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ABSTﬁACTA
Centfal to the present concepts of the 6rigin of the radiétidn—induced
creep, growth and swelling phenomena is the relative interaction quinterstitials
and vacancies with various sinks. Radiation-induced climb of dislocétions,.
which figures in many thedfies of radiatién creép and growth, requires the
absorétion of an excess of elther vacanéieé or interstitials. On the other

- hand, radiation swelling requires the absorption of an excess of vacancies

to effect void growth. These relative preferenqes'are nofmally expressed
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in theoretical models by certain bias factors, or capture efficiencies, usually

assumed to be constant. Several attempts have been made to estimateltheir
magnitude theoretically but all are seen to- involve errors or physically
unrealistic assumptions. We present here a unified treatment in which theée
various bias factors are estimated in a self-consistent model which incorporates,

for the first time, all the essential physics, i.e., defect production, inter-

actions of both vacancies and interstitials with sinks and the presence of two .

_ types of sinks. We present quantitative evaluations for the SIPA creep model

and for radiation swelling, and compare with previous estimates of these

phenomena.

1. Introduction

The physical o%igin of various phenomena occurring under irradiation, such
as radiation growth,'radia;ion creep.and void swelling lies in the absorption
of relatively more of one type of point defect at one type of sink (and conse-
quently;lg§§ of that same defect at another tybé of sink). The reason for such
preferential absorption is generally considered to lie in the interaction
energies between point defects and the various sinks.

The mechanisms of radiation growth are stili not cleafly established, but
one contributing soﬁrce, for cold-worked material at least, is probably the
climb of dislocations having an anisotropic distribution of Burgers-vectors(l).
It is considered that, due to its larger relaxatibﬁ strain, the interstitial in
metals‘interacts more strongiy with a dislécation stress field than does the

vacancy, and hence an excess of interstitials is absorbed by dislocations, thus

causing their climb. Since in the steady state vacancies and interstitials must




disappear at exactly the rate at which they are produced, it is clear that
another type of sink must exist which attracts interstitials less than do
dislocations. These second sinks then absorb an excess of vacancies equal in
magnitude to the éxcesé of interstitials absorbed at dislocations. It is
further clear that vacancy interactions with the different sinks produce
analogous effects so that the overall net effect (or bias) is due to:the

combined, simultaneous interactive diffusion of both vacancies and interstitials

to at least two types of sinks. The siqks haQing a smaller attraction for
interstitials may be dislocation multipoles, dislocation cell walls, sub-boundaries,
precipitates, voids or gréin boundaries.

_In radiation creep, two basically different processes have been considered.
Qne‘is equivalent to that discussed under radiation growth but where the aniso-
tropic diétribution of Burgers vectors is no longer a requirement. In this
concept, the dislocations climb does not itself produce creep strain but dis-
location glidé following the overcpming.of some impedance actually produces the

(2) (3)

creep strain. Both internal stress fields and local obstacles have been
considered by various authors. A second type of process has been proposed which
requires climb alone to produce creep. This is the so-called SIPA (Stress Induced

(4)

Preferential Absorptioﬁ) model and assumes that dislocations haying different
orientations of fheir Burgers vectors provide the required two types of sinks.
Their asymmetric interactions with point defects are in turn supposed to arise

from the shear polarizabilities of the defects(5)~ The shear polarizability

of a dumb-bell interétitial is assumed much larger than that of a.vacancy and
so'the SIPA effect is felt to be due primarily to interstitials, with the vacancies

partitioning themselves among the various dislocations in a relatively unbiased

manner.




The void swelling phenomenon requires, obviously, a neé absorption of
vacancies by voids. This is generally thought to obtain primariiy because
of thé preferential absorption of intérstitials at dislocations, as discusséd
above. Thus dislocation climb (and possibly growth and/or creep) must
'accompany the growth of Qoids.

The "real" situation in which many sinks of vérious types (and geometries),.
are spatially disffibuted,'eaéh with its own diffusional fields of both vacancies
and interstitials, has generglly been considered too complex- to analyze directly,
even when defect-sink interactions are ignored. . The model generally employed

is one in which the concentration of each type of point defect is assumed

 constant throughout. The body and their losses to the variocus sinks as well

as their annihilation by recombination are assumed to occur homogeneously.
The rates at which these various losses occur must.then be estimated by independent

calculations. These involve the solution ofla‘boundary—valué diffusion problem

‘whepé an individual sink of a particular type is represented by its actual

gé&ﬁetry and size. Even when defect-sink interactions and recombination are.
ignored, various procedures have been employed to "couple" the discrete sink

(6)

to the surrounding medium. Wiedersich used the Wigner-Seitz cell épproach
and surrounded the sink with a sink-free region, within which point defects are

generated, whose outer boundary was chosen to give the same cell volume as the

average volume per sink in the actual medium and no flqg was allowed to cross

" that oﬁter boundary. 1In one approach, the discrete sink is surrounded with a

"lossy medium", an infinite region in which defects are generated gnd are-lost

to othe; types of sinks.at rates which vary spatially and are propoftional

to the local defect concentration. Brailsford and Bulloﬁgh(7) placed a sink-
free region between the discrete sink and the “iossy megium" but later Brailsford;

(8)

Bullough and Hayns removed it. All of these are approximations and it is

difficﬁlt to select one appraoch over the other though it seems clearly best to




use an internally consistent set of such sink terms, derived by equivalent
approaches. We recently suggested such a set.
When defect-~sink interactions are included, the complexity increases

(10 used a single cylindrical Wigner-

significantly. Bullough, Eyre and Perfin
Seitz cell surrounding a long dislocation line. Both vacancies and interstitials
were assumed to be produced at equal rates and to disappear by-recombingtion at
a rate proportional to the product of their concentrations. The interstitials
had a radially symmetric, attractive interaction with the dislocation and "zero-
flux" boundary conditions were imposed for both defects at the outer cell
boundary. As we discussed previously however(ll), théir use of only one type

of sink in a region across whose boundary no defecté pass requires that in the

steady state both vacancies and interstitials enter the dislocation at precisely

equal rates. Thus we attribute their finite bias factor to numerical errors,

" so that the bias factor of 2% which Brailsford and Bullough(7) later quote as

being obtained from this model must be considered spurious.

