

CONF-890692-18

89-18.6

Combined NO_x/SO₂ Control with Dry Sorbents

CONF-890692--18

DE89 015137

C. David Livengood
John B. L. Harkness

Energy and Environmental Systems Division
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, Illinois 60439

Prepared for Presentation
at
82nd Annual Meeting of the
Air and Waste Management Association

Anaheim, California
June 25-30, 1989

The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

MASTER

Work supported by the U.S. Department of Energy, Assistant Secretary for Fossil Energy,
under Contract W-31-109-ENG-38.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

COMBINED NO_x/SO₂ CONTROL WITH DRY SORBENTS

INTRODUCTION

The use of dry sorbents in flue-gas cleanup (FGC) systems has become increasingly important with the emergence of spray-dryer systems, the renewed interest in furnace injection of sorbents (LIMB), and the ongoing development of numerous duct-injection technologies. In general, the sorbents used in these processes are designed solely for the removal of sulfur dioxide (SO₂), but there could be clear advantages for systems capable of also removing nitrogen oxides (NO_x). This is particularly true in light of the growing concerns over NO_x emissions in connection with acid deposition, and the possibility of new, more stringent requirements for control of NO_x from stationary sources.

Argonne National Laboratory (ANL) has been conducting research on combined NO_x/SO₂ control systems for the U.S. Department of Energy (DOE) since 1981. Recently, the research program has been focused on spray-dryer-based FGC systems and has involved research on NO_x removal enhancement through chemical additives and modified process conditions. Tests have been conducted in a laboratory-scale spray dryer at ANL¹, an intermediate-scale system at the Pittsburgh Energy Technology Center², and Argonne's commercial-scale spray-dryer/fabric-filter system³. In addition, the performance of dry sorbent/additive combinations under a variety of conditions has been studied at ANL using a laboratory-scale fixed-bed reactor. The experimental conditions were selected to model the post air-preheater environment for a boiler firing high-sulfur coal, and to specifically address conditions expected in the fabric filter portion of a spray dryer or duct injection system.

In the remainder of this paper, we describe the fixed-bed experimental facility and the results of both statistically designed and parametric experiment series conducted using a lime (Ca(OH)₂) sorbent and a variety of additives. While considerable research is still required to fully understand the removal reaction mechanisms involved, a number of significant factors affecting removals are identified and evaluated. These include both individual variables and a number of interactions between process variables.

RESEARCH APPROACH

The fixed-bed reactor system and the experiment program were designed to rapidly screen, on a consistent basis, a variety of chemical additives and process modifications. The latter included flue-gas/sorbent temperature and flue-gas composition (NO₂ and moisture concentrations). The additives included compounds known to be effective in wet scrubbers (e.g., Fe(II)EDTA), sodium-based compounds such as NaOH (based in part on results reported by Niro Atomizer⁴), and chloride-containing compounds (NaCl and CaCl₂) that might affect sorbent moisture content. Following the initial screening in a fractional factorial experiment design, the three most active additives (NaOH, NaCl, and NaHSO₃) were tested further in follow-on experiments using a full-factorial design to better evaluate the effects of interactions between the experimental variables. Lastly, the same three additives were tested in a series of parametric experiments where the SO₂ concentration in the flue gas was varied.

Experimental Apparatus

The equipment used in these experiments was divided into five separate subsystems -- the flue-gas blending and feed system, the flue-gas analyzer system, the fixed-bed reactor system, the data acquisition system, and the laboratory exhaust system. A diagram of the system is shown in Figure 1.

The flue-gas blending and feed system used cylinders of pure gases and "house" air to produce a controlled gas composition representative of flue gas from high-sulfur coal combustion. A metering system enabled the operator to easily change the composition of key gases such as SO_2 and NO_2 as needed for specific experiments. The air and nitrogen streams were metered into a humidifier, which was maintained at a controlled temperature to govern the moisture content of the resulting, saturated gas stream. Carbon dioxide was used as a carrier gas for the NO and NO_2 pollutant feeds. The $\text{CO}_2/\text{NO}/\text{NO}_2$ stream was added to the humidified air/ N_2 stream at the humidifier exit. The SO_2 stream was piped separately and added downstream of the CO_2 addition point to insure thorough dilution of the NO and NO_2 before contacting them with the SO_2 . In order to prevent condensation and premature scrubbing of the pollutant gases, the feed stream was heat-traced from the humidifier exit to the fixed-bed reactor and flue-gas analyzer systems.

The flue-gas analyzer system consisted of a sample-conditioning section to remove water vapor; individual gas analyzers for CO_2 , O_2 , SO_2 , and NO_x/NO ; and a six-point recorder. Both flue-gas feed and reactor effluent samples were delivered to the analyzer system in heat-traced Teflon® tubing maintained at or above 90°C to prevent condensation. At the analyzers, each sample stream first passed through a trap submerged in a wet-ice bath to remove excess moisture. It then passed through in-line filters and permeation driers before being analyzed. During an experiment, the data acquisition system controlled system operation by switching between the feed and the effluent streams and between the NO_x and NO modes of the NO_x analyzer. The sample sequence and timing was programmed into the computer and involved taking a pair of feed samples (one NO_x and one NO determination) followed by three pairs of effluent samples. The difference between the NO_x and NO determinations was taken to be the NO_2 concentration. The analyzer system was calibrated immediately before starting an experiment and then rechecked following each experiment.

The fixed-bed reactor system consisted of a flue-gas preheater, a heated enclosure, and the reactor itself. For safety, these components were all located in a hood connected to the laboratory exhaust system. The preheater was placed immediately ahead of the reactor and was used to raise the temperature of the flue gasses to the desired experimental conditions, since gases leaving the feed system were only heated to 70°C to maintain them above their dew point. To maintain the fixed-bed reactor at a uniform temperature, a heated enclosure was constructed using 18 in. diameter ceramic pipe insulation. This enclosure was fitted with three heating elements, a recirculation fan, an internal frame which supported the fixed-bed reactor, thermocouples, and temperature-limit switches for safety. The reactor used in these experiments was a 12.5 cm diameter Andersen air-sampling filter holder, which was used without modification to support a fixed bed of sorbent/additive. The holder was assembled with a Whatman glass-microfiber filter covering the fritted disk. Two gram moles of sorbent/additive were poured into the assembled filter holder and smoothed into a uniform, level surface (typically about 2 cm thick) by tapping on the side of the holder. Following the pretreatment step, described below, the furnace was opened to visually examine the fixed-bed. Any "cracks" which might have developed in the sorbent layer were eliminated by further tapping on the side of the filter holder.

The main gas flow from the reactor was purged to the laboratory exhaust system, which was designed to isolate the laboratory from the airspace of the rest of the building. The exhaust rate provided more than 10 air changes per hour in the laboratory itself, minimizing the exposure of occupants to any toxic gas leaks.

