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ABSTRACT

The Ratio of Solid Angles (ROSA) computer code was developed as
part of the Crosbyton Solar Power Project (CSPP) for calculation
of optical power concentrations due to reflection from a
‘spherical segment mirror. It was developed primarily in support
of Department of Energy Contracts DE-AC04-76ET20235 and
DE-AC04—-83AL21557. This report provides technical information
about the ROSA code.

The CSPP is concerned with the development of a technology for
producing electric power from steam generated by reflection of
the sun’'s rays from a fixed-mirror solar bowl onto a tracking
receiver. In this system, the receiver is cantilevered and
pivots about the center of curvature of the mirror. The R0OSA
code gives optical power concentration ratio profiles at points

along the receiver surface.

The ROSA code is written for a spherical segment mirror and the
rim angle of the mirror is an input variable. Orientation of the
axis of symmetry of the bowl is specified in terms of a
vertical—east—north coordinate system. Location of the sun
relative to this coordinate éystem is also an input variable.
Shading and rim cutoff effects are automatically included in the

computation.

The code permits any convex surface of revolution as a receiver.
Normally a cylinder or a cone would be used. For optimum energy
capture, the axis of the receiver should lie along the from the
center -of the sun through the center of the bowl.. However ,
tracking errors can cause misalignement of the reciever axis with
this line. The code handles such misalignment in terms of

misalignment angle input parameters.



This report consists of two parts, a technical reference manual
and a user’s guide. The reference manual provides the background
material and derivations necessary for the implementation of the
code. Computer listings for ROSA are also included in the

reference manual.

The user ‘s guide contains an explanation of the input data for
the program, special-user supplied subroutine requirements, a
discussion of the output data, sample output and graphs of sample
concentration profilesr‘ Sample BOILER subroutines are given for
a right circular cone and a right circular cylinder boiler. A

sample RIM subroutine is given for an alternate rim shape.
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ROSA TECHNICAL DESCRIPTION

Introduction

'The Ratio of Solid Angles (ROSA) computer code was developed as
part of the Crosbyton Solar Power Project (CSPP) for calculation
of obtical power concentrations due to reflection from a
spherical segment mirror. It was developed primarily in support
of Department of Energy Contracts DE-AC04—-76ET20235 and
DE—-AC04-83AL21357. This report provides technical information
about the ROSA code.

This report consists of two parts, a technical reference manual
and a user ‘s guide. The reference manual provides the background
material and derivations necessary for the implementation of the
code. Computer listings ROSA for the code are also included in
the reference manual. The user ‘s guide contains an explanation
of the input data for the program, requirements for BOILER and
RIM subroutines, a discussion of the output data and sample
output. Sample BOILER subroutines are given for a right circular
cone and a right circular cylinder boiler. A sample RIM

subroutine is given for an alternate rim shape.

In the CSPP éolar bowl concept, incident solar energy is focused
onto a tracking receiver by the spherical segment mirror. The
solar focél region of a spherical segment receiver is the
frustrum of a cone. The vertex of the cone is at the center of
curvature of the mirror. The axis of the cone lies along the
line through the center of curvature of the mirror and center of
the sun. The vertex angle of the cone is equal to the angular
diameter of the sun. The frustrum is one—-half the sphere radius
in lendth, extending from the mirror surface half way to the cone

vertex.



The tracking receiver is cantilevered and pivots about the center
of curvature of the mirror. 1t is perfectly aligned when its
symmetry axis points diréctly toward the center of the solar
disk. For a perfect spherical mirror, the optimal receiver shape
would be the frustrum of a cone, with vertex angle equal to the
angular diameter of the sun. However, for imperfect mirrors, a
cylindrical receiver is nearly as effective and is cheaper to
manufacture. Maximum solar energy is captured at noon and,
because the mirror is fixed, the power entering the bowl aperture
decreases according to the cosine of the inclination angle of the
sun (angle between the sun and the bowl symmetry axis) at other

times during the day.

In order to fully describe the optical power concentration
profile along a receiver, it is necessary to consider several
geometrical and physical factors. The size of the bowl aperture
determines the maximum amount of incident energy available to the
system. However, as the inclination angle of the sun increases,
shading and vignetting effects are seen on the receiver. In
addition, misalignment of the receiver effects the optical power
profile. Finally, the sShape of the receiver itself must be
considered. All of the above complications are effectively

handled in the ROSA computer code.

The Ratio of Solid Angles formulation yields an analytical
formula for the solar concentration ratio at a field point, 2, on
a receiver surface. The result is in the form of a sum of
integrals, where the region of integration for each integral is
described by a solid angle. Rays strike the receiver after
reflecting one or more times from a mirror surface, and the.
integration regions can be described as the collection of all
directions from which reflected rays strike the receiver at Q.
This formulation is applicable to concentration éalculations for

general reflecting surfaces and general receiver shapes.
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However, for the solar bowl technology associated with the CSPP,
it is sufficient to consider a spherical segment reflecting
surface and a receiver/boiler that is a convex surface of

revolution. The ROSA code is implemented for such shapes.

The technical reference manual portion of this report consists of
several chapters. The first chapter gives a derivation of the
model. The results are due to Reichert and Brock [1,2] and yield
an integral expression for the concentration ratio at a receiver
point due to reflection from an arbitrary reflecting surface.
Chapter 2 is devoted to deriving the necessary formulas for
evaluation of this concentration ratio integral for the case
where the reflecting surface is a segment of a sphere. Multiple
reflections, rim cutoff and rim shadowing effects are also
accounted for in these derivations. Several coordinate systems
are introduced in Chapter 3 in order to account for the
geometrical relationships between the sun, collector, and
receiver. Chapter 4 discusses the numerical solution of a family
of "structure relations" that must be solved in order to evaluate
the concentration integral. A description of the ROSA code is
presented in Chapter S5 and a complete listing of the code is
given in Appendix A. Alternate rim shapes are discussed in

Chapter 6.



1. JHE RATIO OF SOLID ANGLES FORMULATION

Introduction

The original formulation of the Ratio of Solid Angles Method was
due to Reichert [1]. A very complete discussion of the model was
given by Brock in his disertation [2]3. The material appearing in
this chapter follows his presentation very closely and is

included in this report for the sake of completeness.
The Solar Model

When viewed from earth, the sun appears as a disc with some
distribution of light across its face. The effects of its
spherical geometry can be lumped into the intensity distribution
over the apparent flat disc. In describing the light from the
solar disc, it is useful to take advantage of some of the
terminology and concepts of the metrologies of photometry and

radiometry. Terms will be defined as used.

Consider a spherical source viewed from a point 0O as illustrated
in Figure I-1. The radiant exitance, M (emitted power per unit

area) of the source will be considered to be uniform,
Pr

M= — (I-1)
At

where Py is the total power emitted from the source and Ay is
the total surface area of the source. The radiance vector, c,
(radiance is power per unit area per steradian), is

- -

L=™MB(Q,6,,¥5)ng (I-2)

where B(Q,OS,VS) is the radiant brightness distribution which in

general depends of the position (6,,Y;) on the sun and the solid

4



angle (). The usual radiance that occurs in radiometry is

-

where EQE is the unit vector in the direction of the observer.
1f the solid angle emission characteristic is uniform everywhere

on the source (isotropic) then

Pr
L= -—— B({)) cos & . (1-4)
Ay

The radiant brightness distribution, B({}]), is normalized so that

J J B(Q}) cos adfi = 1 - (1-95)

I1f the radiant brightness B({]) is constant for all ), then
B(Q) = 1/1 (1-6)

and the source is a Lambertian radiator. The radiance L is then
proportional to the cosine of the angle, &, between the direction
to the observer and the surface normal to the source surface.
This is known as Lambert‘s Law (cosine law) and the source is

said to have uniform brightness.

The quantity of interest is actually the power per unit area per
unit solid angle (irradiance per steradian) that passes through
an element of area on the earth. This element of area is
oriented so that its normal lies along the direction to the sun,
8. . An element of area on the sun dA illuminates an element of

s
area dA at the earth which subtends the solid angle

an = 9853 2, -4 cos a7

when viewed from the sun along direction anE as illustratéd in



Solar
Sphere

Piqure I-l. Element of Area dA on Sun Illuminates Element of Area dA on the earth.



Figure I-1. The power received at dA is

+ 9
dP, =L "epe dii; dA (1-e)
PT dA
= (~——— B(fl)cosx) (——— cosY¥)dA
AT 1:2

The area on the sun dA subtends a solid angle

dg @ a e (1I-9)
= -——=n_ "e -
dA
= ——— cos &
412

when viewed from the earth. The power passing through

dA becomes

P

T ~ dA
dPo = (——— B()) cosVYy) (-——— cosx)dA (I-10)
AT ’eoz
- -
= LE'eS dQA dA
where
- -+ <+ =
LE = (L'"s)eﬂs (I~-11)

is the received radiance vector at the earth. The irradiance at

dA from solid angle df}, is

dP <> -
EZQ— = Lgtegdily - (I-12)

The total irradiance from the entire sun is

. 5 9
1, = J I Lg eg dfg (1-13)
s



o (21 P
= J I —=—= B(w,¥) cosy siny dw dy
0o Jo

For an isotropic Lambertian source, B({}) = 1/% and

Pt 5
I = —a;— sin“o (1I-14)

The incident radiance I (irradiance per solid angle) can be

‘written as

1 = —0——- cos ¥ (I-15)
ﬂsinzc

where
O<Y<o .

The radiance of the source in this case is

I
L =-—09— cos « (I-16)

Msin“o

It is interesting to note that when the source is Lambertian
(follows the cosine law) it produces an incident radiance vector
Cé which produces an incident radiance that follows a cosine

law at the point of incidence. Emission and reception afe

isotropic in the same sense.

Few sources are truly Lambertian and the sun is no exception. At
optical wavelengths, the sun appears slightly less bright at the
limbs, an effect called limb-darkening. (It is interesting to
note that at much longer wavelengths, this effect is reversed and
limb-brightening occurs.) In such a case, the incident
radiance I becomes
| I,B(¥) cos¥
I = (I-17)
. o -~ ~ o~ ~
27 IO B(Y¥) cosY sinvy dy




since B({)) depends only on ; for limb-darkening effects.
However, the limb-darkening effects are slight, so considering
the sun to be a Lambertian source is a useful model. Since the

sun is so far away, o is small (¢ = 0.2679) so that

cosy = 1 — 5 sin‘y > 1 - E o = 1 (I-18)

In this case, the incident radiance can be modeled as

I

I = —Q.. (1-19)
QS
where
Q r JQ“ iny dw d¥
= s1n W
s oJo **
= 47 sin?(g/2) (I-20)

Eq. I-19 is the constant irradiance for solid angle model for the

Sun.

The solar model for the radiance given by Eq. (I-19) will now be
used to obtain the general expression for the optical power
concentration. However, it is only used for convenience and it
will be shown how it can be replaced by the general model of Eq.
(I-17). The results displayed in Chapter Il are based on the
model of Eq. (I-19) simply because the limb-darkening effects are

so small.



Geperalized QOptical Power Concentration

The optical power concentration, C, at a point on a receiver in a
collector system is defiﬁed to be the ratio of the total optical
power per unit area (irradiance) received at that point to the
direct irradiance at that point. The direct irradiance is that
optical power per unit area (normal to the earth-sun line)
received by the collector aperture. 1f an area ahAp at a receiver
point is illuminated by the area aA,p in the aperture plane then

the total power received at sAR is

IDAAA

where 1, is the direct irradiance in the aperture plane. The

total irradiance at the receiver point is

I, aAp/ aAR

s0 that the concentration is

IDAAA/AAR AAA
C = = ———— (I-21)
I o » AAR

The concentration is simply é ratio of areas, but sAR depends not
only on aAn and the location o# the receiver point, but also on
the shape of the collector mirror. To carry this method of
analysis further requires specification of the collector shape,
but this approach serves to illustrate the definition of

concentration.

Consider an element dA of receiver area with local "outward*™
surface normal, B8, located at g in the neighborhood of a

mirror surface as indicated in Fig. I-2. Light from the sun
reflected to dA through the differential of solid angle d§ may
be considered to come from a patch of area dS in a plane tangent
to the mirror. The image of the entire sun in the same tangent
plane subtends the solid angle Qg parametrized above - The

differential of irradiance at dA through df} is, therefore,

10
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> 9 Io > 9
dl = I d}*b = ——= d{I*b (I-22)
with the requirement that dﬁ'B») O for illumination only on
the outward side of dA. The differential of optical
concentration at dA is the differential irradiance divided by the

input solar intensity, I :

dc .. = ————= (1-23)

The optical concgntration,tthén, at dA is
2 3 | N . R ) -+
C(q,b) = ——— I I b~dQ , for b*dQ > O only, (1I—-24)
g
I
where {4y is the apparent solid angle of the entire sun as viewed

in the mirror. For a concentrating mirror, one finds QQy > Q4.

Light in a differential of solid angle will always consider the
reflector to be locally flat; i.e., will reflect repeatedly as if
from the local tangent planes. Thus the expression Eq. 1-24 may
be used in the presence of multiple reflections in the mirror by
separating and adding the contributions from light that has

reflected n times:

C(;,g) =3 R" cn(q?b? =1 3 RD J g-dnn (1-25)
n fig N

The solid angle Qy, is the apparent size of the sun as viewed in
the mirror with radiation that has reflected n times. A
reflection coefficient R has been included in Eq. I-25 to account
for reflective losses. The factor R must be kept inside the
integral if one wishes to include angle of incidence effects.
Similarly, if the wavelength dependence of the reflectivity is of

interest, one must add an integral over W()\)d)\ to the form shown

in Eq. I-25, where W()) is a spectral density weight.



I1f one wishes to use an effective sun size o, that depends upon

the number of reflections, then {}g should be expressed:

fen 47 sin?to,/2) , (1-26)

and included inside the summation shown in Eq. I-25. Policies

for selecting o, are discussed in [2].

The next few chapters of this report will be devoted to
evaluation of the concentration ratio integral given in Eq. I-2S.
The discussion will be limited to spherical collectors and

receivers which can be described as surfaces of revolution.

13



2. OPTICAL POWER CONCENTRAT]ION FOR SPHERICAL SEGMENT MIRRORS

Introduction

The optical power concentration, C, at a point on a receiver is
defined to be the total normally directed optical power per unit
area received at that point. In the ROSA code, C is normalized by
dividing by the direct normal insolation incident upon the
receiver. The resulting dimensionless quantity becomes a

concentration ratio expressed as "number of suns."”

