SOL~--89-6

DE89 014905

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

Primal Barrier Methods For Linear Programming

by

Aeneas Marxen

TECHNICAL REPORT SOL 89-6
June 1989

Research and reproduction of this report were partially supported by the U.S. Department of Energy
Grant DE-FG03-87ER25030, and Office of Naval Research Contract N00014-87-K-0142.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the author and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.

WASTER
e

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



PRIMAL BARRIER METHODS FOR LINEAR PROGRAMMING

Aeneas Marxen, Ph.D.
Stanford University, 1989

Tz subject to Az =b, z >0, is solved by the projected Newton

The linear program min ¢
barrier method. The method consists of solving a sequence of subproblems of the form
minc’z—p Y lnz; subject to Az = b. Extensions for upper bounds, free and fixed variables
are given. A linear modification is made to the logarithmic barrier function, which results
in the solution being bounded in all cases. It also facilitates the provision of a good starting
point. The solution of each subproblem involves repeatedly computing a search direction
and taking a step along this direction. Ways to find an initial feasible solution, step sizes
and convergence criteria are discussed.

Like other interior-point method for linear programming, this method solves a system of
the form AH~1ATq = y, where H is diagonal. This system can be very ill-conditioned and
special precautions must be taken for the Cholesky factorization. The matrix A is assumed
to be large and sparse. Data structures and algorithms for the sparse factorization are
explained. In particular, the consequences of relatively dense columns in A are investigated
and a Schur-complement method is introduced to maintain the speed of the method in these
cases.

An implementation of the method was developed as part of the research. Results of ex-

tensive testing with medium to large problems are presented and the testing methodologies

used are discussed.
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Introduction

From the beginning, linear programming problems have played a central role in Operations
Research. Discovered by George B. Dantzig in 1947, the simplex method in its many
variations has evolved as the standard algorithm for linear programming. For a linear
program (LP) that has a solution, there usually exists an optimal point at a vertex of the
feasible region. The iterates of the simplex method move along the boundary of the feasible
region to find such a vertex. The simplex method can be shown to require a non-polynomial
number of iterations for a contrived class of problems, although in practice it tends to need
a number of iterations that is little more than linear in the problem dimensions.

A number of alternatives to the simplex method that generate iterates in the interior
of the feasible region, were proposed early on. Among them was the barrier method. (For
a complete discussion of barrier methods, see Fiacco [Fia79]. Classical barrier and penalty
methods are described in Fiacco and McCormick [FM68]. Fletcher [Fle81] and Gill, Murray
and Wright [GMW81] give overviews of barrier and penalty methods.) The logarithmic
barrier function considered in this thesis was first suggested by Frisch [Fri54,57]. Tt was
utilized to devise a sequence of nonlinear, unconstrained subproblems for solving linear
programs by Parisot [Par61]. Osborne [Osb72] and Wright [Wri76] added an active set
strategy to the method, an idea not followed in this research. Gill et al. [GMSTWS86]
proposed using Newton’s method to solve individual subproblems.

Although the number of subproblems has been observed to be small, the nonlineari-
ties involved make them hard problems to solve. Additionally there is a certain minimum
number of subproblems, irrespective of problem size. Since at the outset the only prob-
lems solved were small by today’s standards, the barrier method was not considered to
be competitive with the simplex method at that time. Interest revived recently, however,
when improvements in design and performance of computers and improved algorithms for
factorizing sparse matrices made interior-point methods an alternative worthy of serious
consideration.

The spark for this renewed interest came when Karmarkar [Kar84] demonstrated that

the combinatorial complexity of finding the optimal vertex can be overcome by solving a



series of nonlinear optimization problems whose optimal point is interior. Subsequently it
was shown that the algorithm he used is closely related to one proposed by Dikin [Dik67).
The theoretical question, whether a linear programming algorithm with only polynomial
complexity can be found, had been resolved earlier when Khachiyan [Kha79] analysed his
method based on an algorithm of shrinking ellipsoids [Shor77].

It is now generally recognized that essentially all interior-point methods for linear pro-
gramming inspired by Karmarkar’s projective method are closely related to application of
Newton’s method to a sequence of barrier functions (see [GMSTW86]). Newton’s method
is based on minimizing a local quadratic model of the barrier function derived from first
and second derivative information at the current iterate. Unfortunately, several difficulties
can arise because of the nature of barrier functions. The extreme nonlinearity of the barrier
term near the boundary means that a quadratic model may be accurate only in a very small
neighborhood of the current point. For a degenerate linear program, the system of equa-
tions that has to be solved becomes increasingly ill-conditioned. Finally, the strictly interior
starting point that this method requires, may be inconvenient or impossible to obtain.

Recent publications (e.g. [ARV86], [MM87], [VMF86]) compare implementations of
interior-point methods to one of the simplex method and show impressive reductions in
computing time for a certain set of problems. However, there has been little interest in
comparing different interior-point methods, and hardly any evidence is given concerning
their reliability. While interior-point methods seem similar enough that their comparison
can be safely left for future research, the issue of reliability is an important one. The ques-
tion of whether interior-point methods are fit to serve as an all-purpose replacement of the
simplex method for general linear programs, remains unanswered.

The intention of the research presented in this dissertation is to explore the behavior
of the barrier method when solving real-world, medium-to-large problems and to develop
ways of overcoming the obstacles encountered. As a general guideline, we have attempted
to develop the fastest algorithm that would be able to deal with the numerical difficulties
arising from degeneracy, rank-deficiency and other characteristics that make real-world
problems hard to solve. More importantly, we have tried to identify those areas where a
trade-off between speed and reliability must be made. The test set consists of the first 53
problems of the netlib collection [Gay85], which was formed as a benchmark for comparing
linear programming algorithms. At the outset of this research, no complete set of results
for these problems had been published for the new class of interior-point methods.

To make comparisons with the simplex method as meaningful as possible, an implemen-

tation was developed that operates under the same conditions as the simplex code to which
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it was compared. In particular, both implementations work with the same constraint ma-
trix, require about the same amount of memory and were produced using the same portable,
high-level computer language. No assessment is made of whether enhancements in any of

these three directions might benefit one method more than the other.

I have been privileged in that I was able to conduct this research in close collaboration
with the SOL Algorithms Group in the Operations Research Department at Stanford. The
discussions in the group and the extensive support I received from the associated researchers
and students were very helpful. I would like to thank Prof. George B. Dantzig for serving
on my doctoral committee, for two most interesting research seminars, and for giving me
a perspective on the evolution of the field. Margaret H. Wright became important for
this thesis almost unintentionally; she gave a lively and fascinating presentation on barrier
methods for LP as part of the OR Colloquium series, and she provided an office with a
computer workstation by being on leave throughout 1988. I am indebted to Prof. Michael
A. Saunders for sharing his experience and answering many questions, often late at night, as
well as for providing the MINOS subroutines. My thesis advisor, Prof. Walter Murray, will be
fondly remembered for his many invaluable suggestions, his humor and his generosity with
signatures for all my forms. And last, but not least, I would like to thank Prof. Philip E. Gill
for his time, patience and availability when helping me with my questions. References to
“P. E. Gill (1987, 1988). Private communication.” were omitted from this manuscript, since
they might have rendered certain parts all but unreadable. If this dissertation turns out to
be readable and helpful, it is largely owing to his proofreading, whereas the idiosyncracies

and shortcomings are solely mine.



Part I The Algorithm

Chapter 1

What is the problem ?

The linear program considered is of the following standard form:

SLP minimize Iz
T

subject to Ar =b
z 2> 0.

The vector z € R™ contains the decision variables, ¢ € R" contains the weights of the
objective function. The matrix A € ™" is called the constraint matrix and is assumed
to be of full row rank. The vector b € ®™ is called the right-hand side. The feasible region
of the problem is assumed to have a nonempty interior, so that there exists an 2 such that
Az =b and z > 0.

The constraint matrices of the problems to be considered are large (up to 10000 columns)
and very sparse (90%-99% of the elements are zero).

We want to find a solution z* of this problem by solving a sequence k = 1,2,...
of barrier-function subproblems. Here, the nonnegativity constraints are no longer stated
explicitly, but are enforced implicitly by the objective function. A barrier subproblem is of

the form
e e k _.T k
minimize Ff(z)=c'z + ij (z;)
j
subject to Az =b.

With the proper choice of F¥(z), the sequence of solutions z*(k) of these subproblems
converges to the solution z* of the original problem.
Since a second-derivative method is used to solve each subproblem, we shall define

g(z) = VF(z) and H(z) = V2F(z) to be the gradient and the Hessian of the objective



function. (The subproblem index & is omitted for clarity, unless needed.) We denote

g =ctgg gy =0fi/0z;
and
H = diagh, hj=82fj/8a:12-, i=1,...,n.

The functions f; are defined to be strictly convex over the interior of the feasible region,
so that h; > 0 for all j and H~! exists. Note that F(z) is separable so that the Hessian

H is a diagonal matrix and its inverse H~1 is readily computable as
H™! = diag (1/h1,...,1/hy,).

The Lagrangian function associated with the subproblem is F(z) — 7 (Az — b), where
7, denotes the Lagrange multipliers of the constraints Az = b. The first-order necessary

condition for optimality is that the gradient of the Lagrangian at z*(k) must vanish, i.e.,

g—AT7r1, =0.

The Projected Newton Method

To solve the subproblem, a feasible-point descent method is employed. Every iterate z
satisfies the constraints Az = b, and the next point z’ is found on a search direction p,
so that ' = z + ap. Convergence is ensured by choosing p as a descent direction, and «
such that the objective function value F(z') is sufficiently smaller than F(z) (see page 12).
Feasibility is ensured by satisfying Az® = b for the initial point and the null-space condition
Ap=0.

The Newton search direction satisfies these conditions and is computed using second-
derivative information. The direction is defined as the step to the minimizer of a quadratic
approximation to F(z) on the feasible region, as derived from the local Taylor series. Thus

p is the solution of the quadratic program
minipmize ng + %pTH p
subject to Ap=0.

The vector p satisfies the QP-optimality condition

g+ Hp—- ATr =0,



where 7 is the vector of Lagrange multipliers associated with the equality constraints
Ap = 0. Since p — 0 as z — z*(k), the Lagrange multipliers © converge to the
multipliers 7, of the original problem.

Note that p = 0 is feasible for the QP, so that the optimal objective function value is
not positive and gTp < —%pTII p < 0 for the optimal p.

The null-space condition and the QP-optimality condition can be summarized in the
Karush-Kuhn-Tucker (KKT) system,

H AT \ (-p g
() (7)-0)
In our implementation, the KKT-system is solved by computing 7 from the positive-definite
system
AH'ATx = AH g,
and by recovering the search direction as p = H~1(g — ATr).
These equations are called normal equations, a name taken from a weighted least-squares

problem that is equivalent to the KKT-system. Let D be a diagonal matrix such that
D? = H™! and define a vector r = —D~1p. Now r and 7 satisfy

I DAT r\ _(Dg
AD 0 ) \0)’
so that 7 is the solution, and r the optimal residual, of
minimize || D(g — A™r)][3.

The derivative of this norm with respect to 7 is 24D2A%r — 2AD?g. Solving for the zero

of this derivative gives the normal equations.

The solution of the KKT-system is by far the most difficult aspect of using an interior-
point method, both in terms of computational effort and in terms of numerical problems
that must be dealt with. Exploiting sparsity in A is essential for the efficiency of the
whole algorithm, and finding a way to deal with ill-conditioning in A and H is crucial for
reliability. Part II will be devoted to these difficulties. For the rest of Part I we assume

that a search direction p can always be computed.

The Newton step from z to 2’ = z + ap is sometimes referred to as a minor itera-
tion. This is to distinguish it from a major iteration, which is the solution of one barrier
subproblem. Unless stated otherwise, we will use the term iterations to refer to minor

iterations.



The Logarithmic Barrier Function

A straightforward example of an objective function F*(z) is the logarithmic barrier func-

tion. The sequence of subproblems with decreasing barrier parameters g is defined as

o kioN_ T k _
minimize Fiz)=cz—-p ‘L;lna:J
subject to Az =b.

The first two derivatives of the logarithmic barrier function F(z) are given by

g = c+gg? gBj = —[L/Illj
and

H = diagh, hj=u/a:12~, ji=1,...,n.

The solutions z*(k) = 2*(u*) of the subproblems converge to z* as pu = u* — 0. To
p

see that, multiply the optimality condition g — ATmy(u) =0 with z*(u) to get
Tz* (1) + g572 " () — & (1) TATmy (1) = 0.

By the definition of g, and the feasiblity of z*(u) this reduces to c¢Tz*(u) — bTmy(p) = 4.
The multipliers my(u) are feasible for the dual of the linear program (see [Dan63] for duality
theory). Taking limits for 4 — 0 shows that cTz* — bTr* = 0 which implies that 2* is
optimal for the LP.

More precisely, it can be shown (see [Jit78],[JO78]) that

lz* (1) — =*|| = O(n)

for primal nondegenerate systems and sufficiently small z, and

llz* (1) ~ =™l = O(V&E)

for primal degenerate systems.
The function z*() is called the barrier trajectory. (See page 29 for strategies to choose

barrier parameters u*.)

Equivalence relations between Karmarkar’s projective method and the logarithmic bar-
rier method using the projected Newton method have been established ([GMSTW86)) for a
certain sequence of barrier parameters. A proof of polynomial complexity exists for the bar-

rier method under certain (but different) conditions on the barrier parameter (see Gonzaga
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[Gon87]). Renegar and Shub [RS88] show that an O(y/mL) bound holds for the number of
iterations, which gives an O(n?m!°L) bound on the number of operations for the normal
barrier method and O(n?mL) for a modified version. (The scalar L is used to denote the
number of bits required to specify the problem.) This iteration bound is achieved, under
some conditions on the starting point, by doing only one Newton iteration per subproblem
and by updating g according to u* = (1 —1/(41y/m))uF~1. Although the theoretical im-
portance of these results is not doubted, it should be acknowledged that they provide little

guidance for a practical implementation of the method.!

All barrier functions used in this research are close variations of the logarithmic barrier

function as defined here. (For extensions see Chapter 2 and pages 24 and 34.)

