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Abstract

This report develops analytical techniques for studying shallow spherical
segment bowls that have an attached tracking iris. The report extends
previous analytical models that were developed as part of the Crosbyton
Solar Power Project for the case of spherical segment bowls.

Three types of calculations are considered. First, effective apperture
formulas are derived for a spherical segment bowl with an iris, and results
are compared with the bowl without an iris. Secondly, analytical formulas
are derived to determine spillage losses for shallow bowls. Finally, the
powerful Ratio of Solid Angles (ROSA) computer code is extended to
include solar profiles for a spherical segment bow! with iris.

The report includes several plots comparing optical power concentration
ratios for solar bowls with and without an iris. A complete listing of the
extended code, ROSAIRIS, is given in the appendix.
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Chapter 1

Introduction

Previous analytical studies of solar profiles have concentrated on spherical
segment bowls with a cylindrical or conical receiver. These studies use the
ROSA (Ratio of Solid Angles) method of Reichert and Brock [1,2,3]. The
method was first applied to the case of an aligned, conical receiver and a
spherical segment mirror [1]. The results were then extended to account
for misalignment of the receiver in [4,5] and to other shaped receivers in
[6,7].

In this report, we extend the previous results to include solar profiles
for a spherical segment bowl with a tracking reflector mounted on its rim.
This concept was introduced by the French [8] for a 60° bowl and was called
a 'visor’. The term ’iris’ is used in the Crosbyton Solar Power Project for
such a mounted, tracking reflector.

In the solar bowl concept, the reflecting surface is fixed and the receiver
tracks the sun. Because the aperture plane of the bowl is fixed, the total
power captured by the bowl falls off as cos I, where I is the inclination
angle of the sun relative to the axis of symmetry of the bowl. The addition
of the tracking iris modifies this cosine loss and thereby increases the total
annual power captured by the solar bowl. A complete study of the eco-
nomics of adding an iris to a solar bowl requires that the increased annual
power output of the bowl be weighed against the increased construction
and operational costs of the bowl with iris. This report will provide the
mathematical background for such a study, but will not carry out the study.

The total solar energy entering a solar bowl with an iris can be calcu-
lated as a function of inclination angle, I, by considering the orthogonal



projection of the rim of the bowl onto an appropriate reference plane. These
calculations are carried out in Section 2. In the case of shallow bowls, some
of the energy entering the bowl cannot be captured by the receiver. This
is because a portion of the multiple bounce rays may spill over the edge of
bowl without striking the receiver. This loss of energy, called spillage, is
discussed in Section 3.

The calculation of detailed point-by-point concentrations on the receiver
is accomplished by application of the ROSA method. Section 4 gives a brief
review of the application of the ROSA method for the case of a receiver
in a spherical segment bowl. The method is extended to the case of an iris
in Section 5. The modified program is named ROSAIRIS. A comparison
of spherical segment bowl solar profiles and profiles for a spherical segment
bowl with iris is presented in Section 6.

A detailed description of all coordinate systems used in the calculations,
together with a derivation of all formulas, may be found in [[7]]. A listing of
the ROSAIRIS computer code is included in Appendix A of this report.



Chapter 2

Effective Aperture
Calculations

2.1 Introduction

This chapters presents results concerning the total energy entering a solar
bowl as a function of the angle of inclination, I, of the sun relative to the
axis of symmetry of the bowl. Results are presented for a spherical segment
bowl and for a spherical segment bowl with an iris. The results are obtained
by computing the orthogonal projection of the surface of the bowl unto a
reference plane that is perpendicular to the direction of the sun.

2.2 Spherical Segment Bowl

The geometrical parameters for a spherical segment solar bowl are shown
in Figure 2.1. The bowl has radius R and the angle 6y is called the rim
angle of the bowl. I denotes the inclination angle of the sun relative to
the axis of symmetry of the bowl, i.e., I is the angle between the axis of
symmetry of the bowl and the direction of the sun. We fix a reference
plane above the bowl with normal direction pointing towards the sun. The
perpendicular projection of the rim onto the reference plane forms an ellipse
in the reference plane and all input power to the bowl passes through this
ellipse. Thus, the total power entering the solar bowl is proportional to the



Figure 2.1: Solar Bowl Geometry



area of this ellipse. The projected area is given by
Aproj = mricos ], (2.1)

where r = Rsinfi. This projected area gives the effective aperture of the
bowl as a function of inclination angle J. This projection is illustrated in
Figure 2.2.

Generally, the bowl is tilted to the south for locations in the northern
hemisphere, and sun is located by an azimuth angle, 4 and an elevation
angle £. A is measured from the south axis and £ is measured from the
horizontal plane. The angle between the vertical and the axis of symmetry
is denoted by 4. In terms of these parameters, the inclination angle of the
sun relative to the axis of symmetry of the bowl is given by

cos I =sinvycos& cos A + cosysin €. (2.2)

2.3 Spherical Segment Bowl with Iris

For inclination angles of 90° or less, the effective aperture of a spherical
segment bow] with an iris is simply the sum of the effective apertures of
each part. In order to compute the effective aperture of the iris, we form the
perpendicular projection of the iris onto the reference plane and calculate
the projected area.

In order to carry out the calculations, we employ a collector fixed coor-
dinate system (see Figure 2.3) with origin at the center of symmetry, C, of
the bowl. The axes are called D, M, and A. The A axis is the symmetry
axis of the spherical segment bowl, D is directed to the south and M to
the east. Let e; denote a unit vector pointing from C to the center of the
sun, so that I is the angle between e; and the A-axis. If I # O define a
D'-axis by the projection of eg onto the D-M coordinate plane, and define
M' so that the D'-M’'-A coordinate system forms a right hand system. If
I = 0, we let D'-axis coincide with the D-axis. The surface of the iris can
be expressed parametrically, using spherical coordinates, as

D' = Rcos¢sind,

M Rsin ¢siné, (2.3)
A Rcosd,

]
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Figure 2.3: Geometrical Parameters for a Solar Bowl with Iris.



where 8 is the zenith angle of a point on the iris, (measured from the A-
axis), ¢ is an azimuthal angle measured from the D'-axis, and (¢, 6) lie in
some set S in the ¢-8 coordinate system. If the reference plane is horizontal,
the iris projects onto the planar region with coordinates

{ D' = Rcos ¢sind, (2.4)

M' = Rsin¢sin#,
where (¢,0) € §.

In order to find the planar area for other orientations of the reference
plane we rotate the reference plane through an angle I so that its normal
has the direction of e;. We define a local z-y-z coordinate system with
the z and y axes lying on the reference plane and the z axis having the
direction of eq, i.e. pointing towards the sun. Because the iris tracks the
sun, the projection of the iris will be symmetric relative to the z-axis in the
reference plane. A point on the iris with coordinates (¢, 8) has rectangular
coordinates (z,y, z), with

T cosI] 0 -sinlt Rcos¢sinb
y | = 0 1 0 Rsin¢sind
z sin] 0 coslt Rcos¥

The projection of this point onto the reference plane is given by

(2.5)

= R(cosIcos¢sind —sin I cosb)
y = Rsin¢sind.

The projected area is given by

Aproj = //; dz dy, (2.6)

where R is the region in the projected plane obtained from the orthogonal
projection of the iris.
The above integral is evaluated by integration in the (¢,8) variables.
The mapping
(¢,0) — (z,y) has Jacobian
—cos I sin¢siné cos ¢sind )
3

_ p?
J=R XDET(cos]cos¢cosﬂ+sin]5in¢ sin¢cos d



= —R*(cos I sinf cos 6 + sin I sin® 8 cos ¢).
Thus,

A1) = [[171d0a8
= R? /fs{cosIsin¢cos¢+sinIsin20cos¢|d¢d0 (2.7

We illustrate these results for the case where the iris is defined by

{n—¢os ¢ <m+¢o

1r—01$ 0 Sﬂ'—aR. (28)

The iris is illustrated on Figure 2.3. The projected area is given by

Aproj (I )

i

61 rdo
2R? / / [cos Isinfcos® + sin I sin? 8 cos qS] do¢ db
8r JO
= R? (cos I [sin2 6; — sin® HR] éo
+ sin I sin ¢g [01 — Og — %(sin 26; — sin 203)]) . (2.9)

This area is added to the area given in Equation 2.1 to get the effective
aperture of the bowl with iris. This gives

Ap = R? (cos I [¢>o sin® 0 + (7 — ¢y) sin® OR]
+sin I sin ¢y [01 — 0g - -;—(sin 20; — sin ZGR)D . (2.10)

For comparison purposes, it is instructive to normalize the effective
aperture of a bowl by dividing by its surface area. For a spherical segment
bowl with rim angle fg, the surface area is given by

SApowt = 2mR?(1 — cos 8y). (2.11)
The surface area for the iris described in Eq. 2.8 is given by
SAiris = 2R? |7 — (7 — ¢o) cos O — dpcos by). (2.12)
Thus, the total surface area is given by

SA = R?[47(1 — cos fg) + 2¢o(cos Or — cos 8))]. (2.13)

9



The normalized effective aperture is then

NAg =
cos I[¢0sin? 0rH{m—o) sin? Ir [+sin I sin go[f—9n—(sin 26r-sin 20p)/2) (2.14)
4r(l-cosfp)+2¢o(cos bp~cosb;) *

A plot of normalized effective aperture vs I is shown in Figure 2.4 for
the case where g = 30°, 8; = 45°, and ¢y = 45°. Curves are also shown for
spherical segment bowls with g = 30° and g = 60°. Note that the point
where the effective aperture is maximum occurs at an inclination angle of
near 10° as opposed to the 0° maximum for the cosine law curve for the
spherical segment bowl. '

The procedures discussed in the above example apply equally well to
other iris shapes. In every case, the effective aperture of the iris is deter-
mined by evaluating the integral in Eq. 2.7. Only the description of the set
$ varies from case to case, and thus it is only necessary to determine the
limits of integration in Eq. 2.7 and evaluate the resulting integral to treat
a given iris shape.

The graphs shown in Figure 2.4 include values calculated by the ROSA
computer code. The points marked by a "A” are computed values for
the spherical segment bowl with an iris, and the points marked by ” x”
are values for a 30° bowl. The apparent discrepences between theoretical
and computed values arise for shallow bowls because of spillage losses for
multiple bounce rays. These losses are discussed in the next chapter.

10



POWER/UNIT SURFACE AREA

NORMALIZED POWER VS INCLNATION ANGLE

1.0
),
) oy
12 S
0.8 A4
X
Fa
0.6 -
X
A
0.4 A
X A
0.2 4
X Al
X
0.0 1 1 1 T 1 B N 1
0 10 20 30 40 50 60 70 80

Figure 2.4: Comparison of Spherical Segment Bowls and a 30° Bowl with

an Iris.

