
CO/^ir ' d'l U I H 7

CONF-890744—2
DE89 007515 /Oy] MAR 0 1'1983

A VIRTUAL ZERO-TIME,
MONOLITHIC SYSTOLIC SORTING----

ARRAY
C.L. Britton*, Jr., M.N. Ericson*, and D.W. Bouldin**

ABSTRACT

*Oak Ridge National Laboratory*** and

**The University of Tennessee

Th manuscript has bean
author ad by a contractor of tha U.S.
Govammant under contract No. OE*
AC05-640R21400. Acoordngty. tha U.S.
Govammant retains a nonexcfcjerve.
royalty-fraa ioanaa to pubish or raproduca
tha pubished form of this contribution, or
a*ovr others to do so. for U.S. Govammant
purposes.'

A virtual zero-time monolithic sorting chip is described. The chip has a systolic

array architecture and implements the “sinking sort” algorithm. The basic

functional module of the systolic array is detailed and development techniques

employed as well as functional simulation and results are presented. Lessons

learned and educational significance of the development of this chip at a university

are discussed.

INTRODUCTION

With the advent of the personal computer and low-priced, easy to use data bases,

sorting has become a major function in computing and one of the most dominant

operations in computer data processing. Banks and other businesses sort great

volumes of transactions every day. As files lengthen and bit-fields widen, more

time is required for sorting and time requirement is a major problem. One source

estimates that over 25% of computer time is spent sorting^.

***Operated by Martin Marietta Energy Systems, Inc. for the U. S. Department of

Energy under Contract No. DE-AC05-840R21400.
| it

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITEB

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

Conventional methods of performing this function can generally be divided into two

parts, internal and external sorting. Internal sorting requires dedicated processor

time and is feasible only for small files. For larger files, special-purpose hardware

such as external disk drives and tapes are needed to handle the increased data

volume. Because sorting is usually only one part of a given program, its time-

consuming execution can severely limit the information throughput of the entire

program.

The alternative to internal sorting is external sorting, which requires the use of sort-

specific external hardware that can perform sorting for the processor with minimum

processor intervention. This procedure is sometimes referred to as coprocessing.

Hardware specifically designed for external sorting performs two useful functions.

First, it frees the processor for other program tasks. Second, if the hardware is

properly designed, sorting can be done in a shorter time than if only the processor

is sorting. This second point is very important, since hardware dedicated to a

specific function and designed around an efficient algorithm will generally be faster

than general-purpose hardware executing an algorithm in software. A monolithic

implementation of an effective sorting algorithm will greatly improve processor

efficiency in sorting. With the feature size of VLSI continually shrinking, it will be

possible to get more and more complex designs onto a given area of silicon. This

development means that, while large files can be sorted now, ever larger files can

be sorted in the future.

This paper describes the design, fabrication, and testing of a monolithic chip that

can greatly reduce processor time dedicated to sorting. The chip implements an

algorithm that allows a virtual “zero-time” sorting environment; the only apparent

time spent sorting is that spent writing the data to be sorted to the chip and reading

the sorted data from the chip. To minimize the necessary area for a VLSI design,

2

architectures composed of highly arrayable modules with minimized

intercommunications are desired. The algorithm chosen for this implementation, the

sinking sort algorithm^, lends itself to this objective. It can be implemented as a

systolic array of cells, each capable of performing the operations necessary for

sorting.

Two primary areas were directly affected as a result of this development’s taking

place in an educational environment. First, the design methodology was directly

influenced by that proposed by Mead and Conway^. Second, design efficiency in

the classroom was maximized, as the University maintains current versions of all

applicable VLSI design software tools.

SINKING SORT ALGORITHM

The sinking sort algorithm implements a “greatest in, first out” type of sorting in

which input values are compared against previous inputs. Smaller inputs are

allowed to "sink" through the sorting array so that values are stored in descending

order.

The sinking sort algorithm can be implemented as a systolic array of identical cells

in which each cell contains three registers, A, B, and C. The sorting process

results in the larger of A and B being stored in B and the lesser stored in C. A

two-phase, nonoverlapping clock controls the process. Figure 1 illustrates the

operation of the algorithm when it is implemented as an array of these cells.