The ROSA methaod deals directly with a finite sun. The sun’s size
is expressed in terms of an angular radius, o. Direct sunlight
received at a point is viewed as a collection of rays lying
inside a right circular cone with vertex at the receiver point Q

and vertex angle 2c.

The ROSA formula for the concentration ratio, C, at a receiver

point, @, due to réflection from a mirror surface is given by the

integral
2 3 RD <> 2 + 9
C(gq,b) = 3 -B— I I b-d{}, for b-dQ > O, (I1-1)
nsn Q
Mn
where,
d = the vector locating a field point @ on the receiver with
respect to a convenient coordinate systems;
-
b = the unit outward normal to the receiver at @;
n = the number of times a ray has been reflected on the

mirror before striking the receiver at G;

14



g = 47 sinz(an/Z), the effective solid angle of the sun as
viewed directly from the field point Q;

0n = the effective angular radius of the sun to be used for
light which reflects n times on the mirror (for a

perfect mirror o= o0);

n
the apparent solid angle of the sun as viewed in the
mirror from the field point Q@ from light which has
reflected exactly n times;

fed
X
=]
]

R = the reflection coefficient of the mirror surfacej;
0 <R XL 1;
and,
-
dff = differential solid angle directed toward the apparent

position of the sun as viewed in the mirror; i. e.,the
oriented element of surface area on the unit sphere,
with unit outward normal.

In order to apply Eq. 1I-1, a convenient parameterization of the
solid angle is required. Thus, the receiver and mirror shapes
must be specified. As illustrated in Fig. 1I-1, the mirror to be
studied is a concave hemispherical segment of radius Rg and rim
angle 6r. The center of curvature of the mirror is at C and the
axis of symmetry of the spherical segment is along the direction

- -
A. The unit vector A is directed from C away from the mirror.

->
The rim angle 6 is the zenith angle (measured from the -A

direction) of the circular aperture rim of the mirror. The

aperture radius is Ry = Rg sin 6, in units of R;. In the
discussion to follow, it is convenient to normalize all units by
dividing by the radius of the spherical segment mirror. Thus, the

mirror will always be taken to have unit radius of curvature.

15



Figure II-1 Mirror and Receiver Shape
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The receiver to be studied is assumed to be a convex surface of

revolution. The symmetry axis of the receiver lies along the unit

- -+
vector zp. The vector q, locating a field point Q on the
receiver surface, has origin at C. The unit outward normal to

the surface is denoted by v and originates at Q. The receiver

is suspended from C and hangs gown into the mirror surface. The

mirror-receiver geometry is illustrated in Fig. 1I-2.

A parameterization for the integral given by Eq. 1I-1 is obtained
by introducing a local x, y, z coordinate system with origin at
the field point Q. As shown in.Fig. I1-2, the z axis lies along
the line segment CQ and the positive z direction is directed
downward. The directions of x and y will be specified later. The
integration is to be carried ocut Qver‘the solid angle Mn- Using
spherical coordinates, Eq. II-1 can be parame@erized in terms of
a zenith angle B measured from the pbsitivé z axis and an azimuth
w measured from the positive x axisi so that, O £ B Tand 0 w

< 271. Then

Y > 3 ' ‘
d) = v d = v sin"' B dB duw.

Thus, Eq. II-1 can be written

3 2 B >
C(gq.b) = 3 I J (b v) sin B dB dw, b°v > 0 . (I1-2)
Mn

->
The unit vector v designates the direction of a ray which

->
reaches Q@ after n reflections from the mirror. The vector v can

be expressed in terms of its components in the xyz coordinate

system as

-
v = (sin B cos w, sin B sin w, cos B).

17



G SUN

Mirror

Figure II-2 The Solid Angle Parameters B and w
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The unit surface normal to the receiver will have components of

the form

b b,)

xv Pysr Oz

so that

9 9
b v = (bxcos w +b sin w)sin B + bzcos B . (11-3)

Y

Substitution of Eq. II-3 into the integral in Eq. II-2 allows the
integral to be expressed as an iterated integral. From a
computational standpoint, it is convenient to carry out the
integration by first integrating on B, followed by integration on

w. The concentration formula then becomes

3 9 BRP -+ 3
Ctq,b) = 3 -B— ¢c_(q,m) ,
95“

where,

Cn(a,g) = J J {(bxcosm+bysinm)sin28+bzcosBsinB}dBdu - (I1-4)
w B(w)
The above integral gives a very simple formula for the
concentration ratio at a receiver point. The difficult part of
the integration arises in determining the region of integration,
i.e. describing the solid angle consisting of all directions from
which reflected light reaches the field point @ from the mirror.

The complications for a given order of light (fixed n) arise from

> 2
(1) the limitations on B and w necessary to insure that b°v > 03
(2) the finite size of the sung

(3) aperture cut-off effects: vignetting and shading.

The next several sections of this report will be devoted to

handling these difficulties.
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+
YHE CONDITION b v > O,

'y
In this section we derive the conditions on w and B that insure

+ 4
b*v > 0. Using Eq. 1I-3, this condition can be written as

(bxcos w +b . sin w)sin B + bzcos B > O. (11-5)

4
There are three cases that must be considered.
Case 1 : b, = 0.

In this case, the tangent plane to the surface at the field point
Q@ contains the z axis of the local coordinate system. Eq. II-S

then can be written in the form
cos(w — &) > 0, (I11-6)

where cos « = b, and sin X = b and w € [0, 27].

X y?

Case 2 : 0< |b,| < 1.

It is convenient to set b2 = bg + b2. Then

Xy Y

b, cos w + by sin w = bxy cos{w - o)
where, & is defined by the conditions that b, = bxy cos &, and
by = bxy sin €. Eq. II-5 then becomes

bxy cos(w — sin B + b, cos B > O,
or,

D(w) cos(B — €) > O, (I11-7)
where,
D2(w) = bxyz cosZ?(v - @ + b 2, w € o, 2m,

- 20



and, € is defined by the conditions

D(w) cos € = b,, D(w) sin € = bxy cos(w — ).

Case 3 : lb, | = #1.
Eq. II-5 becomes b, cos 8 > 0. If b, =1, then this condition
requires that 0 { B { 1/2, while if b, = -1, then /2 < B £ 7. If

we set € = O when b, = 1 and € = ¥ when b, = -1, then Eq II-7

still applies provided we set « = O.
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The Structure Relations

The location of the sun is determined by a unit vector, 85 ’
pointing from C to the geometrical center of the sun. Because

the sun is very far away, light from a region on the solar disk
very near the center may be considered to come to the dish
aperture as a uniform distribution of rays moving in the
direction, —33 . Other locations on the solar disk may be
specified by a family of unit vectors 35' s pointing from C
toward the solar disk, as illustrated in Fig. I1I-3. This family
of “sun directions" forms a cone with vertex at C with semivertex

angle, o, equal to the angular radius of the sun.

The extension of these directions through toward the mirror
defines a cone called the "sun cone.” The sun cone is a family
of directions locating distant differential sources of solar
input power. The direction 35 is called the axis of the sun
cone. the x’ and y’ axes shown in the figure are parallel to x
and y, respectively, but pass through C as origin instead of Q.

These axes will be of use later.

For any one of the directions 39' in the sun cone, the angle, B,
of the light received at Q may be determined as a function of the
angles ¥ and 6 illustrated in Fig. II-4. This figure illustrates
the ray plane for light that can reach @ from sun direction 39' H
i.e. C, @, and the differential source on the sun located by

35' are coplanar and the ray lies in the plane determined by

these three points.

The angle 6 is called the "impact zenith" of a ray that first
strikes the mirror at a point of impact P and eventually reaches
the receiver surface at Q. Note that 6 is measured from 35' and

that both the value of and the orientation of the ray plane
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Solar Disk

Sun Cone —" Q

Figure II-3 The Sun Cone
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Point of
Ray Impact

Figure 1I1-4 The Geometrical Dependence of
g on ¢y and 6, shown for n = 2
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depend upon the orientation of 85' in the sun cone.

The angle ¥ is a zenith angle for —35' as measured from the z
axis through Q. The zenith of the sun cone axis, the angle
between z and (—35 ), is designated Yo- The value of ¥ in the
ray plane depends upon the orientation of 35' in the sun cone.
The parameters V¥ and € are the mechanism for describing the shape
of the receiver and the shape of the mirror. The values of ¥ at
various q determine the shape and location of the receiver
surface. The corresponding values of € are essential to the
-description of the mirror shape and location. The relationship
between these shape parameters and B is given by the "structure

relations":

B =2n8 — ¥ — (n-1) (II-8a)
and

siné = q sin B . (I1I-8b)

The structure relations are easily deduced from Fig. 1I-4, drawn
for n = 2. They are obtained by considering the triangle CQP;.
Eq. II-Ba is the measure of the angle at the vertex C for this
triangle and Eq. II-8b follows from an application of the law of
sines to this triangle. As a convention, if, for any reason, Q
and the point of ray impact P lie on opposite sides of the axis
35 s then the angle ¥ from q to (—39' ) is assigned a negative
sign. One may easily verify that 6 and B remain positive and that

Eqs. 1I-8 are still valid in this situation.

The impact zenith can be eliminated from Eqs. I11I-8 to produce

B=2n Sin"1l(q sinB) - ¥ — (n-1O7 . (11-9)

This equation plays a central role in determining the limits of
integration in the integral appearing in Eq. 1I1-4. A detailed
discussion of the solutions of this equation will be given in a

later section. Graphs of ¥ versus B for various values of q will
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also be given. It will be shown that for given values of n and V¥,
Eq. 11-9 may have more than one solution, B. With some ray
tracing, one finds that, typically, there-are two values of &
(and, hence, two values bf B) that contribute light at Q@ when v >
0, but only one value of ¢ (and, hence, one value of B) that
contributes when ¥ < 0. A subscript i = 1, 2 will be attached to
B to distinguish the various solutions of Eq. II-9 for given
values of ¥ and n. Thus, if there are two solutions, B; will

denote the smaller and B, will denote the larger.
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Effects of Finite Sun Size.

It should be clear from the discussion above that contributions
at @ come from a range of values of 6 and V¥ produced by moving
the vector 35' throughout the sun cone. Due to this effect, for
each w in Eq. 11-4, one may find a range of values of ¥ locating
sSun axes, 35' s lying in the plane of constant w. Such a range
of values for Y, when used in Eq. 11-9 determines ranges of
values for the B. The set union of these ranges of values of the
B; is, for the specified w, the range of B integration required
in Eq. 1I-4 to account for finite sun size. As will be described
later, this‘range of integration may be reduced because of "rim

effects."

The range of values of ¥ mentioned above is, of course,
non-existent if the constant w plane does not intersect the sun
cone. If it does intersect, then the algebraically smallest and
largest values of permitted ¥ are designated Yy_ andlv+,
respectively. Fig. II-5 illustrates a case in which @ lies
inside the sun cone. As may be seen in Fig. II-2, by definition,
the points C and & lie on the plane of constant v (because w is
measured about the CQ line, i.e., about the z axis). Thus, the
dashed lines marked by ¥Y_ and ¥, are coplanar with CQ and a ray
blane is defined whose contributions will be received at Q@ as it

is located (as in Fig. 1I-4) by a range of values of ¥ from Y_ to

V+'

Y, are always measured from the z axis. The positive direction is
taken to be opposite that of J. Thus, in Fig. II-3, ¥_ < O and
Y, > O. This will always be the case when the field point Q lies
inside the sun cone. If the field point B lies outside the sun
cone and the w plane intersects the sun cone, Y, and Y_ will have
the same sign. In particular, if ¥ is directed away from the sun
cone, then both will be positive, while if 3 is directed towards

the sun cone, both will be negative.
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constant w plane

Figure I1-5 The Intersection of a Constant w Plane
with the Sun Cone

28



The formulas for ¥, and ¥_. can be obtained from a detailed
consideration of the geometry for the w plane-sun cone
intersection. The analysis is carried out using spherical
trigonometry. The appropfiate spherical triangle is shown in Fig.

11-6. The law of cosines for spherical triangles gives

Cos o, = €Os Yo cos Y, + sin Yo sin Y, cos w. (I11-10)

Setting

4 2

D = cos 2

Yo+ sinzvo cos“w -

Eq. 1I1-10 can be rewritten as
cos(wi + M) = % [cos Un]/D

where,

n = Tan “l¢tan Yo €os w}, mn € [- ﬂ. al-

These results are to be used for all cases with w for which

2
(b-v) > O.

For any w, once the range Y_(w) to VY, (w) has been determined,

then the corresponding ranges of B; may be determined from Eq.
11-9, as mentioned earlier. The nature of the ranges in B; is
illustrated in Fig. 1I-7. For the positive values illustrated

for Y_ and Y,, two ranges are indicated:

range for By: [B1o(Y_), Byg(V¥,)]

range for By: [Boo(Y,), By (Y. )] .

(II-11)

Two additional quantities are illustrated in the figure: and

Bmin
Bmax' These are constraints on the range of B integration imposed

by mirror rim effects to be discussed later.

29



Figure II-6

Spherical Triangle Geometry
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General shape of the y-8
j{ curves for fixed q and n

\!:+(w) /\

v_(w) -

gmin

= e e e e en

SN -
\ - e

/ Biolv.) By2(v,)  Byol¥,) s_,_,(w_\ B

Figure 11-7 The Ranges in g; Determined by Range in y
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1¥ one defines the quantities:
ﬁ.ig Max {Bmin("’”BiO‘Y!))

ana Min {Bmax(“’)'eil(yi)}

(11-12)

where the top subscript on v is intended for i = 1 and the lower

is intended when i = 2, then Eq. 1I-4 can be brought to the form:

(N

2 9 1 ] 1 o |Bui
Cn(q, by = Ejgt(bxcosu + bxs1nu)(8— Es1n28) + bzsxn Bl ] d
1

(11-13)
where the itP term is to be kept only if By; > B ;-

The problem has now been reduced to the numerical work required
to evaluate the quantities B ; and B,;; and, subsequently, to
evaluate the integral over w. Further progress requires

determination of the range of v integration.

If the field point Q lies inside the sun cone; i.e., ¢ 2 Y5, then
there is no restriction on v in addition to that shown in Eq.
I11-13. On the other hand, if o < Yo, the field point @ lies
outside the sun cone and the w plane may not intersect the sun
cone. Since contributions to Cn(a, 8) in Eq. II-13 only arise
if the w plane intersects the sun cone, it is possible to limit
the required range of w even more. If @ is outside the sun cone,
intersection with the sun cone is possible if and only if
D 2 cos 0nhy where D is defined above. Solving this equation for o
yields

> coszcn- coszvo

cos<w - (I1-14)
sinzvo_

This relation determines regions in w for which the intersection
occurs. The set intersection of the set union of these regions
with the region defined in Eq. 1II-12 is the required region of

intergration.
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Rim_Angle Effects.

