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ABSTRACT

The derivation af the wave equation which governs ICRF wave propagation,
absorption, and mode conversion within the kinetic layer in tokamaks has been
extended to include diffrartion and focussing effects associated with the
finite transverse dimensions of the incident wavefronts. The kinetic layer
considered consists of a uniform density, uniform temperature slab model in
which the equilibriuvm magneric field is oriented in the z-direction and varies
linearly in the x-direction. An equivalent dielectric tensor as well as a
two-dimensional energy conservation equation are derived from the linearized
Vliasov-Maxwell system of equations. The generalized form of the mode
conversion-tunneling equation is then extracted from the Maxwell equations,
using the parabolic approximation method in which transverse variations of the
wave fields are assumed to be weak in comparison to the variations in the

primary direction of propagation. Methods of solving the generalized wave
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equation are discussed.



I. INTRODUCTION

Recently, the parabolic approximation method has been applied to the cold
plasma wave equation in a cylindrical tokamak geometry in order to analyze
fast magnetosonic wave propagation in the region bounded by the plasma-antenna
interaction 2one at the edge of the discharge and the mode conversion—
absorption layer located about the magnetic axis of the z:h‘.scl‘l.au'ge.l"2 The
physical motivation for this approximation is that the fast wave propagates
primarily in the radial direction within this region, if surface mode
excitation, which is characterized by large poloidal mode nuumbers, 1is
ignored. By treating poloidal derivatives as small perturbations and
factoring the poloidal component of the wave electric field, EB’ into a
rapidly varying radial waveform, u(r), multiplied by a slowly varying
amplitude function, a(r,8), the Maxwell equations which determine the
structure of the wave fields simplify considerably. In particular, the radial
component of the wave electric field, E_, is determined from an algebraic
equation, u(r) is determined by a second-order ordinary differential equation,
and alr,8) is determined by a parabolic diffusion-type equation.  Since
continuous solutions for the wave fields are constructed directly from an
approximate form of the wave equation, diffraction, refraction, and focussing
effects are treated self-consistently.

The parabeclic approximation methsd may also be applied within the mode
conversion-absorption layer in order to gain some insight into the diffracticn
effects associated with a finite size wavefront propagating at near normal
incidence onte the layer. The finite transverse dimension of the incident
wavefront is limited by focussing induced by the launcher geometry and the
refractive properties of the equilibrium, 1In the simplest case, the layer is

modelled as a slab of uniform density and temperature in which the x direction



corresponds to the major radial direction of the tokamak, the ; direction
corresponds to the vertical direction, and the z axis corresponds to the
toroidal direction., The equilibrium magnetic field is aligned solely in the z
direction but varies linearly in the x direction. For this case, the problem
of an incident wavefront, which is of finite size in the ; and z directions,
may be treated exactly by Fourier decomposing the wavefront into a set of

plane waves characterized by k, and k., the wave numbers in the y and =

¥y
directions, respectively. Each incident plane wave may then be treated with

the standard linear fourth-order mode conversion-tunneling equat:ion?'_10 and

the results summed over ky and k, to obtain the overall wave structure and the
ne: absorption profile for the wavefront within the layer. Numerically, this
exact procedure may get expeﬁsive if it becomes necessary to include many
different values of ky and/or k,. Furthermore, it is difficult ro extend the
exact analysis to the case in which equilibrium gradients exist in the ; or z
directions.}171% por incident wavefronts which vary slowly in the ; direction
relative to the x direction and hence are composed primarily of plane waves
which satisfy the paraxial propagation constraint, i.e., ky << k,, the
parabolic approximztion can be used to avoid solving the fourth-order equation

for each value of k, present in the wavefront.

Y

In this veport, a derivation of the linear fourth-order mede conversion-
tunneling equation appropriate for wavefronts with a finite transverse extent
is presented, starting from the linearized Vlasov-Maxwell system of equations
and using the parabolic approximation. The basic model and assumptions are
described in Sec, II. An equivalent dielectric tensor is developed in Sec.
III in a manner closely resembling the derivation by Swanson,5 except that

derivatives of the wave fields with respect to vertical distance in the layer

are retained. In Sec. IV, the appropriate form of the mode conversion=-



tunneling equation in the paraxial propagation limit is derived from che
Maxwell equations wusing Lthe oparabolic approximacrion method. Power

conservation is discussed in Sec. V, and the concluding remarks are summarized

in Sec. VI.

