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INTRODUCTION 

EQ3/6 i s a s e t o f r e l a t e d computer c o d e s and data f i l e s f o r use i n 
geochemical model ing o f aqueous s y s t e m s . The c r e a t i o n o f EQ3/6 began 
i n 1975, f o r t h e purpose o f model ing t h e r e a c t i o n o f s e a w a t e r and 
b a s a l t in mid-ocean r i d g e hydrothermal sys tems (1_). EQ3/6 h a s s i n c e 
b e e n adopted f o r f u r t h e r development and a p p l i c a t i o n t o problems in 
g e o l o g i c d i s p o s a l o f h i g h - l e v e l n u c l e a r w a s t e by both t h e Nevada 
N u c l e a r Waste S t o r a g e I n v e s t i g a t i o n s (NNWSI, t u f f r e p o s i t o r y program) 
and the O f f i c e o f N u c l e a r Waste I s o l a t i o n (ONWT, s a l t r e p o s i t o r y 
program). The code package i s c u r r e n t l y o p e r a t i o n a l a t Lawrence 
Livermore N a t i o n a l Labora tory , o ther U . S . n a t i o n a l l a b o r a t o r i e s , 
s e v e r a l u n i v e r s i t i e s , and i n p r i v a t e i n d u s t r y . 

The EQ3/6 package c e n t e r s around two l a r g e computer c o d e s , EQ3NR and 
EQ6, which are supported by a common thermodynamic data b a s e . EQ3NR 
(2_) i s a s p e c i a t i o n - s o l u b i l i t y c o d e , whose func t ion i s t o compute a 
model o f t h e s t a t e o f an aqueous s o l u t i o n . Th i s code i s v e r y f l e x i b l e 
i n terms o f the i n p u t t h a t i t w i l l a c c e p t . Input may c o n s i s t o f 
a n a l y t i c a l measurements , assumptions ( s u c h a s t h a t t h e f l u i d i s i n 
e q u i l i b r i u m w i t h s p e c i f i e d m i n e r a l s ) , or some mixture o f measurements 
and as sumpt ions . The output c o n t a i n s t h e d i s t r i b u t i o n o f aqueous 
s p e c i e s , t h e i r thermodynamic a c t i v i t i e s , and s a t u r a t i o n i n d i c e s for 
v a r i o u s s o l i d s . I f t h e input c o n t a i n s t h e assumption t h a t t h e f l u i d 
i s s a t u r a t e d w i t h some m i n e r a l , the o u t p u t a l s o g i v e s t h e t o t a l c o n ­
c e n t r a t i o n o f some e l e m e n t which makes up t h a t mineral ( e . g . , t h e 
s o l u b i l i t y o f uranium i n c o n t a c t w i t h s c h o e p i t e ) . . The o u t p u t a l s o 
normal ly i n c l u d e s a c a l c u l a t i o n o f t h e e l e c t r i c a l b a l a n c e o f t h e 
f l u i d , which i s a u s e f u l i n d i c a t o r o f t h e q u a l i t y and c o m p l e t e n e s s o f 
aqueous s o l u t i o n a n a l y s e s . 

* v i s i t i n g fromKBS, Sweden. 
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E Q6 (_3) i s a reaction-path code, which calculates models of changes in 
aqueous systems as they proceed toward a s ta te of o"erall chemical 
equilibrium. These models are divisible into three types: 1) "instant" 
equilibration of a system not at equilibrium, such as a water that i s 
supersaturated with respect to several sol ids , 2) reaction-path calcula­
tions using arbitrary kinetics to describe mass transfer for reactions 
that do not follow instantaneous equilibrium (these calculations essen­
t i a l l y represent t i t r a t i o n s ) , and 3) reaction-path calculations using 
actual kinetic ra te laws. EQ6 runs are in i t ia l ized by entering a 
description of the s ta r t ing aqueous fluid (from EQ3NR) and defining the 
constraints for the reaction path ( i . e . , identifying the irreversibly 
reacting materials and specifying the controls on their ra te of 
reaction; temperature/pressure changes may also be included). 