Overview of the Algorithm

The main steps of the algorithm take the following form:

z « strictly feasible 2% u « p! and compute g(z), H(z);
repeat { Subproblem - major iteration }
repeat { Newton step - minor iteration }

Compute r «— VH-1(g — ATr);
Set rg_conv « ||r|| sufficiently small;
if not rg_conv then

Solve the KKT system for search direction p and multipliers =,

H AT -p g
(3 7%)(7)-()
Find maximum step a,, = max {a > 0 | z + ap is feasible} ;
Choose a steplength a € (0,q,,) that
decreases the barrier function sufficiently ;
Update z «— z + ap and compute g(z), H(z);
end;
until rg_conv;

Decrease p;

until g = pmin;

'In a crude test the smallest test problem AFIRO needed about 1100 iterations to converge when using
this strategy, compared to 17 iterations when using a more practical alternative (see page 29).

11
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The importance of the feasible starting point z° and its derivation are discussed in

Chapter 3.

The logical variable rg_conv indicates the convergence of the reduced gradient r =
vVH-T (g— ATr). For more discussion on the issue of convergence, both for the subproblems
and for the whole problem, and on the way the u* are chosen, see Chapter 4.

The choice of a is described in the following section.

The Steplength

For a given search direction p, the objective function reduces to a univariate function
f(a) = F(z + ap). The distance to the closest bound along p is a,,, which implies that
f(a,,) = oo since the barrier function has a singularity at the boundary. The derivatives at
the endpoints of the feasible interval [0,c,,] are f'(0) = ¢’p <0 and f'(q,,) = oo. Since
f(e) is convex, there exists a unique a* € (0,a,,) with f(a*)=0.

The computation of the steplength involves an iterative procedure for finding an «
close to the zero of f’. Many efficient algorithms have been developed for finding the zero
of a general univariate function (see, e.g. [Brent73]), based on iterative approximation by
a low-order polynomial. However, such methods tend to perform poorly in the presence of
singularities. In order to overcome this difficulty, special steplength algorithms have been
devised for the logarithmic barrier function (e.g. [FM69], [MW76]). These special procedures
are based on approximating f’(a) by a function with a similar type of singularity.

At each iteration an estimate o; and an interval I; = [a;,@;] are generated, so that
a; is the largest o encountered so far with f'(a) < 0 and @; is the smallest a with
f'(a) > 0. The interval is initialized to Iy = [0,¢,,]. The approximating function is of the

form
72
a,—a’
where the coefficients 7, and 7, are chosen such that ¢(a;) = f'(a;) and ¢'(a;) = f"(a;).

#a)=m+

The zero of this function is at ag = @), + 72/m1- If @y € I;, the new estimate is chosen
as aj4)1 = ag ; otherwise, repeated bisection is used on I; until a midpoint aj4, is found,
such that |f'(aj41)l < min{|f'(a;)l, |f(@;)I}-
The first a; to satisfy
02 f'(e;) 2 Bf(0)
is chosen as the steplength o, where § € [0,1) is a preassigned scalar. By restricting the
choice to the a with f/(a) < 0, we ensure a decrease of the objective function without

evaluating it. This saves the effort of computing logarithms.
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In practice, a close approximation to the minimum of F(z + ap) can be obtained after
a small number (typically 1-3) of estimates a;. Since the minimizer is usually very close
to a,,, at least one variable will become very near to its bound if an accurate search is
performed. Although this may sometimes be beneficial, the danger exists that the optimal
value of that variable could be far from its bound. Thus, performing an accurate linesearch
may temporarily degrade the speed of convergence. To guard against this, we use an upper
bound of 0.98¢,, instead of o,,, and set g =10.9.

Newton’s method can be shown to have quadratic convergence in a neighborhood of
the solution, provided the Hessian is not singular. In this neighborhood a step o =1 is
taken. However, with the logarithmic barrier function this neighborhood is very small and
generally decreasing with p. Given the accuracies sought in solving the subproblems, this

aspect of Newton’s method is of little significance here.
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Chapter 2

Beyond Nonnegativity

In practical problems, many variables are given bounds other than a lower bound of zero.
This more general type of linear program can be solved by the barrier method without

reformulation when the nonnegativity condition on z is replaced by
<z <.

Components of z can now be free variables, fixed variables or have any combination of

upper and lower bounds, so that ¢; € RU {—oo} and u; € RU {oo} with £ < u.

More Slack Variables

The ability to define fixed variables is utilized to specify a slack variable for every constraint.
Typically in linear programming formulations an inequality constraint aiz < b; (with a!
being a row of A) is converted to an equality constraint a’z + z,4; = b; by introducing
a slack variable z,4:, such that z,4; > 0. These slack variables do not appear in the
objective function.

This concept is extended to the constraints that were originally in equality form, by
requiring that 0 < z,4; < 0. These fixed slacks are introduced in order to make sure
that the constraint matrix A is of full row rank, regardless of possible redundancies or
degeneracy in the original formulation. The corresponding entry h,4; of the Hessian is not

defined, but we can set k71, = 0. (See also page 34 for an extension to these definitions.)

The General Problem

To summarize the extensions to the SLP of Chapter 1 let us update or refine some of the

definitions. The variables z are partitioned into a variable and a slack part, using the
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notation

_ | %~ A R _
m_(z) and similarly c-(o), A—(A,,, I),

M
where z,,c, € ®*, z,,€ R, A, € R™*" and I is the identity of dimension m. Upper-
case subscripts denote partitions of vectors or matrices, while N and M were chosen here
to reflect the dimensions n and m.

The general linear programming problem solved by our algorithm is of the form

GLP minimize Iz
I

subject to Az =b
(<z<u.

Let y=2—£ and z = u — ¢ be the distances of z from its lower and upper bounds,

respectively. The k-th logarithmic barrier subproblem is generalized to be
. e . k Tk ) .
minimize Frz)=¢c'z-p Z(ln y; +1nz2;)

j
subject to Az = b,

and the derivatives of F(z) are given by

9 =c+gs g =—p1/y; —1/z)
and

H = diagh, hjzu(l/y?+1/z]?), ji=1,...,m+n.

Note that these derivatives are well defined — even when a variable z; is not bounded
above or not bounded below. In these cases we use 1/y; =0 for £; = —o0, and 1/2; =0

for u; =o0.

Fixed Variables

When a set of related linear programs is solved, it is sometimes interesting to change the
range of a variable, and in the extreme case, fix it to a certain value. Since the iterates of the
barrier method need to be interior to the feasible region, fixed variables must be removed
from the problem. Let z be partitioned into a fixed part z, and a variable part z,,, so that

corresponding partitions of the bounds satisfy I, = u, and [, < u,. With the analogous
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partition A = (A, A;), one approach is to reduce the LP problem to

. e T
minimize ¢,
subject to Az, =b— AL,
{, <z, <,

where the objective function differs from the original by the constant cfZF .

Arithmetically equivalent is an approach that treats I; = u; as the limiting case of

,.
J

entry on the diagonal of the inverse of the Hessian vanishes. Partitioning the system of the

l; <} with u} — ;. As u} — I; we have hj' = h7'(u}) — 0, so that the corresponding

normal equations accordingly we see that
AHT'ATT = (A AT+ AQAD)T = A B Am = A H g,

which are the normal equations for the reduced problem. At each iteration, the resulting
multipliers 7 are therefore those of the reduced problem and the search direction is p? =
(2] 0).

When translated into an algorithm, however, these two approaches differ in one detail.
With the reduced problem, the sparse factorization routine for the normal equations works
on the matrix A H lAg', whereas with the second approach, AH!AT is factorized. Al-
though mathematically equivalent, the factorization of A H~ 1A3' can be expected to be
more efficient than that of AH AT (see Chapter 7 for the issues involved in sparse matrix
algebra). However, the formulation that treats fixed variables as a limiting case, is inter-
esting in that it offers the flexibility to fix (or free) variables dynamically for algorithmic
reasons. This technique was used in [GMSTW86] but was not investigated further in this

research.

(To preserve the full rank of A, fixed slack variables are not removed; see page 34. See
the footnote on the bottom of page 26 for a discussion of multipliers for fixed variables.)
Free Variables: a Special Case

When I; = —o0 and uj = 400 we call z; a free variable. The corresponding entry on
the diagonal of the Hessian is h; = u(1/(z; — 1;)® + 1/(uj; — z;)*) = 0 and h;l does not

exist. In this case the procedure to compute the search direction has to be reexamined. Let

16



zT = (=f x?) be a partition of z into its free and bounded parts and let A, p, ¢, g and
H be partitioned accordingly. The KKT system is of the form

0 0 AT ||-2; |=]|¢
Ay Af 0 n 0

Let D be a diagonal matrix such that D? = H; ! and let » = —D~1p,. The system

above may be rewritten as

I 0 DAT r Dg,
T _
AbD Af 0 s 0

As in the general least-squares formulation of page 9, the vector 7 in this equation is the

minimizer of the constrained least-squares problem
e . T \(12
minimize |[D(g, ~ ATr)|E
subject to A%r = cy.

Let ¢ denote multipliers associated with the equality constraints A%r = ¢;. The

gradient of the Lagrangian of the constrained least-squares problem is of the form
L'(w, %) = A Hy ‘Ajr — A HY g, — Agy.

The factor 2 was dropped here.) With B = (A, H,; 'AT)~! the solution is * = BA, H, g, +
(e b b6 Ib
BAyt. Since 7 has to satisfy A}'r =c, the multipliers v are

$ = (ATBA;) Y (c; — AJBAH; 'g,).
Consequently 7 is the solution of the system
AH AT = A H gy + A(ATBA;) V(¢ — ATBAH, g,).

Note that this formula reduces to the normal equations A, H; Alr = AHS lg, in the case
where all variables are bounded. Vanderbei [Van89)] arrives at the same result for the affine-
scaling algorithm by treating free variables as the limiting case of —u; < z; < u; with
uj — 00.

This approach has computational disadvantages. The matrix A}"BA s and its factors

must be treated as dense, even for a sparse Ay. This would be inefficient for anything
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but a small number of free columns. Also, because free variables are generally basic in the
solution, A,H; AT is more likely to be singular or ill-conditioned than AH~147. 2
Instead of solving the constrained least-squares problem exactly, the following uncon-

strained penalty function (see, e.g. [VLo85]) is minimized to avoid these disadvantages:
minimize |D(gy — ATOIE + p%lle; — AT,

where p is a positive scalar. Denoting the solution of the approximate problem by =(p),
it can be shown that 7(p) —» 7 as p — 0.

Solving this unconstrained problem is equivalent to solving a KKT system in which
H; =0 is approximated by H; = 1/p I. Since g; = ¢y, this corresponds to approximating
the infinite bounds of z; by two equidistant bounds Iy = zy — \/2up 1 and uy = z; +
v2up 1. These bounds are reset at every iteration and they are artificial, not only in the
sense that they are not part of the original problem, but also that they are not used when
determining the maximum feasible step along the search direction. The equivalence with
the approximated least-squares problem ensures the convergence of this approach.

Observe that p; = —p(c, - A?w(p)), where we can assume that the estimate of the
Lagrange multiplier = is nearly constant in p for large p. Since the maximum stepsize «
with z 4 ap feasible is independent of the size of p; the change in the free variables |lapy||
is increasing in p. A small value of p can therefore impede rapid convergence, especially
during early iterations or for unscaled problems. Conversely, a large value increases the

ill-conditioning of the problem (see page 34).

2 A similar problem exists for dense colums of A. They are taken out of the (main) Cholesky factorization
as suggested here for the columns of A;. The issue of efficiency is different for dense columns, since a
great amount of computational work is saved by doing so (see Chapter 8). This suggests that solving the
constrained least-squares problem exactly bears some promise in the case where columns in Ay are dense.
In particular this is true for the artificial column (see {Van89] and page 22).
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Chapter 3

Getting Started

The algorithm as stated requires a strictly feasible (or interior) initial point. In general,
such a point can not be trivially determined.

One way to find a point that is feasible, though not necessarily interior, is to solve
an augmented linear program (ALP). The LP is augmented in the sense that an artificial
variable z, and a corresponding column of the constraint matrix is added, making any
starting point z° with ! < 2% < u feasible. Let a;,r = b—Az® be the vector of infeasibilities

and let @ = ||@jf|| lains be the normalized version of this vector; then we solve

ALP minimize To + welz
Z,Tq

subject to Az +az, = b
I1<z<u

ze 20,

where w is a nonnegative weight. The artificial variable z, € R is initialized to z0 =

a
llaine|| > 0, so that (20, z9) is feasible for ALP.

Depending on whether w is positive or zero, the solution of ALP is an optimal or just a
feasible point for the original LP. Although this approach seems straightforward, there are
difficulties, some in general and some specific to an interior-point method. In this chapter
we shall explore: (1) the implications of the choice of w; (2) better bounds for z,; and

(3) what comprises a good starting point z°.

The Meaning of the Weight w

For w = 0 this scheme has two phases. In Phase I, the feasibility phase, we solve ALP and
obtain a feasible point for the original LP. This is taken to be the starting point for Phase II,
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the optimality phase, which solves the original LP for an optimal solution. The case where
no solution with z, = 0 can be found during Phase I, indicates an empty feasible region.
When w > 0, we say that ALP has a composite objective function. This approach can
be seen as a variant with overlapping feasibility and optimality phases. More cases have to
be considered for this variant and their interpretation has some ambiguity. If the algorithm
successfully terminates and z, = 0, the solution vector z is not only feasible but also
optimal to the original LP. If the objective function is unbounded below, but z, = 0 for all
points on the unbounded feasible direction, the original problem is unbounded. However if
there exists a solution or a feasible direction, respectively, with z, > 0, either the feasible
region is empty or w was chosen to be too large. For every linear program there exists a
value ' so that any augmented problem with 0 < w < w’ has the same solution as the
original problem. Unfortunately the determination of «’ is not easy, since it would require

the solution of a nonlinear program of the same size as the original LP.