Several aﬁthofs(12’13)

have employed a single diffusional cell around a
dislocation and allowed not defect production. Defect production is simulated
b& éssﬁming}fixed defect concentrations at the outer boundary. With different
interaction fields, then, for the same outer—boundarf concentrations, vacancies
and interstitials arrive at the central dislocation at different‘rates. This
approaéh avoids the inconsistency of the Builough, Eyre and Perrin appraoch

but suffers from at least two crucial problems. First, the use of fixed con-
centrations (supplied by imaéinary sources outside the diffusional field) intro-

duces an unknown error. Second, its use of only one type of sink seems implausible

for estimating an effect which physically demands at least.two types of sink.
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(11)

We previously discussed in some detail the above approaches, along

(12-19)

with others used in estimating bias factors for both void swelling and

SIPA-creep analyses, .and concluded that none had quantitative reliability.
Ve subséquently presented an analysis of the SIPA-creep process which included
uniform defect production and the presence of both types of dislocation with

(20)

their asymmetric interaction fields . The resulting creep rate was shown

€

to be significantly less than previous estimates. More recently, we have
presented'glsimplified analysis for estimating the bias factor for void swelling(21)-_'
We allowed both dislocations and voids but to éimplify the ge&metry consi&ered

6n1y cylindrical voids with a length per unit volume exactly equal toithat of

the dislocations. Interaction of interstitials with dislocations was allowed

but, for simplicity, interactions of interstitials with voids and of vacancies

with both dislocations and voids were ignored. The bias estimated was significantly

larger than previous theoretical or "experimental" estimates;-

Our purpose here 1s first to present a synopsis of the various types of
"biaé factors" introduced Sy different authors. Then we shall compare and
contrast the various theoreticalyattémpts at quantifying the bias. Then we.éhall
pfeéeﬂt a unified analysis appraoch which treats defect production and allows
for the coupled diffusional flow of defects in the presence of two types of sinks
which interact differently with the poinf defects.' Bias factors so derived.will
be compared with previous estimates. Finally, quantitative éstimates of void
swelling rates will be compared with expgriment to bring into focus tﬁe need
for the carefull assessment of effective defect production rate, i.e.
the rate of production of freely mobile defects which escape annihilétion

within the damage cascade. This will also highlight the need for consistent
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coupling between the bias factors and the various sink loss terms, both of
which are treated simultaneously in the present approach, which also naturally
supplies the volume-fraction and multiple-sink effects other authors have

attempted to estimate by independent models.

2. Analysis

As has_generaliy been done before, we skall ignoreArechbination in our
model, so that‘recombina£ion effects can only be assessed by assuming the
approbriate defect production rate to be reduced by the recombinafion'rate
which in turn must be estimated independently. We shall also treat only .
twoﬁypesof sinks, so that again the appropriate defect production rate must
be reduced by the rate at which defects are independently estimated t&'be-
lost to other sinks. 'There is no obvious reason why additional types of sinks

cannot be included directly in the model, however, and we eipect to pursue

" this in future research.

With the above assumptions, conservation requires

. [o] (o] = (o] (o] ’ -
a=2z, I +2, I,=1+ 1) : , (1).
s o] o _ 40 o A _

and a ZVl I1 + ZV2 I2 Il + 12 - (2)

where & is the effective defect production rate (assumed equal for vacancies

and interstifiais); ) are the ratioé of loss rates of inter-

2110 212 (yp0 2y |
stitials (vacancies) to sinks of types 1 and 2 with and without interaction



fields. The Z's so defined are equivalent to Mansur's sink capture efficiencies.
Equations (1) and (2) show clearly that the four Z's so defined are not

independent. In fact, one easily sees that
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where the I's are set by the densities and geometrical features of the sinks.

Thus thé Z's for each defect are related through the relative sink strengths.

(6)

As shown in the reaction—fate—theory analysis by Wiedersich , the maximum in

the rate of any process requiring the preferential absorption of one type defect
at one sink occurs when the two sinks involved have equal strengths, i.e. when

1° = 1°

1 o+ For this special case, (3) and (4) become

12 - ZIl (Equal sink‘strengths) . (5)

and YA = 2

Zy2 - ZVl (Equal sink strengths) | .(6)

.Since the limiting case is zero absorption at one type sink, say Z12 =0, it

is clear that the maximum possible value of the Z for the other sink, say ZIl’
' ‘ : ¢
The set ZIl = 2, ZIz = 0 expresses the physical

situation when all the interstitials are absorbed at sinks of type 1 and none

is 2, for this symmetrical case.

at sinks of type 2. Thus, the range of possible Z-values for this symmetrical



case is 0 to 2. On the other hand, when a large difference in sink strengths

is only very

<0 o - '
exists, say L > I2’ Z12 can become very large (small) Vhen ZIl
slightly less (greatér) than unity. Of course, this simply reflects the
physical fact that a small change in absorption at a sink of very high strength
requires a proportionately large change in absorption at a weak sink.