At the present time, EQ6 models correspond to two physical scenarios: 1) 
a closed system, which best approximates a rocking autoclave, and 2) a 
flow-through open system, which follows the progress of a single packet 
of water as i t traverses a reacting medium ( this i s a pseudo-one-
dimensional model). There are tentative plans to add a third model, 
which would deal with a flow-through open system approximating a 
leaching cell (also pseudo-one-dimensional). A full one-dimensional 
model, in which the code would keep track of reaction in a ser ies of 
boxes, appears feasible, but is not currently planned for EQ3/6 
development. 

RECENT IMPROVEMENTS 

With the adoption of EQ3/6 by the NNWSI and ONWI, development h a s 
acce l e r a t ed in the pe r iod FY83-84, and s eve ra l major s teps have been 
made to improve the adequacy of the coda package for use by the waste 
programs. One major step forward i s that a series of detailed user 's 
guides (2_-y has been produced. This documentation has been produced 
specifically to sat isfy NRC software requirements (_6). 

EQ3/6 prior to FY83 had r.o capability for modeling brines, because the 
approximations for calculating the thermodynamic activity of water and 
the activity coefficients of the solute species were res t r ic ted to low 
ionic strengths (£1.0 molal). Under ONWI sponsorship, we have added 
an option (4,_7) to use P i t ze r ' s equations (8-1.1) for such calculations. 
These equations, based on a semi-empirical approach using v i r i a l coeffi­
c ien ts , represent a proven methodology for modeling the thermodynamics 
of brines. Fig. 1 shows an example of th i s option, in which P i t z e r ' s 
equations have been used to calculate the solubility of gypsum as a 
function of NaCl concentration in the system CaS0,-NaCl-H 0 at 25"C. 

At present, EQ3/6 contains two alternate Pi tzer coefficient data bases. 
The f i r s t , drawn largely from sources other than solublity data (largely 
Ref. 10), contains sufficient species to account for acid-base equilib­
r i a , but does not include any ion-pairs as component species. The 
second is taken from a source (11) which has been par t ia l ly optimized to 
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Fig, 1. The solubi l i ty of gypsum (CaS0,*2H-0) in NaCl 
solution at 25°C, calculated using the Pitzer option in the 
EQ6 code (solid l ine marked "PITZER'S"). Small squares 
represent the experimental data of Block and Waters (14); 
c i rc les those of Marshall and Slusher (15). The Pitzer 
coefficients were taken from Harvie et a l . (11). The 
second line shows the solubility calculated using the B-dot 
equation, which was formerly the only activi ty coefficient 
model in EQ3/6. 

f i t solubil i ty measurements and which includes some ion pairs as 
component species. There are temperature coefficients on the f i r s t 
data f i l e , but none yet on the second. 

Other improvements have been made to the basic thermodynamic data f i l e 
which supports EQ3/6. The EQ3/6 data base includes a l l data which can 
be generated from the SUPCRT data base (12,13, and subsequent 
updates), which includes many simple ions and most of the common 
rock-forming minerals. All other thermodynamic data are handled 
through MCRT (5) . This code has i t s own thermodynamic data base, 
which exists in a supporting role to the the main EQ3/6 data base. 
Both data bases are in ternal ly documented. MCRT functions as a ther­
modynamic consistency checker, a temperature extrapolator, and a gen­
erator of data blocks for insertion into the EQ3/6 data base. I t s 
data f i l e is a. master repository of information; which includes not 
only good thermodynamic data, but also references to al ternate numbers 
which may be good, and documentation of discredited species and bad 
data as wel l . In the l a s t two years, the MCRT code i t se l f has been 
improved, and i t s data base has been considerably expanded, both to 
add new elements (such as actinides) and also to allow replacement of 
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Fig. 2. The precipitat ion kinetics of ca lc i te , modeled 
using the new capability in EQ6 (_16). Symbols represent the 
experimental data reported by Reddy et a l . (ISO. Two of the 
l ines were generated using the four term rate law of Plummer 
et a l . (20), using different values for the k, constant. 
The third l ine was generated using a simple transition s t a t e 
theory equation with only one rate constant. 

old and undocumented data for ion pair and complex dissociation 
reactions that existed in the EQ3/6 data f i l e . 

