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APPROACH

S. A. Stansfield
Intelligent Machine Principles Division 

Sandia National Laboratories 
Albuquerque, NM 87185

Abstract
In this paper, we demonstrate a general-purpose robotic grasping 

system for use in unstructured environments. Using computer vision 
and a compact set of heuristics, the system automatically generates 
the robot arm and hand motions required for grasping an unmodeled 
object. The utility of such a system is most evident in environments 
where the robot will have to grasp and manipulate a variety of unknown 
objects, but where many of the manipulation tasks may be relatively 
simple. Examples of such domains are planetary exploration and as­
tronaut assistance, undersea salvage and rescue, and nuclear waste site 
clean-up. This work implements a two-stage model of grasping: stage 
one is an orientation of the hand and wrist and a ballistic reach to­
ward the object; stage two is hand preshaping and adjustment. Visual 
features are first extracted from the unmodeled object. These features 
and their relations are used by an expert system to generate a set of 
valid reach/grasps for the object. These grasps are then used in driv­
ing the robot hand and arm to bring the fingers into contact with the 
object in the desired configuration. Experimental results are presented 
to illustrate the functioning of the system.

1 Introduction

Research into general-purpose grasping and robot haptics has applicability 
to several problem domains. Short term success will enhance our under-
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standing of what is required, in terms of hardware, software, and models, 
to make articulated, sensate robot hands more useful and will guide us in 
designing the next generation of these devices. Basic research in robot hap­
tics may also help us to determine how much of the control of teleoperated 
manipulators can be accomplished automatically and how much must be 
assumed by the human operator. Long term success in these areas will have 
broad application to the area of automated assembly, especially in small 
batch production. But it is in the area of unstructured, hazardous envi­
ronments where this type of research will find its most useful application. 
There is a common thread in such diverse applications as nuclear waste site 
clean-up, planetary exploration and astronaut assistance, and undersea sal­
vage and rescue - the environment is highly variable. Take, for example, 
the problem of nuclear waste site clean-up. The numbers and types of ma­
terials to be handled are not well known and cannot be modeled for the 
robot. The robot must be capable of handling objects with which it is not 
familiar, which may be broken or covered with clots of soil, or which may 
be temporarily fixed in some way to objects nearby. On the other hand, 
unlike an application such as automated assembly, the robot does not need 
to handle these materials for fine manipulation. Grasping and transporting 
objects for sorting and packing, and carrying out elementary tasks such as 
reorienting, separating, and brushing, may frequently be all that is required.

The research presented in this paper addresses the problem of general- 
purpose robotic grasping for unstructured environments. We have designed 
and implemented a system which generates reach/grasps for unmodeled ob­
jects. The system integrates visual perception of the object to be grasped 
with high-level knowledge about the relationships between extracted object 
features and the set of valid grasps for the object. Results from studies of 
human grasping and perception have been integrated into the work when we 
believe that they provide a good model or help to simplify the solution. The 
remainder of this paper discusses the components of our system in detail 
and presents a set of experimental results which illustrate the functioning 
system.

2 Related Work

Much of the previous and current work in robotic grasping is analytical 
and studies how a desirable, stable grasp may be chosen. Several methods 
for determining grasps have been proposed. Nguyen [Ngu88] determines

4



force-closure grasps for polyhedral objects by finding independent regions 
of contact which totally constrain the motion of the object. Li and Sastry 
[Li 87] propose three quality measures for choosing an optimal grasp, includ­
ing a task-oriented measure which takes the expected forces and moments 
of the task into account. Salisbury [Sal85] uses screw theory to determine 
how internal grasp forces may be used to constrain the set of stable grasps, 
while Hanafusa and Asada [Han77] utilize the potential energy in compliant 
fingers to determine grasp stability.

The above researchers address the issue of choosing a stable grasp. They 
do not, however, address the question of how this stable grasp is to be ac­
quired. There are two distinct approaches to the problem of grasp acquisi­
tion - analytical and senor-based. Mason [Mas85] uses quasi-static, planar 
pushing operations to ensure that the object will move into the proper posi­
tion to allow stable grasp contacts to be made. Trinkle and Paul [Tri89] use 
the same quasi-static analysis, however they consider the case of multiple 
pushers and negligible friction. Neither work requires sensory input. Fear­
ing [Fea86] utilizes local tactile sensing of the surface normals of polygonal 
objects to determine the finger motions required to reach feasible grasping 
locations. Initial contact with the object is assumed. Lozano-Perez et al. 
[Loz87] use a range sensor to locate a known object from a pile of objects. 
The system generates a set of grasps and regrasps for a parallel-jaw gripper 
to move the object safely from its start position to some desired end posi­
tion. Metrically accurate polyhedral models of all objects are assumed and 
the set of stable grasps is limited by the gripper. Ikeuchi et al. [Ike86] use 
photometric and binocular stereo vision systems to extract such information 
as surface orientation and range from an object. This information is then 
used to bring a parallel-jaw gripper into contact with the object in a legal 
grasp configuration. Legal grasps are again limited by the forces which the 
gripper can apply to the object. Rao et al. [Rao88] also use a vision system 
to extract information about the object to be grasped. A range acquisition 
system is used to extract 3D data which is then fit to a Generalized Cone. 
Four grasp modes are defined for the Belgrade-USC hand and the vision 
system is used to choose from among them for the given object. Mode se­
lection is done either via a table look-up or via a sorted grasp mode list for 
the object.

In the final work described above, the authors also propose the use of 
heuristics to choose an appropriate grasp from the sorted grasp mode list. 
Other researchers have also proposed the addition of heuristics to a grasping 
system. Tomovic et al. [Tom87] and Iberall et al. [Ibe88] both propose
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knowledge-based systems for use in grasp selection. Tomovic incorporates 
the idea of reflex control, while Iberall focuses on planning the posture. 
Cutkosky [Cut88] presents an expert system which performs grasp selection 
in the manufacturing domain. Information about grasp parameters is input 
by the user and then utilized by the system to choose an appropriate grasp. 
In none of the latter three works, however, is the information provided by 
the expert system used to drive actual devices.

