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wlle lolow this o osut-oft point tney have been observed well
aluve tie Curie Lemperature. This vehaviour 1s not consistent

Lreslictions of localized spin models but can be explalned
by tne Land theoretic, or itinerant electron theory. In fact,
firsy priunciples calculations of the low temperature neutron
cattering cross-section based on the itinerant model have been
shown to be in excellent agreement with experiment. In addition,
the prediction of an optical spin-wave mode has been recently
confirmed. The finite temperature extrapolation of the low tempera-
ture thecry based on the traditional concept of a temperature-
dependent spin-splitting of the electronic energy bands appears
to be inconsistent with experiment. A more realistic first
principles approach to develop a correct finite temperature

theory is under investigation.



Neutron scattering experiments have recently revealed sor
interesting and unusual properties of the spin dynamics o
the transition metal ferromagnets nickel and irc: which nad not
been observed previously in any other magnetic materizls. For
example, spin-waves were found to exist only in a relatively
restricted volume of the Brillouin zone around the zZine center,

no matter how low the temperature /1, 2/. This disappearance

of the spin-wave made as one moves out into the Brillouin zone

is inconsistent with theoretical predictions bassd on the Heisen-
berg model where spin-waves are found to exist at all wave-vec-

tors for temperatures below the Curie temperature /3/.

On the other hand these neutron scattering results are con-
sistent with qualitative predictions based on the itinerant,
or band model of magnetism /4/. In fact, these qualitative
predictions of the disppearance of spin-waves were partial mo-

tivation for the subsequent neutron measurements.

Perhaps even more surprising than the disappearance of spin-
waves was the experimental observation that spin-waves existed
well above the Curie temperature and that the energy where the
spin-waves disappeared, the spin-wave cut-off energy, was inde-
pendent of temperature /1, 2/. This latter effect indicates
that the simple extrapolation of the low temperature itinerant
theory to finite temperatures based on the concept of a strong
temperature dependent spin-splitting of the electronic energy

bands can not be correct.
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to provide a good overall desoripil oo oo iz LT IC
scattering resulis. Howevel, sihce the detazils o8 0 0 the zplr-
wave disappears {or indeed whether It disappezse o @ 10 is de-

termined by the electronic band structure, it is iro oot that
we carry out realistic numerical czlculatlions of tic .
scattering intensity. Such guantitative results ca: .1 only

help establiish the validity of the itinerant theory tut 2150

=

provide an indirect test of the elccironic bzand struct o,
Calculations of this Lype are very difficult to carry out be-
cause cof the need nol only to generate the electronic chnergies
and wave-functicns but also to carry out reasocnably accurate
Brillouin zone sums involving Lhese quantities. Over the years
several accurate and efficient methods for generating the eliec-
tronic band structurc have been developed and applied to many
materials. Becausce of problems assosciated with exchange oo
correlation effects the land structures gencrated by thoose i
merical procedures are not exact but they can provide "veasonably”™
good results which can be used as arealistic” starting pouint for
calculations of the neutron scaitering cross-sectio:n. The Bri.louiln
zone sums referred to above can also be accurately detcvrmined by
using analytic computer techniques, such as the Gilat-Rauben-
heimzr /5/ or the tetrahedron methods /6/. Therefore, eventhough
the caliculation of the neutron scattering intensity involves

large scale computer calculation, reasonably accurate numercial

results can be obtained in przctice.



The purpose of the paper is to briefly outline the itinierant
electrop theory of magnetism and to present a comparison of
some numerical results for the neutron scattering cross-section
for ferromagnetic nickel and iron with experiment. The paper

is divided into three secticns. The general theory is outlined
in the first section, numerical results «nd comparison with ex~
periment. are given in the second section, and a summary of con-

clusions is presented in the last section.

General Theory

The itinerant model of magnetism is based on the concept that
the electrons whichare responsible for the magnetic properties
of a system can be described by an appropriate energy band
theory. This is built into the theory from the very beginning
by writing the general many electron Hamiltonian in terms of
Bloch wave functions {qhkc(ﬁ’} » where n is the band index,

5 is a wave-vector, and o 1is the spin.
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The U(S) is the electronic-nuclear potential, Mg is the

Ls .
electron mass, and cl’k"(cnkr) create (destroy) electrons in

the Bloch states %ku_(r) .

