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ABSTRACT

The Ratio of Solid Angles (ROSA) computer code was developed as 

part of the Crosbyton Solar Power Project (CSPP) for calculation 

of optical power concentrations due to reflection from a 

spherical segment mirror. It was developed primarily in support 

of Department of Energy Contracts DE-AC04-76ET20255 and 

DE—AC04—83AL21557. This report provides technical information 

about the ROSA code.

The CSPP is concerned with the development of a technology for 

producing electric power from steam generated by reflection of 

the sun's rays from a fixed—mirror solar bowl onto a tracking 

receiver. In this system, the receiver is cantilevered and 

pivots about the center of curvature of the mirror. The ROSA 

code gives optical power concentration ratio profiles at points 

along the receiver surface.

The ROSA code is written for a spherical segment mirror and the 

rim angle of the mirror is an input variable. Orientation of the 

axis of symmetry of the bowl is specified in terms of a 

vertical-east—north coordinate system. Location of the sun 

relative to this coordinate system is also an input variable. 

Shading and rim cutoff effects are automatically included in the 

computation.

The code permits any convex surface of revolution as a receiver. 

Normally a cylinder or a cone would be used. For optimum energy 

capture, the axis of the receiver should lie along the from the 

center of the sun through the center of the bowl. However, 

tracking errors can cause misalignement of the reciever axis with 

this line. The code handles such misalignment in terms of 

misalignment angle input parameters.

i



This report consists of two parts, a technical reference manual 

and a user's guide. The reference manual provides the background 

material and derivations necessary for the implementation of the 

code. Computer listings for ROSA are also included in the 

reference manual.

The user's guide contains an explanation of the input data for 

the program, special user supplied subroutine requirements, a 

discussion of the output data, sample output and graphs of sample 

concentration profiles. Sample BOILER subroutines are given for 

a right circular cone and a right circular cylinder boiler. A 

sample RIM subroutine is given for an alternate rim shape.
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ROSA TECHNICAL DESCRIPTION

Introduction

The Ratio of Solid Angles (ROSA) computer code was developed as 

part of the Crosbyton Solar Power Project (CSPP) for calculation 

of optical power concentrations due to reflection from a 

spherical segment mirror. It was developed primarily in support 

of Department of Energy Contracts DE-AC04—76ET20255 and 

DE—AC04-83AL21557. This report provides technical information 

about the ROSA code.

This report consists of two parts, a technical reference manual 

and a user's guide. The reference manual provides the background 

material and derivations necessary for the implementation of the 

code. Computer listings ROSA for the code are also included in 

the reference manual. The user's guide contains an explanation 

of the input data for the program, requirements for BOILER and 

RIM subroutines, a discussion of the output data and sample 

output. Sample BOILER subroutines are given for a right circular 

cone and a right circular cylinder boiler. A sample RIM 

subroutine is given for an alternate rim shape.

In the CSPP solar bowl concept, incident solar energy is focused 

onto a tracking receiver by the spherical segment mirror. The 

solar focal region of a spherical segment receiver is the 

frustrum of a cone. The vertex of the cone is at the center of 

curvature of the mirror. The axis of the cone lies along the 

line through the center of curvature of the mirror and center of 

the sun. The vertex angle of the cone is equal to the angular 

diameter of the sun. The frustrum is one—half the sphere radius 

in length, extending from the mirror surface half way to the cone 

vertex.
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The tracking receiver is cantilevered and pivots about the center 

o-f curvature of the mirror. It is perfectly aligned when its 

symmetry axis points directly toward the center of the solar 

disk. For a perfect spherical mirror, the optimal receiver shape 

would be the frustrum of a cone, with vertex angle equal to the 

angular diameter of the suh. However, for imperfect mirrors, a 

cylindrical receiver is nearly as effective and is cheaper to 

manufacture. Maximum solar energy is captured at noon and, 

because the mirror is fixed, the power entering the bowl aperture 

decreases according to the cosine of the inclination angle of the 

sun (angle between the sun and the bowl symmetry axis) at other 

times during the day.

In order to fully describe the optical power concentration 

profile along a receiver, it is necessary to consider several 

geometrical and physical factors. The size of the bowl aperture 

determines the maximum amount of incident energy available to the 

system. However, as the inclination angle of the sun increases, 

shading and vignetting effects are seen on the receiver. In 

addition, misalignment of the receiver effects the optical power 

profile. Finally, the shape of the receiver itself must be 

considered. All of the above complications are effectively 

handled in the ROSA computer code.

The Ratio of Solid Angles formulation yields an analytical 

formula for the solar concentration ratio at a field point, Q, on 

a receiver surface. The result is in the form of a sum of 

integrals, where the region of integration for each integral is 

described by a solid angle. Rays strike the receiver after 

reflecting one or more times from a mirror surface, and the 

integration regions can be described as the collection of all 

directions from which reflected rays strike the receiver at Q. 

This formulation is applicable to concentration calculations for 

general reflecting surfaces and general receiver shapes.

2



However, for the solar bowl technology associated with the CSPP, 

it is sufficient to consider a spherical segment reflecting 

surface and a receiver/boiler that is a convex surface of 

revolution. The ROSA code is implemented for such shapes.

The technical reference manual portion of this report consists of 

several chapters. The first chapter gives a derivation of the 

model. The results are due to Reichert and Brock Cl,23 and yield 

an integral expression for the concentration ratio at a receiver 

point due to reflection from an arbitrary reflecting surface. 

Chapter 2 is devoted to deriving the necessary formulas for 

evaluation of this concentration ratio integral for the case 

where the reflecting surface is a segment of a sphere. Multiple 

reflections, rim cutoff and rim shadowing effects are also 

accounted for in these derivations. Several coordinate systems 

are introduced in Chapter 3 in order to account for the 

geometrical relationships between the sun, collector, and 

receiver. Chapter 4 discusses the numerical solution of a family 

of "structure relations" that must be solved in order to evaluate 

the concentration integral. A description of the ROSA code is 

presented in Chapter 5 and a complete listing of the code is 

given in Appendix A. Alternate rim shapes are discussed in 

Chapter 6.

3



1. THE RATIO OF SOL10 ANGLES FORMULftTIDN

Introduction

The original -formulation of the Ratio of Solid Angles Method was 

due to Reichert Cll. A very complete discussion of the model was 

given by Brock in his disertation C21. The material appearing in 

this chapter follows his presentation very closely and is 

included in this report for the sake of completeness.

The Solar Model

When viewed from earth, the sun appears as a disc with some 

distribution of light across its face. The effects of its 

spherical geometry can be lumped into the intensity distribution 

over the apparent flat disc. In describing the light from the 

solar disc, it is useful to take advantage of some of the 

terminology and concepts of the metrologies of photometry and 

radiometry. Terms will be defined as used.

Consider a spherical source viewed from a point □ as illustrated 

in Figure 1-1. The radiant exitance, M (emitted power per unit 

area) of the source will be considered to be uniform,

PT
M = ---------- (1-1)

AT

where Pj is the total power emitted from the source and Aj is 

the total surface area of the source. The radiance vector, £, 

(radiance is power per unit area per steradian) , is

L = M B(ft,es,ys)ns (1-2)

where B(ft,ds,Ys) is the radiant brightness distribution which in
general depends of the position (0S,YS) on the sun and the solid

4



angle ft. The usual radiance that occurs in radiometry is

L = L-eftE (1-3)

where f^E is the unit vector in the direction of the observer.

If the solid angle emission characteristic is uniform everywhere 

on the source (isotropic) then

L B(H) cos a (1-4)

The radiant brightness distribution, B(fl>, is normalized so that

B (ft) cos a dft = 1 (1-5)

If the radiant brightness B(ft) is constant for all ft, then

B (ft) = 1/lf (1-6)

and the source is a Lambertian radiator. The radiance L is then 

proportional to the cosine of the angle, OC, between the direction 

to the observer and the surface normal to the source surface.

This is known as Lambert's Law (cosine law) and the source is 

said to have uniform brightness.

The quantity of interest is actually the power per unit area per 

unit solid angle (irradiance per steradian) that passes through 

an element of area on the earth. This element of area is 

oriented so that its normal lies along the direction to the sun,

. An element of area on the sun dA illuminates an element of 

area dA at the earth which subtends the solid angle

dft = df-
je/2 ’ fts = cos

4'2
(1-7)

when viewed from the sun along direction as illustrated in

5



Figure 1-1. Element of Area dA on Sun Illuminates Element of Area dA on the earth.



Figure 1-1 The power received at dA is

dP0 - L dftyg dA

PT dA
= (----------B(ft)coscc) (------------ cosy)dA

«T 4'2

The area on the sun dA subtends a solid angle

dA -» -*

(1-8)

(1-9)

cos a

when viewed -from the earth. The power passing through 

dA becomes

PT ~ dA
dP_ = (---------B(ft) cosy) (------------cos<X)dA

AT A*2
(1-10)

■4
= l-E*es dftA dA

where

* (L“ns)e^s (I—11)

is the received radiance vector at the earth. The irradiance at 

dA -from solid angle dft^ is

dP„ -* -♦
. (1—12)

The total irradiance -from the entire sun is

Io * J J LE"es dftA
fts

(1-13)

i
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For an isotropic Lambertian source, B(ft) 1/lf and

*o 1 • 2 --- si ntr
*T

(1-14)

The incident radiance I (irradiance per solid angle) can be 

written as

J ------Q— COs Y
ifsin^cr

(1-15)

where

0 £ Y * (r -

The radiance of the source in this case is

L = —-Q-- cos a (1-16)
ifsin^cr

It is interesting to note that when the source is Lambertian 

(follows the cosine law) it produces an incident radiance vector 

(?£ which produces an incident radiance that follows a cosine 

law at the point of incidence. Emission and reception are 

isotropic in the same sense.

Few sources are truly Lambertian and the sun is no exception. At 

optical wavelengths, the sun appears slightly less bright at the 

limbs, an effect called 1imb—darkening. (It is interesting to 

note that at much longer wavelengths, this effect is reversed and 

limb-brightening occurs.) In such a case, the incident 

radiance I becomes

IqB(y) cosy
I -------------------------------------------------------------------------- (1-17)

I (T «w
2ir B(Y) COSY sinY dY

JO



since B(fl) depends only on Y -for limb-darkening e-f-fects. 

However, the limb-darkening effects are slight, so considering 

the sun to be a Lambertian source is a useful model. Since the 

sun is so far away, cr is small (cr s 0.267°) so that

cosy *= 1 - - sin^Y > 1
2

- i ^2 * 1 (1-18)

In this case, the incident radiance can be modeled as

I = --Q- (1-19)

where

f cr r2ir •»*
= Jo Jo sinY dt> dY

= 4it sin2(cr/2) (1-20)

Eq. 1—19 is the constant irradiance for solid angle model for the 

sun.

The solar model for the radiance given by Eq. (1—19) will now be 

used to obtain the general expression for the optical power 

concentration. However, it is only used for convenience and it 

will be shown how it can be replaced by the general model of Eq. 

(1—17). The results displayed in Chapter II are based on the 

model of Eq. (1-19) simply because the 1imb—darkening effects are 

so smal1.
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Generalized Optical Power Concentration

The optical power concentration, C, at a point on a receiver in a 

collector system is defined to be the ratio of the total optical 

power per unit area (irradiance) received at that point to the 

direct irradiance at that point. The direct irradiance is that 

optical power per unit area (normal to the earth-sun line) 

received by the collector aperture. If an area at a receiver

point is illuminated by the area aAa in the aperture plane then 

the total power received at aA^ is

Ioa^A

where IQ is the direct irradiance in the aperture plane. The 

total irradiance at the receiver point is

*o *Aa/aAr i

so that the concentration is

1oAftA/AAR
"^o

The concentration is simply a ratio of areas, but aAr depends not 

only on aA^ and the location of the receiver point, but also on 

the shape of the collector mirror. To carry this method of 

analysis further requires specification of the collector shape, 

but this approach serves to illustrate the definition of 

concentration.

Consider an element dA of receiver area with local ‘’outward** 

surface normal, tf, located at 4 in the neighborhood of a 

mirror surface as indicated in Fig. 1—2. Light from the sun 

reflected to dA through the differential of solid angle dft may 

be considered to come from a patch of area dS in a plane tangent 

to the mirror. The image of the entire sun in the same tangent 

plane subtends the solid angle fts parametrized above . The 

differential of irradiance at dA through dft is, therefore.

A A>

aAc
(1-21)

10





(1-22)-> •+ ■> *+ 
dl » J dft-b - --- dft-b

with the requirement that dft'rf > O -for illumination only on 

the outward side of dA. The differential of optical 

concentration at dA is. the differential irradiance divided by the 

input solar intensity, I0 :

(1-23)

The optical concentrationthen, at dA is

for b*dA > 0 only, (1-24)

where A^ is the apparent solid angle of the entire sun as viewed 

in the mirror. For a concentrating mirror, one finds Am > As-

Light in a differential of solid angle will always consider the 

reflector to be locally flat; i.e., will reflect repeatedly as if 

from the local tangent planes. Thus the expression Eq. 1—24 may 

be used in the presence of multiple reflections in the mirror by 

separating and adding the contributions from light that has 

reflected n times:

(1-25)

The solid angle A|>|n is the apparent size of the sun as viewed in 

the mirror with radiation that has reflected n times. A 

reflection coefficient R has been included in Eq. 1—25 to account 

for reflective losses. The factor R must be kept inside the 

integral if one wishes to include angle of incidence effects. 

Similarly, if the wavelength dependence of the reflectivity is of 

interest, one must add an integral over W(X)d\ to the form shown 

in Eq. 1—25, where W(\) is a spectral density weight.

12



If one wishes to use an effective sun size an that depends upon 

the number of reflections, then fls should be expressed:

ftsn = 41T sin2(an/2) , (1-26)

and included inside the Summation shown in Eq. 1-25. Policies 

for selecting an are discussed in C21.

The next few chapters of this report will be devoted to 

evaluation of the concentration ratio integral given in Eq. 1-25. 

The discussion will be limited to spherical collectors and 

receivers which can be described as surfaces of revolution.

13
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2. OPTICAL POWER CONCENTRATION FOR SPHERICAL SEGMENT MIRRORS

Introduction

The optical power concentration, C, at a point on a receiver is 

de-fined to be the total normally directed optical power per unit 

area received at that point. In the ROSA code, C is normalized by 

dividing by the direct normal insolation incident upon the 

receiver. The resulting dimensionless quantity becomes a 

concentration ratio expressed as "number of suns."

The ROSA method deals directly with a finite sun. The sun's size 

is expressed in terms of an angular radius, cr. Direct sunlight 

received at a point is viewed as a collection of rays lying 

inside a right circular cone with vertex at the receiver point Q 

and vertex angle 2cr.