1I. THE BASIC MODEL

During RF heating of tokamak plasmas, mode conversiom and absorption
processes are generally important only in a thin layer located about the
cyclotron resonance layer for the waves. As a first approximation, the mode
conversion~absorption layer may be treated using a uniform density, uniform
temperature slab model in which the ;, ;, and z directions are directed along
the major radial, the vertical, and the toroidal directions of the torus.
Neoclassical effects, magnetic field curvature effects, and rotatrional
transform effects are neglected by assuming the equilibrium magnetic field is

of the form:
B=B(1+x/L)z , (1)

where |L] is equal to Ry, the major radius of the torus.

For notational ease, only second harmonic heating of a single ion species
plasma will be considered expligitly, with the wave frequency, w, equal to
twice the fundamental ion cyclotron frequency, Weo» evaluated at x = 0. The
generalization to multiple ion species plasmas and minority heating schemes is
self-evident.

A Fourier decomposition of the incident wavefront in time and in the z
direction is taken, but only a single value of k = k, will be treated

explicitly in the remaining sections. Furthermore, by neglecting effects



related to finite electron inerctia, the parallel component of the wave
elegtriec field, Ez' can be neglected to lowest order in me/ml, where m, and m;
are the electron and ion masses, respectively. Under these assumptions, the

total electric and magnetic fields in the plasma may be written as:

E = [E (x,y)x + Ey(x,y);] explilks - wt)] , (2)

B = Bo(l + x/L); + [Bx(x,y); + By(x,y); + Bz(x,y);] exp[i{kz - wt)] .
(3)

Similarly, the particle distriburion functions may be written in the form,
f = fo(x,y,vx,vy,vz) + fl(x,y,k,u,vx,vy,vz) expfi(kz - wt)] , (4)

where f1 represents the perturbed component caused by the presence of the

waves in the plasma and £, is normalized such that

n=| £, 3 (3
with n denoting the species demsity.

Using Eqs. (l1-4), the Viasov-Maxwell equations for the plasma-wave system

may be written as:

2 2
3"E A°E .
2_ 2,2 - % ¥ o 4riw
[ - /] B — * Sxay I (6)
y ¢
and

2 2
3°E 3°E .

[kz _ u,2/‘:2] g - Y . x _ 4miw 3 , &S
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where the currents J  and Jy arising from the plasma response arg given by
i =1 aj o £,dv (8)
J
3
J = 2 qj f v f..dv , (9)

with a sum over species denoted by the subsecript j.
The carresponding kinetic equation far each species, which describes the

response of the plasma to the applied fields, is given by

A s+ E =0 (10)
at m v

where
F=qE+ ﬂ; vxB . (11)

Using Eq. (4}, the kinetic equation may be separated into an equation for

the unperturbed particle distributien function,
U E +w vz f =0 , (12)
n c v o

and an equation governing the development of the perturbed distribution

function,

i 3 : --45.
iw El + v-? fl Yuovox ey fl S E-7 £, (13)



where

q B (L + xfL)

w B ——— .
C me

(14)

_ Ignoring the VB drifts, which have been shown to be unimportant to lowest
order in the small parameter (x/L) by Swanson,S the solution for the zeroth-~

order unperturbed particle distribution function becomes:

. a g2 2 2y, 2
o " 3733 exe[~ (v, " + v B e v )] (1)
’ 0
where
2k T -
v =Bl (16)
o] m

with k, denoting Boltzmann's constant.
By substituting Eq. (153) for £, into Eq. (13) for f;, and changing

velocity space variables from Vys Vor ¥, LO V), v, and ¢, where v, = v, coso,

¥y’ 'z
vy =V sing, and vy = v,, the equation determining f, is transformed into:
af . _ v cosd afl v, sine afl
e w® e 3y
W, X W, y

