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DIELECTRO\IC RECOMBINATION THEORY

K. J. LaGattuta

Applied Theoretical Physics Division
Los AIamoa National Laboratory
Los Alamos, NY187545

INTRODUCTION

A theory now in wide use for the calculation of diekctronic recombination cross sec-
tions (uDR) and rate co%cients (cI‘R) W= one introduced originally by Feshbarhl for nuclear
physics applications, and then later adapted for atomic scattering problems by Hahnz. In the
foHowing, we briefly review this theory in a very general form, which allows one to account
for the eff~ts of overlapping and interacting reaonancee, u well aa continuum-continuum
coupling. .An extension of our notation will then also allow for the inclusion of the effects of
direct radiative recombination, along witn a treatment of the interference between radiativl’
and dielectronic recombination, Other approaches to the calculation of aDR have been d~-
scribed by Fano3 and by Seaton 4, We will not consider those theorim here.

Calculations of aDR have progressed considerably over the last 25 ye~rs, since the ~arly
work of Burgess 5. Ad\ances in the reliability of theoretical predictions have a!so been pro-
moted recently by a variety of direct laboratory measurementse-*l of 6DR.

\\’bile the measurements of u ‘R for An + O excitationshave tended to agree very w~l!
with calculations, the caae of An = O hu been much more problematic. However, by invok.
ing a mechanism originally propod by Jacobs *z, which takee into account the effect c)(Stray
electric fields on high Rydberg mtatm ( HRS) participating in the DR proceee, new calcula-
tions have improved the agreement between theory and experiment for theue caaesti’sl “J”1
Xeverthc]eoe, certain discrepancies .stiil remain,

I-) IS(’[’SSIOY

\\.P writp the hamiltonian for N+ 1 ~lectrons and en ionic core aa

wher~ 11(,in the hamiltonian for N+ 1electrons interacting with each other via V’= S1<)( l/r,, ~
~nd with a nucleus of charge Zc through S,(Zf/r, ), and D m X,( fl. c7 in the el=tron. photrm in-
t~raction, We define the idcmpottmt projection operators P, Q, and R such that l,,P= P+Q+H.
whew I,,Pis the unit operator, and PQ=QP=Q R= RQ=RP=PR=O. Th operator F’ pr~)j~i(’t~
onto qtatm of N ~l~ctrons bound, with mw rlectmn in a continuum state of the Y tdw-~rrln
ion of chargp 2/ = Z,h- ,V, ~nd nu photons: Q projwtn onto doubly excited statw t~fS + I
,~lectrnn~ I)ollnd an(l no pllotono: and R proj~ts onto the ground and singly excited ~tfit~~ ~)1’



X71 electrons bound. plus one photon. The wavefunclion Wsatisties the WIUJIIun

}IW=H(P +Q+R)*=EW=E(P+Q +R)9 1

ror the total entrgv E. This single equation may be rewritten as.

PHoP~p t Pi”Q*Q = E+p 1:]

QHoQWQ+Qt-PIJIp +QDR~R = E+Q II

RHOR9R + RDQ~Q = E9R 1,8

w here UIp = P~,*Q Z Q*, d *R ~ RW, and we ignore here temporarily the couplin~
between the R and P states. mdiated by D (which gives rise to radiative recombination 1.
Eqn ,5 may be rewritten in terms of Wu as

which also defines gR. Similar[y, eqn -1may be rewritttm -

~P = @JJ t (E - PHoP)-l PVQW~ = @p+ gpPt’QW~ (7)

upou inclusion of the homogeneous solution Op. for which (f’Hof’ - E)@P = 0. [f qns 6 an(l
7 are substituted back into eqn 4. then one obtains an equation for W~ which is

with the solution

WQ= (J5 - Qflo~ - QDRg~RDQ - QVPgpPk’Q)-l@’P4p s ~~Qt’PI#p (’))

which also defines the operator G~,

Since WQ= Q ~ is the projtxtion onto doubly ●xcited states oft he exact wavefuncr inn
W, then the matrix element describing the DR probability amplitude is

TDR =< 4RRDQWQ >=< 4RRDQGqQVP@P > (101

where ( RHOR - E)4R = O. Expanding Q in eigenstates of QHOQ as

where
QHoQla >* cola > (1’),

the DR probability PDR a lT~~12 becomes

wh~rf integration over incoming ektron and outgoing photon momenta is understood, In
a rrgion of energies where resonances are rlonoverlapping and/or interactions between rrvm-
Hnnces are ignored, eqn 13 m~y be written as

wlwro (1’Q,,s< rtl(;Ql(l >= (E- {,,- < nlDRg~RDln >- < alt’PgpPk’in >)-1, which is
~ho usual form of the DR probability in the isolated resonance approximation ( IRA),



wher[l J and o ranges from 1 to q. Then eqn !3becomes

.[< nll-P4P > +SJ*&(< all”PgpPt’~l > + < .tlDRgRRD\,~ >)Wd,J~

or, in a condensed notation.