The approach presented in this work integrates knowledge and percep­
tion to drive robotic grasp. A structured-lighting vision system is utilized to 
extract aspects, or views, of the object to be grasped. This set of aspects is 
then used by a rule-based system to generate a set of grasps for the object. 
The parameters generated by this knowledge-based system are used by a set 
of lower-level motor modules to drive preshaping and grasp adjustment for 
the robot hand and wrist orientation and reach for the robot arm in order to 
bring the hand into contact with the object in the desired configuration. At 
the heart of our system is the symbolic representation constructed by the vi­
sual system and utilized by the rule-based system in generating grasps. The 
system requires neither an a priori knowledge of the object to be grasped, 
nor a dense set of sensory data such as is often needed to build geometric 
models.

3 A Two-St age Model of Grasping

The utility of general-purpose, flexible manipulators versus specialized end- 
effectors is highly task dependent. One can easily argue for specialized 
end-effector tools when the task, the set of manipulations, and the objects 
to be manipulated are well known. In an environment which is not so highly 
structured, a single, flexible manipulator capable of carrying out a number 
of diflerent tasks would seem to be more useful. Likewise, one might find 
arguments in support of both the analytical approach to robotic grasping 
and a more anthropomorphic approach which attempts to incorporate hu­
man techniques into the robotic system. Analytical methods have a firmer 
mathematical foundation. On the other hand, because the analysis can 
quickly become unwieldy, simplifying assumptions are often made. For ex­
ample, grasps are often assumed to be planar. They are often modeled as 
point contacts or as idealized soft-finger contacts. Coulomb friction, or no 
friction at all, is assumed. The difficulties in controlling a multiple-degree- 
of-freedom manipulator capable of providing such grasps is not taken into
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account, nor are the inaccuracies of these devices or the inherent uncertain­
ties in the environment itself. Finally, simplified object models are often 
assumed to be available. Obviously, the less structured the environment 
becomes, the less likely it is that these assumptions will fit the reality of the 
situation.

An alternate approach is to look at studies done by psychologists and cog­
nitive scientists in human grasping. Based on these studies, we may develop 
a set of heuristics to help both in simplifying the synthesis and control of 
robotic grasps and in decreasing the number of limiting assumptions we must 
make about the world. Studies of human grasping provide a number of use­
ful insights for the researcher in robotic grasping. For example, it has been 
noted that humans tend to use a predetermined set of hand configurations in 
the initial stages of a grasp [Nap56, Jea78, Arb83]. Often, several fingers are 
coupled, reducing the degrees of freedom of the system [Ibe87]. High-level 
knowledge about the task, the object to be grasped, and the perceived state 
of the world affect grasp choice and execution [Nap56, Kla86, Cut87]. And 
finally, sensory information is utilized at all stages of a grasp.

This research takes the second approach to implementing robotic grasp. 
We have built a knowledge-based system which incorporates many of the 
techniques observed in human manipulation. The system is based both on 
models of human grasping and of human perception. Perceptual capabilities 
allow the robot to adapt more readily to changes in its environment, whether 
these changes are caused by encountering new conditions in an unstructured 
environment or by a system or sensor malfunctioning within the robot itself. 
Reasoning provides the mechanism by which this flexibility may be realized, 
as well as providing a “hook” into the larger, intelligent system of which 
grasping and manipulation is but a subsystem.

The model of human grasping which we have used in designing our sys­
tem was originally proposed by Jeannerod [Jea78] and later reexplored by 
Arbib [Arb83]. This model divides the grasp into two stages: the transport 
stage and the manipulation stage. In the transport stage, viewer-relative, 
extrinsic properties of the object such as spatial location and orientation 
are used to guide hand/wrist orientation and a ballistic reach toward the 
object. In the manipulation stage, object-relative, intrinsic properties such 
as shape and size are used to preshape the hand in anticipation of the grasp. 
Vision is used to extract the appropriate information and is utilized in an 
open-loop, feedforward manner during the preshaping and reach stages. We 
refer to preshape and reach as the precontact stage of grasping and it is 
this stage which we have implemented in the current research. The final, or
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postcontact, stage of a grasp occurs after the fingers are in contact with the 
object. In this stage, haptic information is used in a closed-loop, feedback 
manner to adjust and maintain the grasp during manipulation. We do not 
address the postcontact stage in this work.

4 Robotic Hand Preshaping and Reach

Studies of human grasping have been presented in both the robotics and 
medical literature. Common to all of these works is the idea that there is a 
fixed set of grasp configurations, or a grasp taxonomy, into which all grasps 
may be fit. Researchers differ, however, in their ideas about which param­
eters are used to choose particular instances of grasps and on the relative 
importance of these parameters. Taylor and Schwarz [Tay55] present a set 
of six grasps originally proposed by Schlesinger [Schl9]. In this taxonomy, 
object shape is the most important parameter used in selecting a grasp. A 
spherical object, for example, is grasped using a spherical grip. Jeannerod 
[Jea78] also suggests that shape and size are important parameters in choos­
ing an initial grasp configuration. Napier [Nap56] places grasps into one of 
two categories: power grasps and precision grasps. Power grasps are used 
when stability is important, while precision grasps are used when dexterity 
is required. Napier believes that the task, rather than the shape of the ob­
ject, is the important factor is choosing a grasp. He notes that in removing 
a lid from ajar, two different grasps are utilized: A power-type grasp is used 
to loosen the lid, a precision type grasp is then used to unscrew it. Cutkosky 
and Wright [Cut87] also point out the importance of task in grasp selection. 
Based on a study of grasps used by machinists in a small batch machine shop, 
they provide a taxonomy which further divides Napier’s two categories and 
note that once a choice between a power or precision grasp has been made, 
object shape and task requirements become more equally weighted. Lyons 
[Lyo85] defines two functional indices for categorizing grasps, which are very 
similar to Napier’s grasp taxonomy. The first index is firmness or power re­
quired. For example, the grasp required to use an object as a tool must be 
firmer than the one used simply to transport it. The second index is preci­
sion. The grasp used to insert a bolt requires more dexterity than the one 
that is used simply to lift it. Based on these indices, Lyons suggests three 
grasps with the appropriate functionality: the encompass grasp, the lateral 
grasp, and the precision grasp. Finally, Iberall [Ibe87] suggests that grasp 
posture is constrained by the way in which the hand can apply opposing