The effect of the dish rim will now be considered. It determines
the availability of the mirror support for contributions at the
field point R. This support may be missing due to either cut—-off
or shading. The constant w plane, containing the incoming ray v ’
cuts the rim of the dish as shown in Fig. 1I-8. The dish rim
angle in the w plane can best be expressed as the front-side rim
angle, 6,
are zeniths from the z axis, measured positive in the direction

of ¥ . When 6, < 0, the dish is not seen in the J direction

*+, and the back-side rim angle, 6, . Both Oz+ and 6,

and, thus, there is no contribution.

When O < ez+ + ¥ £ M/2 there is a rim cut-off; part of the mirror
support is not present. As showh in Fig. II-9, the effective rim
angle, 6,
The angle ¥ shown in Fig. II-9 is measured negative in the

Jeff? describes the "illuminated” region of the dish.

direction of ¥ s SO 62+ + ¥ is less than 6é+ « This is the edge
of the region from which light of order n reflects for the last
time and leaves the mirror to strike @. From the geometry in the
figure, it is clear that the effective rim angle for rim cut-off
is
+ +

eé,eff = 6, - (n—1)(T-26,-2Y) - (11-13)
For a finite sun, the incoming rays arrive in a band between
Y_ £ Y V¥Y,. There is a portion of the dish that will be
partially cut-off as illustrated in Fig. II-9. This partially
cut—off region is small enough that ¥y can be approximated as

(v, + ¥Y_)/2 and Eq. 11-15 becomes
+ o+
ez,eff = 6, — (n-1)(1-26, — Y, — Y.). (I11—-16)

When /2 < 6, + ¥ £ 7, a portion of the mirror is shaded. This

effect is called rim shadowing. As shown in Fig. II-10, 6,,.4¢
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constant w plane

dish

Figure I1-8 The Intersection of a Constant w Plane with
the Rim of the Dish
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oy

~—— ] — partially cut-off region

v i11umiMated region for incoming rays of order 3 from
2 the ¢ direction

Figure II-9 The Effective Rim Angle for the Front Rim Cut-off
Effect
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shaded region
of dish

partially shaded
region

; i??hminated region for rays of order 2 from the
direction

Figure II-10 The Effective Rim Angle for the Front Rim
Shadowing Effect
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describes the "illuminated” region. Again, there is a portion of
the dish that will be partially shaded as illustrated in Fig.
11I-10. With the same approximation, the effective rim angle for

rim shadowing is
+ +
O ,eff = 6z + N(TM-26, — ¥, = Y) . (11-17)

The front-side rim effect comes from either the cut-off or the
shadowing. Always, the smaller of the values determined by Eqs.

I11-16 and 17 must be used. The overall front-side effective rim

angle is
+ s + +
eé’e{f =Min [ 6, — (n-1)K, 6, + K ] (I1-18)
4
where K=1%m-26, - Y, — Y- .

The back-side rim angle effect is simpler. If -7 < 6,7 < O, the
back-side ria angle does not affect the contribution, because
light from this region cannot reach Q. If O € 6,7 £ /2, the
receiver field point @ is outside the dish and some of the
reflected rays will be lost. If Oz- £ -1 , a portion of the dish
will be shaded, as shown in Fig. II-11. The overall result for

the back-side becomes

6; eff = MaxL 0, 6, ,=6, — T+ v, - V¥.3. (II-19)

The front—side and back—-side rim angle effects place restrictions
+ -_ .

on the values of B. If 6, ,effs 6, Jeff 9 there is no

limits

of B must satisfy

. +
. sSin(Bpax ~ 92 ,eff!
sin(T — Bp,,) = q (11-20)
and
. sin(Bpin -~ eg,eff)
sin{(n — Bmin) = a - (I11-21)
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Aperture

/

shaded portion
of the mirror

may be considered to be

! either a backside rein cut-
off effect or a shadowing

2 effect

Figure I1I-11 The Effective Rein Angle for the Back-side Rein
Effects
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Solving Eqs. 1I-20 and 21 for B, one obtains:

+
-1 I sin Gz eff

Bpax (@) = Tan l < * (11-22)

cos 6; eff — 9

and
-1 J sin Oz’e{{

Bpin(w) = Tan - . (11-23)

l cos 6; off - q

These are the quantities required in Eq. 1II-12 to determine the
limits of the B integral, B Li and B ui - These complete the
constraints on the 8 and w in Eq. 11-13 and the power

concentration is obtained by evaluating the integral.
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3. THE SUN-RECEIVER-COLLECTOR GEOMETRY

Introduction

The previous sections developed formulas for finding the limits
of integration for the ROSA integral given by Eq. I1-4. The
integration is accomplished by introducing a local xyz coordinate
system at the field point @ and using spherical coordinates in
this system. The limits of integration are then found by
intersecting planes w = constant with the sun cone which
correspondsvto light of order n (light which has reflected n

times before striking the field point).

The location of the sun cone relative to the point 8 depends upon
several factors. These include the position of the sun, the size
and orientation of the collector, and the shape and position of
the receiver. 1t is therefore necessary to define additional
coordinate systems in order to describe the geometrical

relationship between these factors.

The next. few sections will be used to define appropriate
coordinate systems for describing the sun—-collector-receiver
éeometry. The location of a field point, @, on the receiver can
be described in terms of these coordinate systems. In this way,
the concentration calculations can be associated with specified

locations on a receiver surface.
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The Earth—-fixed Coordinate System

This coordinate system is a South-East-Vertical coordinate
system. The axes are called S, E, and V, respectively. The origin
of this coordinate system is taken to be at C, the center of

curvature of the spherical segment mirror.

The Bowl Symmetry Coordinate System

This collector fixed coordinate system has origin at C, and the
axes are called D, M, and A. The standard collector is taken to
be a segment of a sphere, and the A axis is the symmetry axis of
the éollector, pointing away from the bowl (see Fig. II-2). D is
oriented such that the lowest point (with respect to the
vertical) on the rim of the mirror lies in the VD plane and has
positive D component. If A coincides with the V axis, then D is
taken to lie along S. The M axis is chosen so that the DMA system

forms a right hand coordinate system.

The paramaters Y (the tilt angle) and ¢4 (the dip.azimuth) serve
to define this system with respect to the SEV coordinate system
as shown in Fig. 1I1I1-1. The M axis lies in the SE plane. The

transition matrix from the SEV system to the DMA system is given

by =
cos Y cos °d cos Y sin °d - sin Y
sin Y cos °d sin Y sin 0d cos Y

The DMA and SEV coordinate systems are identical when Y = 0 and
oy = O (The above matrix reduces to the identity.)

This coordinate system will also be used in describing alternate
rim shapes. The standard bowl of unit radius is defined as the
segment of the unit sphere lying below the plane A = — sin 6éR,

where 6 is the rim angle of the bowl.
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The S Trackin oordinate ste

The sun tracking coordinate system also has its origin at C. Its
axes are denoted by F, B} and e;. The positive e; axis points to
the center of the sun. The F axis lies in the plane determined by
V and eg. The positive F axis is chosen so that the projection of
the positive V axis onto the F axis is negative (if the V and eg
axis coincide, then F and S are taken to be coincident). G lies
in the SE plane. Fig III-2 shows the relationship between these
systems in terms of the solar elevation E; and the solar azimuth
Ag. The alternate azimuth AL = T - A, is also used on

occasion. The transition matrix between the two systems is given

by:
sin Eg cos A sin Eg sin A - cos Eg (11I-2)
[pJFGeS= - sin Ag cos Ag o Lplgey
cos Eg cos Ag cos Eg sin Ag sin Eg',
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Figure I1I-1 The Relationship Between the SEV and DMA
Coordinate Systems

Figure III-2 The Relationship Between the SEV and FGes
Coordinate Systems
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Receiver Locatjon and Orientation

In order to locate a field point Q@ on the surface of the receiver
and determine the limits B, ;,(w) and B, , (W}, it is necessary to
discuss the alignment of the receiver. An XRyYRzr coordinate
system is fixed in the receiver, and locations on the surface of
the receiver are determined by zg and an azimuth ¢, measured
about the zp axis, positive from(xR'toward YR- The azimuth °R =0
locates the xg axis and, for a perfectly aligned receiver, XR

is chosen to coincide with the F axis of the FGeg coordinate
system and the zp axis coincides with the eg axis direction. For
a perfectly aligned receiver, the receiver surface generator at
% = 0 is the one closest to the -V direction, the negative
vertical, so that ¢ = O denotes the bottom (or lowest) side of

the receiver. This is only true for perfectly aligned receivers.

Receiver misalignment is described by the rotation angles a¢ and
a¥. The rotation is described by a rotation through an angle a¢
about the e, axis, followed by a rotation through an angle ay
about the new YR axis. The relationship between the FGeg énd
XRYRZR coordinate systems is shown in Fig. III-3. The transition

matrix between the two systems is given by:

cosaY cosa® cosa¥Y sina¢ — sinay (111-3)
N | cosae o |tpiree,

sinayY cosa¢ sinay¥Y sina¢ cosay

The coordinates of a point 2 on the receiver can be found in the
sun tracking coordinate system by application of the above
transition matrices. In order to relate these coordinates to the
local xyz coordinate system, it is convenient to introduce two
additional parameters ¢, and Y,. The éngle ¢, is the azimuth of

a (the vector locating @ from C) measured positive from F

toward 6. The angle Y, is the angle between 3 and the negative

e, axis. The relationship between the xyz and FGeg coordinate
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Figure II1-3 The Relationship Between the FGes and
Xp¥pZp Coordinate systems

e
S

Figure ITI-4 The Relationship Between the FGe and X-Y-2
coordinate systems s
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coordinate systems is shown in Fig. I111-4.

between the two systems is given by

cosY, cosd, cosYg sind,
[pryz = sind, - cosd,
siny, cosé, siny, sinég

46
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Location of Field Point in the Sun Tracking System .

It is useful to obtain expressions for y, and ¢, in terms of the
azimuth, 9, of the field point @ and the misalignment parameters
aY and a¢. It is simple to write down the components of § in

the FBe; system and in the xyz system:

-
[qJFGes = q(sin Y, cos ¢,, sin Y, sin ¢,, — cos VY,),

(I1I-5)

-
[q]nyRzR = q(sin ¥Yr sin ¢, sin Yg sin o5, — cos YR).

The coordinate transformation between these systems, given by Eq.
111-3, may be applied to obtain a second representation of a
in the FGe, coordinate system and the two may then be compared.

One obtains:
Yo = Cos™? {cosyRp cos aY + sin Yg cos op sin ay?

and (I1I-6)
sin Yo sin °o =

sinyp cos®g cosay sinad® + sin¥Yg sindp cosad® — cosYry sinay sina¢,

sin Yo cOS oo =

sian cos&R cosaV¥Y cosad® - sinYR sinOR sina¢ - cosYR sinayY cosa¢

If sin ¥y = 0 in the above formula, then ¢, is assigned the value

0. Otherwise, ¢, and Y, are uniquely determined by Eqs. 1II-64.
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Local Coordinates of the Unjt Surface Normal .

The components of the unit surface normal, B, in the xyz
coordinate system are obtained by manipulations similar to those
of the previous section. Writing g = ¢ By, By, B3x) in the xgygrzgr
coordinate system, and using the rotation matrices given by Eq.
II1-3 and III-4, we find that:

bx = 81 fcos Yo €OS aY cos (00 - a®) - sin Yo sin av)

+ 82 cos AY sin (Oo - ad)

+ Bx [cos Y, sin aY cos (&, — a®) + sin Y, cos avl,

by = Bl cos aAY sin (Oo - a0®) - 82 cos (00 - a%)
+ B3 sin aY sin (9,—-ad), (I1X1-7)
bz = B1 fsin Yo COS aY¥Y cos (00 - a%) + cos Yo Sin avy 1

+ 82 sin aAY sin (OO - a9d)

+ B3 fsin Yo sin aY cos (Oo - a%) — cos Yo €OSs aAY) .

In order to obtain expressions for the components of B in the
XRYRZR coordinate system, we use the assumption that the receiver
surface is described as a surface of revolution, with the zp axis
being the axis of symmetry of the receiver. The surface is then
described by an expression of the form

r = f(zRr), zr £ O,
where r denotes the perpendicular distance from the zp axis to
the receiver surface. A straightforward calculation then gives

the formula
-5
b[xRYRzR] = (cos ¢ cos 3, sin ¢ cosz, -sin 2), (111-8)

where,



tan z = ' (zg) z € (-1M/2,1/21,

and ¢p denotes the azimuthal angle of the field point in the

receiver coordinate system.
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4. SOLUTION OF THE STRUCTURE RELATIONS
Introduction

The structure relations arise in determining the B-limits on the
solar concentration integrals. The structure relations were
derived in Chapter I1 and are given by Eq.II-8Ba and II-8b and in
combined form by Eq. II-9. They are applied to the integral
given by Eq.II-13.

The structure relation has the form
¥ = 2nsin"1(qsin®) - B - (n-1)T, (IV-1)

where B € [0,M1, 0 < q £ 1, and n is a positive integer. Fig.
IV—-1 through IV-3 illustrate the relationship between ¥, B, and q

for n =1, 2, and 4. The curves show y plotted against B for

various values of q.

In the application of the structure relation IV-1, Qs n, and two
values of ¥, Y, are given, where -7 < Y_ < ¥, < 7. The problem

is to find B-intervals on [0,7T] such that the inequality
Y < v(B) < v, (I1V-2)

is satisfied. A case where two B—-intervals exist is illustrated
in Fig. IV-4. The number of solution intervals depends upon the
values of Y_ and ¥,. It should be clear from Fig. IV-4

that the possibility exists for no solution to Eq. IV-2, one
solution, or two solutions. The remainder of this chapter is
devoted to describing a method for finding these limits

numerically.
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Figure IV-3 ¥-B curve for n=4 (g=0.95-0.995)
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General shape of the y-8
:( curves for fixed q and n

v, (w)

v_(w)

B max

-
—a ——

/em(w_) Bio(v,)  Byglu,) 821('1»_\ B

Figure I 4 The Ranges in g; Determined by Range in ¢
i

54



Properties of the ¥Y_vs_B_curve

In this section we show analytically that the graphs shown in
Figs. 1V-1 through IV-3 are representative of the ¥ vs B curves
given by Eq. IV-1. Differentiation of Eq. IV-1 with respect to B
yields

d 2nqcos
¥ _ _Znacos¥ . (IV-3)

d P Y P
B 1—-q“sin“B

We note that at B = 0, dv/dB = 2nq — 1, and hence is positive
provided q > 1/2n, while dy/dB < O for B > /2. Thus, for

qQ > 1/2n, ¥ must attain a maximum on the interval [0,17/2].