It has been shown by rate~theory analyses assuming constant Z's that the

rate of a proceés requiring differential absorption by one sink can be expressed

Rate « (

2y = Zyy) = 2y = Zyp) | @

This combination of Z's is equivalent to Wiedersich's rate-theory expression

for the rate of void swelling(6)

Rate = B -~ a o ‘ : - s (8)

when only dislocations and voids are present and where a and B describe the
differencein capture efficiencies for interstitials and vacancies at voids
and at dislocations, respectively, and are assumed to be constants. An

alternative form of Eq. (7) is sometimes given

Rate « - (9)

21 Zy2 T I Gy
again assuming constant Z's.
The bias factors on the right-hand sides of Eqs. (7) and (9) can easily

be shown to be equal by use of Eqs. (1) - and (2). Thus, they may be considered
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équivalent definitions of a'bias factor for the particular rate prbcess(being'
analyzed.

Some authors attach a Z-factor té the term for inpe;étitial loss—raté
to dislocations and none to any other ioss terms for either interstitials
or vacancies.  This is eéuivalent to assuming that all other Z's are unity,
but as we éaw above this is physically impossible.‘ Such iﬁconsistencies,
however, can and do go completely unnoticed in a reaction-rate theory calculation
where defect conservation is imposed bn the system. And if the single Z;factor
so assumed is treated strictly as an empirical factor with no physical meaning,
well and good. However, it allows no judgments as to what a reasonable
value would be. If such an assumption is inserted into Eqs. (7) or (9), the

result is
Rate « 2 - 1 - A (10)

but such a‘treatmept beéomes inconsistent and unreliable when théoretical
estimates of fhe effect of interaction fields on the defect fluxes into
dislocations are used to obtain Z.

The various Z-factors discussed above, together with their correéponding
sink strengths to which the I's of'Eqs. (1) and (2) are proportional, embody
most of the physics coﬁtained in reaction-rate-theory analyses of fadiation—

induced rate processes and we turn now to their evaluation.

a. SIPA Creep

(20)

We previously presented an analysis.of the SIPA creep model and will

only give a summary here. In this case, the two types of sinks are long, parallel
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dislocations whose Burgers vectors are such that an applied stress aids the
absorption of one type of defect at one dislocation and not at the other. The

(5)

interaction fields were those derived by Bullough and Willis , averaged ovef
their attractive regions and applied as'radially symmetric-fields in the

two cylindrical'regions surrounding the two dislocations; each with a radius
chosen so that the cell volume was'equal to the average volume-per unit length
of dislocation in the real material. The concentrations of each type of defect
were required to maﬁch at the outer boundary and the flux of each .type of defect
leaving one regibn was required to enter the other. The important interaction
here is that due to thé elastic polarizability of theApoint defect and we

17)

followed Bullough and Hayns in neglecting the vacancy interactions. Thus,

for this process,

Rate « Z_. - Z : m - : tll)
where the Z'é_in this case are directly proportional to the applied stress.
For values typical of stainless steels, we obtained bias factors -which were
weakly temperature dependent (especialiy in the range of usual interest) but
somewhat dependent onn dislocation (sink) densit&. Typical results are shown
in Fig. 1. The curve labeled "simple'" assumed interstitials in each cylindrical
region interacﬁ only with that dislocation, whereas the curve labeled "compound"
assumed that in each region the interaction energies of the two neighboring

regions are linearly additive. The effect of this sink "competition" is

relatively minor even at very large dislocation densities., For an applied tensile

4

stress of 100 MPa and a dislocation density of 6 x 101 m/m3, a bias factor
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(ZIl - ZIZ) ~ 0.087% was obtained and the predicted creep rates, as shown in

0

the figure, were considerably lower than the rate previously predicted byA

Bullough and Hayns(l7). )

b. Dislocation - Cylindrical Void

(21) a model much like the SIPA model above but one

We recently presented
in ?hich the second cylindrical region contains not a dislocation but a cilindrical
void. Here the major source.bf the interactions is the relaxation strain
of a point defect. As a first approximation, we}neglected interstitial inter-
éctions with the void>and again'neglected all vacancy interactions. Only one
tempefature and pné dislocation density were considered and the fééults for
ZID,'the capture efficiency of interstitials (assuming a relaxétion strain of
unity) at dislocations, is shown in Fig. 2 as a function of void size. The
corresponding Qalues of ZIC’ the capture efficiency éf interstitials at cavities
(voids) were not reported but have been obtained here from Eq. (3)

- and are also plotted. With these two Z's, the void—sweiling bias factor was
also calculated from Eq.'(ll) and plotted in Fig. 2. Thus, for equal sink strengths

of dislocations and cylindrical voids, this simple model predicts a bias factor

: ZID - ZIC = 1,14 and, for a void sink strength greatly exceeding the dislocation

sink strengfhs, values approaching 2 are predicted. This range corresponds to a range

in a single effective Z using Eq. (10) from Z~ 2.1 to Z ~ 3. These are much higher
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than most authors assume in their reaction-rate-theory models, but we defer

" any more quantitative comparisons to the new model to be presented below which

will utilize interactions of both interstitials and vacancies with both
dislocations and spherical voids where both sinks may be present in arbitrary

densities.

c¢. Dislocations and Spherical Voids

Consider a cylindrical region, of outer radius R, containing a long,
straight dislocation, of corz radius ro, at its center. Ignoring recombination,
we can write, for either typé of defect, the general solution to the Poisson

equation for cylindrical symmetry

(12)

"where J is the defect flux, 4 is the defect production rate (assumed equal for

ﬁacancies and interstitials) and b is a constant. We also assume the usual

flux equation
J=—.l_(7_[‘-—. V},l. : ' (13)

where D' is the local defect diffusivity (as affected perhaps by interaction
fields), ¢ is the defect concentration, u is its chemical potential, k is
Boltzmann's constant and T is absolute temperaturc. We assume the usual

Arrhenius relationship for D'

_ ES—EG
D' = De \ kT : , (14)

T T

e g e s

v ——— .y

b i e e ——



and express the chemical potential as

- c G
p = kT lnb /ceq + E

where D is the defect diffusivity in the absence of interaction fields, ES
and EG are its interaction energy in the saddle-point and ground-state,

respectively, and Ceq is tie equilibrium defect concentration. Inserting

Eqs. (14) and (15) into (13) gives

_(ES—EG> .
J = - De kT '[\7e+—°—— VEG]

kT

which is easily rewritten in the form

, - EY/KT G
J=-~De v <;eE /kT> .

