements defined in Eqs. (44-46) arise 

because of the finite transverse extent assumed for the incident wavefront. 

However, as will be discussed in the next section, these latter elements have 

a negligible effect on the wave structure for wavefronts which satisfy the 

paraxial propagation limit. 

IV. APPLICATION OF THE PARABOLIC APPROXIMATION METHOD TO THE HAVE 

EQUATION 

The structure of a wavefront as it propagates through the mode conversion 

absorption layer is governed by the Maxwell equations, Eqs. (6) and (7), 

combined with the equivalent dielectric tensor, derived in the preceding 

section, which describes the response of the plasma to the applied wave 

fields. Using the notation specified in Eqs. (36)-(48), the Maxwell equations 

may be rewritten in the form: 
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and 

y l • i,2 • iLx + iL 2]E x • [ T l - i i - L L - L 2]E y = 0 (50) 
OX 

where 

, 2 
T = k Z - £=• K , (51) X 2 xxO c 

* 2 - - £ 7 r ^ • C 5 2 ) 

2 , 2 ,2 2 , 
T - SL_ * i_ + J2_ K; i = <2_ £_ «• i_ (si) "1 2 xx1 ax 2 xx2 , 2 2 3x xx2 ax ' ^ ' 

c c 3x c 

and 

L = i ^ K f- * 2- K 2 _ . (54) 2 2 xxl 3y 2 xx2 , 2 c 7 c 3y 

In the single mode limit, in which 3E/3y + k E f these equations reduce to 
those derived previously by Colestock and Kashuba, when only the seccnd 
harmonic heating terms are considered. 

For incident Havefronts in which the transverse variations are weaker 
than the variations in the direction of propagation, the paraxial propagation 
constraint, Chat is, k ~ 1/E (3E/3y) « k ~ 1/E (3E/3x), may be used to y x 
solve Bqs. (49) and (50) iteratively for E„ and E„. The procedure is more 

x y 
complicated than in the cold plasma limit because of the presence of the 
finite Larmor radius terms, Lĵ  and L 2. Ir. the expansion procedures to follow, 
all terms through order (k-xPL) o r (ky/k„) will be retained, while higher 
order terms, involving (k /k x) (1/L k x ) , (k p.) , etc. will be neglected. 
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Hence, because the operator L, involves products of two of Che small expansion 

parameters, ( k

x

p L ^ a n d ^ k

y / k _ ) , *"t r , l a y b e n e 8 I - e c t e d immediately, thereby 

reducing Eqs. (49) and (50) t o : 

^1 ~ Ll " T l K + ( ? 4 " i Y2 " i L J E y = ° ( 5 5 ) 

3y ' 

and 

! l 4 + i T 2 + i L l , E * + ^ l - r 2 - L l t e y - a • ( 5 6 ) 

ox 

Turning to Eq. (55), since 3 E /3y^ is small in comparison to the 

remaining terms, it is desirable to eliminate it in favor of an expression 

involving E. alone. This is accomplished by operating on Eq. (55) with 3 /3y 

and finding, to lowest order in the expansion parameters, that: 

2 2 
3 E ir 2 3 E 
^7" " ~ ay2 

Substitution of this expression back into Eq. (55) reduces Eq. (55) ~o the 

form: 

The finite Larmor cadius term, L.E , may be eliminated from Eq. (58) by 

combining Eq. (56) with Eq. (58) multiplied by i, leading to: 

A i . -_iT2»* ... a2 . ,.. a2
 ] E 

1 3y ' 3x 
(59) 
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In the limit 3E/3y » 0, which is treated by Swanson, Eq. (59) could be 

solved algebraically for E in terms of E and the resulting expression could 
x y 

then be used in Eq. (56) to develop the mode conversion-tunneling equation. 