Let us examine the two-phase scheme (w = 0) in connection with the barrier method.
Under certain regularity conditions, the solution found by the barrier method in Phase I is
not only feasible but also interior for the LP solved in Phase II. For simplicity, consider the

linear program

minizmize Tz subject to Az = b, z2>0,

and assume that its interior {z > 0| Az = b} is non-empty and bounded. When the ALP
mil;i;nize Zq subject to Az + az, = b, z2>0,z2,20
is solved by the logarithmic barrier method, the subproblems are of the form

migéarcralize zo — p(lnz, + Zln z;) subject to Az 4+ az, =b.

Let (z*(u), zX(1)) be the solution of one barrier subproblem. The strict convexity of the

objective function implies that z*(u) is also the unique optimal point of the problem

minizmize —u Zln z; subject to Az = b — az(n),

which is formed by fixing the artificial variable at its optimal value. The limit of this

sequence of problems as g — 0 is
minixmize - ZIn T; subject to Az = b,
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since z5(1) — 0. The objective function of this last problem is only finite for z > 0.
The solution z*(0) therefore lies in the interior of the feasible region, or could even be
defined as its center. Consequently z*(0) is a feasible interior point for the original LP.
The argument carries over for the case with upper and lower bounds. The assumption of
a bounded feasible region can be dropped when the modified barrier function of page 24 is
used.

Thus the two-phase method (w = 0) would be the method of choice if it were not for the
fact that it has clear performance disadvantages compared to using the composite objective
function. Generally speaking, information about the problem gathered in Phase I is lost
when Phase II has a totally different objective function. More specifically, an approximate
solution found by the barrier method for a problem with little or no interior, will have
variables close to their bounds. This may be a bad starting point for the barrier method,
especially if the close bounds are not active at the optimal solution of Phase II. It is therefore
advantageous to have the solution of the feasibility phase coincide with that of the optimality
phase.

Experiments show that the time for overall convergence improves with increasing w in
almost all cases. This implies that a good w would be one close to w’. A practical approach
is to set w initially to some a priori value that has performed reliably for a good range
of problems in the past, and reduce it when no satisfactory reduction of z, is achieved
during the solution of one subproblem, say. Our tests showed satisfactory results with
w € [0.0001,1.0] for a normalized objective function, ||¢|| = 1. The reduction requirement
we impose is =¥ < fzF-1 with 8 € [0.5,0.9].

Bounds on the Artificial Variable

Since we use an artificial column that is normalized, z, is the norm of infeasibilities at
every iteration. The nonnegativity constraint z, > 0 reflects this nature of the artificial
variable. However, using it as such in a barrier algorithm would make it impossible to find
a feasible point in a finite time, since variables are barred from attaining their bounds.
Consequently, we relax this bound to some sufficiently negative value, while ensuring that
z, never actually becomes negative.

Specifically, if a search direction p and a steplength a are chosen so that z,+ap, <0,
then « is reduced to a = —z,/p, . At this point the artificial column is removed from the

problem and Phase II begins.
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Note that this technical detail removes the structural difference between the cases with
or without a positive weight w, since it introduces a true optimality phase to the case with
w > 0. This optimality phase will usually be short for a big w, but there is still some speed
advantage from the fact that one totally dense column, the artificial column a, is removed
from the problem (see Chapter 8).

In order to remove the artificial column, an optimality phase is introduced even for
problems that have no interior. For these problems, z, approaches zero in the limit.
Phase II is selected as soon as the infeasibility falls below some threshold value, i.e., z, <
€feas||Z|| , Where €geas is the accuracy to which we want to see the constraints Az = b
satisfied. This tolerance cannot be smaller than the precision that can be attained when
solving the (often ill-conditioned) systems towards the end. We chose €feas = 10-% or 10~8

as a generally satisfactory standard.

Let us return to the question of formulating suitable bounds for z, . Although a negative
bound would never be active, the associated barrier term might still impede the convergence
of z,. Alternatively, we could impose an upper bound on z,. This bound would be reset
at the beginning of each subproblem to a value slightly larger than the present value of z,
so as to encourage some progress towards feasibility.

Such reasoning ignores a peculiarity of the logarithmic barrier function, namely that,
given an a fixed by the bounds of other variables, the change in z, will increase with its
distance from a bound. If we assume for illustration purposes that the constraint matrix
A is empty, then the Newton search direction can be readily computed as p = —H™lg.
Since z, cannot be defined as the norm of infeasibilities under these conditions, let z, be
any variable with ¢, = 1. If we impose an upper bound wu,, the element of p associated
with 2, is p, = —zZ/u ~ 2z, with 2z, = g — 2, , or if we impose a lower bound I, , it is
Po = —Y2/u + yo with y, = z, — [, . This indicates that the change in z, depends more
on the distance to the bound than on whether it is an upper or lower bound, and that a
close bound will yield a very small change.

Naturally things look different with equality constraints, but the tendency shown here

is similar to the behavior of the algorithm observed in practice. Specifically, a lower bound

I, = —1 (with u, = 00 ) gives almost as good results as a dynamic upper bound u* = 2z%-1
(with I, = —00 ), while both show much faster convergence to a feasible point than an upper
bound u¥ = gk~ 4+ 1 (with I, = —o0).

In summary, the artificial variable z, is best treated as a free variable (see page 16).

We conclude this section with one more consideration of a numerical nature. It is not

uncommon, especially with unscaled problems, to start with a point z° that has large
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infeasibilities, so that 20 = €feas/€,, (€,, = machine precision ). In these cases the rounding
error in z20 makes later comparisons of z, with €ga,, meaningless. Additionally, errors
are accumulated in z because of ill-conditiong in the systems that determine the sequence
of search directions p. To guard against the accumulation of excessive error, the artificial
column e and z, are recomputed at the beginning of every subproblem.

Convergence is ensured by monitoring the reduction of the norm of infeasibilities z, .
If the reduction during one subproblem falls below a satisfactory value, the weight w is

adjusted downward.

Where to start

As with most iterative methods, the choice of the starting point for the barrier function
method will have a great impact on the performance. What is special here is that any
knowledge of an approximate solution does not necessarily improve efficiency. For example,
starting off with a solution that was derived from the basis of a related LP, which is typically
done with the simplex method, is usually undesirable. At such a starting point, several
variables are very close to their bounds. If the new optimum is not near those bounds, this
choice of a starting point results in slow convergence and possible ill-conditioning of the
normal equations.

Experience shows that subproblem k converges most rapidly when started with the
solution of subproblem k—1. The sequence of solutions z*(k) lies on the barrier trajectory.
In order to start the algorithm on this trajectory, z° should be a good guess at the solution
2*(0) of subproblem 0. This problem can be seen as a backward extrapolation of the
sequence of subproblems k = 1,2,... that are solved. One method to determine an z*(0)

is to solve the unconstrained problem

min F°(z) = welz + Zf?(‘”j)’
]

which uses the objective function of subproblem 0. The constraints Az°+az® = b are then
satisfied by setting z0 and @ according to their definitions. The unconstrained problem
is separable and a solution, if it exists, would simply be the zeros of the elements of the
gradient of F©°.

A solution does not exist or is of little use for the simple logarithmic barrier function, e.g.
fi(z;) = —pln(z; — I;) for lower bounded z;. For ¢; < 0 this function has no minimum

and even for ¢; > 0 the minimizer is given by z; = u®/(wc;), which may be large.
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Linear Modification to the Barrier Function

A barrier function for which there exists a minimizer for every u, is one that includes a

linear term. Let v be a small, positive scalar and let

fi(zj) = p(lny; —vy;), vy;j =z; -1,
and

fi(z5) = plnzj —vz), 2z =u;—zj
define the barrier terms of page 7 for the lower and the upper bounded variables, respectively.
(Note, for variables where both bounds /; and u; are finite, the linear terms form a constant
vzj+vy; = v(uj—I;) and can be eliminated from the minimization. The result is the simple
function f;(z;) = p(lny; +1Inz;).)

The minimizers of this barrier function for the lower and upper bounded variables are

zj = U + pf(pv + we;) and z; = u; — pf/(pv — wej). When we choose v such that
4O > wl|c||, we can disregard the linear part wclz of the objective function. The elements

of our starting point close to the trajectory are therefore

$2=lj+1/1/, z?:uj—l/l/ or -’L‘?'—‘(“J"*‘lj)/z

for the three kinds of bounded variables, respectively. Note that this approximation of the
minimum of F%(z) can be given even without knowing u® exactly. This is an advantage
when p? is chosen, for example, as a function of z, .

The trajectory z*(u) of this modified barrier function differs significantly from the
trajectory of the simple logarithmic barrier function in that it is bounded. In particular,
the starting point z° satisfies

20 = uli_.ngox*(u).
The consequence is that there is no danger of choosing u° too big and thereby driving the
iterates away from the solution.

Starting from the point z° as defined above, the algorithm achieves fast convergence for
the first few subproblems for a wide range of linear programs. The parameters v used were
in the range [107%,1071]. Larger values tend to give better results for scaled problems, but

are less reliable for unscaled problems.

There is some degree of freedom in choosing z°, since the objective function F(z) is
relatively insensitive to changes in z in a neighborhood of its minimizer. Additional time
savings were obtained when each :c? was chosen in a neighborhood of the value above so

as to reduce the infeasibilities in z°.
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Bounding the Optimal Region

It should be noted that, apart from helping to find a good starting point, the linear modifi-
cation of a barrier objective function is essential for solving a rare class of problems. These
are problems where the set of optimal points is unbounded.

Let z* be a solution of an LP that lies at a vertex, and let d be a feasible direction with
Ad=0 and I <z* +ad < u for all @ > 0. Since z* is optimal we know that ¢Td > 0.
If there exists a d such that c’d = 0, the barrier function subproblem does not converge
since the barrier function is strictly decreasing in o in that direction, i.e., ||z*(u)|| — oc.

The linear modification ensures convergence to a finite minimum in that case.
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Chapter 4

Where to Stop

Several references have been made so far to the solutions z*(k) of the subproblems and the
solution z* of the original linear program. Since both major iterations (subproblems) and
minor iterations (Newton steps) converge in the limit, we must define the point at which
we accept the current iterate as the solution.

A number of properties of an iterate z indicate its closeness to a solution. We shall
review these properties in this chapter, first for the general LP and later for the barrier
subproblems. Later we shall examine the relationship between convergence criteria and the

barrier parameters pF.

Complementarity

As before, let y = 2 — 1 and 2 = u — z be the distances of = from its bounds. The

Lagrangian of the GLP of page 15 is
L(z,m,m,n,) = 'z — n] (Az — b) — ]y — 0z,

where 7, are the multipliers for the equality constraints Az =b and 7, 7, are those for

the lower and upper bounds. 3

% There is some interest in computing the multipliers 7, for fixed variables z,., where £, = u, (see
page 15 for notation used here). These can be calculated from the optimality conditions as %, = ¢, — A,T ™,
and correspond to the multipliers of the equality constraints Iz, = £., had they been used to define fixed
variables instead of £, < z, < u,. To see that, let A be the augmented constraint matrix containing these
equality constraints, and observe

() 5)(2)- () (1))

These multipliers are independent of whether the fixed variables were explicitly excluded from the problem
or not.
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Necessary conditions for optimality are
Vel =c— AT7rL —(m—1ny) =0,
together with the nonnegativity and complementarity conditions

m>0, nly=0
M 20, nlz=0.

(Throughout this discussion we assume that m; = 0 whenever [; = —oco and define
m; y; = 0 in this case. The equivalent holds for u; = 00.)

Let m(z), m(z) and n,(z) be suitable estimators of the multipliers corresponding to
the current iterate z, so that m(z) > 0, 7.(z) > 0 and ¢ — ATn,(z) - (m(z) — nu(z)) = 0.
If we add the condition that n;(z) — 0 if z; — u; and n,;(z) = 0 if z; — [;, we can

estimate the sum of complementarity violations

s = nf(2)y + 13(2)z.

The scalar s is an indicator of convergence, since s — 0 for z — z* and s > 0 for every
z that is not a solution of the LP.
To derive meaningful estimators, let us recall from page 8 the other two optimality

conditions based on gradients of Lagrangians: for the barrier subproblem,
g—ATmy =0,
and for the quadratic program solved at every (minor) iteration,
g+ Hp— ATr = 0.

Since 7 — m, as = — z*(k) for each subproblem and 7, — m, as u*¥ — 0 for the sequence
of subproblems, we use 7,(z) = 7 as the estimator of the equality-constraint multipliers.
This implies that 7;;(z) = cj—a?w for u; = oo, and n,;(z) = —c¢;+alr for l; = —oo. For
the case where both bounds are finite there is some degree of freedom in finding estimators.
One possible definition is

Yj
u; —;

2.
mj(e) = —2—(c; —ajr) and m;(z) = (c; — alm).
u; —

These estimators are nonnegative (i.e., useful) only when the primal iterate z is sufficiently

close to the solution.
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Duality Gap
A related idea is based on duality theory. The dual of the GLP (page 15) is of the form

maximize F,= bT7rL + le - uTnu
WL,mJlu

subject to AT7rL +m—-nu=c

Ny Nu > 0.

A standard result from duality is that F, < ¢’z for all primal feasible and dual feasible
points, and that FD* = ¢Tz*, where FD* is the optimal objective function value of the
dual.

Using the same estimators for the dual variables as defined in the last section, an estimate
F,(z) of the dual objective function can be computed. The relative difference between the
two objective functions, namely

_ Tz - F(z)
= T+ R + 1

is another indicator of convergence, since d — 0 as z — z* and d > 0 for every z that
g ’ y

is not a solution of the LP.

Termination of a Subproblem

The solution z*(k) of subproblem k is not interesting as such, except as the starting point
for the subproblem k& + 1. There is little need to seek a highly accurate approximation of
z*(k), since a point near the barrier trajectory should be satisfactory. It is for this reason
that the quadratic convergence of Newton’s method in a small neighborhood of the solution
is of little significance.

Three vectors tend to zero in Newton’s method as =z — z*(k), namely the search
direction p, the estimate of the gradient of the Lagrangian g, = g — ATr, and the reduced
gradient r = vVH-1, g, » which is the optimal residual of the least-squares problem on page 9.
All are diagonal scalings of each other, since g, = VHr = Hp (see page 8).

