corer — 30 17T I~

}

CONE-890744--2 Received by 0ST’
DE89 007515 /ﬂl g ¢[/ MAR 0 1:1989
A VIRTUAL ZERO- TIME,

MONOLITHIC SYSTOLIC SORTING-—- - =
ARRAY

C.L. Britton*, Jr., M.N. Ericson*, and D.W. Bouldin**

*QOak Ridge National Laboratory*** and e s M.aimd'h:.m bown
& contractor

Government under contract No. OE&
. . U
**The University of Tennessee Covamrmnt ot e ranancmie,
royaity-fres license 10 publish or reproduce
the published form of this contribution, of
show others 10 do 30, for U.S. Government

ABSTRACT purposes.”

A virtual zero-time monolithic sorting chip is described. The chip has a systolic
array architecture and implements the “sinking sort” algorithm. The basic
functional module of the systolic array is detailed and development techniques
employed as well as functional simulation and results are presented. Lessons

learned and educational significance of the development of this chip at a university

are discussed.

INTRODUCTION

With the advent of the personal computer and low-priced, easy to use data bases,
sorting has become a major function in computing and one of the most dominant
operations in_computer data processing. Banks and other businesses sort great
volumes ™ of transactions every day. As files lengthen and bit-fields widen, more

time is required for sorting and time requirement is a major problem. One source

estimates that over 25% of computer time is spent sortingl.

L

,.K

***Operated by Martin Marietta Energy Systems, Inc. for the U. S. Department of

Energy under Contract No. DE—AC05-840OR21400.

! DISTRIBUTION OF THIS DOCUMENT I8 UNLIMITER
, : oo

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

Conventional methods of performing this function can generally be divided into two
parts, internal and external sorting. Internal sorting requires dedicated processor
time and is feasible only for small files. For larger files, special-purpose hardware
such as external disk drives and tapes are needed to handle the increased data
volume. Because sorting is usually only one part of a given program, its time-—
consuming execution can severely limit the information throughput of the entire

program.

The alternative to internal sorting is external sorting, which requires the use of sort—
specific external hardware that can perform sorting for the processor with minimum
processor intervention. This procedure is sometimes referred to as coprocessing.
Hardware specifically designed for external sorting performs two useful functions.
First, it frees the processor for other program tasks. Second, if the hardware is
properly designed, sorting can be done in a shorter time than if only the processor
is sorting. This second point is very important, since hardware dedicated to a
specific function and designed around an efficient algorithm will generally be faster
than general-purpose hardware executing an algorithm in software. A monolithic
implementation of an effective sorting algorithm will greatly improve processor
efficiency in sorting. With the feature size of VLSI continually shrinking, it will be
possible to get more and more complex designs onto a given area of silicon. This
development means that, while large files can be sorted now, ever larger files can

be sorted in the future.

This paper describes the design, fabrication, and testing of a monolithic chip that
can greatly reduce processor time dedicated to sorting. The chip implements an
algorithm that allows a virtual “zero-time” sorting environment; the only apparent
time spent sorting is that spent writing the data to be sorted to the chip and reading

the sorted data from the chip. To minimize the necessary area for a VLSI design,

2

architectures composed of highly arrayable modules with minimized

intercommunications are desired. The algorithm chosen for this implementation, the

sinking sort algorithmz, lends itself to this objective. It can be implemented as a
systolic array of cells, each capable of performing the operations necessary for

sorting.

Two primary areas were directly affected as a result of this development’s taking

place in an educational environment. First, the design methodology was directly

influenced by that proposed by Mead and Conway3. Second, design efficiency in
the classroom was maximized, as the University maintains current versions of all

applicable VLSI design software tools.

SINKING SORT ALGORITHM

The sinking sort algorithm implements a “greatest in, first out” type of sorting in
which input values are compared against previous inputs. Smaller inputs are
allowed to "sink” through the sorting array so that values are stored in descending

order.

The sinking sort algorithm can be implemented as a systolic array of identical cells
in which each cell contains three registers, A, B, and C. The sorting process
results in the larger of A and B being stored in B and the lesser stored in C. A
two—phase, nonoverlapping clock controls the process. Figure 1 illustrates the

operation of the algorithm when it is implemented as an array of these cells.