Mere, the paraxial propagation constraint will be used to reduce Eq. (59) Co 

an algebraic equation for E in terms of E which includes corrections up to 
x y 

order (k v/k x) 2. 
The first step in this process is to apply the operator [i(y, + Y?) " 

3 /3x3y] to Eq. (59). This reduces Eq, (59) to an algebraic relationship for 

E„ in terms of E , given as: x y 

V Y 2 Sx2 y V Y 2 *** V T 2 3y2 

. 3in(Y,+Y») 3 3E , 3 4E . 34E 
i_J___JC + i __^I _i r _ Z _ , (60) 

( Y 1 + Y 2 ) 2 ^ a x 2 a y { Y 1 + Y 2 ) 2 a x 3 s y Y 1 ( Y 1 + T 2 ) 3x 23y 2 

where Eq. (57) has been used and higher order terms have been discarded. The 

first term in the square brackets represents Che contribution of a plane wave 

propagating at normal incidence through the layer. The remaining terms 

represent the diffractive modifications which arise due Co Che oblique 

incidence and finite size of the incident wavefront. Because the final three 

terms are each of order (k„/kv) or higher relative to the dominant 

contribution, the cold plasma wave equation in Che limit of normal incidence, 

3 Ev rYl " Y2 , 
_ Z = _i_^ L. £ , (61) ax" y 

may be used to reduce the order of the derivatives in the terms. In 

particular, the fourth term is reduced as: 



18 

(Y^)' 3x ^ V 3x 2 J T 1 < Y 1 + T 2 > 3 x 3 y ' 
(62) 

the fifth term may be approximated as: 

2 2, l a2 £fq _ < V V r 3% . 3^[(Y^)/Yl] 3E 
( V r 2 ) 2 a x a y 3x2 *1<W ^ 

* + ax —^ 1 
3y J ' 

(63) 

whereas the last term may be simplified as: 

-i 32 A , * W 3 \ 
V W ay2 l3x2 J " r / ay2 

(64) 

Using Eqs. (62-64), the algebraic equation for E may finally be reduced to: 

E = i 1 -x l r 1+r 2 3 x 2 1 y Y l 3x3y 
'1 x'l '2' 

( _ i_ ) [i_ I 2] !!r 
l Y 1 + Y 2

; l3x Y l
J 3y 

(65) 

The appropriate mode conversion-tunneling equation may now be derived by 
substituting Eq. (65) into Eq. (56), leading to: 

3 2E Y, + Y, 
Y t 1 3 x 2 Y, M y 

+ l F3 V 3 E 

'3x Y,' 3y 

, 2 p 2 2 

3x Tl 

0 . 

32E 

ay-

(66) 

This equation reduces to the mode conversion-tunneling equation considered by 
Swanson5 in the limit 3£ /3y -•- 0. Furthermore, it reduces to the appropriate 
cold plasma equations, with and without the y-derivative tt-rms, when k p, * 0, 
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The final step of the parabolic approximation involves the separation of 
the rapidly varying wavelike component, u(x), of E from the more slowly 
varying amplitude modulation, a(x,y), which contains the diffractive effects 
associated with the finite transverse extent of the wavefront. This is 
accomplished by substituting the expression, 

E (x,y) = a(x,y) u(x) , (67) 

into Eq. (66) and factoring the resulting terms appropriately. Neglecting the 
term 3 a/3x in comparison to 3 u/Sx , Eq. (66) may be factored in the form: 

rl . 3 2u , f V ^ 2 ^ T a 2u , 2 i 
y\. a* Yl ^ ax"1 L 

r- ,d Y 2 , 3a 3 2 a . 3 1 T 3u , r j r l * T 2 l r u ' 1 „ 
+ u { l ^ 7^ 3? " 72 + 77 « L i Ix" " 2 ( — K ^ X K l 

3y~ ' 1 " * ' 1 c 

2 
1) 

"2 
c 

* 2 -Hi K I |ii) - 2 .|ii] | a } = ( j 
2 xx2 u 3 x ' u dx' 3x J 

where 

2 2 
2 Y 2 ~ Y l 

k, = — — . ( 6 9 ) 

The dominant wavelike component of E (x fy) is determined by equating the terms 
enclosed by the first set of brackets in Eq. (68) to zero, yielding 