) ZvaL e Ex cosd + Ey sing
2 B ’
v
o

(11

where @ = m-kvz/wc. This equation may be integrated once to yield:

] v cos¢' 2f v sin¢' af
- " ' sy L 1 1l 1
fl exp({~iR¢) f d¢' exp(iqe’) [_——_w Frelh — —ay

c (o4



2f v ¢ E cosé' + E sins'
[+] X b
2 B

(18)

Solutions of Eq. (18) may be developed in terms of the perturbation expansion,

(19)
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as will be discussed in the next section, The procedure is identical toe the
one used by Swanson,5 with the exception of rhe presence of the extra rerm
proportional to 3f;/3y in Eq. (18).

Once solutions to the integral equation for the perturbed distribution
funccion have been found, the results may be used to compute the perturbed
plasma currents for use in the Maxwell equations governing the wave field.
The parabolic approximation may then be applied to determine the wave

structura and power deposition profiles within the mode conversion/absorption

layer.

IIT. DERIVATION OF THE EQUIVALENT DIELECTRIC TENSOR

The coupled, linearized Vlasov-Maxwell system self-consistently
determines the structure of small amplitude waves propagating within the mode
conversion-absarption layer. In order t¢ solve these equations, 1t is
customary to solve for £, in terms of the wave electric field, E, and to use

the result to define an equivalent dielectric tensor, K, using Egs. (8) and

(9) in the form:

E o+ 2L 5= «.E (20)



where K may include differential operators with respect to x and y.
Substitution of Eq. (20) in:o the linearized Maxwell equaticns, Eqs. (6) and
(7), then yields a pair of coupled partial differential equations for E, and
E_ alone. In this section, the dielectric rtensor, E, will be derived by
solving for f; through secord order in the expansion parameter (VL/”c)'
Returning to the integral equation for £y Eq. (18), since the terms in
the integrand which are proportional te afl/ax and afliay are already of first

order in (v /uw.)}, only the zeroth- snd first-order components of these CLerms

need be retained so thatt

2, afie) ) Eil)
i v Lol (21)
ax Ix L ax ch
and
e, aet®? \ fi”
3_)'— = 3)7 + VJ_ '5 [ WC ] . (22)

Substitution of the expansion, Eq. (19), into the integral equation, Eg.
(18), and using Eqs. (21) and (22), then leads to the following expressions

for the zeroth~ and first-order components of £y:

if jav, L(Ex - iEy) exp(i4) (Ex + iﬁy) exp(-id)

(0)
£ = + , (23)
1 mvoz w + w, kvz w=-w - kvz
£ .
f(1) - o {[ exp(2id) + 1 a3 ( Ex iE ]
1 2 2 w+ 2w - kv w - kv 3X ‘w + w,_ - kv
m c z z ¢ z
. [ 1 . _exp(=2i¢) } 3 Ex * !Ey
9 = kv w=- 2w = kv ' 3Ix ‘uw-uw -~ kv
z [+3 Z [

z

+ i[ 1 _ _exp(2i¢) 2 [ E:x B lﬂz ]

- +* - + -
4] kvz w ch Lw'3 3y ‘uw u, kvz
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E + xE
X 1} - (24)

[ exp(-2is) - 1 (

w- 2w, - kv w = kv I ay w =W, - kv
c z

Since the second-order contributions to £, will be small except for the
resonant ion terms, in which the denominator @ - 2w, ~ kv, becomes small, only

the terms containing the resounant ion contributions will be retained in the

second-order component of £, leading to

2
w “f qv . _a:
fgz) =_C o'l { exp{-is) [a - :y) + _exp(-3ie) (3 .2 1}

4imv°2 w-w, - kvz ax w - 3mc - kvz Ix 3y
1 3 z
* [w - 20 - kv (ax } [ w, = kvz} ‘ (25)

The elements of the equivalent dielectric ctensor, E, may now be
identified by computing the average perturbed particle velocities, vy and vy
and using the results to form the perturbed particle currents, Jx and Jy, and
the dielectric tensor, E. The average perturbed particle velocities are

obtained by integrating over ¢, v,, and v, so that

<y >

fgﬂ de fg v, dv I° av ¥ v, cost , (26)

i e z 1
and

<y >

Ign d¢ [ v dv [T dv_E v sine . (27)

