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I 
ABSTRACT 

Measured by volume, North America's l a rges t  
hydraulic fracturing operations have been conducted 
a t  Fenton Hi l l ,  New Mexico t o  c rea t e  geothermal 
egergy reservoirs. In the largest  operation 21,000 
m of water were injected into jointed grani t ic  rock 
a t  a depth of 3.5 km. Microearthquakes induced by 
t h i s  injection were measured w i t h  geophones placed i n  
f i v e  wel l s  d r i l l e d  i n t o ,  o r  very c lose ,  t o  t he  
reservoir, as well as  11 surface seismometers. The 
large volume of rock over which the microearthquakes 
were distributed indicates a mechanism of hydraulic 
stimulation which is a t  odds w i t h  conventional 
fracturing theory, which predicts fa i lure  along a 
lane which is perpendicular to the l ea s t  compressive 5 e a r t  s t ress .  A coupled rock mechanicdfluid flow 

model provides much of the explanation. Shear 
slippage along pre-existing jo in ts  i n  the rock is 
more eas i ly  induced then conventional tens i le  
fa i lure ,  par t icular ly  when the difference between 
minimum and maximum earth s t resses  is large and the 
j o i n t s  a r e  or ien ted  a t  angles  between 30 and 60 
degrees t o  t h e  p r i n c i p a l  e a r t h  stresses, and a low 
viscosity f l u i d  l ike water is injected. Shear 
slippage resul ts  i n  local redistribution of s t resses ,  
which allows a branching, or dendritic, stimulation 
pattern to  evolve, i n  agreement w i t h  the patterns of 
microearthquake locations. These results are  
qual i ta t ively si'tnilar to the controversial process 
known as  Kiel fracturing, i n  which sequential 
injections and s h u t - i n s  are  repebted t o  Create 
dendritic f ractures  for  enhanced o i l  and gas 
recovery. However, we believe that  the explanation 
is shear slippage of pre-existing jo in ts  and s t r e s s  
redis t r ibut ion,  not proppant br idging and f lu id  
blocking as  suggested by Kiel. 

I INTRODUCTION 

Most rock masses, par t icular ly  c rys ta l l ine  ones, 
contain pre-existing fractures, usually called 
joints .  When f luid i s  injected in to  jo in ts  during 
hydraulic fracturing, several types of jo in t  
deformatlon can take place. A t  f lrst  the pressure 
r i s e  i n  the jo in t  is small enough that  the jo in t  does 

keterences ana i l i u s t r a t ions  a t  YIIO o t  uduer'. 

n o t  actual ly  open. Nevertheless, the effect ive 
closure s t r e s s ,  tha t  is, the difference between the 
to ta l  earth s t r e s s  acting normal to the jo in t  plane 
and the f l u i d  pressure, is reduced. If injection 
cont inues,  t he  pressure  can a t t a i n  a value h i g h  
enough t h a t  the effect ive closure s t ress  no longer 
provides suf f ic ien t  f r ic t ion  to  r e s i s t  shearing 
s t resses  acting parallel t o  the j o i n t  surface, and 
the jo in t  will s l i p  i n  a shear mode. If the slippage 
is suf f ic ien t ,  one rough surface asperity can r ide 
over, or atop another, so t ha t  even i f  the pressure 
is suddenly reduced the jo in t  opening a n d  
permeability are  i r revers ibly increased. This i s  
termed "shear stimulation." If f luid injection rates  
are  modest shear stimulation may resu l t  i n  suf f ic ien t  
permeabilty t h a t  no further increase i n  pressure i s  
attainable. If however the formation of void space 
by shearing is insuff ic ient  t o  accommodate the f l u i d  
volume injected i n t o  the rock joints ,  the pressure 
will continue t o  r i se ,  and eventually a t t a in  a value 
equal to the earth s t r e s s  acting normal to  the j o i n t .  
Then the opposing surfaces of the rock t h a t  meet a t  
the jo in t  will part. Because no actual r u p t u r i n g  of 
rock takes place d u r i n g  t h e  par t ing ,  i t  i s  
inappropriate to ca l l  t h i s  fracturing - we refer  t o  
this behavior as  j o in t  separation. If a proppant, 
e i t he r  purposely injected w i t h  the f l u i d ,  or  broken 
off the jo in t  surfaces, is trapped i n  a jo in t  
following s h u t - i n .  the jo in t  opening w i l l  again be 
i r revers ibly increased, and the j o i n t  t h u s  
"stimulated." 