.Yi + Y„. 
(70) 1 r 3 u ./'I % . 3 u , 2 _ , 

— L — r - 2[— JL u 5. - k u = 0 
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The resulting equation is identical to the mode conversion-tunneling equation 
derived, by Swanson, appropriate for a plane wave incident normally onto Che 
resonance Layer. Equating the terms enclosed by Che second pair of, brackets 
in Eq. (68) to zero reveals that the amplitude modulation function, a(x,y), is 
governed by a parabolic diffusion-type equation which may be written in the 
form: 

2 
g(x> |ii + ih(it) 1 1 - 1 4 " 0. (71) 

3 x '/ 3 y
2 

The general solution for a(x,y) is easily obtained using the method af 
separation of variables, yielding the result: 

a(x,y) = j ^ f^a dy' J"^ dm a(x ,y' )exp[im(y-y')]exp(-m F 2(x) JexptmF^x) ], 
(72) 

where 

x dx' h(x') r t \ - r x "x tux 
1 JX glX ) 

(73) 

F2W=J*x o iTPT * ( 7 4 ) 

and a(x ,y') specifies the transverse structure of the uavefront on the plane 
x = x . In the particular case of an incident Gaussian-shaped wavefront at x 
- x , the amplitude function for x i. x reduces to; 

A ab [y-iF^x)] 2 

a(x,y) = — 5 - ryj exp{ 5 /, (75) 
[b z + 4F 2(x)l i / Z [b z + 4F2(x)] 
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where the effective width and amplitude of the Gaussian depend on ?2^x^• 

The two-dimensional structure of the wavefront as it propagates through 

the mode conversion absorption region is completely specified in the paraxial 

propagation limit by Eqs. (66), (67), (70), and (72-74). In this limit, the 

dominant wave structure, u(x), in the primary direction of propagation is 

governed by the linear fourth-order mode conversion-tunneling equation, 

appropriate for a plane wave incident normally onto the kinetic layer. 

Diffraction effects on the transverse structure are determined by a parabolic 

diffusion-type equation, in which the coefficients depend on u(x) and on 

equilibrium quantities. The wave fields determined in this manner may now be 

utilized to construct the two-dimensional power deposition profile, as will be 

shown in the next section. 

V. POWER CONSERVATION EQUATION 

Within the kinetic layer, the applied ICRF waves resonantly interact with 

the particles, yielding a net transfer of power from the wave fields to the 

plasma. The two-dimensional form of the local power conservation equation can 

be constructed directly from the linearized Vlasov-Maxwell equations. The 

resulting equation is a generalization of earlier formulations ' » i 0» i-' 

derived for wave components characterized by a single value of k . 

Real power flow within the layer is governed by a generalized Poynting's 

theorem in the form: 

Real V-S * - | Real (E-J'"') , (76) 

where 
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S •= |- (ExS") (77) 

is the complex Poynting vector, J = 5-E, and the conductivity, 5, is related 

to the effective dielectric tensor, K, through Eq. (20). 

The left-hand side of Eq. (76) represents real pcver flow into the 

kinetic layer, carried by the incident waves• In general, the right-hand side 

of Eq. (76) consists of two parts! 

Q = ~ Heal [S-j") = -Real P(x,y) - Real 7-f(x,y) , (78) 

where P(x,y) is the local power deposition and T(x,y) is the kinetic flux 

associated with rhe coherent motion of particLes in the wave fields. The 

separation of Q into the local power deposition and a kinetic flux is 

motivated by earlier studies. ' ' * To derive the appropriate expression 

for the local po^er deposition, P(x,y), nne may first calculate the left-hand 

side o£ Eq. (78) and then extract from it those components, identified as the 

kinetic flux, which can be written in divergence form. The remaining 

components then correspond to the local power deposition, which must vanish 

when the dissipative terms vanish. In essence, this procedure should be the 

reverse of the procedure used in 3ef, 15 and is equivalent to that followed in 

Ref. 6. 