INCLINATION ANGLE (DEGREES)

11

g0



Chapter 3

Spillage Calculations for
Shallow Bowls |

3.1 Introduction

The previous chapter developed formulas for the amount of energy entering
the bowl as a function of inclination angle of the sun. In the case of shallow
bowls and large inclination angles, a part of this energy will not be captured
by the receiver, even assuming a perfect mirror surface and a receiver that
captures all energy striking it. This loss occurs at inclination angles where
the lower end of the receiver is above the rim of the bowl. The last reflection
of multiple bounce rays strikes the surface of the bowl near the foot of the
receiver, and, when the foot of the receiver is above the rim of the bowl, the
mirror support is missing. Thus, the receiver would have to be longer than
the radius of the bowl in order to capture the ray. The loss of energy due to
missing the multiple bounce rays is called spillage. It should be noted that
this spillage does not occur for bowls such as the 60° bowl, because rim
shadowing effects prevent these spillage losses at large inclination angles.
This chapter derives formulas for the loss of energy due to spillage of
multiple bounce rays. The method treats the sun as a point sun at infinity
and uses ray tracing to describe the path of a ray that is reflected from
the spherical mirror surface prior to striking the receiver or spilling over
the edge of the bowl. The ray tracing geometry is described in Section 3.2.
Section 3.3 describes the method by which energy is lost in shallow bowls,
and derives formulas for the loss of energy (again based on ray tracing).

12



Section 3.3 also gives a comparison of of the results from ray tracing and
the the more exact results obtained from the ROSA computer code.

3.2 Ray Tracing Geometry

The general nature of the concentration profile due to reflection from a
spherical segment mirror (bowl) can be deduced by considering a simple
model based on a point sun at infinity. For this simplified situation, the
sun’s rays can be treated as parallel rays and the problem reduces to a
two-dimensional geometry. The geometry is illustrated in Figure 3.1. In
Figure 3.1, C denotes the center of a sphere of unit radius (all units are
normalized). The receiver (boiler) is taken to be a right circular cylinder of
radius a with axis along the z-axis and length 0.5. The z-axis is chosen to
be parallel to the direction of rays from the sun, with origin at the center
of the sphere. The positive direction of z is downward so that the receiver
extends from z = 0.5 to 2z = 1.0. The location of a point Q on the receiver
surface is specified by z and the zenith angle ¢ = arctana/z.

To be received at Q, a ray from the sun must strike the mirror at a
point P such that after reflecticn (n times) according to Snell’s equal angle
law, the ray path will pass through Q. The angle # at which the ray strikes
the mirror (the angle between the ray and PC) is called the impact angle
of the ray, while the reception angle, 3, is the angle of the incoming ray at
Q as measured from the radius through CQ.

For a single bounce ray (n = 1), the law of sines, applied to the triangle

CQP, gives: =/ )
z/fcosyp) 1
sind  sinB’ (3.1)

where f = 260 — ¢ and tany = a/2. Elimination of # and ¥ from Eq. 3.1
leads to the formula:

_ sinf + acos(26)

sin(20) (3.2)
The minimum value of z occurs when sin 8 = a'/3 and
1+5(1 — 25) , where S = a*/3, (3.3)

fmin = V1= 8
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Figure 3.1: Geometry for Single Bounce Rays
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In particular, for @ = 0, 2, = 0.5. Thus the rays are focused on the
receiver at locations in the range

Zmin <2< V1-—a?, with 2z, > 0.5. (3.4)

An analysis of Eq. 3.2 also shows that 2z is an increasing function of 4
for arcsina < 6 < arcsina'/? and increasing for arcsina!/® < § < 7/3. The
value 7/3 is obtained by considering the extreme case of e = 0 and 2z = 1.
Thus, there exist exactly two impact angles which cause rays to strike the
receiver at a given z coordinate on the cylinder.

Multiple reflections occur for impact angles greater than 60 degrees (i.e.
greater than 7/3 radians). The geometry for the case n = 3 is shown in
Figure 3.2. A ray will be reflected n times before striking the receiver
provided the impact angle 8 satisfies

(n—1)7r+ Y <g< T ¥ .
2n—1 2n—-1—" T 2n+1 2n+1

(3.5)

Consideration of the triangle CPQ again yields Equation 3.2. The an-
gle ¥ can be eliminated and the resulting equation solved for 2. The z-
coordinate of the point where the ray strikes the receiver is given by

__sinf +acosa,

= 3.
z sin oy, ’ (3.6)

where a, = 2n8 — (n — 1)7. A ray that is reflected n times strikes the

receiver in the range
: Zmin,n S 2z S V1-—- a?. (37)

The impact angle that yields 2pin n is found from
(2n +1)sin(2n —1)8 — (2n — 1)sin(2n + 1) + 4nacosnm = 0.  (3.8)

As n increases, Zm;n , approaches 1. Moreover, for each 2 in the focal region
there exist exactly two impact angles which cause rays to strike the receiver
at z. The two impact angles are the solutions, 6, to the transcendental
equation

zsin(2nf) + cos(n7) sind = a cos(2nb). (3.9)

Figure 3.3 shows a plot of impact angle, 8, vs reception point, z. The
bowl is taken to have a unit radius and a is normalized so that the ratio of

15
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the boiler radius to the bowl radius is the same as that at the Crosbyton
Solar Power ADVS site. In the figure, the region from 6 = 0° to § = 60°
is the region of single bounce rays, the region from 8 = 60° to § = 72°
corresponds to two bounce rays, and so on.

3.3 Spillage Geometry

This section addresses the problem of spillage. We simplify the calculations
by setting a = 0.

A ray that is reflected n times before striking the receiver is called a ray
of order n. It follows from Equation 3.5 that a ray of order n has impact
angle, 6, where

(n— )7 <cg< T

2n -1 T 2n+1
A straightforward calculation also shows that the last reflection of a ray of
order n occurs in the region

: (3.10)

0<b6< .
2n+1

(3.11)

The angle between the z-axis and the point where a ray of order n last
strikes the bowl (the angle between the z-axis and the line CP in Figure 3.2)
is given by

fp = (n—1)m+ (2n - 1)0 (3.12)

We denote the upper and lower limits of the impact angles for rays of
order n by the symbols 8} and 8, respectively, and the upper limit for the
angle at which the last reflection occurs by 8;. Then, 6} = nx/(2n + 1),
0, =(n—1)7/(2n — 1), and 6, = n/(2n +1).

Spillage occurs when the inclination angle of the sun relative to the axis
of symmetry of the bowl is greater than the rim angle of the bowl, i.e, when
I > fr. A two dimensional view of spillage is illustrated in Figure 3.4. In
this example, I = 45° and 0 = 30°. Impact angles are measured relative
to the z-axis (the receiver) and for this example we have 15° < § < 750.
Thus, we have rays of order one, two, and three.

All rays of order one strike the receiver. Rays of order two have impact
angles lying between 7/3 and 27/5. They require mirror support in the
region 0 < fp < w/5. However, no mirror support exists in the region 0 <

17
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6p < m/12. This region corresponds to rays with impact angles satisfying
/3 < 6 <137/36. All the energy from rays in this region will be lost, i.e.,
will spill over the edge of the bowl.

In this example, rays of order three have impact angles in the region
27 /5 < 6 < 57r/12. These rays require rim support in the region 0 < 6p <
7/12. Thus all energy for rays of order three will be lost.

In Figure 3.4 the zyz and Z§Z coordinate systems are related via a
rotation through the angle I about the y axis. If we employ spherical
coordinates in each system, we obtain the relationship

sinf cos ¢ cos] 0 —sinl’ sinf cos ¢
sinfsing | = 0 1 0 sinfsing |. (3.13)
cos @ sin] 0 cosJ cos b

This yields the set of equations

sinfcos¢ = cosIsinfcosd —sinI cos 8,
sinfsing = sinfsing (3.14)
cos§ = sinIsinfcos@ + cos I cosé.

Referring to Figure 3.5, and using the relations in Eq. 3.14, we find that
the values, ¢,, where the circle § = 6% intersects the rim of the bowl are
given by

&n =rF $:’ (3.15)

where,

Ay cos ] cos g — cos 6=
¢, = arccos

sin J sin 0y (3.16)

It is convenient to carry out all calculations in the (¢,0) coordinate system.
In this system, the 87 circles intersect the rim at the pair of angles = ¥ ¢F
where

sin Og sin q?)f ] (3.17)

éT = arctan [ - = -
cos ] sinfg cos ¢ +sin I cos by

We first consider the case where only rays of orders one and two occur.
This occurs when I satisfies the condition

7/3 < I+ 6 < 2r/5. (3.18)

19
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Figure 3.5: Overhead View of Spillage Geometry
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Rays that bounce twice occur for 8; < 8 < @, where 8, is the polar angle
to the top of the bowl rim. For 7 — ¢; < ¢ < 7 + @5, we find that 8,(¢) is
given by

0.(¢) = 01(8) + 82(9), (3.19)
where,
6:(¢) = arctan(cos ptan I), (3.20)
and
cosfn
82(¢) = : 3.21
2(¢) = arccos \/;inchosz¢+coszI | (3.21)

However, for a given @, the reflected ray will strike the mirror if and
only if
0(4) = (m + 61(¢) — 02(4))/3.

This result is obtained by finding the intersection of the ray ¢ = constant
with the rim of the bowl nearest the foot of the receiver. The total power
lost is computed from the integral

$0 b
Pross(I) = /; ’ /1r/3 sinf cos § df d¢ (3.22)

do
=/ (sin® 8,(4) — sin®r/3) d¢, (3.23)

where,
0u(¢) = MIN(6:1(9) + 02(), (7 + 6:(¢) — 82(4))/3)-

The details for calculating spillage for larger inclination angles are sim-
iliar. We first observe that an n-bounce ray is possible only if the relations

b, < I+0g, (3.24)

and,
0r — I < 6], (3.25)

hold. In the case where the relations hold, a range of ¢ values can be
calculated to give the set of azimuthal directions of rays of order n. For
each ¢, a range of impact angles, 8, is determined. Spillage occurs for those
values of 8 for which

8(¢) < [(n — 1)7 + 6,(8) — 62(¢)] / (2n — 1). (3-26)

22



The power loss for rays of order n can be determined by integration as
in the case illustrated above.

A graph of power vs inclination is shown in Figure 3.6. The top curve
gives the total energy into the bowl. The lower curve gives the total power
reaching the receiver. The points marked by the o’s are values of total
power received on the boiler as computed by the ROSA computer code. In
the ROSA calculations, the boiler radius, a, is normalized to represent the
radius of the boiler at the Crosbyton Solar Power ADVS site. The graphs
are restricted to inclination angles below 60° so that shading will not have
to be taken into account in the ray tracing model. Of course, ROSA code
easily handles shading. Also, the solar insolation is taken to be unity.

A listing of the computer code that implements the the ray tracing
method for computing spillage is listed below.