For the case of radial symmetry; Eq. (17) becomes

\

. g v
-E°/kT G
J = - De. d4_ (ceE /kT> .
dr

Equating>(l8) and (12) and integra;ing, we obtain

¢,..\ ¢ ‘
D[c eED/kT> - ceED/kT) ]

b, = - R T
D . . 0

R .S
d/ﬁ eED/kT
— dr
T r

o]

14.

(15).

(16)

a7

- (18)




where the subscript "D" indicates the dislocation cell.
Now, consider a spherical region with the same outer radius R, containing

at its center a void of radius r, Assuming spherical symmetry, the solution

to Poisson's equation is

+ =, .‘ : - o ",‘(20)

- | - ) (21)

19) -
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where the subscript "C" signifies the void (cavity) cell. Since we are omittihg
'recombination, vacancies and interstitials are independent and there are a

total of four.'b" conétants, one for each type of defect in each cell, and of

course four E functions as well.

For boundary conditions, we first take

G G :
ceED(kT) R - ceEC/kT> R I (22)

which represenﬁs two cbnditions, one for each type of defect. For all inter-
actiéns of interest EG + 0 for large r, so that Egs. (22). basically e#press
continuity in dgfect concentrations at the outer boundaries of the two types
of regiéns. One may of course add the interaction fields of neighboring célls

'so that Eg = Dg is guaranteed identicaliy but explicit calculations in the

simpler models discussed in a. and b. above showed that such a refinement

causes only small changes (less than a few per cent) in calculated results
for any reasonable range of parameters. Therefore, we‘shéll use here, for
each cell, the interaction fields which would exist in an infinite medium .
containing only that sink.

For our third and fourth boundary conditions, we take
21 Rp J. (R) = - 4r RN J. (R) | (23)
D ° v C *V A

for each type of defect, where p is the dislocation line length, and Nv is the

number of voids (both per unit volume of solid).

Eq. (23) may be derived by writing the two conservation equations (for

each type of defect) for the two cells
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. 2 2 | :

a-+.w (R T Yo = - JD(ro) 2nrop + JD(R) « 2nRp | (24)

. 4,3 3 . . 2 o2 BN
and a - 3 (R r, ) Nv = —Jc(rv)4 4nrv Nv + JC(R) 4mR Nv. :  (25)

which simply state that all defects generated in each cell per unit time must,
in the steady state, either enter the sink in that cell or diffuse out of the

cell. Adding these together, we obtain

B as=- JD(ro) . Zﬂrop - Jc(rv) . lmrvav
+ I, (R) - 2nRo + J_(R) aerzNV | o .v (26)
whereAwe have uséd ;he ;dentity
~ @& - e+t -y =1 ' @)
o 3 v v . :

which forms our definition of the outer radius R of the two types 6f cells.
Butlsince physically all defects must be absorbed at either the dislocations
or the voids, we also have

a=- JD(ro) . 2nrop - Jc(rv) Anrv NV o (28)

Equating Eqs. (26) and (28) leads directly to our boundary condition (23), which
clearly is valid also for thermal fluxes which must originate at one type of

sink and be absorbed at the other.

- i p———p s st <2

1o ——va gy
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The boundary conditions (22) and (23) enable us to evaluate bD and bC'

and so obtain the fluxes

N G, G
2 D [ceED/kT> - ceEC/kT> ]
P : T r
_ . o v :
D 2N R g5k RO BSnr 7
v e D e C
r{ — —— dr + —~——dr
p r r T r2

(o} v

' R S
. (2 Nv R3 + R2>f ' eEC/kT
a\y — - —— dr

. o) 2 T -2
ar v Y
+ —2 - - ;
2N R ES/kT R ES/kT -~
: v e D e C
r{— — dr + = dr
P r - 2
r r . r
o v
R : R
N S S
2—% a [% f reED/der - ;‘ f eEC/der]
_ o v (29)
2N R ES/kr R gShnr
v e D e C
r{ — —— dr + - dr
P r 2
r r r
o v .
G G
D [ ceED/kT> - ceEC/kT> ]
_ ro rv
and JC = -

vy

R S T LA N
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+ L o r
[ R ED/KT R (Eo/kT
| 22X - dr + 5 dr
P r r _ r T
o v
R. S R S ‘
3 [% f reED/der - % f eEC/der]
r ) T
+ o ' v ' (30)
N R ES/kT R ES/kT
2 v e D e C
T 2— — dr + dr
o} r 2
T T T
o v
for each defect in each cell.
The. Z-factors are obtained from
J (E) : : :
ID
Z, = ——— S - (31)
D Jpp, (0 X S

and analogous equations for ZIC’ ZVD and ZVC’ where the flux ratios are defined
with all E's present in the numerator and all E's = 0 in the denominator,

Given the J's from Egqs. (29) and '(30) we can find the swelling rate

§ = dt ( v> = 4m Ty Nv [JIC(rv)' JVC(rv)] (3:_)')
where we have defined swelling as the increase in volume per unit volume of

sol'id, not per unit total volume.
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Similarly, the average climb Velocity of the dislocations is given by