The kinematic argument for  shear s t imulat ion is 
made by referring to  the Mohr diagram shown i n  Figure 
1. For s impl i c i ty  only a two dimensional s t r e s s  
s t a t e  is depicted, i n  which the principal maximum and 
minimum compressive s t resses  are  labeled u and 

and the  s t r e s s e s  on any o the r  planem!!n be 
rmsented by the Mohr c i r c l e  connecting the two 
p r inc ipa l  s t r e s s e s  ( Jaeger  and Cook, 1979) .  In 
Figure 1 a f a i r l y  typical s t r e s s  s t a t e  is assumed, 
one i n  which u is about twice u The effect ive 
c losure  s t red"& on a j o i n t  a fP ;educea  by t he  
pressure, P, within the j o i n t .  Consequently 
separation occurs when the effect ive closure s t ress  
is zero, or P =U As shown i n  Figure 1, l i f t - o f f  
t h u s  r equ i r e s  tvdlt' the  Mohr c i r c l e  be moved so 
completely to  the l e f t  t ha t  i ts  l e f t  side i s  

t w i K n  Khe a r i a i n .  on T n P  O T n P r  
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shearing requires only tha t  the Mohr c i r c l e  move l e f t  
s u f f i c i e n t l y  t o  encounter the Coulomb-Mohr f a i l u r e  
envelope. A mere touching i s  s u f f i c i e n t  i f  a j o i n t  
has the optimum or ien ta t ion ,  b u t  even i f  n o t  
op t ima l ly  or iented most j o i n t s  w i l l  shear-sl ip long 
before they separate. 

Shear s t imu la t ion  i s  r a r e l y  discussed i n  
hydraul ic f rac tu r i ng  theory. I n  fact ,  Lockner and 
Byerlee 11977). who demonstrated i n  rock mechanics 
laboratory experiments tha t  slow pressur izat ion could 
r e s u l t  i n  shear f rac tu r i ng  o f  i n tac t ,  n o t  j u s t  
jointed, rock specimens, were moved t o  s ta te  tha t :  
“ In the l i t e r a t u r e  on hydraul ic f rac tu re  the 
p o s s i b i l i t y  o f  producing shear ra the r  than tensi fn 
f rac tu res  i s  su rp r i s ing l y  disregarded . 
Subsequently. several other papers (Hast, 1979. and 
Solberg, Lockner and Byerlee, 1980) have appeared 
which support the p o s s i b i l i t y  o f  shear st imulat ion. 

While i t  thus appears t h a t  j o i n t s  w i l l  shear 
s l i p  a t  f l u i d  pressures less than t h a t  required f o r  
separation, the j o i n t  opening, o r  d i l a t i o n  behavior 
f o r  slippage and separation i s  qu i te  d i f f e ren t ,  as 
ind ica ted  i n  Figure 2. As pressure increases one 
again moves t o  the l e f t  on t h i s  diagram. A t  f i r s t  
t he  d i l a t i o n  i s  smal l ,  s imp ly  r e s u l t i n g  f rom the  
decrease o f  e f f e c t i v e  closure stress, b u t  then shear 
slippage ensues. As the j o i n t  surfaces continue t o  
s l i p ,  they a t t a i n  a s ta te  i n  which one la rge  
roughness asper i ty  l i e s  atop another, and fu r the r  
slippage would al low the l a rges t  asper i ty  t o  s l i d e  
over and down the other. Thus one expects a natural  
l i m i t  t o  the  shear d i l a t i o n .  Th is  maximum shear 
d i l a t i o n  i s  t y p i c a l l y  o f  the order o f  a f r a c t i o n  o f  a 
m i l l i m e t e r  (Bar ton  e t  a l . .  1985). I f  the  j o i n t  
pressure can be increased so tha t  separation occurs, 
then the resu l t s  o f  conventional hydraul ic f rac tu re  
theory (but taking the tens i l e  strength o f  the 
j o in ted  rock t o  be zero) ind ica te  t h a t  the d i l a t i o n  
i s  t y p i c a l l y  tens o f  mi l l imeters  (Perkins and Kern. 
1961; and Daneshy, 1973). many times t h a t  o f  shear 
d i l a t i o n .  Thus as Lockner and Byer lee  c o r r e c t l y  
foresaw, the key to understanding s t imu la t ion  i s  no t  
j u s t  rock mechanics. bu t  a lso  f l u i d  dynamics. I f  a 
low v i scos i t y  f l u i d  i s  i n jec ted  i n t o  a j o i n t  a t  a low 
enough f low rate,  the f l u i d  volume can be 
accommodated w i th in  the small d i l a t i o n  af forded by 
shear slippage. Even though the j o i n t  opening and 
p e r m e a b i l i t y  a r e  n o t  i nc reased  as  much as i f  by 
separation. the permeabi l i ty  increase could be 
s u f f i c i e n t  to sustain low f low ra tes  and low 
v i scos i t y  wi thout large pressure gradients, and the 
pressure need no t  b u i l d  up t o  separation 
requirements . 