23
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*DECK SPILL

PROGRAM SPILL ‘
PROGRAM TO COMPUTE SPILLAGE LOSSES BY RAY TRACING
FOR SHALLOW BOWLS

AUTHOR: RONALD M. ANDERSON

DATE : 10/08/86

aaaaaa

PI=4.0*ATAN(1.)
THETAR=PI/6.
CTHTAR=COS(THETAR)
STHTAR=SIN(THETAR)
RAD=PI/180.
c SET UP INCLINATION ANGLE LOOP
THTARD=THETAR/RAD
IO=THTARD+1.1
IE=89.-THTARD
C COMPUTE TOTAL POWER BY COSINE LAW - NO SPILLAGE
AREA=PI*STHTAR**2
DO 05 I=0,I0-1
P=AREA*COS (I*RAD)
WRITE(6,*)I,P,P
6 CONTINUE
D0 10 I=IO,IE
DI=REAL(I)*RAD
CI=CO0S(DI)
SI=SIN(DI)
c FIND LARGEST ORDER OF RAYS
NM=(DI+THETAR)/(PI-2.*(DI+THETAR))+1
DO 20 N=2,RM
THNP=N*PI/REAL(2*N+1)
THNM=(N-1)*PI/REAL(2%N-1)
X=(CI*CTHTAR-COS(THNM))/SI*STHTAR
IF(X.GT.1.0) THEN
X=1.0
ENDIF
PHIMH=PI-ACOS (X)
PHIM=ATAN(STHTAR*SIN (PHIMH)/ (SI*CTHTAR-CI*STHTR*COS (PHIMH)))
NP=(PHIM)/RAD+1.01
DPHI=(PHIM) /NP

25



PHIM=PI-PHIM
DO 30 J=1,NP
PHI=PHIM+J*DPHI
CPHI=COS(PHI)
CTH1=(CTHTAR/SQRT ((CI**2+(SI*CPHI)**2)))
IF(CTH1.GT.1.0)CTH1=1.0
TH1=ACOS(CTH1)
TH2=-ATAN(SI*CPHI/CI)
THL=TH2-TH1
THUL=((N-1)*PI+THL)/REAL(2*N-1)
THU=AMIN1(TH1+TH2, THNP, THUL)
THU=AMAX1 (THU, THNM)
SA=(SIN(THU)**2 - SIN(THNM)**2)
S=S+SA
30 CONTINUE
ST=(S-SA)*DPHI+ST
§=0.0
20 CONTINUE
P=AREA*COS (I*RAD)
PS=P-ST
WRITE(6,*)I,PS,P
ST=0.0
10 CONTINUE
STOP
END
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Chapter 4

Finite Sun Concentration for a
Spherical Mirror

4.1 Introduction

This chapter presents a brief review of the mathematical techniques used
in applying the ROSA method for the calculation of optical power profiles
for concentrator-receiver systems. A full discussion of the method has been
presented previously in [7].

The optical power concentration, C, at a point Q on a receiver is defined
as the total normally directed optical power per unit area received at that
point. The concentration, C, therefore depends upon the orientation of the
element of the receiver surface containing the point Q. In our calculations,
C is normalized by dividing by the direct normal insolation incident upon
the receiver. The resulting dimensionless quantity becomes a concentration
ratio expressed as “number of suns”.

The formula which is used in the optical concentration ratio calculations
is due to Reichert and Brock [1,2]. It is termed the Ratio of Solid Angles
(ROSA) formulation and provides an integral expression for the concen-
tration ratio. This is a general method, applicable to any mirror-receiver
combination, with the only complication being the determination of the
limits of integration.

The ROSA method deals directly with a finite sun rather than a point
sun. The sun’s size is expressed in terms of an angular radius, o. Direct
sunlight received at a point is viewed as a collection of rays lying inside
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a right circular cone with vertex angle 20. The solid angle of this cone
is used for normalization purposes. The sun is, to a good approximation,
an isotropic radiator (Lambert law radiator), so that the incident flux is
uniform in solid angle within the cone [1].

The ROSA formula for the concentration, C, at a receiver point, @, due
to reflection from a mirror surface is given by

~ 5 _n B . : 4.1
C(@l) =Tg- / /n beafl,  for beafi>o (4.1)

where,

g = the vector locating a field point Q on the receiver with respect to a
convenient coordinate system;

b = the unit outward normal to the receiver at Q;

n = the number of times a ray has been reflected on the mirror before
striking the receiver at Q;

N5, = 4msin®(0,/2), the effective solid angle of the sun as viewed directly
from the field point Q;

o, = the effective angular radius of the sun to be used for light which
reflects n times in the mirror (for a perfect mirror o, = 0);

R = the reflection coefficient of the mirror surface, 0 < R < 1;

d(l = differential solid angle directed toward the apparent position of the
sun as viewed in the mirror; i.e., the oriented element of surface area
on the unit sphere, with outward normal.

[The “effective” angular radius of the sun, o,, is taken to be larger than
the true radius in order to account for local slope errors (surface normal
pointing errors) of the mirror surface. Statistical analyses (which will not
be documented here) show, for example, that 0, = 20 ~ 0.5° (where o
is the actual radius of the solar disk) for mirrors which meet the CSPP
specification of 0.06° RMS surface normal error. For such mirrors, o, = 2"¢

(1.

28



4.2 Geometrical Considerations

In order to evaluate the integral in Equation 4.1, it is convenient to intro-
duce a spherical coordinate system. In this system, the polar axis is chosen
to lie along the line CQ and the origin of the system is placed at the field
point Q. The integration is to be carried out over 5, . Integration points
are specified by an azimuthal angle w and the zenith angle 8, where 8 is
measured from the polar axis as shown in Figure 4.1.

Planes w = constant contain the polar axis and intersect a spherical
segment mirror in arcs of great circles. For each w, the reflection geometry
becomes two-dimensional and can be handled in a manner similar to the
simplified case discussed in the previous chapter. The problem is more
complicated, however, in the case of a finite sun. Instead of two distinct
impact angles for reflected rays, there are two families of incident rays that
may reflect to a field point. One of these families is illustrated in Figure 4.2

Using the parameters # and w, one can write the ROSA formula, Equa-
tion 4.1 in the form: P

nln

C(4,b) = S=—Ca(4,b) (4.2)

where

- wy Bun
Cn(q,b) = /w: /;Lu [(b; cosw + by sinw) sin® B + b, cos Asin B] dB dw (4.3)

The components of b are given in a cartesian coordinate system, with origin
at Q, using the polar axis as the z-axis. The azimuth w is measured from
the z'-axis. [For a perfectly aligned receiver, the z'-axis can be chosen so
that b, = cos, b, = 0, and b, = sinty.] The integral on § in Eq. 4.3 is
elementary and can be performed immediately. The limits 8y, and 8., are
complicated functions of w, so that the w-integration is performed numeri-
cally.

The basic work of the ROSA code is to determine the limits in the
B-integration and then perform the w-integration. The relevant geometry
may be simplified considerably be introducing a sun cone with vertex at the
center of curvature, C. The family of incidence directions for solar radiation
at C forms a right circular cone with vertex at C and angular radius 0. If
the rays are extended through C, the second branch of the cone has the
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same angular radius, but hangs downward. This inverted branch of the
cone is called the sun cone. The ranges of integration required by Eq. 4.3
can be determined by considering the intersections of planes of constant w
with the sun cone.

The sun cone defines the set of all possible directions from which direct
incident rays can strike the mirror surface, That is, corresponding to every
ray that strikes the surface of the mirror, there exists a parallel ray through
C that lies in the sun cone. Thus, for each w = constant plane, the set of
possible directions of direct rays which can reflect to which the field point
Q lies inside the sun cone. In the figure, § is the angle of an incoming
reflected ray, as measured from the z-axis, ¥, and . are the extreme
values of direct rays in the w-plane and are measured from the z-axis. For
the case in which the field point lies inside the sun cone, every w-plane
intersects the sun cone. For points, @, outside the sun cone, the w-plane
intersects the sun cone for only cetain values of w.

A detailed consideration of the geometry of the intersection of the w-
plane with the sun cone gives:

coso
\[(1 — sin® ¥, cos? w)

Yy =n+cos!? (4.4)

where
7 = tan™! [tan ¢y cosw], n€[-m/2,7/2]. (4.5)
The angle 9 is the central angle of Q measured from the axis of the sun
cone. These results are to be used for all cases, with w restricted so that
b-dfl >o.
For each w, once the range ¥_(w) to ¢, (w) has been determined, then
the corresponding values of J can be determined, using

B =2nsin"}gsinB) — ¢y — (n — 1)7 (4.6)

Solution of the above equation yields one or two f-intervals, depending
upon the values of ¢;. The § limits obtained from Eq. 4.6, restricting w
such that b - d{l > 0, may be used to evaluate the integrals in Eq. 4.3.
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Figure 4.3: The Intersection of a Constant w-plane with the Sun Cone.

33



4.3 Shading and Rim Cutoff Effects

For a spherical segment collector, the principal axis of the receiver should
be aligned with the sun in order to maximize the amount of energy captured
by the receiver. The spherical mirror is stationary. Thus, as the sun passes
over the mirror, the effective aperture of the mirror changes, resulting in a
loss of power due to either rim cutoff or shading or both. A two-dimensional
view of rim-cutoff and shading is shown in Figure 4.4. The total input power
is proportional to the cosine of the angle I between the bowl symmetry axis
and the direction of the sun. [Rim, not additional fixed aperture penalties.]
The cosine effect is accounted for by limiting ranges of integration so that
they stop at the bowl rim and/or at the edges of shadows of the rim.

The effect of rim cutoff and shading is easily taken into account in the
concentration integral. Since each w = constant plane intersects the bowl
in the arc of a great circle, rim cutoff and shading merely decreased the
length of the arc. Thus, these effects decrease the length of the 8- intervals
used in the concentration integrals. The actual calculation of these effects
depends on the direction of the sun, on the value of w, on the location and
orientation of the field point on the receiver, and on rim angle of the dish.
The detailed derivation of rim angle formulas is carried out in the next
chapter.
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Chapter 5

Solar Bowls with an Iris

5.1 Introduction

The original ROSA computer code was implemented for spherical segment
solar bowls. This chapter derives the necessary formulas for extending the
code to a spherical segment bowl with an iris. The only change required in
this code involves the method by which rim angle effects are calculated.

The previous chapter outlined the general method used in the ROSA
code for the evaluation of the concentration integral. The calculations em-
ploy a local spherical coordinate system with a zenith angle 8 and azimuthal
angle w. A fixed value of w defines a plane that intersects the bowl surface
in a segment of a great circle. This is illustrated in Figure 5.1. In this
figure, Q represents a field point on the receiver and C is the center of sym-
metry of the bowl. A local z'y'2'-coordinate system is defined with origin
at Q, with the z'-axis along the line segment CQ and directed downward.
w is the azimuthal angle in this system, measured from the z'-axis, and 8
is the zenith angle. An zyz-system is obtained by translating the origin of
the z'y'2'-system from Q to C.

The plane w=constant intersects the bowl! in the arc of a great circle.
The extreme points on the arc correspond to the points where the great
circle intersects the rim of the bowl. The dish rim angles in the w-plane are
expressed as a front-side rim angle, 8}, and a back-side rim angle, §;. Both
6} and 0, are zeniths measured from the z-axis. These angles are treated
as positive angles in the right half of the w-plane, negative in the left half
plane. The values of 6} and 8] define extreme values for the set of impact
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Figure 5.1: Angles Used in Rim-cutoff Calculations
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angles for rays that enter the bowl in the w-plane. In the evaluation of
the concentration integral, w ranges over [0, 27|, and only rays which strike
the receiver in the right half of the w plane are considered. This gives the
resriction on the impact angle, 6,

MAX [0,67] < 6 < 67 (5.1)

In addition, rim shading occurs for 6 > 7 /2. Details of shading are
discussed in [7].

5.2 Determination of Rim-cutoff Angles for
a Spherical Segment Bowl

The values of the rim-cutoff angles 8} and 7 depend upon the direction
of the sun, the location and orientation of the field point Q, on the value
of w, and on the shape of dish rim.

The sun is located in a SEV coordinate system (south, east, vertical)
centered at C. The location of the sun is specified by a an azimuth angle, A,
measured from the south axis and an elevation angle, £ (See Figure 5.2).

