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Abstract

This report develops analytical techniques for studying shallow spherical 
segment bowls that have an attached tracking iris. The report extends 
previous analytical models that were developed as part of the Crosbyton 
Solar Power Project for the case of spherical segment bowls.

Three types of calculations are considered. First, effective apperture 
formulas are derived for a spherical segment bowl with an iris, and results 
are compared with the bowl without an iris. Secondly, analytical formulas 
are derived to determine spillage losses for shallow bowls. Finally, the 
powerful Ratio of Solid Angles (ROSA) computer code is extended to 
include solar profiles for a spherical segment bowl with iris.

The report includes several plots comparing optical power concentration 
ratios for solar bowls with and without an iris. A complete listing of the 
extended code, ROSAIRIS, is given in the appendix.
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Chapter 1 

Intro duction

Previous analytical studies of solar profiles have concentrated on spherical 
segment bowls with a cylindrical or conical receiver. These studies use the 
ROSA (Ratio of Solid Angles) method of Reichert and Brock [1,2,3]. The 
method was first applied to the case of an aligned, conical receiver and a 
spherical segment mirror [l]. The results were then extended to account 
for misalignment of the receiver in [4,5] and to other shaped receivers in
M-

In this report, we extend the previous results to include solar profiles 
for a spherical segment bowl with a tracking reflector mounted on its rim. 
This concept was introduced by the French [8] for a 60° bowl and was called 
a ’visor’. The term ’iris’ is used in the Crosbyton Solar Power Project for 
such a mounted, tracking reflector.

In the solar bowl concept, the reflecting surface is fixed and the receiver 
tracks the sun. Because the aperture plane of the bowl is fixed, the total 
power captured by the bowl falls off as cos J, where I is the inclination 
angle of the sun relative to the axis of symmetry of the bowl. The addition 
of the tracking iris modifies this cosine loss and thereby increases the total 
annual power captured by the solar bowl. A complete study of the eco­
nomics of adding an iris to a solar bowl requires that the increased annual 
power output of the bowl be weighed against the increased construction 
and operational costs of the bowl with iris. This report will provide the 
mathematical background for such a study, but will not carry out the study.

The total solar energy entering a solar bowl with an iris can be calcu­
lated as a function of inclination angle, J, by considering the orthogonal
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projection of the rim of the bowl onto an appropriate reference plane. These 
calculations are carried out in Section 2. In the case of shallow bowls, some 
of the energy entering the bowl cannot be captured by the receiver. This 
is because a portion of the multiple bounce rays may spill over the edge of 
bowl without striking the receiver. This loss of energy, called spillage, is 
discussed in Section 3.

The calculation of detailed point-by-point concentrations on the receiver 
is accomplished by application of the ROSA method. Section 4 gives a brief 
review of the application of the ROSA method for the case of a receiver 
in a spherical segment bowl. The method is extended to the case of an iris 
in Section 5. The modified program is named ROSAIRIS. A comparison 
of spherical segment bowl solar profiles and profiles for a spherical segment 
bowl with iris is presented in Section 6.

A detailed description of all coordinate systems used in the calculations, 
together with a derivation of all formulas, may be found in [[7]]. A listing of 
the ROSAIRIS computer code is included in Appendix A of this report.
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Chapter 2

Effective Aperture 
C alculations

2.1 Introduction
This chapters presents results concerning the total energy entering a solar 
bowl as a function of the angle of inclination, J, of the sun relative to the 
axis of symmetry of the bowl. Results are presented for a spherical segment 
bowl and for a spherical segment bowl with an iris. The results are obtained 
by computing the orthogonal projection of the surface of the bowl unto a 
reference plane that is perpendicular to the direction of the sun.

2.2 Spherical Segment Bowl
The geometrical parameters for a spherical segment solar bowl are shown 
in Figure 2.1. The bowl has radius R and the angle 0R is called the rim 
angle of the bowl. J denotes the inclination angle of the sun relative to 
the axis of symmetry of the bowl, i.e., J is the angle between the axis of 
symmetry of the bowl and the direction of the sun. We fix a reference 
plane above the bowl with normal direction pointing towards the sun. The 
perpendicular projection of the rim onto the reference plane forms an ellipse 
in the reference plane and all input power to the bowl passes through this 
ellipse. Thus, the total power entering the solar bowl is proportional to the
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Figure 2.1: Solar Bowl Geometry
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area of this ellipse. The projected area is given by

-Aproj = tfr2 cos J, (2.1)

where r = iEsin Or. This projected area gives the effective aperture of the 
bowl as a function of inclination angle I. This projection is illustrated in 
Figure 2.2.

Generally, the bowl is tilted to the south for locations in the northern 
hemisphere, and sun is located by an azimuth angle, A and an elevation 
angle £. >1 is measured from the south axis and £ is measured from the 
horizontal plane. The angle between the vertical and the axis of symmetry 
is denoted by 7. In terms of these parameters, the inclination angle of the 
sun relative to the axis of symmetry of the bowl is given by

cos J = sin 7 cos £ cos A + cos 7 sin £. (2.2)

2.3 Spherical Segment Bowl with Iris
For inclination angles of 90° or less, the effective aperture of a spherical 
segment bowl with an iris is simply the sum of the effective apertures of 
each part. In order to compute the effective aperture of the iris, we form the 
perpendicular projection of the iris onto the reference plane and calculate 
the projected area.

In order to carry out the calculations, we employ a collector fixed coor­
dinate system (see Figure 2.3) with origin at the center of symmetry, C, of 
the bowl. The axes are called Z?, M, and A. The A axis is the symmetry 
axis of the spherical segment bowl, D is directed to the south and M to 
the east. Let eg denote a unit vector pointing from C to the center of the 
sun, so that I is the angle between eB and the A-axis. If I ^ 0 define a 
.D'-axis by the projection of eg onto the D-M coordinate plane, and define 
M' so that the D'-M'-A coordinate system forms a right hand system. If 
1 = 0, we let D'-axis coincide with the D-axis. The surface of the iris can 
be expressed parametrically, using spherical coordinates, as

D' = J?cos<£sin0,
< M' = Rsin<j>s'm0, (2.3)

A = Rcosff,
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Figure 2.2: Orthogonal Projection of Rim onto Reference Plane



A

Figure 2.3: Geometrical Parameters for a Solar Bowl with Iris.
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where 8 is the zenith angle of a point on the iris, (measured from the A- 
axis), <f> is an azimuthal angle measured from the D'-axis, and (<£,0) lie in 
some set S in the <j>-8 coordinate system. If the reference plane is horizontal, 
the iris projects onto the planar region with coordinates

jy = 12 cos ^ sin 0, 
M* = 12 sin sin 9, (2.4)

where (<j>,8) € 5.
In order to find the planar area for other orientations of the reference 

plane we rotate the reference plane through an angle 7 so that its normal 
has the direction of e8. We define a local x-y-z coordinate system with 
the x and y axes lying on the reference plane and the z axis having the 
direction of e8, i.e. pointing towards the sun. Because the iris tracks the 
sun, the projection of the iris will be symmetric relative to the x-axis in the 
reference plane. A point on the iris with coordinates (<£, 9) has rectangular 
coordinates (x, y, z), with

^ X ^ ( cos J 0 — sin! ^

y = 0 1 0

\ 2 J ^ sinj 0 COS I J \

12 sin sin 0 
12 cos 9

The projection of this point onto the reference plane is given by

{x = 12 (cos J cos sin 5 — sin J cos fl) 
y = i2sin<£sin0.

The projected area is given by

(2.6)

where Z is the region in the projected plane obtained from the orthogonal 
projection of the iris.

The above integral is evaluated by integration in the (<£, 0) variables. 
The mapping

(^,0) —* (x,y) has Jacobian

J = R2 x DET ( — cos J sin sin 0
cos I cos <f> cos 0 + sin J sin 4>

cos sin 0 
sin<jJcos 0

8



Thus,

= —R2 (cos J sin 5 cos 0 + sin J sin2 0 cos ^).

^proj(I) = JJjJidtdd
= *’ II, | cos I sin <j> cos <f> + sin I sin2 6 cos 4>\d<j>d0 (2.7)

We illustrate these results for the case where the iris is defined by

{ ft ~ fio < 4* Hi: ft 4*0
■K — 6i< 9 < ft — 0R- (2.8)

The iris is illustrated on Figure 2.3. The projected area is given by

■Aproj(I) = 2R2 ^ cos I sin 9 cos 9 + sin J sin2 9 cos d4> dO

= R2 (cos J [sin2 0i — sin2 0r] 4>q

+ sin 1 sin4>o J^i — ^(sin20i — sin20r) ^ . (2.9)

This area is added to the area given in Equation 2.1 to get the effective 
aperture of the bowl with iris. This gives

A-e = R2 (cos J [4>0 sin2 0j + (tt — <f>0) sin2 0rJ

+ sin Jsin^o - 0r — ^(sin20i — sin20R) (2.10)

For comparison purposes, it is instructive to normalize the effective 
aperture of a bowl by dividing by its surface area. For a spherical segment 
bowl with rim angle 0R, the surface area is given by

&4bowi = 27rJ22(l - cos0r). (2.11)

The surface area for the iris described in Eq. 2.8 is given by

S.Airis = 2R2 [tt - (tt - 4>o) cos 0R - 4>0 cos 0j]. (2.12)

Thus, the total surface area is given by

SA = R2 [47r(l - cos 0R) + 2(£0(cos 0R - cos 0i)]. (2.13)

9



The normalized effective aperture is then 

NAe =
cos j[^o »in3 ^rK^~^o) ^nl^ain I sin (sin 2gi-sin 2g[t)/2] (2.14)

4Jr(l—cos 0r.)+2^o(c°»0r—cosfli)

A plot of normalized effective aperture vs J is shown in Figure 2.4 for 
the case where Or = 30°, Oi = 45°, and <£0 = 45°. Curves are also shown for 
spherical segment bowls with Or = 30° and Or = 60°. Note that the point 
where the effective aperture is maximum occurs at an inclination angle of 
near 10° as opposed to the 0° maximum for the cosine law curve for the 
spherical segment bowl.

The procedures discussed in the above example apply equally well to 
other iris shapes. In every case, the effective aperture of the iris is deter­
mined by evaluating the integral in Eq. 2.7. Only the description of the set 
S varies from case to case, and thus it is only necessary to determine the 
limits of integration in Eq. 2.7 and evaluate the resulting integral to treat 
a given iris shape.

The graphs shown in Figure 2.4 include values calculated by the ROSA 
computer code. The points marked by a ”A” are computed values for 
the spherical segment bowl with an iris, and the points marked by ”x” 
are values for a 30° bowl. The apparent discrepences between theoretical 
and computed values arise for shallow bowls because of spillage losses for 
multiple bounce rays. These losses are discussed in the next chapter.
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Chapter 3

Spillage Calculations for 
Shallow Bowls

3.1 Introduction
The previous chapter developed formulas for the amount of energy entering 
the bowl as a function of inclination angle of the sun. In the case of shallow 
bowls and large inclination angles, a part of this energy will not be captured 
by the receiver, even assuming a perfect mirror surface and a receiver that 
captures all energy striking it. This loss occurs at inclination angles where 
the lower end of the receiver is above the rim of the bowl. The last reflection 
of multiple bounce rays strikes the surface of the bowl near the foot of the 
receiver, and, when the foot of the receiver is above the rim of the bowl, the 
mirror support is missing. Thus, the receiver would have to be longer than 
the radius of the bowl in order to capture the ray. The loss of energy due to 
missing the multiple bounce rays is called spillage. It should be noted that 
this spillage does not occur for bowls such as the 60° bowl, because rim 
shadowing effects prevent these spillage losses at large inclination angles.