The laboratory data acquisition system included a 60-channel data logger, a mini-computer, a terminal, and a 1200-baud modem. The data logger scanned thermocouples and analog DC voltages from the flue-gas analyzer system, gas flowmeter, and pressure sensors at 10 sec intervals. These data were passed to the mini-computer which either averaged successive scans or discarded them depending of the status of the stream and NO_x/NO mode switching. The averaged data was stored on a floppy disk that became the permanent record of each experiment. The primary data analysis was done on Argonne's central, main-frame computer, which performed a simple material balance to determine removals of the pollutant species and prepared graphical displays of these results.

Sorbent Preparation

Several different approaches for applying chemical additives to the base sorbent ($\text{Ca}(\text{OH})_2$) were evaluated early in the program on the basis of ability to produce a homogeneous sorbent/additive mixture containing the target amount of additive. The procedure selected used a concentrated solution of the additive in distilled water and called for spraying this solution over thin layers of the solid sorbent. The layers were then thoroughly mixed and dried overnight in a vacuum oven. These solids were then ground to less than 200 mesh and transferred to the reactor for an experiment.

The amount of powder transferred to the reactor was calculated to keep the total chemical equivalence of the cations (calcium plus additive cation) constant and equivalent to that of two gram moles of pure $\text{Ca}(\text{OH})_2$. When an experiment called for untreated sorbent (0.0 mole % additive), reagent grade $\text{Ca}(\text{OH})_2$ was sieved through a 200-mesh screen and loaded directly into the reactor. This was previously shown to give results equivalent to treatment of $\text{Ca}(\text{OH})_2$ with pure water followed by drying and grinding.

Finally, the sorbent/additive powder was pretreated before the actual experiment by passing humidified nitrogen (dewpoint 70°C) through the reactor for two hours to attain an equilibrium moisture content. Following the pretreatment the furnace was opened to inspect the sorbent bed. Any cracks that had developed in the bed during the pretreatment were noted and eliminated by tapping on the side of the reactor. The reactor was blanketed with dry nitrogen until beginning the NO_x/SO_2 removal experiment.

Experimental Design

The additive screening and follow-on experiments used statistical designs in four variables. These were the additive type/concentration, moisture concentration in the flue gas, sorbent temperature, and NO_2 concentration in the flue gas. The additive screening experiments used a fractional factorial design (substituting the NO_2 effect for the third-order interaction between the first three variables), while a full-factorial design was used for the follow-on experiments by expanding the original screening experiment series. Additive-free experiments were performed as control experiments for each of the different additives. The flue-gas compositions and experimental conditions are shown in Table I.

Additives studied in the screening experiments fell into three groups. The first included compounds that had been shown to be effective in promoting NO_x removal in wet scrubbers⁵. These included aluminum sulfate, aluminum sulfate/citric acid, and ferrous ethylenediaminetetraacetic acid (Fe(II)EDTA). The second group were sodium-based compounds selected because earlier work, including large-scale tests by Niro Atomizer, had shown sodium hydroxide to be effective in spray dryers for enhancing NO_x

removal⁴. This group included sodium hydroxide, sodium chloride, sodium bisulfite, and sodium sulfite. The third group contained compounds incorporating chloride ions. It overlapped with the second since it included sodium chloride as well as calcium chloride. These compounds were chosen because they could affect the moisture content of the powder and some spray drying research had indicated that such compounds improved spray-dryer removal efficiencies⁶. For the follow-on experiments, sodium hydroxide, sodium chloride, and sodium bisulfite were selected for more detailed evaluation. These experiments used the same set of conditions shown in Table I.

The SO_2 parametric experiments used flue-gas compositions ranging from 0 to 3000 ppm of SO_2 with 50 ppm NO_2 (500 ppm total NO_x), 15.0% water vapor by volume, and a reactor temperature of 65°C. These appeared to be the most favorable conditions for simultaneous NO_x/SO_2 removal based upon the results of the follow-on experiments. From a process perspective, these conditions would be fairly typical of the filtration environment in a spray-dryer/fabric-filter system. The sorbent/additive combinations selected for this phase of the study were pure Ca(OH)_2 , $\text{Ca(OH)}_2/\text{NaCl}$, $\text{Ca(OH)}_2/\text{NaHSO}_3$, and $\text{Ca(OH)}_2/\text{NaOH}$. The first two additives were substituted at a 10 mole % level while the NaOH substitution was 20 mole %. The larger value for NaOH was used to make the conditions more comparable to those used in Argonne's large-scale spray-dryer tests.

RESULTS

The primary result of each experiment was a plot of removal versus time for the principal pollutant species. A typical example is shown in Figure 2, which compares results for NO removal from three of the early experiments used to develop the sorbent/additive pretreatment procedures. The monotonically decreasing removals throughout each 2 hr experiment shown in Figure 2 are characteristic of all of the experiments run in the fixed-bed apparatus. In order to make numerical comparisons between experiments, the removals were interpolated for 5, 10, and 30 minutes after the start of the experiments. These values were then used to determine the effects of the experimental variables by processing the combined results of each data set using Yates's Algorithm.

Figure 2 also illustrates the important role of moisture in enhancing sorbent removal activity. As the moisture content in the pretreatment gas stream increased, the NO removal increased dramatically. Moisture had a similar effect on NO_x and SO_2 removals. Higher moisture levels were not studied because of experimental system limitations.

Additive Screening Experiments

The relative performances of all nine of the additives are compared in Table II for NO_x , NO, and SO_2 removals. The numerical value used to rank each additive is the difference between the mean removal percentage (at the time of interest) for the four experiments where the additive was used and the four experiments where no additive was used. Thus, a positive value represents an enhancement of removal by that particular additive over the removal observed for the unmodified Ca(OH)_2 . A negative value indicates that the additive in question actually depressed the removal. These values are arranged in decreasing order of enhancement across Table II with the first column showing the mean values of the control experiments.

For example, the first additive entry under total NO_x removal at 5 minutes indicates that the four experiments with NaOH (10 mole %) gave the greatest

enhancement over the control experiments by boosting total NO_x removal 19.78 percentage points (from 28.7% up to 48.5%). On the other hand, both the chloride-containing additives actually depressed total NO_x removal. At 10 minutes, NaOH (10 mole %) continued to be substantially better than the second best additive and was surpassed only slightly at 30 minutes by Fe(II)EDTA, which had steadily increased its relative performance over the course of the experiments. Also note how far NaCl rose in these rankings (from 8 to 5 to 3), whereas CaCl_2 remained in last place. The very poor performance of NaOH (20 mole %) was another surprise in this comparison. Its enhancement was virtually negligible throughout the course of these experiments. The contrast with respect to the very good performance of the NaOH (10 mole %) suggests that there might be an optimum additive concentration, at least for this species.

