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INCAP: A FINITE ELEMENT PROGRAM FOR 

ONE-DIMENSIONAL NONLINEAR INVERSE 

HEAT CONDUCTION ANALYSIS

B. R. Bass

ABSTRACT

The calculation of the surface temperature and surface 
heat flux from a measured temperature history at an interior 
point of a body is identified in the literature as the inverse 
heat conduction problem. This report presents apparently the 
first application of an inverse solution technique that 
utilizes a finite element heat conduction model and Beck's 
nonlinear estimation procedure. The technique is applicable 
to the one-dimensional nonlinear model with temperature- 
dependent thermophysical properties. A digital computer 
program INCAP (INverse Heat Conduction Analysis Cro8ram) 
is developed from the formulation and is used in a compara­
tive study with the finite difference inverse code ORINC 
(ORNL INverse Code). Specifically, two representative 
thermocouple transients obtained from electrically heated 
composite rods during a simulated loss-of-coolant accident 
are analyzed with INCAP and ORINC and the results are 
compared.
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I. INTRODUCTION

The Oak Ridge National Laboratory (ORNL) Pressurized-Water-Reactor 

Blowdown Heat Transfer (PWR-BDHT) Separate-Effects Program [1] is part of 

the overall light-water-reactor (LWR) safety research program of the 

Nuclear Regulatory Commission (NRC). Other parts of the program cover 

a wide range of experimental and analytical efforts, from laboratory to 

small-scale experimental nuclear plants; the separate-effects studies, 

which fall between these two, are designed to answer specific questions 

relevant to the hypothetical loss-of-coolant accident (LOCA).

Specific objectives of the ORNL PWR-BDHT Separate-Effects Program 

are to determine, for a wide range of parameters, time to CHE (critical 

heat flux) and the following variables for both pre- and post-CHF: heat 

fluxes, AT (temperature difference between pin surface and fluid), heat 

transfer coefficients, and local fluid properties. The program also seeks 

to test the ability of existing codes, such as RELAP [2], to predict the 

behavior of the single-rod and 49-rod loops under blowdown conditions.

The parameters to be studied include

1. Single and double-ended coolant line breaks of varying area 

ratios;

2. Fast to slow depressurization rates;

3. Combinations of system power and pressure to obtain different 

values of the departure from nuclear boiling ratio (DNBR);

4. A range of power cutoff delays;

5. A range of power decay rates;

6. A range of power-to-system volume ratios.
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Secondary objectives are (1) to obtain CHF data under steady-state 

conditions over a range of coolant pressures, inlet and exit subcooling, 

and an inlet flow rate appropriate to PWR interests; (2) to evaluate the 

thermal-hydraulic behavior of the test loops during simulated operational 

upsets that include variations in local power, system pressure, or coolant 

flow using the anticipated transient without scram (ATWS) [3] as a guide; 

and (3) to determine the effect of different spacer grids and power 

distribution profiles on both transient and steady-state CHF.
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II. TEST FACILITIES

Primary test results are obtained from the Thermal-Hydraulic Test 

Facility (THTF) [1], a large nonnuclear experimental loop with a test 

section that contains a 7 x 7 array of 12-ft heater rods with an outside 

diameter of 0.422 in. and a stepped, chopped-cosine power profile.

A schematic view of the THTF is shown in Figure 1. Fluid dis­

charged from the pump flows through two control valves, where excess pump 

head is dissipated and flow adjusted to the desired level by diverting a 

portion through the bypass line. Heat generated in the fluid by the pump 

is removed in the small Graham "Heliflow" heat exchanger in the bypass 

line. The primary flow then passes through inlet instrumented spool 

pieces 1 and 2, where flow conditions are monitored by a combination of 

a drag disk, gamma densitometer, turbine meter, and temperature and 

pressure sensors in each spool piece. Flow enters the test section at 

the top of the rectangular shroud box, flows down its length, and enters 

the bottom of the rod bundle. The fluid exits the bundle through outlet 

spool pieces 1 and 2, which are identical to those on the inlet. The 

energy added by the test section header rods is removed by Graham 

"Heliflow" heat exchangers A, B, and C. Finally, the fluid returns 

to the pump section past the line from the pressurizer, which provides 

the primary pressure control for the loop and at the same time serves 

as a surge tank.

At the instant of blowdown, the contents of the primary loop may be 

discharged through either of two rupture disk assemblies and appropriately 

sized orifices into the pressure-suppression system. For approximately 15 

sec before and approximately 300 sec after blowdown, over 500 sensors
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Figure 1. Thermal-Hydraulic Test Facility 
(ORNL-PWR Blowdown Heat Transfer 
Separate-Effects Program)
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throughout the loop will be scanned by a computer-controlled digital-data- 

acquisition system (CCDAS) at a rate of 20 times per second. These sensors 

include approximately 320 thermocouples in the heater rods of the test 

section.

Supporting experiments are carried out in the Forced Convection Test 

Facility (FCTF). A schematic view of the principal FCTF loop components 

is illustrated in Figure 2. The primary purpose of the FCTF is to qualify 

prototype heaters for use in the THTF and to obtain blowdown heat transfer 

and steady-state CHF results for single rods in an annular geometry. In 

its present configuration, the FCTF is capable of conducting only single- 

ended break tests.



Figure 2. Forced Convection Depressurization Loop

£ 
3

co

ORNL DWG 76-2141
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III. OBJECTIVE

A primary objective of the PWR-BDHT Separate Effects program is 

to determine the transient surface temperature and surface heat flux of 

the THTF heater rods from internal temperature histories recorded during 

a blowdown. This necessitates solving the inverse heat conduction problem, 

where unknown boundary conditions are computed from known thermal responses 

measured internal to the body. To meet this objective, Ott and Hedrick [4] 

developed a one-dimensional, implicit finite difference formulation of the 

inverse problem. Ott and Hedrick implemented this formulation in the 

digital computer program ORINC (ORNL INverse Code) which performs the 

inverse calculation at rod thermocouple positions in the THTF bundle.

The validation process for ORINC is made difficult by the lack of 

any experimental data with which to compare directly the ORINC inverse 

calculations. As a partial solution to this problem, an alternate formu­

lation of the nonlinear transient inverse problem is developed in this 

report and then used in a comparative study with ORINC. This formulation 

is based on finite element analysis and Beck's second method [5] and is 

applied in the digital computer code INCAP (INverse Heat Conduction 

Analysis Program). For a one-dimensional model of an actual heater 

rod-thermocouple configuration, two test cases are examined to assess 

the ability of INCAP to track rapid transients typical of a blowdown. 

Comparisons are then made between ORINC and INCAP for representative 

thermocouple transients at two thermocouple positions in the THTF

bundle.
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IV. A SURVEY OF PREVIOUS WORK

In transient heat conduction analysis, a class of problems can be 

identified where the temperature history is known at some interior point 

in the body and the transient surface temperature and surface heat flux 

are to be determined. This class is generally referred to in the litera­

ture as the inverse problem, in contrast with the usual direct formulation 

where the interior temperature history is determined from specified 

boundary conditions. Typically, the inverse formulation arises in 

experimental studies where direct measurement of surface conditions is 

not feasible, such as convective heat transfer in rocket nozzles and 

quenching of solids in a fluid. One application examined in this paper 

deals with two-phase flow over the surface of an electrically-heated rod 

that contains thermocouple probes in the interior.

Various solution methods have been applied to the inverse problem 

over the past two decades, including integral equation solutions, series 

solutions, transform solutions, and function minimization techniques. In 

one of the earliest papers, Stolz [6] obtained a linear solution by numeri­

cal inversion of the integral solution of the direct problem. His solution 

was found to be unstable for small time steps. Using an integral approach 

similar to that of Stolz, Beck [7] utilized a least squares technique to 

generate solutions for a much smaller time step. In a recent paper, 

Arledge, et al [8] also use an integral solution procedure which is valid 

for constant thermal properties. Burggraf [9] devised a series solution 

to the linear inverse problem which is exact only for continuous input 

data. Makhin and Shmukin [10], Kover'yamrv [11], Plummer, et al [12], 

and Mehta [13] also utilize a series solution. Sparrow, et al [14] and
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Imber and Khan [15] apply the transform method to the linear problem.

Imber [16] has developed a transform solution to the inverse problem that 

is applicable to two-dimensional bodies of arbitrary shape when input data 

are known at suitable interior locations. In all of these papers, 

linearity of the model is essential to the formulation.

Several references consider the nonlinear problem of analyzing a 

composite body with temperature-dependent thermal properties. Ott and 

Hedrick [4] have developed a one-dimensional, implicit finite difference 

formulation and have applied it to an electrically-heated composite rod 

with temperature-dependent geometry and material properties. Beck has 

examined the nonlinear problem using a finite difference method [17] that 

builds on the ideas in Reference [7] and, more recently in Reference [5], 

has incorporated his function minimization technique into the framework 

of nonlinear estimation. Important to Beck's "second" method [5] is the 

observation that the temperature response at an interior location is 

delayed and damped with respect to changes in surface conditions. Beck, 

therefore, determines the surface heat flux in a given time step with a 

procedure that utilizes interior temperature data at "future" times. The 

surface heat flux is assumed to be a constant or low order polynomial over 

an analysis interval that consists of several time steps in the discretized 

data. The coefficients that describe the heat flux are adjusted iterative­

ly to achieve the closest agreement in a least squares sense with the input 

"future" temperatures over the analysis interval. Less flexible versions 

of Beck's technique were considered earlier by Frank [18] and Davies [19]. 