This chapter derives formulas for the loss of energy due to spillage of 
multiple bounce rays. The method treats the sun as a point sun at infinity 
and uses ray tracing to describe the path of a ray that is reflected from 
the spherical mirror surface prior to striking the receiver or spilling over 
the edge of the bowl. The ray tracing geometry is described in Section 3.2. 
Section 3.3 describes the method by which energy is lost in shallow bowls, 
and derives formulas for the loss of energy (again based on ray tracing).

12



Section 3.3 also gives a comparison of of the results from ray tracing and 
the the more exact results obtained from the ROSA computer code.

3.2 Ray Tracing Geometry
The general nature of the concentration profile due to reflection from a 
spherical segment mirror (bowl) can be deduced by considering a simple 
model based on a point sun at infinity. For this simplified situation, the 
sun’s rays can be treated as parallel rays and the problem reduces to a 
two-dimensional geometry. The geometry is illustrated in Figure 3.1. In 
Figure 3.1, C denotes the center of a sphere of unit radius (all units are 
normalized). The receiver (boiler) is taken to be a right circular cylinder of 
radius a with axis along the a-axis and length 0.5. The z-axis is chosen to 
be parallel to the direction of rays from the sun, with origin at the center 
of the sphere. The positive direction of z is downward so that the receiver 
extends from z = 0.5 to a = 1.0. The location of a point Q on the receiver 
surface is specified by a and the zenith angle 0 = arctan a/a.

To be received at Q, a ray from the sun must strike the mirror at a 
point P such that after reflection (n times) according to Snell’s equal angle 
law, the ray path will pass through Q. The angle 9 at which the ray strikes 
the mirror (the angle between the ray and PC) is called the impact angle 
of the ray, while the reception angle, /?, is the angle of the incoming ray at 
Q as measured from the radius through CQ.

For a single bounce ray (n = 1), the law of sines, applied to the triangle 
CQP, gives:

(g/cos VO___ L_ /,
sin0 sin/3’ ‘ ^

where (3 = 20 — xj) and tan0 = ajz. Elimination of /? and xjj from Eq. 3.1
leads to the formula: , x

sin0 + a cos (20)
z =

sin(20)

1 + 5(1-25)
2\/l - 5

V3 and

(3.2)

5 = a1 2/3. (3.3)
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In particular, for a = 0, zm,n = 0.5. Thus the rays are focused on the 
receiver at locations in the range

Zmin < Z< Vl- a2, with zmin > 0.5. (3.4)

An analysis of Eq. 3.2 also shows that z is an increasing function of 6 
for arcsine < 6 < arcsine1/3 and increasing for arcsine1/3 < 0 < tt/S. The 
value tt/3 is obtained by considering the extreme case of e = 0 and z = 1. 
Thus, there exist exactly two impact angles which cause rays to strike the 
receiver at a given z coordinate on the cylinder.

Multiple reflections occur for impact angles greater than 60 degrees (i.e. 
greater than tt/3 radians). The geometry for the case n = 3 is shown in 
Figure 3.2. A ray will be reflected n times before striking the receiver 
provided the impact angle 6 satisfies

(n — IW "0 mr 0 , .
2n — 1 2n — 1 2n + 1 2n + 1

Consideration of the triangle CPQ again yields Equation 3.2. The an­
gle 0 can be eliminated and the resulting equation solved for z. The z- 
coordinate of the point where the ray strikes the receiver is given by

sin 6 + a cos an
Z = -----------;-----------------

sm an

where an = 2n0 — (n — l)ir. A ray that is reflected n times strikes the 
receiver in the range

Zmin.n < Z < Vl- Cl2. (3.7)

The impact angle that yields zm,-nin is found from

(2n -I-1) sin(2n — 1)0 - (2n - 1) sin(2n + 1)0 + 4na cos nit = 0. (3.8)

As n increases, zmmin approaches 1. Moreover, for each z in the focal region 
there exist exactly two impact angles which cause rays to strike the receiver 
at z. The two impact angles are the solutions, 0, to the transcendental 
equation

zsin(2n0) + cos(nTr) sin0 = acos(2n0). (3.9)

Figure 3.3 shows a plot of impact angle, 0, vs reception point, z. The 
bowl is taken to have a unit radius and a is normalized so that the ratio of

3.6
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Figure 3.2: Multiple Bounce Geometry (n = 3)

16



the boiler radius to the bowl radius is the same as that at the Crosbyton 
Solar Power ADVS site. In the figure, the region from 0 = 0° to 0 = 60° 
is the region of single bounce rays, the region from 0 = 60° to 0 = 72° 
corresponds to two bounce rays, and so on.

3.3 Spillage Geometry
This section addresses the problem of spillage. We simplify the calculations 
by setting a = 0.

A ray that is reflected n times before striking the receiver is called a ray 
of order n. It follows from Equation 3.5 that a ray of order n has impact 
angle, 0, where

n — IW „ MTT
---------- <0 < ----------------.
2n — 1 2n + 1

A straightforward calculation also shows that the last reflection of a ray of
order n occurs in the region

0 < 0 < r-——r- (3.11)2n + l v '

The angle between the 2-axis and the point where a ray of order n last 
strikes the bowl (the angle between the 2-axis and the line CP in Figure 3.2) 
is given by

0P = (n - l)7r + (2n - 1)0 (3.12)

We denote the upper and lower limits of the impact angles for rays of 
order n by the symbols 0^ and 0“, respectively, and the upper limit for the 
angle at which the last reflection occurs by 0°. Then, 0^ = n7r/(2n + 1), 
0~ = (n — l)7r/(2n — 1), and 0° = 7r/(2n + l).

Spillage occurs when the inclination angle of the sun relative to the axis 
of symmetry of the bowl is greater than the rim angle of the bowl, i.e, when 
1 > 0r. A two dimensional view of spillage is illustrated in Figure 3.4. In 
this example, J = 45° and 0r = 30°. Impact angles are measured relative 
to the 2-axis (the receiver) and for this example we have 15° < 0 < 75o. 
Thus, we have rays of order one, two, and three.

All rays of order one strike the receiver. Rays of order two have impact 
angles lying between tt/S and 27t/5. They require mirror support in the 
region 0 < 0p < tt/5. However, no mirror support exists in the region 0 <

17
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6? < “nl 12. This region corresponds to rays with impact angles satisfying 
tt/3 < 0 < 137r/36. All the energy from rays in this region will be lost, i.e., 
will spill over the edge of the bowl.

In this example, rays of order three have impact angles in the region 
27r/5 < 6 < 5n/12. These rays require rim support in the region 0 < 0p < 
tt/12. Thus all energy for rays of order three will be lost.

In Figure 3.4 the xyz and xyz coordinate systems are related via a 
rotation through the angle J about the y axis. If we employ spherical 
coordinates in each system, we obtain the relationship

(3.13)
( sin 0 cos 0 A f cos J 0 — sinl ^ * sin 0 cos ^ >

sin 0 sin = 0 1 ° sin 0 sin 4>
^ cos 0 ) ; sin! 0 cos J ) K COS 0 j

This yields the set of equations
f AAA

sin 6 cos <p = cos J sin 9 cos <f> — sin 1 cos 9, 
1 sin 0 sin = sin 0 sin

cos 9 = sin J sin 0 cos <£ + cos J cos 0.
(3.14)

Referring to Figure 3.5, and using the relations in Eq. 3.14, we find that 
the values, <£„, where the circle 9 = 9* intersects the rim of the bowl are 
given by

<£n = tt <£*, (3.15)

where,

4>„ = arccos (3.16)
cos 1 cos 0r — cos 9* 

sin 1 sin 0R
It is convenient to carry out all calculations in the ((£,0) coordinate system. 
In this system, the 0J circles intersect the rim at the pair of angles tt ^ 
where

sin 0r sin (f>*= arctan (3.17)
.cos 1 sin 0r cos + sin 1 cos 0R.

We first consider the case where only rays of orders one and two occur. 
This occurs when J satisfies the condition

tt/3 < I + 0r < 27r/5. (3.18)

19
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Figure 3.5: Overhead View of Spillage Geometry
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Rays that bounce twice occur for <0 < du, where 8U is the polar angle 
to the top of the bowl rim. For n — fa < < tt + <£2 > we ^u{4>) is
given by

<W)= W) + W)> (3-i9)
where,

8i{<j>) = arctan(cos ^tan J), (3.20)

and

W) arccos
cos 0ft

(3.21)
.ysin21 cos2 0 + cos21_

However, for a given <£, the reflected ray will strike the mirror if and 
only if

0(<£)>(7r + <W)-W))/3.
This result is obtained by finding the intersection of the ray ^ = constant 
with the rim of the bowl nearest the foot of the receiver. The total power 
lost is computed from the integral

Floss(-f) = / [ s'm 0 cos 0 d6 d<f> (3.22)
JO Jir/Z

= f (sin2 9— sin2tt/3) d({>, (3.23)
Jo

where
0U(^) = MIN^^) + 02(^), (tt + ^(0) - 02(^))/3).

The details for calculating spillage for larger inclination angles are sim- 
iliar. We first observe that an n-bounce ray is possible only if the relations

0n < (3.24)

and,
0r-I < C (3.25)

hold. In the case where the relations hold, a range of <j> values can be 
calculated to give the set of azimuthal directions of rays of order n. For 
each (j>, a range of impact angles, 0, is determined. Spillage occurs for those 
values of 0 for which

9(<f>) < \{n - 1)* + 9^) - 02(40) /(2« - 1). (3.26)

22



The power loss for rays of order n can be determined by integration as 
in the case illustrated above.

A graph of power vs inclination is shown in Figure 3.6. The top curve 
gives the total energy into the bowl. The lower curve gives the total power 
reaching the receiver. The points marked by the o’s are values of total 
power received on the boiler as computed by the ROSA computer code. In 
the ROSA calculations, the boiler radius, a, is normalized to represent the 
radius of the boiler at the Crosby ton Solar Power AD VS site. The graphs 
are restricted to inclination angles below 60° so that shading will not have 
to be taken into account in the ray tracing model. Of course, ROSA code 
easily handles shading. Also, the solar insolation is taken to be unity.

A listing of the computer code that implements the the ray tracing 
method for computing spillage is listed below.
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•DECK SPILL
PROGRAM SPILL

C PROGRAM TO COMPOTE SPILLAGE LOSSES BY RAY TRACING 
C FOR SHALLOW BOWLS
C AUTHOR: RONALD M. ANDERSON
C DATE : 10/08/86
C

PI*4.0*ATAN(1.)
THETAR-PI/6.
CTHTAR-COS(THETAR)
STHTAR-SIN(THETAR)
RAD-PI/180.