I n  an actual  hydraul ic f rac tu r ing  operation i t  
i s  l i k e l y  t h a t  the e n t i r e  spectrum o f  j o i n t  
deformation can occur: near the i n j e c t i o n  we l l  the 
f low passage area i s  l imi ted, hence f l u i d  v e l o c i t i e s  
and pressure gradients are la rge  and separation 
occurs. But near the t i p s  o f  jo in ts ,  f a r  from the 
i n j e c t i o n  well .  ve loc i t i es  and pressures are much 
reduced, and shear s t imu la t ion  occurs. In the most 
common app l ica t ion  o f  hydraul ic f rac tu r ing .  i n  
petroleum reservoirs. very viscous f l u i d s  a re  
normally used and I n j e c t i o n  ra tes  are high. 
Consequently j o i n t  separation i s  dominant, and i f  few 
j o i n t s  are present, as i s  o f ten  the case i n  petroleum 
formations, actual  f rac tu r i ng  of i n t a c t  rock occurs. 
However, i n  the geothermal reservo i r  f rac tu r i ng  
described below, j o i n t s  occur frequently, and high 
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downhole temperatures render most v iscos i fy ing  agents 
useless. so water i s  used as the f ractur ing f l u i d .  
Hence, shear s t imu la t ion  dominates. 

RESERVOIR STIMULATION EXPERIMENTS 

We1 1 instrumented hydraul ic st imulat ion 
experiments have been conducted i n  two Hot Dry Rock 
(HDR) geothermal energy reservoirs.  The f i r s t  of 
these i s  located a t  Fenton H i l l ,  on the west f lank of 
the Valles caldera, a dormant volcanic complex i n  the 
Jemez Mountains of New Mexico, U.S.A. The second 
s i t e  i s  a t  Rosemanowes Quarry. i n  Cornwall. England. 
A t  both s i t e s  the reservo i rs  are jo inted, g ran i t i c  
rock. 

Hot Dry Rock geothermal energy reservo i rs  d i f f e r  
from the more f a m i l i a r  hydrothermal reservoirs i n  
t h a t  i n  the former case, permeabi l i ty  and porosi ty 
must be induced, usual ly by hydraul ic st imulat ion,  
whereas i n  the hydrothermal reservo i r  these 
a t t r i b u t e s  a r e  a l r e a d y  present,  and i n  f a c t  the  
ex i s t i ng  poros i ty  i s  usua l ly  saturated w i th  water or 
steam. which, a f t e r  d r i l l i n g ,  can be used as the  
working f l u i d  f o r  energy ex t rac t i on  and e l e c t r i c i t y  
production. I n  HDR reservoirs essen t ia l l y  no water 
e x i s t s  i n - s i t u ,  and so must be s u p p l i e d  f rom an 
external  source. The technical  d i f f i c u l t i e s  faced i n  
HDR development are challenging. A t  l eas t  two wel ls 
must be d r i l l e d  t o  depths where temperatures are 200 
t o  3OO0C, su i tab le  f o r  e l e c t r i c i t y  generation. Even 
i n  regions w i th  favorable geothermal gradients such 
temperatures are found a t  great depths, 3 t o  5 km. 
where the minimum p r inc ipa l  component o f  the i n - s i t u  
ear th  stress i s  l i k e l y  t o  be 35 t o  100 MPa (50GG t o  
15000 ps i ) .  One must then st imulate the rock 
formation t o  hyd rau l i ca l l y  l i n k  the wells, and hold 
open the j o i n t s  so t h a t  the permeabi l i ty  remains high 
and f low resistance i s  low. Furthermore, large areas 
o f  hot  rock must be adequately bathed w i th  f lowing 
water t o  obtain high heat production f o r  long 
periods. 