For illustration purposes, suppose the computer writes unsorted data to the cells in

the order I = 1,4,7,6. The two basic operations necessary for the algorithm are to

compare and to shift. The compare-and-shift process continues after the data have

been entered into the array. If the B registers in the first column of cells are read,

the largest entered value will be retrieved. Shifting and comparing must continue
3

for the sorting to continue, even while data are being read out. If the column of B

registers is read consecutively from first to last, the data will be retrieved with the

greatest values first. The data must be read after Phase 1 (PI) of each consecutive

clock cycle.

DESCRIPTION OF THE CHIP

As previously mentioned, the algorithm was implemented as a systolic array of

identical cells on the chip. These are actually three distinct types of cells. The

one-bit cell is the compare-shift entity. The chip also contains a set of edge-

triggered flip-flops used for writing the data into the one-bit cells and another set

for reading the data from the one-bit cells. A third set of cells, also composed of

flip-flops, is used to implement scan-path testing. These sets will be discussed

separately.

The one-bit cell, shown in Figs. 2 and 3, is the heart of the monolithic

implementation of the sinking sort algorithm. The sorting process, illustrated in

Fig. 1, is controlled by a two-phase, nonoverlapping clock. PI loads register A,

after which the comparison (CMP) of A and B takes place. Phase 2 (P2) loads the

output register C through the multiplexer (MUX) with the lesser of the compared

values. The carry-in, carry-out lines send the result of the comparison of a lesser

bit cell up to the next most-significant-bit cell. As a result, the COUT of the most-

significant-bit cell becomes the signal “A greater than B”. AGB controls the

function of the multiplexer, which allows the lesser value to be passed on to the

next cell slice in the array. The sorting process must be initialized before data are

entered by loading Os into all B and C registers. Initialization will also load Os into

all A registers on the first PI cycle, thus precluding the need to explicitly reset the

A registers.

4

Data are read out by consecutively reading each B register slice on succeeding

clock cycles. Buffered transmission gate R1 is used for this purpose. The gates are

driven by a flip-flop shift register. A 1 is loaded into the input of the shift register

and propagated through the flip-flops on each succeeding clock cycle. This process

is started on the clock cycle following the last data byte written to the array

allowing the reading to take place while sorting continues. Data may still be

sinking through the array during this reading, but the reading stays one slice behind

the last shifted data byte.

Because sorting continues as reading takes place, data must be continuously written

to the array. The only data, however, that would not affect the results of the sorting

are Os. We therefore continue to write Os into the array by resetting the input

registers on each read pulse. This forces the data to appear to be Os when in fact no

data are being written to the chip. The Os sink harmlessly to the end of the array

without being read.

Buffered transmission gates SI and S2 are driven by scan-path registers to allow

the output of A and the input of C to be observed. The scan-path registers together

with the read registers allow most of the chip to be accessible to the outside world,

thereby increasing the observability of the internal array. The scan-path

implementation allows a user to statically observe any of the test points or to follow

a data byte down through the array. The read bus (KBUS) can be configured to do

the same operation, because its structure allows part of the architecture to be used

for scan-path testing.

A photograph of the chip is shown in Fig. 4. The read registers are shown along

the top of the one-bit cell core, the scan-path registers along the bottom, and the

input registers along the left side. The chip was a proof-of-principle

implementation with a four-bit wide “nibble” I/O path and a depth of five
5

nibbles. The I/O structure was designed to allow chips to be cascaded for increased

depth.

FEATURES OF SORTPIPE II DEVELOPMENT

SORTPIPE II was designed with several goals in mind:

1. No minimum-size devices were used, allowing for improved speed and drive

capability.

2. Transistor gates were wide on dynamic memory nodes to increase input

capacitance. This design improves the charge holding capability of these nodes.

3. Transistor outputs used for driving buses were wide to ensure adequate drive

and speed. The output KBUS has five gated buffers connected in parallel while the

Scanbus (SCBUS) has ten. These buffers were designed to ensure adequate drive

capability.