Corresponding to the perturbation expansion, Eq. (19), for £y, the average

velocities may also be expanded as:
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(1) 2 (2)

>l w4 (28}

(0)

<y> = <y >+ g <v

with pp, = vow . The zeroth-order components of <v > and <Vy> are given by:

{0). _ =in g .
v > = #k;: [, i) 2(5)) + (E_+ iE) ziz_)] (29)
(o) - - - i
> ﬁr‘ [z, i£) 2(z)) - (B, + iE) ze_D| (30)

where the plasma dispersion function, Z(cn), is defined by!

1 e dt exp(-t?)
Z(y ) = — [ CSE.eXpi7t ) (&1 D)
n /T - t- ;n

and the argument, § , 1s equal to:

(32)

The first-order components of <v,> and <vy> vanish because of the

integration over the angle ¢ of orthogonal functions, seo

(1)

> = <y

My oy . (33)
y

In evaluating the secand-order terms, the contribution of kv, to the

nonresonant denominactor, w - w_ - kv, will be neglected, since w - w, >> kv,

[+

and this term does not contribute to the absorprion processes. Furthermore,

using the variztion in the equilibrium magnetic field such that u, =, (+

x/L) and w = 2w ¢o thac Ly = wx/kLvo, the second-order components of <v >

o’ -

and <vy> may be written as:
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2 2 3
2

<v:(c2)> = ﬁ__ {Z(q-z) [[:__ +* _3_2 (Ex +* iEy] + 2 —;

tomkvO x ay

w 3 3 Ex * iEy X
- — ¢ — H —
[kvo) e lipriyg) B (T
and
DL C2 PR 5 O
y x

(35)

Examination of the type of terms present in <v > ard <vy> indicates that

the product, K-E, may be written as

47i E 3E
E +—171 =K E +K £+ .
x w X XXO X xya ¥ xxl 3x xyl 3ax
32Ex 32E 3Ex
+ K + K H -—_—
xx2 ax xy2 axZ xxl 3y
2E 2%e 2%E
Ty T M2 77 T My T2
XY y XX a)’ xy ay
and
3 3E aE
i X
+ — = + ——
Ey w Jy nyo Ex * Kyyo Ey nyl ax * Kyyl x
2 2
3°E 3E 3E a'E
K Loy X2y iy
yy2 ax2 yxl 2y yyl 3y yx2 3y
32E
+ Myyz ——51 .

(36)

(37)
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Elect?ons contribute only to K . and nyo, by virtue of the expansion of £,
in powers of (vllmc) and because w ~ 2 w,; << w_,, so there are no resonant
contributions from electrons to the higher order terms in the expansion of
v, and <vy>. Finally, rerforming the sum over electrons and ions, as
indicated in Egqs. (8)-(9), and noting that the large argument expansion for

Z(:l) and Z(n_l) may be used, the elements of the equivalent dielectric

tensor, as denoted in Eqs. (36)-{(37) may be written as follows:

2 2,
mpiz “oioL F (38)
K =K =1 + o+ B '
xX0 yyo w .2 - w 4w2X2
ci
w mpiz wgiZOLZF'
= ~K =i — + 1 ) (39)
xyo yxo Yei w ‘2 _ lu2 &mzxz .
ci
2 2. .,
. p. LF 3K
K =K - mpl L - x%2 , (40)
xx] yyl 4w2X2 3x
x::yl - _nyl =i K (41)
-t .20 2LF
I<xx2 =K 2 ° ~ ZL ' (42
¥y 4u X
Ky =" By2 T K (43)
Mol = Myyl = =i Mxyl = i nyl = nyl ' (44)
Mex2 = HyyZ = Kxx2 ’ (45)
nyZ - -Myxz =M (46

where
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F (47)

-(_2 2(4_2) ]
and

Fro=e 2y (48)

-2
The elements as defined in Egs. {38-43) are identical to those found by
Swaason® for a plane wave incident normally onto the mode conversion-
absorption layer. The additional elements defined in Eqs. (44-46) arise
because of the finite transverse extent assumed for the incident wavefront.
However, as will be discussed in the next section, these lacter elements have

a negligible effect on the wave structure for wavefronts which satisfy the

paraxial propagation limit.