The quantity we ultimately want .to calculate is the inelastic
neutrcn scattering intensity which can be written in terms of the
time and space Fourier transform of the dynamic suceptibility /7/,

Z(Z-,w) , defined by

€1 £ wt
o [3
Zog(3,%) = 27 .[,f Sg (V) Sp@2e gt ()

where S'G’ is the o component of the total spin operator S ,

and { > represents a canonical ensemble average.

The Green's function formalism 1s used to calculate 1’7/3 . We
see from Eg. (4) that the Green's function which must be calcu-

lated is

Gop (f2)= -7 KT 55 (0 g;vto) > (5)

where T is the time ordering operator. In this paper we are going




to be primarilarly interested in the spin-wave behaviour and,
therefore, we need consider only the transverse cross-section
for scattering neutrons into the solid angle dJ2 with energy
and momentum transfer w and g respectively. For low tempe-
ratures it can be shown that this cross-section can be direct-

ly related to the Green's function G_*(glz) by the equation

2 .
do : . . (6)
Tnde - ~ Ten ii::o"!' G—_'_(g'w+,'é)}

where G_+(g’z) is the complex time Fourier transform of
G.p (g 8) = -7 KT Sz S50 (7)
st=s*s;s” _ (8)
In the Bloch representation we can write
Gptger= I (ki Fimbeg ) 6 tng, mbeg,2) (9)
" k
(10)
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The calculation of the transverse neutron scattering cross-section

is therefore reduced to a calculation of Gz

This Green's function is calculated using an equation of motion
method. The equation for &,; is decoupled from the higher order
equations by using a generalized RPA decoupling scheme. This
approximatic"m negle&;ts.spin—wave/spin—wave interactions and
certain spin-'-wave/e]_-ectron1interacﬂ:;:lqns:'aljiq, ‘therefore, restricts the cal-

culation to low temperatures. At this point we also restrict




the calculation to ferromagnetic materials. The resulting equa-
tion for (;1 can be further simplified by requiring that the
electronic wave-functions and energiés satisfy the following

Hartree-Fock-1like equations
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The quantity f is the Fermi occupation number and LGc(5153 is

a non-local screened electron-electron interaction. The theory
dictates how Ug. 1is to be calculated but the procedure is too
difficult to carry out in practice.‘We assume, therefore, that
Eq. (11) is sufficently general so that a realistic energy band
structure can be obtained for some appropriate choice of ééc.
The specific procedure we use to deal with the problem will be

described later on in this section.

With Q%k,(r) and E(qﬁ«) determined from Eq. (11) the equation

A

for the complex time transform of &, reduces to
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In order to solve this equation we must find some reasonable

approximation for the screened coulomb matrix element. The

simplest approximation to make is to treat it as a constant,




say L, With this approximation the Eq. (12) can be solved and
the scattering intensity determined. The result for a single
band magnet for scattering vector @= 2+7 ,"E a reciprocal lattice vector
and ¢ restricted to the first Brillouin zone, is
d& Z)'(2, ) (13)
dodew l ~ e * #“ 2
T {1~ ZoZ2J(q,a)} + [J:Z,(‘g,w)}

. - (14)
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A similar approximation in Eg. (11) yields

ECke)y = €(k) + T, (n ; —ng) (16)

where Jlg 1is the number of electrons with spin ¢~

and €(Rk) would have been the energy of the electirrons had the

system been non-magnetic (Ng=n ) .

The result given in Eq. (13) is the well known enhanced suscepti-
bility result derived originally by Izuyama, Kim and Kubo /4/.
In order to understand what spin-waves are and why they disappear

we need to examine this expression in some detail.

TPhe behaviour of the scattering cross-section 1is determined to

a great extent by Z‘:‘(z'w) . From Egs.(14) and (15) we see

' . ' . “



that this function is simply related to the total density of
states for a spin flip transition of a electron across the

Fermi surface with a fixed momentum change %
[a 4

-y ! ‘
lo‘(g,w) =7 ‘{: {Fkrﬁk*?f} 5(w—5(£¢)+&‘(5+2ﬂ) (18)
Such excitations are called Stoner excitations. Notice that
for l2)~>o
. | .
Ko (o) = TN, -ng) d(w- 4) (19)
D = ECRLI-ERTY = (N4=-NYYT, = constant (20)

where A is called the spin-splitting parameter. Clearly,
ZM-=o unless w=4. As g is inecreased ¥, will be non-
zero only between some maximum and minimum energies. The regicn
of C@,w) space where 2_"," is non-zero is called Lhe Stoner con-
tinuum and is sketched in Fig. 1. For(flw) outside the Stoner

continuum the scattering intensity is zero except where
I-Z_ X, (2 w) =0 (21)

For this case a limiting procedure yields a delta function singu-
larity in the scattering intensity located at the solution of

Eq. (21). This is just the spin-wave peak and,therefore, Eq. (21)
locates the spin-wave dispersion curve. The spin-wave energy can

be shown to be quadratic in 2 ar  1s also sketched in Fig. 1.