Muzzy, et al [20] have adapted Beck's second method, with some modifica­

tions, into an explicit finite difference scheme for one-dimensional 

composite bodies with temperature-dependent material properties.
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The finite difference method has been the predominant numerical 

technique for solution of the direct problem of heat conduction, and is 

applied in the nonlinear inverse formulations of References [4], [5], [17], 

and [20]. In recent years, the finite element method [21] has become well 

established as another numerical technique for heat conduction analysis.

The finite element approach has demonstrated great versatility in modeling 

homogeneous or composite bodies with temperature-dependent material 

properties and complex geometries and boundary conditions. (See, for 

example, References [22], [23], [24].) In addition to these benefits, 

the technique shows considerable promise for the solution of coupled 

heat conduction and thermal stress problems [25,26].

In a recent paper, Hore, et al [27] present what is evidently the 

first application of the finite element method to the inverse problem.

They develop a procedure for determining the surface heat flux at one 

boundary of a one-dimensional linear system from a known temperature 

history at an interior point. An iterative technique is used to deter­

mine incremental changes in surface heat flux until the error in the 

computed temperature at the interior point is within a prescribed 

tolerance. In their analysis, the surface flux is evaluated using 

contemporary input temperatures only, i.e., no "future" temperatures 

are utilized to determine surface flux as in Beck's second method.

In Reference [27], the finite element formulation of the inverse 

problem is applied to two numerical examples with known solutions. The 

first example treated is that of a constant heat flux imposed on the 

surface, while the second considers a periodic square wave heat flux.

For both cases, the predicted temperature at the interior node closely
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followed the input temperature values. However, the two examples 

exhibited numerical instabilities for the heat flux calculations, in the 

form of oscillations that progressively diverged in time from the known 

heat flux solution. Hore, et al identify some other difficulties with 

their inverse solution technique, including that of using temperature 

data measured at points far removed from the surface to solve for the 

surface heat flux. A potential difficulty with their technique is that 

it does not minimize the effect of experimental errors incurred in the 

temperature measurements at interior points. When these data are not 

smooth, oscillations in the calculated values of the heat flux can 

result. Hore, et al speculate that the nonlinear estimation techniques 

of Beck, along with the use of "future" temperatures, could possibly 

alleviate some of these difficulties.

The inverse solution technique described in the following sections 

and implemented in the digital computer code INCAP represents, to the 

author's knowledge, the first application of Beck's nonlinear estimation 

procedure in a computational scheme based on a finite element model of 

the direct problem. Discussion of the finite element formulation and 

Beck's procedure is followed by application of this inverse technique 

to four problems. First, two numerical examples with known solutions 

are treated to evaluate the performance of the technique in solving the 

inverse problem. Finally, the technique is applied to two experimentally 

determined temperature transients taken from interior points of an 

electrically-heated composite rod. The finite element computations 

from INCAP are compared with the results obtained by applying the

finite difference inverse code ORINC to the same data.



V. FINITE ELEMENT FORMULATION OF THE

DIRECT PROBLEM

The conduction of heat in the region £2 is governed by the quasi- 

linear parabolic equation

V • (kVT) + Q = pc ~ (1)

subject to the boundary conditions

T = TW on (2)

and

kVT •ii + q+q^'+qC' = 0onV2 (3)

The heat flow rates per unit area on convection and radiation boundaries 

are written

qC = h(T - TaC) , q^ = hV - T^) , (4)

where h^ is defined by

h^ = ea(T2 + T^ ) (T + T^) (5)

In general, k, c, h and h"^ are temperature and spatially dependent, while 

Q and q are time and spatially dependent.

Let the region £2 be idealized by a system of finite elements and 

let the unknown temperature T be approximated throughout the solution 

domain at any time t by
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Here the are the interpolation functions defined piecewise element by 

element and the T^. or {t} are the nodal temperatures. The governing 

equations of the discretized system can be derived by minimizing a 

functional or by using Galerkin's method [21], In the Galerkin formula­

tion employed here, the problem is recast in a weighted integral form 

using the interpolating functions as the weighting functions:

{N>[V • (kV({N}T {T})) + Q - pc ({N}T {T})] dft
9t

{N}[kV({N}T {T}) ri + q (7)

+ h({N}T {T} - TaC) + h/l({N}T {T} - T^) ] dV = 0

Only a single finite element is considered in the integral (7), as the 

governing equations of the complete system of elements are obtained by 

assembling the individual finite element matrices. The surface integral 

over V e refers only to those elements with external boundaries on which 

condition (3) is given.

Green's first identity is applied to the first volume integral 

of equation (7) so that the second derivatives do not impose unnecessary 

continuity conditions between elements. When use is made of the boundary 

conditions (2) and (3), the integral formulation (7) leads to a set of 

transient ordinary differential equations for the assemblage of finite 

elements:

[G] + [K] {T} + {?} + {!} = 0 (8)
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The components In equation (8) are defined by:

[C] = l
e=l

pc{N} {N} dft

[K] = l 
e=l

k[B] [B] dfi

XL r
+ l 0 (h + {N} {N}T dV ,

e=l JV2e

[B] = V{N>

{F} = -
E
1

e=l
{N} Qdft + ^ 0 {N} qdV

e=l JV2e

{F}= - ^ 0 {N} (h^ + h TaC) dV
e=l V2e

(9)

(10)

(11)

(12)

where the summations are taken over the individual finite element 

contributions. These integrals are evaluated numerically using Gauss- 

Legendre quadrature in the applications to be presented later.

The system of nonlinear equations (8) through (12) which defines the 

discretized problem can be solved using many different types of integration 

schemes. The implicit one-step Euler backward difference method is em­

ployed in this analysis. The time derivative of the temperature is 

approximated by

8{T}
9t

(t) - {t)i;(i+l)At 1 J(i)At
At (13)At
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where is assumed known at time (i)At. In the nonlinear analysis,

is calculated using a computational scheme that iterates on the 

out-of-balance heat flow rate for a given time step. At time (i+l)At, the 

initial approximation of the node point temperatures is calculated by

(At [C](i)At + [K](i)At) {T}(i+l)At At [C](i)At {T}(i)At

" {F}(i+l)At - {f}(i)At (14)

As demonstrated in Appendix A, the (P)1"^1 correction {AT}^F^ to the 

temperature vector is given by

[S] (P-D(i+l)At
{AT}<'P') = (P-1)

(i+l)At {T} (P-D(i+l)At

(P-D
(i+l)At {T} (i)At

+ {F}<i+i)At + {f)atmt] <15>

where

[S] (P-D(i+l)At
(P-D
(i+l)At + [K] (P-D(i+l)At (16)

is evaluated using temperatures {T} (P-D(i+l)At*
In each iteration, a new temperature vector is computed according

to

(T) (P)
(i+l)At {T} (P-D(i+l)At

+ (AT}^P^ (17)
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The iteration continues until convergence is obtained according to the 

criterion

||{AT}(P)|| / ||{T}^|1)At|| < T0L1 , (18)

where T0L1 represents an adjustable tolerance.

The procedure represented by equations (14) through (18) is repeated 

in each time step of the calculation.

In this application of the finite element method to the inverse 

problem, the analysis is limited to a one-dimensional model expressed in 

cylindrical coordinates. The temperatures are assumed to be spatially 

dependent only upon the radial coordinate r, and an isoparametric [21] 

discretization is employed,

M
r = l Nr (19)

1=1

so that r is interpolated using the same functions N^. as those used for 

T in equation (6). Both linear and quadratic interpolation functions are 

used in the application to be presented later. These functions are defined 

for the element natural coordinate system depicted in Figure 3 as follows:

Linear:

n1 = - |(n - i) n2 = i(n + 1) (20)

Quadratic:

N1 = ^ ’ N2 = + r|->

n3 = i - ni (21)
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ORNL-DWG 78-10155

(a)

V

Figure 3. Interpolation functions for one-dimensional 
element

(a) Element local coordinate system
(b) Linear interpolation
(c) Quadratic interpolation
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For the quadratic element, the center node (Figure 3) can be reduced out 

on the element level using static condensation procedures [28],
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VI. FORMULATION OF THE INVERSE PROBLEM

For the purposes of this study, the one-dimensional problem of a 

cylindrical body with flux boundary conditions at the surface is considered 

as depicted in Figure 4. The condition

T(rP,t) = TP(t) at r = rP < a (22)

is prescribed, while the surface heat flux

- k -^ = q(a,t) at r = a (23)

is unknown.

For convenience, a solid cylinder is assumed, but a hollow cylinder 

with any known boundary condition at the inner surface could be used. The 

material properties k and c are known functions of temperature T and spa­

tial variable r. The problem is to determine q(a,t) and the spatial 

temperature distribution T(r,t), 0 r ^ a* when the temperature history 

T(rP,t) = TP(t) is known at an interior point rP < a.