W~a s G~o(< ~l~”~~p > +x,I#,,.\,.J~~.J) (171

which defines .\_J. The solution of eqn 17 is

where !2-1 is the inverse of the matrix fl with elements

!lmJ = 4.U - (1 - &3) Goa.fmu I 1’))

and CIOJis the Iironecker 4. The DR probability is then

lVe refer to this l~t equation. which includes the effects of interactions between resonancm.
but does not take into account radiative recombination, nor ex~lici’ continuum-continuum
roupling, as the “multiple interacting resonance approximation”’ (MIR.4).

\Ve point out that the interactions between rmonances being discuwed here occur f,n-
tirely through the coupling of distinct doubly excited states (eigenstat~ of QfYOQ)). ASthes~
make uirtuai transitions into the electron and photon continua: see eqn 16, For the purpose
of this discussion, we assume that the Q-space, au well ASthe P and R.spaces states, have
been prediagonalized, However. the subject of configuration interaction (Cl) among the Q-
space states alone is a significant one in its own right, and effects of this “restricted’. (‘1 li;ivP

1s Similar remarks are presumably true also for C1 among t IIPbeen computed for 9Axt ions ,
P-space states alone,

Eqn 20 can be reduced analytically for certain mode! problems: see ref. 16 for d~rails,
In the following, we consider three special CMWZ.

(ij [f the Q.space stat% do not couple through ●ithm the P or R.npaces, then .\,,,J = [)
for all a and 3. Consequent y, flao = dad, and eqn 20 reduces to eqn 14, which is tl,e isolatwi
resonance approximation (IRA), This is the trivial case.

(ii) Suppose instead that the ,\ao are identical and nonzero for all a and d, Then ~qn
20 becomes

PDn = /\d A,lGqolzlY,, SJ(~-l)adla (21)

having assumed rAcomplete degeneracy in ●nergy of the ~tates labeled by n. where {f’Qn z (:,,.

for cdl a, and where we have defined the autoionization and radiative rates as

Ar ■ -2[m < ctl DRgRRDla >

whi~ht ill this ~xample, arc the same for all rr, [!nd~r these condiliono, onr 114 t,hnt



where Y is the dimension of the Q-space and. in the prw Aing. wv I]ilvo ignorful I !III VIII; :11v’

of .\mJ. The double SUMin eqn 21 becomes

X.,XJ(Q-’),,J = .v/[1 + (.V - l)jf] ,:l; ,

which implies for the DR probability

~DR = .v2,-la.-l,/l(E - f) + f.v(.iq + .4, )/’2l~ Iu;l

- 27.VA..4,A(E - ()/(.4. + .4, )

which is the same, for this example as the IRA result, given by eqn 14.
(iii) \Iore interestingly, we suppose again that N states in the Q-space arp complwely

degenerate in energy, the < alVPgp W’la > are again identical for all a, but now the
fm < alDRgR~f)lS > are instead proportional to A,&~. This c)loice of parameters mimics
the case of DR in single, or few times charged ions, where Iargu numbers of high Rydberq
states participate. For such systems, one has that ~rn < nl}’Pgp PVln’ >IX 1/( nn’):]’x, where
n labels the HRS principal quantum number. But since radiative stabilization. for such an ion,
involves the inner (non- Rydberg) electron only, one has also that < (ll~RgRR~l.~ > x F.,,,,
Procedures similar to those describd in the last example lead now to

PDR = .V.4,,AF/l(E - [) + i(.vi-lu + .4, )/212 (2s)

+ 2~.V.4~i&d( E - ~)/( .V.4m + .-!~)

This .-multiple interacting resonance” ( MIRA) calculation approaches the IRA prediction only
in the limit in which A, >> iVAfl, However, if A, << .VAa, then PID~,\flRA )/ PDR(l R.4) -

l/.V. Note, however, that this result holds only if the resonances are strictly degenerate in
energy, a rather unrealistic condition.