Each of these three quantities could serve as an indicator for the degree of convergence
achieved so far. During testing it was observed that ||r]] was the most consistent and

reliable measure of convergence.
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Convergence and the Barrier Parameter

The accuracy required for a given subproblem is a function of the barrier parameter u*.
Barrier subproblems with small values of u benefit more from a starting point close to the
trajectory. Only the last subproblem need be solved to the accuracy required in z*.

The algorithm that controls the convergence of the subproblems is of the following form.
For subproblem k, a target level 7% for the norm of the reduced gradient is computed as
a fraction of the final norm ||r*~!|| from the previous subproblem, i.e., 7 = ¢,||r¥~1||. As
soon as ||r|| < 7%, a new subproblem is started with u**! = ¢,u* and a new target level
7 +1 s determined. The reduction factors ¢, and ¢, must lie in the interval (0,1) to
be meaningful. In the final subproblem, where p* = pimin , the level is set to a predefined
minimum Fmjn -

In contrast to a test on ||r||, the convergence criteria based on the complementarity
violation s or the duality gap d cannot be employed during early subproblems. At the
beginning, the estimates of the dual variables are inaccurate or not dual feasible, and
d =~ 1 as long as the objective function of the primal and the dual problem have different
signs. These criteria can be used to supplement a criterion based on ||r|| during the
last subproblem. In our implementation, the reduced gradient is the only indicator of
convergence used.

The values of the reduction factors determine the number of the subproblems and the
time it takes to solve each. The values used in the tests were ¢, = 0.1 and ¢, = 0.1.
The behavior of the algorithm is surprisingly independent of the starting value u!. Values
tested were p! € (1074,1) and pmin = 1075, both multiplied by cTz/n.
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Part II Computing the Search Direction

Chapter 5

The Toolkit

In Part II we shall explore different aspects of solving the KKT-system

H AT -p\ _ (9
A 0 =) \o)’
for the current estimate 7 of the multipliers and a search direction p.

Premultiplying the first part —Hp+ ATr = g by AH~1, we derive the normal equations
AHATr = AH Y.

The matrix AH~'AT is symmetric and positive definite. Since A is of the form A =
(Ay I), let H = diag(H,, H,,) be partitioned accordingly. The nonzero structure of the
product AHAT = A H7'AT 4+ H-! can be seen to be that of A AT. The efficiency of
recent methods for forming the triangular Cholesky factors AH'AT = LLT (see [GL81,87))
has given the normal equations a prominent role in the implementation of interior-point
algorithms.

Before going into the details and potential hazards of this approach in the following

chapters, we review some alternatives and their characteristics.

The Least-Squares Problem
In Chapter 1 we mentioned that the term “normal equations” is derived from the weighted
least-squares problem (page 9)

minimize |Dg — DATx|2,

which is equivalent to the KKT-system with D? = H~1.
However, there are other ways of solving large sparse least-squares problems. Three of

these methods, two direct and one iterative, are described below.
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The QR Factorization

Let C = DAT be the matrix associated with the least-squares problem. There exist an
orthonormal matrix § and a factor R such that

C=QR=( Qz)(R(; )

where R; is square and upper triangular. Since the Euclidean length of a vector is invariant
under an orthogonal transformation we can rewrite the norm of the least-squares problem

as
IDg - Cx|l* = |Q"Dg — Q*Cr|]* = |Q"Dg — Rx|* = |Q1Dg — Rur|* + 1|Q2Dg|P%,

so that the optimal 7 is the result of the backward substitution Ry7 = Q1 Dg.

Strong error bounds can be derived for the QR factorization in finite-precision arithmetic
(see [GVL83]), which makes it more desirable than the Cholesky factorization in terms of
numerical stability.

The disadvantage of the QR factorization is its computational cost. The number of op-
erations involved in a sparse QR factorization is considerably larger than that of a Cholesky
factorization of AH~1AT, especially when A is very rectangular. (See [GN84] and [GLNSS]
for implementations of sparse QR. The matrix @ need not be stored in our case, but stands
for a series of orthogonal transformations applied at the same time to C and Dg.)

Given what we know about the QR factorization today, we do not expect interior-point

methods based on this factorization to be competitive.

The Semi-Normal Equations

Note that the Cholesky factors of AH ~'AT are related to the QR factors of C. We have
LLT = AH7'AT= CTC = RTQ™QR = R"R = RIR,.

Thus L can be computed by performing the QR factorization and setting L = RY. The
method of semi-normal equations consists of forming L this way and solving for = with
the normal equations LLTr = AH 4.

The numerical properties of this method are analyzed in [Bj87a). Although the tri-
angular factor is of better “numerical quality”, the error in x is shown to be about the
same as that obtained from Cholesky factorization. The only improvement is in the bound
on the condition number of C to achieve a numerically non-singular L. The concern of

computational inefliciency with the QR factorization applies as before.
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The Conjugate-Gradient Method

One algorithm for solving the least-squares problem that is not based on a matrix factor-
ization but on a series of matrix-vector products, is the conjugate-gradient (CG) method.
Starting at an initial point 7o, the method proceeds by taking steps along a sequence of
search directions uj;. With initial values ro = Dg for the residual, u; = so = CTDg and

Y0 = ||s0||?, each iteration includes the following steps for k = 1,2,...:

g = Cug
ar = Ye-1/llgkl?
Tp = Tk—1 + QiUg

Tk = Tk-1— Okqk

sk = CTry
T = |lskll?
Br = /-1

Upp1 = Sk + Brug.

Certain orthogonality relations can be shown (see e.g. [HS52]); in particular, sfuj = 0,
s{sj =0 and u{CTCuj =0 for j=1,...,k—1.

In theory, this procedure can be considered a direct method since it converges in a
number of iterations that is equal to the number of distinct singular values of C. In practice,
rounding errors cause the algorithm to behave like an iterative method, and termination
may occur whenever ||si| is sufficiently small. It is still observed to perform best on
problems where the singular values of C are clustered in groups.

Variants of the conjugate-gradient method have been used successfully in implementa-
tions of interior-point methods, see [GMSTW86], [KR88]. The version used in [GMSTW86)
is LSQR by Paige and Saunders [PS82} which is very well suited for solving least-squares
problems. Other CG methods solve a system of the form Bz = y and can be applied to
the normal equations. Some vector operations may be saved that way, but it has much less
desirable numerical properties.

The matrix C may be transformed into a matrix with clustered singular values by using
a preconditioner. Let R be the nonsingular Cholesky factor of a matrix that approximates
CTC. The problem

minimize||Dg — CR™ 2|2
z
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can usually be solved using CG in fewer iterations. The original solution is recovered by
solving R = z.

At each CG iteration the main work is in forming products of the foom CR™!u and
(CR~Y)Ty. The savings obtained by factorizing an approximation of CTC compared to
factorizing the exact matrix, have to be large enough to offset the cost of the iterations.
The success of this approach lies entirely in the ability to devise a sparse preconditioner R
such that RTR has eigenvalues close to those of CTC.

The Nullspace Method

An alternative approach to solving for 7 first is one based on the observation that p lies
in the nullspace of A. Let Z be a matrix whose columns span the nullspace of A, so that
AZ = 0 and for every p with Ap = 0 there exists a linear combination p, of the columns

of Z such that p = Zp,. The first part
—Hp+ ATr =g
of the KKT-system is premultiplied by Z7 to give
ZTHZp, = -274.

As before, this system is symmetric and positive definite. It can be solved either directly
by forming Cholesky factors, or by applying one of the previously discussed methods to the
least-squares problem

min}i}mize I|Dg — D1 Zp,|2.
z

For the special structure of A = (A, I;), a matrix whose columns span the nullspace

is given by

Observe that the sparsity structure of the positive-definite system ZTHZ = H, + AgHMAN
is that of A;;’;AN. Since most linear programming problems have more dense rows than
dense columns, this matrix is likely to have more nonzero elements (and hence be harder to
factorize) than one of the form ANAAT,. (For more on the issue of comparing these sparsity

structures, see page 54.)
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Chapter 6

Ill-conditioned Systems

It is common for the matrix AH~'AT of the normal equations to have a high condition
number. The ill-conditioning may arise because A and/or H~! are ill-conditioned.
. -1 T — _1 T __1 . . . . .
The matrix AH™A" = A H A, + H_' is near singular or singular when A, is ill-

conditioned and the diagonal of H ! has some zero entries. 4

This is due to degeneracy in
the formulation of the original problem. To detect degenerate rows that are redundant is a
hard combinatorial problem. In addition, near rank-deficiency is likely to occur in problems
that are poorly scaled.

Near-singularities occur also if the number of diagonal entries in H~! approaching zero
is greater than », which is a typical behavior towards the end of Phase I or II when many

variables are approaching their bounds.

More Slack for Fixed Slacks

The problem of a nearly rank-deficient A can be eased by introducing small bounds on
the fixed slacks z, of rows that were originally equality constraints, i.e., the constraints
0<2;,<0 arereplaced by —61 <z, <61 with § > 0.

When 6 > 0, all diagonal entries of H 1 are nonzero and AH AT is strictly positive
definite. At the same time, the dimensionality of the feasible region is increased, possibly
creating a strictly interior region. The parameter u, of a barrier function associated with
these bounds is to be treated differently. Reducing p, from one subproblem to the next,
does not help the convergence of the subproblems to the original problem. We would
therefore like to keep p, constant and big, say pu, ~ 10°, in order to ensure that pu, > p*

for any k.

* We continue to use HZ' as a symbol, even if it is singular and H,, is not defined. This case may be
viewed as the limit of shrinking bounds on the fixed slack variables.
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Naturally, such bounds affect the precision with which the original constraints are satis-
fied at the solution. Let z,4; be an entry in z; and «,, the multiplier of the corresponding
constraint at the solution. Since g = AT7rL , it follows that

1 1 . —py £ /12 +621r3i

- =nT. Or I ;=
¥6 Foary,) T OF ek .

Li

_/‘s( *
xn+i

Assuming that |7 ;| € p,/6, the value z,,; can be approximated by (6%, ;)/(2us). Since
Im ;| < 107 for all but the worst scaled problems, a bound & = 10~ yields a solution that
satisfies the feasibility tolerance €geas = 1076.

As far as AH'AT is concerned, introducing no bounds on the fixed slacks, i.e. setting
6 = 0, is equivalent to removing the corresponding columns from A. Tests with scaled
problems showed that this reduced constraint matrix was sufficiently well-conditioned in
all but a few cases. It was also observed that the performance of the algorithm on other
problems was degraded by introducing artificial bounds on fixed slack variables. In our
implementation, § is therefore a user-selectable parameter with a default value of zero. It
has to be set to a positive value for problems where difficulties caused by the rank of A are
encountered, and it can be reset to a smaller value when the resulting residual ||Az — b|| is

deemed too large.

A Theoretical Bound

Concerning the difficulties introduced by an ill-conditioned H~!, Dikin [Dik67] and Stewart
[Stew87] show for a full-rank A that

sup ||[(AH™'AT)TAH || < 0.
HeD+

The set D* is the space of diagonal matrices with positive diagonal elements. Since 7 =
(AH-'AT)-'AH g and H € D} by its definition, we should expect from this result that
the numerical error in 7 is also bounded. However, short of using a QR factorization, we
do not know how to form the matrix (AH'AT)"'AH-! without forming (AH~'AT)"!
first (i.e. forming and factorizing AH~'AT). Since ||(AH'AT)~!|| cannot be bounded on
Dt the error has already been introduced at this point. The following are measures to

improve the accuracy of 7 and to reduce the condition number of AH AT,
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Updating =

When computing the 7 of one (minor) iteration, a fairly good estimate is already available
in the form of the multiplier estimate 7 of the previous iteration. This is especially true
towards the end of a barrier subproblem when © — 7*(u). In order to avoid rounding
errors and to reduce the impact of catastrophic cancellations, the change ¢ = 7 — 7 is
computed rather than 7 itself.

Therefore, the system solved to determine a new search direction p is of the form
AH'ATq = AH g,
p = -H -lgL,

with g, =g — ATz and g, =g, - ATq = g — ATr . The vector is denoted by g, because it
converges to the gradient of the Lagrangian (page 8).

Diagonal Correction

The computed search direction p must satisfy two conditions. First, it must be close to the
null space of A, which means that ||Ap||/||p|]| < € for some suitable ¢ > 0. Second, it must
be a descent direction for the barrier objective function, i.e., gTp < 0. These conditions are

satisfied as long as ¢ is an exact solution for the system above, since

Ap = —AH g + AH'ATg =0
and

ng = (g, + AT1r)T = —gLTH”lgL+1rTAp <0

for any feasible, non-optimal point (z,7). Observe that glp = —gLTH ~1g, is less than zero
if Ap =0, independently of the accuracy in 7. We can therefore focus on Ap as the error
term in question.
In order to model the error introduced into ¢, assume ¢ to be the exact solution of the
system
(AHT'AT+ E)g = AH™'g,,

where E is an error matrix. The error term is then

Ap = Eq.

36



The error matrix E is small except for matrices AH AT that are very ill-conditioned.
In this small neighborhood of singularity there also exists some danger that the Cholesky
factorization might break down because of diagonal elements that become extremely small
or negative due to rounding error. One way to guard against a break-down or the large E
associated with very ill-conditioned matrices is to add a correction matrix F to AH™'AT
that improves its condition number. Let E(F) be the error matrix associated with the
system AH AT+ F. Then F should be chosen so that ||F + E(F)|| is minimized, which
means, F should be the smallest correction that brings AH AT 4 F out of the neighbor-
hood of singularity.

A good and simple choice for F is a diagonal matrix that reduces the quotient /iy /lmin
of the largest and smallest diagonal elements of the factor L. This heuristic is based on
the fact that the condition number of AH AT is bounded below by (lmax/lmin)?-

The correction matrix F may be formed during the factorization, by using all zero
entries except for those indices ¢ where the diagonal of L is below some threshold value,
ie.,

F; = (max{y lnax — Lii, 0})?,
for some 0 < ¥ € 1. This definition is used in our implementation. The correction Fj;
is computed at the point where L;; is determined during the factorization. Such a choice
for F has the advantage that F is zero for well-conditioned systems and relatively small
otherwise, and that a bound lyax/lmin < 1/7 is enforced. Nevertheless, examples of near-
singular AH~'AT can be constructed, where the correction can grow to ||F|| = 2™¢,, (¢, =

machine precision). Since the exact I, is not known until the factorization is complete, we

!

use an estimate for determining Fj;. The estimate is lpax(i) = max{0.11] ,,,

1,...,i— 1}, where I

max

threshold factor vy = 0.1,/¢,.