Sodium hydroxide (10 mole %) also was the best additive for increasing NO removal at 5 and 10 minutes but dropped to a very close second place at 30 minutes. Note that again NaCl steadily improved in relative performance throughout the course of the experiments and was ranked higher at all times for NO removal than it was for NO_x . The performance of Fe(II)EDTA also seemed to improve again, but the trend was not as clear as for total NO_x . The performance of CaCl_2 was again very poor, as it and several additives, including NaOH (20 mole %) gave a depression of the NO removal. In general the NO removal enhancements were smaller than those for total NO_x . This is because NO to NO_2 oxidation gave baseline NO removals that were greater than the total NO_x removals and because the additives changed the extent of NO oxidation. While NO oxidation contributes to "nitrogen oxide" removal, the NO is only converted into another species, NO_2 , which is counted among the "total NO_x ".

While NaOH (10 mole %) also performed very well for SO_2 removal enhancement, it was only second at 5 and 10 minutes to the combination of aluminum and citric acid. However, at 30 minutes NaOH was the best performer with NaHSO_3 a close second and Al/CIT third. The high NaHSO_3 ranking later in the experiments is very interesting in that it was clearly the worst performer at 5 minutes. Aluminum sulfate also performed fairly well as did NaCl. The Fe(II)EDTA additive, which had been selected for its previously demonstrated performance in aqueous systems for NO removal, was somewhat of a surprise with substantial enhancement of SO_2 removal at both 5 and 10 minutes before dropping off dramatically at 30 minutes. Once again, CaCl_2 and NaOH (20 mole %) both showed little or negative effectiveness.

Follow-on Experiments

Analysis of the fractional factorial screening experiments indicated that a number of interactions or "cross effects" between the variables had significant influences on the removals. Therefore, additional experiments were run to expand the data set to a full factorial design for three of the most effective additives (NaOH, NaCl, and NaHSO_3). The results of those follow-on experiments are shown in Figures 3, 4, and 5, which give the relative values of each of the fifteen effects. The effects are grouped by the order (number of variables) of the effects -- first, second, third, and fourth order (note this is not the sequence generated by the Yates's Algorithm). Furthermore, the individual bars are coded to indicate the relative significance of the effects. The criteria for this ranking of the effects come from an analysis of variance performed on the fit of the model selected to describe the actual data. A variable was deemed to be significant when its inclusion in the simple linear model resulted in an increased "F-Value" together with a decreased probability that the fit of the model could be a random result and a value less than 0.10 for the probability that the effect of the variable itself was a random event. The probability of the effects (being random) was also used to assign a relative significance to each effect. An effect with a probability of 0.001 or less was

defined to be "most important" while one with a probability greater than 0.001 but less than or equal to 0.01 was "more important". Effects with probability values greater than 0.01 but less than or equal to 0.05 were rated as "important", while those with probabilities less than or equal to 0.1 down to 0.05 received a "less important" rating. Effects with probability values greater than 0.01 were defined to be "unimportant".

Figure 3 compares the effects for total NO_x removal at the 5 minute point of the experiments. The figure legend shows the shading pattern used to indicate the relative significance of the effects while the notation across the bottom of the figure identifies the variables contributing to the individual effects. "Additive" (A) represents the presence of the additive in the sorbent. "Humidity" (H) represents higher moisture concentrations in the flue gas (15% vs. 7.5%). "R Temp" (T) represents increased temperature in the fixed bed (95°C vs. 65°C) and "NO₂ Conc" (C) represents increased NO₂ levels in the flue gas (50 ppm vs. 0 ppm). Looking at the figure from left to right, the first group of four effects are the first order effects with the additive effect first as indicated by the 'A' directly beneath the bar. The second group of effects are the six (combination of four variables taken two at a time) second-order effects. Each of the second-order effects is identified by a pair of letters underneath the bar. The four third-order effects (combination of four variables taken three at a time) and the single fourth-order effect complete the set.

The NaCl additive effect was vanishingly small, which indicates that it was ineffective in directly promoting NO_x removal at that point (5 min) in the experiments. On the other hand, the additive effects for NaHSO₃ and NaOH were significant and showed an enhancement of NO_x removal, but neither was very strong. The effect of humidity was significant and had a negative impact on NO_x removal for NaCl and NaOH but again neither effect was very strong. The humidity effect in the NaHSO₃ dataset was negligible. Likewise, the temperature effect for NaHSO₃ was virtually zero but significant and major for both NaCl ("most important") and NaOH ("more important"). The effect of NO₂ concentration was "unimportant" for all three additives.

The different performances (between additives) of the non-additive first-order effects, as well as the second- and third-order effects that did not involve additives, is an indication that these additives modify the base sorbent in some fairly fundamental fashion and probably do so through more than one mechanism. This point will be emphasized as the additive comparison proceeds through the NO and SO₂ removal data.

The second-order effects on NO_x removal showed some pronounced differences between the additives. The effect of "AxH" was significant only for NaHSO₃ and showed a minor enhancement of NO_x removal. The "AxT" effect was dramatically different for NaCl and NaHSO₃. In both cases it was a "more important" effect but had opposite results for NO_x removal. The effect of "HxC" was positive for NO_x removal for NaHSO₃ and NaOH, while "TxC" had a negative effect on NO_x removal for all three additives. This variable showed the most consistent performance for the three additives. Sodium bisulfite had two significant third-order effects, "AxHxT" and "AxTxC", which were "unimportant" for the other two additives. However, for NaCl the "AxHxC" effect showed a "most important", negative impact on NO_x removal. Meanwhile, NaOH had an "important", negative effect from "HxTxC", the only non-additive, third-order effect. The single fourth-order variable was insignificant at 5 minutes in all cases.

A similar comparison is presented in Figure 4 for the removal of NO. While there are some similarities with the total NO_x removal effects, the most striking difference is the contribution of NO₂ concentration to the removal of NO for all three additives. Once again, the additive effect for NaCl at this point in the experiments was fairly weak

and was rated as "unimportant". However, both NaHSO_3 and NaOH gave a relatively weak, "less important" contribution to NO removal, which was similar to the situation for total NO_x removal. Humidity had a negative effect for all three additives but was significant only for NaOH . The temperature effect was "most important" for NaCl , "unimportant" for NaHSO_3 , and "important" for NaOH . This is also similar to its effects on total NO_x removal.

For the second-order effects, NO removal shows the same difference in the effects of "AxT" between NaCl and NaOH . Furthermore, all three additives had the same negative impact on NO removal by "TxC" as for total NO_x removal. However, here the effects were not as significant for both NaHSO_3 and NaOH . Positive effects were attributed to "HxC", but it was significant only for NaOH . In the case of NaCl , "AxC" contributed to NO removal but not to total NO_x removal. For the third-order effects, "AxHxC" was significant and negative for total NO_x removal only in the case of NaHSO_3 , while it appears to have been significant in depressing NO removal for all three additives. Otherwise, the pattern of third-order effects is the same for removing both NO and NO_x . Only for NaOH did the fourth-order effect appear to be significant where it was "less important" in decreasing the NO removal.