Several improvements have been made to the EQ6 code. Prior to FY83 , 
the code could run models of mineral dissolution kinetics, but could 
not calculate models of precipitation k inet ics . This problem has 
recently been overcome by additional code development (_16) . Fig. 2 
shows the results of some attempts of modeling calcite [CaC0~/ \] 
precipitation .using th is capability. For a general review of kinet ics 
in geochemistry, see La saga and Kirkpatrick (17) . 

The speed of non-kinetic EQ6 calculations has recently been enhanced 
by the creation of two new calculational modes, economy mode and super 
economy mode. Economy mode gives essentially the same informaton 
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density as before. In super economy mode, however, the code skips 
over phase boundaries (points where minerals appear and disappear 
along the reaction path) , and consequently gives somewhat les6 infor­
mation. The abi l i ty to analyze the output of EQ6 has been greatly 
improved by the addition of a graphics postprocessor (18). 

A calculational mode to simulate systems open to large gas reservoirs 
has also been developed (21). This option, called fixed fugacity 
mode, is directly pertinent to some kinds of experimental configura­
t ions , and is thought to be more applicable than a simple closed 
system to the s i tuat ion in the proposed NNWSI repository zone , 
which l ies in the unsaturated zone. Here 0. and CO- in the void 
spaces may be expected to quickly replenish any such gas lost in 
localized reaction, such as around a waste canister. 

PLANNED DEVELOPMENT 

A d e t a i l e d plan for fu r the r EQ3/6 development has been drawn up (22 ) . 
Planned major improvements inc lude: 

• Site-mixing models of solid solutions. These are needed to 
more accurately model the thermodynamics of such phases as 
clays, zeo l i t e s , and feldspars. 

• Provision in EQ6 for redox disequilibrium and redox k ine t i c s . 
The plan ca l l s for extending th i s capability to handle 
radiolysis. 

• Sorption models. Sorption here i s defined as d is t inc t from 
precipitation and solid solution. There is presently no 
sorption modeling capability in EQ6. Such a capability i s 
required to t rea t mass balances in reacting systems, especially 
for trace components. There i s also a need to look into the 
coupling between mineral surface chemistry and the kinet ics of 
dissolution/precipitation processes. 

Other planned tasks include: 

• Enhancements to the precipitation kinetics capabili ty. 
• Addition of any special capabil i t ies required to model interac­

tions involving glasses. These needs are currently being 
evaluated. 

• Inclusion of a gas phase in EQ6. The code presently has no 
capability to handle the presence of a possible gas phase. 

Possible additional tasks , to be carried out according to programmatic 
need, include: 

• Pressure corrections to the thermodynamic data. The data are 
now parameterized with pressure as a function of temperature, a 
constant 1.013 bar up to 100"C, and the liquid/vapor 
equilibrium pressure for water at higher temperatures. 
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• I so top ic f r a c t i o n a t i o n . Work in t h i s area has a l ready been 
ca r r i ed out in an EQ6 development ex te rna l to LLHL (23) . 

• "Leaching c e l l " flow-through open system. 
• True one-dimensional flow-though model. 

RATIONALE FOR CODE DEVELOPMENT 

Some discuss ion i s c a l l e d for concerning the r a t i ona l e behind such 
ambitious code development, and how i t may be expected to t i e in to 
technica l progress i n waste d i sposa l . EQ3/6 functions p r imar i ly as an 
i n t e g r a t o r of submodels. For example, a s i t u a t i o n to be modeled might 
involve simultaneously several very d i f f e r e n t kinds of p rocesses and 
phenomena, such as aqueous complexing, mineral d i s so lu t i on and p rec ip ­
i t a t i o n , so rp t ion , and thermodynamic n o n - i d e a l i t y . Some processes 
might be descr ibed by thermodynamic equ i l ib r ium, and o t h e r s by 
k i n e t i c s . I f these phenomena occurred independently of one ano the r , 
then geochemical modeling would be r e l a t i v e l y s t ra ight forward and 
something as s o p h i s t i c a t e d as EQ3/6 would be unncessary. In f a c t , 
these phenomena tend t o be coupled, and furthermore, the mathematical 
r e l a t i o n s pe r t i nen t t o each vary considerably in form. One might say 
t h a t the equations descr ib ing geochemical behavior are not " u s e r -
f r i end ly" . Hence codes such as EQ3NR and EQ6 must be ca l l ed upon. 