Vy = 2w [JVD(ro) - JID(rO)] | o . (33)

where we have taken positive climb to porreépond to interstitial absorption,
and have taken L to be equal to the Burgers vector. -
To evaluate Eqs. (29) and (30) we require values for the interaction

(5) bﬁt omit the

energies. Here we use the analysis of Bullough and Willis
bulk modulus and shear modulus terms because they are only small fractions of.

the "misfit" terms given by

s X | - S
Bl = By o= - — : , (34
where © is the atomic volume, i is the shear modulus, . .e® is the point defect
relaxation strain; we have assumed the interactions in the ground and saddle-

point configurations to be essentially the same and have taken the average

value over the attractiveAportion of the field. The first assumption is

(23)

partly justified by the experimental observation that the activation

volume for interstitial motion in tungsten is very small.. Activation volumes

for vacancy migration are genefally considered to be quite small also(24). The

second' assumption is known to give very accurate results for the case of diffusion . : :

in a dislocation field without defect production(zs).

For the interaction energies between point defects and voids, we use the

misfit term of the analysis of Wolfer and Ashkin(lG)




B
-

, , , ‘ o
- Q" (e®)” u(l+) 3. 2
Eg - Eg 2. .2 [ £ N +1] (35)

36m (1 -v)r > e Le-nd g2

where v is Poisson's ratio and £ = r/rv. Again we have assumed equality of

the interactions in the ground and saddle-point configurations. -

- 3. Results

Before presenting numericél results, it is useful to point out some general
characteristics of Eqs. (29) and (30), some of which also appeared in thé
results for SIPA cfeép and for the d%§location—cy11ndrical void problem. The
first terms of the équations give thé thermal contribution to mass-transport,
they are directly proportional ‘to the defect diffusivity and are non—zéro

EC /KT

only when the product of ¢ and e differ at the two sinks. If local

equilibrium is assumed,

G
c = c% E (kT (36)
at each sink and the interaction energy disappears. The concentration c°®
may then be written
v | 4
c®=c e kt : . 37

where AW is the reversible work done in the transfer of a defect across a
sink interface (opposite signs for vacancies and interstitials). If there is

an externally applied hydrostatic pressure, p, and a gas 1s present in the
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void at a pressure, pg, then we have

M = T | Y 1.5
and pa, =1 (ﬁg-?) o | - (39) .
. A v ) ' C

~at the-dislocation core and void, respecfively,_where Y 1is the surface tension.
The asspmption of local equilibrium is not esséntial»but gives the maximum
possible, "diffusion—contfdlled" rate. Altefnatively,.concentrations differing
-from localéquilibrium might be assumed to simulate finterfacevcontrol", Under .
thermal conditionst(é = 0) the current of ééch type of defect leaving one .
type of sink is exactly equal to the éurfent entering the othér, as holds for
all maés—transport processes. This thermal swelliﬁg, or sintering depending
Ahpon the relétive magnitudes of Eqs. (38) and (39), in principle includes
cgntributions from both vacancies and interstitials but, for'metals, the
equilibrium value of interstitial concentration is usually assumed to be so
small that primarily vacancies contribute. 'Finélly, we ﬁofe that the interaction
eﬁergies in the saddle—point,affect the thermal rate through the integrals in
the denominatbrs, and.thﬁs Z's.(therﬁalj # 1 but they are ﬁég equal‘to_the Z's
defined above fér the radiation—induced components.

The radiation-induced por;ions of the fluxes are séeﬁ to be independent of

the defect diffusivities and directly proportional to the defect production rate.

" They are also totally independent of the boundary conditions at the two types

of sinks. Hence, théy are the same whether "diffusion control" (local equilibrium
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concentrations at sinks) or "interface control" (sink concentrations fixed
at non-equilibrium values) is assumed to apply. Thus, we question the validity

(22’26’27)-f6r these two cases

of the distinction some authors have claimed
uéing reaction-rate theory with the same‘Z's applied to both the radiation-
#roduced defect absorption terms and the so-called thermal-emission terms.
Itvis clear from Eqs. (29) and (30) that the interacfion‘fields do not affect
thermal fluxes in the same manner in which they affeqt the radiation-induced
coﬁpopgﬁts, so that using‘thé same Z's is inappropriate. This illustrates
one of the difficulties in employing an approach sugh as reaction-rate theory
where sink-loss terms and bias factors must bevsupplied ffom independent
(énd not neceséarily wholly consistent) models. In the present treatment, no
such externally calculated parametersvare required since they are inherent in
the model.

in Fig. 3 we éhow illuétfative results for predicted swelliné rates as a
function of temperature. We have chosen our "standard" parameters to be rep-

resentative of st&inless steel, with(zz) DICI = 1.58x10—8 exp(-51,000/T) mz's—l,

D.C. = 1077 exp(-33,950/T) m>*s T, r = 0.126mm, 9 = 1.20x10"2% »73, u = 8.6x10"

' _
MPa, e; = 1.4(28), e; = - 0.23(28), v=20,3, y=1.5J ° m-z. All of the cases
6x1014 m/m3, the single lower curve with a very weak

10ro, NV = lO19 m—3)'and a-= 10.-7 dpa ° s‘—1 and the

‘shown in Fig. 3 employ p

cavity sink strength (rV

upper family of curves with a relatively high cavity sink strength (rv = 100ro,

NV = 1021 -?) and a = 10_6, 10_4 and 10-2.dpa . s—l. The radiatibn—induced

- swelling rate is seen to increase by about a factor of two from T = 100 to the

maximum'where thermally-induced cavity shrinkage causes a sharp decline. The
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péak swelling in the upper family of‘curves‘is higher by over four orders-of-
magﬁitude even though the defect production rate is only one order-of-magnitude
higher. This reflects the fact that in the second case the two sink strengths
are éomparable, whereas in the figst case they are widely differeht. As shown

in the analysis of Wiedersich(6), maximum swelling rate obtains for equal sink

- strengths. This much higher swelling rate causes the peak to occur at signifiéantly

higher temperature. Since each case is for fixed sink strengths, it is clear that
the bias factor for swelling is somewhat temperature depeandent, though for the
temperature range of significant swelling the variation is quite limited. We