The comparison of the 5 minute additive effects for SO_2 removal, presented in Figure 5, shows pronounced differences between the additives. Except for "AxHxC" ("less important"), the significant effects for NaCl are all "most important", while there were no variables ranked as "most important" for the other two additives. The additive effect contributed to improved SO_2 removal for both NaCl and NaOH , but for NaOH the effect was only "important". Not surprisingly, the effect of humidity was to increase SO_2 removal, but this was significant only for NaCl and NaHSO_3 . However, the temperature effect was a surprise. It was negative for NaHSO_3 but strongly positive for NaCl . The NO_2 concentration effect was negative in all cases, but was significant only for NaCl .

The two second-order effects for NaCl which indicated enhanced SO_2 removal were opposite to the corresponding effects for NaHSO_3 and NaOH . In the case of "AxT", the value of the NaHSO_3 effect was negative and rated "more important". For "TxC", the effect in the NaOH dataset was negative and rated "important". The NaOH dataset also indicated that "AxC" and "HxC" were "important" in increasing SO_2 removal. Among the third-order effects, "AxTxC" gave increased SO_2 removal for NaCl and was, by far, the largest and most important effect. For NaOH , the effect of "HxTxC" was found to be "important" in depressing SO_2 removal. In this case the fourth-order effect was significant by promoting SO_2 removal for NaCl and NaHSO_3 .

Similar results have been obtained for the data at both 10 and 30 minutes, although some changes are evident corresponding to the trends observed in the fractional factorial experiments.

SO_2 Parametric Experiments

Previous ANL results for aqueous scrubber chemistries indicated that the SO_2 concentration in the flue gas had a positive effect on NO_x and NO removals. Other work also suggested that there was a critical SO_2 to NO_x ratio for NO_x removal. Since the statistically designed experiments all used a single level of SO_2 (3000 ppm), the parametric experiments were designed to determine whether or not the influence of SO_2 extended to powdered sorbents, to further define additive effects, and to test the critical ratio concept.

In general, the effect of SO_2 concentration on NO_x removal was positive, but it was also different for the three additives as shown in Figure 6. Sodium bisulfite showed the greatest improvement in NO_x removal over the unmodified $\text{Ca}(\text{OH})_2$ sorbent and also showed a pronounced dependency upon the SO_2 concentration. The NO_x removals for NaOH were also better than for the unmodified $\text{Ca}(\text{OH})_2$, but the NaCl results were more scattered with respect to the $\text{Ca}(\text{OH})_2$ baseline and actually showed worse NO_x removal at 3000 ppm SO_2 .

The NO removals followed a similar pattern, as shown in Figure 7. Again the NaHSO_3 gave the greatest increase over unmodified $\text{Ca}(\text{OH})_2$ with NaOH being only slightly less active. Results for both the NaCl and the unmodified $\text{Ca}(\text{OH})_2$ sorbent appear to have a maximum NO removal at 2000 ppm SO_2 with the NaCl results essentially equivalent to those for the unmodified sorbent.

Conversely, the SO_2 removals decreased with increasing SO_2 concentration, although this trend appeared to level out above 2000 ppm SO_2 . However, the additive effects on SO_2 removal were practically random. There simply does not appear to have been a consistent pattern of either SO_2 removal enhancement or depression.

CONCLUSIONS

The additive screening experiments showed that the removal activity of $\text{Ca}(\text{OH})_2$ for total NO_x , NO, and SO_2 could be increased substantially by a wide variety of additives, and that the relative performance of some of the additives was strongly affected by the duration of exposure to the flue gas. Several additives changed the rate of oxidation of NO to NO_2 and the oxidation rate depended on the "exposure" time in ways that were quite different for different additives. For example, NaOH (10 mole %) showed increasing oxidation with time as did NaCl, while it remained about constant for Fe(II)EDTA. The contrast between the effects of 10 and 20 mole % NaOH performance suggests that the additive concentrations could be optimized.

Much of the improvement in performance observed with additives could be attributed to enhancement of the beneficial effects of non-additive variables. This could be observed through the strong correlations between the effects of non-additive variables and particular additives.

All three of the additives studied in the follow-on experiments exhibited improved NO and SO_2 removals and, to a lesser degree, improved NO_x removals. The differences in the NO and NO_x removals was again caused by the different impacts the additives had on NO oxidation. Sodium chloride strongly promoted oxidation initially and maintained higher NO removal than total NO_x removal throughout the experiments. Sodium bisulfite showed better selectivity for total NO_x removal but did not completely suppress the oxidation of NO. These results also showed very strong correlations between the effects of the non-additive variables and their interactions with the additives.

The correlation of effects seen in both groups of experiments suggests the existence of a fundamental mechanism for modifying sorbents to achieve higher chemical activities for emission control applications. This modification probably occurs during the pretreatment and involves changes in the equilibrium between the modified sorbents and gas-phase moisture such as discussed by Karlson⁶.

From a very limited analysis of ionic interactions, the separate effects of Na^+ , Cl^- , and their interaction indicates that more attention should be devoted to the cation/anion pairs as a means of directing the removal mechanism(s) toward total NO_x removal and

away from NO oxidation. The Na^+ effect slightly favored NO oxidation, but the interaction effect greatly increased NO oxidation.

Other research in the ANL program has utilized a laboratory spray-dryer system. Results from the investigation of additives and modified process conditions in that system are reported in Reference 1. Consideration of those results together with the ones reported here leads to the following conclusions regarding additives.

- Additives are capable of increasing the NO_x and SO_2 removals of calcium-based sorbents in both spray-dryer and filtration-type environmental control technologies.
- The best additives for NO_x removal (of those studied thus far) in spray-dryer applications are sodium chloride, calcium chloride, and sodium bisulfite.
- The best additives for NO_x removal in filtration applications are sodium chloride, sodium bisulfite, sodium hydroxide, Fe(II)EDTA, aluminum sulfate, and a mixture of aluminum sulfate and citric acid.
- Calcium chloride, sodium chloride, sodium hydroxide, and sodium bisulfite all enhanced spray dryer SO_2 removals.
- Sodium hydroxide, a mixture of aluminum sulfate and citric acid, sodium chloride, and aluminum sulfate all increased SO_2 removals in the fixed bed (filtration applications), but the enhancements were significantly less than those seen in the spray dryer.

Several different NO_x removal mechanisms appear to be operating in these two different types of systems as indicated by the effects of the non-additive variables.