8



forces around an object. These forces are defined by both the capabilities of 
the hand to create them and by the forces required to carry out the given 
task. She defines a set of three methods for attaining these forces: pad 
opposition, palm opposition, and side opposition. The chosen grasp reflects 
the use of one or more of these oppositions. Again, it would seem that object 
shape and size will affect the hand’s ability to apply such oppositions and 
so will be equally as important as task in choosing a grasp.

Given the above studies, we propose the following ordering on these two 
factors: That intrinsic properties of the object such as shape and size are 
used to generate the set of all possible grasps for an object, and that task 
requirements are then used to choose one grasp from this set. Thus an object 
property is a necessary, but not sufficient condition for a grasp. For example, 
if object shape does not allow a precision grip of the object, then task 
requirements calling for this grasp are meaningless. If, on the other hand, 
shape allows several different possible grasps, then task requirements will 
dictate which is used. This, then, is our approach: we use object properties 
to generate a complete set of valid grasps for the object. The task and the 
state of the environment may then be used to prune this set.

We next address the problems of specifying the set of hand preshapes to 
be known to the system and of determining the parameters which will be 
used to define them. In choosing our preshapes, we have once again utilized 
the analyses of human grasping presented above. Hence, the set of three 
hand preshapes which we have implemented - wrap, pinch and grip - are 
similar to those proposed by Lyons. The defining parameters of a preshape 
are the number of virtual fingers which it uses and the type of contact which 
the fingers make with the object. The concept of virtual fingers is due to 
Iberall [Ibe87] and involves the coupling of one or more real fingers to apply 
the desired forces to an object. Since the coupled fingers move as a single 
unit, the control of the grasp is made simpler.

In addition to the defining parameters, we also specify adjustment pa­
rameters for a grasp. Adjustment parameters are used once a preshape has 
been invoked to adjust the grasp to the specific object. Currently, we imple­
ment two adjustment parameters within our system. Aperture adjustment 
increases the distance between the top and bottom fingers, while maintain­
ing the grasp preshape, in order to insure that an object will fit into the 
grasp. Span adjustment increases or decreases the distance between the top 
two fingers to insure that all fingers make contact with the object and to 
maximize stability. We summarize our three grasps below.
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Figure 1: Wrap hand preshape.

4.1 Wrap

The wrap grasp is a power grasp in Napier’s taxonomy. The hand attempts 
to enclose the object. This grasp provides maximum stability, but minimum 
dexterity for further manipulation. The wrap utilizes three virtual fingers 
and contact with the object is extended (i.e. there are multiple areas of con­
tact along the fingers.) Both aperture and span adjustments are executed. 
Figure 1 shows the wrap preshape as implemented on the Salisbury robot 
hand.

4.2 Grip

The grip is a precision grasp. Three virtual fingers are used and there is 
only one area of contact per finger. The object is held at the fingertips, so 
there is greater dexterity. Manipulation of the object w e fingers is also 
possible. Both aperture and span adjustments are performed for this grasp. 
Figure 2 shows the grip preshape as implemented on the Salisbury robot 
hand.
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Figure 2: Grip hand preshape.

4.3 Pinch

The pinch grasp is somewhere between a power and a precision grasp. Two 
virtual fingers are used: The top two fingers are coupled to form a single 
unit which opposes the bottom finger. The object is held at the fingertips 
and there is only one area of contact per finger. Because the top two fingers 
are coupled, only aperture adjustment is performed. Figure 3 shows the 
pinch preshape as implemented on the Salisbury robot hand.

4.4 Wrist Orientation and Reach

The other stage of our grasp involves orientation of the wrist and a ballistic 
reach toward the object in order to place the fingers in the proper position 
to perform the grasp. There are three parameters for this stage. The target 
point is the point on the object above which the palm of the hand will be 
centered. The approach plane is the plane normal to the axis along which 
the hand will approach the object. Finally, the oppositions determine the 
orientation of the hand for finger placement. We define our oppositions as a 
set of planes. This is different from the way in which Iberall uses the term. 
The principle, however, is essentially the same. In Iberall’s terminology, 
oppositions define the forces which the hand can apply around an object.
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Figure 3: Pinch hand preshape.

In our terminology, oppositions define finger placement, which in turn de­
termines the forces which will be applied. The main difference is that our 
usage of the term is object-based, rather than manipulator-based.

5 Visual Perception

Visual information is obtained using a structured-lighting vision system. 
Hardware consists of a laser scanner and translation and rotation tables. 
This allows us to obtain scans of an object from several different views. The 
result of a scan is a set of three-dimensional points calibrated to the world 
space of the Puma robot. This data is processed by the visual perception 
system to create a representation of the sensed object which is utilized in 
generating and executing grasps of the object. The vision system, as we 
use it in this work, is passive. Visual processing of an object occurs at the 
beginning of an experiment. This information is then used in a feedforward 
manner by succeeding modules.