IV. APPLICATION GOF THE PARABQLIC APPROXIMATION METHOD TO THE WAVE

EQUATION

The strucrure of a wavefront as it propagates through the mede conversion
absorption layer is governed by the Maxwell equations, Eqs. {6) and {7),
combined with the equivalent dielectric tensor, derived in Cthe preceding
section, which describes the response of the plasma to the applied wave
fields. Using the notation specified in Eqs. (36)-{48), the Maxwell eguations
may be rewritten in the form:

a2 2

_ .3 _ 3 s _ s _ s _
vy -1y ) LolEg + [5my = 1y - iy - iL,JE =0 (49)
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and
2 ]
[a_xa_; + iy, + il + QL JE + [y, - - L, - Lz]Ey =0 (50)
where
2
I
Yl =k 2 KKXO » (51)
24
2
Yz = '1"2' xyo ’ (52)
c
2 2 2
. 3 ,w_ a_ e 3 2
I'1 T2 Kxxl ax * 2 Kxe 2 2 3x Kxe ax ’ (53)
c [ ax c
and
2 2
- Y I I a_
Sl L el sy ST Sy B (54)
c c 3y

In the singre mode limit, in which 3E/3y -+ kyE, these equations reduce to
those derived previcusly by Colestock and Kashuba.ﬁ when only the secoend
harmonic heating terms are considered.

For incident wavefronts in which the transverse variations are weaker
than the variations in the direction of propagation, the paraxial propagation
constraint, that is, ky ~ 1/E (3E/3y) << ke, ~ 1/€ (3E/3x), may be used to
solve Egs. (49) and (50) iteratively for E, and Ey« The procedure is more
complicated than in the celd plasma limit! because of the presence of cthe
finite Larmor radius terms, L; and Ly. Ir the expansion procedures te follow,

all terms through order (kx.pL)2 or (ky/kx)z will be retained, while higher

order terms, involving (ky/kx) (/L k), (kpr)Z, etc. will be neglected.
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Hence, because the operator L, involves products of two of the small expansion
paranmeters, (kxpL)2 and (ky/kx)’ it may be neglected immediately, cthereby

reducing Eqs. (49) and (50) to:

2 2
3 2 . . _
by =ty = B+ lagy = i - 0, = 0 3
and
3 R . 3 R,
[573): + 172 + IL].]Ex + [Yl - ;? - Ll]by =aq . (56)

Turning to Eq. (55}, since BzEx/Byz is small in comparison to the
remaining terms, it is desirable to eliminate it in favor of an expression
involving Ey alone. This is accomplished by operating on Eq. {55) with Ezlayz

and finding, to lowest order in the expansion parameters, that:

2 . 2
A°E iy, 3°E

Zx = _g._...zz . (57)
ay Y1 ey

Substitution of this expression back into Eq. (55) reduces Eq. (55} ~a the

form:
iy 2 2
=22, _ &
[v, - L,)E, = [Yl o Ty * iy, + Ll)sz . (58)

The finite Larmor radius term, L,E,, may be eliminated from Eq. (53) by

combining Eq. (56) with Eq. (58) multiplied by i, leading to:

2 Yo o2 2
. 3 22 . 4
[1(7 + v )+ ]E = -l—= — % ] — * (Y * ¥ ) —]E .
1 2 Ixdy’ x 2 ayZ axdy 1 2 axZ y

{59)
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In the limit 3E/3y = 0, which is treated by Swanson,5 Eq. (59) could be
solved algebraically for E, in terms of EY and the resulting expression could
then be used in Eq. (56) to develop the mode conversion-tunneling equation,
Here, the paraxial propagation constraint will be used to reduce Eg. (59) to
an algebraic equation for E, in terms of EY which includes corrections up to
order (k,/k )2,

The first step in this process is to apply the operator [i.(y1 * yz) -
32/3x3y] to Eq., (59). This reduces Eq. (59) to an algebraic relationship for