I n i t i a l  HDR f e a s i b i l i t y  was proven i n  e a r l y  
t e s t i n g  a t  t h e  Fenton H i l l  s i t e .  Two w e l l s  were 
d r i l l e d  t o  3 km, l i nked  v ia  hydraul ic st imulat ion.  
and during i n t e r m i t t e n t  t es t i ng  from 1978 t o  1980, 3 
t o  5 MU o f  thermal power were produced f o r  periods as 
long as nine months. The f low resistance was low 
enough t h a t  the pumping power required t o  force the 
water down one well .  through the reservoir ,  and up 
the other we l l  was less than 2% o f  the thermal power 
produced. The produced water was o f  high qua l i t y ,  
low i n  dissolved so l i ds  compared t o  most geothermal 
f l u ids ;  and even dur ing f ractur ing,  the l a rges t  
detected earthquake reg is te red  only 1.5 on the 
Richter scale. Further d e t a i l s  are provided by Dash 
e t  a l .  (3983). 

These ea r l y  successes l e d  t o  the decision t o  
create a deeper, hotter, and la rger  reservo i r  a t  the 
Fenton H i l l  s i t e .  The o b j e c t i v e  o f  t h i s  l a r g e r  
reservo i r  i s  t o  es tab l i sh  the engineering 
p r a c t i c a l i t y  o f  HDR. Based upon the ea r l y  
experiences. which ind ica ted  t h a t  the zones o f  
s t i m u l a t i o n  were n e a r l y  v e r t i c a l .  w i t h  a rough ly  
North-South or ientat ion,  two new we l ls  were d r i l l e d  
i n  segments. I n  the f i r s t  segment, 0 t o  2.5 km. both 
we l ls  were near ly ve r t i ca l ,  bu t  i n  the deeper segment 
the boreholes were d i rec t i ona l  l y  d r i l l e d  towards the 
East. a t  an af!gle f rom v e r t i c a l  which e v e n t u a l l y  
b u i l t  up t o  35 . Figure 3 shows a perspective view. 
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The upper well, EE-3, which is t h e  i n t e n d e d  
production well, l i e s  300 m above the lower inject ion 
well, EE-2, i n  t h e  slanted interval.  Temperatures 
varied from 200'C a t  3 km t o  325" a t  4.4 km. Also 
shown i n  Figure 3 i s  a well drilled for  the older 
reservoir which now contains a geophone sonde. T h i s  
geophone, and others placed i n  other boreholes, 
detect  and locate the microearthquakes triggered 
d u r i n g  hydraulic stimulation (House, e t  al.. 1985). 