In Stansfield [Sta88c], we present a model for robotic perception based 
upon Fodor’s [Fod83] proposed model of the human perceptual system. In 
this model, the perceptual system is organized into a hierarchy of problem­
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solving modules each of which is domain-specific and informationally-encapsulated. 
Processing within the system proceeds via the assignment of a set of inter­
mediate levels of representation of the sensed world, beginning with low-level 
primitives and ending with an abstract, symbolic representation to be used 
by the cognitive system. It is the function of each module to either extract 
some feature or primitive or to process features from lower-level modules 
into more abstract representations. The final output of this system is an 
apprehension of the object being sensed. By apprehension we mean the 
identification of the features of an object and the relations among them.

We have based the structure of our visual perception system upon this 
model. The primitives of the system are the 3D points obtained by scanning 
an object. The final output is a symbolic representation consisting of the 
features of the object and their spatial relations. Hence, the system appre­
hends, rather than recognizes, the object to be grasped. We discuss both 
the representation and the processing below.

5.1 Object Representation

An important facet of our system is that it does not require geometric models 
of the objects to be grasped. Indeed, in unstructured environments, it is not 
reasonable to expect that we will be able to model all of the objects which 
the robot might encounter; nor can we assume, in such inherently noisy 
environments, that we will be able to gather sufficiently accurate sensor 
data to match these models even if they were available. What we have 
done instead is to provide the system with perceptual information in the 
form of a set of defining features loosely coupled spatially into a set of 2-1/2 
dimensional views, or aspects.

The representation is currently created solely by the visual system, al­
though it is easily extended to contain information from other perceptual 
systems such as touch. It is a feature-based, hierarchical representation. At 
the highest level is information about the perceived object as a whole. The 
next level contains descriptors for the components which define this object.
The lowest level contains the features which parameterize these components.
These features are organized into a set of view-dependent aspects which we 
refer to as the aspect polyhedron.

The concept of aspects is due to Koenderink [Koe79]. The idea is that all 
of the infinite 2-dimensional views of a 3-dimensional object can be grouped 
into a finite set of equivalence classes. These equivalence classes represent 
the aspects of the object. The aspect polyhedron is a collection of aspects
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for the sensed object created by taking multiple scans of the object at fixed 
positions and then extracting the object features for each scan. Informally, 
one might think of it as a set of projections of an object onto the faces of 
a polyhedron inside of which the object is centered. In Stansfield [Sta88b] 
we present this representational paradigm and show how it can be used for 
the tactile exploration and recognition of generic objects. In this work, we 
do not attempt to match the object to a model nor to attach a label to 
the object as a whole. Rather, we build the aspect polyhedron and use 
it directly to reason about and to drive manipulation. An example of an 
aspect polyhedron created by our system is shown later in the paper. First, 
we discuss the visual processing in more detail.

5.2 Visual Processing

We currently assume that we are dealing with a single, isolated object which 
may contain multiple components and features. A maximum of five aspects 
for the object may be obtained: top, front, back, right, and left. (The system 
requires only one aspect to function.) An aspect is obtained by scanning an 
object from a particular viewpoint. Once an aspect is obtained, the features 
and relations which it contains are extracted. Figure 4 shows the flow of 
processing for the vision data within an aspect. Aspects are related to each 
other via the aspect polyhedron, even when frames for all five faces are not 
constructed. After the initial sensing has been done and the aspect frames 
created, the system constructs the frames for the object and components 
based on all of the information available from the individual aspects.

Initial Segmentation The set of 3D points obtained from the structured- 
lighting system must be segmented and classified. We have chosen to do 
the segmentation using well-known reflectance-image processing techniques. 
The first step, after performing a scan of the object, is to create a 2D 
binary image from the 3D points. Standard region growing and segmenting 
techniques axe then used to segment this 2D image into a set of 2D regions. 
Figures 5-7 show the results of this processing for three different aspects 
of an object having a hollow, cylindrical body and one part. The set of 3D 
range points is then segmented by associating each point with the region of 
which its mapped pixel is a member.

Classification of Components and Features The perceptual system 
extracts and synthesizes a fixed alphabet of primitives and features. This
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Figure 4: Flow of control for visual processing.
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Figure 5: Top view of sensed object.

Figure 6: Front view of sensed object.
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Figure 7: Right view of sensed object.

set is restricted primarily by the limitations of the devices which comprise 
the system. (Humans, for example, do not usually speak of the infrared 
properties of an object, since the human system is not capable of extracting 
this property.) Figure 8 summarizes the hierarchical definition of an object 
based upon the set of features currently extracted by our visual system. 
As we stated earlier, an object is composed of a set of components. These 
components are obtained from the set of segmented 3D range points. A 
component is labeled as either a body or a part. Each object may have only 
one component labeled body. A component is labeled based upon its size in 
3D space and its area in 2D image space. The set of features which define 
the components are then identified and parameterized. A body component 
is currently composed of rim contours and planar or curved surfaces. The 
determination of whether a feature is a rim contour or a surface is based 
upon the ratio of its area to its extent in 2D space. If the feature is labeled as 
a surface, then its shape is obtained using the 3D points. If the component 
is labeled as a part, then it is parameterized by its shape. A one-extended 
part has dimension in only one direction, while a two-extended part has 
dimension in two directions.

Features are extracted from each aspect obtained for the object. The 
result is a hierarchy of frames containing the object, its components, and its
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Figure 8: Components and features defining an object.
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view-dependent features grouped according to the aspect of which each is a 
member. An object is parameterized by its spatial extent, its dimensionality 
(a very thin object has dimension 2, for example,) and its set of components. 
A component is parameterized by its spatial extent and type. A feature is 
parameterized by its type and shape. A set of spatial relations (above, 
below, left-of, and right-of) is also extracted for the components. Figure 9 
shows the final output of the vision system for the object in Figures 5 - 7.

We would like to conclude our discussion of the visual processing stage 
with an observation. First, while researchers in machine vision are making 
daily strides forward, the state of the art is still very primitive. Our system 
is capable of functioning even with a very limited visual capability. Second, 
the structure for perception which we have set forth here will allow us to 
incorporate not only improved visual processing, but also haptic and other 
forms of sensory input as they become available.