C SET UP INCLINATION ANGLE LOOP
THTARD-THETAR/RAD 
IO-THTARD+1.1 
IE-80.-THTARD

C COMPUTE TOTAL POWER BY COSINE LAW - NO SPILLAGE 
AREA-PI*STHTAR**2 
DO 05 1-0,10-1 

P»AREA*COS(I*RAD)
WRITE(6,*)I,P,P 

5 CONTINUE 
DO 10 I-IO.IE 

DI=REAL(I)*RAD 
CI-COS(DI)
SI-SIN(DI)

C FIND LARGEST ORDER OF RAYS
NM-(DI+THETAR)/(PI-2.•(DI+THETAR))+1 
DO 20 N-2.NM

THNP-N*PI/REAL(2 * N+1)
TH1TM- (N-1)*PI/REAL(2*N-1)
X-(CI-CTHTAR-COS(THNM))/SI*STHTAR 
IF(X.GT.l.O) THEN 
X-1.0 

END IF
PHIMH-PI-ACOS(X)
PHIM-ATAN(STHTAR*SIN(PHIMH)/(SI*CTHTAR-CI*STHTR* COS(PHIMH))) 
NP-(PHIM)/RAD+1.01 
DPHI-(PHIM)/NP
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PHIM-PI-PHIM 
DO 30 J=1,NP 

PHI»PHIM+J*DPHI 
CPHI-COS(PHI)
CTH1*(CTHTAR/SQRT((CI**2+(SI*CPHI)**2))) 
IF(CTH1.GT.1.0)CTH1X1.0 
TH1=AC0S(CTH1)
TH2=-ATAN(SI*CPHI/CI)
THL*TH2-TH1
THUL*((N-1)*PI+THL)/REAL(2*N-1)
THU*AMIN1(TH1+TH2,THNP,THUD 
THU*AMAX1(THU,THNM)
SA*(SIN(THU)**2 - SIN(THNM)**2)
S-S+SA 

30 CONTINUE
ST=(S-SA)*DPHI+ST
S-0.0

20 CONTINUE
P*AREA*COS(I*RAD)
PS*P-ST
WRITE(6,*)I.PS,P 
ST=0.0 

10 CONTINUE 
STOP 
END
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Chapter 4

Finite Sun Concentration for a 
Spherical Mirror

4.1 Introduction
This chapter presents a brief review of the mathematical techniques used 
in applying the ROSA method for the calculation of optical power profiles 
for concentrator-receiver systems. A full discussion of the method has been 
presented previously in [7].

The optical power concentration, C, at a point Q on a receiver is defined 
as the total normally directed optical power per unit area received at that 
point. The concentration, C, therefore depends upon the orientation of the 
element of the receiver surface containing the point Q. In our calculations, 
C is normalized by dividing by the direct normal insolation incident upon 
the receiver. The resulting dimensionless quantity becomes a concentration 
ratio expressed as “number of suns”.

The formula which is used in the optical concentration ratio calculations 
is due to Reichert and Brock [1,2]. It is termed the Ratio of Solid Angles 
(ROSA) formulation and provides an integral expression for the concen­
tration ratio. This is a general method, applicable to any mirror-receiver 
combination, with the only complication being the determination of the 
limits of integration.

The ROSA method deals directly with a finite sun rather than a point 
sun. The sun’s size is expressed in terms of an angular radius, a. Direct 
sunlight received at a point is viewed as a collection of rays lying inside
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a right circular cone with vertex angle 2a. The solid angle of this cone 
is used for normalization purposes. The sun is, to a good approximation, 
an isotropic radiator (Lambert law radiator), so that the incident flux is 
uniform in solid angle within the cone [l].

The ROSA formula for the concentration, C, at a receiver point, Q, due 
to reflection from a mirror surface is given by

where,

q = the vector locating a field point Q on the receiver with respect to a 
convenient coordinate system;

b = the unit outward normal to the receiver at Q\

n = the number of times a ray has been reflected on the mirror before 
striking the receiver at Q;

Clsn — 47rsin2((Tri/2), the effective solid angle of the sun as viewed directly 
from the field point Q;

an = the effective angular radius of the sun to be used for light which 
reflects n times in the mirror (for a perfect mirror an = cr);

R = the reflection coefficient of the mirror surface, 0 < i? < 1;

dd = differential solid angle directed toward the apparent position of the 
sun as viewed in the mirror; i.e., the oriented element of surface area 
on the unit sphere, with outward normal.

[The “effective” angular radius of the sun, <rn, is taken to be larger than 
the true radius in order to account for local slope errors (surface normal 
pointing errors) of the mirror surface. Statistical analyses (which will not 
be documented here) show, for example, that eri « 2ct « 0.5° (where a 
is the actual radius of the solar disk) for mirrors which meet the CSPP 
specification of 0.06° RMS surface normal error. For such mirrors, an = 2n<7
[1].
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4.2 Geometrical Considerations
In order to evaluate the integral in Equation 4.1, it is convenient to intro­
duce a spherical coordinate system. In this system, the polar axis is chosen 
to lie along the line CQ and the origin of the system is placed at the field 
point Q. The integration is to be carried out over FIm*- Integration points 
are specified by an azimuthal angle u> and the zenith angle /?, where {3 is 
measured from the polar axis as shown in Figure 4.1.

Planes u> = constant contain the polar axis and intersect a spherical 
segment mirror in arcs of great circles. For each w, the reflection geometry 
becomes two-dimensional and can be handled in a manner similar to the 
simplified case discussed in the previous chapter. The problem is more 
complicated, however, in the case of a finite sun. Instead of two distinct 
impact angles for reflected rays, there are two families of incident rays that 
may reflect to a field point. One of these families is illustrated in Figure 4.2

Using the parameters 0 and w, one can write the ROSA formula, Equa­
tion 4.1 in the form:

C(9,S) = £^-Cn(9,6) (4.2)

where

= I I \{bx cos u> + bv sin u) sm2 0 + bz cos f3 s'm f3] d/S du (4.3)

A
The components of b are given in a cartesian coordinate system, with origin 
at Q, using the polar axis as the 2-axis. The azimuth u is measured from 
the i*-axis. [For a perfectly aligned receiver, the x'-axis can be chosen so 
that bz = cos0, bv = 0, and bz = sinV'-] The integral on P in Eq. 4.3 is 
elementary and can be performed immediately. The limits Pun and Pin are 
complicated functions of w, so that the ^-integration is performed numeri­
cally.

The basic work of the ROSA code is to determine the limits in the 
/^-integration and then perform the w-integration. The relevant geometry 
may be simplified considerably be introducing a sun cone with vertex at the 
center of curvature, C. The family of incidence directions for solar radiation 
at C forms a right circular cone with vertex at C and angular radius a. If 
the rays are extended through C, the second branch of the cone has the
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same angular radius, but hangs downward. This inverted branch of the 
cone is called the sun cone. The ranges of integration required by Eq. 4.3 
can be determined by considering the intersections of planes of constant cj 
with the sun cone.

The sun cone defines the set of all possible directions from which direct 
incident rays can strike the mirror surface, That is, corresponding to every 
ray that strikes the surface of the mirror, there exists a parallel ray through 
C that lies in the sun cone. Thus, for each w = constant plane, the set of 
possible directions of direct rays which can reflect to which the field point 
Q lies inside the sun cone. In the figure, /? is the angle of an incoming 
reflected ray, as measured from the z-axis, 0+ and are the extreme 
values of direct rays in the w-plane and are measured from the z-axis. For 
the case in which the field point lies inside the sun cone, every w-plane 
intersects the sun cone. For points, <?, outside the sun cone, the w-plane 
intersects the sun cone for only cetain values of w.

A detailed consideration of the geometry of the intersection of the cj- 
plane with the sun cone gives:

= 77 ± cos COS (7

sin2 tpo cos2 w)
(4.4)

where
?; = tan-1 [tan 0o cos w], 77 € [-7r/2,7r/2]. (4.5)

The angle 0o is the central angle of Q measured from the axis of the sun 
cone. These results are to be used for all cases, with ui restricted so that
6 • dn > 0.

For each w, once the range 0_(u;) to 0+(w) has been determined, then 
the corresponding values of (3 can be determined, using

/? = 27isin-1(gsin/?) - - (n - l)7r (4.6)

Solution of the above equation yields one or two /^-intervals, depending 
upon the values of 0±. The (3 limits obtained from Eq. 4.6, restricting w 
such that 6 • dn > 0, may be used to evaluate the integrals in Eq. 4.3.
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4.3 Shading and Rim Cutoff Effects
For a spherical segment collector, the principal axis of the receiver should 
be aligned with the sun in order to maximize the amount of energy captured 
by the receiver. The spherical mirror is stationary. Thus, as the sun passes 
over the mirror, the effective aperture of the mirror changes, resulting in a 
loss of power due to either rim cutoff or shading or both. A two-dimensional 
view of rim-cutoff and shading is shown in Figure 4.4. The total input power 
is proportional to the cosine of the angle J between the bowl symmetry axis 
and the direction of the sun. [Rim, not additional fixed aperture penalties.] 
The cosine effect is accounted for by limiting ranges of integration so that 
they stop at the bowl rim and/or at the edges of shadows of the rim.

The effect of rim cutoff and shading is easily taken into account in the 
concentration integral. Since each u = constant plane intersects the bowl 
in the arc of a great circle, rim cutoff and shading merely decreased the 
length of the arc. Thus, these effects decrease the length of the j3- intervals 
used in the concentration integrals. The actual calculation of these effects 
depends on the direction of the sun, on the value of w, on the location and 
orientation of the field point on the receiver, and on rim angle of the dish. 
The detailed derivation of rim angle formulas is carried out in the next 
chapter.
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Figure 4.4: Rim Cutoff Effects
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Chapter 5

Solar Bowls with an Iris

5.1 Introduction
The original ROSA computer code was implemented for spherical segment 
solar bowls. This chapter derives the necessary formulas for extending the 
code to a spherical segment bowl with an iris. The only change required in 
this code involves the method by which rim angle effects are calculated.

The previous chapter outlined the general method used in the ROSA 
code for the evaluation of the concentration integral. The calculations em­
ploy a local spherical coordinate system with a zenith angle /? and azimuthal 
angle w. A fixed value of cj defines a plane that intersects the bowl surface 
in a segment of a great circle. This is illustrated in Figure 5.1. In this 
figure, Q represents a field point on the receiver and C is the center of sym­
metry of the bowl. A local x'j/V-coordinate system is defined with origin 
at Q, with the x'-axis along the line segment CQ and directed downward, 
w is the azimuthal angle in this system, measured from the x'-axis, and /? 
is the zenith angle. An xyz-system is obtained by translating the origin of 
the x'y'x'-system from Q to C.

The plane w=constant intersects the bowl in the arc of a great circle. 
The extreme points on the arc correspond to the points where the great 
circle intersects the rim of the bowl. The dish rim angles in the w-plane are 
expressed as a front-side rim angle, 0+, and a back-side rim angle, 9~. Both 
8+ and 8~ are zeniths measured from the z-axis. These angles are treated 
as positive angles in the right half of the w-plane, negative in the left half 
plane. The values of 0+ and 8~ define extreme values for the set of impact
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Figure 5.1: Angles Used in Rim-cutoff Calculations
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angles for rays that enter the bowl in the w-plane. In the evaluation of 
the concentration integral, u> ranges over [0,2^], and only rays which strike 
the receiver in the right half of the u plane are considered. This gives the 
resriction on the impact angle, 0,

MAX 0,9;] < e < «t- (5.1)

In addition, rim shading occurs for 0+ > tt/2. Details of shading are 
discussed in [7].

5.2 Determination of Rim-cutoff Angles for 
a Spherical Segment Bowl

The values of the rim-cutoff angles 6+ and 6~ depend upon the direction 
of the sun, the location and orientation of the field point Q, on the value 
of u;, and on the shape of dish rim.

The sun is located in a SEV coordinate system (south, east, vertical) 
centered at C. The location of the sun is specified by a an azimuth angle, A, 
measured from the south axis and an elevation angle, £ (See Figure 5.2).

A collector fixed coordinate system, (DMA-system) with origin at C 
is used to describe the bowl. The rim itself is described by spherical co­
ordinates (<£r,0r), where 0r is the rim angle of the bowl and is measured 
from the axis of symmetry of the bowl (the negative £>-axis). The SEV 
and DMA systems are related by a tilt angle, 7 and a dip angle (See 
Figure 5.3).