In genera l , much bas i c work needs to be done to develop appropr i a t e 
submodels for such t h ings as k i n e t i c s and sorp t ion . We lock upon 
EQ3/6 as a device t o a l low one t o t e s t s p e c i f i c submodels i n the 
presence of other submodels, as well as a device for i n t e g r a t i n g 
e x i s t i n g information. A good analogy i s to consider EQ3/6 as a small 
computer, a general phenomenon (such as d i s s o l u t i o n k i n e t i c s ) as a 
c i r c u i t board, and a spec i f i c submodel (such as a p a r t i c u l a r r a t e law) 
as a chip which can be plugged into t ha t board for t e s t i n g . In EQ3/6 
development, we a r e eschewing the adoption of spec i f ic submodels as 
the " r i g h t " ones in favor of programming in various op t ions , from 
which the user may choose, or t o which the user can add. 

APPLICATIONS 

In terms of a p p l i c a t i o n s , EQ3/6 i s l i k e a Swiss army k n i f e . The uses 
range from making simple s o l u b i l i t y c a l cu l a t i ons to car ry ing out 
soph i s t i ca ted k i n e t i c s imula t ions . We w i l l b r i e f l y d i scuss he re some 
app l i ca t ions t ha t a r e completed, con t inu ing , or planned a t Lawrence 
Livermore National Laboratory. However, we w i l l f i r s t po in t cu t t h a t 
BQ3/6 has been used elsewhere to model the na tura l tuff-groundwater 
i n t e r a c t i o n s a t t he NNWSI reposi tory s i t e (24) , the formation of ore 
depos i t s (25-27) , and in t e rac t ions between oceanic c rus t and hydro-
thermal sea water (1 ,23 ,28 ,29 ) . 

RUTHENIUM MIGRATION AT THE CAMBRIC SITE 

Although ruthenium i s not a prominent element of concern i n h igh - l eve l 
nuclear waste management, t h i s example i s never theless a good i l l u s ­
t r a t i o n of the a p p l i c a t i o n of geochemical modeling using EQ3/6 to shed 
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some l i g h t on a migra t ion problem involv ing an element with complex 
chemist ry . Coles and Ramspott (30) r e p o r t the following case h i s t o r y 
o f discrepancy between f i e ld and l abo ra to ry s tud ies of the migra t ion 
of t h i s element. Cambric was an underground nuclear explos ive t e s t 
below-the water t a b l e a t the Nevada Tes t S i t e . To study t h e leaching 
and poss ib le migra t ion of radionucl ides from the s i t e , one wel l was 
d r i l l e d i n t o the explosion cavi ty and a s a t e l l i t e wel l was d r i l l e d 91 
meters away in the d i r e c t i o n of the flow p a t h . Continued pumping of 
t h e s a t e l l i t e wel l l ed to the breakthrough of ruthenium about the same 
time as t r i t i u m , i n d i c a t i n g l i t t l e r e t a r d a t i o n of the ruthenium. This 
was not expected, because batch Kd ( d i s t r i b u t i o n c o e f f i c i e n t ) s t u d i e s 
of sorpt ion implied high r e t a r d a t i o n , thus ruthenium should have 
migrated only a few cen t imete r s . 