6 Reasoning for Grasp Generation

Once the object has been visually perceived and the aspect representation 
has been built, a rule-based expert system is invoked to generated a set of 
valid grasps for the object. The system is implemented in Prolog. The rules 
operate on the aspect polyhedron created by the perceptual system and em­
body a knowledge of which features must be present, and what the relations 
among these features must be, in order for a particular hand preshape and 
reach to be valid. This simple set of heuristics for grasping objects forms 
the heart of our system. It also provides the system with both power and 
flexibility. From information as sparse as a single view of an object, and 
without the necessity of matching to a stored model, we are able to generate 
grasps for the object.

Because we are dealing with unstructured environments, we do not im­
pose the condition that an object must be recognized before it can be 
grasped. Indeed, such a condition would, in general, be quite limiting - 
imagine having to know what an object was before you could handle it! 
In unstructured environments in particular, we cannot expect to model all 
of the objects which the robot might encounter. In addition, we must ex­
pect that sensor errors and objects which deviate from the model will be 
regularly encountered. And finally, to match an object to a single hypoth­
esis may require more initial sensing than is currently necessary or may be 
possible.
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Figure 9: Final visual perception of the object.
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component: body (255)
view is top
type is rim
shape is undetermined

surface frame 
component: body (255) 
view is front 
shape is curved

surface frame 
component: body (255) 
view is back 
shape is curved

surface frame 
component: body (255) 
view is right 
shape is curved

component frame 
component: part (128) 
enclosing volume: [37,43,98]

part frame
component: part (128)
view is top
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part frame
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view is front 
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part frame
component: part (128)
view is back
shape is two.extended
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In this work, we show that it is not necessary for the robot to recognize 
an object in order to grasp it. It need only apprehend that object. In 
Stansfield [Sta88a], we present a system which attempts to recognize the 
object before generating grasps. A benefit of recognition is that we may 
instantiate a full model of the object to be used in further reasoning. For 
example, from the model we would have knowledge of unsensed portions 
of the object. We could then generate grasps which place fingers on these 
portions. Our system currently does not place fingers on unsensed parts of 
an object.

What we foresee in the future is a hybrid system. The robot will carry 
around models for a small set of objects which axe part of its personal 
domain - a set of tools for example. This will allow the robot to identify 
a tool if it is misplaced during use and needs to be retrieved. In addition, 
our frame-based representation will allow us to store other, non-perceptual, 
information about these objects, such as their use, proper storage position, 
etc. The majority of the grasping work, however, will be carried out on 
objects which are part of the environment, rather than the robot’s personal 
domain. The robot must be able to grasp these objects without recognizing 
them.

The rules which the system utilizes are quite simple. Intrinsic properties 
of the object, such as its size and the set of features which comprise it, 
are used to generate the hand preshape. For example, a curved object - 
represented as a set of curved surfaces - is grasped using a wrap grasp. An 
object with a planar surface or a rim may be grasped using a grip grasp. 
And a flat, thin object may be grasped between the fingers in a pinch grasp. 
Extrinsic properties of the object, such as its location and orientation, are 
used to generate the reach. The set of rules is completely device independent. 
The only requirements are that the hand be capable of executing the desired 
preshape and that the span of the hand be known. In addition, the system 
can generate grasps for objects given any number of aspects between the 
minimum of one and the maximum of five. The lack of aspects, and hence 
of information about the object, only causes fewer grasps to be generated.

6.1 Example Rules

How these rules operate is perhaps best illustrated by a set of examples. 
Figure 10 shows the psuedo-code rule for invoking a pinch grasp of a rim 
feature with reach from above. This is a simple grasp and there is only one 
condition: The object must have a rim contour in the aspect labeled top.
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Pinch_Top_Body(Object)
If aspect labeled Top has Rim.Contour

THEN valid preshape is Pinch for component Body 
approach Body from Above 
target is Point on Rim.Contour 
oppositions sure Point Inside Rim.Contour 

and Point Outside Rim.Contour.

Figure 10: Rule for a pinch grasp of a rim contour.

Figure 11: Rule for a grip grasp of a rim or border contour.

Grip.Right.Body(Object):-
If aspect labeled Right has Rim.Contour OR 

aspect labeled Right has Planar.Surface AND 
object fits into span of hand 
THEN valid preshape is Grip for component Body 

approach Body from the Right 
target is center of Contour 
oppositions are Contour from Front 

and Contour from Back.

A pinch grasp is the most easily executed: Fingers are placed on either side 
of the rim and the grasp is closed. The approach, target, and oppositions 
define the wrist orientation and reach.

Figure 11 shows the rule for invoking a grip grasp of a contour. Contours 
are created either by rim features or by the borders of planar surfaces. In 
this case, the hand spans the object at the position of the contour and so a 
check is made that the object fits into the hand in the proper dimension.

The wrap grasp is the most complex grasp. This is because the hand 
attempts to enclose the object, creating multiple points of contact along each 
finger. It is in this configuration that collision with other components not 
being grasped is most likely to occur. Figure 12 shows the rule for invoking 
a wrap grasp of a curved object reaching from the left. The conditions are 
that there be a set of three adjacent curved surfaces and that the left aspect 
have no other components. Recall that it is the left aspect which defines
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Wrap_Left.Body(Object)
If aspect labeled Left has Curved.surface AND

aspect labeled Left contains no other features AND 
aspect labeled Front has Curved.Surface AND 
aspect labeled Back has Curved.surface AND 
object fits into span of hand 
THEN vail id preshape is Wrap for component Body 

approach Body from the Left 
target is center of Curved.surface 
oppositions are Curved.surface from Front 

and Curved.surface from Back.

Figure 12: Rule for a wrap grasp of a curved surface.