A collector fixed coordinate system, (DM A-system) with origin at C
is used to describe the bowl. The rim itself is described by spherical co-
ordinates (@gr,0r), where Oy is the rim angle of the bow! and is measured
from the axis of symmetry of the bowl (the negative D-axis). The SEV
and DM A systems are related by a tilt angle, v and a dip angle ¢4 (See
Figure 5.3).

The zyz and DM A coordinate systems are related via a rotation matrix
(See Figure 5.1). The relationship can be written in the form

cos ¢siné Ry, Ry; Rjs coswsind,
singsinf | = | Rys; Rz Ras sinwsiné, |, (5.2)
cos @ R31 R32 R33 Ccos 0;

where (¢, 8) are azimuthal and zenith angles in the DM A-system and (w, 0,)

are azimuthal and zenith angles in the zyz-system. Equating components
in this equation yields the system of equations

cos¢sind = (R;jcosw+ Ryzsinw)sind, + Ry3cosd,, (5.3)

singsinfd = (Raicosw+ Rapsinw)sind, + Ryzcosé,, (5.4)

cosf = (Rajcosw + Ryysinw)siné, + Ra3cosb,. (5.5)
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For a spherical segment bowl, the rim is defined by § = m — #g. Substi-
tuting this value into Equation 5.5, we find that

0 = 0,(w) £ 0p(w), (5.6)
where,
04(w) = ATAN2(— [R3; cosw + Rjzsinw], — Rss), (5.7)
and,
cos fr

0p(w) = arccos (5.8)

\/(Rsl cosw + Ry sinw)? + RZ; .

5.3 Extension to Bowl with Iris

In order to take advantage of the fact that an iris tracks the sun, it is con-
venient to introduce a D'M'A coordinate system, centered at C, obtained
by a rotation about the A-axis. The D' axis is chosen so that it lies in the
plane determined by the A-axis and the vector e, that points from C to
the center of the sun. If the sun is directly above the A-axis, we take D' to
coincide with D. This coordinate system is shown in Figure 5.4.

The location of the D'-axis is calculated as follows. The unit vector e,
is described in the SEV-system in component form as (See Figure 5.2)

cos Acos &
e = | sindcosé |. (5.9)
sin £
Refering to Figure 5.3 we find that coordinates in the SEV and DMA
coordinate systems are related by the rotation matrix

D COSYCOS@g cosvysingg —sin~y S
M| = —sin ¢4 €os ¢4 0 E . (5.10)
A sinycos¢; sinvysingy cos~y | %4

Substitution of the representation of eg in the SEV -system into this formula
yields the representation for e; in the DM A-system as

D = cosvycos€ cos(A — ¢4) — sinysin € (5.11)
M = cos€&sin(A — ¢a) (5.12)
A = sinvycos& cos(A — ¢4) +sin€ cosy (5.13)
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Figure 5.2: Location of the Sun in the SEV-system
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Figure 5.3: The SEV and DM A Coordinate Systems
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Figure 5.4: Location of the D'M'A Coordinate System
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We choose the D'-axis so that it coincides with the projection of eg in the
DM-plane. This yields a rotation angle, ¢4, about the A-axis given by

és = ATAN2(M, D), (5.14)

where M and D are given by Equations 5.12 and 5.11, respectively. Coor-
dinates in the D'M'A-system are calculated from coordinates in the DM A-
system via the rotation matrix

D' cosgy singa O D
M | =| —singy cosga O M |. (5.15)
A Q 0 1 A

Equations 5.3-5.5 become (in the D'M'A-system)

cos¢sinf = (Syycosw + Syzsinw)sing, + Syzcosd,, (5.16)
singsin = (S; cosw + Spysinw)siné, + Szzcosd,, (5.17)
cos§ = (Rscosw+ Riysinw)sinb, + Rs3cosd,, (5.18)
where,
[ S11 = Ricosdg + Rysinda,
SIZ = Rlz CcOS édl -+ Rzg sin ¢d',
S35 = Ry3cos ¢y + Ryzsin @y, (5.19)
ﬁ S21 = - Rusinéa + Rjzcos dg, '
S32 = — Rizsingg + Ryzcos da,
(| S23 = ~— Risingyg + Ryzcos da,

and the R|;s are the matrix elements appearing in Equation 5.2.
We assume that the iris is symmetric with respect to the D'A plane.
Then, the iris is centered on the negative D'-axis.

5.4 An Example
We consider the case of a tracking iris of the form (See Figure 2.3)

{w—«zsos ¢ <7+ o,

bo< 71—0 <0. (5.20)

where ¢ is the azimuthal angle measured from the positive D'-axis and 6
is the zenith angle measured from the A-axis.
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The solution is carried out in two steps. We find the solutions 6 (fg)
for the intersection of the w-plane with a spherical segment bowl with rim
angle O, and also find the solutions 6% (8;) corresponding to a bowl with
rim angle ;. These solutions are calculated using Equations 5.6-5.8.

For each 6., we find the corresponding azimuthal angle, ¢. These solu-
tions are found using Equations 5.16 and 5.17. Since 0 < § < m, we have
sin® > 0. Therefore, the corresponding azimuthal angle ¢ is calculated as

(S21cosw + Sypsinw)sind, + Sp3cosé,

tang¢ = .
¢ (S11cosw + Syzsinw)sing, + Sizcos b,

(5.21)

Several cases arise. They are illustrated in Figure 5.5.

1. If {¢F(61)| > ® — ¢ then 87 = 6;.
(A-3, B-4, B-5, and C-3 in Figure 5.5.)

2. If |¢F(81)] < 7 — ¢o and |¢}(0r)]| < 7 — o, then 8} = 5.
(A-1, B-1, and C-1 in Figure 5.5.)

3. If |¢F(6;)] £ ® — @0 and |¢f(0r)| > ™ — @ or ¢} (6r) is not defined
(w-plane does not intersect the spherical segment bowl), then 6} is
computed using Equations 5.16 and 5.17. This gives

523 Ccos ¢ - 513 sin ¢

tan 6} = - n
*  (Sicosw + Syysinw)sing — (Sp; cosw + Sppsinw) cos ¢’

where
¢=7l'—¢o if¢:>01
¢ =7+ ¢ if¢:<0.

(A-2, B-2, B-3, and C-2 in Figure 5.5.)

4. |¢F(61)] is not defined. In this case no bowl support is available for
the incoming rays and we set §7 = 0.
(C-4 in Figure 5.5.)

Calculation of 7 is much simpler. It is given by
6; =MAX[o,67].

These formulas have been incorporated into the ROSA computer code
to form the ROSAIRIS computer code. Results for the example discussed
in this section are presented in the next chapter.
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Figure 5.5: Intersection of the w-plane with the Rim
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Chapter 6

Optical Concentration Results

This chapter presents several sets of sample output comparing a solar bowl
without iris and a solar bow! with iris. In presenting the results, we assume
a reflection coefficient of 1 and a perfect reflecting surface. The receiver is
choosen to be a right circular cone with angular radius equal to that of the
sun cone. Other samples are readily generated by altering the input data
for the program.

The first plot compares total power entering the bowl with total power
captured by the receiver. The solid curve represents energy entering the
bowl and the A values represent total power on the receiver. These later
values are calculated using ROSAIRIS. Note that spillage occurs for in-
clination angles larger than 45°.

The remaining plots show solar profiles as a function of distance along
the receiver axis. Each plot contains two graphs, one corresponding to
a spherical segment bowl, and the second corresponding to the spherical
segment bowl with iris. The spherical segment bowl has a rim angle of
6r = 30°. The iris has rim angle §; = 45° and angular width of 2¢y = 90°.
Plots are presented with the inclination angle of the sun varying from I = 0°
to I = 80° in 10° steps.
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OPTICAL POWER CONCENTRATION RATIO

OPTICAL POWER CONCENTRATION RATIO
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Figure 6.2: Optical Power Concentration for I = 00° and 6g = 30°,
O = 45°, ¢y = 45°
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Figure 6.3: Optical Power Concentration for I = 10° and 6y = 30°,
0[ = 45°, ¢o = 45°
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Figure 6.4: Optical Power Concentration for I = 20° and 0 30°,

Oy = 45°, g = 45°
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Figure 6.5: Optical Power Concentration for I = 30° and 0 = 30°,
01 = 45°, ¢0 = 45°
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Figure 6.6: Optical Power Concentration for J = 40° and 6y = 30°,
8; = 45°, gp = 45°
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Figure 6.7: Optical Power Concentration for I = 50° and 0y = 30°,
B, = 45°, ¢y = 45°

53



OPTICAL POWER CONCENTRATION RATIO

OPTICAL POWER CONCENTRATION RATIO

SPHERICAL SEGMENT BOWL

1200
800 -
400 4
O | B 11 1 ——
0.5 0.6 0.7 0.8 0.9 1.0
DISTANCE ALONG AXIS OF RECEIVER
SPHERICAL SEGMENT BOWL WITH IRIS
1200
800
400 -
N A — i

19 i H
0.5 0.6 0.7 0.8 0.9 1.0
DISTANCE ALONG AXIS OF RECEIVER

Figure 6.8: Optical Power Concentration for I = 60° and g = 30°,
O = 45°, ¢o = 45°
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Figure 6.9: Optical Power Concentration for I = 70° and fr = 30°,
0y = 45°, ¢g = 45°
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Figure 6.10: Optical Power Concentration for I = 80° and g = 30°,
B = 45°, dg = 45°
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Appendix A

ROSAIRIS Program Listing
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ROSAIRIS

THIS IS A PROGRAM TO CALCULATE THE CONCENTRATION
WHEN AN IRIS IS ATTACHED

WRITTEN BY
DR. RONALD M. ANDERSON, DEPT. OF MATHEMATICS
AND
DR. JOHN D. REICHERT, DEPT. OF ELECTRICAL ENGINEERING
GRADUATE ASSISTANTS: C. NORYOOD, R. JOHNSTON, C. DAWSON
TEXAS TECH UNIVERSITY
LUBBOCK, TEXAS

JULY 24, 1984

MODIFIED: SEPTEMBER, 1986 BY R. M. ANDERSOHN
AND M. OBEYESEKERE
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***********************#**************************************
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REAL SUM(100,5),QQ(100),SUMA(100,65,5)

REAL ZSTART(10),ZSTOP(10) ,PLOTZ (200) ,PLOTS(200)

COMMON /BLOCKA/ MOMEGA,ISTEPS,OMEGAL(2),0MEGAU(2) ,XYNRML,
*ALPHA ,NZ,ZNRMAL ,PSI0S,PSIOC,SIGMAC,
*R31,R32,R33, THTARC, THTAW

COMMON /BLOCKB/ PSIP,PSIPK,PSIM,BETAPK,Q,NBC,
* TNZETA,DRTOP,CSZETA,SNZETA

COMMON /CUT/ THTAR,GAMMAC,ES,A,PHID,GAMMAS,EC,PHIOC,PHIOS
COMMON /GLOBAL/ HALFPI,PI,TWOPI,RADIAN

REAL OMEGAL,OMEGAU,XYNRML,ZNRMAL,PSIO,SIGMAC,
*R31,R32,R33 , THTARC, THTAW ,PSIP,PSIPK,PSIM,BETAPK,Q

COMMON /ENTRY/ Ri1,R21,R12,R22,R13,R23
COMMON/IRS/HIRIS,TIRIS,S11,S12,5S13,5S21,522,523,531,532,533
INTEGER MOMEGA,ISTEPS,NZ,NBC,KPLOT

INTEGER NZZ(10),ITITLE(6)

REAL A11,A12,A13,A21,A22,A23,A31,A32,A33

REAL BAVG(5) ,POYER(5) ,ACONE

COORDINATE SYSTEMS USED:

1. THE S-E-V COORDINATE SYSTEM
THIS IS THE SOUTH-EAST-VERTICAL COORDINATE SYSTEM
WHICH IS ALIGHNED WITH THE EARTH.

2. THE F-G-ES COORDINATE SYSTEM

THIS COORDINATE SYSTEM IS ALIGHED SO THAT
THE ES AXIS POINTS TO THE CENTER OF THE SUN.