The explanation of the disappearance of spin-waves is now quite



e

simple.. Since the condition given in Eq. (21) leads to poles
in the‘two-body Green's function, &, , it follows that the
spin-waves in this theory are bound states between an electron
of a given spin and a hole of opposite spin. If the spin-wave

dispersion curve enters the Stoner continuum then this bound elec~

AT

tron-hole pair is degenerant in energy with single-particle Stoné#f;
excitations and the spin~wave will decay. The 1lifetime (or line '

width) will depend obviqusly on the Stoner densityCﬁ‘states.

These results are consistent which the formula in Eq. (13) be-

EPR . e

cause if weyafe in the Sﬁoner continuum then Qfﬁto and the
spin-wave line will broaden by an amount which depends on the
magnitude of‘I;]iﬁ These results also point out the need for
carrying out numerical calculations because the shape and posi-
tion of the Stoner continuum depends on the details of the band
structure. For example, if the Stoner continuum lies very high
in energy then the spin-wave will be well defined at all g R
while if it lies low in energy the spin-wave may exist for only

very small @ .

A

Before turning to the problem of humerically evaluating the
scattering cross-section we need to reconsider the matrix ele-
ment approximation. Unfortunately the constant matrix element
approximation can not be very good for transition mecal systems
because of the relatively strong band and wave-~vector dependence
¢f the Bloch functions. Several years ago the author suggested

a method of including‘these effects in a approximate way /8/ by :
using an inﬁerpolatiqn Expénsionﬂfbr the‘wéve-function. This method can also beAf

based on the Xorringa,.Kohn; Rostocker (KKR) wave-function expansion

Yope ) = 5 Guuo ) b, 0r) (22)
~ b ] - ' )



wnere 47 represents a combined angular momentum index (£, m) .
The Q,,, (k) are expansion coefficients and the ?2{ are pro-
ducts of radial functions and spherical harmonics. Substitution
of this expansion into the screened coulomb matrix element ex-
pression allows us to separate the band and wave-vector depen-
dence given by the expansion coefficients from Ug (r,¢‘) which
occurs in symmetry dependent integrals over the unit cell. Since
Usc is not known we treat these unit cell integrals as parame-
ters which are adjusted to yield a reasonable band structure for
the system of interest. The number of such symmetry dependent pa-
rameters is initially large ot 1t can be reduced considerably
by relying ci: order of magnitude and cynmetry arguments. In the
work presented here we have ignored the effects of the spin-
splitting of the s and p symmetry states and have chosen to
describe the splitting of the d-symmetry states with two para-

meters, ¥ for eg and \, for {:13 symmetry.

The general expression for the electronic energy which is ge-

nerated by these approximations is

E(nRe) = E£Cnke) + ?;u 1Qpoe CRY[F] hi«hf}

o
h - WA' s
¢« = Y4 5 ja Pyl )
N L mygo b5 'mea' (24)

~~

The function E(nktr) has a very weak spin-dependence arising
from the explicit spin-dependence of the electronic wave func-
tions which can generally be neglected. The major spin-dependence
comes from the second term in which the sum on is restricted
to only the 5 d—symmeery terms and W, = V, (V;) for &4 (-sz)

. | nd R
symmetry. The function ‘—-“ is '1" evaluated in the paramag-
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netic band structure. If we put V,=V, the result in Eg. (23)
reduces to the form for Ed(nkg) proposed by Hodges, Ehrenreich

and Lang,based on their interpolation scheme.

The matrix element approximations which have been made also
local to a closed form expression for the Green's function

G_, (},l) . The result is

G, (1) = “}32 R LT rgy w] [y (20 Ry (25)
Ecgy= § (b e 27 )
4 (L) = [¢,c0)) e r (26)

W), = “"’z‘ Rpaay () Bomest 8+ 2) Brg U6 Do s 1) Ty = fm poged
i (

nhm Z- E(nkd {—E(mk+21‘)

27)

These results are considerably more complicated than the con-
stant matrix element results discussed earlier. It should be
noted here that no new parameters hve been introduced beyond
those already incorporated in the band calculation. Therefore,
once the band structure is given the dynamics of the spin
system is uniquely determined. The method of determining theses

parameters will be discussed in the next section.
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and the nucbezr of electrons of symmelry type &

WO
My = Z 1 8o Y™ £, p (31)

n

=

can be calculated. We then choose VY and V, so that we get the

experirentally deternined values of &n and n;r /9/.