(iv) Elaborating on the previous example, where the Q-space statns are again labeled I)y
n, we now choose specific wduea for the widths: lrn < nlVPgp PVln’ >= -2.-L, o/(nn’)1JJ s
-0,1/( nn’)3/2, and [m < njDRgRRD\n’ >= -’ ~~,~nn’ - -’2/ 10-s6mnl, with resonance ~nor.
gies cm = -0.5/n2, all in atomic units (a, u,), and for the range of n.w-dues 2$ n s 100, in
natural units, the choice of atomic parameters made here corrmponds to a radiative rat~ ~d’
lr 10’l/spc. and an autoionization rate of 3Z1014/SeC(for n=3), Then, a numerical evalua~ion
of ~qn 20, for this choice of parameters, yields the results depicted in Fig. I (for n ~ l(i),
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For comparison. we plot in [:iq. 2 the [R.4 preclirtion I from wln I I). (or r!l+,S;L[ll,.,:;,, :,.,.
IJf parameters, The two results are virtually indistinguishable, until P“~ owmds = IL-I. 1:,r
larger values. the IR,4 prediction b~comes increasingly unr~lial)le. Pventuai]y f’v~n rising iJtl-

yond total probability equal to 1, as E - 0. when resonances berome completely ov{’rlapp,l!!,
For this example. one can show that PDR - 2r.1.,0. as E – O.

(“,]ntinullm-(~ oncinuum (~ouplin~

In the following. we will extend the formalism of the preceding sections. in order rn
include the dTect on PDR of the coupling between distinct projectile continua. due ro rhi:ir

interaction with the target in its ground and singly excited states. This extension also has
implications for the calculation of electron-ion impact ( resonance) excitation pro babili! iw.
Our formulation of the excitation probabihty, which includes interacting resonance and inter-
ference effects. represents a continuation of previous work by other authors i7- 19. Resrmanc~
excitation is generally thought to be of importance in the evolution of nonequilibrium plasmas.

We begin by dividing the P-space into two subspaces: P1 projects onto the inromin~
state; the remainder of the P-space will be denoted by P2; i.e..

such that
P, P2=PJP, =0 (30 )

Then, eqns 3..5 become

\Vh~r~ nwessarv, primes have been included to distinguish functions modified by rrmtinullm-
rontinuum coi~pling from their unmodified versions which hav~ apptmrml in t]arlier swt ions,

(L’- PI Hoi’,- /’, \’P, f/p, r,\. P, )0;,, = () ( 10I

!/h = (E - PI lf,)Pl - rll’PJ!yp,PJL’Pl )-’ [11)



,!s per the devdopment leading IIp to Pqn 16. [he (.)-sp;lce .iv; li”l, l!l!l(. ril) [!+ .(114 -:”. ., .,,

equation
q~d = E.jl!-l ‘-’ ),.,G~L] < .JI.’P14+I .> ,!, ,,-

where the Q-space C;reen.s functions are

(;;, =1 E-t.,- < nlDRgRRDli_k > - < nil”p~gpip~l-’o > - < Ik!\”’}’l~/~I:P1l.”l: :,1-[
I 1:11

“rhe Q-<pace mixing operator is now

f):J = AOJ- ( 1- &J) G&.f;J I .i4 !

where the operator .1’ has the elements

.\;J =< al~~gR~~13 > + < ulk’P2g~Px~”l~ > + < Q1l’’P&P,L-’~.~ > (.1.7I

The DR probability amplitude is then

( if;)i’”DR = Sa < ORRDIO > SJ(Q’-l )aJG~J < 31t”’P14~, >

In order to facilitate actual computations based on eqn A6, itis first necessary to con-
struct explicit solutions for the coupled asymptotic state in the incoming channel O’pl, and the
coupled PI space propagator g~. Accordingly. we discretize the momentum in the iacominq
channel. Further. and for purpmies of exposition, we assume that the Pz-space consists of just
one state. Generalization is straightforward, and is discussed in a p~ior public ati~m~”. Eqn
40 becomes

(E- fp, - < ill”P2g~P2\’li > 4~li = SJ~i c il~~29fiF’~~-lj > 4~1J (47)

where i (or j) labels the initial target state. incoming continuum partial wave, and a particular
~aiue of the incoming momentum, The total energy in the incoming channel is
t P, =< ilP1flOP1li >,and *$, s< il~’a >. The solution of eqn 47 is

Ofi, = ~,(~-’),,@~,J (.1s1

wh~re Qfi, is the single-momentum PI -space asymptotic wav~function which SOIVPSt he oqua -
Il(]n

(E- f~, - < ilL’Plg~Fjk’li >)*R, = O ( l!)I

illld t hc P-space mixing operator ~ has the elements

4) = f51,- ( 1- ‘,, )g~lAIJ f .-)()