The method developed by Beck [5], with certain modifications 

suggested by Muzzy, et al [20], is used in the solution of the nonlinear 

inverse problem presented here. Beck's technique focuses on the observa­

tion that the temperature response at an interior location is delayed and 

damped with respect to changes at the surface of the body, as verified by 

Burggraf's exact linear solution [9]. To effectively deal with this 

observation, Beck determines the surface heat flux q(a,t) at time t using 

interior temperatures TP measured at times greater than t. A common 

difficulty with other numerical inverse procedures (Reference [6], for 

example) is the occurrence of violent oscillations or instabilities in
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q(a, t)

Figure 4. Geometry of heated cylindrical rod
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the calculated heat flux when the time steps are reduced to sufficiently

small values. Beck's approach permits the use of small time steps for

improved accuracy in the heat flux calculations without encountering these

instabilities. His method also tends to reduce oscillations in the computed

surface flux due to experimental errors incurred in measurement of the

Pinterior temperatures T .

In the application of Beck's method, the surface heat flux is 

represented by a vector of elements (qQ,q^,...5qn) such that in a given 

time step At, q(a,t) is represented by

q(a,t) = q(1)At (i-l)At < t £ (i)At , i £ 1 (24)

For a given i £ 1, it is assumed that ^lA^^At* * * ’ ,C*(i)At are ^cnown* 

determine an analysis interval consisting of J £ 1 time steps is

selected, as depicted in Figure 5. In the next step of the calculation, 

q is estimated over the analysis interval (i)At < t < (i+J)At using 

relations that take the trend of q into account.1 For the first time 

step in the analysis interval,

q(i+l)At = q(i)At + (q(i)At “ q(i-l)At) (25)

and for the "future" time steps

q(i+j)At q(i+j-l)At

+ e(q(i+j-l)At " q(i+j-2)At) (26)

^n his paper, Beck examines both constant and linearly varying 
heat flux estimates over the analysis interval.
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"FUTURE"TEMPERATURES
^ N,

T(i + 1 )At T(i + 2)At.............................................T(i + J)At

-1------1---------------- h“ T

+ + + -►t

(i)At (i + 1 )At (i + 2)At............................................ (i + J) At

ANALYSIS INTERVAL (J > 1)

Figure 5. Analysis interval for computing surface 
heat flux q(±+1)At
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for 2 _< j _< J, where 0 <_ 8 1 is an adjustable parameter.2 Then the

boundary value problem (equations (1) through (5)), cast in the discretized 

finite element formulation (equations (8) through (12)), is solved over the 

analysis interval (i)At < t < (i+J)At, using conditions (25) and (26).

The objective of the method is to select to achieve the

closest agreement in a least squares sense between the computed and input 

temperatures at r' over the analysis interval. This is accomplished by 

minimizing the weighted sum of squares function

£(,) - jIi VT(1+j)it - T<i+3)At>' (27)

with respect to the parameter q^+D^t’ '*'n equat^on (27), the weights
2 pare defined by w^. = j and T^+_. ^t, are the computed and input

temperatures at the interior point r^. The minimization is done using

an iterative procedure that involves direct sampling of the function (27)

and adjustment of q /. ,N . in each iteration.3 n(i+l)At
The solution value of is taken as the accepted value of

q(a,t) over the single time step At only. The analysis interval is shifted 

by one time step and the process is repeated. For the special case J = 1, 

no future temperatures are used and least squares minimization is not 

required.

2 . . • q^ is determined from conditions at the initial time.

3In his formulation, Beck uses an analytical scheme to minimize the 
summed square function f.
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For convective boundary conditions, a heat transfer coefficient can 

be computed in each time step from the expression

L(i)At
(i) At ( (i)At TaC ) (i)At;

(28)

As an alternate formulation, the iteration scheme outlined above can be 

performed on the heat transfer coefficient h^^^ and the surface heat 

flux then computed from

. JA) _ CLC .
q(i)At h(i)AtC (i)At T(i)At (29)

The latter scheme is employed by Muzzy, et al [17] in a finite difference 

application of Beck's method.

Some of the modifications to Beck's method suggested in Reference 

[17] have been implemented in the procedure presented here. First of all, 

a weighted least squares criterion is used in the function (27). The 

weights reflect that the temperature difference at time (i+j)At has more 

influence on ^°r ^ncreas;*-n8 J over the analysis interval con­

sisting of an appropriate number of time steps. Beck's formulation is 

obtained by defining w_. = 1 for all j.

Secondly, before minimization of the summed square function (27) 

proceeds for a given analysis interval, ^ adjusted iteratively

to satisfy the requirement

t - r1 av av1 < T0L2 (30)
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for some prescribed T0L2 > 0, where is given by

Tav
1
W

J
I

j=l
Wj (i+j)At

J
W = l

3=1
w . (31)

Pand T' is similarly defined. The resultant estimate for q.,.,.. is then av H(i+l)At
refined in the minimization procedure for the function (27). This ensures 

that the input and computed temperatures at r^ agree closely in an averaged 

sense before minimization of the summed square function (27) is carried out. 

Otherwise, it may be possible for the algorithm to calculate from

a relative minimum rather than from the true minimum of the function (27) 

on the analysis interval. This problem is discussed in more detail in 

Reference [20].

A crucial factor in Beck's formulation is the relationship between 

the magnitude of the time step At and the required number of time steps J 

in the analysis interval, given a temperature probe located a distance L 

from the heated surface. Beck [5] explores this relationship by studying 

sensitivity coefficients that define the temperature change at an interior 

point due to a unit step in surface heat flux. He examines a one­

dimensional model with the temperature probe fixed at distance — = 1 froma
the surface. Using the criteria derived from the sensitivity coefficients

for this model. Beck recommends values of J that are appropriate for given

values of the dimensionless time step At = . The value of J is
a

increased as the magnitude of At is reduced, roughly preserving the length 

J • Ax of the analysis interval. Muzzy, et al [20] also study this rela­

tionship in applying Beck's formulation. Some additional results are 

presented in the numerical applications in this report. For a detailed 

discussion of this topic, the reader is referred to Beck's paper.
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VII. NUMERICAL APPLICATIONS

The inverse formulation developed in the preceding sections has 

been implemented in the digital computer program INCAP, as described in 

Appendices B and C of this report. The primary objective of this study 

is to compare the inverse calculations of program INCAP with those of 

program ORINC using representative temperature transients recorded by 

thermocouple sensors in the heater rod bundle. Prior to making these 

comparisons, the performance of program INCAP in solving the inverse 

problem is evaluated in two test problems.

A heater rod cross section4 and the corresponding one-dimensional 

finite element discretization used in the inverse analysis are depicted in 

Figures 6 and 7. The electric heater rods are from 548.64 to 640.08 cm

(18 to 21 ft) in length, 1.077 cm (0.424 in.) in diameter, and have dual­

sheath design. The outer sheath is 0.025 cm thick (0.010 in.) stainless 

steel; the inner sheath is 0.076 cm thick (0.030 in.) stainless steel and 

is grooved to accept the 0.051 cm (0.020 in.) chromel vs. alumel thermo­

couples. The next inner layer is boron nitride (BN), which electrically

insulates the heating element from the stainless steel sheaths. In the 

section of the rod from which the cross section of Figure 6 is extracted, 

the heater element consists of an Inconel 600 tube.5 The core of the 

heater element is filled with magnesium oxide (MgO), which is both a 

filler and insulator between the heating element and the central rod 

thermocouple sheaths.

4
The heater rod cross section selected for the test models is that 

one identified in Reference [4] for LEVEL G (ZONE I).

5As described in Reference [4], the heater element configuration and 
heater output vary over the length of the rod.
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Figure 6. Electrically-heated rod containing 
thermocouple sensors

(a) Cross section
(b) Dimensions
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The transient response of the heater rod is modeled as a coupled 

heat conduction and mechanical deformation problem due to the presence of 

a small air gap between the stainless steel sheaths that varies in width 

with temperature. The fabrication process that reduces the heater rod to 

its final diameter often creates an imperfect fit between the inner and 

outer sheaths at the thermocouple locations and produces a gap between the 

thermocouple junction and the outer sheath. The thermocouple is welded to 

the inner sheath, causing the gap between the junction and outer sheath to 

grow with increasing fluid temperature and to close with increasing heater 

power. Correspondingly, the change in the gap width alters the tempera­

ture profile in the cross section.

A one-dimensional model developed in Reference [4] is used to model 

the mechanical response of the gap:

Ar = Ar + r., , (EXP [C1 (T , - T,, ) gap gap0 16 1 lv 16 16^

)] - 1)

- r15(EXP[C1(I15 - T15°)+^(T215 - T^)

*"3 3 3+ -f (T^c - T^ )] - 1) (32)

In equation (32), the quantities Ar , T , T are the steady-state
gap0 1C)0 P0

gap width and steady-state nodal temperatures determined in an initial 

steady-state configuration. The expansion coefficients C^(i=l,3) are
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determined in situ as part of a rod calibration procedure [29] for each 

test. In calculating the thermomechanical response of the heater rod 

model, the gap width Ar^^ and the appropriate geometric variables of 

the finite element model (equations (8) through (12)) are adjusted in 

each iteration of the solution process described in equations (14) 

through (18).

