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The te"hnology of stable superconductlng magnets has bhecome synonymous‘
8

:with the study and use of composate conductors. The compos1te conducuor,

F '

B

t

K a superconductor paralleled w1th ‘a noimal metal, helps provrde magnet stability

o »
il

by supplylng alternate«electrzcal and thermal paths for the superconchtor

2 4 an

. L when 1t become normal. 'Jf these alternate paths of normal netal can carry
4] il

the’ total transport currentﬂcontlnuously ‘and still remain below the superconductor

o

trans1t10n—temperature, the comp051te conductor’ is sald to: be cryostable.
e " . The operational definition of cryBstaoility requires sufficiént:cooling to
dissipate Joule heating. ® N ) u R
N o ) ‘ T ( . s . . . ,
The degree of cryogenic stgbility depends on the heat transfer character-
istics of the liquid helium copling channels. Normal,zones created following

mechanical distuxbances will either“growpor collapse depending on the neat

transfer rates from the conductor&to the adjacent éooling‘channels. It is
s 3

]

o 1mportant to design large magnets with cooling channels sufflclently large:

so that vapor b1nd1ng would not occur under both steady state and tran31ent '

o Bl

condltlons.

\\ l Steady state and transient heat transfer to liquid helium channels has

N

9 - . e 1-5
been studied by various 1nvest1gators . ThlS study is undertaken to

4

determine the vapor locklng in the cooling channels of a cryostable
superconducting magnet , to investigate the heat transfer characteristics under
*Supported by the U.S. Department of Energy.
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steady state andytransient conditions, and to study the effects of vapor

o o s
° k] i

acg@mulat%oﬁ5of the multiélg coil layers.

D

MA?PARATUS,AND MEASURING* TECHNIQUES

o
» o, . a

- To obtain the effects of transient and steady state heat transfer and
A ¢ “ ® 3 .
A ; o na, A
vapor formation on cryostable conductors:, samples are made to”51mu1ate the |

real cryostable superconductor and the coollng channels to be used in the'

large MHD 'superconducting magnet calledﬂCFFF-SCMS6. Whlch is currently under

%

constructlon at Argonne National Laboratory (ANL) . The cross-sectlon of conductor

‘15 3.1 cm by 0. 47cm and that of coollng channel-ls 0.97cm by O 076cm. Figure 1 shows

B

an assenbly ofsimulated single coil—layer. Three qonductors are sandwiched

with ;nsulation;‘ Those conductors are -insulated by 0.064 cm thick pultruded
o -

figerglass strip. A 0.0064 cm thickadouble-coated adhesive mylar tape is

used to bond the conductor +together., Therefore, the assembly prov1des

a reallyﬁcooling channe;s. Thi; assembly is about 50% covered by 0 64 em

o DESE

) thick G-10 strips so that it 51mu1ates‘an identical cooling condltlons to

N
o

the conductors within the CFFF-SCMS c01l structures.

Ay

A 0 0025 cm th1ck stainless steel heater is buried in theJmlddle conductor
o ) ‘
The" 1nsulatlon between heater and conductor is 0.0025 om“thick lens paper

2

absorded with the GE-7031: 1nsulat1ng varnlsh. The maximum dissipated power

oo

’oftheheatgr is about 5 kW.

3 Yy B
The temperature of conguctors is measured using chromel vs. gold-0.07
at% iron thermocouple. The thermocoﬁble insulation has good thermal coﬁpling

/
and is prov1ded by wrapplng the 1nd1um solder tip of “the thermocouple with a

51ngle layer of 0.0025 cm thlck lens paper absorbed with the GE- -7031 varnish

One can inyestigate(;he vapor fraction by means of the change of

Q

capacitance in tHe channel, because the dielectric constant of liquid helium
is different from%that of gas helium. The capacitance change, AC, of channel

due® to the presence of vapor is given by:

i .
a
LN

2 .
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5 is 33.98 cm? and tbat of rear side is 16.16 cm?.
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where & is thejvolume fraction of helium vapor inside the charinel, ahd C,, isi

o 3

the capacitance of channel wﬁen‘it is filled with 100% liéuid helium.