3. THE X-Y-Z COORDINATE SYSTEM

THIS COORDINATE SYSTEM IS ALIGNED SO THAT
THE Z AXIS PASSES THROUGH THE CENTER OF
THE HEMISPHERE AND THE POINT Q ON THE
RECEIVER AND THE SUN LIES IN THE XZ PLANE.

4. THE XR-YR-ZR COORDINATE SYSTEM

THIS COORDINATE SYSTEM IS ALIGNED SO THAT
THE ZR AXIS IS THE RECEIVER AXIS OF SYMMETRY.

5. THE D-M-A COORDINATE SYSTEM

THIS COORDINATE SYSTEM IS ALIGNED SO THAT
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THE A AXIS IS THE AXIS OF SYMMETRY OF THE DISH.
6. THE DP-MP-AP COORDINATE SYSTEM

THIS COORDINATE SYSTEM IS OBTAINED BY ROTATING

THE D-M-A SYSTEM AROUND A-AXIS BY PHIDP,SO THAT

CENTER OF THE IRIS IS ALIGNED WITH THE DP-AXIS

INPUT VARIABLES

A. ROTATION ANGLE VARIABLES
PHIRD, PSIRD = THE ROTATION ANGLES, IN DEGREES, BETWEEN THE
X-Y-Z AND XR-YR-ZR COORDINATE SYSTEMS
DPSID, DPHID = THE ROTATION ANGLES, IN DEGREES, BETWEEN THE
F-G-ES AND XR-YR-ZR COORDINATE SYSTEMS
ED, AD = THE ELEVATION ANGLE AND AZIMUTHAL ANGLE,
BETWEEN THE S-E-V AND F-G-ES COORDINATE SYSTEMS
GAMMAD, PHIDD = THE ROTATION ANGLES, IN DEGREES,
BETWEEN THE S-E-V AND D-M-A
COORDINATE SYSTEMS
THTARD = ALTITUDINAL ANGLE, IN DEGREES, BETVWEEN
THE D-M-A AND X-Y-Z COORDINATE SYSTEMS

B. OTHER INPUT VARIABLES
DPHIRD = THE AMOUNT PHIR IS INCREMENTED IN
THE PHIR-LOOP (READ IN)
ISTEPS = THE NUMBER OF INTERVALS USED IN
-THE OMEGA-INTEGRATION
(USING SIMPSON'S RULE)
NZZ = NUMBER OF TIMES Z IS INCREMENTED (READ IN)
REFC = THE REFLECTION COEFFICIENT

SIGMAD = THE SUN CONE HALF-ANGLE

SPPHIR = THE FINAL VALUE OF PHIR (READ IN)
STPHIR = THE STARTING VALUE OF PHIR (READ IN)
ZSTART = THE INITIAL VALUE OF Z (READ IN)

ZSTQP = THE FINAL VALUE OF Z (READ IN)
ZETA=CONE VERTEX HALF-ANGLE
RTOP=UPPER BOILER RADIUS
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TIRIS = CENTRAL ANGE OF THE IRIS
HIRIS = THE ANGE FROM THE BOTTOM OF THE BOWL TO THE
TOP OF THE IRIS

INTERNAL VARIABLES
ALPHA = THE ANGLE BETWEEN THE X-AXIS AND THE
NORMAL TO THE RECEIVER

COEFF1, COEFF2 = USED TO CALCULATE PHIO
CONST = A CONSTANT USED IN THE CONCENTRATION FORMULA
DPSI, DPHI = DPSID, AND DPHID IN RADIANS
DPSIC, DPHIC = THE COSINES OF DPSI AND DPHI
DPSIS, DPHIS = THE SINES OF DPSI AND DPHI
DZ = THE AMOUNT Z IS INCREMENTED EACH TIME THE

Q-LOOP IS COMPLETED

DZ DEPENDS ON ZSTART, ZSTOP, AND NZZ
E, A = ED AND AD IN RADIANS
EC = THE COSINE OF E
ES = THE SINE OF E
GAMMA, PHID = GAMMAD AND PHIDD IN RADIANS
GAMMAC, PHIDC = THE COSINES OF GAMMA AND PHID
GAMMAS, PHIDS = THE SINES OF GAMMA AND PHID
OMEGAL = THE LOWER BOUND ON OMEGA USED IN INTEGRATION
OMEGAU = THE UPPER BOUND ON OMEGA USED IN INTEGRATION
PODPC = COS(PHIO-DPHI)
PODPS = SIN(PHIO-DPHI)
PSIO, PHIO = THE ROTATION ANGLES BETYWEEN THE SUN

COORDINATE SYSTEM AND THE X-Y-Z COORDINATE SYSTEM
PSIOC, PHIOC = THE COSINES OF PSIO AND PHIO
PSIOS, PHIOS = THE SINES OF PSIO AND PHIO
PSIRD, PHIRD = THE ROTATION ANGLES, IN DEGREES, BETWEEN THE
XR-YR-ZR AND THE X-Y-Z COORDINATE SYSTEMS
PSIR, PHIR = PSIRD AND PHIRD IN RADIANS
PSIRC, PHIRC = THE COSINES OF PSIR AND PHIR
PSIRS, PHIRS = THE SINES OF PSIR AND PHIR
Q = THE DISTANCE FROM THE CENTER TO THE POINT
WHERE THE RAY STRIKES THE RECEIVER
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RIMCI (I=1,7) = USED TO COMPUTE THTAZ
SIGMA = SIGMAD IN RADIANS
SIGMAC, SIGMAS = THE COSINE AND THE SINE OF SIGMA
THTAR = THTARD IN RADIANS
THTARC, THTARS = THE COSINE AND THE SINE OF THTAR
XNRMAL = THE X-COMPONENT OF THE OUTWARD NORMAL

TO THE RECEIVER AT Q

YNRMAL = THE Y-COMPONENT OF THE OUTWARD NORMAL
TO THE RECEIVER AT Q
XYNRML = PROJECTION OF THE NORMAL TO THE RECEIVER

INTO THE XY-PLANE
XR,YR,ZR = COMPONENTS OF THE NORMAL IN TERMS OF
XR-YR-ZR COORDINATE SYSTEM
Z = THE DISTANCE FROM THE CENTER TO A POINT ON THE
CENTRAL AXIS OFTHE RECEIVER
ZNRMAL = THE Z-COMPONENT OF THE OUTWARD NORMAL TO
THE RECEIVER AT Q

OUTPUT VARIABLES

LI=NUMBER OF BOUNCES

QQ = TEMPORARY VARIABLE USED TO PRINT THE VALUE OF Z
SUM = USED TO COMPUTE THE OMEGA INTEGRAL

SUMA = USED TO FIND THE TOTAL CONCENTRATION (N=1,5)

PROGRAM CONSTANTS
CALL ERRSET(208,256,-1)
HALFPI=2.*ATAN(1.)
PI=2.*HALFPI
RADIAN=PI/180.
TWOPI=2.*PI
MXNP=65
MXLB=5

DO 14 MM=1,5
DO 16 NN=1,100
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16
14
c

SUM(NN,MM)=0.
CONTINUE
CONTINUE

C INPUT VARIABLES

208

197

198

222
199
299
202

203

399
204

WRITE(6,208)

FORMAT(/./././.20X," INPUT’,/./)

READ(5,197) ITITLE
FORMAT(6A4)

WRITE(6,198) ITITLE
FORMAT(11X,6A4.,/./)
READ(5,199) DPSID,DPHID
WRITE(6,202)DPSID,DPHID
READ(5,299) SIGMAD,ED,AD

READ(5,299) THTARD,GAMMAD,PHID

WRITE(6,203)SIGMAD,ED,AD, THTARD,GAMMAD ,PHIDD

WRITE(11,222)ED,AD,GAMMA
FORMAT('ELE =',F10.3,’
FORMAT(2F10.5)
FORMAT(3F10.5)
FORMAT(’

D

AZI =',F10.3,°

x ° DELTA PSI (DPSID)
*x DELTA PHI (DPHID)

%X %K K K X ¥ ¥ * *

FORMAT(/,’

SUN PARAMETERS:’,/,
SUN CONE HALF ANGLE (SIGMAD)
Sun POSITION:',/,

) ELEVATION (ED)

! AZIMUTH (AD)
’ DISH PARAMETERS:
) DISH HALF-ANGLE (THTARD)
! DISH ALIGNMENT:

! GAMMAD
PHID
READ(5,399) REFC,ISTEPS
WRITE(6,204)REFC,ISTEPS
FORMAT(F10.5,15)
FORMAT(/,
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TILT=',F10.3)

[}

*,F10.

', F10.
*,F10.

', F10.

', F10.
= ' ,F10.

BOILER-SUN ALIGHMENT PARAMETERS:',/,
*,F10.
',F10.

5,/,



1
205

2
206

207

3

L REFLECTION CONSTANT
* ! ISTEPS

READ(5,1) STPHIR,SPPHIR,DPHIRD
WRITE(6,205)STPHIR,SPPHIR,DPHIRD
FORMAT(3F7.2)

FORMAT(

* START PHIR (STPHIR)
* ° STOP PHIR (SPPHIR)

1 DELTA PHIR (DPHIRD)

READ(5,2) NZRR
WRITE(6,206)NZRR

FORMAT(I5)
FORMAT(
* ° NUMBER OF Z-INTERVALS (NZRR)
DO 3 I=1,NZRR
READ(5.4) NZZ(I) ,ZSTART(I),ZSTOP(I)

WRITE(6,207)I,NZZ(I),ZSTART(I),ZSTOP(I)
FORMAT(I5,2F6.3)