The thermophysical properties of thermal conductivity k and 

specific heat c are dependent upon temperature and the spatial coordinate. 

Except for the thermal conductivities of MgO and BN, these properties are 

determined for each material as a function of temperature from an optimum 

polynomial fit to available data, as given in Reference [4]. The thermal 

diffusivity for the MgO and the thermal conductivity for the BN are 

determined in situ as part of the rod calibration procedure [29] prior 

to each test.

The first numerical example6 was selected to evaluate the perfor­

mance of the technique in solving the inverse problem for the finite element 

model of Figure 7. The periodic surface heat flux depicted in Figure 8 was 

used as boundary condition input for a direct solution. This boundary 

condition is included because the ramp in heat flux is typical of surface 

transients in the test loop and because the finite element formulation 

used by Hore, et al [27] demonstrated divergence in the surface heat flux 

for a similar periodic problem. The temperature transient of Figure 8 was

6The finite element inverse calculations described in this section 
were performed using T0L1=.001, equation (18); TOL2=1.0, equation (30); 
8=0.5, equation (26); At=0.05 seconds, which is equal to the data acquisi­
tion interval for the thermocouple sensors in the heater rod. For each 
analysis, the iterative procedure for minimizing the summed square function 
(equation (27)) was terminated when the uncertainty in the value of
a .. .,N A was less than 1%.(i+l)At
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calculated at the thermocouple node 14 of the discrete model using a heat
3 3generation rate fixed at Q = 9.19 x 10 watts/cm . With the temperature 

transient of Figure 8 serving as input, the corresponding inverse analysis 

was performed in an attempt to recreate the periodic surface heat flux 

boundary condition. Computed results were obtained using no "future" 

temperatures, one, and two "future" temperatures (corresponding to J = 1,

2, and 3) in the inverse solution. In Figures 9 through 11, the surface 

heat flux calculated for each J value is compared with the input boundary 

condition of the direct problem. The calculated and input thermocouple 

temperatures at node 14 are also compared for each case in these figures; 

however, the error in temperatures (TOL2 = 1.0) is not discernible on the 

scale of these plots. All three inverse solutions follow the input 

surface flux of the direct problem.

In the second test problem, the procedure used in the first problem 

is repeated to evaluate the capabilities of INCAP to track severe tran­

sients of varying time lengths (2At, 4At, 6At, 8At, lOAt, At = 0.05 secs), 

as depicted in Figure 12. The inverse problem again is computed using no 

"future" temperatures, one and two "future" temperatures and the results 

are illustrated in Figures 13 through 15. Results obtained from this and 

the first test problem demonstrate that the solutions using "future" 

temperatures reduce oscillations in the computed surface heat flux, but 

tend to "round off" rapid changes as J is increased. For the finite 

element model of Figure 7 and a selected time step of At = .05 seconds, the 

use of one "future" temperature appears optimal for reducing oscillations.

Turning now to the primary objective of this study, inverse calcula­

tions from programs INCAP and ORINC are compared for two actual thermocouple
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Figure 9. First test case: Comparison of direct
solution with inverse solution using no
future temperatures (J = 1)
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Figure 10 First test case: Comparison of direct
solution with inverse solution using one
future temperature (J = 2)
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Figure 11. First test case: Comparison of direct
solution with inverse solution using two
future temperatures (J = 3)
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Figure 13. Second test case: Comparison of direct
solution with inverse solution using no
future temperatures (J = 1)
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transients recorded during a representative BDHT blowdown test. For the 

comparison, blowdown test 105 [30] was selected and two examples, at 

thermocouples7 TE-325BG and TE-325AD of rod bundle 1, were run on both 

programs. The heater power input at the appropriate level of the rod 

and the measured thermocouple temperatures of the transient are depicted 

in Figure 16 for TE-325BG and in Figure 20 for TE-325AD. The results of 

the inverse analyses for thermocouple TE-325BG are plotted in Figures 17 

through 19 and those for TE-325AD in Figures 21 through 23 for the first 

10 seconds of the test, the significant period of the transient. Included 

are plots of surface heat flux and surface temperatures computed by 

programs INCAP and ORINC. Results from INCAP include solutions utilizing 

no "future" temperatures, one, and two "future" temperatures; ORINC is 

capable of using contemporary temperatures only. Figures 16 and 20 also 

compare the thermocouple temperatures of the INCAP inverse solution for 

J = 2 with the measured thermocouple temperatures; as in the first test 

case, the error in temperatures is not discernible on the scale of 

these plots.

Comparisons of the inverse calculations (Figures 17 through 19 

and 21 through 23) performed by INCAP and ORINC for the two thermocouple 

transients indicate good agreement between the finite element and the 

finite difference inverse techniques for the rod configuration of 

Figure 6. Results from the test problems (Figures 8 through 15)

"7
The heater rod finite element model depicted in Figure 7 was used 

in the inverse analysis of TE-325BG. The same configuration was used for 
TE-325AD, except for small changes in position of some material interfaces 
and in the bias gap width. The position of these thermocouples in THTF 
bundle 1 and a complete description of rod geometry are given in 
Reference [4].
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Figure 16. THTF test 105, thermocouple TE-325BG, bundle 1 
Heater power input at level G (Zone I) and 
thermocouple transient for first 10 seconds 
of test
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Figure 18. Thermocouple TE-325BG: Comparison of INCAP
inverse solution using one future temperature
(J = 2) with ORINC solution
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Figure 20. THTF test 105, thermocouple TE-325AD, bundle 1 
Heater power input at level D (Zone III) and 
thermocouple transient for first 10 seconds 
of test
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Figure 21. Thermocouple TE-325AD: Comparison of INCAP
inverse solution using no future temperatures
(J = 1) with ORINC solution
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Figure 22. Thermocouple TE-325AD: Comparison of INCAP
inverse solution using one future temperature
(J = 2) with ORINC solution
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Figure 23. Thermocouple TE-325AD: Comparison of INCAP
inverse solution using two future temperatures
(J = 3) with ORINC solution
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suggest that the use of one future temperature in the INCAP analyses is 

adequate to remove some of the "roughness" from the computed results 

without severe rounding of rapid changes in surface heat flux.

The table below gives comparisons of the CPU times required for 

execution of the BDHT inverse calculations on the IBM 360/195 computer 

using programs INCAP and ORINC. The relatively large CPU times used in

Comparison of CPU Time Required on the IBM 360/195 
For Inverse Analyses of Measured Transients 

Using INCAP and ORINC

INCAP

Future
Temperatures TE-325BG TE-325AD

0 17 secs 19 secs

1 94 secs 112 secs

2 133 secs 180 secs

ORINC 0 3.6 secs 3.6 secs

the INCAP analyses are due to the substantial number of iterative solutions

demanded by Beck's inverse technique. In the comparisons presented here,

program INCAP is computationally less efficient than ORINC; however, it

should be emphasized that Beck's method is applicable to a larger class

of problems than the algorithm used in ORINC. Beck [5] has demonstrated

that, for the temperature probe located away from the heated surface such
2that L/a=l, and for sufficiently small dimensionless time steps AT=aAt/a , 

inclusion of "future" temperatures in the inverse analysis is required 

to prevent violent oscillations or instabilities in the heat flux
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calculations. 

those problems

The algorithm employed in ORINC is not applicable to 

requiring "future" temperatures.
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VIII. SUMMARY AND CONCLUDING REMARKS

In this paper, a formulation of the nonlinear inverse heat 

conduction problem has been presented that is applicable to composite 

bodies with temperature-dependent thermophysical properties. This formu­

lation, based on a finite element model of the direct problem and on Beck's 

nonlinear estimation procedure, was implemented in the digital computer 

program INCAP. Applications of the finite element inverse program INCAP 

to an electrically-heated composite rod were examined in this study. In 

two test examples, a known heat flux was imposed on the surface of the rod. 

The inverse calculations from INCAP followed the input surface heat flux 

in each of the direct problems, with the use of one "future" temperature 

optimal for reducing oscillations without severe "rounding" of rapid 

changes in the computed flux. Finally, program INCAP was used in a com­

parative study with the finite difference inverse code ORINC. Comparisons 

were made between INCAP and ORINC for two actual thermocouple transients 

recorded at interior thermocouple sensors in the heater rods during a 

simulated loss-of-coolant accident. The surface heat flux and surface 

temperatures computed by programs INCAP and ORINC were found to be in 

good agreement for both of the thermocouple transients. Program INCAP 

is computationally less efficient than ORINC when applied to the geometry 

of the electrically-heated rods of bundle 1; for INCAP solutions using 

no "future" temperatures (J=l), the average ratio of INCAP-to-ORINC CPU 

time on the IBM 360/195 computer is approximately 5-to-l. However, the 

algorithm used in INCAP is applicable to a much larger class of inverse 

problems than that used in ORINC.
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The results presented here clearly demonstrate that the inverse 

formulation based on the finite element technique and Beck's second method 

is capable of successfully treating experimental data. Consideration of 

"future" temperatures in calculating surface heat flux permits the use 

of small dimensionless time steps while avoiding severe oscillations or 

numerical instabilities in the computed results. This technique also 

reduces oscillations in the calculated heat flux that are due to experi­

mental errors incurred in temperature measurements.