Detail numerical calculations based on this model have shown
that,to a good approximation, the spin-dependence of the ex-
pansion coefficients can be ignored. This result suggest an
alternate approach for barrying out the calculation without
having to rely on the interpolation schemes. This method is

to replace tlnq,(g)and e(ngv) in Eq. (23) by their paramag-
netic counterparts, Q,g (5) and E.'(n‘g) , and then to iterate

Eq. (23) to convergence for fixed values of V, and ¥, . The values
for V; and V; are to be determined as described previously. Both
mehtods have been found to give essentially the same ferromagne-

tic band structure.

Examples of the type of band structures which can be obtained
from these procedures are given in Figs. (2) and (3) for nickel
and iron respectively. Both calculations yield a complex of

d bands which hybridize with a broad s-like band. The calcula-
tion for nickel was based on paramagnetic bands proposed ﬁy
Stocks, Faulkner, and Williams /10/. The dotted lines refer to
minority spin bands while the solid lines are majority spin

bands.



Because of the approximations which have been made the energy
bands along a given direction are rigidly spin split if the elec-
tronic wave-function expansion along that direction contains only
symmetry terms which belong to the same irreducible representa-
tion. For example, along " toX we find bands with pureta symme -~
try which are spin-split by about .1 eV and bands with pure t13
symmetry which are split by about .4 eV. This rather different
splitting of these two sets of bands gives rise to only one hcle
pocket at ¥ , in agreement with exwveriment. Most band calcula-
tions for nickel yield comparable spiitting for these particular
bands and, therefore, two pockets at X . For bands where the
wave~function expansion contains symmetry terms from more tharn
one irreducible representation ralher strong wave-vector-depern-

dent splitting can occur as one varies k.
A

The calculation for iron was based on paramagnetic bands proposed
by Wood /11/. Again the dotted lines refer to¢ riinority soir ooois

In contrast to the nickel results the 83 and tlj spin-spiittings

in o oal-

were found to be approximately the same, which results
most rigid splitting (o2 eV) of the d-symmtry bands. Thc wave
vector-dependent splitting obtained in the 1iron bands rovu.is o.-
most entirely from hybridization effects.

Given these energy bards the Green's function G_*‘Z'-;_), civen i Eg. (007, and
thus the neutron scattering cross-section can now Lo evellited ngmerically.
Extensive calculations have been carried out along the three
principle symmetry directions for both nickel and ircn. Because

of the complexity of these calculations no attempt was made to

adjust V, and V, to obtain a "best fit" to the data. Such calcu-
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lations could, in principle, be undertaken but would require

unrealistic amounts of computer time.

Results for the transverse neutron scattering cross-secti.a
for nickel are shown in Fig. (4. These results were obtained

for § along [100] and show two interesting features. The

spin-wave peak which is sharp at low 9 broadens and becomes !
~ I

smaller for large § . Also at the larger values of @ two distinecz

peaks can be observed. The spin-wave dispersion curve obtained from

i
1

the peax positions 1s shown in Fig. (5). There are two branches,
one acoustic and one "optic", which app=ar to interact. The ab-
sence of any scattering intensity in the "optic" mode at low g
follows from an exact sum rule that all of the scattering must be
in the acoustic mode at z: o [8/. The acoustic branch bends over
and, as can be seen from Fig. (4), a small peak persists out to
the zone boundary. The low z part of the dispersion curve is

seen to be in excellent agreement with experiment /1/. The “optic"
branch and the persistence of the acoustic branch out to the 2zone
boundary were not observed in the criginal experiments possibly because of
the relative poor counting statistics at these high energies

(~120 meV). In a recent exeperiment Mook has improved the sta-
tistics by using a largercrystal and the hot source on the high
flux reactor at the ILL and has observed the "optic" mode dis-
persion curve as predicted by the theory /12/. The bending over

of the acoustic branch was also observed but not the persistence -~
of the mode out to the zone boundary. In order to determine if

this peak could be observed in a neutron experiment we must fold

in the experimental resolution function. Unfortunately this can

not be done at presént because of the amount of computer time

T e




this would regyuire. The scattering intensity along []]Q] and
[111] was found tc drop to zero in a manncr identical to that
found for iron, which is described below. The spin-wave dis-
persion cwve was fourd to be isoiropic in 2 and the spin-waves

were found to disappear at about 100 meV in excellent agreement

with experiment.