First attempts t o  hydraulically connect the two 
new boreholes by Stimulation were in i t ia ted  near the 
bottom of the lower well b u t  d i f f i c u l t i e s  were 
encountered due to the h i g h  downhole pressure (90 MPa 
o r  13.000 ps i ) ,  and stress cor ros ion  i n  the high 
temperature environment. Attention shifted uphole, 
and i n  December 1983 a massive hydraulic f ractur ing 
operation was conducted i n  which 21,000 cubic meters 
(5,600,000 gal)  of water were injected a t  3.5 km i n  
the lower well a t  downhole pressure of 83 MPa and 
average flow r a t e  of 0.1 cubic m/s (40 barrels/min). 
Details a r e  provided by Dreesen and Nicholson (1985). 
Figure 4 shows the locations of some of the induced 
microearthquakes. The downhole geophones a r e  
extraordinarily sensi t ive,  which enabled detection of 
events w i t h  extrapolated Richter body wave magnitudes 
a s  low as  -5. but Figure 4 shows only the 850 h i g h  
quali ty events w i t h  magnitudes from -3 to  0. Note 
tha t  the microearthquakes do not suggest a single 
planar f racture  as  predicted by conventional 
hydraulic fracturing theory (Hubbert and Willis, 
1957) .  b u t  ins tead  d e p i c t  a zone of s t imu la t ion  
distributed throughout a rock volume t h a t  is about 
0.8 km h i g h ,  0.8 km wide i n  the N-S direct ion,  and 
about 0.25 km thick. The precision of 
microearthquake locationing is 30 m. so the w i d t h  of 
the seismic volume, 250 m, is not  an a r t i f a c t  of 
measurement uncertainty. The volume of the 
s t imula ted  zone is 4000 times greater than the volume 
o f  water injected.  House e t  a l .  (1985) a lso  
concluded t h a t  the f irst  motions of the 
microearthquakes and f a u l t  plane solutions determined 
from a su r face  a r r a y  of seismometers ind ica ted  a 
shear-slip motion, probably along pre-existing rock 
joints.  T h i s  suggests tha t  t ens i le  fracturing, i f  i t  
occurred a t  a l l ,  generated only very weak seismic 
signals tha t  could not be detected by the surface 
seismic array. 

The wave form of a typical microearthquake 
recorded by a downhole geophone is shown i n  Figure 5. 
Note tha t  the amplitude of the shear wave is larger 
than tha t  of the compressional wave, which would be 
consistent w i t h  a shear slip mechanism. Figure 6 
presents a spectrum of the compressional wave of the 
seismogram i n  Figure 5. Note the f l a t  trend a t  low 
frequencies, followed by a roll-off which declines 
w i t h  the cube of the frequency. T h i s  behavior is 
consistent w i t h  t h a t  observed f o r  spectra of 
waveforms from usual tectonic earthquake mechanics, 
i.e., those i n  which shear slip occurs. 8ased upon 
the source mechanism model of Brune (1970) the 
character is t ic  dimension of the rock surface 
mobilized for  each shear-slip event is of the order 
of 10 m, comparable t o  the spacing of the major 
jo in ts  observed i n  well surveys. 

In sumnary, the above results indicate a 
fracturing mechanism which i s  inconsistent w i t h  
conventional theories of hydraulic fracturing which 
predict  the propagation of a single fracture  caused 
by tensile fa i lure  of the rock. However our results 
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a re  consistent w i t h  Lockner and Byerlee's observation 
of shear fa i lure  i n  rock specimens a t  low injection 
rate .  Furthermore, our observations were Confirmed 
a t  the British Hot Dry Rock reservoir i n  Cornwall 
where i t  was observed (Pine and Batchlor. 19&4) t h a t  
fracturing occurred as  a zone of m u l t i p l e  fractures,  
and tha t  shear slippage along e x i s t i n g  joints  was the 
dominant cause of seismicity. 

MODELING SHEAR STIMULATION IN JOINTED ROCK 

The unexpected stimulation resu l t s  presented 
above suggested tha t  further s tudy required a model 
incorporating detailed f l u i d  dynamics and rock 
mechanics w i t h i n  jointed rock masses. The F l u i d  Rock 
Interaction Program, based upon the calculation 
method developed by Cundall and Marti (19781, was 
adapted for  this use. Pre-existing rock joints  a re  
deployed on a regular rectangular g r i d  and the code 
permits interact ive coupling of f l u i d  dynamics w i t h  
rock s t r e s s e s  and deformations.  For example, an 
excess of pressure on a block d u r i n g  one 
COmpUtatiOnal cycle will result i n  compression of the 
block, and opening (d i la t ion)  of the jo in ts  n e x t  to  
it ,  resulting i n  additional permeability and a 
changed pressure dis t r ibut ion.  