Studies are under way to extend the formulation presented here to 

treat the coupled inverse heat conduction-thermal deformation problem in 

two and three dimensions. While both the finite element and the finite 

difference methods have been applied successfully in one-dimensional 

inverse analyses, it is the author's opinion that the finite element 

technique offers advantages in modeling complex geometries and boundary 

conditions in a multidimensional system. The compatibility between the 

finite element heat conduction model and the well-known finite element 

displacement formulation used in analysis of the mechanical problem is 

particularly advantageous in these studies.
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APPENDIX A

ITERATION ALGORITHM

In the nonlinear analysis of Section V, the temperature vector 

{l} i-s calculated from equations (8) through (18) using a computa­

tional scheme that iterates on the out-of-balance heat flow rate. In 

each iteration, a new temperature vector is computed from

{T} (P)
(i+1)At {T} (P-D(i+1)At

+ {AT}^ (17)

(P)where (At}v ' is the (P)th correction to the temperature vector {Tj •
(p )The expression for computing the correction {AT}V is determined by sub­

stituting (17) into (13) and using (8) as follows:

[C] (P-D(i+1)At
{T> (P-D(i+1)At

+ {AT}^ 
At

- {T} (i)At

+ [K] (P-D(i+l)At ({T} (P-D(i+1)At
+ {at}p)

+ {F} (i+1)At + {F} (P-D(i+1)At = 0 (33)

Equation (15) is obtained by rearranging terms in (33) and substituting 

the matrix [S] as defined in (16).
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INTRODUCTION

Program INCAP is designed primarily to perform a transient one­

dimensional nonlinear inverse heat conduction analysis of the THTF heater 

rod configuration of Figure 6. However, the program is capable of per­

forming a transient one-dimensional forward or inverse analysis of a 

solid or hollow cylindrical body, subject to conditions prescribed in 

this manual. Generally, the cylindrical body can be a composite of 

several materials, and the thermophysical properties for each material 

can be prescribed functions of temperature. The program allows the user 

to select boundary conditions for convection, radiation, prescribed heat 

flux and prescribed surface temperature. The inverse option assumes a 

known temperature history at one interior thermocouple location in the 

cylindrical body.

In the user instructions below, each card or group of cards is 

identified by the format used on the card(s), the names of the variables, 

the meaning of the variables and notes.

I. HEADING CARD (10A8)

Notes Columns Variable

1-72 TITLE

II. MASTER CONTROL CARDS 

Card 1 (715)

Notes Columns Variable

1-5 NP

1/ 6-10 NE

Entry

Enter the master heading information 
for use in labeling the output

Entry

Total number of nodes, not to exceed 
41

Total number of elements, not to 
exceed 20
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II. MASTER CONTROL CARDS (Contd.) 

Card 1 (Contd.)

Notes Columns Variable _______________ Entry

2/ 11 - 15 NB Total number of temperature re­
strained nodes, not to exceed 2

3/ 16 - 20 NGAUS Number of Gauss integration points 
per element, not to exceed 3

4/ 21 - 25 NMAT Number of different material models, 
not to exceed 7

5/ 26 - 30 IPAP Type of analysis:
EQ.O: Steady-state
EQ.l: Transient

6/ 31 - 35 NNP Total number of nodes read from 
cards

NOTES/
1/ Both linear and quadratic elements, depicted in Figure 3

are included as options in the program.

2/ Up to two boundary nodes may be fixed at specified 
temperatures.

3/ A maximum integration order of 3 is permitted in the 
numerical evaluation of the integrals (9) through (12) 
on each element.

4/ The program contains six library material models and the 
option for a user input model. The properties of thermal 
conductivity and specific heat are specified functions 
of temperature for each material model.

5/ Either a steady-state or a time-dependent analysis may 
be selected in the forward heat conduction option. The 
inverse option requires a time-dependent analysis.

6/ It is not necessary to input the geometric coordinate
of the center node (Figure 3) for the quadratic element. 
The coordinate is interpolated internally from the two 
endpoint nodes of the element.
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II. MASTER CONTROL CARDS (Contd.)

Card 2 (215, F10.3)

Notes Columns Variable Entry

1/ 1-5 IEQUIT Option to perform equilibrium itera-
tions

EQ.O: No 
EQ.l: Yes

1/ 6 - 10 ITEMAX Maximum number of equilibrium itera­
tions permitted

1/ 11 - 20 T0L1 Relative tolerance used to measure 
equilibrium convergence, equation
(18)

NOTES/
1/ When the structure is represented by a nonlinear

material model, it is necessary to iterate on the out- 
of-balance heat flow rate to establish system equilib­
rium. The parameter IEQUIT determines if equilibrium 
iterations are to be performed. ITEMAX is the maximum 
number of iterations allowed in the solution step and 
T0L1 is used to measure convergence of the iteration 
according to equation (18). If the accuracy limit has 
not been reached in ITEMAX iterations, a message is 
printed and the solution is stopped.

Card 3 (215, 3F10. 3, 315)

Notes Columns Variable Entry

1/ 1 - 5 OPTION Option to perform forward or inverse 
heat conduction analysis

EQ.O: Forward heat conduction
EQ.l: Inverse heat conduction

2/ 6 - 10 KPRINT Output printing interval

3/ 11 - 20 DT Time step increment

4/ 21 - 30 TSTART Time at solution start

5/ 31 - 40 TMAX Maximum time limit for solution

6/ 41 - 45 NUNIT I/O device from which input for
Cards 14 and 15 is to be read 

EQ.5: Read from cards
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II. MASTER CONTROL CARDS (Contd.)

Card 3 (Contd.)

Notes Columns Variable Entry

7/ 46-50 INITAL (A) Forward conduction (OPTION
EQ.O): 
ignored

parameter INITAL is

(B) Inverse 
EQ.l) :

conduction (OPTION

EQ.O: Input initial tempera­
ture vector from cards

EQ.l: Let INCAP compute 
initial temperature
vector

8/ 51 - 55 IPLT Option to save variables for
plotting 

EQ.O: No 
EQ.l: Yes

NOTES/
1/ The program can perform forward or inverse heat

conduction analysis. The options for forward analysis 
include both transient (IPAP EQ.l) and steady-state 
(IPAP EQ.O) solutions.

2/ The print interval determines at which solution steps 
the program results are to be printed. For example, if 
KPRINT EQ.5, output is produced at times 5At, lOAt,
15At, etc.

3/ DT is the solution time step At and is constant for the 
time domain of the solution (both forward and inverse 
analysis).

4/ TSTART is the solution time corresponding to the 
initial temperature vector.

5/ The forward or inverse heat conduction analysis is
terminated when the solution time exceeds the time limit 
specified by TMAX.

6/ Program input for Card 14 (time history of thermocouple 
temperature and internal heat generation) and for Card 
15 (time history of environmental nodal temperature) 
can be read from cards, disc, or tape files. NUNIT 
specifies which I/O device is to be used.
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II. MASTER CONTROL CARDS (Contd.)

Card 3 (Contd.)

NOTES/
7/ In inverse analysis (OPTION EQ.l), the initial tempera­

ture vector corresponding to time TSTART can be input to 
the program on cards (INITAL EQ.O) or can be computed 
internally by the program (INITAL EQ.l) using an initial 
thermocouple temperature value. In forward analyses 
(OPTION EQ.O), this parameter is set to zero.

8/ When IPLT EQ.l, the solution variables listed below are 
saved on Unit 4 for each time step. Each record, written 
using an unformatted WRITE statement, consists of the 
following REAL*4 variables:

Forward Conduction Inverse Conduction

1. Time 1. Time
2. Surface temperature 2. Computed thermocouple
3. Environmental nodal temperature

temperature 3. Measured thermocouple
4. Power input temperature
5. Surface heat flux 4. Surface temperature
6. Surface heat transfer 5. Environmental nodal

coefficient temperature
7. Nodal temperatures 6. Power input

7. Surface heat flux
8. Surface heat transfer

coefficient
9. Sheath gap width
10. Nodal temperatures

III. INVERSE CONDUCTION CONTROL CARDS

(Skip this section for forward conduction analysis (OPTION EQ.O);
otherwise, input two cards.)

Card 4 (515)

Notes Columns Variable _______________ Entry_________________

1/ 1-5 TC Node number corresponding to thermo­
couple location

2/ 6-10 KTER Maximum number of iterations
permitted on surface heat flux q or 
surface heat transfer coefficient h
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III. INVERSE CONDUCTION CONTROL CARDS (Contd.)

Card 4 (Contd.)