- Moreover, d¥/dg vanishes only once on the interval [0,17/2] and
hence Y(B) has exactly one maximum and no minimum on this
interval. The value of B where this maximum occurs will be

denoted by Bbeak and is given by the formula
1/2
4n2q2 -1 ]

(4n2-1)q2

Bpeak = sin‘l[ (1V-3)
where q must satisfy 1/2n { q £ 1. The corresponding maximum
value of ¥ is denoted by Ypeak and is obtained by substituting
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he Solutio trate

In this section we briefly describe the logic involved in solving
the inequality given by Eq. 1V-2. We assume that y_ and vy, are
given and that Vpeak has been calculated from Eq. 1V-4.

Reference to Fig. 1V-4 will be helpful in understanding the
various cases. The case when n = 1 differs slightly from the
case n > 1, and will be treated separately (compare Fig. IV-1 and
Fig. IV-2).

1. Solutions for n = 1.
a. I¥ v_ 2 Vpeak' then no solution interval exists.
b. If 0 £ ¥_ < Wh
of the form [B ,B,;] exists, where B_ and B, are the

two solutions to the transcendental equation

eak < Y+» then a solution interval of

2sin"l(qsing) - B = v_ . (IV-5)

c. If vy. £ 0K Ypeak £ ¥4y then the solution interval has
the form [0,B,;]1, where B, is the positive solution to
Eq. IV-5.

d. If 0 L v_ < v, < Ypeak: then two solution intervals exist

of the form [B ;,6B,13, [B »,B,)2], where B ; and B, are
the smaller and larger of the solutions to

2sin~l(qsinB) - B = v_ (IV-56)

and B , and B, are the smaller and larger of the

solutions to
2sin"l(gsin®) - B = v, . (1V-7)
e. If Y_.< o< v, < Vpeak' two solution intevals exist of
the form [0,B;;] and [B 5,B21- Byp is obtained as the
positive solution to Eq. IV-6, while B,;; and B » are the

smaller and larger solutions to Eq. IV-7.
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If y_ < v, < O, then a single solution interval exists of
the form (B ,Byl, where g satisfies

2sin"liqsing) - B = v, (1V-8)
and By satisfies

2sin~l(qsing) - B = v_ . (IV-9)

Solutions for n > 1.

A

b.

I¥f v_ 2 Ypeak’ then no solution interval exists.
If yv_ < Ypeak £ ¥4,y then a solution interval of the
form- LB _,Byl exists, where B_ and B are the smaller

and larger solutions to

2nsin~l(gsinB) - B - (nh-1)T = y_. (IV-10)
If v < ¥ < Ypeaks» then two solution intervals exist of
the form [BLI'BUIJ and [BLZ'BUZJ' By and Byp are the
smaller and larger of the two solutions to the equation

2nsin l(gsinB) — B — (n—-1)7 = vy_ (IV-11)

while B,;» and B 1 are the smaller and larger of the two

solutions to

2nsin—1(qsinB) - B - (17 = v, . (IV-12)



Numerical solutions of the structure equations

Finding solutions to the structure equation involves solving the

transcendental equation
2nsin~1(gsinB) - B - (n-1)W = vy , (IV-13)

where q, N, and ¥ are given and B is to be determined. This
equation is readily solved by Newton’s method provided a
sufficiently accurate guess is made for the starting value of the

iteration procedure.

Because of the nature of the curve described by Eq. IV-13, a
parabolic approximation is used. The approximating parabola is
defined to have its vertex at (Bpeak’vpeak) and contain the point

(0, (n-1)7). The resulting equation for the parabola is

]
I
-€
°
0
o
x
-
w

2
Seak? s (1IV-14)

where

T

=17 + ¥, 1/82aay (IV-15)

The starting values for the iteration for finding the smaller and

larger solutions to Eq. IV-14 are then given by
= - 1/72 _
B = Byeak * L(Y Ypeak? /T3 (IV-16)

where the + sign is used for the larger solution and the — sign

is used for the smaller solution.
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3. ROSA_PROGRAM STRUCTURE

Introduction

The ROSA code gives the normalized optical power concentration
ratio at user specified points on a reéeiver surface. The
calculated values are normalized to units of number of suns. The
code also uses normalized dimensions, with the radius of the
spherical segment bowl taken to be unity. Physical and
geometrical parameters for the program include the solar
inclination and size, position of the receiver, receiver
alignment, bowl rim angie, and the reflection coefficient the
bowl. The receiver shape must be a surface of revolution and
must be described in a subroutine named BOILER. Alternate rim

shapes can be introduced by providing a RIM subroutine.

Receiver points are specified in terms of a distance, 2R,
measured along the axis of symmetry of the receiver and an
azimuthal angle, %, measured about this axis. If the
concentration ratio is to be computed for several (zR,%R) pairs
the compution is most efficient if the outer loop is on the o
variable. The program requires that loop parmeters be input for

each of these variables.
The program flow for the ROSA code is given in the next section,

together with a short table describing the ROSA subroutines. A

complete computer listing is given in Appendix A.
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ROSA Calculation Procedure

The calculation procedure which is used by ROSA can be divided
into three segments, an initialization segment, a computational
segment and an output segment. The procedure is listed below:

BEGIN INITIALIZATION SEGMENT

1. Read Input Variables
A. Boiler title: ITITLE
B. Boiler—sun alignment parameters: DPSID,DPHID
C. Sun parameters:
Sun cone half-angle: SIGMAD
Sun position parameters: elevation (ED), azimuth (AD)
D. Dish parameters:
Dish half-angle: THTARD
Dish alignment parameters: GAMMAD,PHID
E. Reflection coefficient: REFC
F. ISTEPS——number of omega integration steps
6. STPHIR,SPPHIR,DPHIRD-—-initial and final values of the
receiver azimuthal angle PHIR, and the amount to be

incremented each time in the PHIR-loop.

H. NZRR——number of reciever axis subintervals to be used. The
data in H. below will occur NZRR times.

I. NZZ, ZSTART,ZSTOP—the number of times Z will be incremented
in the @ loop, and the initial and final values of Z (this
line is read NZRR times).

2. Convert angles from degrees to radians
3. Calculate rim angle constants

4. Calculation rotation matrices

5. Initialization of PHIRD—azimuthal angle, and JSTOP-——number
of times PHIR loop is to be repeated.

6. Echo print all input values.
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BEGIN COMPUTATIONAL SEGMENT
Begin PHIR loop
Begin NZRR loop

Initialize Z loop parameters (Z=ZSTART), NQSTOP (number of
times Z loop is repeated), and DZ (the Z increment)

Begin Z loop

cALL BOILER--BOILER subroutine gets 'Z and PHIR and
returns @, PSIR, and XR,YR,and ZR-—the components of the
outward normal to the receiver in the XR-YR-ZR coordinate
system.

Calculate PSI0O and PHIO—-the rotation angles between the
F-6-ES and the X-Y-Z coordinate systems.

Calculate the components of the unit outward normal to
the receiver surface in the X-Y-Z coordinate system

Find OMEGAU and OMEGAL—--the omega limits and NOMEGA——the
number of omega-—intervals.

Begin OMEGA integration loop

CALL INTGRL - This subroutine computes the
concentration integral for the given qmega—interval.
END omega interval loop
END Z loop
END NZRR loop
BEGIN OUTPUT SEGMENT
Begin Z loop
Print Z
Begin NBOUNCE 1oop
Print contribution from n—th bounce
Add n-th bounce contribution the total concentration
END NBOUNCE loop
Print total concentration
END Z loop
END PHIRD loop
END PROGRAM
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Subroutine

Table S5.1: ROSA SUBROUTINE SUMMARY

Purpose

BLIMIT

BOILER

INTGRL

RIM

SOLN

Performs the logic for computing the beta integral

integration ranges.
A user supplied routine for computing distance and
angle to a point on a receiver surface and the

outward normal to the surface at the point.

Computes the solar concentration integral at a

point on the receiver surface.

An optional user supplied routine for handling

special rim shapes.

Computes a solution to the structure relation

equation by Newton s method.
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6. OPTICAL CONCENTRATION PROFILES

Introduction

In previous chapters, we have stressed the dependence of the
concentration ratio profiles on several geometrical and physical
parameters. This chapter gives a few representitive profiles, in
order to illustrate the nature of the results which are obtained

from the ROSA code.

Only a few parameters will be varied in these profiles.
Basically, only the solar inclination, position of the receiver,
and receiver alignment are varied. The mirror rim angle is set
at 6p = 60 degrees. The receiver éhape is taken to be a right
circular cylinder, of radius 0.0066 (this is the normalized
radius of the cylindrical receiver being used in the CSPP.) The
cylinder extends from Z = 0.5 to Z = 1.0. The reflectivity of
the mirror is set at 0.88, independent of angle of incidence or
wave length. Only power reflected by the mirror is counted,
direct radiation on the receiver is ignored. The effective sun

size is taken to be o = 0.5 degrees for all reflected rays.

Location of the center of the sun is accompished by using the
inclination angle, I, of the sun relative to the axis of symmetry
of the mirror. The optical concentration profiles depend upon 1,
which, in turn, depends upon time, latitude, and the tilt of the
solar bowl with respect to the vertical. The tilt of the mirror
axis with respect to the vertical is desribed by the tilt
angle,yY, and tilt azimuth ¢4. The location of the sun is
described in terms of an azimuth, A, and elevation, E. These

parameters are related to I by the formula

cos I = fcos ¥ sin E + sin ¥ cos E cos (A - ¢4)]. (VI-1)
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Results for 1 = O

The case of a perfectly aligned receiver when the solar
inclination is 2zero is called the "symnetric case” because the
concentration profile ié symmetircal about the axis of the
receiver. The concentration brofile forr the symmetric case is
shown as a function of Z in Fig. VI-1. The large peak near the
top of the receiver is the paraxial peak resulting from rays at
small impact angle, €@, tending to focus midway between the mirror
surface and its center of curvature. The peak concentration is a
sensitive function of ¢ and tends to infinity as ¢ tends to zero
£s1.

'There are no multiple bounce contributions in the symmetric case
because they are cut off by the 60 degree rim angle. Multiple
reflections result from impact angles larger than 60 degrees and

the required mirror support is not present for 1 = O.

The legend printed in Fig. VI-1 and in subsquent figures may be

translated as follows:

PHIR = ¢, the azimuth for locations on the receiver;

SOLAR ELEVATION = 90 degrees — 1

SI16MA = o, effective sun size

DPSI = aY, the zenith misalignment angle

DPHI = a¢, the azimuthal misalignment angle
Concentration profiles are also presented for the case where the
receiver is the frustrum of a cone. The angular radius, Yrs Of

the cone(half the vertex angle) is set equal to the angular

radius of the sun, i.e., ¥Yg = 0.5.
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OPTICAL POWER CONCENTRATION RATIO
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Figure VI - 1b Optical Power Concentration for a Conical
Receiver (WR = 0.5°)
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Concentration profiles on a misaligned receiver for 1 = O and aV¥
= 0.9 degrees are shown in Figs. VI—2, 3, and 4. These figures
show the profiles along the three slices:

¢q = 0, 90, and 180 degrees, respectively.

Results for I = 15

Figs. VI-J through VI-7 illustrate the features of the
concentration profile for nonzero inclination angles. Due to
loss of symmetry with respect to the aperture rim, there is no

azimuthal dependence in the concentration profiles.
For I = 13 degrees the mirror support is 7S5 degrees at o = O,

and peaks due to second and third bounce rays are observed. At

%r = 1BO degrees, rim cutoff effects occur.
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OPTICAL POWER CONCENTRATION RATIO
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OPTICAL POWER CONCENTRATION RATIO
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OPTICAL POWER CONCENTRATION RRTIO
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OPTICAL POWER CONCENTRATION RATIO
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OPTICAL POWER CONCENTRATION RATIO
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OPTICAL POWER CONCENTRATION RRTIO
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OPTICAL POWER CONCENTRATION RATIO
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OPTICAL POWER CONCENTRATION RATIO
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7. ALTERNATE RIM SHAPES

Introduction

In all previous derivations, we have assummed that the solar
collector was a segment of a sphere. In this chapter, an
analysis is carried out to extend the ROSA code to more general
rim shapes. In this analysis, the rim is assumed to be expressed
in the form

6 = f£(9), (VII-12

where @ is the zenith angle of a point on the rim and ¢ is the
azmuthal angle of the point on the rim. The angles are expressed
in the bowl centered D-M—-A coordinate system, where A is
perpendicular to the aperture plane of the bowl and is directed
upward. The rim angle €6 is measured from the negative A axis and
¢ is measured from the D axis. As an example, 6 = ég = 60

degrees at the Crosbyton site.

Integration for the calculation of the solar concentration is
carried out in the local x—-y-z coordinate system and rim angles
must be calculated in this coordinate system in order to account
for rim cutoff and shading. The D-M-A and x-y—-z systems are

related by a formula of the form
[p]xyz = A Cplpma (VII-2)

where Lplpya represents a point in the D-M-A coordinate system,
[p]xyz represents the same point in the x—-y—-z coordinate system
and A is a known rotation matrix (A is readily computed using the
transition matrices of Chapter I1II1.) A depends upon the tilt
angle of the bowl, the position of the sun, the shape. and
orientation of the receiver, the location of a field point on the
receiver, and values of the variables of integration in the ROSA

code.
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Eq. VII-2 can be expressed in component form to yield a system of

three equations,

sin Oz €COos w = (Ll cos O+L2 sin ¢) sin 6- Lscos 6
sin 62 sin w = ("1 cos ¢ +Mzsin ¢ )sin 66— Mscos e (VI1I-3)

cos 9, = (Njcos ¢ + Noysin ¢) sin 6 — Nzcos 6 .
In these equations, @ 1is the unknown rim angle in the local

x—y—z coordinate system, ¢ is an unknown azimuthal angle in the

D-M~A coordinate system and 6 = f(¢) according to Eq. VII-1. w
is an integration variable and L;, M;, N; i=1,2,3) are direction

cosines relating the D-M-A and x-y-2z coordinate systems.
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& Specisal Rim Shape

The above formulas will now be applied to the case where the
standard bowl shape is sliced by planes M = Mo (in the D-M-A
coordinate system). Eq. VII-1 then takes the form

0 = 6p for —05 < 6 < 0o and T-0, < © < T+og,
@ = Arccos [1 - M, csc ¢1 » elsewhere, (VII-4)
where, sin ¢g = Mg/sin 6.