- The removal of NO_x was strongly promoted by higher NO_2 levels in the spray dryer.
- The effect of NO_2 on NO_x removal in the fixed-bed reactor was much weaker than for the spray dryer and tended to promote NO oxidation to NO_2 instead.
- In the spray dryer, the additive enhancement of NO_x removal disappeared as temperature increased and the activity of additive-free calcium hydroxide for NO_x removal increased sharply.
- The NO_x removal in the fixed-bed experiments increased with increasing temperature for sodium chloride and sodium hydroxide, but not for sodium bisulfite.
- The SO_2 removal decreased dramatically for all additives as the spray dryer temperature increased.
- In the case of sodium chloride in the fixed-bed reactor, higher temperatures improved SO_2 removal.

The decreased spray dryer SO_2 removal with increasing temperature either with or without the additives is consistent with a decrease in drying time for the slurry droplets. The removal mechanism for SO_2 inside a spray-dryer is reasonably well understood, but the reaction mechanism(s) for NO_x /NO removal in a spray-dryer and in a

filtration system are poorly understood and appear to be extremely complicated. Indications from the data presented here are that several NO_x/NO removal mechanisms may exist which could be the basis for the development of new environmental control processes. Additional research is needed to identify and fully characterize those mechanisms. Some of the differences observed between the fixed-bed and the spray-dryer experiments suggests that trade-offs between the drying and the filtration steps will need to be carefully evaluated in the design of any combined NO_x/SO_2 control technology based on a spray-dryer/fabric-filter system.

ACKNOWLEDGMENTS

Funding for this research was provided by the U.S. Department of Energy, Assistant Secretary for Fossil Energy, under Contract W-31-109-ENG-38, through the Pittsburgh Energy Technology Center (PETC). The authors would like to acknowledge the support and guidance provided by Perry Bergman and Charles Drummond of the PETC. In addition, the authors would like to recognize the valuable contributions made to the performance of these experiments by Sherman Smith of Argonne.

REFERENCES

1. H.S. Huang, A.J. Gorski, J.B.L. Harkness, C.D. Livengood, P.S. Farber, and R.A. Morris, "Simultaneous Removal of SO_2/NO_x in a Laboratory Spray-Dryer System," APCA International Specialty Conference on Environmental Challenges in Energy Utilization During the '90s, Cleveland, Ohio (Oct. 1988).
2. H.S. Huang, P.S. Farber, C.D. Livengood, J.T. Yeh, J.M. Markussen, and C.J. Drummond, "Simultaneous NO_x and SO_2 Removal in a Spray Dryer System," AIChE Spring National Meeting, Houston, Tex. (March/April 1987).
3. C.D. Livengood, H.S. Huang, J.W. Allen, and P.S. Farber, "Combined SO_x/NO_x Removal in a High-Sulfur Spray-Dryer/Fabric-Filter System," EPA/EPRI First Combined FGD and Dry SO_2 Control Symposium, St. Louis, Mo. (Oct. 1988).
4. K. Felsvang, P. Morsing, and P. Veltman, "Acid Rain Prevention Through New SO_2/NO_x Dry Scrubbing Processes," Proc. EPA/EPRI Symposium on Flue-Gas Desulfurization, New Orleans, La. (Nov. 1983).
5. C.D. Livengood, P.S. Farber, and J.B.L. Harkness, "Combined NO_x/SO_2 Removal for High Sulfur Coal," Fourth Symposium on Integrated Environmental Control, Washington, D.C. (March 1988).
6. H. T. Karlson, et al., "Activated Wet-Dry Scrubbing of SO_2 ," JAPCA 33:23 (1983).