The ROSA formula for the concentration ratio, C, at a receiver 

point, Q, due to reflection from a mirror surface is given by the 

integral

(II-l)

where.

c| = the vector locating a field point Q on the receiver with 
respect to a convenient coordinate system;

b — the unit outward normal to the receiver at Q;b

n — the number of times a ray has been reflected on the 
mirror before striking the receiver at Q;

14



ftsn = 4lf sin2<o'n/2) , the effective solid angle of the sun as 

viewed directly from the field point Q;

crn = the effective angular radius of the sun to be used for 

light which reflects n times on the mirror (for a 

perfect mirror crn= a);

= the apparent solid angle of the sun as viewed in the 
mirror from the field point Q from light which has 
reflected exactly n times;

R = the reflection coefficient of the mirror surface;
0 £ R £ 1;

and,

dA - differential solid angle directed toward the apparent 

position of the sun as viewed in the mirror; i. e.,the 

oriented element of surface area on the unit sphere, 

with unit outward normal.

In order to apply Eq. II—1, a convenient parameterization of the 

solid angle is required. Thus, the receiver and mirror shapes 

must be specified. As illustrated in Fig. II—1, the mirror to be 

studied is a concave hemispherical segment of radius Rs and rim 

angle dp. The center of curvature of the mirror is at C and the 

axis of symmetry of the spherical segment is along the direction

A. The unit vector A is directed from C away from the mirror.

The rim angle dp is the zenith angle (measured from the —A 

direction) of the circular aperture rim of the mirror. The

aperture radius is R^ = Rs sin dj^, in units of Rs. In the 

discussion to follow, it is convenient to normalize all units by 

dividing by the radius of the spherical segment mirror. Thus, the 

mirror will always be taken to have unit radius of curvature.

15



A

s = 1

R. = sine.

Figure II-l Mirror and Receiver Shape
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The receiver to be studied is assumed to be a convex sur-Face o-f 

revolution. The symmetry axis o-f the receiver lies along the unit

vector zR. The vector q, . locating a -field point Q on the 

receiver surface, has origin at C. The unit outward normal to 

the surface is denoted by v and originates at Q. The receiver

is suspended from C and hangs {Jown into the mirror surface. The 

mirror—receiver geometry is illustrated in Fig. II—2.

A parameterization for the integral given by Eg. II-l is obtained 

by introducing a local x, y, z coordinate system with origin at 

the field point Q. As shown in Fig. 11-2, the z axis lies along 

the line segment CQ and the positive z direction is directed 

downward. The directions of x and y will be specified later. The 

integration is to be carried out over the solid angle Using

spherical coordinates. Eg. II—1 can be parameterized in terms of 

a zenith angle & measured from the positive z axis and an azimuth 

u measured from the positive x axis, so that, 0 £ £ £ 1T and 0£ u 

£ 2TT. Then

dft = v dft = v sin 8 dp du.

Thus, Eg. II-l can be written

•* ■* Rn f f -* -* -» -»C(q,b) = I -B— (b-v) sin 8 dp du, b*v > 0 . (II-2)
n ftsn V

“Mn

The unit vector y designates the direction of a ray which 

reaches Q after n reflections from the mirror. The vector v can

be expressed in terms of its components in the xyz coordinate 

system as

-¥
v = (sin p cos u, sin 8 sin u, cos 8).

17



<43 SUN

Figure II-2 The Solid Angle Parameters B and u
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The unit sur-face normal to the receiver will have components of 

the form

b = (bx, by, b2)

so that

b*v = <bxcos u +bySin u)sin B + b2cos B . (II-3)

Substitution of Eq. II—3 into the integral in Eq. II—2 allows the 

integral to be expressed as an iterated integral. From a 

computational standpoint, it is convenient to carry out the 

integration by first integrating on B» followed by integration on 

o. The concentration formula then becomes

-* -* on -* -*
C(q,b) = I Cn(q,b) ,

^sn

where,

Cn(q,b) = J J f (bxcos<j+bySinu)sin2B+b2cosBsinB>dBdo) . (II—4)

u B(u)

The above integral gives a very simple formula for the 

concentration ratio at a receiver point. The difficult part of 

the integration arises in determining the region of integration, 

i.e. describing the solid angle consisting of all directions from 

which reflected light reaches the field point Q from the mirror. 

The complications for a given order of light (fixed n) arise from

(1) the limitations on B and u necessary to insure that b*v > O;

(2) the finite size of the sun;

(3) aperture cut-off effects: vignetting and shading.

The next several sections of this report will be devoted to 

handling these difficulties.

19



THE CONDITION b‘v >0.

In this section we derive the conditions on o and 0 that insure 

-» -*
b*v > 0. Using Eq. II—3, this condition can be written as

<bxcos <•> +bySin (j)sin 0 + bzcos 0 > 0. (II-5)

There are three cases that must be considered.

Case 1 : bz = 0.

In this case, the tangent plane to the surface at the field point 

Q contains the z axis of the local coordinate system. Eq. II—5 

then can be written in the form

cos((ii - a) >0, (11-6)

where cos 0C = bx and sin a = by, and u € CO, 2TTD.

Case 2 : 0 < |bz I < 1.

It is convenient to set bXy * b^ + b^. Then

bx cos u + by sin u = bXy cos(u — a)

where, OC is defined 

bw ** bvw sin OC. Eq.7 ^ 7

by the conditions that 

II—5 then becomes

bXy cos a, and

or,

where,

bXy cos(w — OOsin 0 + bz cos 0 > 0,

D(o) cos(0 - C) > O,

D2(o) “ bXy2 cos2(u — «) + bz2, u € CO, 2in

(I1-7)
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and, < is defined by the conditions

D(<i>) cos C = b2, D(u) sin € ■ bXy costo - a).

Case 3 s |bz| = +1.

Eq. II-5 becomes bz cos p > 0. If bz = 1, then this condition 

requires that O S p * iT/2, while if bz = -1, then IT/2 i P ^ If. 

we set ^ = 0 when bz = 1 and £ if when bz = —1, then Eq 11—7 

still applies provided we set OC = 0.

r 21
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The Structure Relations

The location o-f the sun is determined by a unit vector, i?g , 

pointing -from C to the geometrical center of the sun. Because 

the sun is very far away, light from a region on the solar disk 

very near the center may be considered to come to the dish 

aperture as a uniform distribution of rays moving in the 

direction, -tig . Other locations on the solar disk may be 

specified by a family of unit vectors tlg/ , pointing from C 

toward the solar disk, as illustrated in Fig. II—3. This family 

of "sun directions" forms a cone with vertex at C with semivertex 

angle, tr, equal to the angular radius of the sun.

The extension of these directions through toward the mirror 

defines a cone called the "sun cone." The sun cone is a family 

of directions locating distant differential sources of solar 

input power. The direction itg is called the axis of the sun 

cone, the x' and y' axes shown in the figure are parallel to x 

and y, respectively, but pass through C as origin instead of Q. 

These axes will be of use later.

For any one of the directions clg' in the sun cone, the angle, B, 

of the light received at Q may be determined as a function of the 

angles y and 6 illustrated in Fig. I1-4. This figure illustrates 
the ray plane for light that can reach Q from sun direction ilg/ ; 

i.e. C, Q, and the differential source on the sun located by 

ilg' are coplanar and the ray lies in the plane determined by 

these three points.

The angle 6 is called the "impact zenith" of a ray that first 

strikes the mirror at a point of impact P and eventually reaches 

the receiver surface at Q. Note that 6 is measured from ilg/ and 

that both the value of and the orientation of the ray plane
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Solar Disk

Sun Cone

Figure II-3 The Sun Cone
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Point of 
Ray Impact

Figure II-4 The Geometrical Dependence of 
B on 4* and e, shown for n = 2
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depend upon the orientation of # in the sun cone.

The angle Y is a zenith angle for —as measured from the z 

axis through Q. The zenith of the sun cone axis, the angle 

between z and <—^g )* is designated Yq. The value of Y in the 

ray plane depends upon the orientation of fig' in the sun cone. 

The parameters Y and 6 are the mechanism for describing the shape 

of the receiver and the shape of the mirror. The values of Y at 

various q determine the shape and location of the receiver 

surface. The corresponding values of 6 are essential to the 

description of the mirror shape and location. The relationship 

between these shape parameters and & is given by the "structure 

relations":

and

p = 2nd - y - (n—1)

sin© = q sin B .

(11—8a)

(II—8b)

The structure relations are easily deduced from Fig. II—4, drawn 

for n = 2. They are obtained by considering the triangle CQPj.

Eq. II-8a is the measure of the angle at the vertex C for this 

triangle and Eq. II-8b follows from an application of the law of 

sines to this triangle. As a convention, if, for any reason, Q 

and the point of ray impact P lie on opposite sides of the axis 

i?g , then the angle Y from q to <—> is assigned a negative 

sign. One may easily verify that 6 and p remain positive and that 

Eqs. II—8 are still valid in this situation.

The impact zenith can be eliminated from Eqs. II—8 to produce

8 = 2n Sin-1 (q sinp) - Y - (n-Dfl . (II-9)

This equation plays a central role in determining the limits of 

integration in the integral appearing in Eq. II—4. A detailed 

discussion of the solutions of this equation will be given in a 

later section. Graphs of Y versus P for various values of q will
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also be given. It will be shown that -for given values of n and 

Eq. 11-9 may have more than one solution, 8. With some ray 

tracing, one finds that, typically, there-are two values of 0 

(and, hence, two values of 8) that contribute light at Q when Y > 

0, but only one value of 0 (and, hence, one value of 8) that 

contributes when Y < 0. A subscript i = 1, 2 will be attached to 

8 to distinguish the various solutions of Eq. II—9 for given 

values of Y and n. Thus, if there are two solutions, 8} will 

denote the smaller and 82 will denote the larger.
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Effects of Finite Sun Size.

It should be clear from the discussion above that contributions 

at Q come from a range of values of d and y produced by moving 

the vector i?g/ throughout the sun cone. Due to this effect, for 

each u> in Eq. II—4, one may find a range of values of y locating 

sun axes, i^g' , lying in the plane of constant u. Such a range 

of values for y, when used in Eq. 11-9 determines ranges of 

values for the &. The set union of these ranges of values of the 

0^ is, for the specified u, the range of 0 integration required 

in Eq. II-4 to account for finite sun size. As will be described 

later, this range of integration may be reduced because of "rim 

effects."

The range of values of y mentioned above is, of course, 

non-existent if the constant u plane does not intersect the sun 

cone. If it does intersect, then the algebraically smallest and 

largest values of permitted y are designated y_ and y+, 

respectively. Fig. II—5 illustrates a case in which Q lies 

inside the sun cone. As may be seen in Fig. II-2, by definition, 

the points C and Q lie on the plane of constant o (because o is 

measured about the CQ line, i.e., about the z axis). Thus, the 

dashed lines marked by y_ and y+ are coplanar with CQ and a ray 

plane is defined whose contributions will be received at Q as it 

is located (as in Fig. II—4) by a range of values of y from y_ to 

T+-

y+ are always measured from the z axis. The positive direction is 

taken to be opposite that of ^ . Thus, in Fig. II—5, y_ < 0 and 

y+ > 0. This will always be the case when the field point Q lies 

inside the sun cone. If the field point Q lies outside the sun 

cone and the u plane intersects the sun cone, y+ and Y_ will have 

the same. sign. In particular, if 3 is directed away from the sun 

cone, then both will be positive, while if 3 is directed towards 

the sun cone, both will be negative.
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constant u plane

Figure II-5 The Intersection of a Constant u Plane 
with the Sun Cone
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The formulas for Y+ and Y_ can be obtained from a detailed 

consideration of the geometry for the u plane-sun cone 

intersection. The analysis is carried out using spherical 

trigonometry. The appropriate spherical triangle is shown in Fig. 

II—6. The law of cosines for spherical triangles gives

cos (rn = cos Yq cos Yh sin Y0 sin Y^ cos u. (11-10)

Setting

D = cos^ Yq-*- sin^Yo cos^u

Eq. 11-10 can be rewritten as

cos<Y+ + Tl> = ± Ceos o-pl/D

where,

■q * Tan —*-Ctan Yq cos w>, q € C- J.

These results are to be used for all cases with u for which 

<b-v) > 0.

For any u, once the range Y_<w) to Y^-Cw) has been determined, 

then the corresponding ranges of Pj may be determined from Eq. 

II—9, as mentioned earlier. The nature of the ranges in is 

illustrated in Fig. II—7. For the positive values illustrated 

for Y_ and Y+, two ranges are indicated:

range for p^: Cp10<Y_>, P^tY+l] 

range for P^: Cp20<'*'+)»
(11-11)

Two additional quantities are illustrated in the figure: ^nd 

Pmax* These are constraints on the range of P integration imposed 

by mirror rim effects to be discussed later.
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Figure II-6 Spherical Triangle Geometry
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General shape of the 
curves for fixed q and n

S max

Figure 11-7 The Ranges in 6^ Determined by Range in \j>
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I-f one defines the quantities

PLi- <Pa,in<u>»PiO(Y±>>

Pui8* Min ^^max <u) » ®i 1 J

where the top subscript on y is intended for i « 1 and the lower 

is intended when i =2, then Eq. II—4 can be brought to the forms

Ca(q,
-»
b) ifcJC (bj-cosco + b„sinu)(&- -sin2P) x 2 b2sin^pl

®Ui
du

(11-13)

where the i**1 term is to be kept only if Pyj > pj_^,

The problem has now been reduced to the numerical work required 

to evaluate the quantities p|_£ and Pjj£ and, subsequently, to 

evaluate the integral over u. Further progress requires 

determination of the range of u integration.

If the field point Q lies inside the sun cone; i.e., tr i Yq, then 

there is no restriction on u in addition to that shown in Eq.

11-13. On the other hand, if <r < Yq, the field point Q lies 

outside the sun cone and the u plane may not intersect the sun 

cone. Since contributions to Cn<c$, £?) in Eq. 11—13 only arise 

if the u plane intersects the sun cone, it is possible to limit 

the required range of u even more. If Q is outside the sun cone, 

intersection with the sun cone is possible if and only if 

I) ^ cos o^, where D is defined above. Solving this equation for u 

yields

2______cos2<rn~ cos2y0

si.n2Yo
(11-14)

This relation determines regions in u for which the intersection 

occurs. The set intersection of the set union of these regions 

with the region defined in Eq. 11—12 is the required region of 

intergration.
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Rim finale Effects.