Lj; for j =

is the maximum of the previous iteration. In tests we used a

Modified Hessian

We would expect to be able to improve on the error term by taking the correction F' to

the diagonal of AH~'AT into account when subsequently computing p. Since

AH7AT+ F=A H'AT + H'+F,

NN N

where both H_ ! and F are diagonal matrices, this change is simple. Instead of using H !

when computing the search direction, we could use
Oy O
H'=H"1+ ,
d 0 F
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and get the error term Ap = E(F)q. This error can easily be made suitably small by
choosing F' large enough.

However there are other factors that determine the quality of a search direction. For
a convex function, using the exact Hessian when computing p gives Newton’s method
quadratic convergence in the neighborhood of the solution. Although this quadratic con-
vergence is rarely seen in practice with such a non-quadratic function as the logarithmic
barrier term, making the change to the Hessian suggested above reduces the rate of conver-
gence considerably. Numerical tests have shown that corrections that are small enough to

give an acceptable rate of convergence were not always able to reduce the condition number
of AH™'AT sufficiently.

Iterative Refinement

For a general square matrix B, the error in a solution z of the system Bz = y can
often be reduced by performing iterative refinement. It involves repeatedly computing the .
residual r = y— Bz and solving Bz = r to give a better solution 2’ = 2+ z. No additional
accuracy can be expected with iterative refinement when the first z was found by Gaussian
elimination (of a reasonably well-scaled matrix) and r was computed to the same precision
as = (see e.g. [GVLS83]).

In our case we do not have the option of calculating an r = AH"1§, — AH 14Ty = Ap
to more than the precision generally used for all variables. Also, the Cholesky factorization
of AH'AT is equivalent to Gaussian elimination.

However, if a diagonal correction F is introduced during factorization, the accuracy of
g can be improved when residuals are computed from AH~'AT. The iterative refinement

is implemented in the following form:

9 <9,
pe——Hlg
repeat

LLTq = Ap

update T — T +gq, g —g —Alq, p—p+H 'Aq
until ||Ap|| acceptable.

Convergence can be shown (see e.g. [Bj87b]) if

p(I - (LLTY AR AT) <1,
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where p(-) denotes the spectral radius. This translates into a bound on the size of F.
Convergence criteria for the residual r, = Ap are twofold. First, a static upper bound
on acceptable values for ||r,||/||AH ~'g|| is given. We choose this conservatively to be €2/3.
Second, little progress in reducing || || is taken as a sign that the remaining residual is
inevitable. Average cases show a reduction of ||| by a factor of about 10~% for every

iteration of the refinement.

Applying iterative refinement to the normal equations is equivalent to refining the KKT-

( 5)()-(6)

and using normal equations at each step. The residual of this system is

o (G+HP—AT¢\ _ (0
Ap Ap)’

since —Hp = —¢g, = §, — ATq independently of the accuracy of ¢g. Forming the normal

system

equations for the KKT-system with ' as the right-hand side yields a right-hand side

r, = Ap for the normal equations, as before.
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Chapter 7

Inside the Factorization

The first step towards the computation of the Newton search direction is the solution of the
normal equations
AH AT = AH 'g,.
This system is solved by computing the Cholesky factorization,
AH7AT = LT
and solving the triangular systems
Ly = AH'lgL and LTq =y.

The time for computing the search direction dominates the time per iteration — typically
80%-90% of the total for a medium-size problem, but it can be as high as 99% for the
largest problems. For the linear programs of interest, the matrices A and, to a lesser
degree, AH-'AT and L are sparse, meaning that almost all their elements are zero. An
efficient way to form and factorize these large sparse matrices is therefore crucial to this
implementation of the barrier method.

Other interior-point methods share this need, since they also solve a symmetric positive-
definite systems of the form ADAT, with D diagonal. (See Adler et al. [AKRV87] for
programming techniques, or Monma and Morton [MM87]). Thus many of the following
observations are equally relevant to these methods.

In our implementation the Cholesky factorizations is performed by the subroutines of
SPARSPAK-A by Chu, George, Liu and Ng [CGLN84], with minor modifications.

The actual numerical factorization is preceded by an Analyze Phase, in which the
nonzero patterns of the involved matrices are analyzed and the necessary data structures
are established. These procedures are covered in Chapter 9. For the scope of this chapter
we shall ignore the problem of dense columns in A. Extensions to algorithms and data

structures taking that issue into account will be described in Chapter 8.
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Fundamentals of Sparse Matrix Algebra

In order to avoid storing the large number of zero elements and doing redundant floating-
point operations on them, a special data structure is needed for a sparse matrix. It replaces
the two-dimensional array used for dense matrices.

Let A be a matrix with n columns, m rows and n. nonzero elements, where n. € nm.
The standard approach to store A is to sort its nonzero elements by column into one single
array of length n. (here denoted by A). A second array HA of the same length records the
row numbers of these entries. Each column in this pair of arrays is then found with the
help of an array KA that contains the position of the first nonzero of that column in A. The
number of nonzeros in a column j is determined as the difference between to consecutive
column offsets in A, here KA(j + 1) — KA(j). The array KA must therefore have one more
entry than there are columns in A, with the last value being one more than the length of A,
i.e., KA(n+1) = n, + 1. (Clearly an equivalent scheme can be used that sorts the nonzeros

of A by row rather than by column.)

Al an azy | @s2 | 413 G33 Asz3 | Q24

numerical values of nonzeros

HA| 1 3 5 1 3 5 2

their row indices J
3 4 7 e

column pointers into A, HA

KAl 1

The Data Structure for Sparse Matrix Storage

Integer arrays used to access nonzero elements are frequently referred to as overhead
storage. We assume here that row and column indices fit into two bytes, i.e., m,n < 215,
whereas no such assumption is made for the number of nonzeros n.. Thus, in a FORTRAN
implementation HA can be an array of short integers and KA has to be an array of full
integers. With four INTEGER#2 variables, or two INTEGER variables, taking the space of one
DOUBLE PRECISION word, the primary storage required for A is n. words, with overhead
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storage of in. + In words.

For the rest of this chapter a sparse vector or a sparse matriz will be a vector or matrix
whose nonzero elements are stored in the described way. A dense vector or a dense matriz
denote a vector or matrix stored in the usual way, regardless of the actual proportion of
zero to nonzero elements in them. Assignments between a sparse vector and a dense vector
will refer to the copying of nonzero elements of the dense vector to or from a sparse data
structure. Row i of a matrix A will be denoted by a!, and column j by a;.

Several observations are in order. First, a given element a;; of a sparse matrix cannot
be accessed without doing a search along its column j for an entry in HA with value <.
For efficiency reasons any sorting and searching of elements should be avoided in these
computations, with the exception of the Analyze Phase. The numerical operations we
do on sparse matrices should thus be restricted to those that work sequentially on whole
columns.

The set of sparse vector operations that do not require sorting, searching or additional
workspace include scaling a sparse vector, $; = « $g; adding a multiple of a sparse vector
to a dense vector, d; = dy + a s; and computing the inner product of a sparse vector with
a dense vector, 8 = dTs, or with itself, 8 = sTs. Not included in this set are operations
such as the inner product of two sparse vectors, 8 = slTsz; or their sum, s3 = 81 + s2, in
the case when the result is to be treated as a sparse vector.

With A stored by its sparse columns a;, the product d = Az is computed as d =
Y zja; , whereas the product with the transpose e = ATy is composed of e; = afy. Here
z, Y, d and e are assumed to be dense. Observe that the elements of a; do not have to
be sorted by row index in HA for these operations. This fact gives a degree of freedom that

we will exploit during the factorization, below.

Forming AH'AT

Let B denote an m X m matrix containing the lower-triangular half of AH A7,

0 for i<j

B = tri(AH7'AT) where b;; = { (AH-'AT);; for i > j
13 = J-

Since only half of a symmetric matrix is stored in practice, the matrix to be formed is
actually B.
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One way to compute this scaled outer product is by computing each element b;; as a
scaled inner product of rows of A,
for k=1...m
for i=1...k

btk = a"H_la;‘T.

This is not easily implemented for a sparse A, because even if A is stored by rows rather
than by columns, the inner product of two sparse vectors is not an efficient operation.
Computing B by explicitly adding the column outer products B = 3 1/h;; tri(ajaJT
is not possible without keeping B temporarily in a dense representation, which requires
prohibitively much memory.

One solution is a scheme that rearranges the second loop of the algorithm above and

requires a dense vector d as temporary storage. Let a* define the lower part of a;, so
q a'g 7 ]

that
(G;F)t:{o for £ < k
ag; for £2> k.
The algorithm for forming AH AT then becomes
for k=1...m
d=10
for j such that ax; #0
d=d+ (akj/hjj) af
by = d.

Here only columns of B and A are accessed. The question of finding the elements of af

without searching for them in the column a; will be addressed on page 45.

Factorizing AH AT

Since AH~'AT is a symmetric positive-definite matrix, there exists a Cholesky factorization
AH'AT = LLT, where L is lower triangular. The method to compute it should have the
property that B gets overwritten by (part of) L. Of the three methods with this property
described by George and Liu [GL81], the inner-product form is used in the SPARSPAK
package:
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for k=1...m
k-1
Lok = by — ZIZJ'
i=1

for it=k+1...m
k-1

g = b — D ljli
=1
e =1/ V) Ik .
As before, the inner product of two rows is avoided by reformulating the second loop,
using lf as the lower part of ; :

for k=1...m

d=b;
for j such that [; #0

e = (1/Vdy) d.

When examining this procedure for the resulting nonzero structure of L, note that L
has a nonzero wherever B has one, but might have more. This property allows a general
B to be stored in the same sparse matrix structure as L. (This feature becomes irrelevant

for the special case of AH~!AT by the observation in the next section.)

The minor effort of computing m square roots can be saved by using the factorization
AH AT = LDLT instead. Here L is an unit lower triangular matrix and D is diagonal
(see [AKRV8T]). Since taking this approach would add several scalings with D=1 to the
computation of the Schur complement in Chapter 8, its advantages in our implementation

are not clear and this path was not taken.

Forming and Factorizing in one Step

The similarities between the two algorithms sketched above are striking. Both arise from
an inner-product form; both have a dense vector to accumulate multiples of lower parts of
sparse columns; in both cases this depends on the column element in the current row.

The outer loops of both operations have an index running over the same range, one
ending with b; = d, the other starting with d = by. Checking that b; is not accessed
when computing any [; with j < k, we see that it is not necessary to form B explicitly.

Instead we can form and factorize each column of L in one step.
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for k=1...m
d=0
for j such that a; #0
d=d+ (ay;/hj;) af
for j such that [;; #0
d=d-1,;1*
Iy = (1/Vdy) d.

(The last line stands for l;z — d;/+/dr whenever I is a nonzero of L. Since these indices
¢ are known in advance, it suffices to reset the corresponding d; to zero, instead of zeroing

out the whole vector.)

Data Structure for L

The storage scheme for L deviates a little from the standard way of storing sparse matrices
in order to take advantage of two properties of this matrix.

e We assume A has no zero rows, so that all diagonal elements of L are nonzero. This
diagonal can be stored separately and the column-wise sparse storage is only applied to the
off-diagonal elements.

e The distribution of nonzeros in L has a special form. A column [/, contains nonzeros
in all rows where there are nonzeros in l}‘ for j with li; # 0. This leads to the common
occurrence of patterns of row indices that repeat themselves for different columns. To save
some overhead storage, SPARSPAK uses a compressed scheme where repeated patterns
are stored only once in the array NZSUB and a second array of pointers XNZSUB points to
the sequence of row indices for each column. XNZSUB does not have the property that the
difference between two adjacent entries is the number of nonzeros in one column. However,

this number can still be derived from the first array of pointers XLNZ.

Dynamic Pointers

The algorithm as explained so far leaves two questions unanswered. (1) How do we find
the columns j that affect the formation of column k, namely those with ax; # 0 or
l; # 0, respectively? (2) How do we access the part needed, a;‘ or I;‘, when individual
elements cannot be addressed without some searching? Since these issues apply equally

to the forming and the factorizing step, they will be discussed using the notation involved

45



DIAG | lin | lo2 | las | laa

diagonal elements

INZ | Iy Isi ler | laa le2 | Usa  les | les

[ I I

XLNZ | 1 4 6 8

oft-diagonal nonzeros

column pointers into LNZ

XNZSUB | 1 4 2 5

column pointers into RZSUB

NZsuB | 3 5 6 4 6

row indices in compressed form

Data Structure for the Factor L

in forming AH~'A7, while the corresponding notation for factorizing AH AT will be
mentioned in parentheses.

The columns accessed when forming column by (i ) are those sharing nonzero elements
with row a}, (1} ). There are two methods for finding the nonzeros of a row, one static and
one dynamic.

The static method employs an equivalent data structure to KA/HA for the rows. An
array JA of length n. records the column indices of all nonzeros of A sorted by row, and
an array KArow stores the pointers into JA for each row. Both can be constructed during
the Analyze Phase.

The dynamic alternative uses linked lists. Here a link is associated with every column
and a list header with every row. At the time column k is computed, the list for row k
contains indices of all columns that have a nonzero in that row. Afterwards each column 7 of

this set is linked to the row i that contains its next nonzero, i.e., i = min{¢ > k | a;; # 0} .
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The next nonzero in a column can be found without searching when the nonzeros of
each column are sorted by row index inside A/HA. So, unlike simple matrix operations, such
a scheme requires a special order for A. (See also ‘Permutations’, below.)

The ordering is also needed to answer the second question, the problem of accessing a;-‘
(l;-‘ ). A second, dynamic array of pointers over all columns KA1ST (FIRST), initially set
to KA (XLNZ), is used to point to the first element of af (l;c ) for the next column k that
is going to use column j. Again, this array can be updated after column k is computed
simply by adding one, so that, say KA1ST(j) now points to the first element of aj- , where
¢t is the row with the next nonzero, as above. The last element of any a;? is the same as
the last element of a; and sits at offset KA(j + 1) — 1. This way of accessing the lower part
of the column is independent of whether the column was found by the static or dynamic
method above.