The equation w = constant defines a plane in the x—y—2z coordinate
system with equation y = x tan w. 1In the D-M-A coordinate
system, this same plane has equation

MyD + MM + MzA = (LD + LM + LzA) tan w. (VII-S)
This plane will intersect the plane M = Mo along the line

(My-L tan WD + (My-Lotan WMo + (Mz-Lztan w)A = O. (VII—b)

I1¥f this line intersects the unit sphere (using normalized units),

the additional condition
2
p?2 + M2 + A2 = 3, (VI1I—7)

must be satisfied. Simultaneous solution of Eqs. VII-6 and 7

gives

—tazazMg) * [a;Z+az?)a;2(1-Mg2)—(aja,2,) 21172

A = « (VII—8)

where,
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D is then calculated from Eq. VII-6.

There are three cases to consider.

1. 1I1f the quantity under the radical sign in Eq. VII-8 is
negative, then the line of intersection of the w-plane and the
plane M = Mg does not intersect the unit sphere and the rim angle
in the D-M-A system is given by 6 = 6,.

If A is real in Eq. VII-8, then let 6, = Arccos A.

2. If 6 £ 63, then @ = 6,.

3. if 6 < 653, then & =6,.

In each of the above cases, 6, can be computed from ¢

using formulas that were developed previously for a dish with a

constant rim angle.

The formulas for the plane M = — "O can be obtained from the

above formulas by simply replacing Mo by —M.

Sample concentration profiles are given in Figs. VII-1 through

VII-3.
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OPTICAL POWER CONCENTRATION RATIO
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OPTICAL POWER CONCENTRATION RATIO
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OPTICAL POWER CONCENTRATION RARTIO
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Figure VII - 3 Optical Power Concentration for a Cylindrical
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POSA IS A PPCGRAM WHICH CALCULATES THE CONCENTRATION
AT A PCINT OK A RECEIVER.

WRITTEN BY
DR. RCNALL M. ANLCERSON, [CEFT. OF MATHEMATICS
AND
DF. JOEN L. REICHERT, DEPT. CF ELECTRICAL ENGINEERING
GRAIUATE ASSISTANTS: C. NORWOCL, R. JOHNSTON, C. DAWSCN

TEXAS TECH UNIVERSITY
LUBBOCK, TEZXAS
JULY 24, 1984

Kk k Ak A kbt bkt bk ke ko bk k bk kb ek bk ko hk ko kb ok kX%

PEAI SUN(1C0,5),00 (1C0)

REAI ZSTAFT(1C),7STOP(10)

COMPMON /BRICCKA/ MOMEGA,ISTEPS,CMEGAL (2),CMEGAU(2), XYNRNL,
*ALPEA,NZ,ZKRNAL,PSIOS,PSIOC,SIGMAC,
*RIMCY4,RINCE,RIMC6,THTARC, THTAN

CCMPMCN /BLCCKBy PIBALF,PI,PSIP,PSIPK,PSIF,BETAPK,Q,NEC

COXFKCN /CUT/ THTAR,GAMMAC,ES,A,PHKID,GANNAS,EC,PHIOC,PHIOS

REAI OMEGAL,CMEGAU,XYNRML,ZNRFKAL,PSIC,SIGMAC,

*RIMCY, RINCS5,RIMC6,THTARC, THTAW,PI,PSIP,PSIPK,PSIN, BETAPK,C

INTIGER MCMEGA,ISTEPS,NZ,NBC

INTEGER N2Z (10),ITITLE (20)

COORDINITE SYSTEMS USED:

1. TEE S-E-V COORDINATE SYSTENM
THIS IS THE SOUTH-EAST-VERTIICAL CCCRLINATE SYSTEH
WHICH IS ALIGNED WITH THE FAETH.
2. TEE F-G-ES COORDINATE SYSTEN
THIS CCORLINATE SYSTEM IS ALIGNED SO THAT
THE ES AXIS POINITS TO THE CENTER CF THE SUN.
3. TEE X-Y-7 CCCRLCINATE SYSTEM
THIS CCORDINATE SYSTEFM IS ALIGNED SO THAT
THE Z AYIS PASSES THROUGH TBE CENTER OF
THAE HEFISPHERE AKD THE PCINT Q ON THE
RECEIVER AND THE SUN LIES IN THE XZ PLANE.
4. TEE XR-YR-ZR COORDINATE SYSTEM
THIS CCCELINATE SYSTEM IS ALIGNED SO THAT
THE ZR AXIS IS THE RECEIVEER AXIS CF SYMMETRY.
5. TEE D-M—A CCCGRDINATE SYSTEX
THIS CCCRDINATE ESYSTEY IS ALIGNED SC THAT
TAdE A RXIS IS THE AXIS OF SYMMETEKY OF THE DISH.
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CONTINUE
INPUT VITIAELES

R. ROTITION MANGLE VARIAELES
PHIED, PSIRD = THE RCTIATION ANGLES, IN DEGREES, EEIWEEN THE
X~Y¥Y-Z AND XP-YR-ZR COORLINATE SYSTENMS
DP51D, DPHILC = THE RCTATION ANGLES, IX DEGREES, EFETWEEN TEHE
F-G-ES AND XR-YR~ZF COORDINKATE SYSTEMS
ED, AD = TEE ELEVAIICN ARGLE AND ARZINUTHAL ANGLE,
EETHWEEN THE S—-E-V ANL F-G-ES CCORDINATE SYSTEMS
GAMMAD, PHILDD = THE ROTATION AMGIES, IN LCEGKEES,
BETREEN THE S—-E-V AND LC-M-A
CCORDINATE SISTENS
THTIED = ALTITUDINAL ANGLE, IN DEGREES, EETWEEN
TEE D-M-~A AND X-Y-Z CCORDINATIE SYSTEMS

B. CTHIR IKPUT1 VARIABLES
DPBIRD = TEE AMOOUNT EFHIR IS INCREMENTEL 1IN
TEE PHIR-1LOCP (READ IN)
ISTEIPS = TEE NUMEER CF INTERVALS USED IN
TEE CMEGA-INIEGRATICN
(CSING SIMPSON'S RULE)
NZZ = NUEEER OF TIMES Z IS INCEEEENTED (EEAD IN)
REFC = THE REFLECTION COEFPICIINT

SIGFAD = TFE SUN CONE HALF-ANGIE

SPEFFIR = TFE FINAL VALUE OF IHIR (REAL 1IN)
STPEIR = TEE STARTING VALOUOE CF PHIR (FEAL IN)
ZSTERT = TEE INITIAL VALUE OF Z (READ IN)

ZSTCP = TEE FINAL VALUE OF 2 (FEéD IN)
CON1INUE

INTERNAI VARIAELES
ALPBA = THE AKGLE BETRWREEN THE X-AXIS AND TRBE
NOREAL 1IC THE RECEIVER
COEFF1, COEFFz = USED TC CALCULATE EHIO
CONST = A CONSTANT USED IN THE COMCENTRATIOKN FCRMULA
DPSI, IPHI = I[PSIC, AND LCPHID IN EKEALTIANS
DPSIC, DPHIC = THE COSINES OF DPSI AND DFHIX
DPSIS, DPHIS = TEE SINES OF DPSI ANL DPEHI
DZ = TEE AMCUNT Z IS INCREMEKTED EACH TINME THE
C-10CP IS CCEPILETEL
LZ DEPEXKLS CN ZSTART, ZSTOF, AND NZZ
CONIINDE
E, A = ED ANL AD IN RADIANS
EC IEE CCSIKE CF E
ES TEE SINE OF E )
GAMMA, PHIL = GAMNAL ANLC PHIDD IN RADIANS
GAMMAC, PHIDC = THE COSINES OF GAFKMA ANL PHID
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GAMMAG, PHILS = THE SINES OF GAYMA AND PHID
OMEGAL = THZ LOWER BOUNL GN OMEGA USED IN INTEGRATICN
OMEGAU = THE LFPER BEOUNL ON OMEGA USED IN INTEGRATION
PODPC COS({FEIC-DPHI)
PODPS SIN(ELIC-DPHLI)
P5S10, ERIO = THE ROTATICN ANGLES EETIWEEN THE SON
CCCHEDINATE SYSTEM ANL THE X-Y-Z COORDINATE SYSTEY
THE COSIKES OF PSIC AND PHIC
THE SINES OF PSIC ANL PHIO

[}

PSICC, PHIONC

PSICS, PHIGS
CGRIINUE

PSIRD, PHIEL

TEE FOTATION ANGLES, IN CEGREES, BETWEEN THE
XR—YR-ZR AND THE X-Y-Z CCCHDINATE SYSTEMNS

PSIB, IHIR = ESIKD ANC EHIRD IN RACIANS
PSIRC, PHIRC = THE COSINES OF PSIF AND PHIR
PSIRS, PHIRS = THEF SINES OF PSIR ANL PHIR
Q = THBE DISTANCE FRCM THE CENTEK T0 THE PCINT

WEIFE THE RAY STRIKES THE RECEIVER
RI¥CI (I=1,7) = USED TO COMPUTE THTAZ
SIGMA = SIGNMIL IN RADIANS
SIGMAC, SIGKAE = THE COSINE AND THE SINE CF SIGMA
THTAE = THTAEL IN RALIANS :
THTARC, THAZRES = THE COSINE AND THE SINE CF THTAR
XNRMAL = THE X-CCMPCNENT OF THE GUTWARD NORFAL

TC TEE RECEIVEE AT Q

YRR¥AL = TEE Y-CCMPCNENT OF THE OUTWARD NCRYAL
TC TLE RECEIVER AT Q '
XYNR¥X1 = FRCJIJFCIION OF THE NORMAL TC THE RECEIVER

INIC THE XY-PLANE
XR,YR,ZR = CCMEGNENTS OF THE NORMAL IN TERMS OF
XR~-YR-ZR CCORDINATE SYSTEM
Z = THI DISTANCE FROM THE CENTER 710 A POINT ON THE
CENTRAL 2XIS CFTHE RECEIVER
ZNRMAL = THE Z-COMPONENT OF THE OUTHARD NORMAL TO
THE RECEIVER AT Q

COXJINUE

OUTPUT VARIAELIS

LI=NUOMEIER CF ICUNCES :

Q00 = TIMPORARY VARIABLE USZD TC PEIXT THE VALUE OF 2
SU% = [SED TC CCMPUTE THE OMEGA INTEGRAL

SOMA = USED IC FIND THE TOTAL CCONCENTRATICK (N=1,5)

PROGRAY COERSTANIS
PI=L*ATAN(1.)
BEALIAN=FI/ 180.
PIRILF=ATAKRZ (1.,C.)

DO 14 ¥M=1,%



16
14

C
C INP
208

197

199
299
202

203

399

cC 16 Xr=1,100
SUY% (NK,NM)=0.
CCNTINUE
CONTINUE

UT VIRIAELES
WRITE(6,20€)
FORMAT(/4/4/4/¢20X," INPUT',/,/)
REALU(5,197) ITITILE
FORPMAT (20 R 4)
WRIITE(6,1S¢) ITITLE -
KEATL(5,199) LESIC,CPEID
WEITE(6,2C2) CPSIT,CPHID
REAIL (5,29S6) SIGYAD,EL,AD
REARI(5,29¢) THIARD,GAEMAD,PHID
WRITE(6,203) SIGMAD,EL,AD, THTARL, GAMMAL,PHIDD

FORPFAT (2F1C. 5)

FOERPAT (3F1C. 5)

FORNAT (* BCILER-SUN ALIGNMENI PARAMETERS:',/,
* 1 DELTA PSI (DPSII) = 1,F10.5,/,
* DELTA PHI (DPHIL) = v,F10.5)

FORFAT (/, " SUN PARAMETERS:',/,

* 0 SUN CCNE HALF ANGLE (SIGMAD) = ',F10.5,/,
« SUN PCSITICN:',/,

0 ELEVATION (EL) = *,F10.5,/,
* 0 LISH FARAMCTERS: ', /,

% DISH HALF-ANGLE (THTAED) = *,F10.5,/,
* DISH ALIGNMENT: ',/,

* 1 GAMMAD = 1,¥10.5,/,
% 0 PHILC = ',F10.5)

REAI(5,399) RKEFC,ISTEPS
WRITE({6,204) REFC,ISTEPS
FORPAT (F10.5,15)

204 FORMAT (/,

* 0 REFIECTION CONSTANT = v,F1C.5S,/,
* I1STEPS =t,15,/)
REAI (5, 1) STEHIR,SEPHIR,DPHIKLD
WRITME(6,205) STERIR,SEPHIR,DPHIRD
1 FORFMAT (3FE5.0) g
205 FOE PAT (
* 0 START PHIR (STPHIR) = ',F5.0,/,
* 0 STOF PHIR (SPPHIR) = ', F5.0,/,
1 CELTA PHIR (DPHIREL) = ',FS.0,/)
RER2I (5, 2) NZRR
RRITE(6,20€) KZER
2 FORFAT (I5)
206 FOERAT (
*x NUMBER CF Z-INTERVALS (NZRR) =1,I5)
DO X I=1,\ZER
READ (5, 4) %22(I) ,2START (I) ,ZSTGE (I)



WFITE(f,207)1,822 (1) ,25TART (I) ,2Z5TOP (1)
4  FCRMAT(I%,ZFS.3)

207  ECRMAT (' FOR I = ,1%,/,
" NUMBER OF INCRENEKTS (N2Z) =!,IS,/,
10 ZSTART = ' ,F5.3,/,
v ZSTCP = ' ,F5.3)
3 CONTINUE ’