Using Eq. (20) in Eq. (76), Q can be written in terms of the effective 

dielectric tensor as: 

« - 187 «» " TBf [B-K*'S-* - r-g-ij . (7 9) 
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where * denotes the complex conjugate of the term. For the case considered in 

this report, in which equilibrium quantities are independent of the vertical 
=* .. 

coordinate, y, but the wave fields may depend on y, E-K -E is given by 

-v.- 2-* 

• I-R*. | f + Lfi*. ^ f , (80) 
3y 

where Kn, K,, Kn, M,, and M 2 are defined in Eqs. (38-48). To proceed with the 

construction of an expression for the local power deposition, P(x,y), two 

relationships are useful. From Lagrange's identity for linear operators, » 

one can show that for any two vectors u,v of dimension n and an n X n matrix A 

v--[S^).u-u.((S| 7) + .vj <'=| 7(v'.I.u) , (81) 

where the superscript; ( + ) denotes the adjoint of the quantity. When no linear 

operators are involved, the following identity is also valid 

u-A -v = v -A -u . (82) 

Using Eqs. (80-84) and Eqs. (38-48), the quantity Q can be written 

explicitly in terms of the effective dielectric tensor, K, as 

«-fc "ir •*;•«-EH-£ - M f H ^ • r-v f t 
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- ' if -f«; - «2i-1| * * # - i ^ - «2i- if • 

The first two lines contain the generalized form of the kinetic flux, T, while 

the remaining terms comprise the two-dimensional form of the localized power 

deposition. When no dissipation is present in the system, so that the Kj_'s 

are all Hermitian, the terms corresponding to the local power deposition 

vanish identically. In the limit that the y-dependence of the electric field 

depends on only a single value of k , the power conservation equation reduces 

in form to that derived earlier by Colestock and Kashuba. The power 

conservation equation derived here is valid for a wavefront with a finite 

transverse extent which is incident onto a mode conversion - tunneling layer 

characterized to lowest order by one-dimensional equilibrium 

inhomogeneities. Two-dimensional power deposition profiles can be constructed 

using the exact field solutions obtained numerically from Eqs. (49) and (50) 

or the parabolic field solutions, obtained semi-analytically from Eqs. (65-

74). 

VI. COHCLUSIOHS 

In this paper, the wave equation which governs ICRF wave propagation, 

absorption, and mode conversion within the kinetic layer in tokacnaks has been 

extended to include diffraction and focussing effects associated with the 

finite transverse dimensions of the incident wavefronts. Though the 

equilibrium within the kinetic layer has been assumed to vary only with the 

major radius, the incident wavefronts have a finite structure, transverse to 

the direction of propagation through the layer, which is caused by focussing 
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related to the launcher geometry and the refractive properties of the 

medium. A two-dimensional energy conservation equation, including explicit 

forms for the local power deposition and the kinetic flux vector, has been 

derived which generalizes earlier results that were appropriate for obliquely 

incident plane waves characterized by a single value of k , 

Using the parabolic approximation method, a generalized two-dimensional 

form of the mode conversion-tunneling equation for the vertical component of 

the wave electric field, E , has been extracted from the wave equation. 

Solutions to this equation may be obtained using the ansatz 

E„(x,y) = a(x,y) u(x), where a(x,y) is a slowly varying amplitude function and 

u(x) is a rapidly varying waveform. The waveform, u(x), is determined by the 

usual fourth-order mode conversion-tunneling equation for plane waves which 

are incident normally onto the kinetic layer, while the amplitude function, 

a(x,y), is determined by a second order parabolic diffusion-type equation 

whose coefficients depend on equilibrium quantities and on u(x). Work is 

currently underway to incorporate this method into an existing cold plasma 

code which solves for the wave propagation between the launcher and the 

kinetic layer in tokamak geometry. Previous methods of constructing the two-

dimensional structure of the wavefronts and the power deposition within the 

kinetic layer have proposed to utilize a Fourier decomposition of the 

wavefront in the vertical direction and, subsequently, solve a corresponding 

fourth-order equation for the amplitude for each of the harmonics present in 

the wave. The method described in this report is numerically more efficient 

since only one set of solutions to the fourth-order equation and the 

associated second-order equation needs to be generated for each pass of the 

wavefront through the kinetic layer. 
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