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A virtual zero-time monolithic sorting chip is described. The chip has a systolic 

array architecture and implements the “sinking sort” algorithm. The basic 

functional module of the systolic array is detailed and development techniques 

employed as well as functional simulation and results are presented. Lessons 

learned and educational significance of the development of this chip at a university 

are discussed.

INTRODUCTION

With the advent of the personal computer and low-priced, easy to use data bases, 

sorting has become a major function in computing and one of the most dominant 

operations in computer data processing. Banks and other businesses sort great 

volumes of transactions every day. As files lengthen and bit-fields widen, more 

time is required for sorting and time requirement is a major problem. One source

estimates that over 25% of computer time is spent sorting^.
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Conventional methods of performing this function can generally be divided into two 

parts, internal and external sorting. Internal sorting requires dedicated processor 

time and is feasible only for small files. For larger files, special-purpose hardware 

such as external disk drives and tapes are needed to handle the increased data 

volume. Because sorting is usually only one part of a given program, its time- 

consuming execution can severely limit the information throughput of the entire 

program.

The alternative to internal sorting is external sorting, which requires the use of sort- 

specific external hardware that can perform sorting for the processor with minimum 

processor intervention. This procedure is sometimes referred to as coprocessing. 

Hardware specifically designed for external sorting performs two useful functions. 

First, it frees the processor for other program tasks. Second, if the hardware is 

properly designed, sorting can be done in a shorter time than if only the processor 

is sorting. This second point is very important, since hardware dedicated to a 

specific function and designed around an efficient algorithm will generally be faster 

than general-purpose hardware executing an algorithm in software. A monolithic 

implementation of an effective sorting algorithm will greatly improve processor 

efficiency in sorting. With the feature size of VLSI continually shrinking, it will be 

possible to get more and more complex designs onto a given area of silicon. This 

development means that, while large files can be sorted now, ever larger files can 

be sorted in the future.

This paper describes the design, fabrication, and testing of a monolithic chip that 

can greatly reduce processor time dedicated to sorting. The chip implements an 

algorithm that allows a virtual “zero-time” sorting environment; the only apparent 

time spent sorting is that spent writing the data to be sorted to the chip and reading 

the sorted data from the chip. To minimize the necessary area for a VLSI design,
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architectures composed of highly arrayable modules with minimized 

intercommunications are desired. The algorithm chosen for this implementation, the

sinking sort algorithm^, lends itself to this objective. It can be implemented as a 

systolic array of cells, each capable of performing the operations necessary for 

sorting.

Two primary areas were directly affected as a result of this development’s taking 

place in an educational environment. First, the design methodology was directly

influenced by that proposed by Mead and Conway^. Second, design efficiency in 

the classroom was maximized, as the University maintains current versions of all 

applicable VLSI design software tools.

SINKING SORT ALGORITHM

The sinking sort algorithm implements a “greatest in, first out” type of sorting in 

which input values are compared against previous inputs. Smaller inputs are 

allowed to "sink" through the sorting array so that values are stored in descending 

order.

The sinking sort algorithm can be implemented as a systolic array of identical cells 

in which each cell contains three registers, A, B, and C. The sorting process 

results in the larger of A and B being stored in B and the lesser stored in C. A 

two-phase, nonoverlapping clock controls the process. Figure 1 illustrates the 

operation of the algorithm when it is implemented as an array of these cells.

For illustration purposes, suppose the computer writes unsorted data to the cells in

the order I = 1,4,7,6. The two basic operations necessary for the algorithm are to

compare and to shift. The compare-and-shift process continues after the data have

been entered into the array. If the B registers in the first column of cells are read,

the largest entered value will be retrieved. Shifting and comparing must continue
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for the sorting to continue, even while data are being read out. If the column of B 

registers is read consecutively from first to last, the data will be retrieved with the 

greatest values first. The data must be read after Phase 1 (PI) of each consecutive 

clock cycle.

DESCRIPTION OF THE CHIP

As previously mentioned, the algorithm was implemented as a systolic array of 

identical cells on the chip. These are actually three distinct types of cells. The 

one-bit cell is the compare-shift entity. The chip also contains a set of edge- 

triggered flip-flops used for writing the data into the one-bit cells and another set 

for reading the data from the one-bit cells. A third set of cells, also composed of 

flip-flops, is used to implement scan-path testing. These sets will be discussed 

separately.

The one-bit cell, shown in Figs. 2 and 3, is the heart of the monolithic 

implementation of the sinking sort algorithm. The sorting process, illustrated in 

Fig. 1, is controlled by a two-phase, nonoverlapping clock. PI loads register A, 

after which the comparison (CMP) of A and B takes place. Phase 2 (P2) loads the 

output register C through the multiplexer (MUX) with the lesser of the compared 

values. The carry-in, carry-out lines send the result of the comparison of a lesser 

bit cell up to the next most-significant-bit cell. As a result, the COUT of the most- 

significant-bit cell becomes the signal “A greater than B”. AGB controls the 

function of the multiplexer, which allows the lesser value to be passed on to the 

next cell slice in the array. The sorting process must be initialized before data are 

entered by loading Os into all B and C registers. Initialization will also load Os into 

all A registers on the first PI cycle, thus precluding the need to explicitly reset the 

A registers.
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Data are read out by consecutively reading each B register slice on succeeding 

clock cycles. Buffered transmission gate R1 is used for this purpose. The gates are 

driven by a flip-flop shift register. A 1 is loaded into the input of the shift register 

and propagated through the flip-flops on each succeeding clock cycle. This process 

is started on the clock cycle following the last data byte written to the array 

allowing the reading to take place while sorting continues. Data may still be 

sinking through the array during this reading, but the reading stays one slice behind 

the last shifted data byte.