Recent ly a modeling s tudy (31) , us ing t h e r e s u l t s of an exhaus t ive 
review of the thermodynamics of ruthemium ( 3 2 ) , has shed some l i g h t on 
t h i s problem. EQ3NR, us ing t h i s new data s e t , p r ed i c t s a d i s so lved Ru 
concent ra t ion in the chimney [2.A x 10 molal , assuming s a t u r a t i o n 
w i th RuCL, i ] t h a t , consider ing the u n c e r t a i n t i e s involved, i s near ly 
i d e n t i c a l to the measured value of 4.5 x 10 molal. The c a l c u ­
l a t i o n s ind ica te t h a t the species RuO, makes up over 99% of t h e 

t o t a l dissolved Ru. An anionic species such as t h i s would be expected 
t o e x h i b i t l i t t l e r e t a r d a t i o n . On the o t h e r hand, the da ta a l s o show 
t h a t the f i e ld of dominance of t h i s ion in Eh-pH space i s small and 

surrounded by f i e l d s for Ru(OH) , S u , ( 0 H ) 1 2 , and RuO, . Although 

RuCy should a l s o be a poor sorber , t h e two ca t ion i c spec ies would 
be expected t o be good so rbe r s . I t seems l i k e l y t h a t the aqueous form 
of the ruthenium in the Kd experiments was ac tua l l y one of t h e s e . The 
so rp t i on experiments were i n s u f f i c i e n t l y charac te r ized t o a l low any 
s t ronge r conc lus ions . 

URANIUM SOLUBILITY IN THE PRESENCE OF CONCRETE 

A quest ion which was asked in conjunction with the NNWSI p r o j e c t was, 
"What happens to the s o l u b i l i t y l i m i t on d issolved uranium under 
ox id iz ing condi t ions a t 25°C i f concrete i s present in the system?" 
Concrete may be represen ted by i t s p r i n c i p a l component, p o r t l a n d i t e 
[Ca(0H)_. J . Under these condi t ions , the phase l imi t ing uranium 

concen t ra t ion i s expected to be schoepi te (UO *2H-0). 

A simple c a l c u l a t i o n suggests tha t the uranium s o l u b i l i t y should be 
g r e a t l y reduced. Schoepite s o l u b i l i t y i s pH dependent. In the 
normal groundwater (pH 6 . 9 ) , the uranium s o l u b i l i t y l imi t i s 

_3 
3 . 1 x 10 molal . However, i f the groundwater i s in equ i l ib r ium with 
p o r t l a n d i t e , i t s pH i s driven up to 12 .3 , a t which the uranium 
s o l u b i l i t y l i m i t i s only 9.3 x 10~ m o l a l . 
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T a k i n g i n t o accoun t t h e r e s e r v o i r of CO. g a s i n t h e s u r r o u n d i n g v o i d 

s p a c e changes t h i s r e s u l t , however . R e a c t i o n p a t h c a l c u l a t i o n s u s i n g 
- 3 5 EQ6 w i t h t h e f u g a c i t y o f CO- f i x e d a t 10 " " " b a r ( u s i n g t h e 

c a p a b i l i t y d e s c r i b e d b y R e f . _21), p r e d i c t t h a t p o r t l a n d i t e and CO„ 

r e a c t t o make c a l c i t e [CaCO, , J , and c o n s e q u e n t l y , t h e pH i n c r e a s e s 
_ 3 

t o o n l y 8 . 3 . The u r a n i u m s o l u b i l i t y l i m i t , i n t u r n , i s 4 . 2 x 10 

m o l a l , a s l i g h t i n c r e a s e o v e r t h e c a s e w h e r e c o n c r e t e i s n o t p r e s e n t . 
T h u s , c o n c r e t e a c t u a l l y a p p e a r s t o have l i t t l e e f f e c t on u r a n i u m s o l u ­
b i l i t y i n t h e NNWSI w a s t e package e n v i r o n m e n t . 