The similarity of the algorithms for forming and factorizing should imply that we choose
the same data structure for finding the right column in both cases. However, the deter-
mining dimensions are not of the same order. Additional overhead storage needed for the
alternatives are (in terms of full INTEGERs)

Forming Factorizing
static | n.(A)/2+n | n(L)/2+m
dynamic | (n+ m)/2 m/2 5

As we expect there to be more off-diagonal nonzeros in L than nonzeros in A, the
time savings from avoiding the maintenance of a linked list in the static method are gained
at the expense of more memory during the factorization. In our implementation we leave
intact the linked list used in SPARSPAK for L, but use the static access scheme for the

rows in A.

Permutations

The outline of the procedure to factorize AH AT has omitted one important aspect.
Although the number of nonzeros in AH ~'AT is independent of the row permutation of
A, the number of nonzeros in L is not. During the Analyze Phase, see Chapter 9, a
permutation P is sought that minimizes the fill-in of L. Thus the actual factorization is

of the form
PAHATPT - [T

® For the factorization, both the list headers and the links can use the same array of length m since the
off-diagonal nonzeros of row i can only lie in columns j with j <1.
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KArow 1 3 4 6 7

row pointers into JA

e

JA 1

column indices of nonzeros

R f_Jtl

A] a3 aiy as2 | 433 453 Q13 | Q24

their numerical values

HPA | 1 4 2 1 2 4 6

their permuted row indices

("

KA1ST | 2 3 5 7

offset of a; (with i =2), dynamic

HAL 3 1 5 3 5 1 2

their original row indices I
3 4 7 “e

column pointers into A, HA, HPA

KA 1

Data Structure for A during factorization
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By rewriting PAH~ATPT as (PA)H-'(PA)T, we leave the factorization as it is, just
using PA instead of A. This is done without any additional work by introducing an
additional array HPA that contains the permuted row index for each nonzero. Sorting the
entries of A, HA and HPA so that the entries in HPA are in ascending order for each column,
completes the adjustments that have to be made for the permutation. All this is done

during the Analyze Phase.

Gay [Gay88] suggests that some permuting of vectors can be saved when columns of L
are stored in the order of the corresponding row indices of A. This idea was not followed
here, since keeping L and other vectors and matrices in the permuted order is essential for

some details of the implementation of the Schur complement (see page 55).
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Chapter 8

When Things get too Dense

The sparse constraint matrix of the linear program in Phase I can be written in the form
A = (Ay a I), where a denotes the artificial column. Since a is assumed to have no
structural zeros, aa” and thus AH'AT are dense matrices. A similar problem can also
occur in the optimality phase, i.e. when a = 0. Including all the columns of A, when
forming AH~'AT can sometimes be uneconomical at best, often making it impossible to
run a certain LP on a memory-constrained machine. The columns we would like to omit
from AH~'AT will be called dense columns, although factors other than the mere number

of nonzero elements might contribute to the definition of this set, see page 52.

Schur Complement

Assume that there are nq dense columns (including a ), and let A; be the submatrix of

A, that contains them. Defining the partitions
A= (As Aqg I) and  H = diag(H,, Hy, H,,)
we have
AHTUAT= A H7IAT + HY + AGHJ'AT,

where A _H;'AT + H~ ! has a sparse triangular factor L.

Taking the matrix square root V = A H, Y2 of the remainder, the solution of the

normal equations AH~1ATq = y can be found from the larger system

(v 5)(8)-()

quivalent formulations, wit = or V= ;o an 4 or H ;" in the lower right-
Equivalent f lati ith V=4, |4 Adel d H Hdl' hel igh

hand corner, yield somewhat cleaner notation but proved to be less stable numerically.)
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The matrix C = I + WTW, where W = L~1V, is called the Schur complement of LLT.

The required solution ¢ may be determined by solving the following sequence of equations:

Ls =y
Cz = WTs
LTy = s—-W=.

The numerical accuracy of the solution may be improved by iterative refinement, see
page 38, when ny > 0. In practice we have observed that only one additional refinement
step is worthwhile. In the rare case where the residual r, =y — AH ~1474 turns out to be

already very small, this step may be skipped.

Comparison with preconditioned CG

Dense columns of A present a difficulty for all interior-point methods that factorize a matrix
of the form ADAT with D diagonal. An alternative approach is to use the Cholesky factor
L of A,H'AT + H-1, as a preconditioner for a conjugate-gradient method (see page 32).

The two approaches are not the only alternatives. A hybrid method is possible, where
the Schur-complement method works inside CG. The preconditioner could be improved this
way to include dense columns a; where hj'l is large. Or the conjugate-gradient method
can be employed to cope with corrections made to L during the factorization. Such a
hybrid method was not tested in the scope of this research.

We shall compare the Schur-complement method to a CG implementation that uses
LSQR [PS82]. To have some measure of the work performed beyond the factorization, we
identify two important parts, namely the solves, LTz = b or Lz = b, and the products, Au
or ATz, for some vectors z, u. CG needs 2 solves and 2 products for start-up in addition to
2 solves and 2 products per iteration. Whereas we can treat the Schur-complement method
with two steps of iterative refinement as a direct method, LSQR is an iterative method.
Typically it was observed to take 2 iterations in the case of one dense column and some i

iterations in the case of ng > 1 dense columns, with ng +1 <1 < 2ny.

To compare the work per barrier iteration with the two approaches three cases are
considered:
e ng =0. In this case AH"1AT = LLT and the normal equations can be solved di-

rectly. Neither CG nor the Schur complement need be employed, both are identical here.
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e ng =1. One solve is needed to compute W, plus two per step of the iterative
refinement. Computing the residual costs two products. Any additional work is negligible.
This adds up to 5 solves and 2 products, which compares favorably to 6 solves and 6
products with CG. Typically the dense column here is a, which has a density of 100%.
This distinguishes it from the next case:

e ng > 1. Again two solves are needed per step of the iterative refinement and two
products to form the residual. Computing W takes exactly nq solves, giving a total of
ngq 44 solves and 2 products. CG takes at least 2ny + 4 solves and 2ny +4 products. The
additional work needed to compute the Schur complement C = I + WTW is significant

here, but so are the savings obtained by taking advantage of the sparsity in V' when forming

LTw = V.

Comparison of Storage required

Here the case ng = 0 is not relevant, since storage always must be allocated for the
maximum need, which is during Phase 1. Storage requirements for the Schur-complement
are less in the case ng = 1, since some work vectors needed by LSQR can be saved in an
efficient implementation.

Analytically it is unclear, however, how the methods compare in the case ngy > 1.
Although W must be stored, this can be done effectively in some sparse format (page 55),
since it is typically only 25%-75% dense. Because of the great time advantage, the time-
optimal choice for the number of dense columns is bigger than with CG. This in turn reduces
the density of L considerably. Experiments with a small number of LP test problems with
dense columns, suggest that the size of L and W together for a time-optimal choice of Ay
is substantially less than the size of L alone for a choice of A4 that would be optimal with

a conjugate-gradient method.

Identifying a Dense Column

The definition used in our implementation is simple: if a column has more than a preassigned
number of nonzeros, it is handled as a dense column. This threshold number can be set
by the user. If it is not specified it defaults to a rule of thumb involving the number of

rows m. 8

¢ The number used is set up to make a near-optimal choice for the four or five problems of the test set

with dense columns: +/3m 4 700 .
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For a general-purpose implementation, a better way of identifying dense columns may
be required. The underlying assumption in our definition is that the positive effect on the
efficiency of the factorization achieved by taking out column a; , is increasing in the number
of nonzeros n,(a;). This assumption does not necessarily hold. The effect depends quite
heavily on the nonzero structure of the other columns. Taking out the column with the
most nonzeros might sometimes have less effect on n,(AH~'AT) than taking out a column

with relatively few nonzeros. The effect on n.(L) is even harder to predict.
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Taking out a dense column of A does not necessarily improve the sparsity of AH —14T,

Experiments varying the threshold on a test set limited to the problems with dense
columns showed that a time-optimal choice of A; was also close to storage-optimal (and
vice-versa). A heuristic explanation is that the storage consists mostly of the nonzero
elements of I and W and the number of operations is in part an increasing function of
the number of these. This result implies that gains in speed may be possible by finding the
storage-optimal partition A, / Ay when the storage is allocated during the Analyze Phase.
However, finding such a partition involves solving a very hard combinatorial problem that
was not tackled in this research. Advances in this direction could show improvements even

for problems that are currently not considered to have dense columns.

The problem is even more complex when numerical issues are taken into account. The
matrix A,H;'AT + H-" is more likely to be nearly rank-deficient than AH~AT. This im-
plies that measures against ill-conditioning, like the freeing of fixed slack variables (page 34)
or adding a diagonal matrix (page 36), will be necessary more often. These measures may

require more steps of iterative refinement or even result in more minor iterations.
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Going to the Extreme

Of interest is the extreme case in which all columns are treated as dense, i.e., Ay = 4,.

The matrices of the Schur-complement method for this case can be given as L = H /2,
V=AH W=HYAH;'? and

C=I+H"ATH A H.

N M NN

Usually a Schur complement C of that form can no longer be efficiently treated as a dense
matrix. It has to be stored in a sparse form and factorized accordingly. By ignoring all the
diagonal matrices in the formula for C, its sparsity structure can be identified to be that
of A};AN . The computational effort for this method is, therefore, about the same as that
for the null-space method of page 33.

As previously mentioned during the discussion of the null-space method, algorithms
based on factorizing a matrix of the form AgAN are likely to be less efficient than algorithms
based on factorizing a matrix of the form ANA;' . There are, however, implications of this
extreme case for the way we look at the Schur-complement method. Choosing some partition
A, [ Ay can be viewed as striking a compromise between the nonzero structures of AI?;AN

and ANA;{ — a compromise with the promise of being more efficient than both extremes.

Implementation details

The procedure for solving the system LTz = b usually involves two systems of equations,
LTz, = Pb and Pz = z,, where P is a permutation matrix. The permutation is the
minimum-degree ordering found during the Analyze Phase, see Chapter 9. Some economy
of speed (and storage, see below) can be achieved by keeping the intermediate vectors and
matrices in the permuted order. In the following, a subscript p denotes a vector or matrix
permuted by P.

In detail, the actual sequence of computations is

LW, = PV

C = I+W, W,
Ls, = Py

Cz = Wstp

LTg, = s, — Wz

Pq = gqp.
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Since PA is implemented in the form of a second row index vector for A (see page 47),
accessing elements of PA (or PV) involves the same work as accessing elements of A.
The Schur complement C is stored and factorized as a dense triangular matrix. Since

ng is usually very small, solving for z takes a negligible amount of time.

Cluster Storage

The data structure for W is special, since this matrix is medium dense. Storing it in
conventional sparse form would add considerable overhead to the computation, especially
in the case Ay = a, where W is all dense. But other columns of W are expected to
have a density in or beyond the 25%-50% range also, where dense storage schemes become
more effective on most scalar processors. Since W is the result of a triangular solve and is
stored permuted as W,, most of the nonzeros are clustered towards the lower end of the
columns. This is especially so because the minimum-degree ordering tends to give a dense

(triangular) submatrix in the lower right-hand corner of L.

L Wp = Vp

In order to have one data structure that is effective for both dense and somewhat sparser
columns, the scheme we have used indexes clusters of nonzeros instead of the nonzeros
themselves. This reduces the integer overhead by about one third compared to real sparse
storage, while retaining some of the computational advantages of dense vector handling.

In detail, a cluster is defined as a sequence of consecutive nonzeros in one column.
Consecutive is meant here in terms of the minimum-degree ordering of rows in which W,
is stored. Additional time savings can be obtained if we allow a small number of zeros to
be included in the cluster. (Only for single zeros did this seem to be worthwhile on our
machines.) An indexing array ICL is maintained, storing the first and last row index of each
cluster. An outer index array KCW points to the entry of ICL belonging to the first cluster
of each column. The DOUBLE PRECISION array WT contains all the clusters (including those

single zeros) and a second outer index array KWT points to the first nonzero of each column.

95



KWT | 1 6 7

column pointers into WT

|

WT | wn 0 w3y | Wer W71 | W42 | Wiz

nonzero clusters of W
ICL 1 3 6 7 4 4

their starting and ending row indices

[ ( ‘

KCWw| 1 5 7

column pointers into ICL

Cluster storage for W

If there are n,, nonzerosin W and n. clusters can be found, the total storage in bytes
for this scheme is little more than 6m + 4n. + 8n,, . Dense storage would take 8ngm and
sparse storage 4m + 10n,, bytes. The advantage for the cluster form therefore disappears
when the average cluster length falls below 2. Roughly the same trade-off may be expected

for accessing speeds.

Although operations on clusters are dense by nature, there is a considerable disadvantage
in calling standard subroutines to handle simple vector arithmetic for them, as the clusters

tend to be rather short (rarely more than 10 elements).

56



Chapter 9

The Analyze Phase

The Cholesky factorization of a sparse symmetric positive-definite matrix is a well-studied
problem; see, e.g. [GL81] and [DER86]. The factorization is generally done in two phases,
the Analyze Phase and the Numerical Phase. In the Analyze Phase, the structure of the
nonzero elements in the matrix is analyzed and a suitable data structure and order of
operations is established. In the Numerical Phase these operations are then executed. For
typical matrices each phase takes about an equal amount of computer time. It is important
to note that the numerical values of the matrix elements are not relevant in the Analyze
Phase. This is true because for positive-definite matrices all orderings are acceptable as far
as numerical stability is concerned.

The systems of equations solved at each iteration of an interior-point methods are a
special application of these factorization techniques. The matrices AH AT have the same
nonzero structure for every iteration, independent of the values of H~!. This leads to a
method that need only have one Analyze Phase and several Numerical Phases. We shall
therefore refer to the Analyze Phase of the barrier algorithm, which performs all non-
numerical setup steps in preparation for forming and factorizing AH ~1AT.

Steps of the Analyze Phase include: (1) most importantly, the search for an ordering of
the matrix AH'AT that reduces the fill-in in its factor L; (2) the sorting of A according to
this ordering; and (3) the generation of data structures for the Schur-complement procedure

to handle dense columns.