WRITF (6,13C8)
1308 FOFPFAT('1 ')
c
C CONVEKSICN FRCK CEGREES T0 RADIANS
DPSI=DPSIL#RATIAN
CPHI=DPHIL*RALCIAN
PHII=PHIDL#*FALIAN
GAMYFA=GANMAL*RADIAN
F=F L*RACIAN
A=2I*RACIAN
SIGPA=SIGYZRC*EADIAN
C
C CALCULATION CF KIF¥ ANGLE CONSTANTS
THTIP=TLHTABD*RADIAN
THT 7RC=CCS (TETAR)
CONST=12.*FI#STIN (. 5*SIGHA) **2
CPS1C=CCS (LPSI)
CPS1S=SIK (LPS1)
CPBIC=CCS (LPEBI)
EPH]S=SIN(IPEI)
¥C1=SIN (E) #SIN (GAMEA) *COS (A-PHID)-CCS (E) *COS (GAMNA)
RIH(Z—SIN(CAHPA)*SIN(A PHAID)
RIMC3=COS (E) *SIN (GAMNA) #COS (A— EHID) +SIN (E) *COS (GAMMA)
c :
C CALCULATION OF TRIG COKSTANTS
PHIIC=CCS (ERIL)
PHIES=SIN (EBID)
SIGPAS=SIN (SIGMA)
SIGPAC=CCS (SIGMA)
EC=(CS (E)
ES= SIN (E)
GAFPAC=CCS (GAKMA)
GAM FAS=SIN (GAXNA)
c _
C BEGIN LCCP FOE AZINUTHAL ANGLE (PHIR)
PEIFD=STEEIR
JSTCP=1
IF (DPHIRLC .NE. 0.) JSTOP=({SPPEIE-STPHIR)/DPHIRD+1.01
DO 250 J=1,JSICP
EEIR=EHIFL*FADIAN
WEITE (€, 5) PEIRD
S  FCRMATI('1',°? PHIR=',F12.3)
PFIRC=CCS (ERIR)



PIIKS=SIN (PHIR)
C
C BEGINKIM; OF 2 LCCP
LC 600 K=1,NZRE
2=2STAET (K)
IF (NZZ (K) .LE. 1) GO TO 50C0
5001 DZ= (2STOP (K) ~ZSTART (K) ) / (NZZ (K) - 1)
5000 NZSTCE=NZ7Z (K)
CO 30CC N2=1,N2STOP
CALL BCILER(Z,EHIR,PSIK, R,YR,ZR)
PSIKC=CCS (PS1E)
PSIRS=SIN(PSIR)
c
C CALCULATION OF PS10
PSICC=CESIC*ESIKC+DPSIS*ESIRS*EHRIRC
PSIC=ARCCS (PSICC)
PSICS=SIN(ESIO)
COEFF1=CPSIC*PSIRS*PidIRC-DESIS*ESIRC
COFF¥2=PSIRS*PHIRS

C CALCULATION OF FHIO
IF (2ES(FS10) .GT. 0.0) GO TO 15

10 PEIC=(.
GC TC 20
15 PHICC=CPHIC*CCEFF1-DPHIS*COEF¥2

PEICS=DPLIS*COEFF1+DFRIC*COEFF2
PHIC=ATAN2 (PHIGCS,PHICC)
20 PHICC=COS (PHIO)
PHICSE=SIN(FHIO)
C
C CALCULAIION OF THE BRECEIVER CONSTANTS
PODFC=COS(FHIO-DPHI)
PODES=SIN(FdI0-DPHI)
ZNRMAL=XK* (PSICS*DPSIC*PCDFEC+PSICC*DPSIS)

* + YE*PSICS*PODPS

1 + ZR* (PSICS*DPSIS*FCDPC-PSICC*DPSIC)
XNEM¥2L=XE* (PSICC*DPSIC*FCDFC~-PSICS*DPSIS)

* + YR*¥PSIOC*PODPS

1 + ZR* (PSICC*DPSIS*PCDPC+PSICS*DPSIC)

YNENMAL=XE*LPSIC*PODPS ~ YR*PODPC + ZE*DPSIS*PODPS
XINRKL=SORT (1.-ZNRHAL**2)
IF (ABS (XYNRKL) .LT. .0001 .OR. (AES (XNRMAL) .L1T. .0001

1 .ANC. BAES(YNRM2L) .LT. .0001)) GO TO 8526
ALPH2=ATAN2 (YNEMAL, XNRMAL)
GC TC 993 .
8526 ALPEA = C.0
C
C CALCULATION OF ACTITIONAL RIM CONSTANTS
993 RIFCU=ESIOC* (PEIOC*RINC1-PEIOS*RIMC2) +PSIOS*RINC3

RIMCE=FHEIOS*RIFC1+PHICC*EKINC2



C

RINMCE=PSTOS* (PHIOC*PIMC1-PEIOS*RIMC2)-PSI0OC*RINC3

C LIMITS FIRE GIVEN PY THE CMEGA (I)--
C NOKMCGA 1S THE MUMEER OF INTIERVALS

45
C

40
Cc
C

ENDIF

IF (SIGMA .LT. PSIO) GG TO0 40
OMFGAL (1) =ALFHA-PIHAIF
OFMEGAU (1)=ALEHA+PIHALF
ONMEGAL (2) =ALEHA+PIHALF
CFEGAU (2)=ALFHA+PIHALF*3.
NCFEGA=2
GC 1C 90

ELSY DO

CMEGA1=AFCOS (SQRT((SIGMAC**2-PSIQC**2) /PSICS*%*2))
OrEGAU (1) =CMEGA1

CrEGAL (1)=-OFEGA1

OMEGAL (2)=FI-OMEGA1

ONMEGAD (2) =PI+0OMEGA1

NCFEGRA=2

C THE W—IFTEGRATICN AND THE EETA-INTEGRATICN AFE FERFGERMED 1IN
C SUBROUTINE INTCKI, SIMESCN'G RULE IS USED ON THE W-INTEGRATICK

30
100

3000

DO 1C0 MOMEGA=1,ROMEGA
CALI INTGKL (SUH)
CCNTINUE
CC(KZ) =2
Z=2+L2

C END OF INTEGKATICR-EEGIN PEINT CUT

501
502

505
500
503
600
250

8343

LC 500 1=1,KZSTICP
SUMA=0.
WRITE (€,5C1)CO (L)
Do 50¢% 11=1,5
SUM(1,11)=SUM(1,L1) /CONST*REFC**11
SUMA=SUMA + SUM(L,L1)
FCRMAT ('C = ,F8.4)
WEITF(€,502)L1,SO0M(L,L1)
FORXRT (! BOUNCE NUMEER="
I, CONCENTRATION="',F14.4)
SUM(L,11)=0.
WR1TE (6,503) SUMA
FOFMAT (? TOTAL COKCENTRATION=',F14.4,/,/)
CCMINUE
PRIRD=PHIFC+CPHIRD
WRITE (6,8343)
FORMAT (' 1%,/ 0/e/e" NCRYAI TEFRMINATICN')
STCE
EXI



C*DECK IMIGKL
SUBECUTINE INTIGRI (SUF)
Co#+¢ INTGIL PERFCRMS THE OFMEGA RNLC BFTA INTEGRATIONS

c A¥XD (CHNPUTES SUM, WHICH IS RETUFNED TO THE
c MEIN FROGERPI.

C

C*¥*VPITTEIN PY: R.M.ANDERSON, LSSISTEL BY CLINT CAKSON
c CATHY NORROCD, AND KEAD JCHNKSTON

C DATE WRITTIEK: 06/01/80

C

C***EXELAMATICN CF VARIAFLES:
C BETAL = LOWER LIMIT ON EETA USED IN THE INTEGRATION

RETAMI = MINIFUM VALUE CF EETA FCUNL ¥HEN CONSIDERING RIM-CUICPF

AND SHALOWING EFFECIS

BETAMX = MAXI1FUM VALUE CF BETA FOUNL WHEN CONSIDERING RIM-CUTCFF

o

o

C

C AND SEAGCWING EFPECIS

C BETAPK = THE VALUE CF BETA CORRESFONDING TO THE

c MAXINCM VALUE OF PSI FCR A GIVEN VAIUE OF Q

C BETASE = BETRI + EETAU

C BETAT = BETAU - EETAL

C BETAD = UPPEF LINIT ON EETA USED IN THE INTEGRATION

C BL = TFE LOKER PCUNL ON BETA WHEK CCNSIDERING THE RELATICNSHIE
C BEIWEEN FETA, PSIP, AND PSIN

C BO = TIE UPPER BCUND ON BETA WHEN CCNSIDERING THE RELATICNSHIE
C BEIXEEN EETA, PSIE, AND PSIK _

C CONSTW = A CCNXSTANT USED IN THE CMEGA INTEGEATION

C DOMEGA = (CMEGAU - OMEGRL)/ISTEES

C ETA, EITA = USEC 710 CCMEUIE PSIE AND PSIN

C KBC, X} = THE NUMEER CFP BCUNCES

C ONEGA = THE AZIMUTHAL ANGIE MEASURED CLCCKWISE FROM THE X-AXIS
C PSINM = ANGLE FFTWEEN THE KECEIVER AND THE

c 1EFT EDGE OF THE SUN CONE IN THE

C ELANE CFEGA=CCNSTANT

C PSIP = ANGLE EFTIREEN THE RECEIVEER AND THE

C FIGHT FLGF CF THE SUN CONE IN THE

C ILANE CEEGA=CONSTANT

C PSIPK = MAXIMUM VALUE OF BSI FCE A GIVEN N AND Q

C QSBFTA = Q TIFMES THE SIKE OF BETAEK

C REO = USED TC FINC EETAMX TO ASSUEE THAT THE DOT PRODUCT IS >=
C SB = USED TO COSPUTE THE BETA-INTEGFAL

C SUM1 = USEL 1C CCHPUTE THE BETA INTEGRAL

C THTAW
C THTAZ
C THTAZE
C THTAZN
C THTAZP
c

c

USED 710 COMPUIE THTAZP

USELD IC FINLC THTAZP ANLC TETAZM

THETP2—EFFECTIVE, USED 1C CCMPUTIE EETAMX

THE ANCLE EETWEEN THE KECEIVER ANL THE LEFT RINM
THE ANGLE EEIWEEN THE RECEIVER AND THE RIGHT RIM

noh

kkkkk kSt 1S

FIAL SUK(100,5)
C



RIAL PL(Z),FEU(2)
1'EGER KEETA
CC¥MON /ELCCKA/ MOMEGA, ISTEPS,CMEGAL (2),0MEGAU (2), XYNKHNL,
* AIPHA,NZ,ZNRMAL,PS10S,PSIOC,SIGHAC,
* RINCU,BIFCS,RINC6,THTARC, THTAW
CCK4ON JELCCKB/ EILALF,PI,PSI1P,PSIPK,PSIM,BETAEK,Q,NBC
CCM4ON ,CUT, THTAR,GAMMAC,ES,A,PHID,GAMMAS,EC,PHIOC,PHICS
C THE W-IMIEGRATICN--ISTEPS IS THE NUMPER OF
C INTEGRATION STEPS/INTERVAL
C SIMPSON'S RULE IS USED
OFIT=-1.
LCMEGA= (CMEGAU (MCMEGA) ~GMEGAL (MOMEGA)) /ISTEPS
LC 101 1=2,ISTEPS
CMEGA=CMECAL (MCMEGA) + (I-1) *DC"EGA
CHEGAC=CCS (OMEGA)
CONSTR=(3.-UNIT) #CCMEGA
CMEGAS=SIN (OMEGR)
RHO=ATAN2 (XYNRF¥L*CCS (CMEGA-AIPHA) ,ZNEMAL)

C CALCULATION OF PSIN,ESIP
ETA=RATANZ (FSIOS*CHMEGAC, PSICC)
BETA=ARCCS (SIGMAC/SQRT(PSICC*%*2+ (FSICS*CMEGAC) **2))
ESIF=ETBA4EETA '
ESIN=FTA-EETA

aon

CALCULATION OF EFFECTIIVE RIM ANGLE FPARAMETERS
RIBCT=FIMCU*OMEGAC+RINCE*CIFEGAS
THTAR=RTAN2(-RIMC7,-RIMCE)
THTAZ=THTIARC/SQRT (RIMCG**2Z+RIMCT**2)
IF (TETIAZ .GT. 1.0) GO IC 101

110 THTIRZ= ARCCS (THTAZ)
C**** TF YOU WANT AN ALTERNATE RIN SHAPE, REMCVE THE
C WC*" IN TEF MNEXT LINE
C CALLI RI¥ (OMEGA,THTAZ,IFIAG)

IF (1FLAG .EC. 1) GO TIC 101
THIAZP= THIAZ+IHIAW
IF (1BTAZP .lE. 0.0) GGC TO 101
11 THIAZN= —THIAZ+THTIAW
THIAZM=AMAX1{0.,TRTAZHN)
THIAZF=AMIN1 (THTAZP,FI-THTAZP-FSIP-PSIHN)
IF (TETAZP .lE. THTAZE) GO TO 101
112 CGNTINGE
C
C CALCULATION OF MINIMUY AND MAXIMUM BETA ANL EFFECTIVE EIM ANGILE
C RETAMI,EETAMX ANL THTAZE,RESPECTIVIELY

EETAMI=0.
I1F (THTAZM .1E. 0.0) GC TO 302
301 EETAMI=ATAN2 (SIN(THTAZM),CCS (THIAZHN) -Q)
302 FETAKI = AEAX1(BETAMI,-PIHALF+RHO)
C ELSE LC



(s NeXg]

Lo 370 NEC=1,5
XN=NEC
THTAZE= (2. #XN—=1.) * THTAZD+ (XN~ 1.) * (PSIP+PSIM-EL)
IP ((THTAZE-THTAZM) .LE. 0.0) GO TG 300

371 FETAMX=ATAN2 (SIN (THTAZE) ,CCS (THTAZE) -Q)
BETAMX=AMIN1(BETA4X,P1,PI1HALF ¢+RHO)

CALCULATION OF FETP~-FEERK AND PSI-PEAK
IP (Q -GT. .5) GC 710 305

380 IF (NEC .GT. 1) GC TO 305
304 BETAPK=0.0
ESIPK=0.0
GO 10 306
ELSE [O
305 CSEETA=SQBI ( ((2.*XN#*C) **¥2-1.) / ((2. *XN) **2-1.))