The xyz and DM A coordinate systems are related via a rotation matrix 
(See Figure 5.1). The relationship can be written in the form

^ cos<£sin# ^ ( Rn Rn Rn A ( coswsin#* ^
sin $ sin# = R21 R22 R23 sin u; sin #*

^ cos # ; Rn R22 R33 J ^ cos #* ^
where (<j>, 6) are azimuthal and zenith angles in the DMA-system and (w, 0Z) 
are azimuthal and zenith angles in the xyz-system. Equating components 
in this equation yields the system of equations

cos ^ sin 5 = (.Riicosu/+ i?i2sinu;)sin0z + iEisCosfl*, (5.3)
sin sin# = (-ft2iCosw + I?22sinw) sin#* + i^acos#*, (5.4)

cos# = (-Rsicosw + J?32sinw) sin#* + i?33Cos#*. (5.5)
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For a spherical segment bowl, the rim is defined by 0 = tt — 0r. Substi­
tuting this value into Equation 5.5, we find that

= Mu) ±Mw), (5.6)

where,
8a{u) = ATAN2(- [i23i cosu; + sin w] ,-£33), (5.7)

and,
cos 9r (5.8)0b(w) = arccos

5.3 Extension to Bowl with Iris
In order to take advantage of the fact that an iris tracks the sun, it is con­
venient to introduce a D'M'A coordinate system, centered at C, obtained 
by a rotation about the A-axis. The D' axis is chosen so that it lies in the
plane determined by the A-axis and the vector ea that points from C to 
the center of the sun. If the sun is directly above the A-axis, we take D' to 
coincide with D. This coordinate system is shown in Figure 5.4.

The location of the D'-axis is calculated as follows. The unit vector e8 
is described in the SEV-system in component form as (See Figure 5.2)

/ cos A cos £ y
eg = sin A cos £

^ sin £ j
(5.9)

Refering to Figure 5.3 we find that coordinates in the SEV and DMA 
coordinate systems are related by the rotation matrix

cos 7 sin <f)d
COS (fid

sin 7 sin fa

Substitution of the representation of e8 in the SEV-system into this formula 
yields the representation for e8 in the DM A-system as

cos 7 cos £ cos(A — fa) — sin 7 sin £ 
cos £ sin(>l — fa)
sin7 cos £ cos(A — fa) + sin £ cos 7

(5.11)
(5.12)
(5.13)

D
M
A
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Figure 5.2: Location of the Sun in the S-EV-system
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Figure 5.3: The SEV and DMA Coordinate Systems
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Figure 5.4: Location of the D'M'A Coordinate System

42



We choose the D'-axis so that it coincides with the projection of e8 in the 
.DM-plane. This yields a rotation angle, <f>d>, about the .A-axis given by

<f>d> = ATAN2(M, D), (5.14)

where M and D are given by Equations 5.12 and 5.11, respectively. Coor­
dinates in the D'M'A-system are calculated from coordinates in the DMA- 
system via the rotation matrix

( D' \ ( COS 4>d< sin (f>di 0 ^ f
M' = — sin <f>d> COS <t>di 0

l A J l o 0 1J V
Equations 5.3-5.5 become (in the D'M'A-system)

(5.15)

cos ^sin5 = (Sncosw + Snsinw) sin02 + Siscos^, (5.16)
sin ^ sin 0 = (S2i cosu; + sinw) sin02 + £23cos02, (5.17)

cos0 = (i23i cos w + J?32 sin w) sin 02 + i?33 cos 0Z, (5.18)

where,
Sn
s12
$13 
S2i
s22

. Siz
and the R'^s are the matrix elements appearing in Equation 5.2.

We assume that the iris is symmetric with respect to the D'A plane. 
Then, the iris is centered on the negative D'-axis.

Rw cos 4>di + i?2i sin <f)d<, 
R12 cos <^' + R22 sin <j>d>, 
Ris cos (j>di + R23 sin <f>d>, 
Ru sin <}>di + i?i2 cos <f>d>. (5.19)

5.4 An Example
We consider the case of a tracking iris of the form (See Figure 2.3)

[ n - 4>o< <t> < 7T + <£o,
( 0R < 7T - 0 < 01. (5.20)

where <f> is the azimuthal angle measured from the positive D'-axis and 0 
is the zenith angle measured from the A-axis.
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The solution is carried out in two steps. We find the solutions 0* (0r) 
for the intersection of the w-plane with a spherical segment bowl with rim 
angle On, and also find the solutions 0, (0i) corresponding to a bowl with 
rim angle 0j. These solutions are calculated using Equations 5.6-5.8.

For each 0Z, we find the corresponding azimuthal angle, <j>. These solu­
tions are found using Equations 5.16 and 5.17. Since 0 < 0 < tt, we have 
sin 0 > 0. Therefore, the corresponding azimuthal angle <j> is calculated as

, (52i cos u) + £22 sm w) sm 0Z + £33 cos 0Z
tan <p = 7—------------- -—;----—— ----- -------- —.

(5U cos ui + Sn sin u) sin 0Z + £x3 cos 0Z
Several cases arise. They are illustrated in Figure 5.5.

(5.21)

1. If |0J (0i)| > 7T — 0o then 0+ = 0j.
(A-3, B-4, B-5, and C-3 in Figure 5.5.)

2. If |0+(0i)| < 7T - 00 and |0+(0r)| < tt - 0o, then 0+ = 0R.
(A-l, B-l, and C-l in Figure 5.5.)

3. If |0^(0i)| < 7T — 0o and |0^ (0r)| > tt — 0O or 0^(0r) is not defined 
(w-plane does not intersect the spherical segment bowl), then 0^ is 
computed using Equations 5.16 and 5.17. This gives

tan 0+__________________ £23 cos 0 — £13 sin 0________________
* (£n cos u + £12 sin u>) sin 0 — (£2i cos ui + £22 sin ui) cos 0 ’

where
0 = 7T — 0o 
0 = 7T + 0o

iftf > 0,

if0+ < 0.

(A-2, B-2, B-3, and C-2 in Figure 5.5.)

4. |0* (0i)| is not defined. In this case no bowl support is available for 
the incoming rays and we set 0J = 0.
(C-4 in Figure 5.5.)

Calculation of 0~ is much simpler. It is given by
0J = MAX [O,0f] .

These formulas have been incorporated into the ROSA computer code 
to form the ROSAIRIS computer code. Results for the example discussed 
in this section are presented in the next chapter.
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Figure 5.5: Intersection of the w-plane with the Rim
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Chapter 6

Optical Concentration Results

This chapter presents several sets of sample output comparing a solar bowl 
without iris and a solar bowl with iris. In presenting the results, we assume 
a reflection coefficient of 1 and a perfect reflecting surface. The receiver is 
choosen to be a right circular cone with angular radius equal to that of the 
sun cone. Other samples are readily generated by altering the input data 
for the program.

The first plot compares total power entering the bowl with total power 
captured by the receiver. The solid curve represents energy entering the 
bowl and the A values represent total power on the receiver. These later 
values are calculated using ROSAIRIS. Note that spillage occurs for in­
clination angles larger than 45°.

The remaining plots show solar profiles as a function of distance along 
the receiver axis. Each plot contains two graphs, one corresponding to 
a spherical segment bowl, and the second corresponding to the spherical 
segment bowl with iris. The spherical segment bowl has a rim angle of 
ffR = 30°. The iris has rim angle = 45° and angular width of 2<£0 = 90°. 
Plots are presented with the inclination angle of the sun varying from J = 0° 
to I = 80° in 10° steps.
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01 = 45°, fa = 45°

51



O
PT

IC
A

L P
O

W
ER

 CO
N

C
EN

TR
A

TI
O

N
 RA

TI
O

 
O

PT
IC

A
L P

O
W

ER
 CO

N
C

EN
TR

A
TI

O
N

 RA
TI

O
1200

SPHERICAL SEGMENT BOWL

800 -

400 -

DISTANCE ALONG AXIS OF RECEIVER

SPHERICAL SEGMENT BOWL WITH IRIS
1200

800 -

400 -

0.6 0.7 0.8
DISTANCE ALONG AXIS OF RECEIVER

Figure 6.6: Optical Power Concentration for J = 40° and 0R = 30°,
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Figure 6.7: Optical Power Concentration for J = 50° and = 30°,
6i = 45°, <f>0 = 45°
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Figure 6.8: Optical Power Concentration for I = 60° and = 30°,
Ox = 45°, 4>q = 45°

54



O
PT

IC
A

L P
O

W
ER

 CO
N

C
EN

TR
A

TI
O

N
 RA

TI
O

 
O

PT
IC

A
L P

O
W

ER
 CO

N
C

EN
TR

A
TI

O
N

 RA
TI

O
SPHERICAL SEGMENT BOWL

1200 -i---------------------------------------------------------------

800 -

400 -

) ~\------------------ 1------------------1-------------- i i
0.5 0.6 0.7 0.8 0.9 1.0

DISTANCE ALONG AXIS OF RECEIVER

SPHERICAL SEGMENT BOWL WITH IRIS

800 -

400 -

0.6 0.7 0.8
DISTANCE ALONG AXIS OF RECEIVER

Figure 6.9: Optical Power Concentration for J = 70° and Or = 30°,
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Appendix A

ROSAIRIS Program Listing

c
C ROSAIRIS
C THIS IS A PROGRAM TO CALCULATE THE CONCENTRATION 
C WHEN AN IRIS IS ATTACHED 
C
C WRITTEN BY
C
C DR. RONALD M. ANDERSON, DEPT. OF MATHEMATICS
C
C AND
C
C DR. JOHN D. REICHERT, DEPT. OF ELECTRICAL ENGINEERING
C
C GRADUATE ASSISTANTS: C. NORWOOD. R. JOHNSTON, C. DAWSON 
C
C TEXAS TECH UNIVERSITY
C LUBBOCK. TEXAS
C JULY 24, 1984
C
C MODIFIED: SEPTEMBER, 1986 BY R. M. ANDERSON 
C AND M. OBEYESEKERE

********************** ****************1([J|II((*)|1)([1|[J)t!([i|[]ki)[i(t))ti)i])tit!i|[!)[]|ii([])[!!< *
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REAL SUM(100,5).QQ(IOO).SUMA(100.65.5)
REAL ZSTART(IO).ZSTOP(IO).PLOTZ(200),PL0TS(2OO)
COMMON /BLOCKA/ M0MEGA,ISTEPS,0MEGAL(2),0MEGAU(2).XYNRML,

*ALPHA,NZ,ZNRMAL.PSIOS.PSIOC.SIGMAC.
*R31.R32,R33,THTARC.THTAW 
COMMON /BLOCKS/ PSIP.PSIPK.PSIM.BETAPK,Q,NBC,

* TNZETA,DRTOP,CSZETA,SN ZETA
COMMON /CUT/ THTAR,GAMMAC.ES,A.PHID,GAMMAS.EC.PHIOC.PHIOS 
COMMON /GLOBAL/ HALFPI.PI.TWOPI.RADIAN 
REAL OMEGAL.OMEGAU.XYNRML.ZNRMAL.PSIO.SIGMAC,
*R31,R32,R33.THTARC.THTAW.PSIP.PSIPK.PSIM.BETAPK.Q 
COMMON /ENTRY/ Rll,R21,R12,R22,R13,R23
COMMON/IRS/HIRIS. TIRIS. S11. S12. S13. S21. S22. S23. S31. S32. S33 
INTEGER MOMEGA.ISTEPS.NZ.NBC.KPLOT 
INTEGER NZZ(IO).ITITLEC6)
REAL A11.A12.A13.A21.A22.A23.A31.A32.A33
REAL BAVG(5).POWER(5).ACONE