The effect of the dish rim will now be considered. It determines 

the availability of the mirror support for contributions at the 

field point Q. This support may be missing due to either cut-off 

or shading. The constant u plane, containing the incoming ray v? , 

cuts the rim of the dish as shown in Fig. 11-8. The dish rim 

angle in the <j plane can best be expressed as the front-side rim 

angle, 0z+» and the back—side rim angle, 0Z—. Both 02+ and $z — 

are zeniths from the z axis, measured positive in the direction 

of . When 6Z+ £ 0, the dish is not seen in the ^ direction

and, thus, there is no contribution.

When 0 < &z+ + Y Tf/2 there is a rim cut-off; part of the mirror 

support is not present. As shown in Fig. II—9, the effective rim 

angle, describes the "illuminated" region of the dish.

The angle Y shown in Fig. II—9 is measured negative in the 

direction of ^ , so 6Z+ + Y is less than $z+ . This is the edge 

of the region from which light of order n reflects for the last 

time and leaves the mirror to strike Q.‘ From the geometry in the 

figure, it is clear that the effective rim angle for rim cut-off 

is

+ +
= 0Z - Cn-1) (ir-2az-2Y) . (11-15)

For a finite sun, the incoming rays arrive in a band between 

Y_ £ Y £ Y+- There is a portion of the dish that will be 

partially cut-off as illustrated in Fig. II—9. This partially 

cut-off region is small enough that Y can be approximated as 

(Y+ + Y_>/2 and Eq. 11—15 becomes

+ +
az^eff = az - (n-i> <ir-2az - y+ - y_>- (ii-i6>

When 1f/2 < 0Z + Y £ IT, a portion of the mirror is shaded. This 

effect is called rim shadowing. As shown in Fig. 11-10, az,e^^
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constant o plane

Figure 11-8 The Intersection of a Constant u> Plane with 
the Rim of the Dish
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n = 3

z feff

partially cut-off region

illuminated region for incoming rays of order 3 from 
the ^|> direction

Figure II-9 The Effective Rim Angle for the Front Rim Cut-off 
Effect
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n = 2

shaded region 
of dishz eff

partially shaded 
region

illuminated region for rays of order 2 from the 
direction

Figure 11-10 The Effective Rim Angle for the Front Rim 
Shadowing Effect
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describes the Ni1luminated" region. Again, there is a portion of 

the dish that will be partially shaded as illustrated in Fig.

II —10. With the same approximation, the effective rim angle for 

rim shadowing is

= ez + n(ir-2©z - y+ - y_> . (ii-i7>

The front-side rim effect comes from either the cut-off or the 

shadowing. Always, the smaller of the values determined by Eqs. 

11—16 and 17 must be used. The overall front-side effective rim 

angle is

= Min C ©z “ <n-l)K, ©z + K 3 (11-18)

where K = IT - 2©2 - Y+ ~ Y_ -

The back-side rim angle effect is simpler. If —Tf £ 6Z~ £ 0, the 

back-side rim angle does not affect the contribution, because 

light from this region cannot reach Q. If 0 £ ©2— £ TT/2, the 

receiver field point Q is outside the dish and some of the 

reflected rays will be lost. If $2— £ —Tf , a portion of the dish 

will be shaded, as shown in Fig. 11-11. The overall result for 

the back—side becomes

©2jeff ■ MaxC 0, &z ,-e2 - IT + Y+ - Y_3 . (11-19)

The front-side and back—side rim angle effects place restrictions

on the values of 8. If $z+teff^ ez_,eff » there is no

limits

of 8 must satisfy

sin (IT - emax)
sin<Pmax ~ *z,eff>

q
(11-20)

and

sin (ft
sinOT - Bmin> =

min ~ dz,eff)
(11-21)
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z

Aperture

shaded portion 
of the mirror

may be considered to be 
either a backside rein cut­
off effect or a shadowing 
effect

Figure 11-11 The Effective Rein Angle for the Back-side Rein 
Effects

38



Solving Eqs. 11—20 and 21 for p, one obtains:

Pmax <«> Tan
-1 sin Q.z ,ef f

cos ez,eff " «1
(11-22)

and

Pmin<u) " Tan
-1 sin d.z,ef-f

cos *z,eff " «>
(11-23)

These are the quantities required in Eq. 11-12 to determine the 

limits of the 8 integral, 8 and 8 ui * These complete the

constraints on the 8 and o in Eq. 11—13 and the power 

concentration is obtained by evaluating the integral.
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3. THE SUN-RECEIVER-COLLECTOR GEOMETRY

Introduction

The previous sections developed -formulas -for -finding the limits 

of integration for the ROSA integral given by Eq. II—4. The 

integration is accomplished by introducing a local xyz coordinate 

system at the field point Q and using spherical coordinates in 

this system. The limits of integration are then found by 

intersecting planes u *= constant with the sun cone which 

corresponds to light of order n (light which has reflected n 

times before striking the field point).

The location of the sun cone relative to the point Q depends upon 

several factors. These include the position of the sun, the size 

and orientation of the collector, and the shape and position of 

the receiver. It is therefore necessary to define additional 

coordinate systems in order to describe the geometrical 

relationship between these factors.

The next, few sections will be used to define appropriate 

coordinate systems for describing the sun—collector—receiver 

geometry. The location of a field point, Q, on the receiver can 

be described in terms of these coordinate systems. In this way, 

the concentration calculations can be associated with specified 

locations on a receiver surface.
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The Earth-fixed Coordinate System

This coordinate system is a South-East-Vertical coordinate 

system. The axes are called Sv Ev and V, respectively. The origin 

of this coordinate system is taken to be at C, the center of 

curvature of the spherical segment mirror.

The Bowl Symmetry Coordinate System

This collector fixed coordinate system has origin at C, and the 

axes are called Df liy and A. The standard collector is taken to 

be a segment of a sphere, and the A axis is the symmetry axis of 

the collector, pointing away from the bowl (see Fig. II—2). D is 

oriented such that the lowest point (with respect to the 

vertical) on the rim of the mirror lies in the VD plane and has 

positive D component. If A coincides with the V axis, then D is 

taken to lie along S. The M axis is chosen so that the DMA system 

forms a right hand coordinate system.

The paramaters y (the tilt angle) and Ofj (the dip azimuth) serve 

to define this system with respect to the SEV coordinate system 

as shown in Fig. Ill—1. The M axis lies in the SE plane. The 

transition matrix from the SEV system to the DMA system is given 

by :

tP^DMA

cos y cos 

- sin *d 

sin y cos $d

cos y sin 4d 

cos $0

sin y sin ^

sin y '

0

cos

CP^SEV

y.
(III-l)

The DMA and SEV coordinate systems are identical when y = O and 

$d s 0 (The above matrix reduces to the identity.)

This coordinate system will also be used in describing alternate 

rim shapes. The standard bowl of unit radius is defined as the 

segment of the unit sphere lying below the plane A *= — sin 

where Op is the rim angle of the bowl.
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The Sun Tracking Coordinate System

The sun tracking coordinate system also has its origin at C. Its 

axes are denoted by Ft 6y and es. The positive es axis points to 

the center of the sun. The F axis lies in the plane determined by 

V and es. The positive F axis is chosen so that the projection of 

the positive V axis onto the F axis is negative (if the V and es 

axis coincide, then F and S are taken to be coincident). G lies 

in the SE plane. Fig III—2 shows the relationship between these 

systems in terms of the solar elevation Es and the solar azimuth 

As. The alternate azimuth If — As is also used on

occasion. The transition matrix between the two systems is given 

by:

cP3FGeB" - si" A,

sin Es cos As sin. Es

s cos As

cos Es sin As

sin As cos Es'

0 tP^SEV
(II1—2)

cos Es cos As sin Es j
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V

Figure III-l The Relationship Between the SEV and DMA 
Coordinate Systems

Figure III-2 The Relationship Between the SEV and FGes 
Coordinate Systems
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Receiver Location and Orientation

In order to locate a field point Q on the surface of the receiver 

and determine the limits and Bmax » it is necessary to

discuss the alignment of the receiver. An XpVpZp coordinate 

system is fixed in the receiver, and locations on the surface of 

the receiver are determined by Zp and an azimuth $py measured 

about the Zp axis, positive from Xp toward yp. The azimuth ~ 0 

locates the Xp axis and, for a perfectly aligned receiver, xp 

is chosen to coincide with the F axis of the FGes coordinate 

system and the Zp axis coincides with the es axis direction. For 

a perfectly aligned receiver, the receiver surface generator at 

<fcp = 0 is the one closest to the —V direction, the negative 

vertical, so that $p = 0 denotes the bottom (or lowest) side of 

the receiver. This is only true for perfectly aligned receivers.

Receiver misalignment is described by the rotation angles and 

at. The rotation is described by a rotation through an angle a$ 

about the es axis, followed by a rotation through an angle at 

about the new yp axis. The relationship between the FGes and 

XpypZp coordinate systems is shown in Fig. Ill—3. The transition 

matrix between the two systems is given by:

Cp:ixRyRzR

cosaY cosa$ 

— sinA$ 

sinAY cosa$

cosaY sinA<t>

COSA$

sinAY sina#

sinAY 

0

cosaY.

(II1-3) 
CP^FGe^

The coordinates of a point Q on the receiver can be found in the 

sun tracking coordinate system by application of the above 

transition matrices. In order to relate these coordinates to the 

local xyz coordinate system, it is convenient to introduce two 

additional parameters $0 and Y0- The angle is the azimuth of 

if (the vector.locating Q from C) measured positive from F 

toward 6. The angle Y0 is the angle between if and the negative 

es axis. The relationship between the xyz and F6es coordinate
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Figure III-3 The Relationship Between the FGeg and 
xRyRzR coordinate systems

Figure III-4 The Relationship Between the FGe and X-Y-Z
coordinate systems s
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coordinate systems is shown in Fig. II1-4 

between the two systems is given by

The transition matrix

cosy0 cos$0 cosy0 sin40 siny0 '
(Ill

sin^o - cos40 0 CP3FGes

. sinY0 cos$q siny0 sin^0 ~ c°sY0.

-4)
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Location o-f Field Point In the Sun Tracking System .

It is useful to obtain expressions for y0 and in terms of the 

azimuth, <*p, of the field point Q and the misalignment parameters 

ay and a$. It is simple to write down the components of in 

the FGes system and in the xyz system:

C5:,FGes = qtsin Y0 cos ♦q, sin Y0 sin 4>0, - cos Y0) ,

Cq:,xRyR2R = q(sin Yp sin 4pv sin Yp sin ^p. — cos Yp)

(LI 1-5)

The coordinate transformation between these systems, given by Eq.

Ill—3, may be applied to obtain a second representation of 

in the FGes coordinate system and the two may then be compared. 

One obtains:

Yq = Cos-1 fcosYp cos aY + sin Yp cos sin aY>

and (II1—6)

sin Y0 sin $0 =

sinYp cos<J>p cosaY sinA^ + sinYp sin4>p cosa^ — cosYp sinAY sinA$,

sin Y0 cos ♦q =
sinYp cos^p cosaY cosa^ - sinYp sin$p sinA^ — cosYp sinAY cosa^

If sin Y0 = 0 in the above formula, then *a is assigned the value

0. Otherwise, $a and Ya are uniquely determined by Eqs. Ill—6.
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Local Coordinates of the Unit Surface Normal

The components of the unit surface normal, B, in the xyz 

coordinate system are obtained by manipulations similar to those 

of the previous section. Writing = ( Bj, 82* B3) in the XpVpZp 

coordinate system, and using the rotation matrices given by Eq.

Ill—3 and III—4, mb find that: 

bx 38 Bj Ceos Y0 cos aY cos (*q 

* B2 cos aY sin <♦„ — a4)

+ B3 Ceos Y0 sin aY cos (*a

by = Bj cos aY sin (♦(, — a4> — 

+ B3 sin aY sin (♦q—a4),

- a4) - sin Y0 sin aY3

- Af) + sin Yq cos AY3*

B2 cos (^ — A^>

(111—7)

b2 = Bj Csin Y0 cos aY cos <4q — a4) + cos Y0 sin aY 3 

+ B2 sin ay sin <40 — a4)

+ B3 Csin Yq sin AY cos (♦q — a4) — cos Y0. cos ay3 .

In order to obtain expressions for the components of E? in the 

XRyRzR coordinate system, we use the assumption that the receiver 

surface is described as a surface of revolution, with the Zp axis 

being the axis of symmetry of the receiver. The surface is then 

described by an expression of the form

r = f(zR>, zR £ O,

where r denotes the perpendicular distance from the zR axis to 

the receiver surface. A straightforward calculation then gives 

the formula 

-*
bCxRyRzRl = <cos 4r cos £, sin 4R cos$, —sin {) , (III—8)

where.
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tan £ S 0 (-ir/2,lT/2Dt*= i
/ (Zr)

and $r denotes the azimuthal angle o-f the field point in the 

receiver coordinate system.
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A. SOLUTION OF THE STRUCTURE RELATIONS

Introduction

The structure relations arise in determining the 0—limits on the 

solar concentration integrals. The structure relations were 

derived in Chapter II and are given by Eq. II-Ba and II—8b and in 

combined -form by Eq. 11-9. They are applied to the integral 

given by Eq.II—13.

The structure relation has the form

Y = 2nsin'"1 (qsinp) - B - (n—1) if, (IV-1)

where 8 € tO,Tnf O < q £ 1, and n is a positive integer. Fig.

IV—1 through IV—3 illustrate the relationship between y, 0* and q 

for n = 1, 2f and 4. The curves show y plotted against 0 for 

various values of q.

In the application of the structure relation IV—1 v q, n, and two 

values of y, y + t are given, where —if < Y_ < Y+ < if. The problem 

is to find 0-intervals on CO,if] such that the inequality

Y_ < Y<8> < y+ (IV—2)

is satisfied. A case where two 0—intervals exist is illustrated 

in Fig. IV—4. The number of solution intervals depends upon the 

values of Y_ and Y+. It should be clear from Fig- IV—4 

that the possibility exists for no solution to Eq. IV—2, one 

solution, or two solutions. The remainder of this chapter is 

devoted to describing a method for finding these limits 

numerically.
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General shape of the \ji-B 
curves for fixed q and n

Figure IV-4 The Ranges in B- Determined by Range in iji



Properties of the Y vs B curve

In this section we show analytically that the graphs shown in 

Figs. IV-1 through IV-3 are representative o-f the Y vs P curves 

given by Eq. IV-1. Differentiation of Eq. IV-1 with respect to p 

yields

dy
dp

2nqcosy

^l-q^in2?
1 (IV-3)

We note that at p — 0, dy/dp = 2nq — 1, and hence is positive 

provided q > l/2n, while dy/dP < 0 for p > IT/2. Thus, for 

q > l/2n, y must attain a maximum on the interval C0,ir/21. 