BETAPK=ARSIN (QSBETA/Q)
PSIPK = 2.*XF*ARSIN (CSEETA) -BETAEK- (XN-1.) *PI

ENCIF
CONSIDEFATION CF THE RELATIONSHIP EEIWEEN BESIM,ESIP,PSIPK
306 I¥ (PSIF .GE. PSIEK) GO T0 300
303 CALL BLIMIT(B1,EU,NBETA)

TEST INTERVALS CF INTEGRATION PCR EIM EFPFECTS
ST*1=0.
CC 360 MEETA=1,NBEIA
RETAL=AMAX1(EL (MEETA) ,BETAFI)
BETAU=AMIN1(BU (MBETA) ,BETANX)
EETAT=EETAU-EETAIL
RETASM=RETAU+BETAL
‘ IF (BFIAT .LEF. 0.0) GO TC 360
352 SB=.5% (RETAT—-SIN (BETAT) *COS (BETASM)) *COS (OMEGA- ALPHA)
SUM1=SUK1+.5*ZNREAL*SIN (EETAT) #SIN {BETASM) +SB* XYNRML
360 CCNTINUE
370 SUM(NZ,NEC)=SUM(NZ,NBC) +SUE1*CCNSTR
300 CCNTINUE
101 UNII=—DNIT
RET (RN
ENT



C*DECK SCIN

C

FUNCTICN SCLN (EETA,PSI)

Cx¥#% PUNCTION SCIN COMPUTES BL AND BU USING NKEWION'S METHOL

C

C**#+WPITTIN BY: R.M.ANDERSON
C*##*DATE WRITTEN: 06/01/80

C

C+**EYPLAMATICN CF VARIAELES

C PI

C
C
c 9
C
C
C

BETA
251

NBC

AIAN2(0.,-1.)
= FIRST CUESS FOE SOIN
FETA — (Z*NBC*SIN (Q*SIN(BETA)) + (NBEC-1)#*PX

VECIOR FECM CENTER CF DISH TO PCIRT ON THE RECEIVER

FOUNCE MNUMEER

kkkkk k%

11
12
10
100

200
201

300

CCMMON SELCCKBy PIHALF,PI,PSIP,PSIPK,PSIM,BETAPK,Q, NBC
A=EETA

E=PSI

X}=NEBC

E=P+ (XN-1.) #PI

IC 10 I=1,30

C21S=Q*SIN(A)

CELA= (B-Z. *XN*ARSIN (QAS) 4A) / (1.—2. *C*XN*COS (A) /
SCRT (1.~CAS*%2))

?=A-TELA

IF (ABS(LELA) .LE. .00001) GC T0 300
It (A .17. 0.0) GO TO 200

If (A .G1. PI) GC 10 200

CCNTINUE

KEITE(6,100)

FCRMAT (' ITERATION DID NOT CONVERGE')
GC TO 30¢C

WEITE (6,201)

FCRMAT(' ITERATION DIVERGED')

A=0.

SCLN=2

EITURN
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C*DECK DIIMIT
SUEFOUTINE BLINIT(EL,BU,N3ETR)
C
REIAL EL (Z),BU(2)
IMEGEF NEETA
CCMMON /ELCCRBy/ PIHALP,PI,PSIP,PSIEK,PSIM,BETAPK,C, NBC
C*+#** CONSIDERATICN OF THE RELATICNSHIP BETWEEN PSIM,PSIP,PSIPK
C IN CRDER 1C CETERMINE THE BETA-LIMITS CF INTEGRATICN
C
C***YRITTIN BY: F.r. ANDERSCN, ASSISTED BY CLINT DAWSCN,
C CATHY NORWCCD, AND REAL JOHNSTON
C***DATE WRITTEN: 06/C1/83
C
C***EXPLAMTICK CF VARIABLES:
BL(2) = AREAY CCNTAINING LOWER EETA-LIMITS
BU (2) ARRAY CONTAINING UPPER BETA-LINITS
NBETA = NUMEEF CF BETA-KEGIONS OVER WHICH TO INTEGRATE
NBETA=1 CR 2
BETA = THP FIFST GUESS FOR EL(I) CR BU(I) TO BE
USED IN SUBRCUIINE SCIN

ki ki

OoONOOO0O6O00

It (PSI¥ .LT. C.0) GO TC 320

o0

PSIM >=(
310 IF (ES1F .1T. PSIPK) GO TIC 315

@]

C PSIM >=( AND ESIE>=PSIPK
311 G1=SCRT { (PSIPK~-PSIN)/ (ESIPK+ (NBC-1)*EI))
BETA=FEETAPK* (1.-G1)
BL (1)=SCLN (BETA,PSIN)
BETA=EETAPK* (1.+G1)
BED(1)=SCLN (BET2,PSIN)

NEETA=1
GC TC 3%0
C
C PSIN>=0 ANLC PSIE<ESIEK
315 G1=SCRT ( (PSIPK-PSIM)/ (ESIPK+ (NBC-1)*PI))

G2=SCET ((PSIFK-PSIP)/ (PSIPK+ (NBC-1)*PI))
BETA=EETAPK* (1.-G1)
BL (1)=SCLN (BETA,PSIHN)
BET2= EFTAEK*(1.-G2)
BU {1)=SCLN (BETA,PSIP)
BETA=FETAPK* (1.+G2)
BL (Z)=SCLN (BET2,PSIP)
PETA=EETAPK* (1.+G1)
BU (Z)=SCLN (BETA,PSIM)
NEET2=2

GC TC 356



(@]

PSINCO

320 IF (PSIF .GT. PSIPK) GO 10 325

321 IF (ESIP .GT. €.0) GO 1C 323

PSIMCO0 KD PSII<=C AND SINGLE BCUNCE

322 IF (NEC .GT. 1) GO TO 291

390 G1=SQORT ( (PSIP-PSIPK) /(- (NBC*EI+PSIPK)))

G2=SQRT ( (PSIM-PSIPK) /(- (NBC*PI+PSIPK)))
EETA=BETAPK+ (PI~-BETAEK) *G1

EL (1)=SOLN (BETA,PSIP)

EETA=BETAPK+ (PI-BETAEK)*G2

EN {1)=SOLN (BETA,PSIK)

KEET2A=1

GC TC 350

PSIMCO0 IND PSI1F<=0 AND MULTIPLE RCUNCE
391 EL (1) =SCLN (0., PSIN)
EU(1)=SOLN (BL(1),PSIE)
G1=SQRT( (PSIP-PSIPK) /(- (NBC*EI+PSIPK)))
EETA=BETAPK+ (PI-BETAEK) *G1
EL (2)=SOLN (BETA,PSIP)
EU{Z)=SCLN (BL(2),PSIF)

NEETA=2
GO 1C 350
PSIA<0 IND 0<=ESIB<=PSIPK
323 PI (1) =0.
IF (NBEC .LE. 1) GO TC 374
373 EL {1)=SOLN (0., PSIM)
374 G1=SQRT ( (P SIPK-PSIP) s (ESIPK+ (NEC-1) *PI))

EETA=BETAPK* (1.-G1)

EU {1)=SOLN (BETA,PSIP)

EETA=BETAPK* (1.4G1)

E1 (Z)=SOLN (BETA,PSIP)

G2=SQRT ( (PSIM-PSIPK) /(- (NBC*PI+PSIPK)))
EETA=BETAPK+ (PI-BETAEK)*G2

EU {2)=SOLN (BETA,PSIN)

NEETA=Z
€C TIC 350
PSIMCO IND PSIED>ESIPK
325 EL (1) =C.
IF (NEC .LE. 1) GO TC 37¢€
375 F1 (1) =SOLN (0., PSIM)
376 €1=SCRT ( (PSIM-PSIPK) /(- (NBC*PI+PSIPK)))

EETA=BETAPK+ (PI-BETAEK) *G1
EU(1)=SCLN (EETA,PSIN)
KEETA=1
350 REITURN
EIT



C*DrCK BCILER
SULFCUTINE BCILER(Z,PHIR,PSIR,XR,YR,ZR)
C##+% BOILIRK SUEECUTINE FOR A CYLINLCEEK. BOILER COMPUTES
c XR,YE, ANL ZR WHICH AKE USED TO CCMPUTE
c THE PMORMAL 10 THE RECEIVER
C IN TIE MAIX EFERCGRAN.

C

C4**WRITTEN BY: R.M. ANDEESOHN, CLINT CAWSON,

C CATHY NCRKOCD, AND FEAD JCHMSICN
C#**DATE VRITTEK: O0€/01/83

C

C***EXPLAMATICN CF VARIAELES

C Z = PCSITICN CF VECIOR ¢ PRCJZCIED CNTO THE AXIS OF SYMMETRY
C OF THE FEFCEIVER

C XB,YR,2R = CCKPCNENIS OF THE UNIT SURFACE RCRHNAL

C

Il ELERELEEEEEE R T ]

CCMMON /E1CCKB/ EIEALP,PI,PSIP,PSIPK,PSIM,BETAPK,Q,NBC
FI1DIUS=5.938/24./37.53

C=SORT (RADIUS**24Z4%2)

ESIR=ATAKZ (EAD1US, 2)

XE=COS (EEIR)

YF=SIN (EEIE)

7E=0.

FITURN

EM
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1. GENERAL PROGRAM OVERVIEW

Introduction

The Ratio of Solid Angles (ROSA) code was developed as part of
the Crosbyton Solar Power Project (CSPP) for calculation of
optical power concentrations due to reflection from a spherical
segment mirror. It was developed primarily in support of
Department of Energy Contracts DE-AC04-76ET20255 and
DE-AC04-83AL21557. Detailed derivations and a technical
description of the ROSA code are given in Part 1 of this report.
The present volume is intended to provide a program users guide
for the ROSA code.

The Ratio of Solid Angles formulation yields an analytical
formula for the solar concentration ratio at a field point, @, on
a receiver surface. The optical power concentration, C, at a
point Q@ on a receiver is defined as the total normally directed
optical power per unit area received at that point. In the ROSA
code, C is normalized by dividing by the direct normal insolation
incident upon the receiver. The resulting dimensionless quantity

becomes a concentration ratio expressed as "number of suns".

The RO5A method deals directly with a finite sun. The sun‘s size
is expressed in terms of an anqular radius, o. Direct sunlight
received at a point is viewed as a collection of rays lying
inside a right circular cone with vertex at the receiver point Q

and vertex angle Z2c.

The ROSA formula for the concentration ratio, C, at a receiver

point, 8, due to reflection from a mirror surface is given by



4 5 g 4 9 +
C(q,b) = 3 -B— J J b-df, for b-df > O, (1)

sn
Mn
vhere,

a = the vector locating a field point @ on the receiver

with respect to a convenient coordinate system;

-

b = the unit outward normal to the receiver at B;

n = the number of times a ray has been reflected on the
mirror before striking the receiver at Qj;

fan = 47 sia (c,72), the effective solid angle of the sun
as viewed directly from the field point Q;

on = the effective angular radius of the sun to be used
for light which reflects n times on the mirror
(for a perfect mirror o = 0d)3;

OMn = the apparent solid angle of the sun as viewed in
the mirror from the field point Q@ from light which
has reflected exactly n times;

R = the reflection coefficient of the mirror surface;

0 {R L 13
and,
-
df) = differential solid angle directed toward the apparent

position of the sun as viewed in the mirror;
i.e., the oriented element of surface area on the unit

sphere, with unit outward normal.

The ROSA cdde evaluates this integral.



OVERVIEW OF INPUT PARAMETER REQGUIREMENTS

The optical power concentration ratio at a point on a receiver
surface is dependent upon several geometrical and physical
factors. These include the position of the sun, the size and
orientation of the collector, the shape and alignment of the
receiver and the reflection coefficient of the collector. Thus,
several geometrical and physical input parameters are required

for the RDOSA code. They include:

1. Geometrical parameters of the collector (bowl).

A spherical segment is used as the standard collector in the
computer model. Normalized units are emploYed in the model, so
that the spherical segment is taken to have unit radius. The
height of the spherical segment is determined by specifying the
rim angle, 6z, of the bowl.

Bowl orientation parameters are also required. These parameters
are given in terms of a SOUTH-EAST-VERTICAL (S—-E-V) coaordinate
system. The tilt angle, Y, of the bowl is measured between the
symmetry axis of the bowl and the VERTICAL axis. The azimuth, ¢ ,
of the lowest point on the rim is also measured in the

S—-E-V coordinate system.

2. Sun positional parameters.
The solar elevation, ED, and the solar azimuth, AD, are specified

in the S-E-V coordinate system.

3. Reciever orientation.

Ideally, the axis of symmetry of the receiver should point
directly towards the center of the sun. Misalignment is accounted
for in terms of the zenith angle, a¥, and the azimuthal angle,
a®, between the receiver axis and the vector from the center of
the bowl to the sun.
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4. Receiver coordjinates.
Actual concentration values are computed for points on the

receiver surface. The receiver surface is assumed to be a surface
of revolution. Points on the surface are described in terms of
two input variables, a z-coordinate measured along the axis of
symmetry of the receiver and an azimuthal angle ¢, measured
about the axis of symmetry of the receiver. A user supplied
subroutine, BOILER, is called to compute the radial distance from
the axis of symmetry to the surface of the receiver. (A
discussion of this subroutine is deferred until later). Normally,
the concentration ratio is computed for several values of z and

% in a given computer run

S. Number of reflections.

This is the maximum number, N, of multiple reflection

contributions to be included in the calculations.

6. Effective sun size .

For a perfect mirror, this parameter is simply the angular
radius, d, of the sun cone. For imperfect mirrors, a set of
effective angular radii, o, n=1, 2, ..., N, can be specified to

account for stochastic errors in the mirror surface.

7. Reflection coefficient .
The reflection coefficient, R, of the mirror surface is also an

input variable for the program.
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BOILER SUBROUTINE REQUIREMENTS

A user supplied subroutine, BOILER, is required to describe the
receiver surface as a function of distance along the axis of
symmetry of the receiver. The receiver is assumed to be a surface
of revolution. The subroutine receives a value of the distance,
z, and returns the radial distance, Q, to surface of the receiver
and the components of the unit outward normal to the surface at z
in the receiver coordinate system. A discussion of this
subroutine, including examples for a receiver in the form of the
frustrum of a right circular cone and a right circular
cylindrical receiver are discussed in the section entitled
SUBROUTINE BOILER.

RIM SUBROUTINE REQUIREMENTS

A spherical segment is taken as the standard bowl shape in the
model and is described by specifying the bowl rim angle, 6. A
user supplied routine, RIM, is used to describe more general rim
shapes. The section SUBROUTINE RIM discusses an example in which
the standard bowl is cut by two parallel, vertical planes. The
planes are parallel to the VERTICAL-SOUTH coordinate plane and

are symmetrically located on each side of this plane.
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2. RAMETER DAT

The parameter data cards describe the solar collector (bowl)
constants, receiver alignment constants and sun parameters. The
output of the program gives the solar concentration ratio at
points on the surface of the receiver. These points are
described in terms of an azimuthal angle, ¢, about the axis of
the receiver and a distance, Zp, measured along the axis of the
receiver. Loops have been provided in the program for
calculations at several (Zg,%g) pairs. The loop parameters are
also described in the following data input summary. These cards

are read only once during a concentration calculation run.
A. Title card (40A2)

ITITLE - Describes receiver type.
B. Boiler—sun alignment paramaters (2F10.95)

DPSID — aY¥, angle between the receiver axis and and the
line through the center of the bowl and the
center of the solar disk (degrees).