C
C COORDINATE SYSTEMS USED:
C
C 1. THE S-E-V COORDINATE SYSTEM
C THIS IS THE SOUTH-EAST-VERTICAL COORDINATE SYSTEM
C WHICH IS ALIGNED WITH THE EARTH.
C 2. THE F-G-ES COORDINATE SYSTEM 
C THIS COORDINATE SYSTEM IS ALIGNED SO THAT
C THE ES AXIS POINTS TO THE CENTER OF THE SUN.
C 3. THE X-Y-Z COORDINATE SYSTEM 
C THIS COORDINATE SYSTEM IS ALIGNED SO THAT
C THE Z AXIS PASSES THROUGH THE CENTER OF
C THE HEMISPHERE AND THE POINT Q ON THE
C RECEIVER AND THE SUN LIES IN THE XZ PLANE.
C 4. THE XR-YR-ZR COORDINATE SYSTEM 
C THIS COORDINATE SYSTEM IS ALIGNED SO THAT
C THE ZR AXIS IS THE RECEIVER AXIS OF SYMMETRY.
C 5. THE D-M-A COORDINATE SYSTEM 
C THIS COORDINATE SYSTEM IS ALIGNED SO THAT
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C THE A AXIS IS THE AXIS OF SYMMETRY OF THE DISH.
C 6. THE DP-MP-AP COORDINATE SYSTEM
C THIS COORDINATE SYSTEM IS OBTAINED BY ROTATING
C THE D-M-A SYSTEM AROUND A-AXIS BY PHIDP.SO THAT
C CENTER OF THE IRIS IS ALIGNED WITH THE DP-AXIS
C
C INPUT VARIABLES 
C
C A. ROTATION ANGLE VARIABLES
C PHIRD. PSIRD * THE ROTATION ANGLES, IN DEGREES, BETWEEN THE 
C X-Y-Z AND XR-YR-ZR COORDINATE SYSTEMS
C DPSID, DPHID = THE ROTATION ANGLES, IN DEGREES. BETWEEN THE 
C F-G-ES AND XR-YR-ZR COORDINATE SYSTEMS
C ED, AD = THE ELEVATION ANGLE AND AZIMUTHAL ANGLE.
C BETWEEN THE S-E-V AND F-G-ES COORDINATE SYSTEMS
C GAMMAD, PHIDD = THE ROTATION ANGLES. IN DEGREES.
C BETWEEN THE S-E-V AND D-M-A
C COORDINATE SYSTEMS
C THTARD = ALTITUDINAL ANGLE. IN DEGREES. BETWEEN 
C THE D-M-A AND X-Y-Z COORDINATE SYSTEMS
C
C B. OTHER INPUT VARIABLES
C DPHIRD * THE AMOUNT PHIR IS INCREMENTED IN 
C THE PHIR-LOOP (READ IN)
C ISTEPS = THE NUMBER OF INTERVALS USED IN 
C THE OMEGA-INTEGRATION
C (USING SIMPSON’S RULE)
C NZZ = NUMBER OF TIMES Z IS INCREMENTED (READ IN)
C REFC = THE REFLECTION COEFFICIENT
C SIGMAD - THE SUN CONE HALF-ANGLE
C SPPHIR = THE FINAL VALUE OF PHIR (READ IN)
C STPHIR = THE STARTING VALUE OF PHIR (READ IN)
C ZSTART * THE INITIAL VALUE OF Z (READ IN)
C ZSTOP * THE FINAL VALUE OF Z (READ IN)
C ZETA-CONE VERTEX HALF-ANGLE
C RTOP=UPPER BOILER RADIUS
C
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C TIRIS = CENTRAL ANGE OF THE IRIS
C HIRIS = THE ANGE FROM THE BOTTOM OF THE BOWL TO THE
C TOP OF THE IRIS
C 
C
C INTERNAL VARIABLES
C ALPHA = THE ANGLE BETWEEN THE X-AXIS AND THE 
C NORMAL TO THE RECEIVER
C COEFF1, C0EFF2 * USED TO CALCULATE PHIO 
C CONST * A CONSTANT USED IN THE CONCENTRATION FORMULA 
C DPSI, DPHI = DPSID. AND DPHID IN RADIANS 
C DPSIC, DPHIC = THE COSINES OF DPSI AND DPHI 
C DPSIS, DPHIS * THE SINES OF DPSI AND DPHI 
C DZ = THE AMOUNT Z IS INCREMENTED EACH TIME THE 
C Q-LOOP IS COMPLETED
C DZ DEPENDS ON ZSTART. ZSTOP. AND NZZ
C E. A = ED AND AD IN RADIANS 
C EC = THE COSINE OF E 
C ES = THE SINE OF E
C GAMMA. PHID * GAMMAD AND PHIDD IN RADIANS 
C GAMMAC, PHIDC = THE COSINES OF GAMMA AND PHID 
C GAMMAS. PHIDS * THE SINES OF GAMMA AND PHID 
C OMEGAL = THE LOWER BOUND ON OMEGA USED IN INTEGRATION
C OMEGAU ■ THE UPPER BOUND ON OMEGA USED IN INTEGRATION
C PODPC = CQS(PHIO-DPHI)
C PODPS - SIN(PHIO-DPHI)
C PSIO. PHIO = THE ROTATION ANGLES BETWEEN THE SUN 
C COORDINATE SYSTEM AND THE X-Y-Z COORDINATE SYSTEM
C PSIOC. PHIOC = THE COSINES OF PSIO AND PHIO 
C PSIOS. PHIOS = THE SINES OF PSIO AND PHIO
C PSIRD. PHIRD = THE ROTATION ANGLES. IN DEGREES, BETWEEN THE
C XR-YR-ZR AND THE X-Y-Z COORDINATE SYSTEMS
C PSIR, PHIR = PSIRD AND PHIRD IN RADIANS 
C PSIRC, PHIRC * THE COSINES OF PSIR AND PHIR 
C PSIRS, PHIRS = THE SINES OF PSIR AND PHIR 
C Q = THE DISTANCE FROM THE CENTER TO THE POINT 
C WHERE THE RAY STRIKES THE RECEIVER
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C RIMCI (1*1,7) - USED TO COMPUTE THTAZ 
C SIGMA * SIGMAD IN RADIANS
C SIGMAC. SIGMAS = THE COSINE AND THE SINE OF SIGMA 
C THTAR * THTARD IN RADIANS
C THTARC. TATARS = THE COSINE AND THE SINE OF THTAR 
C XNRMAL = THE X-COMPONENT OF THE OUTWARD NORMAL 
C TO THE RECEIVER AT Q
C YNRMAL = THE Y-COMPONENT OF THE OUTWARD NORMAL 
C TO THE RECEIVER AT Q
C XYNRML ■ PROJECTION OF THE NORMAL TO THE RECEIVER 
C INTO THE XY-PLANE
C XR.YR.ZR * COMPONENTS OF THE NORMAL IN TERMS OF 
C XR-YR-ZR COORDINATE SYSTEM
C Z = THE DISTANCE FROM THE CENTER TO A POINT ON THE 
C CENTRAL AXIS OFTHE RECEIVER
C ZNRMAL = THE Z-COMPONENT OF THE OUTWARD NORMAL TO 
C THE RECEIVER AT Q
C 
C
C OUTPUT VARIABLES 
C LI=NUMBER OF BOUNCES
C QQ = TEMPORARY VARIABLE USED TO PRINT THE VALUE OF Z 
C SUM = USED TO COMPUTE THE OMEGA INTEGRAL 
C SUMA = USED TO FIND THE TOTAL CONCENTRATION (N-1,5)
C
c
c PROGRAM CONSTANTS

CALL ERRSET(208,256,-1)
HALFPI=2.*ATAN(1.)
PI=2.*HALFPI 
RADIAN=PI/180.
TW0PI=2,*PI 
MXNP=65 
MXLB=5 

C
DO 14 MM=1,5 

DO 16 NN=1,100
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SUM(NN,MM)=0.
16 CONTINUE 
14 CONTINUE 

C
C INPUT VARIABLES 

WRITE(6.208)
208 FORMAT(/20X,’ INPUT*,/,/)

READ(5,197) ITITLE
197 FORMAT(6A4)

WRITE(6,198) ITITLE
198 F0RMAT(11X,6A4,/,/)

READ(5,199) DPSID.DPHID 
WRITE(6,202)DPSID,DPHID 
READ(5,299) SIGMAD,ED.AD
READ(5,299) THTARD.GAMMAD.PHID
WRITE(6.203)SIGMAD.ED.AD,THTARD.GAMMAD,PHIDD
WRITE(11.222)ED.AD.GAMMAD

222 FORMATCELE =,,F10.3.* AZI = * .F10.3, * TILT=* .F10.3)
199 FORMAT(2F10.5)
299 F0RMATC3F1O.5)
202 FORMAT(* BOILER-SUN ALIGNMENT PARAMETERS:*,/.

* • DELTA PSI (DPSID) = *,F10.5,/,
* t DELTA PHI (DPHID) = ’,F10.5)

203 FORMAT(/.* SUN PARAMETERS:*,/.
* • SUN CONE HALF ANGLE (SIGMAD) = *.F10.5,/,
* • SUN POSITION:*,/,
* t ELEVATION (ED) = ’.F10.5,/.
* • AZIMUTH (AD) = *,F10.5,/,/,
* » DISH PARAMETERS: *,/.
* • DISH HALF-ANGLE (THTARD) = ’.F10.5,/,
* » DISH ALIGNMENT: *,/,
* • GAMMAD = *,F10.5./ .
* • PHID = *.F10.5)
READ(5,399) REFC,ISTEPS 
WRITE(6.204)REFC.ISTEPS 

399 FORMAT(F10.5,15)
204 FORMAT(/.
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* • REFLECTION CONSTANT - ’,F10.5,/,
* • ISTEPS -MS./)
READ(5.1) STPHIR,SPPHIR,DPHIRD
WRITE(6,205)STPHIR.SPPHIR.DPHIRD

1 FORMAT(3F7. 2)
205 FORMAT(

* ’ START PHIR (STPHIR) - ’ ,F5.0,/,
* ■ STOP PHIR (SPPHIR) = ',F5.0,/ ,
1 • DELTA PHIR (DPHIRD) = ’,F5.2,/)
READ(5,2) NZRR
WRITE(6,206)NZRR

2 FORMAT(15)
206 FORMAT(

* * NUMBER OF Z-INTERVALS (NZRR) -*.15)
DO 3 1=1,NZRR
READ(5.4) NZZ(I).ZSTART(I).ZSTOP(I)
WRITEC6,207)1,NZZ(I).ZSTART(I).ZSTOP(I)

4 F0RMAT(I5.2F6.3)
207 FORMAT(* FOR I = ’ .15./,

* * NUMBER OF Z VALUES (NZZ) -MS./.
1 ’ ZSTART = ’ .F5.3,,
* • ZSTOP = \TB.3)

3 CONTINUE
209 FORMAT(

* • ZETAD = *.F5.3./
* * RTOP = *,F6.4,/)
ZTOP=ZSTART(l)
READ(5,11)ZETAD,RTOP 

11 FORMATC2F10.5)
ZETA=ZETAD>i'RADIAN 
TNZETA=TAN(ZETA)
TPSCS=TU'OPI/COS(ZETA)
IFCRTOP.LT.0) RTOP=ZTOP*TNZETA 
WRITE(6.209) ZETAD,RTOP 
DRTOP=RTOP-ZTOP*TNZETA 
CSZETA=COS(ZETA)
SNZETA=SIN(ZETA)
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READ(5.499)TIRIS.HIRIS 
WRITE(11.223)THTARD.TIRIS.HIRIS 