> ’

point out that each of these curves assumes a constant "effective'" &, i.e. a

constant rate of formation of defects which are absorbed at the two types of sinks

considered. If & is interpreted as the actual defect product rate minus those

absorbed at any other sinks, these curves still require multiplication by the

(6)

S -parameter defiqed by Wiedersich as the fraction of defects which are in
fact absorbed at sinks. Such a factor would lower the low-temperature portions -
of these cﬁrves much‘more abruptiy as temperaturé decreases and recombination
removes essentially ali defects. We estimate from Wiaersich's curves that

s S 1072

below ~ 600-700K. - Thus, the temperature variation of bias is indeed
minimal within the swélling.regime. | -

The increase of the temperature of peak swelling rate as & increases, along
With a_broédehing of the temperature range of significant swelling, is clearly
displayed by the upper family of curves in Fig. 3. The peak swelling rate is
predicted to occur for the assumed sink structure at ~ 800, 1100 and 1300K for

a-= 10—6, 10-4 and 10_2, respectively. These three production rates are generally
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considered to be r&ughly representative of fast reactor, fast ion'énd'elecfron
Sombardment, respéctively.

A few calculations were run under fhe ppnditions of the upper family of
curves, but for & = 10"6 only, to assess the effects of an externally applied

hydrostatic tensile stress and a gas in the cavities. The dotted curves show

‘the trend for externally applied stress with the numbers on the curves indicating

the magnitude of negatiQe pressure (in MPa) applied. At 600K, stresses of ~0.1lu are
required for any discernible effect;'at 900K, stresses in excess of ~ 10—3u are
require&. The possibility of loading a metal to such high levels of hydrosfatic
tension without yielding seems marginal, so that for these conditions stress-
enhanced swelling is unlikely to be measurablg. Gas pressures, pg, of comﬁafable‘
levels are requiredAfor significant effects oﬁ swelling rate, as indicated in
the figure.

| The general effect of variations in relative si;k strengths at T = 600K
and a = 10-6_for the combinations run to date is displayed in Fig. 4. The
peaking'when‘§oid and dislocation sink strengths aré cémparable is clearly
displayed using the simple sink strengths ﬁormally employed. In some caiculationé
Nv wés varied, inotheer and in still others Iv'; HoweVer,‘very 1i£tle overlap
in-relative sink strengths existedfpr the different sets of caiculations. Wé

shall discuss below a more precise function for correlating with sink strengths

evaluated internally from the present model.

o

I and e;, the relaxation strains

Fig. 5 displays the effect of variations in e
of the point defects. It 1s of course the relative values of these parameters

through their proportional effects on the interaction energies which principally




give rise to the void swelling phenomenon so

to swelling occurs of course precisely where

e; were run with e; at its "standard" value,

‘linear dependence reflects the fact that the

26.

the cross-over from shrinkage

-] .
1 v (Variations. in

and vice versa.) The far-from-

e’ exceeds e

fluxes involve integrals containing

exponential factors in the E's and the magnitudes, especially of the EDfs, can

be quite large, especially near the sinks so

exponentials can be quite inaccurate. Only‘for very small values of er

e; would linear variation be expected.

4, Discussion

that a linear expansion of the

° and

We have displayed various numerical evaluations of the swelling rates

predicted by our model. Its chief virtue would appear to be that it has all

physical features built into it which are felt to be important and thus

‘eliminates the complex problems which have concerned various authors in their

attempts to estimate and refine values for the various sink strengths and Z-factors

which must be inserted into a reaction—rate—théory model. We have discussed

several instances in which inconsistencies have also arisen in such analyses.

It is iﬁformative, however, to relate our void swelling rates here to the

various "bias factors'" employed in reaction-rate-~theory analyses.. To do this,

let us return to Eq.

§ =

. d Avy _ _
dt (v)" e = Nve

where I, = 47 t
C . v

(32) which we rewrite as

(40)

2 Nv Jc for both tyﬁes of defects. Now conservation of vacancies

roms mmam e

e s e A
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-
‘and interstitials independently, both with and without interaction fields,

yields

&=L+ I, =100 +I/(0) (41)
&=L,k I =100 + ;D(o) | - (42)

since of course IC(O) and ID(O) are the same for vaéancies and interstitials.

Multiplying Eq. (40) by a while dividing the two terms by - (I]!:D + IIC) and
- (IVD + IVC)’ respectiﬁely (both of which are equal to a by Egs.. (41) and
)

(42)), we obtain

I, I - ‘
vC IC .
§ = : - a (43)
[ IVD + I I + IIC] . )

which, after rearrangements, becomes

Lic Iip ~ Iyc
1

w T Ive) Cpp

IVD
+ I

[

(44)
1c’

-

Now, if we introduce the Z-factors and use Eqs. (41) and (42) to convert .the

two factors in the denominators to currents in the absence of interaction

’

fields, we obtain
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IC(O) ID(O)

Zo . Z. =2 2Z2.) . (45)
vc “ID IC “vD [IC(O) +ID(O)] 2 .