DPHID -~ a%, azimuthal angle measured about the bowl

center , solar disk center line (degrees).

C. Sun parameters (3F10.5)

SIGMAD — Effective sun size (degrees).

ED — Elevation angle of the sun (degrees).

AD — Azimuthal angle of the sun (degrees).
.3
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D. Bowl parameters (3F10.35)
THTARD — Rim angle of the bowl (degrees)
GAMMAD - Tilt angle of the bowl. The angle between

the symmetry axis of the bowl and vertical

(degrees).

PHIDD — Angle between the lowest point on the bowl
and south (degrees).

E. Reflection coefficient (F10.9)
REFC — Reflection coefficient of the mirror.
F. Omega integration parameter (IS)
ISTEPS — Number of intervals to be used in the
Simpson‘s rule integration of the
concentration ratio integral.

6. Loop parameters for outer calculation loop (3F10.5)

STPHIR — Azimuth of starting point for PHIR angular

sweep around the receiver surface (degrees).

SPPHIR -~ Azimuth of stopping point for PHIR angular

sweep around the receiver surface (degrees).

DPHIRD —~ step size for PHIR sweep (degrees).
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H. Parameter for subdivision of receiver axial parameter (I5)

NZRR — Number of subdivisions of the receiver axis
to be used in the concentration calculations.
The concentration profile varies rapidly with
Zn over some regions and slower over other
regions and this parameter permits the user
to vary the distance between calculated points

accordingly.

1. Loop parameters for the inner calculation loop (135,2F5.3)

(This data card must occur NZRR times.)

NZz — Number of Zp values in the Z loop.
IZSTART — Starting value of Zp.
ZSTOP — Final value of Zn.

8
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3. PROGRAM OUTPUT

This chapter provides a brief description of the ROSA program

output. A portion of the output is also shown, together with a

concentration profile graph.

Physical and Geometrical Parameters

The ROSA program always echo prints the following input data:
A. Boiler title card;

B. Boiler — Sun alignment parameters;

€. Sun Parameters;

D. Solar bawl parameters;

E. Reflection coefficient;

Sample output is shown in table 3.1.

Optical Concentration Qutput

Concentration ratio values are obtained at points along the
receiver surface. Points on the surface are located by
prescribing pairs of values (Zp,%R) s where Zp is measured

along the axis of symmetry of the receiver and g is an

azimuthal angle measured about the receiver axis. The ¢n
variable is'the slower varying variable in the calculations. The

loop structure for the ouput is as follows:

BEGIN PHIR loop
Print PHIR (degrees)
Begin ZR loop
Print ZR
FOR J =1 to S
PRINT contribution from Jth bounce
NEXT J
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Print the total concentration (sum of S5 bounces)
END IR loop
END PHIR 1loop

(Note: we are only considering contributions from light that has
reflected five times or less before striking the receiver.)
Sample output corresponding the the imput in Table 3.1 is shown

in Table 3.2.

It should be noted that normalized units are used in the ROGA
code. The radius of the bowl is taken to be unity, so that
neceSsarily O € ZR < 1. The output values are also normalized.
The input solar intensity, I, at the aperture plane is an overall
scale factar and all concentration results are given in "number

of suns”", i.e. I = 1.

10
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Table 3.1 Echo Print of Input parameters

BOILER SHAPE: CYLINDER

BOILER-SUN ALIGNMENT PARAMETERS:

DELTA PSI (DPSID)
DELTA PHI (DPHID)

SUN PARAMETERS:

SUN CONE HALF ANGLE (SIGMAD)

SUN POSITION:
ELEVATION (ED)
AZIMUTH (AD)

DISH PARAMETERS:
DISH HALF-ANGLE (THTARD)
DISH ALIGNMENT:
GAMMAD
PHID

REFLECTION CONSTANT
ISTEPS

START PHIR (STPHIR)
STOP PHIR (SPPHIR)
DELTA PHIR (DPHIRD’

NUMBER OF Z-INTERVALS (NZRR)
NUMBER OF INCREMENTS (NZZ)

ZSTART
ISTOP

=

]

° 9
© ©O

0.50000

30.00000
0.0
60.00000

15.00000
0.0

0.88000
S50

100
0.500
0.995

11
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Table 3.2 Sample Concentration ratio output

PHIR = 0.0
1= 0.5000
BOUNCE NUMBER=1 - CONCENTRATION= 0.0
BOUNCE NUMBER=2 CONCENTRATION= 0.0
BOUNCE NUMBER=3 CONCENTRATION= 0.0
BOUNCE NUMBER=4 CONCENTRATION= 0.0
BOUNCE NUMBER=S5 CONCENTRATION= 0.0
TOTAL CONCENTRATION= 0.0
= 0.5050

BOUNCE NUMBER=1 CONCENTRATION= 0.0
BOUNCE NUMBER=2 CONCENTRATION= 0.0
BOUNCE NUMBER=3 CONCENTRATION= 0.0
BOUNCE NUMBER=4 CONCENTRATION= 0.0
BOUNCE NUMBER=3 CONCENTRATION= 0.0
TOTAL CONCENTRATION= 0.0

1= 0.5100

BOUNCE NUMBER=1 CONCENTRATION= 0.0

BOUNCE NUMBER=2 CONCENTRATION= 0.0
BOUNCE NUMBER=3 CONCENTRATION= 0.0

BOUNCE NUMBER=4 CONCENTRATION= 0.0
BOUNCE NUMBER=3 CONCENTRATION= 0.0
TOTAL CONCENTRATION= 0.0

1= 0.5150

BOUNCE NUMBER=1 CONCENTRATION= 66.4747
BOUNCE NUMBER=2 CONCENTRATION= 0.0
BOUNCE NUMBER=3 CONCENTRATION= 0.0
BOUNCE NUMBER=4 CONCENTRATION= 0.0
BOUNCE NUMBER=5 CONCENTRATION= 0.0
TOTAL CONCENTRATION= 66.4747

12
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I=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE

TOTAL

1=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

7=
BOUNCE
BOUNCE
BOUNCE
BOUNCE
BOUNCE
TOTAL

0.5200
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRAT ION=
NUMBER=3 CONCENTRAT ION=
NUMBER=4 CONCENTRATION=
NUMBER=5 CONCENTRATION=
CONCENTRATION= 185.9003
0.5250
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRAT 1ION=
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=5 CONCENTRAT ION=
CONCENTRATION= 296.1956
0.5300
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRATION=
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=3 CONCENTRATION=
CONCENTRATION= 381.1919
0.5350
NUMBER=1 CONCENTRATION=
NUMBER=2 CONCENTRATION=
NUMBER=3 CONCENTRATION=
NUMBER=4 CONCENTRATION=
NUMBER=35 CONCENTRATION=
CONCENTRATION= 399.5920
13
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185.9003
0.0
0.0
0.0
0.0

296.1956
0.0
0.0
0.0
0.0

381.1919
0.0
0.0
0.0.
0.0

399.5920
0.0
0.0
0.0
0.0



OPTICAL POWER CONCENTRATION RARTIO

700 ¢

PHIR = 0°
SOLAR ELEVATION = 75°
SIGMA = 0.5°
DPSI = 0.0°

606 - DPHI 0.0°

soo |-

uoe +

300 |-

200 |-

100 |-

%.5 d.c g7 08 0.9
Z(DISTANCE ALONG CENTER OF SYMMETRY OF RECEIVER)
Figure I1II - 1 Optical Power Concentration for A Cylindrical

Receiver
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4. BOILER SUBROUTINE

Introduction

The ROSA code is sufficiently general to permit any convex
surface of revolution for the receiver/boiler surface. However,
this requires that a BOILER subroutine be provided by the user.
The formulas necessary for this routine are derived in Chapter 3,
Part 1 of this report. In this chapter, we provide the
ingredients for building the subroutine and give examples for a

cylinder and a cone.
Subroutine Outline

The routine assumes that the receiver surface is described in the
form

r = f(2), (I1v-—-1)
where Z is measured along the axis of the receiver (with Z £ 0)
and r is the perpendicular distance from the axis of the
receiver. Input for the routine includes the value of Z and an
azimuthal angle, PHIR, measured about the axis of the receiver.
These two values determine a field point on the receiver surface.
The subroutine returns the distance ,8, from the origin of the
reciever coéfainate system to the field point, the zenith angle
of the point, and the components of the unit outward normal to

the surface. The routine then becomes:

SUBROUTINE BOILER (Z,PHIR,Q,PSIR,XR,YR,ZR)
REAL Z,PHIRD,Q,PSIR,XR,YR,ZR

F= formula for surface of revolution :z r=f(2)
FP= formula for F~*(Z)

ZETA = ATAN(FP)

Q=SART (FA%2+Z#%2)

t b
—
U



PSIR=ATAN(F/Z)
XR=COS(PHIR) *COS (ZETA)
YR=SIN(PHIR) *COS(ZETA)
ZR=-SIN(ZETA)

RETURN

END

For a right circular cylinder, f(Z) = rg, a constant and
$°(Z) = 0. Thus, ZETA = 0, and the above formulas can be

simplified.

For the frustrum of a cone, f(Z) = (-tan yR)Z, f°(Z) = - tan Yg,
where ¥Yp is the angular radius of the cone. Thus, ZETA = - Vi

for a cone.

16
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9. RIM SUBROUTINE

This section presents a iisting of an implementation of a RIM
subroutine corresponding to the rim shape described in Chapter 7,
Part 1 of this report.
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C¥DECK RI?

SUEIOUTINKE RIM (OMEGA,TdTAZ,IF1lAG)

C*#++¢ RIM (ALCULATES THTAZ FOR A DISH TEAT HAS EEEN

C
C
C

PARTIALLY CUT~CFF BY TRO PLANES RUNNING PARALLEL
TO T!E C—3 ELANE (SEE D-M~-A COGEDINATE SYSTEWN)

C*¥**JRITTIN BY: CLINT DAWSEON AND CATHY NCEWCOL
C+#+*DATE F‘RITIEN: C2/01,84

C

Cx**EXPLAMTICN CF VARTAELES:

NN no0n

CNEGA, THTIRZ: <SEE MAIN PRCGRAY
RL1-FI3,RMI1-F¥3,FEN1-BN2: ENTRIES CF THE ROTATION MATRIX

EITWEEN T1HE D—-N-A AND X-Y-7Z COCRDINATE SYSTEMS

RIMCY4-RINC6,FINCI0-RINC15z USEL IN CALCULATIONS
OF RL1,RLZ,F1C.
CAPA: THE A-CGCECINATES OF THE ECINTS RBERE

THE PLARE CUTS TBE SPHERE

CAPD: THE D-COCEFLIKATE OF THE LORKEST POINT

WHERE THE FLANE CUTIS THE SEHERE

AMIN: THE MINIMUM CF CAPR(1) ANL CAPA(2)
THTAFF: THE ARCCS CF THE ABSOLUTE VALUE CF ANIN

THE ECUATICN CF TEE PARALLEI ELANES

PHICH CU1 THE DISH
C(MHON /EICCKA/ FMOMEGA,ISTEFS,CMEGAL {2),0MEGAU(2),XYNRNEL,
AIPHA,NZ,ZKRKFAL,PSI0S,PSIO0OC,SIGYAC,
BIMCU4,RI¥CS5,RIMC6,THTARC, THTAW
CCMMON /CUT/ THTAR,GAMMAC,ES,A,PHID,GANMYAS,EC,PHIOC,PHICS
RIAL CMECA,THTAZ
RIAL RIEC10,RIEC11,RIMC12,KINMC13,RINC14,RINC1S
RIAL AO,21,AZ,A3,AMIN,CAPA (2),5KAD?1,KN0,THTAPR, THTAPC,THI2PS
RIAL CAEI,EFBEI,RPHIS,RPEIC,OMECGAT

IILAG=0

RIMC10=GA¥MAC*ES*CCS (A—PHID) + GAMMAS*EC
BIMC11=-CAEBAC*SIN (A-PHID)

RINC12=GAMMAC*XEC*CCS (A-PHID) — GAMMAS*ES
FINC13=ES*SIN(A-FHID)

EINC14=CCS (A-PHIL)

RINC15=EC*SIN (A-PHID)

RI1=PSICC* (EHIOC*RINC10 + PHIOS*RINC11) + PSIOS*RINC12
FP1=PHICS*RINC10 - PHIOC*RIMC11

RX1=PSICS* (EEIOC*RINC10 + PHICS*RINC11) - PSIOC*KIMC12
EI12=FSICC* (EEICC*RIMC13 + EBIOS*RIMC14) + PSIOS*RIMC15
FEP2=PHIOS*RIMC13 ~ PHIOC*RINC14 '
EX2=PSICS* (FEHICC*RINC13 + EHEIOS*RINC14)
FI3=RINCH

E!3=RIMCE

F13=EINCE

PSIOC*EINC15
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A(=-COS (THTAR)
R?0=.5

CPEGAT=T2N (CMEGA)
A1=RN1-FI1$CMEGAT
AI=RN3-RI3#CMEGA1

IE (A1*22¢p3%%2 _EC. 0.0) GC TG 784
ELSE CCPMTINUE

Az=RN2-E12¢CFEGAT
RICI=(AT1#2Z4A3%%2) #4124 2% (1-FMC*%2)
c —ATRSZEpZRRZAEM %2
II (RAC1 .LT. 0.0) GO TO 7€4
ELSE CCMINUE

CZPA(1)=(-A2*A3*RNC + SQRT (RAD1))/ (A1%%24A3%%2)
CIEA(2)=(-AZ*A3*EM0O - SQRT(RAD1))/ (A1%%2423%%2)
AFIN=ANIN1(CAPA (1) ,CAPA(2))
IF (AMAX1{CAPA (1),CAPA(2)) .GE. A0) GO TO 785
WEITE (6,78€)

786  FCRMAT (' SEF BACK EURNER!')

785 I (AMIK .GE. A0) GO TO 784

ELSE CCPPUTE KEX THTAZ

TFTAER=AFCCS {AES (ARIN))
CIPD=- (AKIN*A3+4RMO*A2) /A1
FIHI=ATAN2 (FMO,CAPI)

TETAPC =COS (IHTAPR)
TETAPS =SIN (THTAPR)
FIHIC=CCS (FEEI)
REBIS=SIK (KERI)
TETAZ=BN1*EEEIC*THTAPS + RN2*REHIS*THTIAPS — RN3*THTAPC
I¥ (THTAZ .GT. 1.) GC TO 7S4
THTAZ=}KCCS (THIAZ)
GO 1IC 784

794  IILAG=1

784  RITURN
F¥D
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