When a computation i n  which joints  were aligned 
paral le l  to the principal ear th  s t resses  was s t u d i e d ,  
a process equivalent t o  c lassical  hydraulic 
fracturing ( b u t  without the necessity of accounting 
f o r  rock strength) was predicted: a single j o i n t  
opened a t  a pressure equal t o  t h e  m i n i m u m  e a r t h  
stress, and t h e  ape r tu re  and shape  of t h e  opened 
j o i n t  agreed well w i t h  conventional hydraulic 
fracturing theory (Daneshy, 1973). However, when the 
orientations of the pre-existing jo in ts  were rotated 
30' from the principal stress directions,  and a low 
viscosity f l u i d  l ike  water was used for  fracturing, 
two types o f  stimulation patterns occurred. In the 
f i rs t  type, typified i n  Figure 7, which occurs when 
f r ic t iona l  resistance t o  shear slippage i s  low or  
when the maximum dilatancy due t o  shear i s  large,  
only a s ingle  j o i n t  i s  s t imula ted .  T h e  resolved 
s t resses  shown i n  Figure 7, and l a t e r  i n  Figure 9, 
result from a principal ear th  stress of 20 applied 
a t  an angle of 30" t o  the joints .  For simplicity the 
subscript m i n  has been deleted so Q i s  t h e  minimum 
principal e a r t h  stress and i t  a c t s  perpendicular t o  
the maximum stress, 2 u . 

In the second type o f  shear stimulation, 
corresponding to h igh  shear resistance or  small 
dilatancy, multiple j o i n t  stimulation occurs a s  shown 
i n  Figure 8. Shear s l ippage  along t h e  j o i n t s  i s  
accompanied by shear-stress drops, and the 
interact lon of these stress drops w i t h  the acting 
e a r t h  s t r e s s e s  results i n  opening of j o i n t s  more 
perpendicular t o  the maximum stress, so tha t  a 
dendrit ic,  or  branched j o i n t  pattern occurs. T h i s  
pattern of stimulated jo in ts  and the computed 
shear-stress drops offer  an explanation a s  to why the 
previous microearthquake maps a r e  not planar, b u t  a re  
e l l i p t i c a l  i n  shape, and why the observed f i r s t  
motions of microearthquakes indicate a shear 
mechanism. 

To better understand the mu1 t i p l e  j o i n t  
stimulation behavior, refer t o  Figure 9. The main 
jo in t  has slipped i n  shear and the j o i n t  surfaces 
have separated. When the surfaces a re  no longer i n  
contact there i s  no f r ic t ion  t o  suwor t  the i n i t i a l  
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shear s t ress ,  so a s t r e s s  drop occurs and the 
y-direction normal compressive stress i n  the region 
midway between the center and the t i p  of the main 
jo in t  is al tered as  shown on the top and bottom of 
Figure 9. The original normal s t ress ,  1.75~ , is  
reduced t o  as  low a s  1.25 u i n  the u per r igh t  and 
lower l e f t  quadran t s ,  which is now {ow enough for 
separation of the la te ra l  jo in ts  to  occur. These 
la te ra l  jo in ts  then  allow easy flow of the water i n t o  
joints  imnediately adjacent and paral le l  to the m a i n  
one. These paral le l  joints  b e g i n  to open, and t h i s  
cycle repeats i t s e l f ,  u n t i l  eventually the stimulated 
jo in t  pattern takes on the e l l i p t i c a l  shape predicted 
i n  Figure 8, which reasonably approximates the 
pattern of microearthquake locations i n  Flgure 4. 

I n  contrast ,  when the shear resistance is low 
and  shear di la t ion is high, a s  was the case for  the 
single j o i n t  stimulation of Figure 7, the f l u i d  i s  so 
easi ly  accomodated by the rapidly di la t ing single 
jo in t  t h a t  the pressure does not b u i l d  up 
suff ic ient ly  t o  stimulate la teral  jo in ts .  