Ex in terms of Ey, given as:

2 . 2
. 1 B2 2 3 Ey i 12/71 3 EY
Ex - 1[1 - ¥, + 2 E, =3 +y,, 3x3 * + 2
17Y2 ax* ¥ W TYp 9X9Y "2 oy
. 3 4 4
) 1 ann(vl+~r2) a”E v, 1 3 E ) ; 3 ;3, ' (o)
(71**2)2 3x ax’ay (yl+12)z axsay ¥ 0rpy,) ax%ay?

vhere Eq. (57) has been used and higher order terms have been discarded. The
first term in the square brackets represents the contribution of a plane wave
propagating at normal incidence through the Llayer. The remaining terms
represent the diffractive modifications which arise due to the oblique
incidence and finite size of the incident wavefront. Because the final three
terms are each of order (ky/kx) or higher relative to the dominant

contribution, the cold plasma wave equation in the limit of normal incidence,

2z 2 2
3"E Yo=Y
o= [A—2 e (61)
ax*® "1 y
may be used to reduce the order of the derivatives in the terms. In

particular, the fourth term is reduced as:
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2
-1 atnly +y,) | (a E, o (y;=v,)  2zaly +y,) 3E (62)
~ !
(Yl*Yz)z ax ay 3x2 Yl(Yl*YZ) Ix 3y

the fifth term may be approximated as:

2 2 2 2
2 3°E (v,~v,) 3°E asn[{yJ=v.)/ 3E
1 o2 (Ey) Y17Y, v, [Cry=r2 vy ] %y, (63)
)2 axay axZ Tl(¥1+72) ixdy ax 3y

try*r,

whereas the last term may be simplified as:

2 . 2
; 2  3°E i (y,~-y,) a°E
i (). ___néﬂil_ — (64)
SIRATL ay?  axd fl N

Using Eqs. (62-64), the algebraic equation for Ex may finally be reduced to:

2 2 2 2
f il EE_]E 1 VE . [7172*72 vy, ¥E
X 71+72 axZ y 1 axdy Y2 (rotv.) ay2
1 172
Y 3E
SR RSl (65)
17%2 1

The appropriate mode conversion-tumneling equation may now be derived by

substituting Eq. (65) into Eq. (56), leading to:

2 2 2 2

3°E Y a"E Y - 3
e - - [ e, - —Z
1t 1 ax Y Y oay

(66)

This equation reduces to the mode conversion-tunneling equacion considered by
Swanson5 in the limit asylay + 0. Furthermore, it reduces to the appropriate

cold plasma equations, with and without the y-derivative terms, when ko + 0,
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The final step of the parabolic approximation involves the separation of
the rapidly varying wavelike zomponent, u{x), of Ey from the more slowly
varying amplitude modulation, a{x,y), which contains the diffractive effects
associated with the finite ctransverse extent of the wavefront. This is
accomplished by substituting the expression,

Ey(x,y) = alx,y) ufx) , (67)

into Eq. {66) and factoring the resulting terms appropriately. Neglecting the

term 3%a/3x? in comparison to azu/axz, Eq. (66) may be factored in the form:

2 Yty 42 ;
af—t -2 (A e -2y

], 1 axz 1 ax L
T, 2 Yoty z
tu {i (%; ¥: %E - 2_% * %— % Ll %5 -2 ( i 21(35 xx1
1Y gy 1 L ¢
uz 1 3u 2 3u] 3a
P2 R T Ti R 3 T 0 (68)
where
v,2 -yt
k12=2~_‘l. . (69)
"1

The dominant wavelike component of Ey(x,y) is determinad by equating the terms

enclosed by the first set of brackets in Eq. (68) to zero, yielding

2 Y, * ¥ 2
L L 3_% - 2(‘1""£]Llu - 3—% - klzu =0 . (70)
51 Ix " Iz
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The vesulting equation is identical to the mode conversion-tunneling equation
derived. by Swanson,5 appropriate for a plane wave incident normally onto the
resonance layar. Equating the terms enclased by the second pair of brackets
in Eq. (68) to zero reveals that the amplitude modulation function, a(x,y), is

governed by a parabolic diffusion-type equation which may be written in the

form:

2
glx)y 3 4 jn(x) 22 - 33 - o, (71)
3x ay 3y2

The general solution for a{x,y) is easily obtained using the method af

separation of variables, yielding the result:

a{x,y) = %; ffm dy' If@ dm a(xc,y')exp[im(y-y')]exp[-szz(x)]exp[mFlfx)],

{72)
where
_rx dx' hix')
oo = 3 S, o
X dx' (1%)

B0 =k ey

and a{x,,y') specifies the transverse structure of the wavefront on the plane

x = x,. In che particular case of an incident Gaussian-shaped wavefront at x

= Xg the amplitude function for x 2 x, reduces to:

Ab { [y-iF (o) 17
exp(- '
172 (7 + G, 0001

(75)

a(xyy) = 7
[p° + 4F2(x)l
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where the effective width and amplitude of the Gaussian depend on F2(x).

The two-dimensional structure of the wavefront as it propagates through
the mode conversion absorption region is complecely specified in the paraxial
propagation limit by Eqs. (66), (67), (70), and (72-74). 1In this limit, the
dominant wave structure, u(x), in the primary direction of propagation is
governed by the linear fourth-order mede conversion-tunneling equation,
appropriate for a plane wave incident normally onto the kinetic Llayer.
Diffraction effects an the transverse structure are determined by a parabolic
diffusion-type equation, in which the coefficients depend on u(x) and on
equilibrium quantities. The wave fields determined in this manner may now be
utilized to construct the two-dimensional power deposition profile, as will be

shown in the pext section.

V. POWER CONSERVATION EQUATION P

Wicthin the kinetie layer, the applied ICRF waves resonantly interact with
the particles, yielding a net transfer of power fr;m the wave fields to the
plasma. The two-dimensional form of the local power conservation egquation can
be constructed directly from the linearized Vlasov-Maxwell equations. The
resulting equation is a generalization of earlier formulation56'7'lo'15
derived for wave components characterized by a single value of ky.

Real power flow within the layer is governed by a generalized Poynting's

theorem in the form:

Real 7:5 = - 7 Real (E.T9) , (76)

where
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5= S (ExB) (77)

is the complex Poyntirg vector, J = 9'E, and the conductivity, 0, is telated

to the effective dielectric tensor, ¥, through Eq. (20).

The left-hand side of Eq. {(76) represents real pcwer flow into the
kinetic layer, carried by the incident waves. In general, the right~hand side
of Eq. (76) consists of two parts:

- - o -
Q@ = — Real [E-J7) = -Real P(x,y} - Real 9-T(x,y} , (78)
z

where P{x,y) 15 the local power deposition and T(x,y) is the kinetic flux
associated with the coherent motion of particles in the wave fields. The
separation of Q into the local power deposition and a kinetic f£lux is
motivacted by earlier studies.8:7r10,15 14 derive the appropriate expressicn
for the local power deposition, P(x,y), nne may first calculate the left-hand
side of 9. (78) and then extract from it those components, identifiad as the
kinetie flux, which can be written in divergence form. The rematining
components then correspond to the local power deposition, which musc vanish
when the dissipative terms vanish. In essence, this procedure should be the
reverse of the procedure used in Ref, 15 and is enuivalent to that followed iu
Ref. 6.

Using Eg. (20) in Eq. (76), Q can be written in terms of the effective

dielectric tensor as:

Q=g =i R e - FLRE] (7%)
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where * denotes the complex conjsgate of the term. For the case considered in
this report, in which equilibrium quantities are independent of the vertical

=% .
coordinate, y, but the wave fields may depend on y, E-K -E is given by

i . . _ - e 2="c
ER -E = E.";.E" + E-El. % + E.K’z. : >
b4
.- e o2m¥
+ B % + E-H,- :yi ' (80)

where Kp, Ky, Ky, My, and M, are defined in Eqs. (38~48). To proceed with the
construction of an expression for the local power deposition, P(x,y), two
6,16

velationships are useful. From Lagrange's identity for linear operators,
P 4 Yy !