MODELING OF LABORATORY EXPERIMENTS 

L a b o r a t o r y e x p e r i m e n t s ( e s p e c i a l l y a u t o c l a v e e x p e r i m e n t s ) c o m p r i s e a 
k e y methodology t o a t t a c k i n g t h e problem of p r e d i c t i n g p e r f o r m a n c e i n 
a w a s t e r e p o s i t o r y . H e r e mode l ing i s u s e f u l i n s e v e r a l ways : 
1) h e l p i n g t o f ind o u t wha t d i d and d i d n ' t h a p p e n ; 2 ) t e s t i n g t h e c o n ­
s i s t e n c y o f a s s u m p t i o n s a b o u t c o n t r o l l i n g f a c t o r s ; 3) e x t r a p o l a t i n g 
w i t h r e s p e c t t o such f a c t o r s a s r o c k / w a t e r r a t i o , open v s . c l o s e d 
s y s t e m s , d i f f e r e n t c o m p o s i t i o n s of s t a r t i n g s o l i d s and w a t e r s , t e m p e r ­
a t u r e , p r e s s u r e , and t i m e ; 4 ) d e s i g n i n g new e x p e r i m e n t s , and 
5) r e s o l v i n g d i f f e r e n c e s be tween l a b o r a t o r y r e s u l t s and f i e l d o b s e r v a ­
t i o n s . Modeling can a l s o s e r v e as an i m p o r t a n t check t o d e t e c t bad 
a n a l y s e s ( e s p . v i a c h a r g e b a l a n c e c a l c u l a t i o n s ) and u n d e s i r e d e x p e r i ­
m e n t a l a r t i f a c t s . M o d e l i n g can no t make up f o r d e f i c i e n c i e s i n c h a r ­
a c t e r i z i n g e x p e r i m e n t s , and indeed t h e " m o d e l a b i l i t y " of an e x p e r i m e n t 
i s a s t r o n g f u n c t i o n o f t h e d e g r e e of c h a r a c t e r i z a t i o n . 

Two p a r a l l e l a p p r o a c h e s c a n be t a k e n to t h e m o d e l i n g of l a b o r a t o r y 
e x p e r i m e n t s . The f i r s t we w i l l c a l l t h e a n a l y t i c a l a p p r o a c h . H e r e 
o n e c a n make s p e c i a t i o n - s o l u b l i t y c a l c u l a t i o n s u s i n g f l u i d s a m p l e s 
t a k e n w i t h i n c r e a s i n g t i m e o r d i s t a n c e a l o n g a flow p a t h , and l o o k f o r 
t r e n d s , e s p e c i a l l y c h a n g e s i n s a t u r a t i o n i n d i c e s . The EQ3NR c o d e 
a l o n e migh t be s u f f i c i e n t f o r t h i s p u r p o s e . I f , fo r e x a m p l e , an 
e x p e r i m e n t i s conduc t ed a t 150°C and t h e pH i s measured a t 2 5 ° C , t h i s 
quench pH can be used a s an i n p u t t o EQ3NR, and a o n e - s t e p t e m p e r a t u r e 
c o r r e c t i o n c a n t h e n b e made by f e e d i n g t h e r e s u l t i n g model i n t o EQ6. 
Usage of t h i s t e c h n i q u e on f l u i d samples t a k e n from t u f f - g r o u n d w a t e r 
e x p e r i m e n t s shows t h a t t h e c a l c u l a t e d pH a t 150°C i s u s u a l l y l e s s t h a n 
0 . 2 u n i t s h i g h e r t h a n t h e measured quench v a l u e . 

T h e a n a l y t i c a l a p p r o a c h i s h e l p f u l , b u t i t i s l i m i t e d i n t h a t i t i s 
n o t e x t r a p o l a t a b l e o r even i n t e r p o l a t a b l e . T h i s k i n d of power c a n 
o n l y b e g a i n e d by t h e s y n t h e t i c a p p r o a c h , w h i c h i n v o l v e s a c t u a l 
p r o c e s s mode l ing . H e r e one chooses t h e g o v e r n i n g e q u a t i o n s ( r a t e 
l a w s , e q u i l i b r i a , e t c . ) a n d a s e t of i n i t i a l c o n d i t i o n s , and l e t s t h e 
code p r e d i c t what w i l l h a p p e n . I n t h e f i r s t a t t e m p t s t o model 
t u f f - g r o u n d w a t e r a u t o c l a v e e x p e r i m e n t s ( 3 3 , 3 4 ) , we found t h a t a p u r e l y 
b l a c k box approach i s u n w o r k a b l e . One must l ook to t h e e x p e r i m e n t s 
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t h e m s e l v e s f o r c e r t a i n i n f o r m a t i o n c r i t i c a l t o t h e s u c c e s s o f t h e 
model . Much of t h i s a s p e c t has to do w i t h s u p e r s a t u r a t i o n 
m e t a s t a b i l i t i e s and whether or not v a r i o u s thermodynamical ly p o s s i b l e 
secondary minera l s w i l l a c t u a l l y form in the t ime o f the e x p e r i m e n t . 