FORMAT(" FOR I = ’,15,/,
L NUMBER OF Z VALUES nzz)
1 ZSTART
L ZSTOP
CONTINUE
209 FORMAT(
* ° ZETAD
*x ! RTOP

11

ZTOP=ZSTART (1)
READ(5,11)ZETAD,RTOP
FORMAT(2F10.5)
ZETA=ZETAD*RADIAN
TNZETA=TAN (ZETA)
TPSCS=TWOPI/COS(ZETA)
IF(RTOP.LT.0) RTOP=ZTOP+TUZETA
WRITE(6,209) ZETAD,RTOP
DRTOP=RTOP-ZTOP*TNZETA
CSZETA=COS(ZETA)
SNZETA=SIN(ZETA)
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READ(5,499) TIRIS,HIRIS
WRITE(11,223)THTARD,TIRIS,HIRIS
223 FORMAT('THTAR=',F10.3,' TIRIS=',F10.3,' HIRIS=',F10.3)
499 FORMAT(2F7.2)
WRITE(6,210)TIRIS,HIRIS
210 FORMAT(/,10X,'IRIS ANGLE(TIRIS) =',F7.2,/,
* 10X, 'IRIS HEIGHT ANG(HIRIS)=',F7.2)
c
C CONVERSION FROM DEGREES TO RADIANS
DPSI=DPSID*RADIAN
DPHI=DPHID*RADIAN
PHID=PHIDD*RADIAN
GAMMA=GAMMAD*RADIAN
E=ED*RADIAN
A=AD*RADIAN
SIGMA=SIGMAD*RADIAN
THTAR=THTARD*RADIAN
C
C CALCULATION OF TRIG CONSTANTS
PHIDC=COS(PHID)
PHIDS=SIN(PHID)
AMPH=A-PHID
AMPHC=COS (AMPH)
AMPHS=SIN (AMPH)
SIGMAS=SIN(SIGMA)
SIGMAC=COS(SIGMA)
EC=COS(E)
ES=SIN(E)
GAMMAC=COS (GAMMA)
GAMMAS=SIN(GAMMA)
THTARC=COS(THTAR)
CONST=12.*PI*SIN(.5*SIGMA) *%2
DPSIC=COS(DPSI)
DPSIS=SIN(DPSI)
DPHIC=COS(DPHI)
DPHIS=SIN(DPHI)
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C CALCULATION OF ADDITIONAL RIM CONSTANTS FOR ALTERNATE RIM SHAPE
C WHERE A11, A12,..., A33 ARE ENTRIES OF THE TRANSITION MATRIX
C ( SEV -> DMA) * (FGES -> SEV)=(F-G-ES)-->(D-M-4)

A11=GAMMAC*ES*AMPHC + GAMMAS*EC

A12=-GAMMAC*AMPHS

A13=GAMMAC*EC*AMPHC - GAMMAS*ES

A21=ES*AMPHS

A22=AMPHC

A23=EC*AMPHS

A31=ES*GAMMAS*AMPHC-EC+GAMMAC

A32=-GAMMAS *AMPHS

A33=EC*GAMMAS*AMPHC+ES+GAMMAC

D=A13

XM=A23

AI=A33

IF(D**2+XM*xx2 _EQ. 0.0) THEN

PHIDP=0.0
ELSE
PHIDP=ATAN2(XM,D)

ENDIF

PHIDPC=COS(PHIDP)

PHIDPS=SIN(PHIDP)

C FOR MULTIPLE BOUNCES, INITIALIZE ARRAY SUMA
DO 5009 LBN=1,MXLB
DO 5019 Ji=1 MXNP
DO 5029 NL=1,100
SUMA(NL,J1,LBN)=0.
5029 CONTINUVE
5019 CONTINUE
5009 CONTINUE
C BEGIN LOOP FOR AZIMUTHAL ANGLE (PHIR)
PHIRD=STPHIR
C AREA = 0.0
JSTOP=1
IF (DPHIRD .NE. 0.) JSTOP=(SPPHIR-STPHIR)/DPHIRD+1.01
DO 250 J=1,JSTOP
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PHIR=PHIRD*RADIAN
PHIRC=COS (PHIR)
PHIRS=SIN (PHIR)
C
C BEGINNING OF Z LOOP
D0 600 K=1,NZRR
Z=ZSTART(K)
IF(NZZ(K) .LE. 1) GO TO 5000
5001 DZ=(ZSTOP(K) -ZSTART(K))/(NZZ(K)-1)
5000 NZSTOP=NZZ(K) '
DO 3000 NZ=1,6NZSTOP
CALL BOILER(Z,PHIR,PSIR,XR,YR,ZR)
PSIRC=COS(PSIR)
PSIRS=SIN(PSIR)
C
C CALCULATION OF PSIO
PSIOC=DPSIC*PSIRC+DPSIS*PSIRS*PHIRC
PSI0=ACOS(PSIOC)
PSI0S=SIN(PSIO)
COEFF1=DPSIC*PSIRS*PHIRC-DPSIS*PSIRC
COEFF2=PSIRS*PHIRS

Q

C CALCULATION OF PHIO
IF (ABS(PSIO) .GT. 0.0) GO TO 15

10 PHIO0=0.
GO TO 20
15 PHIOC=DPHIC=COEFF1-DPHIS*COEFF2

PHIOS=DPHIS*COEFF1+DPHIC+COEFF2
PHIO=ATAN2(PHIOS,PHIOC)
20 PHIOC=COS(PHIO)
PHIOS=SIN(PHIO)
C
C CALCULATION OF THE RECEIVER CONSTANTS
PODPC=COS(PHIO-DPHI)
PODPS=SIN(PHIO-DPHI)
ZNRMAL=XR* (PSI0S*DPSIC*PODPC+PSIOC*DPSIS)
* + YR*PSIOS*PODPS
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c
C
c
C

1 + ZR*(PSI0OS*DPSIS*PODPC-PSIOC*DPSIC)
XNRMAL=XR* (PSIOC*DPSIC*PODPC-PSI0OS*DPSIS)
+ YR*PSIOC*PODPS

1 + ZRx(PSIOC*DPSIS*PODPC+PSIOS*DPSIC)
YNRMAL=XR*#DPSIC*PODPS - YR*PODPC + ZR*DPSIS*PODPS
XYNRML=SQRT(1.-ZNRMAL**2)
IF (ABS(XYNRML) .LT. .0001 .OR. (ABS(XNRMAL) .LT. .0001
.AND. ABS(YNRMAL) .LT. .0001)) GO TO 8526

ALPHA=ATAN2(YNRMAL,XNRMAL)

GO TO 993
8526 ALPHA = 0.0

(WY

CALCULATION OF ADDITIONAL RIM CONSTANTS

993 CONTINUE

CALCULATE THE ENTRIES OF THE TRANSITION MATRIX (X-Y-Z)-->(D-M-A)

THE 1ST ROW CONTAINS R11,R12,R13, THE 21D ROV CONTAINS R21,

R22, R23, AND THE 3RD ROYW CONTAINS R31,R32,R33
R11=PSIOC*(PHIOC*A11 + PHIOSxA12) + PSIOS*A13
R12=PHI0S*A11 - PHIOCx%A12
R13=PSI0S*(PHIOC*A11 + PHIOS*A12) - PSIOC*A13
R21=PSIOC*(PHIOC+A21 + PHIOS*A22) + PSIOS*A23
R22=PHIOS*A21 - PHIOC=*A22
R23=PSI0S*(PHIOC=A21 + PHIO0S%A22) - PSIDCxA23
R31=PSI0C*(PHIOC*A31+PHIOS*A32)+PSI0S*A33
R32=PHI0S*A31-PHIOC*A32
R33=PSI0S*(PHIOC*A31+PHI0S*A32)-PSI0OC*A33

THE FOLLOVING ARE THE ENTRIES OF THE TRANSITION MATRIX

FROM (X-Y-Z)-->(DP-MP-AP)

THESE ARE USED IN THE IRIS ROUTINE
S11=R11*PHIDPC+R21%PHIDPS
S12=R12*PHIDPC+R22%PHIDPS
S13=R13*PHIDPC+R23*PHIDPS
S21=-R11*PHIDPS+R21*PHIDPC
S22=-R12*PHIDPS+R22*PHIDPC
S23=-R13*PHIDPS+R23*PHIDPC
S31=R31
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S32=R32
S33=R33
C
C NOMEGA IS THE NUMBER OF INTERVALS
IF (SIGMA .LT. PSIO) GO TO 40
45 OMEGAL(1)=ALPHA-HALFPI
OMEGAU(1)=ALPHA+HALFPI
OMEGAL (2)=ALPHA+HALFPI
OMEGAU(2)=ALPHA+HALFPI*3.
NOMEGA=2
GO TO 90
40 OMEGA1=ACOS(SQRT((SIGMAC**2-PSIOC**2) /PSI0S*%2))
OMEGAU(1)=0MEGA1
OMEGAL (1)=-0MEGA1
OMEGAL (2)=PI-OMEGA1
OMEGAU(2)=PI+OMEGA1
NOMEGA=2

C
C THE W-INTEGRATION AND THE BETA-INTEGRATION ARE PERFORMED IN
C SUBROUTINE INTGRL, SIMPSON’'S RULE IS USED ON THE W-INTEGRATIOHN
90 DO 100 MOMEGA=1,llOMEGA
CALL INTGRL(SUM)

100 CONTINUE
QQ(nz)=z
3000 Z2=Z2+DZ

C END OF INTEGRATION-BEGIN PRINT OUT
DO 500 L=1,NZSTOP
C WRITE(6,501)QQ(L)
DO 505 LBN=1 ,MXLB
SUMA(L,J,LBN)=0.
SUM(L,LBYN)=SUM(L,LBN) /CONST*REFC**LBN
SUMA(L,J,LBN)=SUMA(L,J,LBl) + SUM(L,LBI)

501 FORMAT(’ Z=',F8.4)
C WRITE(6,502)LBN,SUM(L,LBI)
502 FORMAT("’ BOUNCE NUMBER="'
_ * 11,7 CONCENTRATION=",F14.4)
505 SUM(L,LBN)=0.
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500 CONTINUVE
503 FORMAT("’ TOTAL CONCENTRATION=',F14.4././)
PHIRD=PHIRD+DPHIRD
250 CONTINUE
WRITE(6,5280) ITITLE,SIGMAD,ED,AD,
* THTARD,GAMMAD,TIRIS,HIRIS
WRITE(6,5290)
5280 FORMAT('1°,68('='),/,/,/.24X, SOLAR CONCENTRATION',/,/,

* BX,6A4,7X,
* "SUN HALF-ANGLE =',F7.3,"' DEG.',/.5X,
* "ELEVATION ANGLE = *',F4.1,' DEG. AZIMUTH ANGLE = °,
* Fb.1,° DEG.',/.5X.
* 'DISH HALF-ANGLE = ',F4.1," DEG.',8X,’TILT ANGLE = °,
* F4.1,° DEG.',/.8X,
* *IRIS OPENING = ' ,F4.1," DEG.',7X,'IRIS HEIGHT = ',
* F4.1,° DEG."'/./)
5290 FORMAT(1X,68('="),/,8X,’----",16X, AVERAGE CONCENTRATION',
*16X,'----',/,3X,°Z",7X, "BOUNICE 1 BOUIICE 2°',

* * BOUNCE 3 BOUNCE 4 BOUNCE 5 COMBINED',
*  /,1X,68(’=")/)
NLINE=16
DO 520 LBN=1,MXLB
POWER(LBN) = 0.
520 CONTINUE
DO 529 NL=1,NZSTOP
ACONE=TPSCS* (DRTOP+QQ(lIL) *TNZETA) *DZ
CAVG=0.
DO 530 LBN=1,MXLB
AVG=BERGMB (IIL,LBN,SUMA) /T%OPI
BAVG(LBN)=AVG
CAVG=CAVG+AVG
530 CONTINUE
NLINE=NLINE+1
CALL PAGE(NLINE)
WRITE(6,531) QQ(NL),(BAVG(LBYN),LBl=1 ,MXLB).CAVG
WRITE(11,5310) QQUIL), (BAVG(LBN) ,LBN=1,MXLB),CAVG
531 FORMAT(1X,F6.4,2X,6F10.4)
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5310 FORMAT(F6.4,2X,6F10.4)
DO 540 LBl=1,MXLB
POWER (LBN)=POWER(LB!) +BAVG(LBl) *ACONE
540 CONTINUE
529 CONTINUE
TOTPWR=0.
DO 543 LBN=1,MXLB
TOTPWR=TOTPWR+POYER (LBN)
543 CONTINUE
CALL PAGE(NLINE)
WRITE(6,542)
WRITE(6,541) (POWER(LBN) ,LBN=1,MXLB),TOTPWR
WRITE (11, 5k * sk skokok ok ok ok ok s ok ok i ok sk ok ok ok ok ok i k ok ok ok ok o ok ok ®
WRITE(11,5410) (POWER(LBI),LBN=1,MXLB),TOTPVR
541 FORMAT(® TOTAL’,/.' POYER *,6F10.4)
5410 FORMAT(8X,6F10.4)
WRITE(6,542)
542 FORMAT(1X,68(°'="))
WRITE(6,8343)
8343 FORMAT('t',/././.' NORMAL TERMINATION®)
ENDFILE 11
STOP
END
C*DECK INTGRL
SUBROUTINE INTGRL(SUM)
Cx*% INTGRL PERFORMS THE OMEGA AND BETA INTEGRATIONS
C AND COMPUTES SUM, VHICH IS RETURIED TO THE
c MAIN PROGRAM.