Entry

Number of time steps used in 
analysis interval (parameter "J" 
of Section VI) (NLAG GE.l)

Maximum number of iterations per­
mitted in computing the initial 
steady-state temperature vector 
at time TSTART (INITAL EQ.l)

Option to iterate on surface heat 
transfer coefficient h or surface 
heat flux q in inverse analysis 

EQ.O: Iterate on surface heat
transfer coefficient h 

EQ.l: Iterate on surface heat
flux q

NOTES/
1/ One node number in the finite element model must be 

specified as the thermocouple location when inverse 
calculations are performed.

2/ As described in Section VI, iterations are performed on 
the surface heat flux q (NQH EQ.l) or the surface heat 
transfer coefficient h (NQH EQ.O) in each time step of 
the calculation. KTER sets the maximum number of 
iterations allowed in satisfying the requirement (30) 
and in minimizing the summed square function (27). If 
KTER is exceeded, a message is printed and the analysis 
is terminated.

3/ A value of NLAG EQ.l corresponds to an analysis interval 
consisting of one time step DT and no "future" tempera­
ture, whereas NLAG EQ.N (N GT.l) indicates an analysis 
interval of length N * DT and N - 1 "future" temperatures.

4/ The initial temperature vector corresponding to time 
TSTART is computed iteratively assuming a steady-state 
distribution. The entry for LIMIT sets the maximum 
number of iterations permitted in calculating the 
initial distribution. The tolerance is set internally 
for a maximum absolute difference of 0.5 between the 
computed and measured thermocouple temperatures. If 
LIMIT is exceeded, a message is printed and the 
solution is terminated.

Notes Columns Variable

3/ 11 - 15 NLAG

4/ 16 - 20 LIMIT

5/ 21 - 25 NQH
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Card 4 (Contd.)

NOTES/
5/ The option is provided for iterating on the surface heat 

flux q (NQH EQ.l) or on the surface heat transfer coeffi­
cient h (NQH EQ.O) in the inverse analysis. If iterations 
are performed on the surface heat transfer coefficient 
h, then a time history of the environmental nodal 
temperature Ta must be input in card group VIII.

III. INVERSE CONDUCTION CONTROL CARDS (Contd.)

Card 5 (8F10.3)

NOTE:

Notes

1/

2/

3/

4/

4/

5/

6/

7/

The comments concerning entries on this card refer to the 
calculation of both the surface heat flux q (NQH EQ.l) and 
the surface heat transfer coefficient h (NQH EQ.O), although 
reference is made to only one of these functions (q) in the 
notes.

Columns Variable Entry

1-10 BETA Factor used to increment q in the
advanced time intervals, equation 
(26)

11 - 20 T0L2

21 - 30 FAC

31 - 40 RELH

41 - 50 RELM

Convergence tolerance for the 
weighted average thermocouple 
temperature, inequality (30)

Factor used to increment q in the 
procedure for satisfying the 
inequality (30)

Upper bound on relative incremental 
change in q, used in procedure for 
satisfying the inequality (30)

Lower bound on relative incremental 
change in q

51 - 60 HMIN Greatest lower bound for q in proce­
dure for satisfying inequality (30)

61 - 70 EPSH Fractional value of q used to define
the sampling interval upon which the 
function (27) is minimized

71 - 80 EPSH1 Convergence tolerance defining the
allowable uncertainty in q, used in 
the procedure for minimizing the 
function (27)
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III. INVERSE CONDUCTION CONTROL CARDS (Contd.)

Card 5 (Contd.)

NOTES/
1/ The parameter BETA sets the value of 3 in equation (26), 

which is used to estimate q in the "future" time steps 
of the analysis interval. For the finite element model 
of Figure 7, a recommended value is BETA EQ.O.5.

2/ In Phase 1 of the inverse calculation (identified in the 
program FORTRAN listing by IPHASE EQ.l), the estimated 
surface heat flux is adjusted iteratively to
satisfy the requirement

|T - T^ I < T0L2 (30)
1 av av1

where T , T^ are the computed and input weighted- 
av avaverage thermocouple temperatures. This insures that 

the computed and input thermocouple temperatures agree 
in an averaged sense before minimization of the summed 
square function f (27) is carried out. For the model of 
Figure 7, a recommended value is T0L2 EQ.1.0.

3/ The four entries on this card for FAC, RELH, RELM, HMIN 
control the iterative adjustment of cl(i+i)At t*ie 
procedure for satisfying the inequality (30). In the 
(j+l)th iteration, the previous estimate for 
is incremented according to the relations

j+1 j . a iqJ = qJ + sgn • Aq (34)

where

|TJ  TP |
j ' av av' FAC , j = 1

Aq3 = av

(m-1) + q^ 1 • (1-m) , j > 1 (35)

and

m =
.pP _ tpj 1
av av

rj-ij __ rpj 1

av av
sgn =

fjiJ _ rji/-'

av av
|Tj - TP I1 av av1

(36)

The iteration is terminated when inequality (30) is 
satisfied. For the model of Figure 7, FAC EQ.1000. is 
recommended.
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III. INVERSE CONDUCTION CONTROL CARDS (Contd.)

Card 5 (Contd.)

NOTES/
4/ The parameters RELH and RELM place upper and.lower

bounds on the relative incremental change Aq-Vq^ of the 
surface heat flux in equations (34) and (35):

RELM < < RELH (37)
" q3 "

For the model of Figure 7, RELH EQ.O.5 and RELM EQ.0.01 
are recommended.

5/ For those time steps in which the rate of heat transfer 
at the surface is very low, errors in the thermocouple 
data can cause the iteration scheme for satisfying 
requirement (30) to compute an unrealistic negative 
q^+-jj^t in the transient. To alleviate this difficulty, 
the iterations are terminated when q falls below the 
threshold value HMIN, even though requirement (30) is 
not met. For the model of Figure 7, HMIN EQ.l is 
recommended.

6/ Phase 2 (identified in the program FORTRAN listing by 
IPHASE EQ.2) of the inverse calculation begins upon 
completion of the iteration scheme for satisfying 
requirement (30). In this second phase, the parameter 
EPSH is used to define the interval of q values upon 
which the summed square function f (27) is to be 
minimized. This minimization interval is initially 
defined by I1 E (HLEFT1.HRIGHT1) where

HLEFT1 = q(i+1)At (1 - EPSH)

HEIGHT1 = q/i+1)At (1 + EPSH) (38)

In (38), q(i+i)At is the surface heat flux value computed 
in Phase 1. The value of q that minimizes the function 
f (27) is assumed to be contained in the interval I .
For the model of Figure 7, EPSH EQ.0.1 is recommended.

7/ The procedure for minimizing the summed square function 
f (27) on the interval I1 of surface heat flux values 
is accomplished by sampling the function f at two points 
on i1. These sampled values of f are then compared and 
the length of the interval I1 containing the minimizing 
q value is contracted. When this procedure of sampling 
and contracting is repeated n times, a sequence of
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III. INVERSE CONDUCTION CONTROL CARDS (Contd.) 

Card 5 (Contd.)

NOTES/
nested intervals containing the minimizing q value is 
produced such that I1^3 l2 ^ I3P ... P In. The mini­
mizing scheme is terminated successfully when the 
uncertainty in the minimizing value of the surface 
heat flux satisfies the inequality

HRIGHTn - HLEFTn 
n
q(i+l)At

< EPSH1 (39)

here e(HLEFTn,HRIGHTn) is the latest estimate
of the minimizing surface heat flux. For additional 
discussion of this minimizing scheme, the user is 
directed to Reference [20]. A value of EPSH1 EQ.0.01 
is recommended for the model of Figure 7.

IV. NODE POINT DATA

Card 6 (110, F10.4)

Notes Columns Variable _______________ Entry_________________

1/ 1-10 N Node number

11 - 20 CORD(N) Radial coordinate of node N

NOTES/
1/ A total of NNP (see Card 1) node point coordinate card

must be read. Node point numbers must be in ascending
order from inner to outer surface. It is not necessary 
to input the geometric coordinate of the center node 
(Figure 3) for the quadratic element. This coordinate 
is interpolated internally from the endpoint nodal 
coordinates.
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ELEMENT DATA

Card 7 (615)

Notes Columns Variable Entry

1 - 5 N One-dimensional conduction element 
number, N GE.l and LE.NE (Card 1)

1/ 6 - 10 IMAT(N) Material model number describing 
element N, IMAT(N) GE.l and LE.7

2/ 11 - 15 NCN Number of nodes used to describe 
element N

EQ.2: Linear element
EQ.3: Quadratic element

2/ 16 - 20 NOP(N,1) Global node number of element nodal 
point 1

2/ 21 - 25 NOP(N,2) Global node number of element nodal 
point 2

2/ 26 - 30 NOP(N,3) Global node number of element nodal 
point 3 (NCN EQ.3 only)

NOTES/
1/ The variable IMAT(N) describes the material model from 

the material model library listed below that is used to 
determine thermophysical properties for the element N. 
If internal heat generation (Cards 13 and 14) is pre­
scribed for element N, add 100 to the value of IMAT(N).