DISCUSS ION 

The dendrit ic stimulation pattern depicted i n  
Figure 8 has important  impl ica t ions  i n  r e s e r v o i r  
mgineer ing .  As suggested i n  Figure 10, volume 
drainage, whether i t  be of hydrocarbons or geothermal 
F lu ids ,  is  more e f f i c i e n t  than areal drainage. 
Dendritic fracturing was previously proposed by Kiel 
(19771, whose "Kiel Process" remains controversial to  
t h i s  day. The proposal seems t o  be based upon 
sbserved productivity increases i n  o i l  and gas 
Fields. In this process a well i s  r e p e t i t i v e l y  
Fractured w i t h  a proppant-bearing f luid,  s h u t - i n ,  and 
vented. In describing the mechanism Kiel explains 
that the t irst  cycle of pressurization results i n  
s p a l l i n g  a n d  self-propping of the main fracture .  In 
subsequent cycles the proppant purposely introduced 
In the fracturing f lu id  bridges the spa1 1-proppants 
so the  pressure r i s e s  and l a t e r a l  f r a c t u r e s  a r e  
wopagated perpendicular to  the f i r s t  one. While 
such a mechanism may possibly work when the principal 
stresses i n  two directions a re  nearly the same, the 
node1 results presented here  i n d i c a t e  t h a t  i t  i s  
mlikely t o  work when the s t resses  d i f f e r  
:onsiderably. a s  t h e y  so often do j n  s i t u .  I n  this 
:ase the pressure r i s e  i n  the blocked main fracture  
rould simply result i n  fur ther  l i f t -of f  of the main 
Fracture, overcoming the temporary blockage, and the 
nain fracture  would continue to propagate. 

The key t o  dendrit ic fracturing overlooked by 
(iel is shear - this allows the necessary reduction 
If the ear th  stress paral le l  t o  the main fracture  t o  
iermit opening of l a te ra l  joints .  While disagreeing 
v i t h  Kiel's explanation of mechanism, the present 
:alculations do support h i s  hypothesis - dendrit ic 
itimulation can occur under cer ta in  conditions, these 
)eing tha t  the major jo in ts  not be paral le l  to the 
irincipal earth stresses, and t h a t  the flow r a t e  and 
Fluid viscosity w i t h i n  the jo in ts  be low enough t h a t  
;hear di la t ion is still suf f ic ien t  t o  transmit the 
Fluid r a t e  without excessive pressure gradients. 

:ONCLUSIONS 

Seismic monitoring provides a view of hydraulic 
;timulation which is unobtainable by any other means 
it the depths of In te res t  here. The seismic 
bbservations reported here, supported by results i n  

F JOINTED FORMATIONS SPEl4088 
Britain as  well a s  i n  rock mechanics experiments, 
indicate t h a t  in ject ing low viscosity f l u i d  a t  1ok 
r a t e  i n t o  jo in t ed  rock results i n  m u l t i p l e  jo in1 
stimulation caused by shear-slippage, not the s i n g l e  
t ens i le  f racture  of conventional theory. Thesf 
results were explained and verified by a coupled rock 
mechanics/fluid flow model, which further constrainec 
dendrit ic fracturing to  s i tuat ions where the joint: 
and principal ear th  stresses are  not parallel .  
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Figure 1 .  Mohr s t r e s s  diagram i l l u s t r a t i n g  t h a t  
lower fluid pressure i s  required for shear 
stimulation compared to joint separation. 
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Figure 2. J o i n t  d i l a t i o n  behavior. 
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Figure 3. P e r s p e c t i v e  view o f  w e l l s  and geophone 

tool  placed for microearthquake monitoring 
during hydraulic s t imula t ion .  
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Figure 5. Seismogram of typical microearthquake. 
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Figure  6. Spectrum o f  compressional wave o f  
seismogram i n  Figure 5.  
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Figure 7. Single j o i n t  s t imula t ion  induced by shear 
sl ippage when f r i c t i o n a l  res is tance  t o  
shear slippage i s  low o r  the  a b i l i t y  t o  
open the j o i n t  i n  shear Is high. 



Figure  8. Mu1 t i p l e  j o i n t  shear s t imula t ion  which 
occurs when shear res is tance  i s  high or  
shear d i la tancy  i s  low. 
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Figure 9. Stimulat ion of l a t e r a l  j o i n t s .  
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Figure 10. Volume drainage of f luids i s  more 
effect ive than areal drainage. 