“~hesingl~ momentum PI-space propagator gn has the form

ge, =( E-c~, - < ill”P2g~P~l’li >)-1 (-)1

JIIII tlw P-space interaction operator A haa the elements

.



wttere PI projects onto Ig + AI(II = 1), and f’z projects onto 2s * A.2~12 = 1). T!le thrr.!;,,~,~

value of n’. beyond which the process 2pn’.~ — 2.3 + kIl~ is allowed is denotd n=. 1!’IiIII
difference in energy between the 1s and 2S target sritres is Iab(’led Alz s [2, - +l,. T\L,,II
on-;hell, k~/2 = kj/2 + A12, if the 2s channel is open. In this example, we assurnp lh~l I! III

total vllergv ranges from below to above the threshold for ‘2s ~xcitation. but (always remail!~
helmv [he 2-pthreshold, thus justifying the assumption of just two participating P-space srares.

Fmm eqn 46. the DR probability becomes

. .
I ).)1

where f enumerates the ‘“final- stat- ls~g, 153s, ls~s, .... and a labels the Q-spar~ sr;~lw
?S?p. 2s3p. %lp. .... as well as 2p3s, 2p4s, 2p5s, ,... The function t.lz is

[’,2= (1 + k,k2L’;2/.!)-’

which also appears in the expression for the modified PI -space propagator according to

and where \ “12is the matrix element of the electron-electron interaction between t he ground
( 1s) and first excited (2s) target states, with one electron in the continuum: i.e.. the 1s - 2,+
excitation matrix element. In deriving these formulas. the .’pole approximation”” has Iwmn
invoked everywhere: i.e.. all Green’s functions have been reduced to their imaginary parts,
[f the continuum energy is held below the 2s threshold, then k: < 0 so that, all quantities
proportional, in the preceding equations, to k2 would be set to zero: e.g., L“ll = 1; g; = qpl :
1.’ = t“: etc.

Defining the autoionization and radiative widths u

.4.2((J) = kzt:;a ( ,“)4 )

A,(a) a Sjk:D:,

NWronstructwi a model problem in analogy to example (iv) in the l~t Section, Specifically,
\vP 1“110s0

klk-J(2mp - 1s + kill) 3 .4ml/n3(n ~ 2)

k,Vz(2pn’s - 1s + k,l,) s ,-ld;~/n’3(n’ ~ 3) Ii!))

k2V2(2pn’,9 - 2s + kzl~) s A.111/fl’3(rA’ ~ n,)

k; D2(2pn’s - Iun’s + y) G /4,0 ((;())



[n order to emphasize this last point. WP plot In Fig. I; an t~xpaIIdml ror>i,~li ,ji ! !:,. 1,,,
,.

PRDR, for a restricted range of energies [ solid Iinel. TIIP rorrwpon(ting valu~s from l:;:. .:,, -,

also plottwl for comparison (dast.ed line I. Th~ v~ry I%llrp p~aks aris~ frocl t III*“J;Ir~’. -~Ir:..-
nf Q-space states. modified by Q\” P coupling 10 rhe 2srIp series. Only rmonancm I“l,ru Ii,, :,
12< n’ < 15 are ~iisplayed.-—

The IR.\ prediction, for ti~is choice of atomic parameters. exceeds the probability bn,lntl

[ PDR > 1). for Pnerqies just below the excitation threshold: see ref. 20 for further d[)raiis,
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From the foregoing. the 1s — 29 excitation probability tan h~ @aily con~rrlll’t,:, i’:.,
probability amplitude for this process can be divided into two parts: The ampli[llfi~ [or ,i,r~,.
excitation is

It; lTDE =< ‘tI~P2\-PIUIR >

\vhere [he asymptotic final state function OH satisfies

The total excitation probability is then

PEX = klk21TDE + TRE12

The amplitude for direct excitation can be written in a more explicit form as

while the amplitude for resonance excitation can also be expressed as

(66)

where ~~~ appears in eqn 44. This formulation of fEx conserves total probability in that
o ~ PEX + PDR < 1, \Ve refer the reader to ref. 20 for further information.

JLadiat ive Recoin b-

The effect of radiative recombination (RR) on DR has been discussed lately, with in-
creasing frequency 22-2s, although no direct experimental tests of thsmretiral predictions haw
as yet emerged. Usually, RR is of importance at very low energies of the incident electron.
while DR rates become appreciable only at elevated energiee. Consequently. the opportunity
for interference between the two processes would seem to be Iimitsxl. Nevertheless. we reca-
pitulate here our approach to the formulation of this problem. building on the work described
in the previous Sections.