4. The signal paths were designed for a high degree of observability. The systolic

structure of this chip naturally lends itself to scanpath testing, while the KBUS

combined with the SCBUS allows most of the chip to be observed.

5. The one-bit cells were designed to be arrayed in all directions. This design

allows shorter interconnection length.

6. The lowest level of leaf cells was designed with plugs (biased substrate ohmic

contacts) in place so that plugs would be replicated along with the cells. This

design makes plugging the entire circuit much easier.

SIMULATION AND RESULTS

Different simulations were performed on the chip at all stages of development.

Using ESIM, each leaf cell was simulated at the lowest level of functionality to

6

ensure proper operation. The one-bit cell and D flip-flops were the lowest-level

collections of leaf cells simulated as a group. The cells were not used until fully

functional at each level of simulation. The final simulations performed were on the

core and on the chip with pads. Simulations on the core revealed undefined states

resulting from certain input vectors. The problem cells were SPICE’d and found to

be operating properly. The problem was finally traced to a “problem” with ESIM;

the simulator was not recovering from a state that tied Vdd and GND together

through the transistors.

The chip was fabricated in 3 micron, p-well CMOS and worked as desired. No

problems with input vectors were encountered. The chip functioned properly down

to a clock cycle time of 300 ns.

LESSONS LEARNED

Inevitably, a designer learns certain lessons during a complicated development,

especially if the development is in an area new to him. SORTPIPE II was no

exception. Of all the lessons learned, the following three stand out as most

important:

1. Custom cells allow small size, but they do not allow many changes far into the

design phase. SORTPIPE II was designed mainly with small leaf cells, which

perform such general functions as flip-flops, inverters, and registers. The

comparator was the only “customized” cell in the development. The comparator was

smaller than if it had been made up of small leaf cells, but changes were harder to

make.

2. It is easy to plug leaf cells because they usually contain few transistors. This

condition allows plugs to be easily inserted into the design. Plugs then get

replicated as often as the leaf cell.

7

3. Simulators are to be taken with a grain of SPICE. High-level simulators are

useful for testing functionality of leaf cells and, to a great extent, the functionality

of the entire circuit. If different simulators do not agree, the final authority, short of

waiting for the chip to be returned, is SPICE or RELAX. These programs will

allow accurate functional verification of the circuit.

4. Because development was carried out within an educational environment,

conditions were well suited for the design of this innovative architecture. As in

industry, there was indeed pressure to finish within an allotted time period. Unlike

industry, there was little if any financial pressure so that risky design decisions

could be justified. Also, a wider variety of design tools was available from the

University than probably would have been available at a given company.

CONCLUSION

A zero-time monolithic sorting chip has been described, and the algorithm

implemented on the chip and its systolic architecture have been presented. The

techniques used for development as well as test structures implemented on the chip

were discussed. Lessons learned and educational significance of the development of

this chip at a university were discussed.

ACKNOWLEDGMENTS

The authors would like to extend their appreciation to the following for their work

on the first SORTPIPE architecture: M. A. Abidi, G. A. Armstrong, P. L. Butler,

A. Perez, R. J. Sharp, M. A. Shell, and R. A. Todd.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
TTnitAH Static fTnv#»rnmerit nr nnv noenrv therenf

REFERENCES

1. D. E. Knuth, The Art of Programming, Vol. 3: Sorting and Searching, Addison-

Wesley, Reading, Mass., 1973.

2. D. W. Bouldin and M. A. Abidi, A Zero—Time VLSI Sorter, The University of

Tennessee internal report.

3. Carver Mead and Lynn Conway, Introduction to VLSI Systems, Addison Wesley,

Reading, Mass., 1980.

9

START 1.4.7.6

PI

P2

PI

P2

PI

P2

PI

P2

PI

P2

PI

P2

PI

P2

1.4,7

1.4,7

1.4

1.4

1

1

0

0

0

0

0

0

0

0

FIG. 1. Sinking sort algorithm.

KBUS

COUT

MUX

FIG. 2. Block diagram of a One-bit Cell.

KBUS

AOBP2

FIG. 3. Schematic diagram of a One-bit Cell.

%

Figure 4. Photograph of SORTPIPE II

	Blank Page