For illustration purposes, suppose the computer writes unsorted data to the cells in
the order I = 1,4,7,6. The two basic operations necessary for the algorithm are to
compare and to shift. The compare—and-shift process continues after the data have
been entered into the array. If the B registers in the first column of cells are read,

the largest entered value will be retrieved. Shifting and comparing must continue
3

for the sorting to continue, even while data are being read out. If the column of B
registers is read consecutively from first to last, the data will be retrieved with the
greatest values first. The data must be read after Phase 1 (P1) of each consecutive

clock cycle.

DESCRIPTION OF THE CHIP

As previously mentioned, the algorithm was implemented as a systolic array of
identical cells on the chip. These are actually three distinct types of cells. The
one-bit cell is the compare—shift entity. The chip also contains a set of edge-
triggered flip—flops used for writing the data into the one-bit cells and another set
for reading the data from the one-bit cells. A third set of cells, also composed of
flip-flops, is used to implement scan—path testing. These sets will be discussed

separately.

The one-bit cell, shown in Figs. 2 and 3, is the heart of the monolithic
implementation of the sinking sort algorithm. The sorting process, illustrated in
Fig. 1, is controlled by a two—phase, nonoverlapping clock. P1 loads register A,
after which the comparison (CMP) of A and B takes place. Phase 2 (P2) loads the
output register C through the multiplexer (MUX) with the lesser of the compared
values. The carry-in, carry—out lines send the result of the comparison of a lesser
bit cell up to the next most-significant-bit cell. As a result, the COUT of the most-
significant-bit cell becomes the signal “A greater than B”. AGB controls the
function of the multiplexer, which allows the lesser value to be passed on to the
next cell slice in the array. The sorting process must be initialized before data are
entered by loading Os into all B and C registers. Initialization will also load Os into
all A registers on the first P1 cycle, thus precluding the need to explicitly reset the

A registers.

Data are read out by consecutively reading each B register slice on succeeding
clock cycles. Buffered transmission gate R1 is used for this purpose. The gates are
driven by a flip—flop shift register. A 1 is loaded into the input of the shift register
and propagated through the flip—flops on each succeeding clock cycle. This process
is started on the clock cycle following the last data byte written to the array
allowing the reading to take place while sorting continues. Data may still be
sinking through the array during this reading, but the reading stays one slice behind
the last shifted data byte.

Because sorting continues as reading takes place, data must be continuously written
to the array. The only data, however, that would not affect the results of the sorting
are 0s. We therefore continue to write Os into the array by resetting the input
registers on each read pulse. This forces the data to appear to be Os when in fact no
data are being written to the chip. The Os sink harmlessly to the end of the array

without being read.

Buffered transmission gates S1 and S2 are driven by scan—path registers to allow
the output of A and the input of C to be observed. The scan—path registers together
with the read registers allow most of the chip to be accessible to the outside world,
thereby increasing the observability of the internal array. The scan—path
implementation allows a user to statically observe any of the test points or to follow
a data byte down through the array. The read bus (KBUS) can be configured to do
the same operation, because its structure allows part of the architecture to be used

for scan—path testing.

A photograph of the chip is shown in Fig. 4. The read registers are shown along
the top of the one-bit cell core, the scan—path registers along the bottom, and the
input registers along the left side. The chip was a proof-of-principle

implementation with a four-bit wide ‘“nibble” I/O path and a depth of five
S

nibbles. The I/0 structure was designed to allow chips to be cascaded for increased

depth.

FEATURES OF SORTPIPE II DEVELOPMENT
SORTPIPE II was designed with several goals in mind:

1. No minimum-size devices were used, allowing for improved speed and drive

capability.

2. Transistor gates were wide on dynamic memory nodes to increase input

capacitance. This design improves the charge holding capability of these nodes.

3. Transistor outputs used for driving buses were wide to ensure adequate drive
and speed. The output KBUS has five gated buffers connected in parallel while the
Scanbus (SCBUS) has ten. These buffers were designed to ensure adequate drive

capability.

4. The signal paths were designed for a high degree of observability. The systolic
structure of this chip naturally lends itself to scanpath testing, while the KBUS
combined with the SCBUS allows most of the chip to be observed.

5. The one-bit cells were designed to be arrayed in all directions. This design

allows shorter interconnection length.

6. The lowest level of leaf cells was designed with plugs (biased substrate ohmic
contacts) in place so that plugs would be replicated along with the cells. This

design makes plugging the entire circuit much easier.