Material Model Library:

IMAT(N) Material

1 Magnesium oxide
2 Inconel 600
3 Cupro-nickel
4 Boron nitride
5 Stainless steel (316)
6 Linear air gap
7 User input model

Optimum polynomial functions of temperature were deter­
mined for the heat capacity and thermal conductivity of 
material models 2, 3, 5, and 6 in Reference [4] and have 
been incorporated into INCAP. For material models 1 and 
4 (magnesium oxide and boron nitride), the effective 
thermal conductivity must be determined in situ as part 
of a rod calibration procedure described in Reference 
[29]. The coefficients obtained from this calibration
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V. ELEMENT DATA (Contd.)

Card 7 (Contd.)

NOTES/
procedure are input on Cards 19 and 21. Material model 
7 is included to permit the user to input temperature 
function data for heat capacity and thermal conductivity 
on Cards 24 - 27.

2/ The number of nodes describing element N is defined by 
NCN, which has the value NCN EQ.2 for linear elements 
and NCN EQ.3 for quadratic elements. Element nodal 
point 3, the center node of the quadratic element 
illustrated in Figure 3, is input only for NCN EQ.3.

VI. BOUNDARY CONDITIONS

Card 8 - Restrained nodes card (15, F10.3)
(Skip this card if NB EQ.O, Card 1)

Notes Columns Variable Entry

1/ 1-5 NBC(I) Restrained node number

6-15 u(D Prescribed fixed temperature

NOTES/
1/ One card must be input for each node restrained with 

respect to temperature, for a total of NB (Card 1, NB 
LE.2) cards. The restrained node cards must be in 
ascending order.

Card 9 - Convection, radiation or prescribed flux boundary 
condition card (415)

Notes Columns Variable

1/ 1-5 NCQR(L)

Entry

Flag to indicate convection, radia­
tion or prescribed flux boundary 
condition on boundary L, where L 
has the value L EQ.l on the inner 
surface and L EQ.2 on the outer 
surface 

EQ.O: No 
EQ.l: Yes
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VI. BOUNDARY CONDITIONS (Contd.)

Card 9 (Contd.)

Notes Columns Variable Entry

2/ 6-10 NTR(L) Radiation boundary code for boundary
L

EQ.O: No radiative heat transfer 
coefficient for boundary L 

EQ.l: Radiative heat transfer
coefficient for boundary L

3/ 11 - 15 NTH(L) Convection boundary code for
boundary L

EQ.O: No convective heat transfer 
coefficient for boundary L 

EQ.l: Convective heat transfer
coefficient for boundary L

4/ 16 - 20 NTQ(L) Prescribed surface heat flux code
for boundary L

EQ.O: No prescribed surface heat 
flux for boundary L 

EQ.l: Prescribed surface heat 
flux for boundary L

NOTES/
1/ On each boundary (L EQ.l,2) of the one-dimensional model, 

the parameter NCQR(L) is used to indicate convective, 
radiative or prescribed surface flux boundary conditions. 
Two cards must be input to the program, one card for 
each boundary of the spatial domain. The present con­
figuration of the program requires that one of these 
input cards must be a blank card. For example, a hollow 
cylinder with convective boundary conditions on the 
outer surface must be modeled with either an adiabatic 
or a fixed temperature inner surface. Thus, for the 
inner surface boundary (L EQ.l), a blank card would be 
input. For a solid cylinder, input a blank card for 
L EQ.l followed by a second card for the surface 
boundary conditions on L EQ.2.

2/ When NTR(L) EQ.l, a radiative heat transfer coefficient 
is computed for boundary L using equation (5), the 
previously updated surface node temperature and the 
current environmental nodal temperature Ta. The Stefan- 
Boltzmann constant and the emissivity for the material 
surface must be input on Card 10.
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VI. BOUNDARY CONDITIONS (Contd.)

Card 9 (Contd.)

NOTES/
3/ For NTH(L) EQ.l, a convective heat transfer coefficient 

h is determined for boundary L. The method used to com­
pute h depends upon the value of the OPTION parameter 
(Card 3). In the forward conduction problem (OPTION 
EQ.O), h is determined by linear interpolation within 
temperature function data points [Tj,hj] input on Card 
18, using the previously updated surface node tempera­
ture T. In the inverse problem, h is determined for 
each time step using the inverse procedure developed 
in Section VI, with NQH EQ.O on Card 4.

4/ For NTQ(L) EQ.l, a surface heat flux q is determined
for boundary L, the method again depending on the OPTION 
parameter. In the forward conduction problem (OPTION 
EQ.O), q is determined by linear interpolation within 
time function data points [tj,qj] input on Card 16, 
using the current time t. In the inverse calculation 
(OPTION EQ.l), q is determined using the inverse 
procedure developed in Section VI, with NQH EQ.l 
on Card 4.

Card 10 - Radiation boundary coefficients (2F10.3)
(Skip this card if NTR(L) EQ.O, L EQ.l and 2)

Notes Columns Variable Entry

1/ 1-10 SIGMA Stefan-Boltzmann constant

1/ 11 - 20 EMIS Emissivity for surface material of 
boundary L

NOTES/
1/ When boundary L is a radiation boundary, the Stefan- 

Boltzmann constant O and the emissivity £ for the 
surface must be input to the program. A radiative heat 
transfer coefficient is computed using equation (5), the 
previously updated surface temperature T, and the current 
environmental nodal temperature T . The emissivity EMIS 
is assumed to be temperature-independent.
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VII. INITIAL CONDITION CARDS

(Skip this section if OPTION EQ.l and INITAL EQ.l on Card 4)

The two cards in this section are omitted when OPTION EQ.l and 
INITAL EQ.l on Card 4; that is, when the inverse option is selected 
and the initial temperature vector is computed internally by the 
program.

Card 11 - Initial condition code (15)

Notes Columns Variable _______________ Entry_________________

1 - 5 NONU Code for indicating uniform or non-
uniform initial temperature vector 

EQ.O: Input uniform initial
temperature vector 

EQ.l: Input nonuniform initial
temperature vector

Card 12 - Initial temperature vector (110, F10.4)

Notes Columns Variable _______________ Entry

1/ 1 - 10 NIT Node number

1/ 11 - 20 TPSTR Initial value of nodal temperature

NOTES/
1/ For nonuniform initial conditions (NONU EQ.l), one card 

is input for each node specifying the initial nodal 
temperature at time TSTART. For uniform initial condi­
tions (NONU EQ.O), one card is input for the highest 
numbered node only, specifying the uniform initial 
temperature at time TSTART.

VIII. TIME FUNCTION DATA

Card 13 - Control card (315)

Notes Columns Variable Entry

1/ 1-5 NLD Total number of points (i.e., [t^,
Tf,Qi] triplets) used to input the 
time-thermocouple temperature function 
TP(t) and the time-internal heat 
generation function Q(t) (NLD LE.410)
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VIII. TIME FUNCTION DATA (Contd.)

Card 13 (Contd.)

Notes Columns Variable _______________ Entry_________________

2/ 6-10 NTAM Total number of points (i.e.,
[ti>T^] pairs) used to input the 
time-environmental nodal temperature 
function Ta(t) (NTAM LE.410)

3/ 11 - 15 NFLUX Total number of points (i.e.,
[ti»qil Pairs) used to input the 
time-surface heat flux function q(t) 
(NFLUX LE.25)

NOTES/
1/ NLD describes the total number of points (i.e.,

[t-£,Tj?,Q-iJ triplets) which define the time-thermocouple 
temperature function TP(t) used in the inverse analysis 
(OPTION EQ.l) and the time-internal heat generation 
function Q(t) used in either forward or inverse 
analysis (OPTION EQ.O or 1)

2/ NTAM determines the total number of time-environmental 
nodal temperature points (i.e., [t-^T^] pairs) defining 
Ta(t) that are input for convection and/or radiation 
boundary conditions (NTR(L) EQ.l and/or NTH(L) EQ.l,
L EQ.l or 2). For no radiation or convection boundary 
conditions, set NTAM EQ.O. For inverse analysis 
(OPTION EQ.l) and no radiation boundary conditions, 
set NTAM EQ.O.

3/ NFLUX determines the total number of time-surface heat 
flux points (i.e., [tj^q^] pairs) defining q(t) that are 
input when NTQ(L) EQ.l, L EQ.l or 2. This function is 
input for forward conduction only (OPTION EQ.O).

Card 14 - Time function data for thermocouple temperatures and 
internal heat generation (3E18.8)
(Skip this card if NLD EQ.O)

NOTE: Data on this card is read from I/O device NUNIT specified
on Card 3.

Notes Columns Variable Entry

1/ 1-18 RTTC(I) Time at point I, t^

19 - 36 RTCTMP(I) Function value of thermocouple 
temperature at point I, T^tj;)
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VIII. TIME FUNCTION DATA (Contd.)

Card 14 (Contd.)

Notes Columns Variable _______________ Entry ______________

37 _ 54 RQ(I) Function value of internal heat
generation at point I, Q(t-j-)

NOTES/
1/ Time values at successive points must increase in

magnitude (i.e., RTTC(I) < RTTC(I+1), etc.) and RTTC(l) 
must be less than or equal to TSTART. The last time 
value for the function, RTTC(NLD), must be greater than 
or equal to the time at the end of the solution, i.e., 
RTTC(NLD) GE.TMAX. In the solution, linear interpola­
tion is employed to obtain the function values between 
the points input on Card 14. A total of NLD cards are 
read from the I/O device NUNIT specified on Card 3.