Moreover, dy/dp vanishes only once on the interval [0,1172] and 

hence Y<P) has exactly one maximum and no minimum on this 

interval. The value of p where this maximum occurs will be 

denoted by P^^k and is given by the formula

^eak = sin-1
4n2q2 - 1 

(4n2—1)q2

1/2
(IV—4)

where q must satisfy l/2n £ q £ 1. The corresponding maximum 

value of y is denoted by Ypeak and is obtained by substituting

ppeak into Et»‘ IV-1*
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The Solution Strategy

In this section we briefly describe the logic involved in solving 

the inequality given by Eq. IV-2. We assume that y_ and are 

given and that Ypea|c has been calculated from Eq. IV—4.

Reference to Fig. IV-4 will be helpful in understanding the 

various cases. The case when n — 1 differs slightly from the 

case n > lv and will be treated separately (compare Fig. IV—1 and 

Fig. IV-2).

1. Solutions for n = 1.

a. If Y_ '•'peak* "then no solution interval exists.

b. If 0 £ Y_ < Ypeak ^ T+* then a solution interval of

of the form CS|_t@y3 exists, where and By are the 

two solutions to the transcendental equation

2sin_1 (qsinp) — 8 = Y_ . (IV-5)

c. If Y__ £ O < Ypeak £ Y+, then the solution interval has 

the form C0,8ylf where By is the positive solution to 

Eq. IV-5.

d. If 0 £ Y_ < Y+ < Ypeak* 'then two solution intervals exist

of the form EB|_^,By^3f CBj fly?3» where Bli and By! are

the smaller and larger of the solutions to

2sin-1 (qsinB) — B = Y_ (IV-6)

and B| and By2 are the smaller and larger of the 

solutions to

2sin—1(qsinB) — B = Y+ . (IV—7)

e. If Y_ < O < Y+ < '•'peak* ^wo solution intevals exist of

the form CO,Byj3 and Bji?]. By2 is obtained as the

positive solution to Eq. IV—A, while Byj and Bj 7 are the 

smaller and larger solutions to Eq. IV—7.
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■f. I-f Y_ < ^ < O, then a single solution interval exists of 

the form &\_ satisfies

2sin“*Oqsinp) - B = Y+ (IV-8)

and By satisfies

2sin-1(qsinB) - B = Y_ - (IV-9)

2. Solutions for n > 1.

a. If Y_ ^ '•'peak* then no solution interval exists.

b. If Y_ < 'fpea|< ^ Y+f then a solution interval of the 

form-CBuPy^ exists, where B|_ and By are the smaller 

and larger solutions to

2nsin~* (qsinB) — B — (n-l)TT = Y_- (IV-10)

c. If Y_ < Y+ < Ypeak, then two solution intervals exist of 

the form EB|_i,Bui3 and HB| ^>tBn*?3- B|_i and By2 are the 

smaller and larger of the two solutions to the equation

2nsin—1 (qsinB) — B — (n-Dtf = Y_ (IV-11)

while By2 and PlI are smaller and larger of the two

solutions to

2nsin—1 (qsinB) - B — (n-l)lf = Y+ - (IV—12)
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Numerical solutions of the structure equations

Finding solutions to the structure equation involves solving the 

transcendental equation

2nsin-* (qsinB) - B “ (n-l)lT = Y » (IV—13)

where qt nf and Y are given and B is to be determined. This 

equation is readily solved by Newton's method provided a 

su-f-ficiently accurate guess is made -for the starting value o-f the 

iteration procedure.

Because o-f the nature of the curve described by Eq. IV—13, a 

parabolic approximation is used. The approximating parabola is 

defined to have its vertex at ^Ppeak’^peak^ and contain the point 

(0,(n-l)Tf). The resulting equation for the parabola is

Y — Ypg^ — TfB-Bpg^)^, (IV—14)

where

T = [(n-rnr + Ypeak]/^eak (IV-15)

The starting values for the iteration for finding the smaller and 

larger solutions to Eq- IV—14 are then given by

P - Ppeak ± " Ypeak)/T31/2 (IV-16)

where the + sign is used for the larger solution and the — sign 

is used for the smaller solution.
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5. ROSA PROGRAM STRUCTURE

Introduction

The ROSA code gives the normalized optical power concentration
%

ratio at user speci-Fied points on a receiver sur-face. The 

calculated values are normalized to units o-f number of suns. The 

code also uses normalized dimensions, with the radius of the 

spherical segment bowl taken to be unity. Physical and 

geometrical parameters for the program include the solar 

inclination and size, position of the receiver, receiver 

alignment, bowl rim angle, and the reflection coefficient the 

bowl. The receiver shape must be a surface of revolution and 

must be described in a subroutine named BOILER. Alternate rim 

shapes can be introduced by providing a RIM subroutine.

Receiver points are specified in terms of a distance, Zp, 

measured along the axis of symmetry of the receiver and an 

azimuthal angle, $p, measured about this axis. If the 

concentration ratio is to be computed for several (zp,$p) pairs 

the compution is most efficient if the outer loop is on the Op 

variable. The program requires that loop parmeters be input for 

each of these variables.

The program flow for the ROSA code is given in the next section, 

together with a short table describing the ROSA subroutines. A 

complete computer listing is given in Appendix A.

59



ROSA Calculation Procedure

The calculation procedure which is used by ROSA can be divided 
into three segments, an initialization segment, a computational 
segment and an output segment. The procedure is listed below:

BEGIN INITIALIZATION SEGMENT

1. Read Input Variables

A. Boiler title: ITITLE

B. Boiler—sun alignment parameters: DPSID,DPHID

C. Sun parameters:
Sun cone hal-F—angle: SIGMAD
Sun position parameters: elevation (ED), azimuth (AD)

D. Dish parameters:
Dish half-angle: THTARD
Dish alignment parameters: 6AMMAD,PHID

E. Reflection coefficient: REFC

F. ISTEPS—number of omega integration steps

G. STPHIR,SPPHIR,DPHIRD—initial and final values of the 
receiver azimuthal angle PHIR, and the amount to be 
incremented each time in the PHIR—loop.

H. NZRR—number of reciever axis subintervals to be used. The 
data in H. below will occur NZRR times.

I. NZZ, ZSTART,ZSTOP—the number of times Z will be incremented 
in the Q loop, and the initial and final values of Z (this 
line is read NZRR times).

2. Convert angles from degrees to radians

3. Calculate rim angle constants

4. Calculation rotation matrices

5. Initialization of PHIRD—azimuthal angle, and JSTOP—number
of times PHIR loop is to be repeated.

6. Echo print all input values.
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BEGIN COMPUTATIONAL SEGMENT

Begin PHIR loop 

Begin NZRR loop

Initialize Z loop parameters (Z=ZSTART), NQSTOP (number of 
times Z loop is repeated)T and DZ (the Z increment)

Begin Z loop

CALL BOILER—BOILER subroutine gets Z and PHIR and 
returns Q, PSIR, and XR,YR,and ZR—the components of the 
outward normal to the receiver in the XR—YR-ZR coordinate 
system.

Calculate PSIO and PHIO—the rotation angles between the 
F—G-ES and the X—Y—Z coordinate systems.

Calculate the components of the unit outward normal to 
the receiver surface in the X-Y—Z coordinate system

Find OMEGAU and OMEGAL—the omega limits and NOMEGA—the 
number of omega—intervals.

Begin OMEGA integration loop

CALL INTGRL — This subroutine computes the 
concentration integral for the given omega—interval.

END omega interval loop 

END Z loop 

END NZRR loop 

BEGIN OUTPUT SEGMENT 

Begin Z loop 

Print Z

Begin NBOUNCE loop

Print contribution from n—th bounce

Add n—th bounce contribution the total concentration 

END NBOUNCE loop 

Print total concentration 

END Z loop 

END PHIRD loop 

END PROGRAM
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Table 5.1s ROSA SUBROUTINE SUMMARY

Subroutine Purnose

BLIMIT Per-forms the logic for computing the beta integral

integration ranges.

BOILER A user supplied routine for computing distance and

angle to a point on a receiver surface and the

outward normal to the surface at the point.

INTGRL Computes the solar concentration integral at a

point on the receiver surface.

RIM An optional user supplied routine for handling

special rim shapes.

SOLN Computes a solution to the structure relation

equation by Newton's method.
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6. OPTICAL CDNCENTRftTION PROFILES

Introduction

In previous chapters, we have stressed the dependence o-f the 

concentration ratio profiles on several geometrical and physical 

parameters. This chapter gives a few representitive profiles, in 

order to illustrate the nature of the results which are obtained 

from the ROSA code.

Only a few parameters will be varied in these profiles.

Basically, only the solar inclination, position of the receiver, 

and receiver alignment are varied. The mirror rim angle is set 

at dp = 60 degrees. The receiver shape is taken to be a right 

circular cylinder, of radius 0.0066 (-this is -the normalized 

radius of the cylindrical receiver being used in the CSPP.) The 

cylinder extends from Z = 0.5 to Z = 1.0. The reflectivity of 

the mirror is set at 0.88, independent of angle of incidence or 

wave length. Only power reflected by the mirror is counted, 

direct radiation on the receiver is ignored. The effective sun 

size is taken to be a = 0.5 degrees for all reflected rays.

Location of the center of the sun is accompished by using the 

inclination angle, I, of the sun relative to the axis of symmetry 

of the mirror. The optical concentration profiles depend upon I, 

which, in turn, depends upon time, latitude, and the tilt of the 

solar bowl with respect to the vertical. The tilt of the mirror 

axis with respect to the vertical is desribed by the tilt 

angle, y, and tilt azimuth ^(j. The location of the sun is 

described in terms of an azimuth. A, and elevation, E. These 

parameters are related to I by the formula

cos I ** Ceos Y sin E + sin 'y cos E cos (A — ^>1. (VI-1)

i
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Results -for 1=0

The case o-f a perfectly aligned receiver when the solar 

inclination is zero is called the "symnetric case" because the 

concentration profile is symmetircal about the axis of the 

receiver. The concentration profile for- the symmetric case is 

shown as a function of Z in Fig. VI—1. The large peak near the 

top of the receiver is the paraxial peak resulting from rays at 

small impact angle, 0, tending to focus midway between the mirror 

surface and its center of curvature. The peak concentration is a 

sensitive function of a and tends to infinity as cr tends to zero 

C51.

There are no multiple bounce contributions in the symmetric case 

because they are cut off by the 60 degree rim angle. Multiple 

reflections result from impact angles larger than 60 degrees and 

the required mirror support is not present for 1 = 0.

The legend printed in Fig. VI—1 and in subsquent figures may be 

translated as follows:

PHIR E the azimuth for locations on the receiver;

SOLAR ELEVATION = 90 degrees - I

SIGMA E cr, effective sun size

DPSI = aY« the zenith misalignment angle

DPMI = the azimuthal misalignment angle

Concentration profiles are also presented for the case where the 

receiver is the frustrum of a cone. The angular radius, yR, of 

the cone (half the vertex angle) is set equal to the angular 

radius of the sun, i.e. , Yp == 0.5.
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Concentration profiles on a misaligned receiver for 1=0 and Ay 

= 0.5 degrees are shown in Figs. VI-2, 3, and 4. These figures 

show the profiles along the three slices:

= 0, 90, and 180 degrees, respectively.

Results for I = 15

Figs. VI-5 through VI—7 illustrate the features of the 

concentration profile for nonzero inclination angles. Due to 

loss of symmetry with respect to the aperture rim, there is no 

azimuthal dependence in the concentration profiles.

For I = 15 degrees the mirror support is 75 degrees at = 0, 

and peaks due to second and third bounce rays are observed. At 

<J>R = 180 degrees, rim cutoff effects occur.
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7. ALTERNATE RIM SHAPES

Introduction

In all previous derivations, we have assummed that the solar 

collector was a segment of a sphere. In this chapter, an 

analysis is carried out to extend the ROSA code to more general 

rim shapes. In this analysis, the rim is assumed to be expressed 

in the form

e - f <$>, (Vii-n

where 6 is the zenith angle of a point on the rim and 4> is the 

azmuthal angle of the point on the rim. The angles are expressed 

in the bowl centered D-M—A coordinate system, where A is 

perpendicular to the aperture plane of the bowl and is directed 

upward. The rim angle © is measured from the negative A axis and 

❖ is measured from the D axis. As an example, 6 = ©p = 60 

degrees at the Crosbyton site.

Integration for the calculation of the solar concentration is 

carried out in the local x—y—z coordinate system and rim angles 

must be calculated in this coordinate system in order to account 

for rim cutoff and shading. The D-M-A and x—y-z systems are 

related by a formula of the form

Cp3xyz = A Cp3DMA (VI1-2)

where CplQ^ represents a point in the D-M-A coordinate system, 

tp3Vvr-y represents the same point in the x—y—z coordinate system 

and A is a known rotation matrix (A is readily computed using the 

transition matrices of Chapter III.) A depends upon the tilt 

angle of the bowl, the position of the sun, the shape, and 

orientation of the receiver, the location of a field point on the 

receiver, and values of the variables of integration in the ROSA 

code.
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Eq. VI1-2 can be expressed in component -form to yield a system of 

three equations,

sin ©2 cos u = (l_i cos $+l_2 sin $) sin &- L3C0S 6

sin 6Z sin u = (M| cos ♦ +M2sin ♦ >sin II3COS 6 (VI1-3)

cos 0Z — (Njcos ♦ + N2sin ♦) sin © - N3COS 6 

In these equations, © is the unknown rim angle in the local 

x-y-z coordinate system, $ is an unknown azimuthal angle in the 

D-M—A coordinate system and © = f<$> according to Eq. VII—1. u 

is an integration variable and , Mj, i=l,2,3) are direction

cosines relating the D—M—A and x—y—z coordinate systems.
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Snecial Riff Shape

The above -formulas will now be applied to the case where the 

standard bowl shape is sliced by planes M = ±Mq (in the D-M-A 

coordinate system). Eq. VII-1 then takes the -form

0 - eQ tor -$0 £ £ 4>0 and TT-^q * 0 £ 1f+*0t

e - Arccos Cl - M0 esc <t>3 t elsewhere, (VI1-4)

where, sin = M0/sin 6q.

The equation u = constant defines a plane in the x—y—z coordinate 

system with equation y = x tan u. In the D—M—A coordinate 

system, this same plane has equation

MiD + M2M + M3A = (LjD + L2M + L3A) tan w. (VI1-5)

This plane will intersect the plane M = Mq along the line

(Mj—Ljtan w)D + (M2~L2tan u)M0 + (M3-L3tan u)A = 0. (VII-A)

If this line intersects the unit sphere (using normalized units), 

the additional condition

D2 + M2 + A2 = 1, (VII—7)

must be satisfied. Simultaneous solution of Eqs. VII—6 and 7 

gives

— (a2a3MQ) ± C(aj2+a32)aj2(1—Mq2) — (aia22Q)21*^2 

A ---------------------------------------------------------------------------------------------------------- . (VII-tS)
<al +

where,
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ai “ Mi “ i-itan u, i=l,2,3.