The Minimum-Degree Ordering

It is a characteristic of both symmetric and unsymmetric systems that the ordering of rows
and columns has a great deal of influence on the number of nonzeros in the factors, although

it does not change the number of nonzeros in the original matrix. Despite the existence of
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some counterexamples, the factorization time is generally observed to be increasing in the
number of nonzeros in the factor.

To see the impact of the ordering of the matrix on the nonzeros in the factor, consider
the following simple example. Take a symmetric matrix that is zero except for its diagonal
and the first row/column. Its Cholesky factor will be a dense triangle. If the first row and
column are interchanged with the last, however, only the diagonal and the last row are

nonzero in the resulting factor.

matrix factor

The second matrix is said to suffer no fill-in during the factorization. This expression
reflects the fact that for every nonzero in the lower triangular half of the matrix there will
be a nonzero in the factor. Any additional nonzeros in the factor are considered as filling
the blank space in the matrix.

The problem of finding the row and column ordering that minimizes the number of
nonzeros in the factor is NP-complete (see [Yan81]). Efficient heuristics have been discov-
ered that give a near-optimal ordering. The most prominent is the minimum-degree order-
ing. (See [GL87] for recent improvements.) Its name is derived from the graph-theoretic

representation of the problem that will be sketched here.

The sparsity pattern of a symmetric matrix can be represented by an undirected graph.

The graph has a node for every row/column of the matrix, and an edge from node : to
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node j wherever there is a nonzero at (7,7). The graph representation of our example
above is thus a star with node 1 at its center.

The graph equivalent to computing column j of the factor is removing node j from
the graph and adding an edge (¢,k) for every pair of nodes ¢ and k that were previously
connected to node j by edges (¢,7) and (j,k). The new edge (i,k) corresponds to fill-in
in the factor, if the nodes i and k& have not been connected before.

In order to minimize fill-in, i.e., to minimize the number of edges added, the node
with the minimum number of outgoing edges is removed first. Since the number of adjacent
edges is also called the degree of a node, this rule constitutes the minimum-degree algorithm.
Variants of the algorithm differ in the way ties are resolved, and in the frequency with which
the degree is recomputed.

In our little example the minimum-degree algorithm will yield an ordering where node 1
is either last or second to last. All such orderings are optimal. This is due to the fact that
the original graph was a tree, but in general we would not expect the minimum-degree
ordering to generate the least fill-in possible.

The reason for the popularity of the minimum-degree algorithm lies both in the quality
of the resulting ordering and in the efficiency of some of its implementations. (The version
used in our implementation is SPARSPAK’s GENMMD routine, using a “multiple minimum
external degree” method.) This is to imply that the minimum-degree algorithm was found
to be the best trade-off between the time invested in the Analyze Phase and the time saved
during the Numerical Phase. However, most research in this area assumes that only one
Numerical Phase is performed per Analyze Phase. For the case of interior-point methods,
there is some potential for more expensive ordering methods in the Analyze Phase, since
their cost is amortized over a greater number of factorizations. Adler et al. [AKRV87] report

some success with a minimum local fill-in method.

Cliques

The normal input format for the ordering algorithm is a list of the row and column indices
for each nonzero in the matrix. The first step of the minimum-degree algorithm is to convert
that list into a data structure that represents the adjacencies of the graph.

In order to generate such a list for AH~'AT, the locations of nonzeros have to be
determined by forming the symbolic product AAT. The product is symbolic in the sense

that there is no real arithmetic involved, but the nonzero patterns of rows are compared.
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Forming this symbolic product can be avoided by observing that the graph of AAT
consists of cliques. A clique is a set of nodes where each pair of nodes is connected by an
edge. The graph representing the outer product a]-agw is a clique. This clique consists of the
nodes that correspond to the rows of the nonzeros in a;. Since AAT is the sum of outer
products aJ-a’f, its graph representation is the union of the corresponding cliques.

Using a special SPARSPAK input routine, the nonzero structure of AAT is simply
represented by the series of cliques corresponding to the columns of A. Dense columns and

columns corresponding to fixed variables are ignored for this purpose.

Sorting A

Once the row ordering is determined, the formation of AH~'AT in the Numerical Phase can
be made considerably more efficient by sorting A. This is done by reordering the entries
of the arrays A and HA (refer to Chapter 7) so that the nonzeros in each column are in
that permuted order. Since dense columns are not included in the Cholesky factorization,
they do not need to be sorted. Consequently the sorting algorithm does not have to be
sophisticated, because the number of nonzeros to sort per column is small. The time spent

on sorting is almost negligible.

Memory allocation and Data Structures

The memory requirements of the minimum-degree algorithm are considerable and are not
bounded by a reasonable function of the dimensions of A. In some instances the memory
required in the Analyze Phase can exceed that of the Numerical Phase.

All memory left after loading A and allocating space for its overhead storage and the
main vectors is first reserved for the minimum-degree algorithm. After the ordering is found,
the memory is reassigned to the data structure that represents L and its overhead.

Given the ordering, the array HPA of permuted row indices is generated (page 47). The
arrays JA and KArow that allow row-wise access to the nonzeros of A are determined by
searching through all non-dense columns.

With these data structures in place, a symbolic solve LW = A, is performed to deter-
mine the nonzero structure of W. The columns of W are then searched for clusters and
the corresponding integer arrays are generated.

All additional memory is temporary workspace, i.e., contains arrays that are recomputed
at each iteration. These include the pointers needed during the factorization, the numerical

values of W and C, and some work vectors.
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Part 111 Testing

Chapter 10

Test Set and Setting

An implementation was developed to test the various facets of the algorithm discussed
in Parts I and II. Since randomly generated problems prove to give poor insight into the
behavior of a large-scale algorithm, a collection of real-world problems was used as the test
set.

The relative performance of different algorithms always depends somewhat on the hard-
ware and software used for the test. With linear programming, these dependencies seem to
be more critical for interior-point methods than for the simplex method.

In addition to presenting the general results of performance tests, we discuss in this
chapter the influence that the test set and the computing environment may have on the

performance.

The Test Problems

The set of test problems consists of the first 53 problems in the netlib collection [Gay85).
They are available via electronic mail and have come to be regarded as a standard bench-
mark for linear programming algorithms. In the following tables, the problems are ordered

according to the number of nonzero elements in A as in [Lus87].

Although 53 problems is a reasonably large set, many of the problems are related. The
performance of related problems is often correlated. No claim is made that the problems
are typical of LP problems commonly solved. Indeed that the problems ended up in a test
set may be some indication the problems are atypical, i.e., hard to solve by the simplex
method. Too much, therefore, should not be concluded from the results. Batch testing of
this type is perhaps best viewed as a means for detecting bad algorithms.

Apart from the use of row and column scaling where indicated, each problem was solved

as given. No attempt was made to simplify the problems by first preprocessing them,
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LP name rows columns nonzeros % of nonz. fixed rows upper bounds

AFIRO 28 32 88 9.8 8 0
ADLITTLE 57 97 465 8.4 15 0
SC205 206 203 552 1.3 91 0
SCAGR7 130 140 553 3.0 84 0
SHARE2B 97 79 730 9.5 13 0
RECIPE 92 180 752 4.5 67 69
VTPBASE 199 203 914 23 55 97
SHARE1B 118 225 1182 4.4 89 0
BORE3D 234 315 1525 21 214 12
SCORPION 389 358 1744 1.2 280 0
CAPRI 272 353 1786 1.9 142 131
SCAGR25 472 500 2029 0.9 300 0
SCTAP1 301 480 2052 1.4 120 0
BRANDY 221 249 2150 3.9 166 0
ISRAEL 175 142 2358 9.5 0 0
ETAMACRO 401 688 2489 0.9 272 180
SCFXM1 331 457 2612 1.7 187 0
GROW7 141 301 2633 6.2 140 280
BANDM 306 472 2659 1.8 305 0
E226 224 282 2767 4.9 33 0
STANDATA 360 1075 3038 0.8 160 104
SCSD1 78 760 3148 5.3 77 0
GFRDPNC 617 1092 3467 0.5 548 258
BEACONFD 174 262 3476 7.6 140 0
STAIR 357 467 3857 2.3 209 6
SCRS8 491 1169 4029 0.7 384 0
SEBA 516 1028 4874 0.9 507 507
SHELL 537 1775 4900 0.5 534 126
PILOT4 411 1000 5145 1.2 287 247
SCFXM2 661 914 5229 0.9 374 0
SCSDé 148 1350 5666 2.8 147 0
GROW15 301 645 5665 2.9 300 600
SHIP04S 403 1458 5810 1.0 354 0
FFFFF800 525 854 6235 1.4 350 0
GANGES 1310 1681 7021 0.3 1284 404
SCFXM3 991 1371 7846 0.6 561 0
SCTAP2 1091 1880 8124 0.4 470 0
GROW22 441 946 8318 2.0 440 880
SHIPO4L 403 2118 8450 1.0 354 0
PILOTWE 723 2789 9218 0.5 583 296
SIERRA 1228 2036 9338 04 528 2016
SHIP08S 779 2387 9501 0.5 698 0
SCTAP3 1481 2480 10734 0.3 620 0
SHIP12S 1152 2763 10941 0.3 1045 0
25FV47 822 1571 11127 0.9 516 0
SCSDs8 398 2750 11334 1.0 397 0
NESM 663 2923 13988 0.7 480 1739
CZPROB 930 3523 14173 0.4 890 0
PILOTJA 941 1988 14706 0.8 661 339
SHIPOSL 779 4283 17085 0.5 698 0
SHIP12L 1152 5427 21597 0.3 1045 0
80BAU3B 2263 9799 29063 0.1 0 3057
PILOTS 1442 3652 43220 0.8 233 1129

netlib Test Problems
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e.g., by eliminating redundant constraints. The experiments were intended to investigate
algorithmic performance in precisely the kind of circumstances that such procedures are
designed to eliminate. Preprocessing may prove useful within a practical code. ((AKRV87]
discusses experiences with it.) However, preprocessing cannot be assumed to eliminate

undesirable features of linear programs. This is particularly true for very large problems.

The Computing Environment

All runs were obtained as batch jobs on a DEC VAXstation II. The operating system was
VAX/VMS version 4.5. The compiler was VAX FORTRAN version 4.6 with default options,
including code optimization and Dfloating arithmetic (relative precision ¢,, ~ 2.8 x 10717).
Solution times are given in CPU seconds; they do not include time for data input or solution
output.

The simplex implementation used for comparison purposes is the Fortran code MINOS 5.3
(May 1988). Default values of the parameters were used throughout (see [GMSW88)); these
include scaling (SCALE OPTION 2) and partial pricing (PARTIAL PRICE 10). See also Lustig

[Lus87] for a comparison of different parameter settings with MINOS.

Memory Constraints

Our implementation of the primal barrier method was designed to keep paging to a minimum
within the available memory. This is relevant for two reasons. First, the implementation
tests the behavior of an interior-point method in a workstation environment, which recently
has evolved as the computer of choice for many linear programming applications. Sec-
ond, it makes comparisons with the simplex method more meaningful, since MINOS works
comfortably within this memory constraint.

For the largest problem, PILOTS, our implementation requires about 3 megabytes of
in-core memory. That includes one copy of A and L, as well as the necessary vectors and
integer data structures. MINOS requires a little over 2 megabytes to solve PILOTS.

On other machines, there are several opportunities to enhance the speed of the factor-
ization by using more memory. Instead of forming AH AT and overwriting it by L at
every iteration, it is possible to keep and update AH ~'AT by adding some A AH~1AT. By
using an approximate H~!, the diagonal of AH~! may contain many zeros and make the

update A AH~!'AT very sparse and efficient to compute, see [AKRV87]. Another option is
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to compute and store every product a;ja;; of nonzeros of a column of A once. Forming
the elements of AH AT is then accomplished by multiplying these products with h;l and
adding them up; see [MM87].

Still more memory intensive is the interpretative procedure. At the innermost loop of

the Cholesky factorization are operations of the type
Lk = Lig — lyjli;.

Since all (i,j,k) combinations for which this operation is nontrivial are known during the
Analyze Phase, the memory locations involved in each of these operations can be recorded in
one very long array. This eliminates a large part of the overhead needed to access the sparse
data structures. Adler et al. [AKRV87] use this method in one part of the factorization,
while treating the other part of L as dense to save memory. Such an approach seems
especially promising for machines with vector-type architecture. However, Gay [Gay88]
reports that the interpretative procedure rarely saves more than 20% of the factorization
time on the netlib test set. .

In the short history of research on interior-point methods, several implementations were
developed that exploit the resources of advanced computers to an extent not common in
portable simplex codes. As work on both types of linear programming algorithm continues,
it will be interesting to see whether the ability to make use of such resources will give
interior-point methods an advantage. This research, however, tries to compare the two

using about the same amount of memory and using similar data structures for both.

The Runs

As with the implementation of any other optimization method, many preassigned parame-
ters must be selected. We define a run to be a suite of results for a group of test problems
that were all solved using the same set of parameters.