223 FORMATOTHTAR=',F10.3,* TIRIS= \F10.3,' HIRIS*’,F10.3) 
499 FORMAT(2F7.2)

WRITE(6.210)TIRIS,HIRIS
210 FORMAT(/,10X.’IRIS ANGLE(TIRIS) =’,F7.2./,

* lOX.’IRIS HEIGHT ANG(HIRIS)*’,F7.2)
C
C CONVERSION FROM DEGREES TO RADIANS 

DPSI*DPSID*RADIAN 
DPHI=DPHID*RADIAN 
PHID=PHIDD*RADIAN 
GAMMA=GAMMAD*RADIAN 
E*ED*RADIAN 
A*AD*RADIAN 
SIGMA=SIGMAD*RADIAN 
THTAR*THTARD*RADIAN 

C
C CALCULATION OF TRIG CONSTANTS 

PHIDC=COS(PHID)
PHIDS=SIN(PHID)
AMPH*A-PHID 
AMPHC*COS(AMPH)
AMPHS=SIN(AMPH)
SIGMAS=SIN(SIGMA)
SIGMAC=COS(SIGMA)
EC*COS(E)
ES=SIN(E)
GAMMAC*COS(GAMMA)
GAMMAS=SIN(GAMMA)
THTARC=COS(THTAR)
C0NST=12.*PI*SIN(.5*SIGMA)**2 
DPSIC=COS(DPSI)
DPSIS*SIN(DPSI)
DPHIC=COS(DPHI)
DPHIS=SIN(DPHI)

C
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C CALCULATION OF ADDITIONAL RIM CONSTANTS FOR ALTERNATE RIM SHAPE
C WHERE All. A12....  A33 ARE ENTRIES OF THE TRANSITION MATRIX
C ( SEV -> DMA) * (FGES -> SEV)=(F-G-ES)-->(D-M-A)

A11=GAMMAC*ES*AMPHC + GAMMAS*EC
A12—GAMMAC*AMPHS
A13®GAMMAC*EC*AMPHC - GAMMAS*ES
A21»ES*AMPHS
A22=AMPHC
A23=EC*AMPHS
A31-ES*GAMMAS*AMPHC-EC+GAMMAC
A32=-GAMMAS*AMPHS
A33-EC*GAMMAS*AMPHC+ES*GAMMAC
D=A13
XM=A23
AI=A33
IF(D**2+XM**2 .EQ. 0.0) THEN 
PHIDP=0.0 

ELSE
PHIDP=ATAN2(XM,D)

END IF
PHIDPC=COS(PHIDP)
PHIDPS-SIN(PHIDP)

C
C FOR MULTIPLE BOUNCES. INITIALIZE ARRAY SUMA 

DO 5009 LBN=1.MXLB 
DO 5019 Jl-l.MXNP 

DO 5029 NL=1,100 
SUMA(NL.J1,LBN)=0.

5029 CONTINUE 
5019 CONTINUE 
5009 CONTINUE

C BEGIN LOOP FOR AZIMUTHAL ANGLE (PHIR)
PHIRD*STPHIR 

C AREA = 0.0 
JST0P=1
IF (DPHIRD .NE. 0.) JST0P=(SPPHIR-STPHIR)/DPHIRD+1.01 
DO 250 J=1,JSTOP
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PHIR=PHIRD*RADIAN 
PHIRC=COS(PHIR)
PHIRS=SIN(PHIR)

C
C BEGINNING OF Z LOOP

DO 600 K-i.NZRR 
Z=ZSTART(K)
IF(HZZ(K) .LE. 1) GO TO 5000 

5001 DZ=(ZSTOP(K)-ZSTART(K))/(NZZ(K)-1)
5000 NZSTOP=NZZ(K)

DO 3000 NZ=1.NZSTOP
CALL BOILER(Z.PHIR,PSIR,XR.YR,ZR) 
PSIRC=COS(PSIR)
PSIRS=SIN(PSIR)

C
C CALCULATION OF PSIO

PSIOC=DPSIC*PSIRC+DPSIS*PSIRS*PHIRC 
PSIO^ACOS(PSIOC)
PSIOS=SIN(PSIO)
C0EFF1«DPSIC*PSIRS*PHIRC-DPSIS*PSIRC
C0EFF2*PSIRS*PHIRS

C
C CALCULATION OF PHIO

IF (ABS(PSIO) .GT. 0.0) GO TO 15 
10 PHIOsO.

GO TO 20
15 PHI0C=DPHIC*C0EFF1-DPHIS*C0EFF2

PHI0S=DPHIS*C0EFF1+DPHIC*C0EFF2 
PHI0»ATAN2(PHIOS.PHIOC)

20 PHIOC=COS(PHIO)
PHIOS=SIN(PHIO)

C
C CALCULATION OF THE RECEIVER CONSTANTS 

PODPC=COS(PHIO-DPHI)
PODPS*SIN(PHIO-DPHI)
ZNRMALssXR*(PSIOS*DPSIC*PODPC+PSIOC*DPSIS) 

* + YR*PSIOS*PODPS
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1 + ZR*(PSIOS*DPSIS*PODPC-PSIOC*DPSIC)
XHRMAL=XR*(PSIOC*DPSIC*PODPC-PSIOS*DPSIS)

* + YR*PSIOC*PODPS
1 + ZR*(PSIOC*DPSIS*PODPC+PSIOS*DPSIC)

YMRMAL=XR*DPSIC*PODPS - YR*PODPC + ZR*DPSIS*PODPS 
XYNRML=SQRT(1.-ZNRMAL**2)
IF (ABS(XYIIRML) .LT. .0001 .OR. (ABS(XNRMAL) .LT. .0001 

1 .AND. ABS(YNRMAL) .LT. .0001)) GO TO 8526
ALPHA=ATAN2(YNRMAL.XNRMAL)
GO TO 993 

8526 ALPHA =0.0
C
C CALCULATION OF ADDITIONAL RIM CONSTANTS 

993 CONTINUE
C CALCULATE THE ENTRIES OF THE TRANSITION MATRIX (X-Y-Z)-->(D-M-A)
C THE 1ST ROVJ CONTAINS R11.R12.R13, THE 2ND ROW CONTAINS R21,
C R22. R23, AND THE 3RD ROVJ CONTAINS R31.R32.R33

R11=PSI0C*(PHIOC*All + PHI0S*A12) + PSI0S*A13 
R12=PHI0S*A11 - PHI0C*A12
R13=PSI0S*(PHI0C*A11 + PHI0S*A12) - PSI0C*A13
R21=PSI0C*(PHI0C*A21 + PHI0S*A22) + PSI0S*A23
R22=PHI0S*A21 - PHI0C*A22
R23=PSI0S*(PHI0C*A21 + PHI0S*A22) - PSI0C*A23 
R31=PSI0C*(PHI0C*A31+PHI0S*A32)+PSI0S*A33 
R32=PHI0S*A31-PHI0C*A32 
R33=PSI0S*(PHIOC*A31+PHI0S*A32)-PSI0C*A33 

C
C THE FOLLOWING ARE THE ENTRIES OF THE TRANSITION MATRIX 
C FROM (X-Y-Z)-->(DP-MP-AP)
C THESE ARE USED IN THE IRIS ROUTINE 

S11=R11*PHIDPC+R21*PHIDPS 
S12=R12*PHIDPC+R22*PHIDPS 
S13=R13*PHIDPC+R23*PHIDPS 
S21=-R11*PHIDPS+R21*PHIDPC 
S22=-R12*PHIDPS+R22*PHIDPC 
S23=-R13*PHIDPS+R23*PHIDPC 
S31=R31
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S32-R32
S33=R33

C
C NOMEGA IS THE NUMBER OF INTERVALS

IF (SIGMA .LT. PSIO) GO TO 40 
45 OMEGAL(1)=ALPHA-HALFPI

OMEGAU (1) = ALPH A+HALFPI 
OMEGAL(2)=ALPHA+HALFPI 
OMEGAU(2)=ALPHA+HALFP1*3.
H0MEGA=2 
GO TO 90

40 0MEGA1=AC0S(SQRT((SIGMAC**2-PSI0C**2)/PSI0S**2))
OMEGAU(1)=OMEGA1 
0MEGAL(1)=-0MEGA1 
0MEGAL(2)=PI-0MEGA1 
OMEGAU(2)=PI+0MEGA1 
N0MEGA=2 

C
C THE W-INTEGRATION AND THE BETA-INTEGRATION ARE PERFORMED IN 
C SUBROUTINE INTGRL, SIMPSON’S RULE IS USED ON THE U-INTEGRATION 

90 DO 100 M0MEGA=1,NOMEGA
CALL INTGRL(SUM)

100 CONTINUE
QQ(NZ)=Z

3000 Z=Z+DZ
C END OF INTEGRATION-BEGIN PRINT OUT 

DO 500 L=l,NZSTOP 
C WRITE(6.501)Qq(L)

DO 505 LBN=1,MXLB 
SUMA(L.J.LBN)=0.
SUM(L.LBN)=SUM(L.LBN)/CONST*REFC**LBN 
SUMA(L,J,LBN)=SUMA(L,J,LBN) + SUM(L.LBN)

501 FORMAT(’ Z=’,F8.4)
C WRITE(6.502)LBN.SUM(L.LBN)

502 FORMAT(’ BOUNCE NUMBER3’
* .11.' CONCENTRATION3’,F14.4)

505 SUM(L.LBN)=0.
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500 CONTINUE
503 FORMAT(’ TOTAL CONCENTRATION3’,F14.4,/,/)

PHIRD=PHIRD+DPHIRD 
250 CONTINUE

WRITE(6,5280) ITITLE.SIGMAD.ED.AD,
* THTARD,GAMMAD,TIRIS,HIRIS 
WRITE(6,5290)

5280 FORMATCl* .eSC = ’),/,/,/. 24X,’SOLAR CONCENTRATION * , / , / .
* 5X.6A4.7X.
* ’SUN HALF-ANGLE =’.F7.3.’ DEG.’./.5X.
* ’ELEVATION ANGLE 3 ’.F4.1,’ DEG. AZIMUTH ANGLE 3 ’.
* F5.1, ’ DEG.’,/,5X,
* ’DISH HALF-ANGLE 3 ’.F4.1.’ DEG.’,8X.’TILT ANGLE 3 ’,
* F4.1,’ DEG.’,/,8X,
* ’IRIS OPENING 3 ’ ,F4.1,’ DEG.’.7X.’IRIS HEIGHT 3
* F4.1,’ DEG.’/,/)

5290 FORMAT(1X,68(’3’),/,8X,’----’.16X,’AVERAGE CONCENTRATION’.
*16X,’----’./.3X.’Z’.7X.’BOUNCE 1 BOUNCE 2’.
* ' BOUNCE 3 BOUNCE 4 BOUNCE 5 COMBINED’.
* /,IX,68(’3’)/)
NLINE316
DO 520 LBN=1.MXLB 

POWER(LBN) 3 0.
520 CONTINUE

DO 529 NL=1.NZSTOP
ACONE=TPSCS*(DRTOP+QQ(NL)*TNZETA)*DZ 
CAVG=0.
DO 530 LBN=1,MXLB
AVG3BERGMB(NL.LBN.SUMA)/TWOPI
BAVG(LBN)=AVG
CAVG=CAVG+AVG

530 CONTINUE 
NLINE=NLINE+1 
CALL PAGE(NLINE)
WRITE(6.531) QQ(NL).(BAVG(LBN),LBN31,MXLB).CAVG 
WRITE(11,5310) QQ(NL).(BAVG(LBN),LBN=1.MXLB).CAVG