<

the channel is ccmpletely fllled with hellum gas, the vapor fractlon, a,

9
Hhen

equals to 1, and the capac1tance change, AC, reaches a max1n&m value called

3 l

Acmax' If the temperatprerof helium vapor remalns constant, Eg> 1 can be
simplied as JJJ P
o » A *
C .
> . o = AC : , (2)
max

H s

A capacitance bridge Qith a triaxial cable to compen%ate/foﬁ,any leakage .

’

current is used. The sensitivity of this bridge is‘about 3>volts per picé;‘

farad capacitance change.,

Qa

The maximum capacitance change of coolingichannel of simulated assembly

is about 1.4 pica-farad. The wetted area of front side of middle conductor

i i
The volume of conductor is

§ . > ) . ‘
£8.53 cm3 and the volume of each channel is 2.58 cm3.
Py

i
, RESULTS
\]‘, e o iy ( :
°, The experiment was conducted employxng (1ther a steadv state or tran51ent
current to the heater. 1In either case the temperq&ure difference and the
dapacitance changes were measured.. The capacitance bridge is calibrated

Enough waiting time is allowed after each pulse to ensure

a

before each run.

the escape of all vapor bubbles from the channels and the cooldown of the

conductors to 11qu1d helium temperature. WY -

0 -

The terms of heat flux, energy density, temperature rise, and vapor

fraction, in the following figures and paragraphs are defined as follows:
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energy density = electrical energy to heater/conductor volume; - ;
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To ‘temperature rise = the temperature difference above the temperature of
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' Lo The steady state heat transfe: characterlstlcs is shown 1n Fig. 2. It

‘ ) ) can be seen from thls flgure t\the cr1t1ca1 heat flux for the transition: )
o= - . ™
o, from fnucleate b0111ng to f11m b0111ng=15 about 0 4 w/cm2 and the recovery heat S ;
“ . oo - T P2
flux for the tran51tlon from fllm b0111ng to nucleate b0111ng is about 0.25 w/cmz._

v The temperature rise suddenly change from 0.2 K to about 7 K’when the tran51t10n \

3%/' »>aa of nucleate boiling to "£ilm b0111ng occurs. Durlng the recovery process, the | K

S : 8 N - v a

o temperature drop suddenly from 1K to OJl K soon‘a5>it reaches boiling regime.x

This clearly 1nd1cates that single- layer assembly can handle the steady state

heat flux up to 0. 4 w/cm , which means the conductor can d1551pate the steady

state Joule heatlng up to 1. 16 watts per cm length of conductor. The

. ’ o = ’
¥ 2 i\
steady state heat transfer coeff1c1ent, h,” decreases soon after the peak nucleate

(L)

Jheat flux is reached. Therefore, the heatgflux transferring to channels

decreases.

Figure 3 shows the vapor fractlon of front and rear channels versus:

heat fluik. The’vapor fractlon is about 0.44 for front channel and about

l ¥ B

i 0. 36 for\tear channel when the heat flux is near peak nucleate heat flux. This

~

Y
is equlvalent to about O 1 cm? of‘iiquidfhelium Gaporized within the channels

b S e i M
i s . D]

% per cm 1ength\of conductor. ! : : . .
N 0 . N K
o ¥ Transient Results e A . . o .

B} ED

o . Lo ¢ 5] o
0 ’ ‘ The pulse duration and power . level of heater can be varied to desired o
b At - ¢

a u o a =

values. The vapor fraction and temperature rise p&esented are the maximum

Z

. 4 | :

0o u E o



- value observed for each pulse. The heat transfer characteristics are presented
as following: . . T, , N
o R Lo : 7 > -t =

. g o R ? ‘
Figure 4 shows the energy<Hensity versus tempefature rise for different

[

u

It indicatés that the temperature rise is function of energy

L
u . N I

pulse durations.

d

density and is“regardless of its pulse duration. The critical energy density

k3

‘ Ay
o ] \ T
“for boiling transition is about 100 mJ/cm . If“the mechanical’disturbance

5o 8w B

EEN L
diSSipate an amount <Gf energy less than the critical value, the peak temperature

rise is less than 1 K. When tlie inJected energy den31ty Was 1ncreased to

o ° °
about 1 J/cma, the temperature of conductof rose to‘abOut 15 K peak value.