Figure 13: Rule for a wrap grasp of a two-extended part.

Wrap_Front_Part_2E_Left(Object.Part):-
If aspect labeled Front has Tvo.Extended Part AND 

Part is Left_0f Body
THEN valid preshape is Wrap for component Part 

approach Part from the Left 
target is center of Part 
oppositions are Part from Front 

and Part from Back.

the approach and placement of the palm. Other components of the object 
which show up in this aspect will be in the way of the desired grasp of the 
curved surface.

The three rules discussed above have been invoked by different features 
of a body component. Figure 13 shows the rule for a wrap grasp of a part 
component. In this case, the part has a two-extended shape in the aspect 
labeled front and is to the left of the main body component of the object. 
The reach is generated so that the palm approaches the part from the left 
and the fingers wrap around it from the front and back.
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6.2 Example of a Generated Grasp Set

Figure 9 in Section 5 shows the final results of the visual perception of an 
object having multiple components and a variety of features. The object is 
a hollow, cylindrical tube with a two-extended part. The object is oriented, 
relative to the robot, so that the rim of the tube is facing up and the part 
is to the left of the body. Figure 14 shows the set of grasps generated for 
this object. A wrap grasp has been generated for the curved body of the 
object with approach from the right. No other wrap grasp for the body is 
generated because the part would be in the way of the fingers. Three grasps 
have been generated for the rim contour. The pinch grasp will place at least 
one finger inside of the tube. Two different grip grasps are generated, placing 
the hand/wrist in two different orientations. All fingers are on the outside 
of the rim. And finally, a wrap grasp of the part is generated with approach 
from the left. A wrap grasp of the part from above is not generated, because 
the part is not large enough in that aspect.

7 Driving the Robot Hand and Arm

Figure 15 summarizes the flow of control for the entire system. The object 
is visually perceived and its defining features, along with their spatial re­
lations, are extracted. The result is an apprehension of the object which 
is represented as a hierarchy of frames and a set of aspects. This symbolic 
representation is input to a rule-based reasoning system which generates a 
set of valid grasps (hand preshape and reach parameters) for the object. 
Each one of these grasps may then be input to the lower-level motor control 
modules and used to drive the robot hand and arm in executing the grasp.

The hardware used to implement the haptic system consists of a six- 
degree-of-freedom PUMA 560 robot arm, currently under position control, 
and a Salisbury [Sal85] robot hand which is mounted on the wrist of the 
PUMA. The hand has three fingers, each with three joints, for a total of 
9 degrees-of-freedom. The hand is also position controlled, with a guarded 
move implemented using the tendon tensions.

There are three distinct stages to a grasp: hand preshaping, preshape 
adjust, and wrist orientation and reach. For ease of execution, we have 
further divided the preshape adjust stage into two substages, aperture adjust 
and span adjust. Figures 18 - 20 illustrate the entire grasping sequence. The 
object to be grasped is a a rectangular polyhedron with an irregular hole 
cut out of it. Figure 16 shows the results of the visual perception of this
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Figure 14: Set of grasps generated for cylindrical tube with two-extended 
part.

Use hand preshape Wrap for component Body 
Approach target is the center of the curved 

surface from the right 
Opposition 1: curved surface from the front 
Opposition 2: curved surface from the back

Use hand preshape Pinch for component Body 
Approach target is point on rim from top 
Opposition 1: inside of chosen rim point 
Opposition 2: outside of chosen rim point

Use hand preshape Grip for component Body 
Approach target is center of contour from top 
Opposition 1: contour from left
Opposition 2: contour from right

Use hand preshape Grip for component Body 
Approach target is center of contour from top 
Opposition 1: contour from front
Opposition 2: contour from back

Use hand preshape Wrap for component Part 
Approach target is the center of the part 

from the left
Opposition 1: part from the front 
Opposition 2: part from the back
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Figure 15: Overall flow of control for the grasping system.

Motor modules drive hand and arm 
for preshape and adjust; wrist 
orientation and ballistic reach

Knowledge-based
system
generates set of valid
grasps
with reach

Visual perception of 
object
provides partial 
apprehension

grasp of object is executed; 
precontact stage is complete
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Figure 16: Results of visual processing for polyhedron with irregular cut-out.

object frame
enclosing volume: [139,232,79] 
dimension: 3 
components: [body]

component frame 
component: body (255) 
enclosing volume: [139,232,79]

contour frame
component: body (255)
view is top
type is rim
shape is undetermined

object (only one aspect was created,) while Figure 17 shows the set of grasps 
generated by the expert system. Note that only one grip grasp for the object 
from above has been generated, since the object is too large to fit into the 
hand in any other orientation. A pinch grasp of the rim is also generated. 
We use the execution of the grip grasp to illustrate all of the stages of a 
grasp.

Recall that the information provided by the knowledge-based system 
consists of the following: A preshape, a target point and approach plane, 
and a set of oppositions. The motor modules also have access to the sym­
bolic perceptual representation which contains the bounding volumes for the 
object and its components, as well as the aspect polyhedron. At the motor 
level, the system also retains information concerning the positions of these 
features in the world space of the robot (at the symbolic reasoning level 
it is not necessary for the system to have access to this information.) In 
the first step of the grasping sequence, the desired preshape is executed on 
the robot hand. In this case, it is a grip preshape shown in Figure 18. In 
the next step, the aperture of the preshape is widened to insure that the 
object will fit into the span of the hand. A transform is then built to drive 
the wrist orientation and reach of the arm. The approach target provides 
us with the (x,y,z) components of this transform, while the approach plane
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Figure 17: Grasp set generated for polyhedron with cut-out.