531 FORMAT(IX,F6.4,2X,6F10.4)
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5310 FORMATCF6.4.2X.6F10.4)
DO 540 LB1I-1.MXLB
POWER(LBN)=POWER(LBN)+BAVG(LBN)*AC ONE

540 CONTINUE 
529 CONTINUE

T0TPWR=O.
DO 543 LBN-1.MXLB

TOTPWR=TO TPWR+POWER(LB N)
543 CONTINUE

CALL PAGE(NLINE)
WRITE(6.542)
WRITE(6,541) (POWER(LBH).LBN-1.MXLB).TOTPWR 
WRITE(11,*)'*****************************'
WRITE(11.5410) (POWER(LBN).LBN-1.MXLB).TOTPWR

541 FORMAT(’ TOTAL*,/.* POWER \6F10.4)
5410 FORMAT(8X.6F10.4)

WRITE(6.542)
542 FORMAT(1X,68(,=*))

WRITE(6.8343)
8343 FORMATCl* ,/./,/, * NORMAL TERMINATION*)

ENDFILE 11
STOP
END

C*DECK INTGRL
SUBROUTINE INTGRL(SUM)

C*** INTGRL PERFORMS THE OMEGA AND BETA INTEGRATIONS 
C AND COMPUTES SUM. WHICH IS RETURNED TO THE 
C MAIN PROGRAM.
C
C***WRITTEN BY: R.M.ANDERSON. ASSISTED BY CLINT DAWSON 
C CATHY NORWOOD. AND READ JOHNSTON
C DATE WRITTEN: 06/01/80 
C
C***EXPLANATION OF VARIABLES:
C BETAL « LOWER LIMIT ON BETA USED IN THE INTEGRATION 
C BETAMI = MINIMUM VALUE OF BETA FOUND WHEN CONSIDERING RIM-CUTOFF 
C AND SHADOWING EFFECTS
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C BETAMX * MAXIMUM VALUE OF BETA FOUND WHEN CONSIDERING RIM-CUTOFF 
C AND SHADOWING EFFECTS
C BETAPK = THE VALUE OF BETA CORRESPONDING TO THE 
C MAXIMUM VALUE OF PSI FOR A GIVEN VALUE OF Q
C BETASM * BETAL + BETAU 
C BETAT = BETAU - BETAL
C BETAU = UPPER LIMIT ON BETA USED IN THE INTEGRATION 
C BL = THE LOWER BOUND ON BETA WHEN CONSIDERING THE RELATIONSHIP 
C BETWEEN BETA. PSIP. AND PSIM
C BU = THE UPPER BOUND ON BETA WHEN CONSIDERING THE RELATIONSHIP 
C BETWEEN BETA. PSIP. AND PSIM
C CONSTW = A CONSTANT USED IN THE OMEGA INTEGRATION 
C DOMEGA = (OMEGAU - OMEGAL)/ISTEPS 
C ETA, BETA = USED TO COMPUTE PSIP AND PSIM 
C NBC. XN = THE NUMBER OF BOUNCES
C OMEGA ■ THE AZIMUTHAL ANGLE MEASURED CLOCKWISE FROM THE X-AXIS 
C PSIM = ANGLE BETWEEN THE RECEIVER AND THE 
C LEFT EDGE OF THE SUN CONE IN THE
C PLANE OMEGA=CONSTANT
C PSIP = ANGLE BETWEEN THE RECEIVER AND THE 
C RIGHT EDGE OF THE SUN CONE IN THE
C PLANE OMEGA-CONSTANT
C PSIPK = MAXIMUM VALUE OF PSI FOR A GIVEN N AND Q
C QSBETA = Q TIMES THE SINE OF BETAPK
C RHO » USED TO FIND BETAMX TO ASSURE THAT THE DOT PRODUCT IS 
>= 0
C SB = USED TO COMPUTE THE BETA-INTEGRAL 
C SUM1 = USED TO COMPUTE THE BETA INTEGRAL 
C THTAW - USED TO COMPUTE THTAZP 
C THTAZ = USED TO FIND THTAZP AND THTAZM 
C THTAZE = THETA-EFFECTIVE, USED TO COMPUTE BETAMX
C THTAZM = THE ANGLE BETWEEN THE RECEIVER AND THE LEFT RIM
C THTAZP = THE ANGLE BETWEEN THE RECEIVER AND THE RIGHT RIM
C
c**********

REAL SUMC100.5)
REAL BL(2),BU(2)
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INTEGER NBETA
COMMON /BLOCKA/ MOMEGA,ISTEPS.OMEGAL(2).OMEGAU(2).XYNRML,

* ALPHA.NZ,ZNRMAL.PSIOS.PSIOC.SIGMAC.
* R31.R32.R33.THTARC,THTAW.TIRIS.HIRIS 
COMMON /BLOCKS/ PSIP.PSIPK,PSIM.BETAPK.Q.NBC.

* TNZETA.DRTOP.CSZETA,SNZETA
COMMON /CUT/ THTAR.GAMMAC.ES,A.PHID,GAMMAS.EC.PHIOC.PHIOS 
COMMON /GLOBAL/ HALFPI.PI.TWOPI,RADIAN 

C THE W-INTEGRATION—ISTEPS IS THE HUMBER OF 
C INTEGRATION STEPS/INTERVAL 
C SIMPSON’S RULE IS USED 

UNIT=-1.
DOMEGA=(OMEGAU(MOMEGA)-OMEGAL(MOMEGA))/ISTEPS 
DO 101 1=2.ISTEPS

OMEGA=OMEGAL(MOMEGA)+(I-1)*DOMEGA 
OMEGAC=COS(OMEGA)
CONSTW=(3.-UNIT)*DOMEGA 
OMEGAS=SIN(OMEGA)
RH0=ATAN2(XYNRML*COS(OMEGA-ALPHA).ZNRMAL)

C
C CALCULATION OF PSIM,PSIP

ETA=ATAN2(PSIOS*OMEGAC.PSIOC)
BETA=AC0S(SIGMAC/SQRT(PSI0C**2+(PSI0S*0MEGAC)**2))
PSIP=ETA+BETA
PSIM=ETA-BETA

C
C CALCULATION OF EFFECTIVE RIM ANGLE PARAMETERS 
C**** THIS IS TO FIND THETAZ-PLUS AND THETAZ-MINUS 
C WHEN AN IRIS IS ATTACHED TO THE USUAL DISH 

CALL IRIS(OMEGA.THTAZP,THTAZM.IFLAG)
IF (IFLAG .EQ. 1) GO TO 101 
IF (THTAZP .LE. 0.0) GO TO 101 
THTAZM=AMAX1(0..THTAZM)
THTAZP®AMIN1(THTAZP.PI-THTAZP-PSIP-PSIM)
IF (THTAZP .LE. THTAZM) GO TO 101 

C
C CALCULATION OF MINIMUM AND MAXIMUM BETA AND EFFECTIVE RIM ANGLE
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C BETAMI.BETAMX AND THTAZE.RESPECTIVELY 
BETAMI=0.
IF (THTAZM .LE. 0.0) GO TO 302 
BETAMI=ATAN2(SIN(THTAZM).(COS(THTAZM)-Q))

302 BETAMI * AMAX1(BETAMI.-HALFPI+RHO)
DO 370 NBC=1,5 

XN-NBC
THTAZE=(2.*XN-1.)*THTAZP+(XN-1.)*(PSIP+PSIM-PI)
IF ((THTAZE-THTAZM) .LE. 0.0) GO TO 300 
BETAMX-ATAN2(SIN(THTAZE).(COS(THTAZE)-Q)) 
BETAMX=AMIN1(BETAMX.PI.HALFPI+RHO)

C
C CALCULATION OF BETA-PEAK AND PSI-PEAK 

IF (Q .GT. .5) GO TO 305 
IF(NBC .GT. 1) GO TO 305 
BETAPK=0.0 
PSIPK=0.0 
GO TO 306

305 QSBETA=SQRT(((2. *X1I*Q) **2-1. )/((2. *XN) **2-1.))
BETAPK=ASI1I (QSBETA/Q)
PSIPK = 2. *XN*ASIII (QSBETA) -BETAPK- (XII-1.) *PI 

C
C CONSIDERATION OF THE RELATIONSHIP BETWEEN PSIM.PSIP,PSIPK

306 IF (PSIM .GE. PSIPK) GO TO 300
CALL BLIMIT(BL.BU.HBETA)

C
C TEST INTERVALS OF INTEGRATION FOR RIM EFFECTS

SUM1-0.
DO 360 MBETA-1.NBETA

BETAL=AMAX1(BL(MBETA).BETAMI)
BETAU=AMIN1(BU(MBETA).BETAMX) 
BETAT=BETAU-BETAL 
BETASM-BETAU+BETAL 
IF (BETAT .LE. 0.0) GO TO 360 
SB=.5*(BETAT-SIN(BETAT)*

* COS(BETASM))*COS(OMEGA-ALPHA)
SUM1-SUM1+.5*ZNRMAL*SIN(BETAT)
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*SIN (BETASM) +SB*XYIIRML
360
370
300

CONTINUE
SUM(NZ.NBC)-SUM(NZ.NBC)+SUM1*C0HSTW 

CONTINUE
101 UNIT=-UNIT 

RETURN 
END

C*DECK SOLN
FUNCTION SOLN(BETA.PSI)

C*** FUNCTION SOLN COMPUTES BL AND BU USING NEWTON’S METHOD 
C
C***WRITTEN BY: R.M.ANDERSON 
C***DATE WRITTEN: 06/01/80 
C
C***EXPLANATION OF VARIABLES 
C BETA = FIRST GUESS FOR SOLN
C PSI = BETA - (2*NBC*SIN(Q*SIN(BETA)) + (NBC-1)*PI 
C Q = VECTOR FROM CENTER OF DISH TO POINT ON THE RECEIVER 
C NBC = BOUNCE NUMBER 
C

COMMON /BLOCKS/ PSIP.PSIPK,PSIM.BETAPK.Q.NBC.
* TNZETA.DRTOP.CSZETA.SNZETA 
COMMON /GLOBAL/ HALFPI,PI.TWOPI.RADIAN 
A=BETA
B=PSI
XN-NBC
B=B+(XN-1.)*PI 
DO 10 1=1,30 

QAS-Q*SIN(A)
DELA= (B-2 . *XN*ASIN (QAS)+A) / (1. -2. *Q*X1I*C0S(A) /

* SQRT(1.-QAS**2))
A=A-DELA
IF (ABS(DELA) .LE. .0001) GO TO 300

11 IF (A .LT. 0.0) GO TO 200
12 IF (A .GT. PI) GO TO 200
10 CONTINUE

WRITE(6.100)
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100 FORMAT(' ITERATION 
GO TO 300

DID NOT CONVERGE')

200 WRITE(6,201)
201 FORMAT(* ITERATION 

A=0.
DIVERGED')

300 SOLN=A
RETURN
END

C*DECK BLIMIT
SUBROUTINE BLIMIT(BL,BU,NBETA)

C
REAL BL(2),BU(2)
INTEGER NBETA
COMMON /BLOCKB/ PSIP.PSIPK.PSIM,BETAPK,Q.NBC,

* TNZETA.DRTOP.CSZETA.SNZETA
COMMON /GLOBAL/ HALFPI,PI.TWOPI.RADIAN 

C**** CONSIDERATION OF THE RELATIONSHIP BETWEEN PSIM.PSIP.PSIPK 
C IN ORDER TO DETERMINE THE BETA-LIMITS OF INTEGRATION 
C
C***WRITTEN BY: R.M. ANDERSON, ASSISTED BY CLINT DAWSON,
C CATHY NORWOOD, AND READ JOHNSTON
C***DATE WRITTEN: 06/01/83 
C
C***EXPLANATION OF VARIABLES:
C BL(2) = ARRAY CONTAINING LOWER BETA-LIMITS 
C BU(2) = ARRAY CONTAINING UPPER BETA-LIMITS 
C NBETA = NUMBER OF BETA-REGIONS OVER WHICH TO INTEGRATE 
C NBETA=1 OR 2
C BETA = THE FIRST GUESS FOR BL(I) OR BU(I) TO BE 
C USED IN SUBROUTINE SOLN
C