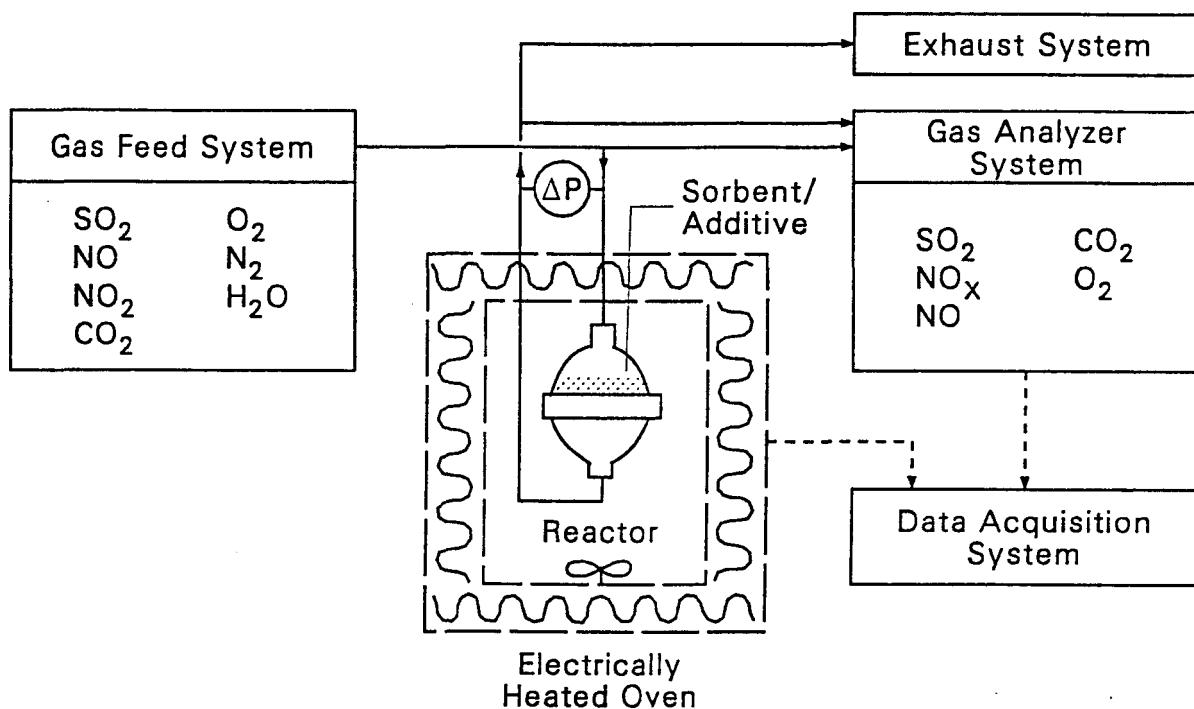


Figure 1 Flowsheet for the Fixed-Bed Experimental System

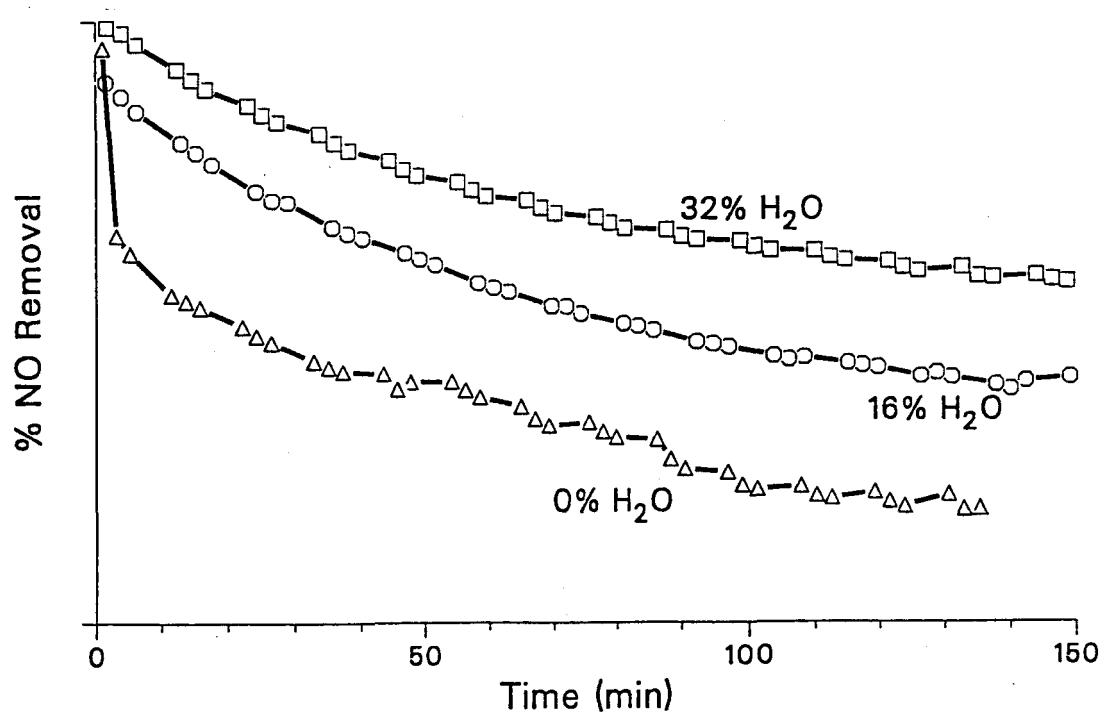


Figure 2 Typical Fixed-Bed Removal Profiles for Different Levels of Humidity Pretreatment