C

Cx**WRITTEN BY: R.M.ANDERSON, ASSISTED BY CLINT DAWSON
C CATHY NORWOOD, AND READ JOHNSTON

C DATE WRITTEN: 06/01/80

c

CxxxEXPLANATION OF VARIABLES:

C BETAL = LOWER LIMIT ON BETA USED IN THE INTEGRATION

C BETAMI = MINIMUM VALUE OF BETA FOUND WHEN CONSIDERING RIM-CUTOFF
c AND SHADOWING EFFECTS
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BETAMX = MAXIMUM VALUE OF BETA FOUND WHEN CONSIDERING RIM-CUTOFF
AND SHADOYING EFFECTS
BETAPK = THE VALUE OF BETA CORRESPONDING TO THE
MAXIMUM VALUE OF PSI FOR A GIVEN VALUE OF Q
BETASM = BETAL + BETAU
BETAT = BETAU - BETAL
BETAU = UPPER LIMIT ON BETA USED IN THE INTEGRATIOIN
BL = THE LOWER BOUND ON BETA WHEN CONSIDERING THE RELATIONSHIP
BETWEEN BETA, PSIP, AND PSIM
BU = THE UPPER BOUND ON BETA VHEN CONSIDERING THE RELATIONSHIP
BETWEEN BETA, PSIP, AND PSIM

CONSTW = A CONSTANT USED IN THE OMEGA INTEGRATION
DOMEGA = (OMEGAU - OMEGAL)/ISTEPS
ETA, BETA = USED TO COMPUTE PSIP AND PSIM
NBC, XN = THE NUMBER OF BOUINCES
OMEGA = THE AZIMUTHAL ANGLE MEASURED CLOCKYISE FROM THE X-AXIS
PSIM = ANGLE BETVEEN THE RECEIVER AlID THE

LEFT EDGE OF THE SUN CONE IlN THE

PLANE OMEGA=CONSTANT
PSIP = ANGLE BETVEEN THE RECEIVER AlID THE

RIGHT EDGE OF THE SUN CONE IN THE

PLANE OMEGA=COlSTANT
PSIPK = MAXIMUM VALUE OF PSI FOR A GIVEN N AND Q
QSBETA = Q TIMES THE SINE OF BETAPK
RHO = USED TO FIND BETAMX TO ASSURE THAT THE DOT PRODUCT IS
0
SB = USED TO COMPUTE THE BETA-INTEGRAL
SUM1 = USED TO COMPUTE THE BETA INTEGRAL
THTAW = USED TO COMPUTE THTAZP
THTAZ = USED TO FIND THTAZP AND THTAZM
THTAZE = THETA-EFFECTIVE, USED TO COMPUTE BETAMX
THTAZM = THE ANGLE BETYWEEN THE RECEIVER AND THE LEFT RIM
THTAZP = THE ANGLE BETYEEN THE RECEIVER AlID THE RIGHT RIM

(C 7% %k ok ok ok ok ok ok ok %k

REAL SUM(100,5)
REAL BL(2),BU(2)
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INTEGER NBETA
COMMON /BLOCKA/ MOMEGA,ISTEPS,OMEGAL(2),0MEGAU(2) ,XYNRML,
* ALPHA,NZ,ZNRMAL,PSI0S,PSIOC,SIGMAC,
* R31,R32,R33,THTARC,THTAW,TIRIS,HIRIS
COMMON /BLOCKB/ PSIP,PSIPK,PSIM,BETAPK,Q,NBC,
* TNZETA ,DRTOP,CSZETA,SNZETA
COMMON /CUT/ THTAR,GAMMAC,ES,A,PHID,GAMMAS,EC,PHIOC,PHIOS
COMMON /GLOBAL/ HALFPI,PI,TWOPI,RADIAN
C THE W-INTEGRATION--ISTEPS IS THE NUMBER OF
C INTEGRATION STEPS/INTERVAL
C SIMPSON'S RULE IS USED
UNIT=-1.
DOMEGA=(OMEGAU (MOMEGA) -OMEGAL (MOMEGA) ) /ISTEPS
DO 101 I=2,ISTEPS
OMEGA=0MEGAL (MOMEGA) + (I-1) *DOMEGA
OMEGAC=C0S (OMEGA)
CONSTY=(3.-UNIT)*DOMEGA
OMEGAS=SI!i (OMEGA)
RHO=ATAN2 (XY!IRML*COS (OMEGA-ALPHA) , ZHRMAL)
C
C CALCULATION OF PSIM,PSIP
ETA=ATAN2 (PSIOS*0OMEGAC,PSIOC)
BETA=ACOS (SIGMAC/SQRT(PSIOC**2+(PSIOS*OMEGAC) **2))
PSIP=ETA+BETA
PSIM=ETA-BETA
C
C CALCULATION OF EFFECTIVE RIM ANGLE PARAMETERS
Cxxxx THIS IS TO FIND THETAZ-PLUS AND THETAZ-MINUS
c WHEN AN IRIS IS ATTACHED TO THE USUAL DISH
CALL IRIS(OMEGA,THTAZP,THTAZM,IFLAG)
IF (IFLAG .EQ. 1) GO TO 101
IF (THTAZP .LE. 0.0) GO TO 101
THTAZM=AMAX1 (0. ,THTAZM)
THTAZP=AMIN1(THTAZP,PI-THTAZP-PSIP-PSIM)
IF (THTAZP .LE. THTAZM) GO TO 101
C
C CALCULATION OF MINIMUM AND MAXIMUM BETA AND EFFECTIVE RIM ANGLE
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BETAMI ,BETAMX AND THTAZE,RESPECTIVELY
BETAMI=0.
IF (THTAZM .LE. 0.0) GO TO 302
BETAMI=ATAN2(SIN(THTAZM), (COS(THTAZM)-Q))
302 BETAMI = AMAX1(BETAMI,-HALFPI+RHO)
DO 370 NBC=1,5
XN=NBC
THTAZE=(2.*XN-1.)*THTAZP+(XN-1.)*(PSIP+PSIM-PI)
IF ((THTAZE-THTAZM) .LE. 0.0) GO TO 300
BETAMX=ATAN2(SIN(THTAZE), (COS(THTAZE)-Q))
BETAMX=AMIN1 (BETAMX,PI ,HALFPI+RHO)

CALCULATION OF BETA-PEAK AND PSI-PEAK
IF (Q .GT. .5) GO TO 305
IF(NBC .GT. 1) GO TO 305
BETAPK=0.0
PSIPK=0.0
GO TO 306
305 QSBETA=SQRT(((2.=XN*Q)*%2-1.)/((2.xX1)*%*2-1.))
BETAPK=ASIN(QSBETA/Q)
PSIPK = 2.*XN*ASIN(QSBETA)-BETAPK-(Xll-1.)*PI

CONSIDERATION OF THE RELATIONSHIP BETYEEN PSIM,PSIP,PSIPK
306 IF (PSIM .GE. PSIPK) GO TO 300
CALL BLIMIT(BL,BU,NBETA)

TEST INTERVALS OF INTEGRATION FOR RIM EFFECTS

SUM1=0.

DO 360 MBETA=1,lBETA
BETAL=AMAX1 (BL (MBETA) ,BETAMI)
BETAU=AMIN1(BU(MBETA) ,BETAMX)
BETAT=BETAU-BETAL
BETASM=BETAU+BETAL
IF (BETAT .LE. 0.0) GO TO 360

SB=.5*(BETAT-SIN(BETAT)*
* COS(BETASM) ) *COS(OMEGA-ALPHA)
SUM1=SUM1+.5%ZNRMAL*SIN (BETAT)
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* *SIN(BETASM) +SB*XYNRML

360 CONTINUE
370 SUM(NZ ,NBC)=SUM(NZ,UBC) +SUM1*CONSTY
300 CONTINUE
101 UNIT=-UNIT
RETURN
END

C*DECK SOLN

FUNCTION SOLN(BETA,PSI)
Cxx FUNCTION SOLN COMPUTES BL AND BU USING NEWTON'S METHOD
C .
Cx»xWRITTEN BY: R.M.ANDERSON
C+**DATE WRITTEN: 06/01/80
c
C#*xEXPLANATION OF VARIABLES

C BETA = FIRST GUESS FOR SOLN
C PSI = BETA - (2*NBC*SIN(Q*SIN(BETA)) + (lIBC-1)*PI
C Q = VECTOR FROM CENTER OF DISH TO POINT ON THE RECEIVER
C INBC = BOUNCE NUMBER
C
COMMON /BLOCKB/ PSIP,PSIPK,PSIM,BETAPK,Q,lIBC,
* TNZETA,DRTOP,CSZETA,SIIZETA
COMMON /GLOBAL/ HALFPI,PI,TVOPI,RADIAN
A=BETA
B=PSI
XN=NBC
B=B+(XN-1.)*PI
DO 10 I=1,30

QAS=Q*SIN(A)
DELA=(B-2.*XN*ASIN(QAS)+A)/(1.-2.%Q=XlI*COS(A)/
* SQRT(1.-QAS**2))
A=A-DELA
IF (ABS(DELA) .LE. .0001) GO TO 300
11 IF (A .LT. 0.0) GO TO 200
12 IF (A .GT. PI) GO TQO 200
10 CONTINUE
WRITE(6,100)
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100 FORMAT(® ITERATION DID NOT CONVERGE')
GO TO 300
200 WRITE(6,201)
201 FORMAT(® ITERATION DIVERGED')
A=0.
300 SOLN=A
RETURHN
END
CxDECK BLIMIT
SUBROUTINE BLIMIT(BL,BU,NBETA)
C
REAL BL(2),BU(2)
INTEGER NBETA
COMMON /BLOCKB/ PSIP,PSIPK,PSIM,BETAPK,Q.NBC,
* TNZETA,DRTOP,CSZETA,SNZETA
COMMON /GLOBAL/ HALFPI,PI,TWOPI.RADIAN
C*xxx CONSIDERATION OF THE RELATIONSHIP BETYWEEN PSIM,PSIP,PSIPK

c IN ORDER TO DETERMINE THE BETA-LIMITS OF INTEGRATION
c

Cx*x*WRITTEN BY: R.M. ANDERSO!, ASSISTED BY CLIUT DAYSOl,

c CATHY NORYOOD, AND READ JORINSTON

C+x*DATE WRITTEN: 06/01/83

c

Cx*x*EXPLANATION OF VARIABLES:

C BL(2) = ARRAY CONTAINING LOYER BETA-LIMITS
C BU(2) = ARRAY CONTAINING UPPER BETA-LIMITS
C NBETA = NUMBER OF BETA-REGIONS OVER WHICH TO INTEGRATE
C NBETA=1 OR 2
C BETA = THE FIRST GUESS FOR BL(I) OR BU(I) TO BE
C USED IN SUBROUTINE SOLN
c

IF (PSIM .LT. 0.0) GO TO 320
c
C PSIM >=0

IF (PSIP .LT. PSIPK) GO TO 315

c
C PSIM >=0 AND PSIP>=PSIPK
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G1=SQRT ((PSIPK-PSIM)/(PSIPK+(lBC-1)*PI))

BETA=BETAPK*(1.-G1)
BL(1)=SOLN(BETA,PSIM)
BETA=BETAPK*(1.+G1)
BU(1)=SOLN(BETA,PSIM)
NBETA=1
GO TO 350

c

C PSIM>=0 AND PSIP<PSIPK

315  G1=SQRT((PSIPK-PSIM)/(PSIPK+(NIBC-1)*PI))
G2=SQRT((PSIPK-PSIP)/(PSIPK+(liBC-1)*PI))

BETA=BETAPK#(1.-G1)
BL(1)=SOLN(BETA,PSIM)
BETA= BETAPK*(1.-G2)
BU(1)=SOLN(BETA,PSIP)
BETA=BETAPK*(1.+G2)
BL(2)=SOLN(BETA,PSIP)
BETA=BETAPK*(1.+G1)
BU(2)=SOLN(BETA,PSIM)
NBETA=2
GO TO 350
C
C PSIM<O
320 IF (PSIP .GT. PSIPK) GO TO 325
IF (PSIP .GT. 0.0) GO TO 323
C
C PSIM<O AND PSIP<=0 AND SINGLE BOUNCE
322 IF (NBC .GT. 1) GO TO 391

390 G1=SQRT((PSIP-PSIPK)/(-(NBC*PI+PSIPK)))
G2=SQRT((PSIM-PSIPK) /(- (NBC*PI+PSIPK)))

BETA=BETAPK+ (PI-BETAPK) *G1
BL(1)=SOLN(BETA,PSIP)
BETA=BETAPK+ (PI-BETAPK) *G2
BU(1)=SOLN(BETA,PSIM)
NBETA=1

GO TO 380
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C PSIM<O AND PSIP<=0 AND MULTIPLE BOUINCE
391 BL(1)=SOLN(0.,PSIM)
BU(1)=SOLN(BL(1) ,PSIP)

G1=SQRT ((PSIP-PSIPK) /(- (NBC+PI+PSIPK)))

BETA=BETAPK+ (PI-BETAPK) *G1
BL(2)=SOLN(BETA,PSIP)
BU(2)=SOLN(BL(2) ,PSIM)
NBETA=2
GO TO 350

c

C PSIM<O AND 0<=PSIP<=PSIPK

323 BL(1)=0.
IF (NBC .LE. 1) GO TO 374

BL(1)=SOLN (0. ,PSIM)

374  G1=SQRT((PSIPK-PSIP)/(PSIPK+(liBC-1)*PI))

BETA=BETAPK*(1.-G1)
BU(1)=SOLN(BETA,PSIP)
BETA=BETAPK*(1.+G1)
BL(2)=SOLNi(BETA,PSIP)

G2=SQRT((PSIM-PSIPK)/ (- (IIBC*PI+PSIPK)))

BETA=BETAPK+(PI-BETAPK) *G2
BU(2)=SOLN(BETA,PSIM)
NBETA=2
GO TO 350

C

C PSIM<O AND PSIP>PSIPX

325 BL(1)=0.
IF (NBC .LE. 1) GO TO 376

BL(1)=SOLN (0. ,PSIM)

376 G1=SQRT((PSIM-PSIPK)/(-(NBC*PI+PSIPK)))

BETA=BETAPK+(PI-BETAPK)*G1
BU(1)=SOLN(BETA,PSIM)
NBETA=1

350 RETURN
END

C+DECK BOILER

SUBROUTINE BOILER(Z,PHIR,PSIR,XR,YR,ZR)
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c
Cx%% GENERAL BOILER SUBROUTIIE.

c
COMMON /BLOCKB/ PSIP,PSIPK,PSIM,BETAPK,Q,NBC,
* TNZETA,DRTOP,CSZETA,SNZETA
COMMON /GLOBAL/ HALFPI,PI,TWOPI,RADIAN

c

RADIUS=DRTOP+Z*THZETA

Q=SQRT(RADIUS**2+Z*%2)

PSIR=ATAN2(RADIUS,Z)

XR=COS(PHIR)*CSZETA

YR=SIN(PHIR)*CSZETA

ZR=SNZETA

RETURN

END
C+*DECK IRIS

SUBROUTINE IRIS(OMEGA,THTAZP,THTAZM,IFLAG)
C THIS ROUTINE WILL COMPUTE THTAZP AND THETAZM FOR A GIVEN
C OMEGA ANGLE.THE RIM ANGLE OF THE DISH IS THTAS(1)
C AND THE RIM ANGLE OF THE IRIS IS THTAS(2)
c
C WRITTEN BY
C DR. R. M. ANDERSOQN
C AND '
c M. N. OBEYESEKERE
C WRITTEN ON: 5/18/86
C
C

REAL THTAS(2),FIRPLS,FIRMNS, ARG

COMMON /ENTRY/ R11,R21,R12,R22,R13,R23

COMMON /CUT/ THTAR,GAMMAC,ES,A,PHID,GAMMAS,EC,PHIOC,PHIOS

COMMON /BLOCKA/ MOMEGA,ISTEPS,OMEGAL(2),0MEGAU(2) ,XYNRML,

*ALPHA ,NZ,ZNRMAL ,PSI0S,PSI0OC,SIGMAC,

*R31,R32,R33, THTARC, THTAW

COMMON /GLOBAL/ HALFPI,PI,TWOPI,RADIAN

COMMON/IRS/HIRIS,TIRIS,S11,512,513,821,522,523,531,532,533

IFLAG=0
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TEST=0.0
OMEGAC=COS (OMEGA)
OMEGAS=SIN(OMEGA)
THTARC=COS (THTAR)
THTARS=SIN(THTAR)
PHIZRO=TIRIS*RADIANx*0.5
THTAS(1)=THTAR
THTAS(2)=HIRIS*RADIAN
DEN=SQRT ((S31*0OMEGAC+S32*0MEGAS) x*2+833%%2)
IF(DEN.EQ.O.0) THEN

IFLAG=1

RETURN
END IF
ARG=COS(THTAS(2))/DEN
IF(ABS(ARG) .GT.1.0) THEN

IFLAG=1

RETURN
END IF
THTABI=ACOS (ARG)
THTAA=ATAN2 (- (S31*0OMEGAC+S32%0MEGAS) ,-S33)
THTAZM=AMAX1 (0.0, (THTAA-THTABI))
THTAZ =THTAA+THTABI
UP=(S21*0MEGAC+S22%0MEGAS) *SIli (THTAZ) +S23*COS(THTAZ)
DWN=(S11*0OMEGAC+S12*0MEGAS) *SIli(THTAZ) +S13*COS(THTAZ)
PHII=ATAN2(UP,D¥WN)
IF(ABS(PHII) .GT. (PI-PHIZRO))THE!

THTAZP=THTAZ

RETURN
END IF
ARG=COS(THTAS(1))/DEl
IF(ARG.GT.1.0) THEN

IF(PHII.LE.O.O)THEN

PHIR=PI+PHIZRO
ELSE
PHIR=PI-PHIZRO
END IF
PHIRS=SIN (PHIR)
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PHIRC=COS (PHIR)

A2=S21%*0MEGAC+S22+«0MEGAS

A1=S11*0MEGAC+S12%0MEGAS

THTAZ=ATAN ((S23*PHIRC-S13*PHIRS)/(A1*PHIRS-A2*PHIRC))
THTAZP=THTAZ

ELSE
THTAZP=THTAA+ACOS (ARG)
END IF
90  RETURN
END
C
c

C*x DECK TRAP
C(THIS IS USED ONLY IF AREA NEEDS TO BE COMPUTED)
REAL FUNCTION TRAP(N,DX,F)

c
C PURPOSE: THIS ROUTINE COMPUTES THE TOTAL CONICENTRATION OF SINGLE
c BOUNCE BY USING TRAPEZQOID RULE

C DATE WRITTEN: 31/03/86
C AUTHOR: KIM HSU

c
REAL FQID
C
S =0.0
M= N-1

D0 10 I = 2,M
S =8 + F(I)*2.0
10 CONTINUE
S =8+ F(1) + F(D
TRAP = DXx%S/2.0

RETURN

END
C+*DECK BERGMB
c

REAL FUNCTION BERGMB(IIL,LB,SUMA)
c

C VARIABLES:
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LB THE NUMBER OF BOUNCE
C NL THE SUBSCRIPT OF Z

COMMON /GLOBAL/ HALFPI,PI,TWOPI,RADIAN
REAL SUMA(100,65,5)
INTEGER NL
REAL RMBS(5)
DO 10 K=1,5
LJ=1
RMBS (K)=0
ISTOP=2*xK
H=TWOPI/FLOAT(ISTOP)
DO 20 I=1,ISTOP
RMBS (K) =H*SUMA(NL,LJ,LB) + RMBS(K)
LJ=LJ + 32/ISTOP
20 CONTINUE
10 CONTINUE
KOUNT=0
DC 30 J=1.,4
KOUNT=KOUNT+1
CALL ACCEL(XQOUNT,J,RMBS)
30 CONTINUE
BERGMB=RMBS (1)
RETURN
END
C+DECK ACCEL
SUBROUTINE ACCEL(KOUNT,J,RSUM)
REAL RSUM(5)
INTEGER KOUNT,J
JSTOP=5-J
DO 10 Ji=1,JSTOP
RSUM(J1)=(4**KOUNT+«RSUM(J1+1) - RSUM(J1))/ (4%xKOUNT-1)
10  CONTINUE
RETURH
END
C*DECK PAGE
c
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SUBROUTINE PAGE(LIMNE)

PURPOSE: CONTROL PAGE LENGTH OF THE QUTPUT PAGE
DATE WRITTEN: 06/01/86
AUTHOR: KIM T. HSU
VARIABLES:
LINE INPUT IS THE CURRENT NUMBER OF LINES. IF LINE
IS GREATER THAN 51 THEN IIl RETURN LINE IS
EQUAL TO 6
IF(LINE.LE.51) GOTO 10
WRITE(6,1000)
WRITE(6,2000)
LINE= 6
1000  FORMAT(1X,68('='),/,"'1','CONTINUE...")
2000  FORMAT(1x,68('='),/.8X,’'----',16X, AVERAGE CONCENTRATION’
*16X,’---~-",/,3X,'2",7X, 'BOUNCE 1 BOUNCE 2°,

* * BOUNCE 3 BOUNCE 4 BOUNCE 5 COMBINED®,
* /,1X,68(’=")/)

10 RETURN
END
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BOILER SHAPE: CONE

0. 0.

0.267 60. 30.0
30. 15. 00.0
1.00 50

0.0 360.00 11.25
1
100 .5 .995
0.267 -1.0
80.0 45.0