The table on page 65 reports on a run that includes all 53 problems. The main charac-
teristics are that the problems are solved unscaled, small bounds are added to fixed slack
variables, and the composite objective function uses a fairly small weight w = 1074,

The results are reported in terms of the number of (minor) iterations, the optimal value
of the linear objective function, the norm of infeasibilities in relation to the norm of the so-

lution z, and the solution time. The last two columns give the corresponding solution time
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Itn. Obj. fct.  [|Az —b}}/||z)] CPU sec. MINOS 5.3

AFIRO 20 -4.647529E+402 8.8E-16 2.84 049 —-
ADLITTLE 31 2.254951E+05 7.2E-10 10.05 507 —
SC205 28 -5.220205E+01 6.6E-10 19.95 15.14 -
SCAGR7 24 -2.331389E+06 4.6E-14 11.28 732 -
SHARE2B 26  -4.157319E+402 1.7E-12 14.73 7.80 -
RECIPE 25  -2.666160E+02 6.9E-09 14.89 220 —-—
VTP.BASE 25  1.298312E+05 9.6E-08 30.63 672 —-—
SHARE1B 36 -7.658930E+04 2.0E-13 30.57 25.28 =
BORE3D 37  1.373081E+03 4.6E-10 69.17 2382 —-—
SCORPION 33 1.878126E+03 3.7E-09 53.77 19.87 —-
CAPRI 35  2.690014E+03 1.2E-14 106.02 3219 —-—
SCAGR25 27 -1.475343E407 5.9E-14 44.73 91.79  ++
SCTAP1 34 1.412251E+03 5.6E-13 49.75 3733 -
BRANDY 31  1.518511E+03 4.7E-08 73.79 7895 @ w
ISRAEL 36 -8.966445E+05 3.9E-11 102.26 3820 —-—
ETAMACRO 42 -7.557145E+02 1.2E-09 327.15 106.96 —-—
SCFXM1 35  1.841677E+04 1.9E-08 94.31 7268  —
GROW7? 27  -4.77T8T80E+07 1.2E-15 49.19 4267 =
BANDM 38  -1.586280E+402 1.3E-10 103.73 107.71 =
E226 41 -1.875191E+401 1.1E-09 91.65 72.75 -
STANDATA 44 1.257701E+03 7.3E-10 107.47 1747 —-
SCSD1 24 8.666743E+400 2.7E-12 33.58 3828 =~
GFRD-PNC 26 6.902242E+06 1.0E-09 57.51 206.55 ++
BEACONFD 25  3.359250E+04 4.7E-10 62.74 14.10 -—-—
STAIR 32 -2.512668E+02 7.7E-12 338.5 190.08  —
SCRSS8 48  9.043039E+02 6.1E-10 185.49 177.86  w
SEBA 32 1.571150E404 5.1E-06 111.26 106.56 =
SHELL 34 1.208845E+09 5.1E-07 114.39 7857 -
PILOT4 61 -2.581134E+03 1.5E-09 736.22 656.83 =~
SCFXM2 39  3.666027E+04 5.1E-09 211.76 31919 +
SCSDsé 25  5.050012E+01 1.1E-12 61.62 164.71 ++
GROW15 29 -1.068709E+08 9.5E-14 116.58 19465  +
SHIP04S 48  1.798716E+06 2.0E-10 152.21 3520 —-—
FFFFF800 56  5.556472E+05 1.1E-10 681.61 281.97 —-
GANGES 24 -1.095857E+05 5.3E-10 503.57 37273 -
SCFXM3 38  5.490129E+404 8.7E-09 313.14 632.04 ++
SCTAP2 35  1.724809E+03 7.2E-12 352.05 34276 =x
GROW?22 33 -1.608343E+08 5.7E-14 192.68 403.74  ++
SHIPO4L 37  1.793326E+406 5.3E-09 170.33 67.03 ——
PILOT.WE 65 -2.720078E+06 7.7E-10 814.49 385005  ++
SIERRA 34 1.539483E407 7.4E-11 280.41 70002  ++
SHIPO8S 62  1.920099E+06 1.3E-09 335.36 113.50 —-
SCTAP3 36  1.424001E+03 1.9E-11 422.54 570.60  +
SHIP12S 39  1.489237E406 2.4E-09 272.62 27472 =~
25FV47 47  5.501849E+03 1.7E-14 1338.47 572241  ++
SCSDs 22 9.050008E+02 1.0E-13 112.67 117423  ++
NESM 43 1.407605E+407 1.3E-13 744.05 1296.87  +
CZPROB 59  2.185198E+06 7.9E-10 431.12 83644  +
PILOTJA 82 -6.112604E403 7.5E-08 5870.06 549613 w
SHIPOSL 46 1.909057E+06 5.5E-08 440.48 244.25

SHIP12L 41  1.470189E+406 2.5E-09 508.22 621.37 =w
80BAU3B 63  9.872249E405 7.4E-10 2486.11 11768.52  ++
PILOTS 57  -5.574894E+02 74E-10  32010.14 7444358 4+

Primal Barrier (Unscaled)
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for MINOS and a comparison category. Based on the ratio ¢ = barrier time/MINOS time,

the categories stand for

++ for ¢<0.5
+ for 05<p<0.8

Q

for 0.8<¢p<1.25
— for 1.25< ¢ <2.0
—— for ¢2>20.

Some observations may be made that are generally true for all barrier method runs. The
iteration count is low, rarely over 60, and it increases little with the size of the problem. The
barrier times are relatively better for larger problems and are especially good for problems

that are hard to solve for the simplex code.

Failures

As with any other algorithm, if one set of parameters must be chosen for all problems, the
performance is not as good as when the parameters are chosen for a smaller subset of the
problems. The difficulty of choosing an acceptable set of parameters is even greater for
the primal barrier implementation, where both performance and reliability prove to be a
problem. The barrier code using a given set of parameters might fail to solve an LP for a

number of reasons:

o Slow convergence. If the starting point or any other iterate is not sufficiently interior,
the method is likely to take many small steps along the boundary of the feasible region.

We terminate the algorithm at iteration 120 and rate such behavior as a failure.

e No Phase II. When the objective weight w is too large, the convergence criteria might

be satisfied before a sufficiently feasible point is found.

o Infeasible termination. Ill-conditioning in Phase II may result in infeasible search

directions, leading to a solution that lies outside of the feasibility tolerance.

e QOverflow. Extreme ill-conditioning (and/or insufficient remedies for it) may lead
to floating-point numbers larger than the maximum machine-representable number

during the factorization (1.7 x 1038 in the D_floating format).

66



Itn. Obj. fct.  [|Az — bj|/llz] CPU sec. MINOS 5.3
AFIRO 17 -4.647526E+4-02 3.00E-12 2.29 0.49 -
ADLITTLE 24 2.255013E4-05 4.10E-08 8.66 5.07 -
SC205 23  -5.220215E401 9.40E-08 14.23 15.14 =]
SCAGR7 26 -2.331375E406 6.30E-15 11.45 7.32 -
SHARE2B 26 -4.157318E402 4.40E-12 14.92 7.80 -
RECIPE 17  -2.666160E+402 9.10E-08 9.98 2.20 -
VTP.BASE 23 1.298310E+405 2.60E-07 28.28 6.72 -
SHARE1B 34 -7.658889E+04 1.00E-12 27.07 25.28 ~
BORE3D 26 1.373083E+03 6.60E-08 48.75 23.82 —_
SCORPION 21 1.878126E+03 6.10E-08 34.85 19.87 -
CAPRI 29 2.690044E+4-03 1.80E-10 85.81 32.19 -
SCAGR25 28 -1.475334E+4-07 3.70E-14 42.24 91.79 ++
SCTAP1 27 1.412254E+03 1.50E-12 37.43 37.33 5]
BRANDY 26 1.518536E403 8.20E-08 62.28 78.95 +
ISRAEL 34 -8.966053E+05 9.80E-13 64.37 38.20 -
ETAMACRO 30 -7.557044E402 1.00E-07 236.56 106.96 -
SCFXM1 30 1.841676E+404 8.50E-08 77.14 72.68 2
BANDM 29 -1.586245E402 8.20E-08 75.39 107.71 +
E226 30 -1.875164E+401 6.70E-08 66.69 72.75 ~
STANDATA 34 1.258308E+403 1.10E-07 85.47 17.47 -
SCSD1 21 8.666740E+00 2.80E-12 27.08 38.28 +
GFRD-PNC 22 6.902595E+06 1.10E-07 47.81 206.55 +4
BEACONFD 21 3.359320E+-04 7.70E-08 53.38 14.10 -
STAIR 28 -2.512595E402 5.70E-11 290.56 190.08 -
SCRS8 34 9.043523E+02 4.40E-08 125.2 177.86 +
SEBA 23 1.571166E+404 2.40E-07 76.43 106.56 +
SHELL 38 1.208829E+09 5.50E-14 113.49 78.57 -
PILOT4 40 -2.581139E+403 7.10E-08 498.36 656.83 +
SCFXM2 37 3.665997E404 6.90E-08 186.09 319.19 +
SCSDeé 21 5.050031E4-01 3.60E-12 47.74 164.71 +4
SHIP0O4S 27 1.798717E406 1.20E-08 90.38 35.20 -
GANGES 24 -1.095840E+405 1.20E-07 510.09 372.73 -
SCFXM3 35 5.490126E404 6.90E-08 263.77 632.04 ++
SCTAP2 26 1.724819E4-03 5.10E-15 251.47 342.76 +
SHIPO4L, 26 1.793327E+4-06 5.20E-08 124.65 67.03 -
PILOT.WE 43  -2.720058E406 1.10E-07 539.88 3850.05 ++
SIERRA 59 1.541763E407 1.80E-12 446.75 700.02 +
SHIPO8S 26 1.920100E+4-06 2.40E-08 146.23 113.50 -
SCTAP3 27 1.424016E+4-03 8.20E-15 301.94 570.60 +
SHIP12S 26 1.489237E+06 4.80E-08 180.33 274.72 +
25FV47 40 5.501945E403 6.40E-15 1138.12 5722.41 +4
SCSDs 20 9.050034E+4-02 4.00E-11 94.48 1174.23 ++
NESM 37 1.407627E+4-07 3.50E-14 628.35 1296.87 ++
CZPROB 49 2.185220E+-06 1.10E-07 366.56 836.44 ++
SHIPOSL 27 1.909057E406 8.90E-08 259.32 244.25 =
SHIP12L 27 1.470189E+-06 8.80E-08 336.27 621.37 +
80BAU3B 50 9.871698E+405 8.40E-08 1922.1 11768.52 ++
PILOTS 56 -5.574775E402 1.00E-07 31453.99 74443.58 ++

Primal Barrier (Scaled)
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Our tests of the primal barrier implementation with the 53 netlib problems yielded few
runs without failures. The parameters of the successful runs were all from a very small

neighborhood of the parameter set used for the run on page 65.

Scaling

One strategy that generally improves the algorithmic performance is the use of scaling. This
improvement is partly due to the observed fact that scaling usually increases the range of
reliable parameters.

On scaled problems we usually observe the resulting ||z|| to be in the order of one.
However, the scaling routine used was not successful for three of our test problems (GROW7,
GROW15 and GROW22), where |jz|| remained at 107. The barrier code subsequently failed
because of slow convergence for these problems.

The table on page 67 shows results for a run of scaled problems. In addition to the three
problems above, two problems with rank-deficient constraint matrices are not included,
namely PILOTJA and FFFFF800.7 With this reduced test set, the slack variables of equality
constraints can be left fixed and the weight in the objective function is chosen to w = 0.1.

Almost all problems of this set were solved faster with these settings, some considerably
so. Several midsize problems show better solution times than those achieved with MINOS,
while the simplex code holds its advantage for small problems. Notice, that the MINOS

results are also obtained for the scaled problems.

Dense Columns

Only four test problems have dense columns in Phase II according to our definition.

dense columns nonzeros

ISRAEL 15 > 35
SEBA 14 > 185
FFFFF800 1 50
PILOTS 23 >72

" The problem FFFFF800 is also omitted in [ARV86], although the authors claim to solve every netlib-
problem with simple bounds except 25FV47.
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More Parameters

In order to analyze the impact of some of the parameters more closely, we shall compare
several runs where one parameter is varied while the others stay fixed at some default values.
The run for these default parameter values provides the basis of the comparisons. The
running times for each problem are categorized as ++ / — — for at least 20% better/worse
and +/— for at least 5% better/worse and the total for each category is given. The default
values were chosen for their general reliability; they do not necessarily represent the best
choice in terms of performance. The test set includes the problems used in the run of
page 67, except for PILOTS.® Scaling was used in all cases.

Maximal step. As explained on page 13, an iterate close to the boundary is avoided
by using some maximal step @,a,, instead of the theoretical maximum e,,. The usual
value for this factor is ¢, = 0.98.

¢o= 088 095 097 [0.98] 0.99

++ 2 1 0 0 0
+ 0 3 4 0 8
S 13 28 33 47 36
- 30 14 9 0 3

- 2 1 1 0 0

Unless the steplength is limited severely, the impact of this factor is marginal. The absence
of failures in the column for ¢, = 0.99 indicates that the linesearch procedure is working
well.

Free variables. The penalty parameter p of the approximated least-squares problem

implies bounds for free variables at a distance of \/2up (see page 18).
p= 103 10° 107 [10°] 10"

++ 2 2 1 0 0
+ 20 12 0 1
~ 7 17 33 47 28
- 18 5 0 0 17

-— 16 0 0 0 1

failed 3 1 1 0 1

Small values of p impede convergence by limiting the rate of change in free variables, while
large values may generate a large fluctuation in their values. Consequently a good choice

for p is higher for unscaled problems than for scaled problems.

8 PILOTS was not included solely because of its run time, 9 hours, which would have unnecessarily decreased
the number of possible test runs. Otherwise, no special difficulty was encountered when running PILOTS.
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Composite objective function. The weight w of ALP on page 19 has an almost

monotonic effect on the performance.

w= 10 [0.1] 0.01 0.001
++ 0 0 0 0

+ 21 0 3 2
= 20 47 31 18

- 0 0 12 25
- 2 0 1 0
failed 4 0 0 2

In most cases it is advantageous to increase w up to a neighborhood of the problem depen-
dent bound w’, after which the algorithm fails to find a solution.
Starting point. The size v of the linear modification of the barrier term, page 24, is

most important for the choice of the starting point at a distance of 1/v to the bounds.

v= 10 0.1 [0.01] 0.001 0.0001

++ 10 0 0 1 0
+ 271 25 0 1 2
~ 6 19 47 17 3
- 2 2 0 27 31

- 1 1 0 1 3

failed 1 0 0 0 6

The impact of v is highly dependent on the choice of u! and w. The fact that the algorithm
performs well with large values of v is mostly due to the effect of scaling. If the resulting
starting point is not sufficiently interior, the number of iterations may be substantial.

Barrier Parameter. The pu of the first subproblem is p! multiplied by ¢’z /n.

pl= 1.0 0.1 [0.01] 0.001 0.0001

++ 4 1 0 0 0
+ 0 3 0 4 8
~ 19 35 47 41 36
- 20 5 0 2 3

— 3 0 0 0 0

failed 1 3 0 0 0

The effect of different choices for u! is minimal on a fairly large interval. The boundaries

of this interval depend heavily on v.
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