The temperature recovery rate is about 0.02 K per/milli-second.
: A , O ,

i e s
Figure 5 shows thecheat flux ‘under different pulse duration versus

o

el Fi 3
temperature'rises We‘found that the shorter the ﬁulse duration is, the
. higher the ciritical value for boiling transition. When the pulse duration is longer
. - L .

o

than“2007ms, the heat transfer characteristics approaeh to that under steady.

state condition, It can be seen that the critical ‘heat - £1ux for 10 ms pulse

is about ten times of the critical heat fluxjfor 200 ms puls
a R\ E

" The vapor fractions «of front channel and rear channel ve%sus heat fluxes
Y (S \ ' :
for different pulse duration are plotted in Fig. 6. The vaporifraction of

B e
Y

R

i h o - ° ., -
> this trend reverse as the heat flux is increased. However, the. vaoor fraction
\\

o i

i
“of front channel 1sLless than that of rear channel again when the h:at flux
.‘/ PR o
! To

o ‘
is high enough for the tranSition of nucleate Boiling to film boiliny.

;explaih thﬁse;phenoﬁena, let's consider following arguments.

t
u(a)[wnt the 1owwheat flux range, both channels are in the free coNvection
- %regime. IA which fluie moves under the influence of:buoyant %oreces
f'arising fr&ﬁ changes 13 density. The ve1001ty is zero at the heated
8 o \\
L slip boundary condition), increases rapidly in a thin
\\

&

I

o
i
h
h

surface {no+
|

boundary, la&er adJancent to”the surface, and becomes zero’ again | far
1l
1

]’ : H S
3 : i
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from the surface. The wetted surface of front sit 5 from

Ybot%om to iop,,whlle the .wetted surfaéL of rear sidé is blocked by
uturn—to—tur; 1nsulatxon. “ 80 ;hat the fluid in°rear ohannel move;

harder than that in front chafinel, - thehefore the vapor ° fraction ;n
u » . ‘rear channel is greater than that‘iﬁ‘front channel.

i 5 .
i a o B Q R i

?b) When the heat flux 1ncreases,oboth channels are in the nucleate’ b01Iing

9 2

‘regime. The vapor . bubbles begin to appear at the heating surface

o

¢ 2
- and depart "from thevsurface. Since the wetted area of front side is-
N " N a 5

B N}

: PP ; ;
abcut twice of that ofurear side, the energy>transferred;into the ,

'front channel is more than that transferred into the rear chahnnel.

> DY . o ,
‘ The more the:energy transferred, the more the liquid helium is 2
E2) : y =
: & :
vaporized and the greater -is the . resulting vapor fraction observed.

it
a

. (€) In the high heat flux rangev the 11qu1d helium of the front channel

500

& apparently reaches the filmHhOiling regime while the rear—channel does

- Q °, = « 9 L =
Y E © &

not, so that the heat transfer 1nto the rear'ehannel is more than

o

P

B bl ) - i o . N o . o o
=7 ‘. that intc front channel. Therefore, the vaporifraction of rear
, channel is greater than that of - front channel L
o © vFigures 7 and 8 show the vapor fraction of the front channel and rear ¢

channel versus energygdensity. The tfansition to film boiling oécurred in ‘the
o u ! @ N 5 'y

front channel in the lOQ,mJ/cm3 ra@ge,nbut:it did not occur in the rear channel :»
_ up to 1 J/cm3." This result is consistent with the heat flux data of FigJ 6.
) o .- ] . [ W < » 0, ' 7 T

ot : CONCLUSIONS . ¢ o “

Based on the experimental re§ultsipbtained,the following conclusions-

s “ . K

o @

can be made: o ’ ! b >
. .

° = -(1) the critical steady state heat flux for the transition from nicleate
@ . Q
o Q :
. . a 2 , »
boiling to film boiling is about 0.4 w/cm . N . o .
e j s : : o
. (2) =the critical tran51ent énergy den51ty for the Poiling tranSition 1s
o o

about 100 mJ/cm . “ 0 s

o

fQ
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(3) the front channel’is easier to reach the film boiling regime.than

. rear channel, due to that the wetted area of front side is moxg than the wetted

SN ’ o i %

area of rear side. X . s

(4) no temperature rise greater than 1K is p0551b1e 1f the heat flux

B
t:«/ )

does not exceed the cr1t1ca1 heat flux under:steady state condition or ~ ©

20 )

the energy den51ty does not exceed the critical energy density under tran51ent

no

condition.
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