D is then calculated -from Eq. VI1-6.

There are three cases to consider.

1. It the quantity under the radical sign in Eq. VI1-8 is 

negative, then the line of intersection of the u-plane and the 

plane tl - Mq does not intersect the unit sphere and the rim angle

in the D-M-A system is given by $ = Oq.

It A is real in Eq. VII—8, then let d, = Arccos A.

It 0 i. then « = *0

it e < eo» then

£It
In each ot the above cases, 0Z can be computed trom 6

using tormulas that were developed previously tor a dish with a

constant rim angle.

The tormulas tor the plane M = — Mq can be obtained trom the 

above tormulas by simply replacing Mq by —M.

Sample concentration protiles are given in Figs. VII—1 through 

VI1-3.
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HC5A CALCULATION CODE

C **t**»+4****+t***+**+*+****»**++**#4i*******************+******
C LOOA I £ A PPCGLAM WHICH CALCULATES T HR CONCENTRATION 
C AT A POINT ON A RECEIVER.
C
C WRITTEN BY
C
C DR. RCNALt M. ANDERSON, DEFT. OF MATHEMATICS
C
C AND
C
C DF. JOHN E. REICHERT, DEPT. CF ELECTRICAL ENGINEERING
C
C GPAIUATE ASSISTANTS: C. NORWOOD, H. JOHNSTON, C. DAWSON
C
C TEXAS TECH UNIVERSITY
C LUBBOCK, TEXAS
C JULY 24, 1984
CC ******* ***************************************************** **

PE AI SUM (ICO,5),QQ (ICO)
REA I ZSTAFT(1C) ,ZSTOP(10)
COM EON /E1CCKA/ MOMEGA,ISTEPS,CMEGAL { 2) ,CMEGAU(2) ,XYNEML ,

* AL P LA, NZ , Z NP M AL , P SIO S , PSIOC , SI G M AC ,
*RI!3C4,P,IMC5,RIMC6, T HTAfiC , THT A W
COMMON /BLOCKB/ PIHALF,PI,PSIP,PSIPK,PSIK,BETAPK,Q,NEC 
COMMON /CUT/ THTAR,GAMMAC,ES,A,PKID,GAMMAS,EC,PHIOC,PHIOS 
REAI OMEGAI,CMEGAU,XYNRML,ZNRMAL,PSIC,SIGMAC,

* HIK C4,RIMC5,RIMC 6,THTARC,THTAW,PI,PSIP,PSIPK,PSIM,BETAPK,C 
INTIGER MOMEGA,ISTEPS,NZ,NBC
INTEGER NZZ (10),ITITLE (20)

C
C COOEDIN/TE SYSTEMS USED:
C 
C 
C 
C 
C
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c

1. TEE S-E-V COORDINATE SYSTEM
THIS IS THE SOUTH-EAST-VERTICAL COORDINATE SYSTEM 
WHICH IS ALIGNED WITH THE EARTH.

2- TEE F-G-IS COORDINATE SYSTEM
THIS CCOE DINATE SYSTEM IS ALIGNED SO THAT 
THE ES AXIS POINTS TO THE CENTER CF THE SUN.

3. TEE X-Y-2 CCORDINATE SYSTEM
THIS CCORDINATE SYSTEM IS ALIGNED SO THAT 
THE Z AXIS PASSES THROUGH THE CENTER OF 
THE HEMISPHERE AND THE POINT Q ON THE 
RECEIVER AND THE SON LIES IN THE XZ PLANE.

4. TEE XR-YR-ZR COORDINATE SYSTEM
THIS COORDINATE SYSTEM IS ALIGNED SO THAT 
THE ZR AXIS IS THE RECEIVER AXIS CE SYMMETRY.

5. TEE D-M-A COORDINATE SYSTEM
THIS CCORDINATE SYSTEM IS ALIGNED SC THAT 
THE A AXIS IS THE AXIS OF SYMMETRY OE THE DISH.
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c
COiniNtlE

C ItJPUl V/riAELES
c
C A. K01I1I0K ANGLE VARIAELE3
C PHIFD, PSIRD = THE ROTATION ANGLES, IN DEGREES, BETWEEN THE
C X-Y-Z AND XP-YR-ZR COORDINATE SYSTEMS
C DPS ID, DPHID = THE RCTATION ANGLES, IN DEGREES, BETWEEN THE 
C F-G-ES AND XR-YR-ZR COORDINATE SYSTEMS
C ED, AD = TEE ELEVA1ICN ANGLE AND AZIMUTHAL ANGLE,
C BETWEEN THE S-E-V AND E-G-ES COORDINATE SYSTEMS
C GAMKAD, PHIDD = THE ROTATION ANGIES, IN DEGREES,
C BETWEEN THE S-E-V AND D-M-A
C CCORDINATE SYSTEMS
C THT/ED = AITITUDINAL ANGLE, IN DEGREES, EETWEEN 
C TEE D-K-A AND X-Y-Z CCORDINATE SYSTEMS
C
C B. CTHIR INPUT VARIABLES
C DPH 3RD = TEE AMOUNT PHIR IS INCREMENTED IN
C TIE PHI5-LOCP (READ IK)
C ISTIPS = TEE NUMBER OF INTERVALS USED IN
C TEE CMEGA—I NTEGRATION
C (CSING SIMPSON'S RULE)
C NZZ = NUMEIR OF TIMES Z IS I KOBE RENTED (EE AD IN)
C REFC = THE PEELECTION COEFFICIENT
C SIGEAD = TEE SUN CONE HALF-ANGIE
C SP P FIR = TEE FINAL VALUE OF PHIR (READ IN)
C STPEIR = TEE STARTING VALUE CF PHIR (READ IN)
C ZSTART = TEE INITIAL VALUE OF 2 (READ IN)
C ZST CP = THE FINAI VAIUE OF Z (READ IN)
C

CONTINUE
C
C INTERN Al VARIABLES
C ALPHA = THE ANGLE BETWEEN THE X-AXIS AND THE 
C NORKAI 1C THE RECEIVER
C COEFF1, COEFF2 = USED TC CALCULATE PHIO 
C CONST = A CONSTANT USED IN THE CONCENTRATION FORMULA 
C DPSI, IPHI = EPSID, AND DPHID IN RADIANS 
C DPSIC, DPHIC = THE COSINES OF DPSI AND DPHI 
C DPSIS, DPHIS = TEE SINES OF DPSI AND DPBI 
C DZ = TEE AMOUNT Z IS INCREMENTED EACH TIME THE 
C Q-IOCP IS CCKPIETED
C £2 DEPENDS ON ZSTART, ZSTOF, AND NZZ

CONTINUE
C E, A = ED AND AD IN RADIANS 
C EC = TEE CCSINE CF E 
C ES = TEE SINE OF E
C GAMMA, PHID = GAMMAD AND PHIDD IN RADIANS 
C GAMMAC, PHIDC * THE COSINES OF GAMMA AND PHID
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c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

G A" *iA S # PHILS = THE SINES OF GASMA AND 
OMEGAL = THE LO K Eli HOUND ON OMEGA USED 
OHEGAU = THE LDPER HOUND ON OMEGA USED 
PODPC = COS(F EIC-DP HI)
PODPS = SIN (PhIC-DPlil)
PSIO, IF.IO = THE ROTATION ANGLES EETWEEN THE 

CCC F DINATE SYSTEM AND THE X-Y-Z 
= THE COSINES OF PSIC AND PHIO 
= THE SINES OF PSIC ANE PHIO

PHID
IN INTEGRATION 
IN INTEGRATION

SDN
COORDINATE SYSTEM

PSICC, PHIOC 
PSICS, PHICS 

CONTINUE 
PSIFD, PHIR C = TEE ROTATION ANGLES, IN DEGREES, BETWEEN THE 

XP-YR-ZR AND THE X-Y-Z COORDINATE SYSTEMS 
PSIRD ANE PHIRD IN RADIANS 
= THE COSINES OF PSIF AND PHIR 
= THE SINES OF PSIR ANE PHIR 

Q = THI DISTANCE FROM THE CENTER TO THE PCI NT 
KEIFE THE RAY STRIKES THE RECEIVER 

RIMCI (1=1,7) = USED TO COMPUTE THTAZ 
SIGMA = SIGMAE IN RADIANS

AND

PSIB, IHIR = 
PSI.PC , PH IRC 
PSIFS, PHIRS

SIGMAC , 
THT AR = 
THT ARC ,
X NRMAI =

THE SINE CF SIGMA

THE SINE CF THTAR 
OUTWARD NORMAL

OUTWARD NORMAL

TO THE RECEIVER

SIGMAS = THE COSINE 
THTAEI IN RADIANS 
THTAF. £ = THE COSINE AND 
THE X—C CMPCN ENT OF THE 
TO TEE RECEIVER AT Q 

YKRKAL = THE Y-CCKPCNENT CF THE 
TC TEE RECEIVER AT Q 

XYNFKI = PEC J ECT ION OF THE NORMAL 
INTO THE XY-PLANE

XS, YE f 2E = COMPONENTS OE THE NORMAL IN TERMS OF 
XR-YR-ZR COORDINATE SYSTEM 

Z = THE DISTANCE FROM THE CENTER TO A POINT ON THE 
CENTRAL AXIS CFTHE RECEIVER 

ZNRMAI = THE Z-COMPONENT OF THE OUTWARD NORMAL TO 
THE RECEIVER AT Q

CONTINUE
C
C OUTPUT \ARIAEIES 
C LI=NOMIER CF ECONCES
C QQ = TEMPORARY VARIABLE USED TO PRINT THE VALUE OF Z 
C SOM = CSED TC COMPUTE THE OMEGA INTEGRAL 
C SOMA = USED TC FIND THE TOTAL CONCENT RATION (N=1,5)
C
C
C PROGRAM CONSTANTS 

PI=i*AT AN( 1.)
BAE 3AN=FI/180- 
PIHALF=ATAN2(1-,C.)

C
DO 1U KM=1,5
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n o
C( 16 Hf = 1,100 

SUM (Nli ,KN) =0- 
16 CCNTINUZ 
14 CONTINUE

INPUT',/,/)

INPUT V/PIAELEE 
WRI TE (6,206)

208 FOREAT (/,/,/,/,20X,'
RE A C (5, 197) IT1TIE 

197 FOR PAT (20 A4)
WRI TE ( 6, 19 6) ITITLE •
REAI (5,199) EFSIE,EPEID
WF. ITE(6#2C2) DPSIE^PHID
RE A I (5,29S) SIG1AD,EE, AD
RE A I (5,299) THTARD ,GAEMAD,PHID
WRITE (6,203)SIGH AD,EE,AD,THTARE,GAMH A E,PHIDD 
FOE EAT(2F1C-5)199

299
202

FOR EAT (3F 1C- 5) 
FOREAT (•

*

203 FOE EAT (/,'
* »
* «
* *

* »
* •
* »
♦ »
* »
REA I (5,399)

BCILER-SUN ALIGNMENT 
DELTA PSI (DPSIE)
DELTA PHI (DPHID)

SUN PARAMETERS:',/,

PARAMETERS
= * , F1 
= ' , F1

0.5,/,
0.5)

CONESON
SUN POSITION:',/, 

ELEVATION (ED)

HALF ANGLE

DISH PARAMETERS: 
DISH HALF-ANGLE 
DISH ALIGNMENT: 
GAHMAD 
P HI E

R E FC,1ST EPS

» / #
(THTARD)
* ,/,

(SIGMAD) = ' , F 1 0. 5 ,/,

0. 5 ,/, 

0. 5 ,/,

= ' , F1

= * , F1

= ' , F1 
= ' , F1

WRITE(6,20 4)REFC,ISTEPS 
399 FOR EAT (F10.5,15)
204 FOREAT(/,

* • REFLECTION CONSTANT
* » ISTEPS
REAI (5,1) STEHIR,SPPHIR,DPHIRE
WRITE(6,205)STPHIR,SFPHIR,DPHIED 

1 FOREAT(3F5.0)
205 FOR EAT (

START PHIR (STPHXE) 
STOP PHIR (SPPHIR) 
DELTA PHIR (DPHIRE) 

NZRR

= ' , F1
= '^15,

0.5,/, 
0. 5)

C.5,/,
/)

= ' , F5•'f5 

•,F5

* »
* »
1 •
REAI (5, 2)
WRITF(6,206)NZRR 

2 FOREAT (15)
206 FOR FAT (

* • NUMBER OF Z-INTERVAIS (NZRR) =',I5)
DO 2 I=1,NZER
BIAD (5,4) NZZ(I) ,ZSTART (I) ,ZSTCP (I)

-0,/,-0,/,
.0,/)

84-



nn
 

nn
 

no
 

no

4
207

♦
1
*

V FITE (r>,207) 1, NZZ (I) ,ZSTAni (I) ,Z5T()P (I) 
FCPMA'I {I 5,2F5. 3)
F CPUAT (• FOR I = •,15,/,

• NFJMDEB OF IHCFEKEMS (NZZ)
• ZSTAR1
• ZSTCP

3 CONTINUE
WRITF (6,13C8) 

1308 FOF FAT (• 1 »)

* #15,/,
• ,F5.3,/,
* ,F5.3)

CONVEESICH FEC« DEGREES TO RADIANS 
DPSI=DPSIE«R SIIAN 
DPHI=DPHIE*RADIAN 
PHI I=PHIDIA IIA N 
GAFjFA=GA?5EAE*RADIAN 
E=E l*RACIAF 
A=AI*RACIAK 
SIGfA=SIGFAC+EADIAN

CALCULATION OF RIF ANGIE CONSTANTS 
IHI /P=THTAED*RADIAN 
TH1 /RC=CCS (TET AR)
CON £1=12. * FI* SIN {- 5* SIGMA) **2 
CPS 3C=CCS (EPSI)
CPSIS=SIN (IPS I)
EPH IC=CCS (IPBl)
EPH I£=SIN (IF RI)
RI!! C 1 = SIN (E) * SIN (GAMKA) *COS (A-PHID)-CCS ( E) *COS (GAMMA) 
RIMC2=SIN (GAMMA) *SIN (A-PHID)
RIM C3=COS (E) *SIN (GAMMA) *COS (A-PHID) +SIN (E) *COS (GAMMA)

CALCULATION OF TRIG CONSTANTS 
PHI IC=CCS (ERIE)
PHIIS= SIN(FHID)
SI G F AS=SI N (SIGMA)
SIGFAC=CCS (SIGMA)
EC= CCS(E)
ES=£IN (E)
GAM FAC=CGS (GAMMA)
GAM FAS=SIN (GAMMA)

BEGIN ICCP FOE AZIMUTHAL ANGLE (PHIR)
PHIID=STPEIE 
JST CP=1
IF (DPHIRE .NE. 0.) JSTOP=(SPPKIR-STPHIB)/DPHIRD+1-01 
DO 250 J= 1,JSTOP 
FEIR=PHIIE*EADIAN 
R FITE (6,5) PHIRD

5 ICRMAT(* 1 *,* PHIR = *,F12.3)
PFIBC=CCS (FBIR)
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PIIHS = Slf (PHIR)
C
C BEGI NN 3 trf 01 Z LCCP

EC 600 K=1/NZFE 
Z= ZS3 AEI (K)
TF (NZZ (K) .IE. 1) GO TO 50C0 

5001 DZ= (ZSTOF(K) -ZSTART (K) )/ (NZZ (K) -1)
5000 NZSTCF = NZ7 (K)

DO 300C NZ= 1 ,NZ5T0P
CALL ECILER (Z#PHIR,PSIR,JR,YR# ZR)
PSIRC=CCS(PS1R)
PSIR£=£IN(PSIR)

C
C CALCULATION 01 P£IO

PSICC=CISIC*PSIRC + DPSIS*FSIRS*PHIRC 
PSIC =APCCS (P£ICC)
PSIC£=SIN(FSIO)
COEFI1 = BPSIC*PSIRS*?HIRC—D FSIS* FSIBC 
COE FI2=P£IRS*PHIRS 

C
C CALCULATION 01 PHIO

IF (AES (PSTO) .GT. 0.0) GO TO 15 
10 P E 3 C = C .