(

O
]
e

or

1.(0) 1,(0)

, 2
| [IC(O) + ID(O)]

O
-
e

[(ZID = Zyp) = (Zpe - Zvc)] (46)

with two forms of the '"bias factor'" which can be shown to bé equivalent through
Egqs. (3) and (4). The final factor in Eds. (45) or (465 is completely determined
by the éink stfucture and ‘each I could equally well be replaced by the appropriate
sink strength. Thus, Eq. (46) may be regarded as formaily equivalent to

(6)

Wiedersich's formula except that he assumed his factors corresponding to

(ZID - iVD) and'(ZIC - ZVC) to be conétants yhich they clearly are not. ﬁor

~are all of the Z's in Eq. (45) constant of course, as often assumed in reaction-
'raté?theory models. There is the possibility, howevér, that since the final

factor in these vefy symmetrical formulas is a function of the sink strucutre
alone, the Bias factors éontaining the Z's may nbt depend strongly on sink
structure. To simplify calculations of the biaé factor, which we designape

B,‘the factors IC(O) + ID(O) may Ee replaced by a for our case of no recombin- .
ation (although if one uses Eqs. (45) and (46) for estiﬁates in which recombination

is important this cannot be done). With this replacement then, Eq. (45) or

(46) becomes

8 = éBSC(O)SD(O) = 4BS(0) [1450(0)] = éBsD(b) [i—sD(o)] :

(No recombination) -(47)




. 2
: ' 1.(0) 41r "N J_(0) »
where SC(O) = - ¢ = - v vC : (48) .
. a -a
I_(0) - 2rr p J_(0) 4 ‘
and SD(O) =__D - - o D ‘ : (49)
a a ' '
and where JC(O) and JD(O) may be obtained from Eqs. (30) and (29) with r = r,
and r = ro respectively, ahd with the thermal terms and all E's set equal to
zero. We thus obtain
N 2
2 v, R R
- 2 rv 3 9 2 T
SC(O) = - 41rrv Nv —3 - ; N . ) )
[r 2—~Y Ipt— 4+ - =
v r R
1 2 1 2 2
4 R - o "6 (R -y >
+ 5 _ N 1)
£ rZ[z_zln&+L- ;] -
v p r r R
‘ ‘ o v
With rearrangement, this can be written in the form
. 2. ' 3
2erv R 3 1.v R 1 rv 3r rv 1%y
: - In—+sc—In—- -5+ -
4 3 3 - P ro 2 R ro 4 R . 4R3 2 R
S(‘:(O) =3 N -r ~ 4+ R (51)
v 2N r, T,
In—+ 1 - e
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where the physical meaning of the S(0)'s as the fractional volumes from

which the sinks drain defects is clearly displayed. One easy limiting case is
: : 3

T, + 0, for which SC(O)”+ 0, SD(O) > np(R2 - roz) + ﬁ%ﬁf Nv = 1, the dislocétioné,
absorb all defects and of course no swelling occurs. The coefficients of R3:
in Eq. (51) and of R2 in Eq. (52).detefmine the location of the surface around

. each type of sink across which the flux is zero in:the absence of interactions

and they are plainly related strongly to the relative sink strengths.through

the factor N;r&/p.' The term 2erv 1n-%— /p is of course exactly the ratio
of sink strengths obtained from simple,osingle—cell\calculations.l The ;X
- and %9 factors describe sink "volume-fraction" corrections and the presence
"of parameters of both types of sinks in each S(0) produces the so-called °
"ﬁultiple—sink" corrections discussed by other authors(B); We feel that since

these effects ére contained within thé single model in an internally consistent
manner, they are probably more reliably described here than in other treatmenfs where
'théy'are estimated through different models (always wigh approximations whose
inéécuraciés are difficult to assess) and then.introduced into the reaction-rate-
theory model as "cofrection factors". Unfértunately,‘wg are still subject to

the assumption that recombination can be adequately assessed separately, but
all other models calculating sink strengths, biés factors or multiple-sink -
correction factors invoke the same assumption in addition to the 1éck of internal
consistency discussed.earlier. | |

Values of the bias factor, B, have been calculated from Eq. (47) for the

various problems which we discussed above and are shown in Fig. 6. All unmarked
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poin;é are fof T=600K, whereas numBers besidepéintsdesignate other temperaturés.
The temperature dependence is very- slight within the range of significant void
swelling, but there is_a systematic variation with relative sink strengths

with B ~ 0.53 for equal sink strengths (maximum swelling). It falls to values
of -~ 0.25 for the dislocation-dominated case and rises go ~ 1.5 for the void-
dominated case. . -

These bias factors are mﬁch larger than the (Z-1) factors of.0.02.

1

suggested by Brailsford and Bullough(7) or 0.08 deduced by Bullough, Eyre
(29) '

and Krishan when matching their reaction-rate-theory predictions with

experiment. However, these authors employed the full-damage—rate predictions
in'their analyses and wevbelieve this 1s incorrect. Although the actual fraction
of defects which survive clése—pair annihilation and thus are avaiiable to
diffuse to sinks'is.difficuit to assess quantitatively, it seems certain it

can be:significantly less than unity even for electron irradiation where

(30)

close-pair annihilation typically removés as many as ~807 of the defects
under post-irradiation annealing in pure metals (but perhaps only ~10% in alloys).
For neutron.or heavy ion damage, cascade effects can reduce the number of
defects surviving close—ﬁair annihilation even fur;her. We recently concluded(zo)
that fewer than ~187 of the defecté éscape‘a typical neutron cascade; Blewitt

(31) and Goldstone et a1(32)

et al have interpreted independent experimental
measurements to mean that only ~1% of the point defects escape a high-energy
cascade. It seems clear that the efféctive produttion rates for neutron damage
can easily be only ~0.1kof the TRN standara calculations. Then if previous

authors estimated a required bias of ~0.06 using the full damage rate, a more
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réasonable estimate would be B 2 0.6 which is Qery close to the average of 6ur_
estimates. An alternative way of expressing the situation is that our estimates
are consistent with experimental observations and our knowledge of close-pair
annihilation whereas the bias values of a few percent are not.