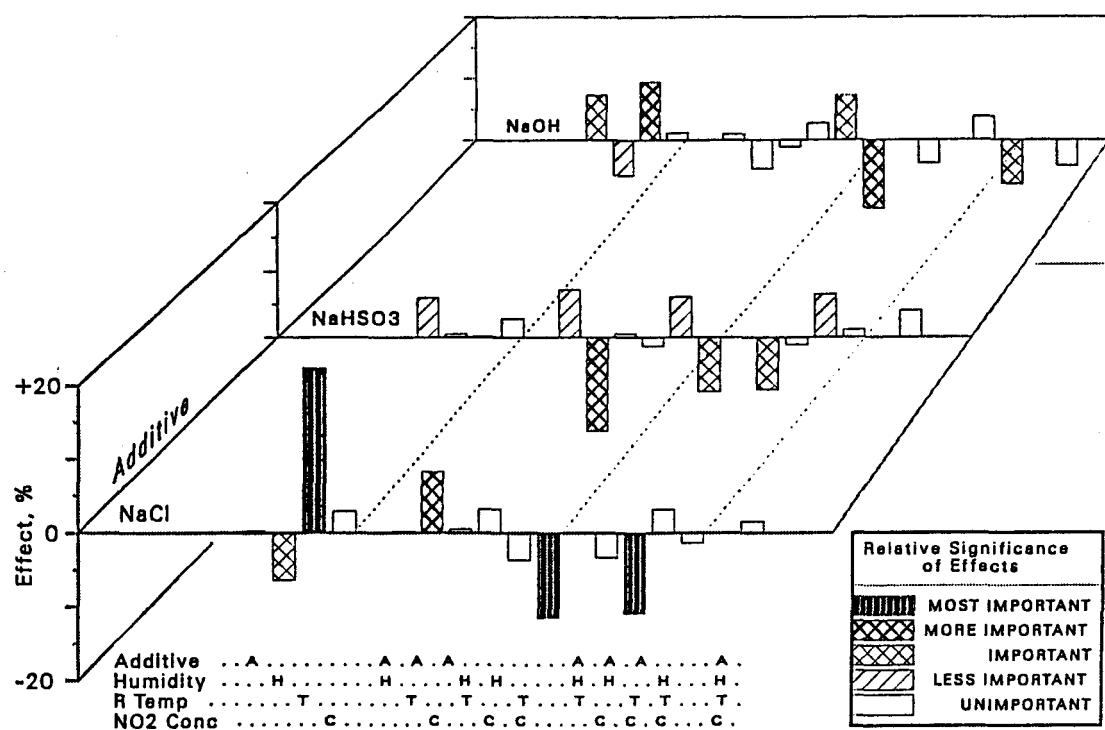


Figure 3 Comparison of Effects on NO_x Removal

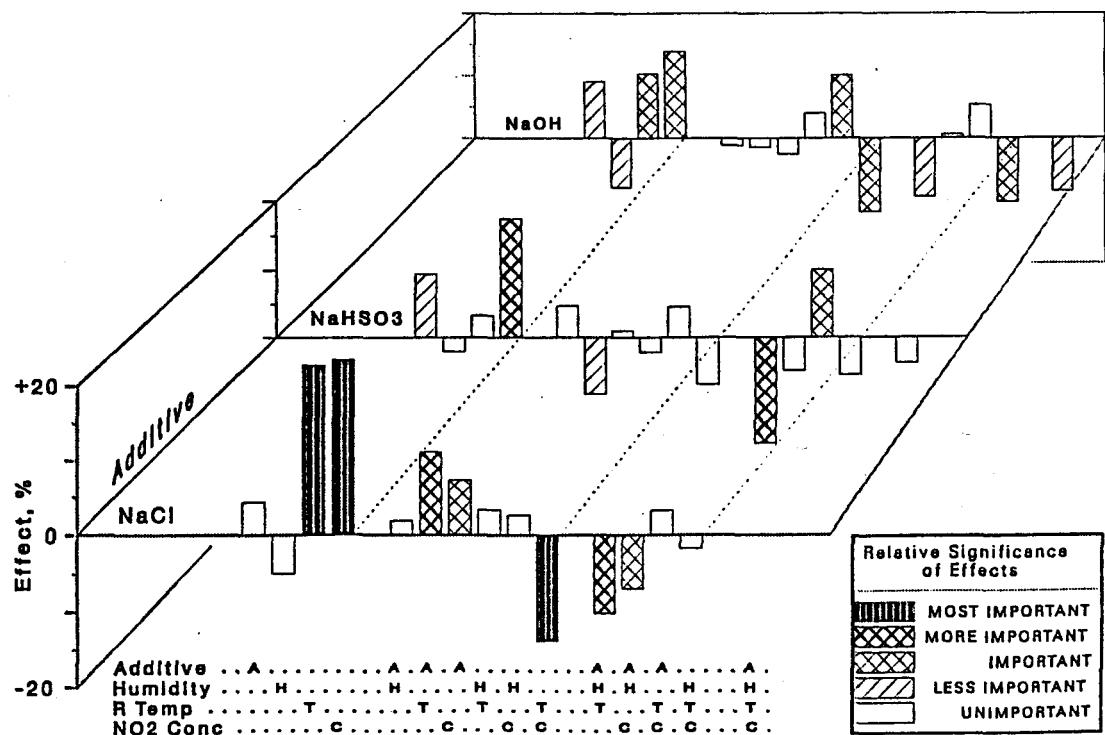
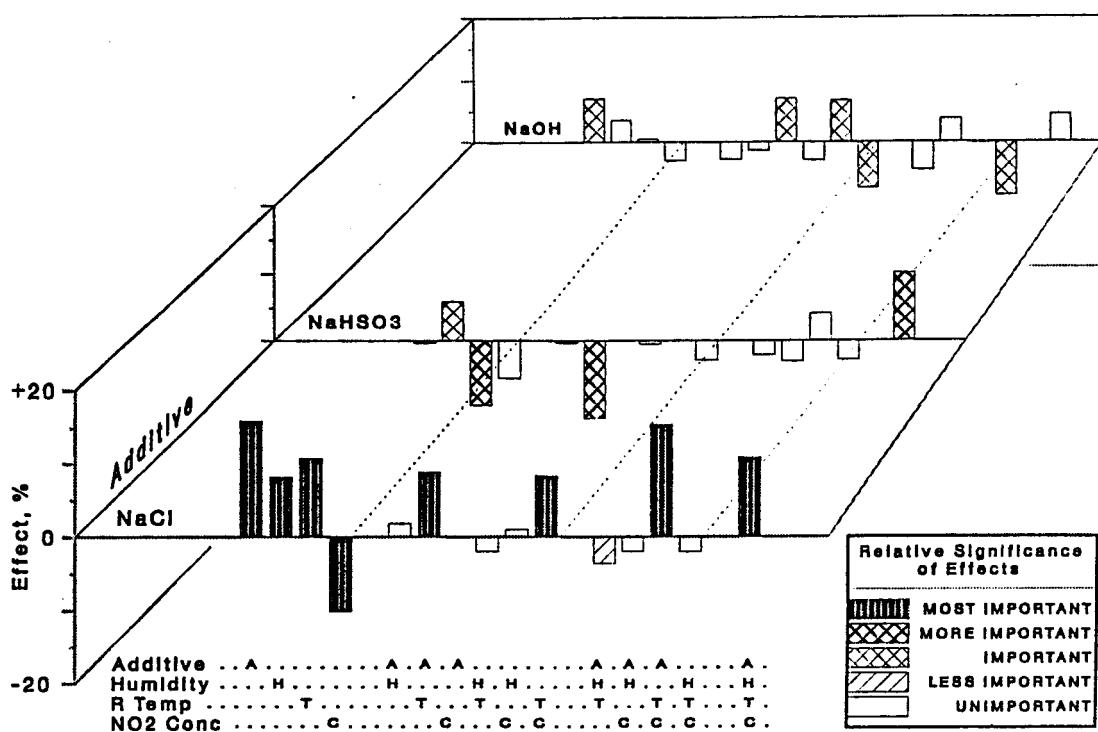
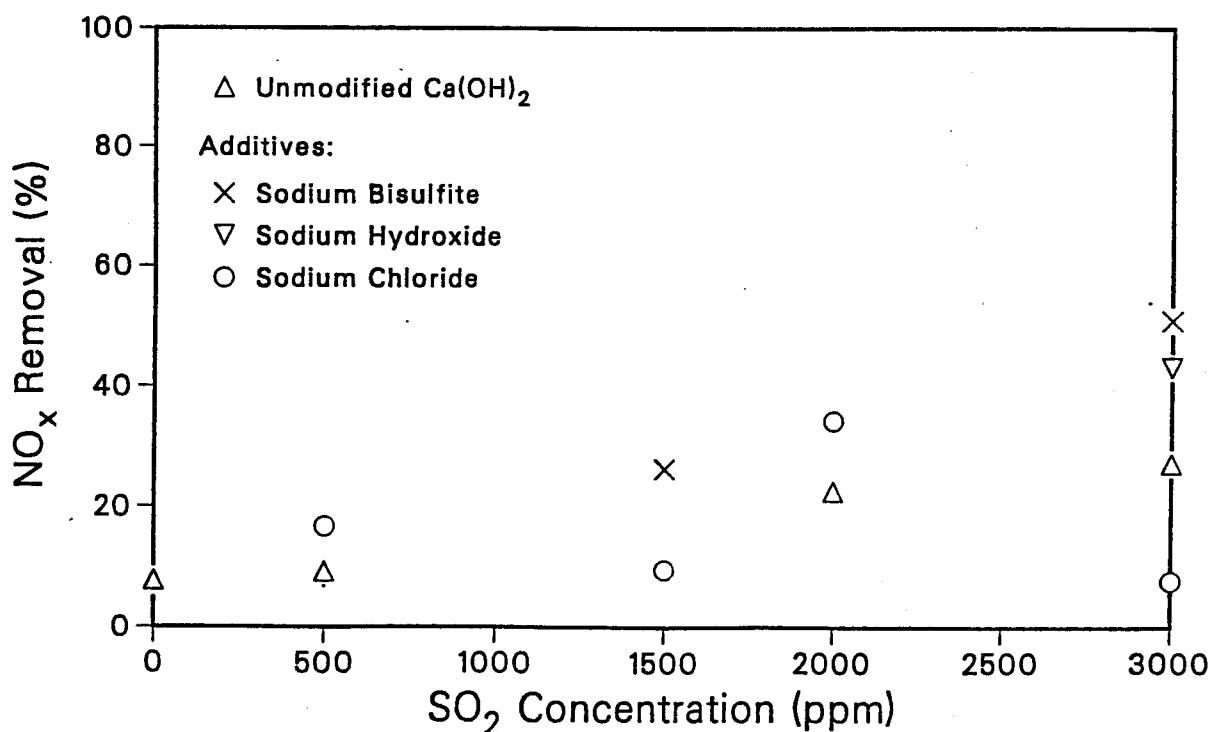




Figure 4 Comparison of Effects on NO Removal

Figure 5 Comparison of Effects on SO_2 RemovalFigure 6 Effects of SO_2 and Additives on NO_x Removal