GC TC 20
15 PH3CC=CPEIC*COEFF1-DPHIS*COEFF2

PE3CS = DPKIS*COEFFUDPRIC*COEFF2 
PH3C=ATAN2 (PRIGS,PHICC)

20 PHICC=CO£(PHIO)
PHIC£=SIN(PHIO)

C
C CALCULATION OF THE RECEIVER CONSTANTS 

PODFC=COS(FHIO-DPHI)
PODFS=SIK (FHIO-DPHI)
ZNRHAL=XR*(P£ICS*DPSIC+PCDPC+PSIOC*DPSIS)

* ♦ YR*PSIOS*PODPS
1 + ZR* (P£ICS*DPSIS*FGDPC—PSICC*DPSIC)

XNEEAL = XP* (PSICC*DPSIC*FCDPC-PSICS*DPSIS)
* ♦ YR*PSIOC*PODPS
1 4 ZR* (P£ICC*DPSIS*PCDPC + PSICS*DPSIC)

YNBKAL=XE*EPSIC*PODPS - YR*PODPC ♦ ZR*DPSIS*PODPS 
XYNRKL=SQRT (1.-Z NR HAL**2)
IF (ABS (XYNRKL) .LT. . 0001 .OR. (AES(XNRHAL) -IT. 

1 .AND. AES(YNRNAL) -LT. .0001)) GO TO 8526
ALPHi=ATAN 2(YNKHAL,XNR MAI)
GC TC 993

8526 ALPHA = C.0
C
C CALCULATION OF ADDITIONAL RIM CONSTANTS

993 RI EC4= ESIOC* (PEIOC*8IMC1-PEIOS*RIMC2) 4PSI0S*RIMC3
RIMC 5= P KIOS*RIEC 14 PHICC* RIEC2

.000 1
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RI f!C6= PSIOS* (PHIOC* RI MC 1-P HIOS^R IMC2) -PIJIOC* R I HC3 
C
C LIMITS /RE GIVIN EY THE CM EGA(I) —
C NOKEGA IS THE MJMEER OF INTERVALS

IF (SIGMA .LT. PSIO) GG TO 40 
45 OKFGAL (1)=ALFHA-PIHAIF

OKIGAU (1) = ALr-HA*PIHALF 
OKFGAL (2)=ALPHA+ PIHALP 
CKIGAO (2)=ALFHA + PIHALF*3.
NCKEGA=2 
GC TC 90

C ELS I DO
4 0 CKIGA1 = AECOS (SQRT((SIGKAC**2-PSIOC**2)/PSICS**2) )

OKFGAD (1)=CMEGA1 
CKFGAL (1)=-OKEGAl 
OKFGAL (2)=EI-0MEGA1 
OKFGAD (2)=PI + 0MEGA1 
NCKEGA=2

END IF

THE W—IFTEGRATIGN AND THE EETA-INTEGRATICN AFE FERFCBMED IN 
SUBROUTINE INTGEI, SIMPSON'S RULE IS USED ON THE W—INTEGRATION 
90 DO ICO KOKEGA= 1,NOMEGA

CALI I NT GEL (SUM)
100 CCNT IN UI

CC (K2) =2 
3000 Z=Z+D2

C END OF INTEGKATICN-EEGIN PRINT CUT 
DC 500 1=1,KZSTOP 

SUMA=0.
WRITE (C, 5C1) CQ (L)
BO 505 11=1,5
SUM(I,L1)=sun(1,11)/CONST*REFC**I1 
SDMA=SUMA ♦ SU M (L, 11)

501 FORMAT ('C Z=» ,F8. 4)
WRIT! (6,502) 11 ,SDM (L, Li)

502 FORKiT (' BOUNCE NUMEER='
* ,11,' CONCENTRATION=•,F14.4)

505 SUM (L , 11) =0-
500 WBJTE(6,503)SUMA
503 FOFMAT(• TOTAL COKCENTRATION=',F14
600 CC MINUE
250 PH 3RD=PHIFD*DPHIRD 

WRITE(6,8343)
8343 FOPMAT(* 1*,/,/,/,• 

ST CP
EKI

NCR KA1 TERMINATICN1)
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C* DECK INOGRL
SU E fCUTIN E IN1GRI (SUK)

C*** IIJTGIL PEPFChKS THE OKEGA AND E IT A INTEGRATIONS 
C AND COMPUTES SUM, WHICH IS RETUFNED TO THE 
C MAIN FROG RAP.
C
C***WPITTIN BY: R.M-ANDERSON, ASSISTED BY CLINT DAWSON 
C CATHY NORWOOD, AND READ JCHKSTON
C DATE WRITTEN: 06/01/80 
C
C***E7FLA 1ATICN Cf VARIABLES:
C BETAL = LOWER LIMIT ON EETA USED IN THE INTEGRATION 
C RETAHI = MINIEUK VALUE CF EETA FOUND WHEN CONSIDERING RIM-CUTCFF 
C AND SHADOWING EFFECTS
C BETAMY = MAXIMUM VALUE CF BETA FOUND WHEN CONSIDERING RIM-CUTCFF 
C AND SPA DCWING EFFECTS
C BETAPK = THE VALUE CF BETA COREESFONDING TO THE 
C MAXIMUM VALUE OF PSI FOR A GIVEN VAIUE OF Q
C BETASM = BETAI ♦ EETAU 
C BETAT = BETAU - PETAL
C BETAU = UPPER LIMIT ON EETA USED IN THE INTEGRATION 
C BL = TFE LOWER BOUND ON EETA WHEN CONSIDERING THE RELATICNSHIE 
C BETWEEN EETA, PSIP, AND PSIM
C BU = TEE UPPER BCUND ON BETA WHEN CONSIDERING THE RELATIONSHIP 
C BETWEEN E ElA # PSIF, AND PSIK
C CONSTW = A CONSTANT USED IN THE OMEGA INTEGEATION 
C DONEGA = (CKEGAU - OMEGA!)/ISTEPS 
C ETA, EETA = USEE TO COMPUTE PSIF AND PSIM 
C NBC, Xf = THE NUMBER CF BOUNCES
C OMEGA = THE AZIMUTHAL ANGIE MEASURED CLOCKWISE FROM THE X-AXIS 
C PSIM = ANGLE BETWEEN THE RECEIVER AND THE 
C IEFT EDGE OF THE SUN CONE IN THE
C ILANI C MEG A=CCNST ANT
C PSIP = ANGLE BIT SEEN THE RECEIVER AND THE 
C FIGHT FEGF CF THE SUN CONE IN THE
C ILANI CMEGASCONSTANT
C PSIPK = MAXIMUM VALUE OF PSI FOE A GIVEN N AND Q 
C QSBETA = Q TIMES THE SINE OF BETAFK
C RKO = USED TC FIND EETA MX TO ASSURE THAT THE DOT PRODUCT IS >= 0 
C SB = DEED TO COMPUTE THE BETA-INTEGRAL 
C SUM 1 = USED TC COMPUTE THE EETA INTEGRAL 
C THTAW * USED TO COMPUTE THTAZP 
C THTAZ = USED TC FIND THTAZP AND TETAZM 
C THTAZE = THETA-EFFECTIVE, USED TC CCMPDTE EETAMX 
C THTAZM = THE ANGIE BETWEEN THE RECEIVER AND THE LEFT RIM 
C THTAZP = THE ANGLE BETWEEN THE RECEIVER AND THE RIGHT RIM 
C
£******««

E IAL SUM (100,5)
C
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n 
n 

n 
on

 
n n

EIAL BL 12) ,EU (2)
1 MEGER KEEIA
CCMON /EICCKA/ MOM EG A , 15 T I PS, CM EG A L (2) , 0 .*1EG A U (2) , X

* AIPHA,NZ,ZNFMAL,PSIOS,PSIOC,SIGHAC,
♦ B ]MC14, BIEC5,BIMC6,1 HTARC, THTAW 

CCMMON /ELCCKB/ PI li ALF , PI , PS 1P ,PSIPK, PSIM , BETA PK ,Q ,
CCMMON /CU1/ THTAR,GAMMAC,ES,A,PHID,GArMAS,EC,PHIOC

C THE W-IITEGRATICN—ISTEPS IS THE NUMBER OF 
C INTEGRATION SIEPS/IN1ERVAI 
C SIMPSON'S RULE IS USED 

UIIT=-1.
E C ME GA= (C ME GAO (MCMEGA) -OM E GA L ( MOMEG A) ) /ISTEPS 
EC 101 1=2,ISTEPS
CMEGA = CM EGAL (MCMEGA) + (I- 1) +DCMEGA 
OM EGAC=CC S(OMEGA)
CONSTR=(3.-UNIT) *ECMEGA 
CMEG1S=SIN(OMEGA)
RHO=AT AN 2 (XYNRKL*CCS (OMEGA-AIPHA) , ZNBMAI)

CALCULATION OF PSIM,PSIP
ETA = AT AN2 (PSIOS + CMEGAC,PSICC)
EETA = ARCCS(SIGMAC/SQET(PSICC**2+ (PSICS + CMEGAC) **2) ) 

ESIF=E1A4EETA 
PSIM=IT A-EET A

CALCULATION OF YliEClllE RIM ANGLE PARAMETERS 
RIMC7=EIMCH*0MEGAC4RIMC5*CMEGAS 
THTA R= AT AN2(-RIMC7,-RIMC6)
1HTAZ = THTARC/SQRT(RIMC6**2 4RIMC7**2)
IF (TETAZ -GT. 1.0) GO TC 101 
THTA2= ARCCS (TBTAZ)

IF YOU RANT AN ALTERNATE RIM SHAPE, REMOVE THE 
"C* IN TEE NEXT LINE

CALI BIE (OMEGA,THTAZ,IFIAG)
IE (1FLAG -EC- 1) GO TC 101 
THIA2P= THTAZ+THTAW 
IF (THTAZP -LE. 0-0) GC TO 101 

THT AZM= -THTAZ+THTAW 
THT AZ M=AM AX 1 (0-,THTAZM)
THTAZP=AMIN1(THTAZP,PI-THTAZP-PSIP-PSIM)
IE (TETAZP -IE. THTAZM) GO TO 101 

CONTINUE

LA1ION OF MINIMUM AND MAXIMUM BETA ANE EFFECTIVE EIM ANGIE 
I , IETAEX ANE THTAZE,RESPECTIVILY 

EET AMI= 0.
IF (THTAZM -IE- 0.0) GC TO 302

EETAMI=A1AN2 (SIN (THTAZM) ,CCS (THTAZM) -Q)
EETAMI = AKAX1(EETABI,-PIHALF+EHO)

ELSE CC

110
****

111

112
C
C CALCU 
C EETA M

301
302

Y NIC Ml,

NBC
,PHICS
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371

CO 370 NFC=1,5 
X N = NEC
THTAZE= (2. *XN- 1. ) *THTAZP+ (XN- 1.) ♦(PSIP ♦ PSI M-PI)
IF ( (THIAZE-TMIAZN) .LE. 0.0) GO TO 300 
EETANX = ATAN2 (SIN (TKTAZE) ,€€5 (THTAZE) -Q)
EETAKX = AMIN1 (BETAMX, Pl,PIHBLF*RHO)

C
C CALCULATION OE FETA-FEAK AND PSI-PEAK

IF (Q -GT. .5) GC TO 305 
380 IF (NEC . GT. 1) GC TO 305
304 EE7APK=0.0

FSIPK=0.0 
GO TO 306

C ELSE CO
305 CSEETA=SQBI ( ( (2. *X N*G) ** 2-1. ) / ( ( 2. *XN) **2- 1.) )

EETAPK = AHSIN (QSBETA/Q)
PSIPK « 2-*XK*ABSIN (QSEETA)-BETAFK-(XN-1.) *PI

C EKDIE
C
C CONSIDEFATION CF THE RELATIONSHIP BETWEEN PSIM,FSIP,PSIPK

306 IF (PSIF .GE. PSIEK) GO TO 300
303 CALL ELIMIT(BL,EU,NBETA)

C
C TEST INTERVALS CF INTEGRATION FCR BlK EFFECTS 

SCH1=0.
DC 360 MEET A=1 , NBETA

EET AL= AM A X1 (EL (MEETA),BETAEI)
BET AU = AMIN 1(BU (MBETA) ,B5TAKX)
EETAT=EET AU-EETAI
EETASH=EEIAU4BE1AL
IF (EFTAT .LI. 0.0) GO TC 360

352 SB= . 5* (EETAT—SIN (BETAT) *COS (BETASM)) *COS (OMEGA-ALPHA)
SUM1 = SUM1*.5*ZNRKAL*SIN (EETAT) *SIN (BETASM) +SB* XYNRML 

360 CONTINUE
370 StM(NZ# NEC)=SUM (NZ,NBC)+SUK1*CCNST R 
300 CONTINUE 
101 UNI T=—UNIT 

RET CBN 
END
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C* DECK SCIN 
C