Because sorting continues as reading takes place, data must be continuously written 

to the array. The only data, however, that would not affect the results of the sorting 

are Os. We therefore continue to write Os into the array by resetting the input 

registers on each read pulse. This forces the data to appear to be Os when in fact no 

data are being written to the chip. The Os sink harmlessly to the end of the array 

without being read.

Buffered transmission gates SI and S2 are driven by scan-path registers to allow 

the output of A and the input of C to be observed. The scan-path registers together 

with the read registers allow most of the chip to be accessible to the outside world, 

thereby increasing the observability of the internal array. The scan-path 

implementation allows a user to statically observe any of the test points or to follow 

a data byte down through the array. The read bus (KBUS) can be configured to do 

the same operation, because its structure allows part of the architecture to be used 

for scan-path testing.

A photograph of the chip is shown in Fig. 4. The read registers are shown along

the top of the one-bit cell core, the scan-path registers along the bottom, and the

input registers along the left side. The chip was a proof-of-principle

implementation with a four-bit wide “nibble” I/O path and a depth of five
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nibbles. The I/O structure was designed to allow chips to be cascaded for increased 

depth.

FEATURES OF SORTPIPE II DEVELOPMENT

SORTPIPE II was designed with several goals in mind:

1. No minimum-size devices were used, allowing for improved speed and drive 

capability.

2. Transistor gates were wide on dynamic memory nodes to increase input 

capacitance. This design improves the charge holding capability of these nodes.

3. Transistor outputs used for driving buses were wide to ensure adequate drive 

and speed. The output KBUS has five gated buffers connected in parallel while the 

Scanbus (SCBUS) has ten. These buffers were designed to ensure adequate drive 

capability.

4. The signal paths were designed for a high degree of observability. The systolic 

structure of this chip naturally lends itself to scanpath testing, while the KBUS 

combined with the SCBUS allows most of the chip to be observed.

5. The one-bit cells were designed to be arrayed in all directions. This design 

allows shorter interconnection length.

6. The lowest level of leaf cells was designed with plugs (biased substrate ohmic 

contacts) in place so that plugs would be replicated along with the cells. This 

design makes plugging the entire circuit much easier.

SIMULATION AND RESULTS

Different simulations were performed on the chip at all stages of development. 

Using ESIM, each leaf cell was simulated at the lowest level of functionality to
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ensure proper operation. The one-bit cell and D flip-flops were the lowest-level 

collections of leaf cells simulated as a group. The cells were not used until fully 

functional at each level of simulation. The final simulations performed were on the 

core and on the chip with pads. Simulations on the core revealed undefined states 

resulting from certain input vectors. The problem cells were SPICE’d and found to 

be operating properly. The problem was finally traced to a “problem” with ESIM; 

the simulator was not recovering from a state that tied Vdd and GND together 

through the transistors.

The chip was fabricated in 3 micron, p-well CMOS and worked as desired. No 

problems with input vectors were encountered. The chip functioned properly down 

to a clock cycle time of 300 ns.

LESSONS LEARNED

Inevitably, a designer learns certain lessons during a complicated development, 

especially if the development is in an area new to him. SORTPIPE II was no 

exception. Of all the lessons learned, the following three stand out as most 

important:

1. Custom cells allow small size, but they do not allow many changes far into the 

design phase. SORTPIPE II was designed mainly with small leaf cells, which 

perform such general functions as flip-flops, inverters, and registers. The 

comparator was the only “customized” cell in the development. The comparator was 

smaller than if it had been made up of small leaf cells, but changes were harder to 

make.

2. It is easy to plug leaf cells because they usually contain few transistors. This 

condition allows plugs to be easily inserted into the design. Plugs then get 

replicated as often as the leaf cell.
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3. Simulators are to be taken with a grain of SPICE. High-level simulators are 

useful for testing functionality of leaf cells and, to a great extent, the functionality 

of the entire circuit. If different simulators do not agree, the final authority, short of 

waiting for the chip to be returned, is SPICE or RELAX. These programs will 

allow accurate functional verification of the circuit.

4. Because development was carried out within an educational environment, 

conditions were well suited for the design of this innovative architecture. As in 

industry, there was indeed pressure to finish within an allotted time period. Unlike 

industry, there was little if any financial pressure so that risky design decisions 

could be justified. Also, a wider variety of design tools was available from the 

University than probably would have been available at a given company.

CONCLUSION

A zero-time monolithic sorting chip has been described, and the algorithm 

implemented on the chip and its systolic architecture have been presented. The 

techniques used for development as well as test structures implemented on the chip 

were discussed. Lessons learned and educational significance of the development of 

this chip at a university were discussed.
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FIG. 1. Sinking sort algorithm.
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FIG. 2. Block diagram of a One-bit Cell.
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FIG. 3. Schematic diagram of a One-bit Cell.
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Figure 4. Photograph of SORTPIPE II
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