Use hand preshape Pinch for component Body 
Approach target is point on rim from top 
Opposition 1: inside of chosen rim point 
Opposition 2: outside of chosen rim point

Use hand preshape Grip for component Body 
Approach target is center of contour from top 
Opposition 1: contour from front 
Opposition 2: contour from back

and oppositions are used to calculate the Euler angles. The reach is then 
performed. These steps are illustrated by Figure 19, which shows the hand 
and arm after the preshape aperture has been adjusted, as the arm begins 
the wrist orientation and reach. Finally, the span adjustment of the top two 
fingers is then carried out and the grasp is executed. The result is shown in 
Figure 20.

8 Experimental Results

In this section we present a series of experimental results which illustrate 
the functioning system. We have exercised all of the features of the system 
by presenting a diverse set of objects to be perceived and grasped. Thus we 
have used objects with planar and curved surfaces in various combinations, 
objects having various rims, objects having multiple components of different 
shapes, and objects of both three and two dimensions. In addition, by 
varying the numbers of aspects extracted for different objects, we show that 
the system is capable of working with varying degrees of partial information.

8.1 Experiment I: Rim Contours

Figures 21 and Figure 22 show the results of executing pinch grasps of two 
different rim contours. The tube in Figure 21 contains a smoothly curved 
rim surrounded by curved surfaces. The polyhedral object in Figure 22 is 
the one used to illustrate the examples in Section 7. In the case of this
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Figure 18: Initial grip hand shape.

Figure 19: Aperture adjust, wrist orientation and reach.
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Figure 20: Span adjust and final grasp.

object, the rim is irregularly curved and is surrounded by planar surfaces. 
The system is capable of handling both cases.

8.2 Experiment II: Freeform Object

This set of experiments shows multiple grasps of a freeform object containing 
both curved and planar surfaces. Figure 23 shows the output of the visual 
sensing for this object (note that four aspects were obtained), while figure 
24 shows the set of grasps generated for the object by the knowledge-based 
system. Figure 25 shows the execution of the wrap grasp of the object from 
above. Figure 26 shows the execution of the grip grasp of the object’s planar 
surface from the left.

8.3 Experiment III: Ellipsoidal Object

We have thus far shown that the system is capable of grasping 3D objects 
containing planar surfaces and a combination of planar and curved surfaces. 
This experiment shows the grasp of an ellipsoidal object containing only 
curved surfaces. In this case, only wrap grasps of the object are generated. 
Figure 27 shows the execution of a wrap of the object from above. This is
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Figure 21: Pinch grasp of curved tube with curved rim contour.

Figure 22: Pinch grasp of polyhedron with irregular rim contour.
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Figure 23: Results of visual processing for freeform, 

object frame
enclosing volume: [106,95,150] 
dimension: 3 
components: [body]

component frame 
component: body (255) 
enclosing volume: [106,95,150]

surface frame 
component: body (255) 
view is top 
shape is curved

surface frame 
component: body (255) 
view is front 
shape is curved

surface frame 
component: body (255) 
view is back 
shape is curved

surface frame 
component: body (255) 
view is left 
shape is planar
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Use hand preshape Wrap for component Body 
Approach target is the center of the curved 

surface from the top
Opposition 1: curved surface from the front 
Opposition 2: curved surface from the back

Use hand preshape Grip for component Body 
Approach target is center of contour from left 
Opposition 1: contour from front 
Opposition 2: contour from back

Figure 24: Grasp set generated for freeform.

Figure 25: Wrap grasp of freeform from above.
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the most difficult grasp, because the shape of the object does not allow it 
to be enclosed from this direction.

8.4 Experiments IV and V: Objects with Multiple Compo­
nents

The next set of experiments show multiple grasps of objects having multiple 
components.

Experiment IV: Object with One-Extended Part Figure 28 shows 
the results of the visual processing for a solid, cylindrical object having a 
single part whose shape is one-extended. Figure 29 shows the set of grasps 
generated for this object. The system generates a wrap grasp of the part 
from above. This is shown in Figure 30. A grip grasp of the cylindrical body 
from above is also generated. This is shown in Figure 31. The system does 
not generate a wrap of the body, because it has not created aspects for the 
front and back of the object - the system does not attempt to place fingers 
on unsensed portions of an object.
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Experiment V: Object with Two-Extended Part Figure 32 shows 
the results of the visual processing for a solid, polyhedral object having a 
single part whose shape is two-extended. Figure 33 shows the set of grasps 
generated for this object. Figure 34 shows the wrap grasp of the part from 
the left.

8.5 Experiment VI: Small Object

This set of experiments shows that the system can also deal with small 
(relative to the hand,) irregularly shaped objects. Figure 35 shows the 
results of the visual processing for a gear shaped object standing on edge. 
Figure 36 shows the set of grasps generated for the object. The pinch grasp 
of the gear from above is shown in Figure 37. The object was also sensed 
laying flat. (The object is placed on a base to allow the hand to be positioned 
without causing the fingers to collide with the table.) Figure 38 shows a grip 
grasp of the gear, in this configuration, from above.
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Figure 28: Results of visual processing of cylinder with one-extended part.

object frame
enclosing volume: [125,247,45] 
dimension: 3 
components: [body part]

component frame 
component: body (128) 
enclosing volume: [125,98,11]

surface frame 
component: body (128) 
view is top 
shape is planar

component frame 
component: part (255) 
enclosing volume: [33,77,4]

part frame
component: part (255)
view is top
shape is one.extended

surface frame 
component: body (128) 
view is left 
shape is curved
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Figure 29: Grasp set generated for cylindrical object with one-extended 
part.

Use hand preshape Grip for component Body 
Approach target is center of contour from top 
Opposition 1: contour from left 
Opposition 2: contour from right

Use hand preshape Grip for component Body 
Approach target is center of contour from top 
Opposition 1: contour from front 
Opposition 2: contour from back

Use hand preshape Wrap for component Part 
Approach target is the center of the part 

from top
Opposition 1: part from the front 
Opposition 2: part from the back

Figure 30: Wrap grasp of one-extended part from above.
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Figure 31: Grip grasp of cylindrical body from above.