FUNCTICN SCLh(EETA,PSI)
C*** PUTICTION SCIN COMPUTES BL AND BU USING NEKTON'S METHOD 
C
C***WPITTIN BY: R.M.ANDERSON 
C*** DATE VRITTEN: 06/01/80 
C
C+**EXPLAIATICN CF VARIAELES 
C PI = ATAN2(0.1.)
C BETA = FIRST GUESS FOE SOIN
C PSI = FETA - (2*NBC»SIN (Q*SIN (BETA) ) + (NEC-1) *PI
C Q = VECTOR FFCM CENTER CF DISH TO POINT ON THE RECEIVER 
C NBC = FOUNCE KUMEER 
C
C********

CCMMON /ELCCKB/ PIRALF , PI,PSIP ,?SIPK,PSIM, BETAPK,Q, NBC 
A = EET A 
E = PSI 
X 1 = N EC
E = E+(XN- 1.) *PI 
IC 10 1=1,30 
CIS=Q*SIN(A)
C ILA= (B-2. ’♦XN* ARSIN (QAS) +A) / (1.-2. *Q*XN*COS (A) /

* SCRT (1.-CAS**2))
A = A-EEL A
IF (ABS(EELA) -LE- .00001) GC TO 300

11 II (A -IT. 0.0) GO TO 200
12 IF (A .GT. PI) GC TO 200 
10 CCNTINUE

RFITE (6,100)
100 F CRMAT(* ITERATION DID NOT CONVERGE')

GC TO 30C
200 KIITE (6,201)
201 FCRMAT{' ITERATION DIVERGED')

A=0.
300 SC1N=A 

EITURN 
IFD
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C*DECK LI mi
SfJEFOUlINE PLIKI1 (EL,BU# NUE1 A)

C
FIAL EL (2) ,80(2)
IJ1EGEF FEE1A
CCMflON /ELCCKB/ PIHALF,PI,PSIP,PSIFK,PSIM,BETAPK#Q,NBC 

C**** CON'IDERATICN OF THE RELATICNSHIP BETWEEN PSIH,PSIP,PSIPK 
C IN CP.DER 1C CE1EPHINE 1HE BE1A-LIMITS CF INTEGRATION
C
C***WRITTIN BY: B.K. ANDERSCN, ASSISTED BY CLINT DAWSCN,
C CATHY NORWCCD, AND REAL JOHNSTON
C***DATE FRITTER: 06/C1/83 
C
C***EXPLA FATION CF VARIAELES:
C BL(2) = ARRAY CONTAINING LOWER EETA-LIMITS 
C BU(2) = ARRAY CONTAINING UPPER EE1A-LIMITS 
C NBETA = NUtJEEf CF BETA-REGIONS OVER WHICH TO INTEGRATE 
C NBETA=1 CB 2
C BETA = THE FI ESI GUESS FOR EL (I) CR 3D (I) TO BE 
C USED IN SDBRCUTINE SCIN
C
£****#**# *
C

II (PSIN .LT. C.O) GO TC 320 
C
C PSIM >■= C

310 IF (PSIF .LT. PSIPK) GO TC 315 
C
C PSIM >= C ANE FS1E > = PSIPK

311 G 1 = £CR1 ( (PSIPK-PSIM)/ (FSIPK+ (NBC-1) *PI) )
EETA=E ETAPK* (1.-G1)
BL (1) = SCLN (BETA,PSIM)
BETA = EE1APK* (1. + G1)
EU (1) = SCLN (BET A, PSIM)
N EET A= 1 
GC TC 350 

C
C PSIH>=0 ANE PS IF < ESIFK

315 G1 = SCPT ( (PSIPK-PSIH)/(FSIPK+ (NBC-1)*PI))
G2=SCET ( (PSIFK-PSIP)/(PSIPK+ (NBC-1)*PI))
EET A=EETAPK* (1.-G1)
BL (1) = £CLN (BETA, PSIM)
EETA= EETAFK* ( 1.-G2)
BU (1) = SCLN (BETA,PSIP)
BETA=EET APK* (1- + G2)
EL(2) = SCLN (BETA,PSIP)
EETA = EETAPK* (1. + G1)
BU (2) = SCLN (BETA,PSIM)
NEETA=2 
GC TC 350
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320
321

PSIKO
322 
390

PSIKO
391

PSIKO
323

373
374

PSIKO
325

375
376

350

IP (PSIF .GT. PSIPK) GO TO 325 
IF (FSIP .GT. C.O) GO TO 323

IND PSIF<=C AND SINGLE BOUNCE 
IF (NEC .GT. 1) GO TO 391

G 1 = SQRT ( (PSIP-PSIPK) / (- (NBC* FI ♦PSIPK) ) ) 
G2= SQBT((PSIM-PSIPK) / (- (NBC*PI*PSIPK) ) ) 
EETA=BETAPK+ (PI-BETAFK)*G1 
EL ( 1)=£OIN (BETA,PSIP)
EET A=BETAPK*(PI-BETAFK)*G2 
EU ( 1) = SOLN (BETA,PSIK)
NE FT A= 1 
GC TC 350

IND PSIF<=0 AND MULTIPLE BOUNCE 
EL (1) = SCLN (0.,PSI1)
ED (1) — SOIN (EL ( 1) , PSIF)
G 1 = SQRT ( (PSIP-PSIPK) / (- (NBC*FI + PSIPK) ) ) 
EETA=BETAPK+ (PI-BETAFK)*G1 
EL (2) = SOLN (BETA,PSIP)
EU (2) =SCLN (BL (2) , PSIK)
N E ET fl= 2 
GO TC 350

7ND 0<=FS1F<=PSIPK 
Bl (1) =0.
IF (NEC -LE- 1) GO TO 374 

El 11) =SOLN (0., PSIM)
G 1 = SQRT ( (PSIPK-PSIP) / (ESIPK+ (NEC-1)*PI)) 
EETA=BETAPK* (1.-G1)
EU (1) = SOLN (BETA,PSIP)
EET A=BETAPK* (1-+G1)
El (2) = SOIN (BETA,PSIP)
G2 = SQRT ( (PSIM- PSIPK) / {- (NBC*PI+PSIPK) ) ) 
EETA=BET1PK+(PI-BET AEK)*G2 
EU (2) = S01N (BETA,PSIM)
KEETA=2 
GC TC 350

iND PS 3 I>1SIPK 
EL (1) =C.
IE (NEC .LE. 1) GO TC 376 

El ( 1) =SOIN {0. , PSI M)
G1 = SCfiT ( (PSIM-PSIPK) / ( - (NBC+PI+PSIPK) ) ) 
EET A=BETAP K+ (PI-BETAIK)*G1 
EU (1)=SC1N (EETA,PSIM)
NEETA= 1

BETURN 
E EE
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C* DECK D C ] IE P
SU E F CUT INI ECILER (Z,PHIR#PSIP,XR ,YR,ZR)

C*** D0IL1R SUEtCUlINE FOB A CYLINDER. BOIL EB COMPUTES 
C XP,YE, AND ZR WHICH APE USED TO COMPUTE
C THE EORMAL TO 1HE RECEIVER
C IN TIE MAIN' PPCGRAM.
C
C***WR1TTIN BY: R.P. ANDERSON, CLINT CARSON,
C CATHY NCR KOCD, ANE READ JOHNSTON
C***DATE VRITTEN: 06/01/83 
C
C***EXPLAIATICN CF VARIAELES
C Z = PCEITICN CF VECTOR C PROJECTED ONTO THE AXIS OF SYMMETRY 
C OF THE RECEIVER
C XB,YR,2R = COMPONENTS OF THE UNIT 3DRFACE NORMAL 
C
£***************4***

CCMMON /E1CCKB/ PIEALF,PI,PS IP,PSIPK , PSIM,BETAPK,Q,NBC
FIDIUS=5.93e/2U./37.53
C=SQF.T (RADIDS**2 + Z* + 2)
P fIR= AT A E2 (RADIUS,Z)
X E=COS(PEIR)
Y f=SIN (PEIR)
Z I-0 .
R ITUBN 
E ED
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THE CROSSYTON SOLAR POWER PROJECT

ROSA: A COMPUTER MODEL FOR OPTICAL POWER RATIO CALCULATIONS

PART 2: Program User's Guide
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1- GENERAL PROGRAM OVERVIEW

Introduction

The Ratio of Solid Angles (ROSA) code was developed as part of 

the Crosbyton Solar Power Project (CSPP) for calculation of 

optical power concentrations due to reflection from a spherical 

segment mirror. It was developed primarily in support of 

Department of Energy Contracts DE-AC04—76ET20255 and 

DE—AC04-83AL21557. Detailed derivations and a technical 

description of the ROSA code are given in Part I of this report. 

The present volume is intended to provide a program users guide 

for the ROSA code.

The Ratio of Solid Angles formulation yields an analytical 

formula for the solar concentration ratio at a field point, Q, on 

a receiver surface. The optical power concentration, C, at a 

point Q on a receiver is defined as the total normally directed 

optical power per unit area received at that point. In the ROSA 

code, C is normalized by dividing by the direct normal insolation 

incident upon the receiver. The resulting dimensionless quantity 

becomes a concentration ratio expressed as "number of suns".

The ROSA method deals directly with a finite sun. The sun's size 

is expressed in terms of an angular radius, a. Direct sunlight 

received at a point is viewed as a collection of rays lying 

inside a right circular cone with vertex at the receiver point Q 

and vertex angle 2cr.

The ROSA formula for the concentration ratio, C, at a receiver 

point, Q, due to reflection from a mirror surface is given by

1
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(1)
** *♦ rO

C < q, b) - I
•►c=nsn n bm d Cl j -for b*dft > O,

-»
b

n

^sn

ftMn

R

and,

-»
dA

= the vector locating a -field point Q on the receiver 
with respect to a convenient coordinate system;

= the unit outward normal to the receiver at Q;

= the number of times a ray has been re-flected on the 
mirror before striking the receiver at Q;

= 4Tf si?? (o-n/2) , the effective solid angle of the sun 

as viewed directly from the field point Q;

= the effective angular radius of the sun to be used 

for light which reflects n times on the mirror 

(for a perfect mirror <rn= tr);

= the apparent solid angle of the sun as viewed in 
the mirror from the field point Q from light which

has reflected exactly n times;

= the reflection coefficient of the mirror surface; 
0 £ R £ 1;

= differential solid angle directed toward the apparent 
position of the sun as viewed in the mirror;

i.e. , the oriented element of surface area on the unit 

sphere, with unit outward normal.

3

-»
b

n

^sn

ftMn

R

and,

-»
dA

The ROSA co&e evaluates this integral
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OVERVIEW OF INPUT PARAMETER REQUIREMENTS

The optical power concentration ratio at a point on a receiver 

surface is dependent upon several geometrical and physical 

factors. These include the position of the sunf the size and 

orientation of the collector, the shape and alignment of the 

receiver and the reflection coefficient of the collector. Thus, 

several geometrical and physical input parameters are required 

for the ROSA code. They include:

1. Geometrical parameters of the collector (bowl).

A spherical segment is used as the standard collector in the 

computer model. Normalized units are employed in the model, so 

that the spherical segment is taken to have unit radius. The 

height of the spherical segment is determined by specifying the 

rim angle, dp, of the bowl.

Bowl orientation parameters are also required. These parameters 

are given in terms of a SOUTH—EAST—VERTICAL (S—E—V) coordinate 

system. The tilt angle, y, of the bowl is measured between the 

symmetry axis of the bowl and the VERTICAL axis. The azimuth, $ , 

of the lowest point on the rim is also measured in the 

S-E—V coordinate system.

2. Sun positional parameters.

The solar elevation, ED, and the solar azimuth, AD, are specified 

in the S-E—V coordinate system.

3. Reciever orientation.

Ideally, the axis of symmetry of the receiver should point 

directly towards the center of the sun. Misalignment is accounted 

for in terms of the zenith angle, ay, and the azimuthal angle, 

a#, between the receiver axis and the vector from the center of 

the bowl to the sun.

3
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A. Receiver coordinates.

Actual concentration values are computed -for points on the 

receiver surface. The receiver surface is assumed to be a surface 

of revolution. Points on the surface are described in terms of 

two input variables, a z-coordinate measured along the axis of 

symmetry of the receiver and an azimuthal angle measured

about the axis of symmetry of the receiver. A user supplied 

subroutine, BOILER, is called to compute the radial distance from 

the axis of symmetry to the surface of the receiver. (A 

discussion of this subroutine is deferred until later). Normally, 

the concentration ratio is computed for several values of z and 

in a given computer run

5. Number of reflections.

This is the maximum number, N, of multiple reflection 

contributions to be included in the calculations.

6. Effective sun size .

For a perfect mirror, this parameter is simply the angular 

radius, or, of the sun cone. For imperfect mirrors, a set of 

effective angular radii, trn, n=l, 2, N, can be specified to

account for stochastic errors in the mirror surface.

7. Reflection coefficient .

The reflection coefficient, R, of the mirror surface is also an 

input variable for the program.

4
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BOILER SUBROUTINE REQUIREMENTS

A user supplied subroutine, BOILER, is required to describe the 

receiver surface as a function of distance along the axis of 

symmetry of the receiver. The receiver is assumed to be a surface 

of revolution. The subroutine receives a value of the distance, 

z, and returns the radial distance, Q, to surface of the receiver 

and the components of the unit outward normal to the surface at z 

in the receiver coordinate system. A discussion of this 

subroutine, including examples for a receiver in the form of the 

frustrum of a right circular cone and a right circular 

cylindrical receiver are discussed in the section entitled 

SUBROUTINE BOILER.

RIM SUBROUTINE REQUIREMENTS

A spherical segment is taken as the standard bowl shape in the 

model and is described by specifying the bowl rim angle, 6^. A 

user supplied routine, RIM, is used to describe more general rim 

shapes. The section SUBROUTINE RIM discusses an example in which 

the standard bowl is cut by two parallel, vertical planes. The 

planes are parallel to the VERTICAL—SOUTH coordinate plane and 

are symmetrically located on each side of this plane.

5
102



2. PARAMETER DftTA

The parameter data cards describe the solar collector (bowl) 

constants, receiver alignment constants and sun parameters. The 

output o-f the program gives the solar concentration ratio at 

points on the sur-face o-f the receiver. These points are 

described in terms o-f an azimuthal angle, about the axis of

the receiver and a distance, Zp, measured along the axis of the 

receiver. Loops have been provided in the program for 

calculations at several (Zp,$p) pairs. The loop parameters are 

also described in the following data input summary. These cards 

are read only once during a concentration calculation run.

A. Title card (40A2)

ITITLE — Describes receiver type.

B. Boiler—sun alignment paramaters (2F10.5)

DPSID — aY, angle between the receiver axis and and the

line through the center of the bowl and the 

center of the solar disk (degrees).

DPHID — a<J>, azimuthal angle measured about the bowl

center , solar disk center line (degrees).

C. Sun parameters (3F10.5)

SIGMAD — Effective sun size (degrees).

ED — Elevation angle of the sun (degrees).