IF (PSIM .LT. 0.0) GO TO 320 
C
C PSIM >=0

IF (PSIP .LT. PSIPK) GO TO 315 
C
C PSIM >=0 AND PSIP>=PSIPK
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G1=SQRT((PSIPK-PSIM)/(PSIPK+(NBC-1)*PI)) 
BETA-BETAPK*(1.-G1)
BL(1)=S0LN(BETA.PSIM)
BETA=BETAPK*(1.+G1)
BU(1)=SOLH(BETA.PSIM)
NBETA=1 
GO TO 350 

C
C PSIM>=0 AND PSIP<PSIPK

315 G1=SQRT((PSIPK-PSIM)/(PSIPK+(MBC-1)*PI)) 
G2=SQRT((PSIPK-PSIP)/(PSIPK+(HBC-1)*PI)) 
BETA=BETAPK*(1.-Gl)
BL(1) =30111 (BETA, PSIM)
BETA® BETAPK*(1.-G2)
BU(1)=S0LN(BETA.PSIP)
BETA=BETAPK*(1.+G2)
BL(2)=SOLN(BETA.PSIP)
BETA=BETAPK*(1.+G1)
BU(2)=S0LII (BETA. PSIM)
NBETA=2 
GO TO 350 

C
C PSIM<0

320 IF (PSIP .GT. PSIPK) GO TO 325 
IF (PSIP .GT. 0.0) GO TO 323 

C
C PSIM<0 AND PSIP<=0 AND SINGLE BOUNCE 

322 IF (NBC .GT. 1) GO TO 391 
390 G1=SQRT((PSIP-PSIPK)/(-(NBC*PI+PSIPK)))

G2=SQRT((PSIM-PSIPK)/(-(NBC*PI+PSIPK))) 
BETA=BETAPK+(PI-BETAPK)*G1 
BL(1)=S0LN(BETA.PSIP)
BETA=BETAPK+(PI-BETAPK)*G2 
BU(1)=S0LN(BETA.PSIM)
NBETA®1 
GO TO 350
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C PSIM<0 AND PSIP<=0 AND MULTIPLE BOUNCE 
391 BL(1)=SOLN(0..PSIM)

BU(l)=SOLN(BL(1).PSIP)
G1*SQRT((PSIP-PSIPK)/(-(NBC+PI+PSIPK))) 
BETA-BETAPK+(PI-BETAPK)*G1 
BL(2)«SOLN(BETA,PSIP)
BU(2)=SOLN(BL(2).PSIM)
NBETA=2 
GO TO 350

C
C PSIM<0 AND 0<=PSIP<=PSIPK 

323 BL(1)=0.
IF (NBC .LE. 1) GO TO 374 
BL(1)=S0LN(0..PSIM)

374 G1=SQRT((PSIPK-PSIP)/(PSIPK+(HBC-1)*PI))
BETA=BETAPK*(1.-Gl)
BU(1)=S0LN(BETA.PSIP)
BETA=BETAPK*(1.+G1)
BL(2)=S0LN(BETA.PSIP)
G2=SQRT((PSIM-PSIPK)/(-(NBC*PI+PSIPK))) 
BETA=BETAPK+(PI-BETAPK)*G2 
BU(2)-SOLN(BETA.PSIM)
MBETA-2 
GO TO 350

C
C PSIM<0 AND PSIP>PSIPK 

325 BL(1)=0.
IF (NBC .LE. 1) GO TO 376 
BL(1)=SOLN(0.,PSIM)

376 G1=SQRT((PSIM-PSIPK)/(-(NBC*PI+PSIPK))) 
BETA-BETAPK+(PI-BETAPK)*G1 
BU(1)-SOLN(BETA.PSIM)
NBETA-1 

350 RETURN 
END

C*DECK BOILER
SUBROUTINE BOILER(Z.PHIR.PSIR.XR.YR.ZR)
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c
C*** GENERAL BOILER SUBROUTINE.
C

COMMON /BLOCKB/ PSIP,PSIPK,PSIM.BETAPK.Q.NBC,
* TNZETA,DRTOP.CSZETA.SNZETA
COMMON /GLOBAL/ HALFPI.PI.TWOPI.RADIAN 

C
RADIUS=DRTOP+Z*TNZETA 
Q=SQRT(RADIUS**2+Z**2)
PSIR-ATAN2(RADIUS.Z)
XR=COS(PHIR)*CSZETA
YR»SIN(PHIR)*CSZETA
ZR=SNZETA
RETURN
END

C*DECK IRIS
SUBROUTINE IRIS(OMEGA.THTAZP.THTAZM.IFLAG)

C THIS ROUTINE WILL COMPUTE THTAZP AND THETAZM FOR A GIVEN 
C OMEGA ANGLE.THE RIM ANGLE OF THE DISH IS THTAS(l)
C AND THE RIM ANGLE OF THE IRIS IS THTAS(2)
C
C WRITTEN BY 
C DR. R. M. ANDERSON
C AND
C M. N. OBEYESEKERE
C WRITTEN ON: 5/18/86 
C 
C

REAL THTAS(2),FIRPLS.FIRMNS,ARG
COMMON /ENTRY/ Rll,R21,R12,R22,R13.R23
COMMON /CUT/ THTAR.GAMvIAC.ES.A.PHID,GAMMAS.EC.PHIOC.PHIOS
COMMON /BLOCKA/ MOMEGA.ISTEPS.OMEGAL(2).OMEGAU(2).XYNRML,

*ALPHA,NZ.ZNRMAL.PSIOS.PSIOC.SIGMAC.
*R31,R32.R33.THTARC,THTAW 
COMMON /GLOBAL/ HALFPI.PI.TWOPI.RADIAN
COMMON/IRS/HIRIS. TIRIS. S11. S12, S13. S21. S22. S23. S31. S32. S33 
IFLAG=0
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TEST=0.0
OMEGAC=COS(OMEGA)
OMEGAS-SINCOMEGA)
THTARC=COS(THTAR)
THTARS=SIN(THTAR)
PHIZRO«TIRIS*RADIAll*0.5
THTAS(1)=THTAR
THTAS(2)=HIRIS*RADIAN
DEN«SQRT((S31*0MEGAC+S32*0MEGAS)**2+S33**2)
IFCDEN.EQ.0.0)THEM 

IFLAG=1 
RETURN 

END IF
ARG=COS(THTAS(2))/DEN 
IF(ABS(ARG).GT.1.0)THEN 

IFLAG=1 
RETURN 

END IF
THTABI=ACOS(ARG)
THTAA«ATAN2(-(S31*0MEGAC+S32*0MEGAS).-S33)
THTAZM-AMAX1(0.0,(THTAA-THTABI))
THTAZ -THTAA+THTABI
UP-(S21*0MEGAC+S22*0MEGAS)*SIII (THTAZ)+S23*C0S(THTAZ) 
DVfN-(SI 1*0MEGAC+S12*0MEGAS)*SI1I (THTAZ)+S13*C0S (THTAZ) 
PHII*ATAN2(UP,DUN)
IF(ABS(PHII).GT.(PI-PHIZRO))THEN 
THTAZP=THTAZ 
RETURN 

END IF
ARG-COS (THTAS (1))/DE1I 
IF(ARG.GT.1.0)THEN 
IF(PHII.LE.0.0)THEN 
PHIR=PI+PHIZRO 

ELSE
PHIR=PI-PHIZRO 

END IF
PHIRS-SIN(PHIR)
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PHIRC=COS(PHIR)
A2-S21*0MEGAC+S22*0MEGAS
A1=S11*0MEGAC+S12*0MEGAS
THTAZ«ATAN((S23*PHIRC-S13*PHIRS)/(A1*PHIRS-A2*PHIRC)) 
THTAZP=THTAZ 

ELSE
THTAZP=THTAA+ACOS(ARG)

END IF 
90 RETURN 

END 
C 
C
C* DECK TRAP
CCTHIS IS USED ONLY IF AREA NEEDS TO BE COMPUTED)

REAL FUNCTION TRAP(N,DX,F)
C
C PURPOSE: THIS ROUTINE COMPUTES THE TOTAL CONCENTRATION OF SINGLE 
C BOUNCE BY USING TRAPEZOID RULE
C DATE WRITTEN: 31/03/86 
C AUTHOR: KIM HSU 
C

REAL F(N)
C

S = 0.0 
M = N-l 
DO 10 I = 2.M 

S = S + F(I)*2.0 
10 CONTINUE

S = S + F(l) + F(N)
TRAP = DX*S/2.0
RETURN
END

C*DECK BERGMB 
C

REAL FUNCTION BERGMB(NL.LB.SUMA)
C
C VARIABLES:
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THE HUMBER OF BOUNCE 
THE SUBSCRIPT OF Z

C LB
C NL
C

COMMON /GLOBAL/ HALFPI,PI.TOOPI.RADIAN 
REAL SUMA(100,65.5)
INTEGER NL 
REAL RMBS(5)
DO 10 K=1.5 

LJ=1
RMBS(K)=0
IST0P=2**K
H=TWOPI/FLOAT(ISTOP)
DO 20 1=1.ISTOP

RMBS(K)=H*SUMA(NL.LJ.LB) ^ RMBS(K)
LJ=LJ + 32/ISTOP 

20 CONTINUE 
10 CONTINUE 

K0UNT=O 
DO 30 J=1.4 

K0UHT=K0UNT+1 
CALL ACCEL(KOUIIT.J.RMBS)

30 CONTINUE
BERGMB=RMBS(1)
RETURN
END

C*DECK ACCEL
SUBROUTINE ACCEL(KOUNT.J.RSUM)
REAL RSUM(5)
INTEGER KOUNT.J
JST0P=5-J
DO 10 Jl=l,JSTOP

RSUM(J1) = (4**K0UNT*RSUM(J1 + 1) - RSUM(J1))/(4>k*K0U!IT-1) 
10 CONTINUE 

RETURN 
END

C*DECK PAGE 
C
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SUBROUTINE PAGE(LINE)
C
C PURPOSE: CONTROL PAGE LENGTH OF THE OUTPUT PAGE 
C DATE WRITTEN: 06/01/86 
C AUTHOR: KIM T. HSU 
C VARIABLES:
C LINE INPUT IS THE CURRENT NUMBER OF LINES. IF LINE
C IS GREATER THAN 51 THEN IN RETURN LINE IS
C EQUAL TO 6
C

IF(LINE.LE.51) GOTO 10 
WRITE(6,1000)
WRITE(6,2000)
LINE- 6

1000 FORMAT(1X,68(,=,),/,,1,>'CONTINUE...*)
2000 F0RMAT(1X,68(,=')./,8X,'----\16X.'AVERAGE CONCENTRATION',

*16X,’----',/,3X,'Z',7X,'BOUNCE 1 BOUNCE 2',
* * BOUNCE 3 BOUNCE 4 BOUNCE 5 COMBINED*.
* /,1X,68('=’)/)

10 RETURN
END
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BOILER
0.

0.267
30.
1.00
0.0

1
100

0.267
90.0

SHAPE: CONE
0.
60.
15.

50
360.00 11.25

.5 .995
-1.0

30.0
00.0

45.0