F o r example, t h e d e v i t r i f i e d t u f f i n the NNWSI r e p o s i t o r y h o r i z o n 
c o n s i s t s mos t ly o f q u a r t z ( S i O „ ) , c r i s t o b a l i t e (a l e s s s t a b l e form 

o f SiCL), s a n i d i n e [ (Na . lOAlS i -Og] , and p l a g i o c l a s e [(NaSi.CaADAlSi^Og ] . 

I t s r e a c t i o n wi th t u f f groundwater a t 150°C a c h i e v e s a near s t e a d y - s t a t e 
c o n d i t i o n a f t e r s e v e r a l d a y s . However, t h e water i s then about 
s a t u r a t e d w i t h r e s p e c t t o t h e l a t t e r t h r e e m i n e r a l s , which a r e n o t t h e 
most thermodynamically s t a b l e . The water i s supersa tura ted w i t h r e s p e c t 
t o quartz and a h o s t o f p o s s i b l e secondary m i n e r a l s . Some p o s s i b l e 
secondary minera l s form c l o s e t o s a t u r a t i o n , some form under obviouB 
k i n e t i c c o n t r o l , and some a p p a r e n t l y do n o t form a t a l l . There i s no 
a p r i o r i way t o p r e d i c t t h i s s o r t o f b e h a v i o r , except perhaps by t h e 
development o f " r u l e s o f thumb." Thus , k i n e t i c model ing must b e c l o s e l y 
t i e d t o trends in s o l u t i o n chemis try and c a r e f u l c h a r a c t e r i z a t i o n (SEM, 
EMP, STEM, XRD, e t c . ) o f secondary p h a s e s . I t i s u s e f u l i n s y n t h e t i c 
model ing t o c o n s i d e r a s e r i e s of models which vary w i t h regard t o t h e 
e x a c t assumptions o f t h i s k i n d . T h i s " m u l t i p l e hypotheses" approach i s 
even more c r i t i c a l i f one i s a t t empt ing t o e x t r a p o l a t e t o l o n g e r t i m e s . 

Work t o date appears t o demonstrate the f e a s i b i l i t y o f s y n t h e t i c , 
k i n e t i c model ing , a t l e a s t f o r tu f f -groundwater exper iment s . T h i s 
shou ld a l s o be t r u e i f g r a n i t e i s s u b s t i t u t e d for t u f f . K i n e t i c 
model ing of b a s a l t may be more d i f f i c u l t . I f systems o f r e p o s i t o r y rock 
and water can be modeled i n t h i s way, then t h e next s t e p i s t o a t tempt 
t h e a d d i t i o n o f o t h e r r e p o s i t o r y components, such as c a n i s t e r m e t a l s , 
b a c k f i l l components, and w a s t e forms. The e x t e n t t o which t h i s r a t h e r 
d e t a i l e d modeling w i l l be a c t u a l l y c a r r i e d o u t w i l l depend on some 
b a l a n c e between t h e f e a s i b i l i t y o f t h e model ing i t s e l f and t h e e x t e n t t o 
which the waste d i s p o s a l programs r e q u i r e i t . We should e x p e c t t o f i n d 
some o f t h e t h e s e answers a long the way. 

Work performed under the a u s p i c e s of the U . S . Department of Energy by 
t h e Lawrence Livermore N a t i o n a l Laboratory under c o n t r a c t number 
W-7405-ENG-48. 
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