AD — Azimuthal angle of the sun (degrees).

6
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D. Bowl parameters (3F10.5)

THTARD — Rim angle of the bowl (degrees)

GAMhAD — Tilt angle of the bowl. The angle between

the symmetry axis of the bowl and vertical

(degrees).

PHIDD - Angle between the lowest point on the bowl 

and south (degrees).

E. Reflection coefficient (F10.5)

REFC — Reflection coefficient of the mirror.

F. Omega integration parameter (15)

ISTEPS — Number of intervals to be used in the

Simpson's rule integration of the

concentration ratio integral.

G. Loop parameters -for outer calculation loop (3F10.5)

STPHIR — Azimuth of starting point for PHIR angular

sweep around the receiver surface (degrees)

SPPHIR — Azimuth of stopping point for PHIR angular

sweep around the receiver surface (degrees)

DPHIRD — step size for PHIR sweep (degrees).

7
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H. Parameter -for subdivision of receiver axial parameter (15)

NZRR — Number of subdivisions of the receiver axis

to be used in the concentration calculations. 

The concentration profile varies rapidly with 

Zp over some regions and slower over other 

regions and this parameter permits the user 

to vary the distance between calculated points 

accordingly.

I. Loop parameters for the inner calculation loop (I5f2F5.3)

(This data card must occur NZRR times.)

NZZ — Number of Zp values in the Z loop.

ZSTART — Starting value of ZR.

ZSTOP — Final value of ZR.

8
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3. PROGRAM OUTPUT

This chapter provides a brief description of the ROSA program 

output. A portion of the output is also shown, together with a 

concentration profile graph.

Physical and Geometrical Parameters

The ROSA program always echo prints the following input data:

A. Boiler title card;

B. Boiler - Sun alignment parameters;

C. Sun Parameters;

D. Solar bowl parameters;

E. Reflection coefficient;

Sample output is shown in table 3.1.

Optical Concentration Output

Concentration ratio values are obtained at points along the 

receiver surface. Points on the surface are located by 

prescribing pairs of values where Zp is measured

along the axis of symmetry of the receiver and 4>p is an 

azimuthal angle measured about the receiver axis. The $p 

variable is the slower varying variable in the calculations. The 

loop structure for the ouput is as follows:

BEGIN PHIR loop

Print PHIR (degrees)

Begin ZR loop 

Print ZR 

FOR J = 1 to 5

PRINT contribution from Jth bounce 

NEXT J

9
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Print the total concentration (sum of 5 bounces)

END ZR loop 

END PHIR loop

(Note: we are only considering contributions from light that has 

reflected five times or less before striking the receiver.) 

Sample output corresponding the the imput in Table 3.1 is shown 

in Table 3.2.

It should be noted that normalized units are used in the ROSA 

code. The radius of the bowl is taken to be unity, so that 

necessarily© £ ZR £ 1. The output values are also normalized. 

The input solar intensity, I, at the aperture plane is an overall 

scale factor and all concentration results are given in "number 

of suns”, i.e. 1=1.

10
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Table 3.1 Echo Print of Input parameters

BOILER SHAPE: CYLINDER

BOILER-SUN ALIGNMENT PARAMETERS:

DELTA PSI (DPSID) «= 0.0

DELTA PHI (DPHID) = 0.0

SUN PARAMETERS:

SUN CONE HALF ANGLE (SIGMAD) = 0.50000

SUN POSITION:

ELEVATION (ED) *= 30.00000

AZIMUTH (AD) = 0.0

DISH PARAMETERS:

DISH HALF-ANGLE (THTARD) = 60.00000

DISH ALIGNMENT:

GAMMAD = 15.00000

PHID = 0.0

REFLECTION CONSTANT = 0.88000

ISTEPS = 50

START PHIR (STPHIR) = O.

STOP PHIR (SPPHIR) = O.

DELTA PHIR (DPHIRD = O.

NUMBER OF Z-INTERVALS (NZRR) = 1

NUMBER OF INCREMENTS (NZZ)

ZSTART

ZSTOP

100

0.500

0.995

11
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Table 3.2 Sample Concentration ratio output

PHIR =0.0

z=

BOUNCE

0.5000

NUMBER=1 CONCENTRATI0N= 0.0

BOUNCE NUMBER=2 CONCENTRATI0N= 0.0

BOUNCE NUMBER=3 CONCENTRATION= 0.0

BOUNCE NUMBER=4 CONCENTRATION= 0.0

BOUNCE NUMBER=5 CONCENTRATI0N= 0.0

TOTAL CONCENTRATI0N= 0.0

Z= 0. 5050

BOUNCE NUMBER=1 CONCENTRATION* 0.0

BOUNCE NUMBER=2 CONCENTRATION* 0.0

BOUNCE NUMBER=3 CONCENTRATION* 0.0

BOUNCE NUMBER=4 CONCENTRATION* 0.0

BOUNCE NUMBER=5 CONCENTRATION* 0.0

TOTAL CONCENTRATION* 0.0

Z= 0.5100

BOUNCE NUMBER*1 CONCENTRATION* 0.0

BOUNCE NUMBER=2 CONCENTRATION* 0.0

BOUNCE NUMBER=3 CONCENTRATION* 0.0

BOUNCE NUMBER*4 CONCENTRATION* 0.0

BOUNCE NUMBER=5 CONCENTRATION* 0.0

TOTAL CONCENTRATION* O.O

Z= 0.5150

BOUNCE NUMBER*1 CONCENTRATION* 66.4747

BOUNCE NUMBER=2 CONCENTRATION* 0.0

BOUNCE NUMBER=3 CONCENTRATION* 0.0

BOUNCE NUMBER=4 CONCENTRATION* 0.0

BOUNCE NUMBER=5 CONCENTRATION* 0.0

TOTAL CONCENTRATION* 66.4747
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z= 0.5200

BOUNCE NUMBER=1 CONCENTRATION* 185.9003

BOUNCE NUMBER=2 CONCENTRATION* 0.0

BOUNCE NUMBER=3 CONCENTRATION* 0.0

BOUNCE NUMBER=4 CONCENTRATION* 0.0

BOUNCE NUMBER=5 CONCENTRATION* 0.0

TOTAL CONCENTRATION= 185.9003

Z= 0.5250

BOUNCE NUMBER=1 CONCENTRATION* 296.1956

BOUNCE NUMBER=2 CONCENTRATION* 0.0

BOUNCE NUMBER=3 CONCENTRATION* 0.0

BOUNCE NUMBER=4 CONCENTRATION* 0.0

BOUNCE NUMBER=5 CONCENTRATION* 0.0

TOTAL CONCENTRATI0N= 296.1956

Z= 0.5300

BOUNCE NUMBER=1 CONCENTRATION* 381.1919

BOUNCE NUMBER=2 CONCENTRATION* 0.0

BOUNCE NUMBER=3 CONCENTRATION* 0.0

BOUNCE NUMBER=4 CONCENTRATION* 0.0

BOUNCE NUMBER=5 CONCENTRATION* 0.0

TOTAL CONCENTRATI0N= 381.1919

Z= 0.5350

BOUNCE NUMBER=1 CONCENTRATION* 399.5920

BOUNCE NUMBER=2 CONCENTRATION* 0.0

BOUNCE NUMBER=3 CONCENTRATION* 0.0

BOUNCE NUMBER=4 CONCENTRATION* 0.0

BOUNCE NUMBER=5 CONCENTRATION* 0.0

TOTAL CONCENTRATION* 399. 5920

13
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4. BOILER SUBROUTINE

Introduction

The ROSA code is sufficiently general to permit any convex 

surface of revolution for the receiver/boiler surface. However, 

this requires that a BOILER subroutine be provided by the user. 

The formulas necessary for this routine are derived in Chapter 3, 

Part 1 of this report. In this chapter, we provide the 

ingredients for building the subroutine and give examples for a 

cylinder and a cone.

Subroutine Outline

The routine assumes that the receiver surface is described in the 

form

r = f(Z), (IV-1)

where Z is measured along the axis of the receiver (with Z £ 0) 

and r is the perpendicular distance from the axis of the 

receiver. Input for the routine includes the value of Z and an 

azimuthal angle, PHIR, measured about the axis of the receiver. 

These two values determine a field point on the receiver surface. 

The subroutine returns the distance ,Q, from the origin of the 

reciever coordinate system to the field point, the zenith angle 

of the point, and the components of the unit outward normal to 

the surface. The routine then becomes:

SUBROUTINE BOILER <Z,PHIR,Q,PSIR,XR,YR,ZR>

REAL Z,PHIRD,Q,PSIR,XR,YR,ZR

F= formula for surface of revolution : r=f(Z)

FP= formula for F'(Z>

ZETA = ATANCFP)

Q=SQRT<F**2+Z**2>

15112



PSIR=ATAN(F/Z)

XR=COS (PHIR) *COS (ZETA) 

YR=SIN (PHIR) *COS (ZETA) 

ZR=-SIN(ZETA)

RETURN

END

For a right circular cylinder, -f(Z) - a constant and

-f * (Z) = 0. Thus, ZETA — 0, and the above -Formulas can be 

simplified.

For the frustrum of a cone, f(Z) = (—tan Yr)Z, f' (Z) = - tan Yp, 

where Yp is the angular radius of the cone. Thus, ZETA = — Yp 

for a cone.
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5. RIM SUBROUTINE

This section presents a listing of an implementation of a RIM 

subroutine corresponding to the rim shape described in Chapter 7, 

Part 1 of this report.

17
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SUBROUTINE FIK

C* DECK Rif
SUEIOU1IHI RIH (OMEGA,1HTAZ,IF1AG)

C»** RIM CALCULATES THTAZ EOR A DISH TFAT HAS EEEN 
C PARTIALLY Cll-CFP BY THO PLANES RUNNING PARALLEL
C TO TfE C-A PLANE (SEE D-M-A COORDINATE SYSTEM)
C
C+**WRITT IN BY: CUNT DAWSON AND CATHY NORWCOE 
C* ** DATE VRITIEK: C2/01/8J<
C
C+**EXPLA fATICN CF VARIAELES:
C OMEGA, THTAZ: SEE MAIN PROGRAM
C RL1-EI3,RB1-EK3,EN1-BN3: ENTRIES CF THE ROTATION MATRIX 
C EITWEEN THE B-K-A AND X-Y-Z COORDINATE SYSTEMS
C RIMC*1-RIMC6,I3MC10-RIMC15: USED IN CALCULATIONS 
C OF PI 1,RL2,ETC.
C CAPA: THE A-CCCEDINATES OF THE PCINTS WHERE 
C THE PLANE CUTS TBE SPHERE
C CAPD: THE B-CCCBBINATE OF THE LOWEST POINT 
C WHERE THE PLANE CUTS THE SPHERE
C AMIN: THE MINIMUM CF CAPA(1) AN L CAPA(2)
C THTAPE: THE ARCCS CF THE ABSOLUTE VALUE CF AMIN
C RM 0: THE EQUAT ION CF TFE PARALLEl PLANES
C fHICH CUT THE DISH

COMMON /EICCKA/ MOMEGA,ISTEPS,CMEGA1 (2),OMEGAU(2),XYNRML,
* ALPHA,NZ,Z NRKAL,PSIOS,PSIOC,SIGMAC,
* B1MC4,RIMC5 ,BIMC6,THTABC, TBTAW

COMMON /OUT/ THTAB,GAMMAC,ES,A,PHID,GAMMAS,EC,PHIOC,PHIOS 
RIAL OMEGA,THTAZ
RIAL RIMC10,RIMC11,RIMC12,BIMC 13,RIMC14,RIMC15
RIAL A0,A1,A2,A3,AMIN,CAPA (2),RADI,RM0 ,THTAPR,THTAPC,THTAPS
RIAL CAEI,EPEI,RPHIS,RPHIC,OMIGAT

IILAG=0
B]MC10=GAMMAC*ES*CCS(A-FHID) + GAM MAS*EC 
BIMC11=-GAKMAC*SIN (A-PHID) 
R3MC12=GAMMAC*EC*CCS(A-PHID) - GAMMAS+ES 
RIMC 13= IS* SIN (A-PH ID)
BIMC14 = CCS (A-PHIL)
RIMC15=EC*SIN(A-PBID)
BI1=PSICC* (FHIOC+RIMC10 + PHIOS+RIKC11) ♦ 
EM=PHICS*EIMC 10 - PHIOC*RIMC11 
RN1=PSICS* (FBI0C*RIHC10 ♦ PHIOS*RIMC11) - 
EI2=FSICC* (EHI0C*RIMC13 + EBIOS*RIMC14) + 
Rf2=PHI0S*RIMC13 - PHIOC*RIMC14 
5F2=PSICS* (FHICC*RIHC13 ♦ PHIOS*RIMC14) - 
RI3=RIMC4 
EI3=RIMC5 
R 13=EIMC€

PSIOS*RIMC12

PSIOC* ElMC12 
PSIOS* BIMC15

PSIOC* ElMC15

C
C
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c
A C=-CO£ (1HTAH)
Rf0=.5
CHGA1 = 'I#K (CMEGA)
A 1=HH1-BI1*CNEGAT 
A •=P.M3-RI3*CMEGA1
II (A1**2*A3**2 .EC- 0.0) GC TG 784 

ELSE CCITIHOE

A;=Rn2-EI2*CKEGA,r
FiC1=(A1**2 4A3 + *2)♦Al**2* (1-EMC**2)

C -Al*42*A2**2*EflC**2
II (RADI .17. 0.0) GO TO 764 

ELSE CCITINUE

CAPA (1) = (-A2*A3*RnC ♦ SQR1 (BAD1))/(A1**2 + A3**2)
C I PA (2) = (-A2*A3*RM0 - SQRT (RADI) )/(A 1**2+A3**2)
A AIN= AH1K 1 (CAPA (1) #CAPA(2))
II (AMAX1 (CAPA (1) , CAPA (2) ) -GE. AO) GO TO 785 
KIITE (6 r7fi€)

736 FCRHAT (* SII BACK EURNER!' )
785 II (AMIK .GE. AO) GO TO 784

ELSE CCIPDTE KIR THTAZ

T ITAFR= A FCCS (AES (AKIN) )
CIPD=-(AKIN*A34RU0*A2)/Al 
R IHI = ATA F2 (FHO ,CAPE)
1ETAPC =COS (7HTAPR)
TETAPS =£IN (THIAPR)
RIHIC=CCS(FFBI)
BIHIS=SIK (REHI)
TETAZ=BN1*EFEIC*THTAPS + RN2*RPHIS*THT APS - RN3*THTAPC 
II (THTA2 .Gl. 1.) GC TO 7S4 

THTAZ=ABCCS(THTAZ)
GO TO 784 

794 IILAG=1 
784 BITUBN 

I ID
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