Card 15 - Time function data for environmental nodal temperatures 
(2E18.8)
(Skip this card if NTAM EQ.O)

NOTE: Data on this card is read from I/O device NUNIT specified 
on Card 3.

Notes Columns Variable _______________ Entry_______________

1/ 1-18 RTTAM(I)

19 - 36 RTAMB(I)

Time at point I, t^.

Function value of environmental 
nodal temperature at point I, 
Ta(tx)

NOTES/
1/ The general restrictions on the input for Card 14 are 

also applicable to the input for Card 15.

Card 16 - Time function data for surface heat flux (2F10.3) 
(Skip this card if NFLUX EQ.O)

Notes Columns Variable Entry

1/ 1-10 TFLUX(I) Time at point I, t^

11 - 20 QFLUX(I) Function value of surface heat flux 
at point I, q(t^)
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VIII. TIME FUNCTION DATA (Contd.) 

Card 16 (Contd.)

NOTES/
1/ The general restrictions on the input for Card 14 are 

also applicable to the input for Card 16.

IX. TEMPERATURE FUNCTION DATA

Card 17 - Heat transfer coefficient control card (15)

Notes Columns Variable Entry

1/ 1-5 NHTRC Total number of points (i.e., [T^h-jJ 
pairs) used to input the temperature-
heat transfer coefficient function 
h(T) (NHTRC LE.25)

NOTES/
1/ The temperature-heat transfer coefficient function h(T) 

must be input for convective boundary conditions (i.e., 
NTH(L) EQ.l, L EQ.l or 2), for forward conduction only 
(OPTION EQ.O). A maximum of 25 points is permitted.
For inverse analysis, set NHTRC EQ.O.

Card 18 - Temperature function data for heat transfer coefficient 
(2F10.3)
(Skip this card if NHTRC EQ.O)

Notes Columns Variable _______________ Entry_________________

1/ 1-10 THTRC(I) Temperature at point I, T^

11 - 20 HTRC(I) Function value of heat transfer
coefficient at point I, h(Tj)

NOTES/
1/ Temperatures must be input in ascending order (i.e., 

THTRC(I) < THTRC(1+1)).

1/ The domain of input temperatures defined by the interval 
(THTRC(1), THTRC(NHTRC)) must be sufficiently large to 
include all computed temperatures in the solution.
Linear interpolation is used to obtain function values 
between points input on Card 18. A total of NHTRC cards 
must be input to the program.
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X. MATERIAL MODEL DATA

Card 19 - Material model 1: Thermal conductivity coefficients for
magnesium oxide (5F15.5)
(Leave this card blank if material model 1 is not used)

Notes Columns Variable Entry

1/ 1 - 15 CMG0(1)

16 - 30 CMGO(2)
Coefficients of temperature-thermal

31 - 45 CMGO(3) > conductivity
oxide

function for magnesium

46 - 60 CMGO(4)

61 - 75 CMGO(5)

NOTES/
1/ The coefficients of the thermal conductivity function 

for magnesium oxide are determined in situ as part of 
the heater rod calibration procedure described in 
Reference [29].

Card 20 - Option for computing magnesium oxide thermal conductivity 
(15, F15.5)
(Leave this card blank if material model 1 is not used)

Notes Columns Variable Entry

1/ 1-5 K0D2 Option for computing thermal 
conductivity of MgO

EQ.O: Option 1
EQ.l: Option 2

2/ 6-20 PRS Porosity of the magnesium oxide 
ceramic

NOTES/
1/ Two options are provided in the program for computing 

the thermal conductivity of the magnesium oxide core. 
For a discussion of these options, the user is 
referred to References [4] and [29],

2/ The porosity of the MgO ceramic is required only when 
the second option (K0D2 EQ.l) is used to compute the 
thermal conductivity of MgO.
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X. MATERIAL MODEL DATA (Contd.)

Card 21 - Material model 4: Thermal conductivity coefficients for 
boron nitride (4F15.5)
(Leave this card blank if material model 4 is not used)

Notes Columns Variable Entry

1 - 15 CBN0(1) ,

16 - 30 CBNO(2) Coefficients of temperature-thermal
1 conductivity function for boron

31 - 45 CBN0(3) : nitride

46 - 60 CBNO(4) ^

NOTES/
1/ The comments of NOTE 1/, Card 19 also apply to the boron 

nitride material model 4.

Card 22 - Material model 6: Heater rod gap (2F10.3, 315)
(Leave this card blank if material model 6 is not used)

The program utilizes the linear gap model developed in Reference [4] 
and described in Section VI to represent the thermomechanical response 
of the air gap between the inner and outer stainless steel sheaths 
of the heater rod.

Notes Columns Variable _______________ Entry

1/ 1 - 10 GAPB Steady-state gap width, units in 
mils

2/ 11 - 20 TRMAX Maximum regression temperature for 
gap model coefficients

3/ 21 - 25 I0DE Option for fixed or variable gap 
EQ.O: Gap does not vary with

temperature vector 
EQ.l: Gap varies with temperature 

vector

4/ 26 - 30 NPG1 Global node number defining 
sheath-gap interface

inner

5/ 31 - 35 NPG2 Global node number defining 
sheath-gap interface

outer
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Card 22 (Contd.)

NOTES/
1/ The steady-state gap width GAPB is determined in situ 

as part of a rod calibration procedure described in 
Reference [29].

2/ TRMAX is the maximum temperature for which the re­
gression coefficients GP1(I), I = 1,3 of the linear gap 
model are applicable. For further discussion, see 
References [4] and [29],

3/ The option is provided to fix the width of the sheath 
gap equal to the steady-state gap width GAPB for the 
entire solution.

4/ A linear element that varies in length with temperature 
according to equation (32) is used to model the sheath 
gap in the heater rod. The nodes NPG1 and NPG2 define 
the global nodal connections for the element.

Card 23 - Coefficients for linear gap expansion model (3F15.5)
(Leave this card blank if material model 6 is not used)

X. MATERIAL MODEL DATA (Contd.)

Notes Columns Variable _______________ Entry

1/ 1 - 15 GP1(1)

16 - 30 GP1(2) Gap model expansion coefficients

31 - 45 GP1(3)

NOTES/
1/ The expansion coefficients GP1(I), I = 1,3 are used 

in equation (32), along with the previously updated 
temperature vector, to compute the change in the sheath 
gap width. These coefficients are evaluated in situ as 
part of a rod calibration procedure described in 
Reference [29].
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X. MATERIAL MODEL DATA (Contd.)

Card 24 - Control card for material model 7 (user-supplied model) 
(215)
(Leave card blank if material model 7 is not used)

Notes Columns Variable Entry

1/ 1-5 NCRHO Total number of points (i.e.,
[Ti,ci] pairs) used to input the 
temperature-specific heat function 
c(t) (NCRHO LE.25)

1/ 6-10 NAK Total number of points (i.e.,
[T^jk-jJ pairs) used to input the 
temperature-thermal conductivity 
function k(T) (NAK LE.25)

NOTES/
1/ The specific heat and thermal conductivity are tempera­

ture dependent and are described by the discrete points 
entered on Cards 25 and 26.

Card 25 - Temperature function data for specific heat of material 
model 7 (2F10.3)
(Skip this card if NCRHO EQ.O)

Notes Columns Variable Entry

1/ 1-10 TCRHO(I) Temperature at point I, Tj

1/ 11 - 20 CRHO(I) Function value of specific heat at 
point I, c(Tj)

NOTES/
1/ Linear interpolation is used to compute the specific 

heat between the points input on this card. A total 
of NCRHO cards must be input, with temperature values 
TCRHO(I) in ascending order. The temperature interval 
(TCRHO(l), TCRHO(NCRHO)) must contain all computed 
temperatures of the solution.
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Card 26 - Temperature function data for thermal conductivity of 
material model 7 (2F10.3)
(Skip this card if NAK EQ.O)

X. MATERIAL MODEL DATA (Contd.)

Notes Columns Variable Entry

1/ 1-10 TAKINP(I) Temperature at point I, Tj

1/ 11 - 20 AKINP(I) Function value of thermal conduc' 
tivity at point I, k(T-j-)

NOTES/
1/ The general restrictions of Card 25 also apply to 

Card 26.

Card 27 - Density of material model 7 (F10.3)
(Skip this card if NCRHO EQ.O)

Notes Columns Variable _______________ Entry___________

1-10 DIN Density p of material model 7

This concludes the card input to the program.



*
* 

»
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APPENDIX C

FORTRAN LISTING OF INCAP WITH EXAMPLE 

PROBLEM

The microfiche attached to the inside back cover of this report 

contains a complete listing of program INCAP that is operational on the 

ORNL IBM 360 computers. The following files are included:

1. Job Control Language (JCL) for INCAP

2. Test case input to INCAP

3. Test case results from INCAP

4. INCAP listing (FORTRAN IV)
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