The neutron scattering cross-section calculated for irun is
plotted in Fig. (6) for g along [100]. The results for z along
[110] and {jll]were found to be essentially the same as along
[100] . In contrast to the [100] nickel results the spin-wave
peak continues to drop until it completely disappears. The
dispersion curve obtained from the peak positions is shown in
Fig. (7). Again the agreement between theory and experiment is

seen to be excellent. In addition, the predicted disappearance

of the spin-wave peak 1s in good agreement with the measurements

of Mook et al. /2/.

The calculations described above were carried out at zero tem-
perature. The extension of these results to finite temperatures
is very difficult because the theory must be carried beyond

RPA. For this reason the finite temperature theory has, in the
past, developed along the lines of a simple extrapolation of

the low temperature theory. This extrapolation leads to the con-
clusion that the spin-splitting is temperature dependent and
vanishes at the Curie temperature where N,=n, (see e.g. Eq. (20))
Numerical calculations based on the models carried out by

Lowde and Windsor /13/, and later by the author, indicate that
the Stoner continuum will move down in energy as the temperature

is raised. This in time would require that the spin—wave cut-off



energy would also be temperature dependent, which is not the
case found experimentally. It appears, therefore, that this
simple temperature extrapolation of'tbe low temperature theory
can not be correct. The development of suitable finite tempera-
ture theory must not only lead to a temperature independent
spin-wave cut-off energy but also the existence of spin-waves
well above the Curie temperature. The development of such a

theory is currently under investigation.

Conclusions

The itinerant theory of magnetism has been shown to provide an
excellent quantitative as well as qualitative model for decri-
bing the low temperature spin dynamics of the transition metal
ferromagnets nickel and iron. Calculations of the transverse
inealstic neutron scattering cross-section have been found to
be in good agreement with experiment both with respect to the
spin-wave dispersion curves and the disappearance phenomena.
These calculations were based on an generalized RPA decoupling
scheme and on the use of an approximate procedure for incorpo-~
rating the band and wave-vector dependence of relevant matrix
elements. Numerical investigationslof this later effect indi-
cate that it is iﬁportant, i.e. the constant matrix element

approximation is not appropriate for nickel and iron.

This matrix element approximation has also been found to lead

to a strong band and wave-vector dependent splitting of the

.




electronic energy bands and a rather complicated expression for
the scattering intensity, in contrast to the rigid splitting-
enhanced susceptibility results generated by the constant ma-
trix element approximation. By introducing the matrix which
diagonalizes [I + W] in Eq. (25) it is straightforward to
show that it is a weighted Stoner density of states which con-
trols the disappearance of the spin-waves and not the totail
Stoner density of states. The simple pictu-e of the spin-wave
running into the "Stoner continuum" is therfore correct only
if we view the "Stoner. continuum" as a region in l?,u9 space

where a suitably weighted Stoner density of states is l=rge.

It has alsc been argued that the extrapolation of the low tem-
perature theory by using a temperature dependent splitting pa-
rameter is not consistent with neutron scattering results. The
extension of these low temperature calculations to higher tem-

peratures must await the development of a realistic high tempe-

rature theory.
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Figure Captions T

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Fig. 7:

Schematic drawing of the Stoner continuum and the
spin-wave dispersion curve for a single band itine-

rant ferromagnet
Energy bands for ferromagnetic nickel
Energy bands for ferromagnetic iron

Transverse inelastic neutron scattering intensity
for ferromagnetic nickel plotted as a function
of energy for fixed values of ¢ (in units of 2ﬂ/%)

along [100] .

Spin-wave dispersion curve for ferromagnetic
nickel for ¢ (in units of 2®/a, ) along [1007 .

The experimental points e+ are those of H.A. Mook

et al., Phys. Rev. Lett. 30, 556 (1973)

Transverse inelastic neutron scattering intensity
for ferromagnetic ir<n plotted as a function of
energy for fixed values of ¢ (in units of zm/q)

A
Spin-wave dispersion curve for ferromagnetic

iron for g (in units of 2h/a, ) along {100] . .
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