9 Summary and Discussion

In this paper, we have presented a general-purpose robotic grasping system. 
The system implements a two-stage model of human grasping in which the 
grasp is divided into a hand shaping phase and a reach phase. The system 
does not require models of the objects to be grasped. Rather, we have 
integrated perception and knowledge into the grasping task to allow the 
robot to deal with unknown objects and sparse sensor data. Thus, the 
object to be grasped is first perceived visually and a representation is built 
which consists of the features of the object and their spatial relations in the 
form of a set of aspects. This symbolic representation is then utilized by 
a rule-based expert system to generate a set of valid grasps for the object. 
The knowledge embodied in this system concerns which features must be 
present, and what the relations among these features must be, in order for 
a particular grasp to be valid. The information generated by the expert 
system is used to drive a robot arm and hand in executing a grasp of the 
object. We consider this work to be only a first step toward the development 
of a truly versatile, intelligent robotic grasping system. We have presented 
a set of experiments which show that the system, as it is, is capable of 
handling a variety of objects. Extensions are possible at all stages to make
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Figure 32: Results of visual processing of polyhedron with two-extended 
part.

object frame
enclosing volume: [87,230,154] 
dimension: 3 
components: [body part]

component frame 
component: body (255) 
enclosing volume: [87,99,136]

surface frame 
component: body (255) 
view is top 
shape is planar

surface frame 
component: body (255) 
view is back 
shape is planar

surface frame 
obj ect: obj 
component: body (255) 
view is right 
shape is planar

component frame 
component: part (128) 
enclosing volume: [32,97,144]

part frame
component: part (128)
view is top
shape is one.extended

part frame
component: part (128)
view is back
shape is two.extended
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Use hand preshape Grip for component Body 
Approach target is center of contour from back 
Opposition 1: contour from left 
Opposition 2: contour from right

Use hand preshape Grip for component Body 
Approach target is center of contour from right 
Opposition 1: contour from front 
Opposition 2: contour from back

Use hand preshape Grip for component Body 
Approach target is center of contour from top 
Opposition 1: contour from front 
Opposition 2: contour from back

Use hand preshape Grip for component Body 
Approach target is center of contour from top 
Opposition 1: contour from left 
Opposition 2: contour from right

Use hand preshape Wrap for component Part 
Approach target is the center of the part 

from the left
Opposition 1: part from the front 
Opposition 2: part from the back

Use hand preshape Wrap for component Part 
Approach target is the center of the part 

from the top
Opposition 1: part from the front 
Opposition 2: part from the back

Figure 33: Grasp set generated for polyhedron with two-extended part.
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Figure 34: Wrap grasp of two-extended part from the left.

Figure 35: Results of visual processing for gear, 

object frame
enclosing volume: [27, 83,32] 
dimension: 2 
components: [body]

component frame 
component: body (255) 
enclosing volume: [27,83,32]

surface frame 
component: body (255) 
view is front 
shape is planar
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Use hand preshape Grip for component Body 
Approach target is center of contour from front 
Opposition 1: contour from left 
Opposition 2: contour from right

Use hand preshape Pinch for component Body 
Approach target is body from top 
Opposition 1: body from front 
Opposition 2: body from back

Use hand preshape Pinch for component Body 
Approach target is body from left 
Opposition 1: body from front 
Opposition 2: body from back

Use hand preshape Pinch for component Body 
Approach target is body from right 
Opposition 1: body from front 
Opposition 2: body from back

Figure 36: Grasp set generated for gear.
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Figure 37: Pinch grasp of standing gear from above.

Figure 38: Grip grasp of repositioned gear from above.
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the system more powerful.
At the perceptual level, a better visual system will allow us to extract 

more and better initial information about the object. We do not consider 
our work to be computer vision research, and so we have developed the 
minimum vision system necessary. The model is easily extended to include 
better visual processing as this becomes available. The area of robotic per­
ception which we do hope to incorporate as future work, however, is the 
development of a haptic perception system. This will be carried out in two 
phases. The first step will be the integration of tactile exploration into the 
initial perceptual stage. The haptic system is capable of extracting infor­
mation, such as weight and texture, which the visual system is not. Yet 
such information is extremely useful in executing and maintaining a grasp. 
An initial haptic exploration of the object will provide more information to 
the system to be used in choosing grasps. The second phase of the haptic 
research will involve implementing the postcontact stage of the grasp. In 
this stage, haptic information about manipulation forces and slip are used 
to dynamically adjust and maintain the grasp during task execution. The 
same perceptual system will be used as in the haptic exploration phase, but 
the processing will no doubt be very different. We currently have a tactile 
sensor mounted on the robot hand and are in the process of designing the 
haptic perception system.

We will also be extending the knowledge-based system in several ways. 
First, both the representation and the reasoning must be further developed 
to allow more complex objects to be apprehended and grasped. The set 
of hand preshapes may also be enlarged. In addition, the system is easily 
extended to incorporate rules for pruning the set of grasps down to the one 
which will be executed. As we stated earlier in this paper, the task and the 
state of the world must be taken into account. Rules which select a grasp 
based on the power or dexterity required can be added, as well as rules which 
embody a knowledge of how to grasp objects which are to be used as tools. 
For example, there might be a rule which states that if the task is to brush 
the soil from an object, then the whisk must be grasped by the handle. Also, 
in a cluttered environment, the placement of other objects must be taken 
into account. Certain grasps will not be possible if there is another object 
occluding the approach of the hand. In the rule-based system as we have 
structured it, such extensions will not be difficult to incorporate.

Finally, limitations are placed on the system by the current state of 
development of the robotic devices. It is our hope that an additional benefit 
of this research will be to allow us to develop a cohesive set of specifications
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for the next generation of robot hands. What we have shown, we believe, is 
the utility of integrating perception and knowledge into the grasping task.
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