(33,34) havé previously suggested that the larger bilas factors

Fisher and White
predicted by the Heald single-cell approach offer a better explanatidn for
obsefvgd swelling rates (when the effective defect production rate is considergd
as we have done here) th;n does the small bias factor proposed by Bullough and
co-workers. We concur with this general conclusion, but we consider that our.
preéent bias estimates should be more quantitatively reliable than those derived
from Heald's-mpdel whichlconsiders only dislocations to derive ZID and ZVD’ in-

consistently assumes ZIC = ZVC = 1 and simulates defect production by imaginary

sources outside the dislocation cell boundary. For example, we' find B increases

from ~0.29 to ~0.46 as NV goes from ~1019 to ~1021 m.-3 (rV = 100 ro) for a fixed

dislocation density of 6 x 1014 m/m3. The Heald model of course has no effect

of void sink strength. Also, we find that for -a fixed void density of 1021'm_3

(rv = lOOro) B decreases from ~1.55 to ~0.46 as the dislocation density increases

from 1b10 to 6 x 1014 m m3. Heald's approach yields values of B which increase

oﬁer the same range from ~0.15 to ~1.15. Thus ndt'only:do the magnitudes differ

but they vary in the opposite direction as a function of dislocation density.
Finaily, we compare our results with those predicted by Wolfer and‘Ashkin(¥3’l6).

These authors claim that cavities atract interstitial; preferentially more than

do dislocations so that void growth cannot even occur unless thé cavities are

first "coated" with segregated solute atoms which sét up adéitional interaction

fields which repel the interstitial more than the vacancy. Now certainly solute

segregation to voids (and other sinks) does occur and this phenomenon can produce

additional interaction fields which .in turn will alter the bias. Indeed, such
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effects could easily be incorporated info the .present modél by specifying

thése interaction fields in addition to the intrinisic ones used here. How-
ever, we reject their contention that "clean" voids will not grow in the presence
of "clean" dislocations. They arrived at this conclusion by eliminating the
first-order misfit interaction between a dislocation and a pqint defect on the
basis that its average over the full angular range is identically zer;. This is

‘clearly inconsistent with the fact that, in analytical studies in the abSence.
(25) to

of irradiation, the fully angular dependent interaction has been shown
be equivalent to an interaction independent of éngle with a magnitude equal to
the actual intefadtion averaged over only the attractive fegime (exactly our

assﬁmption).' The prediction by Wolfer and Ashkin(16)

of a much stronger effect
of extefnally applied tensile stresses than that predicted here also arises
from the neglect of the misfit interaction contribution to the interaction

energy, so we believe them to be in error on this point also.

5. Summary .

We have developed an analytical approach which considers the production
of point defects by.irrédiation and their migration to different types of sinks
with which they interact in differing ways. We haﬁe used this approadh to
analyze the resulting bias effects, or the aﬁsorption of felatively different
amounts of one type of defect at particular sinks. This bias effect'results in
radiation-induced dislocation climb which figures prominently in current concepﬁs
of radiation~induced‘creep, growth and swelling. However, all prior models to
estimate the magnitudes of these bias effects suffer from definite efrors or

unphysical assumptions which render them of uncertain quantitative accuracy.
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The approéch'presented here coﬁbineé togetﬁer, for the first time, deféct
broductioh and pértitioning among more than one type of siﬁk with different
interaction fields. We have applied it to obtain specific quantitative
estimates of the magnitudé of SIPA creep and.found its rate to be significantly
less thaﬁ prgvious estimates, the magnitude of the. bias féctor being ~0.077%

14 m/m3.

for an applied stress of 102 MPa and dislocation density of 6 x 10
This value is weakly témperature-dependent and increases,with4increasing‘
dislocétion density.

We have élso applied it ﬁo thé case of dislbcaﬁions and sphérical voids
of érbitrary densities. The predicted bias factor for assumed values of 1;4
énd 0.23 for the relaxation strains of interstitials and vacancies, respectively,
is ~0.6 for comparable magnitudes of the dislocation énd void sink stréngths,
falls to ~0.26 for ;he dislocatioh—dominated case and rises to ~1.5 for the
void—déminated case. These magnitudes have Eeen shown to be consistent with
experimentél results and oﬁr.present uﬁderstanding of the number of point defects
surviving close-pair annihilation following their production. Previous theoretical
estimates Qf bias factors of only a few percent (or in one case even negative
values) have been shown to be theoretically deficient, and previous.estimétes
of a few percent deduced from-experimental resulté employed the unreasonable
éssumption that'gll;the defects calculatedbtd be produced byla model sucﬁ as -
the TRN standard are avaiiable for 1ong—range diffusion.

Estimates have also been made of the effect of externally aﬁplied stress.‘

and gases inside the voids on the resulting swelling and it was concluded that

pressures ~10_3‘of the shear modulus would be required for significant effects.
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The possibilify of applying such high pressures without yielding is problem-

atical so that observation of stress-enhanced swelling éffects seems difficult:

if no£ ﬁnlikely.
The present model enables the calculation of more infernally consistent
and theréfore_probably more accurate volume-fraction and muitiple—sink correction
factors for sink strengths than those previously available. - |
Our model has ignored recombination, thus implying that an effective
defect production rate can be employed which has been correctedAfor ldsses

due to recombination. The latter must, in turn, be independently estimated

and so we have no guarantee that errors in predicted mass—transport rates

(35)

are not thereby introduced. However, the recent analysis of Hayns "7’ indicates

that these errors are likely to be quite minor in most cases.
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