SIMULATION AND RESULTS

Different simulations were performed on the chip at all stages of development.

Using ESIM, each leaf cell was simulated at the lowest level of functionality to

6

ensure proper operation. The one-bit cell and D flip—flops were the lowest-level
collections of leaf cells simulated as a group. The cells were not used until fully
functional at each level of simulation. The final simulations performed were on the
core and on the chip with pads. Simulations on the core revealed undefined states
resulting from certain input vectors. The problem cells were SPICE’d and found to
be operating properly. The problem was finally traced to a “problem’ with ESIM;
the simulator was not recovering from a state that tied Vdd and GND together

through the transistors.

The chip was fabricated in 3 micron, p—well CMOS and worked as desired. No
problems with input vectors were encountered. The chip functioned properly down

to a clock cycle time of 300 ns.

LESSONS LEARNED

Inevitably, a designer learns certain lessons during a complicated development,
especially if the development is in an area new to him. SORTPIPE II was no
exception. Of all the lessons learned, the following three stand out as most

important:

1. Custom cells allow small size, but they do not allow many changes far into the
design phase. SORTPIPE II was designed mainly with small leaf cells, which
perform such general functions as flip—flops, inverters, and registers. The
comparator was the only “customized” cell in the development. The comparator was
smaller than if it had been made up of small leaf cells, but changes were harder to

make.

2. It is easy to plug leaf cells because they usually contain few transistors. This
condition allows plugs to be easily inserted into the design. Plugs then get

replicated as often as the leaf cell.

3. Simulators are to be taken with a grain of SPICE. High-level simulators are
useful for testing functionality of leaf cells and, to a great extent, the functionality
of the entire circuit. If different simulators do not agree, the final authority, short of
waiting for the chip to be returned, is SPICE or RELAX. These programs will

allow accurate functional verification of the circuit.

4. Because development was carried out within an educational environment,
conditions were well suited for the design of this innovative architecture. As in
industry, there was indeed pressure to finish within an allotted time period. Unlike
industry, there was little if any financial pressure so that risky design decisions
could be justified. Also, a wider variety of design tools was available from the

University than probably would have been available at a given company.

CONCLUSION

A zero—time monolithic sorting chip has been described, and the algorithm
implemented on the chip and its systolic architecture have been presented. The
techniques used for development as well as test structures implemented on the chip
were discussed. Lessons learned and educational significance of the development of

this chip at a university were discussed.

ACKNOWLEDGMENTS

The authors would like to extend their appreciation to the following for their work
on the first SORTPIPE architecture: M. A. Abidi, G. A. Armstrong, P. L. Butler,
A. Perez, R. J. Sharp, M. A. Shell, and R. A. Todd.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
TTnited Qtatec (iavernment or anv acencv theraof

REFERENCES

1. D. E. Knuth, The Art of Programming, Vol. 3: Sorting and Searching, Addison—
Wesley, Reading, Mass., 1973.

2. D. W. Bouldin and M. A. Abidi, A Zero—Time VLSI Sorter, The University of

Tennessee internal report.

3. Carver Mead and Lynn Conway, Introduction to VLSI Systems, Addison Wesley,
Reading, Mass., 1980.

START 1476 —olo

Pi

Pl

o NV ILNY LKV L
>o> l>0

. _.>\’/o__o LNV o]___

>

o _.>\’/

N LNV

of—=40 0 1 1

o__>\’/q__o\‘7 +_OV1__1

o_.{>\’/

I

FIG. 1. Sinking sort algorithm.

KBUS CIN
1
RD Rl
—
K1 | KO
A
SHO s1 SH1 s2
SCBUS | |
cour
FIG. 2. Block diagram of a One-bit Cell.
KBUS
O KXo
AGBP2 :’)1 ‘
O— 173 o——o—-l 0]
oN
™3 BN
RESETN omp
A RESETN
O AGB
TP1
] ® AN
Pl h—D)——— D}«
X ™
SH1
SHO
SCBUS oUT

FIG. 3. Schematic diagram of a One-bit Cell.

durg lrs llh« *t 1

' | : - “ T Eil! i‘.?m‘.‘- .
] B ’Eﬂ

Figure 4. Photograph of SORTPIPE II

	Blank Page