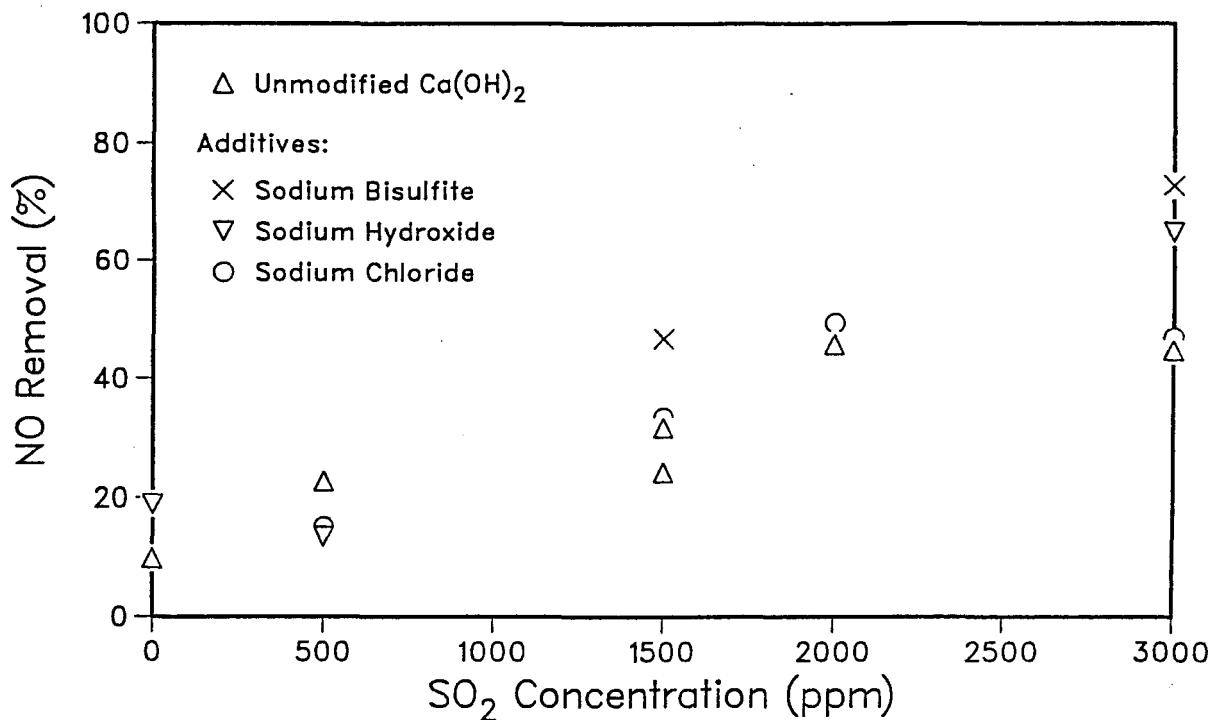

Figure 7 Effects of SO₂ and Additives on NO Removal

Table I Fixed-bed experimental program.

Parameter	Values
FGD Sorbent	Lime -- Ca(OH) ₂
Additives	NaOH, NaCl, NaHSO ₃ , Fe(II)EDTA, Na ₂ SO ₃ , Al ₂ (SO ₄) ₃ , Al/Citrate, CaCl ₂
Additive Concentration	0 or 10 mole % (plus 20 mole % for NaOH)
Temperature	65°C or 95°C
Flue-Gas Moisture	7.5 or 15% by volume
Flue-Gas Composition (dry basis):	
SO ₂	3000 ppm
NO	450 or 500 ppm
NO ₂	50 or 0 ppm
O ₂	5.4%
CO ₂	14.5%
N ₂	Balance

Table II Additive performance in screening experiments.

Exper.	Control Time (min)	Additive/Removal Enhancement (%)									
		Avg.	Removal (%)	NO _x Removal							
5	28.7	NaOH 10% +19.78	NaSO ₃ +10.30	Fe(II)EDTA +8.70	Al ₂ (SO ₄) ₃ +7.42	NaHSO ₃ +7.12	Al/CIT +4.48	NaOH 20% +0.20	NaCl -1.06	CaCl ₂ -1.66	
10	24.16	NaOH 10% +19.24	Fe(II)EDTA +8.66	NaSO ₃ +8.46	NaHSO ₃ +7.26	NaCl +5.48	Al ₂ (SO ₄) ₃ +4.82	Al/CIT +4.26	NaOH 20% -1.46	CaCl ₂ -3.30	
30	17.40	Fe(II)EDTA +10.56	NaOH 10% +10.14	NaCl +9.52	Al ₂ (SO ₄) ₃ +9.00	NaHSO ₃ +7.86	NaSO ₃ +6.98	Al/CIT +3.70	NaOH 20% +1.74	CaCl ₂ -3.10	
NO Removal											
5	39.22	NaOH 10% +14.24	NaHSO ₃ +3.54	NaCl +2.68	Al ₂ (SO ₄) ₃ +2.20	Fe(II)EDTA +1.56	NaOH 20% -1.24	NaSO ₃ -2.24	Al/CIT -10.74	CaCl ₂ -13.74	
10	30.92	NaOH 10% +15.62	NaCl +11.28	Fe(II)EDTA +5.90	NaHSO ₃ +5.00	Al ₂ (SO ₄) ₃ +3.48	NaSO ₃ +0.08	NaOH 20% -1.52	Al/CIT -4.80	CaCl ₂ -10.78	
30	20.44	NaCl +16.08	NaOH 10% +15.94	Al ₂ (SO ₄) ₃ +12.4	Fe(II)EDTA +10.10	NaHSO ₃ +6.60	NaSO ₃ +1.44	NaOH 20% +1.16	Al/CIT -1.26	CaCl ₂ -5.42	
SO ₂ Removal											
5	37.62	Al/CIT +18.94	NaOH 10% +18.50	Al ₂ (SO ₄) ₃ +16.40	NaCl +12.48	Fe(II)EDTA +8.76	NaSO ₃ +8.16	CaCl ₂ -0.20	NaOH 20% -1.40	NaHSO ₃ -4.70	
10	28.13	Al/CIT +21.34	NaOH 10% +19.60	Al ₂ (SO ₄) ₃ +17.22	NaCl +17.04	Fe(II)EDTA +13.30	NaSO ₃ +10.70	NaHSO ₃ +7.24	CaCl ₂ -0.30	NaOH 20% -0.58	
30	23.97	NaOH 10% +18.98	NaHSO ₃ +16.36	Al/CIT +14.90	Al ₂ (SO ₄) ₃ +14.42	NaCl +10.88	NaSO ₃ +6.80	CaCl ₂ +5.28	Fe(II)EDTA +3.08	NaOH 20% -0.04	