one can show that for any two vectors 2,v of dimension n and an n X n matrix A
- = 3 - - = +* = _ 3 - = -
v ~lA ?;)>u - u-[[A —) =32 [v -A-u) ’ (81)

vhere the superscript (+) denotes the adjoint of the quantity. When no linear

operators are involved, the following identity is alsn valid
- - S -
v = T.EN.D (82)

Using Eqs. (80-84} and Eqs. (38-48), the quantity a can he written

explicitly in terms of the effective dielectric tensor, K, as

b - -

s _ 3 (f3E gt = =F= 3By . [aE s+t= =%z aE
@=5 G KB - TR 2l -1 (5 RpE+ BBy )
3 ({3E =+ A aE * E
3 p2E @t E L FN.E.2E] L i13E B . ENF. 3E
* 3y {{ay KZ E l\2 ay] * I!ax l(2 E+E KZ ax]}
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- =% =
% =+ = 1= 3B (z+_ =, 9E ., 3L (= _ =+ aE
tE .[K: - Ko]'E + x .[K2 - K2] ax ¥ 3y .[KZ KZI' E;
aE (z+ 3k aE aE
= = 2 =
R IO T - - CMER VY I - (83)

" The first two lines contain the generalized form of the kinetic flux, T, while
the remaining terms comprise the two-dimensional form of the localized power
deposition, When no dissipation is present in the system, so that the ;i's
ave all Hermitian, the terms corresponding to the local power deposition
vanish identically. In the iimit that the y-dependence of the electric field
depends on only a single value of ky, the power conservation equation reduces
in form to that derived earlier by Colestock and Kashuba.® The power
conservation equation derived he;e is wvalid for a wavefront with a finite
transverse extent which is incident onto a mode conversion - tunneling layer
characterized to lowest order by one-dimensianal equilibrium
inhomogeneities. Two-dimensional power depcsition profiles cam be constructed
using the exact field sclutions obtained numerically from Eqs. (49) and (50)
or the parabolic field sclutions, obtained semi-analytically from Egs. (63-

74).

VI. CONCLUSIONS

In this paper, the wave equation which governs ICRF wave propagation,
absorption, and mode conversion within the kinetic Layer in tokamaks has been
extended to include diffraction and focussing effects associated with the
finite transverse dimensions of the incident wavefronts. Though the
equilibrium within the kinetic layer has been assumed to vary only with the
major radius, the incident wavefronts have a finite structure, transverse to

the direction of propagation through the layer, which is caused by focussing
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related to the lguncher geometry and the refractive properties of the
medium. A two-dimensionmal energy conservation equation, including explicit
forms For the local power deposition and the kinetic flux vector, has been
derived which generalizes earlier results® that were appropriate for obliquely
incident plane waves characterized by a single value of ky'

Using the parabolic approximation method, a generalized two~dimensional
form of the mode conversion-tunneling equation for the vertical component of
the wave electric field, Ey, has been extracted Erom the wave equation.
Solutions to this equation ~may be obtained  using the ansatz
Ey(x,y) = a(x,y) u(x), where a(x,y) is a slowly varying amplitude function and
u(x) is a rapidly varying waveform. The waveform, u(x), is derermined by the
usual fourth-order mode conversion-tunneling equation for plane waves which
are incident normally onto the kinetic layer, while the amplitude fuanction,
*a(x,y), is determined by a second order parabolic diffusion-type equation
whose coefficients depend on equilibeium quantities and on u(x). Work is
currently underway to incorporate this method into an existing cold plasma
code which solves for the wave propagation between the launcher and the
kinetie layer in tokamak geometry.l Previous methods of constructing the two=-
dimensicnal structure of the wavefronts and the power deposition within the
kinetic layer have proposed to utilize a Fourier decomposition of the
wavefront in the vertical direction and, subsequently, solve 2 corresponding
fourth-grder equation for the amplitude for each of the harmoniecs present in
the wave, The method described in this report is numerically mere efficient
since only one set of solutions to the fourth~order equation and the
associated second-order equation needs to be generated for each pass of the

wavefront through the kinetic layer.
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