The total probability amplitude for electron-inn recombination can be written as a sum
of two terms

TRDR = ERR+ ~DR (67)

where we refer to the joint procees as ‘radiative dielectronic recombination” ( RDR.), and
where the underscore sign,ifi~ ● function modified by coupling between the RR and DR
channels. The amplitude for Rh (in the presence of DR) can be described by

E‘R =< 4RRDP& >

while the amplitude for DR (in the presence of RR) may be expressed M

(69 )

where in eqn 68 km is the exact wavefunction describing the incoming state. As in the
previous Section, we assume that the P-spacu has been divided into two parts; PI projwts
onto Lhe incoming channel and FJ projects onto all other states of N electrons bound and une
electron in the continuum.

Upon addition of the terms PI DR~R, PJDR~R, and RDPI~ + RDPI!Q6 to the left-
hand .sides of eqns 31, 32, and 34, reap= tively, with all wavefunctioris underscor~ to t!en~l~
RDP coupled quantities, an analogous set O( (four) equations results which can be reduced



by the procedures already described. For example, we note [hat rhc asympr, ~ric 11: .;, ,,..
wave functioc ~fi now satisfi43

(E – PIHOP1 - P~PRgRR~Pl - -.
PIui~pl P2KPI ).lp, 1,!).

instead of eqn 40. in which RDP coupling w= not includ~. The R-space propagator g~ is
still given by eqn 6. Similarly. instead of eqn 43, the Q-space propagator is now

which generaliz~ eqn 41. Further reduction of t hme equations is somewhat complex. and the
reader is referred to ref. 23 for details.

In general, the eff~ts of RR on DR (or viceversa) should be most apparent when the
RR rate alone is roughly comparable to. or greater than, the rate of stabilizing radiative
decay in DR. Since the RR rate scales approximately as Z;, where ZI is the net ionic charge.
while the stabilizing radiative rate mria as 2/ for An # O transitions, and sa 2/ for An = O
decays, it is most promising to look for interference effects at low ZI for An # O transitions.
and at high Zf for An = O decays. Also, since RR rates are relatively ‘. I~ at the iowest
continuum energies. it is best to confine oneself to the region oi energies co;. :onding to the
lowest lying DR resonances. in accordance with these ideas, in the following we examine the
results of calculations of PRDR performed for the two RDR processes

for ground state He+ targets, involving a An # Ostabilizing radiative transition, and

38 + kili -- 3sn’l(n’ ~ 3)+ y

for ground state sodium-like targeta, in-.olving a An = O stabilizing radiative decay. \Ve
assume that, in each case, only one target state participate in the RDR process. so that
P~ = O and P1 a P. h addition, since we will confine our attention ●ntirely to the region
of energies around the lowest lying DR reeonance (which in usually well seperated from the
resonance next highest in energy) we make the isolated resonance approximate ion ( IRA).

From eqns 67.75 and the result.s of ref. 21, the RDR probability for the processes of
eqns 76 and 77 is

where .4~ is the stabilizing radiative decay rate: 2P - !s + Y, ;n the caae of eqn 76, and
3p - h + ~ for eqn 77, The direct radiative recombination rate to Rydberg state n is:+

}v~Rn = 7.Sz10-ez~/(n3[l/n2 + 2( E + Jc)/Zj]) (7!))



all in a,u.. where At is the excitation energy, and E is the total ~nergy 1afijllsre!l .,) ; !:,I” l“.=,1

at the excitation threshold). The prefactcr M is defined as

the autoionization rate modified by RDP coupling is

~(n) = [Ay(n) – (i/2)w~:nAy2]2 ,<1,

and the modified Q-space propagator is given by

. .~ig. 7. we plot dues of PRDR for the process of eqn 76. with A,(n) = 9,5z10-3/n3
au,. and A, = 1,6z10-7 au.. for 21 = 1 (ground state FIc+ targets). In Fig. 8. we plot ~alues
of PRDR for the process af eqn 77, with A.(n) = 1.2z10-1/n3 au.. and A, = 6.1z IO-g au..
for 21 = 1 (ground state .Wg+ targets). For comparison; in both Figs. 7 and s we include
plots of the DR component alone (dashed line).

The lack of any significant effwt of the RR process on the RDR probability, for An + O
excitations. is demonstrated by the result displayed in Fig. 7, at Zf = 1. For larger ZI.

the effect is even smaller. However. for the Jn = O excitation described by Fig, S, there
~ a perceptible ef%t of RR at ZI = 1; and this effect increwes somewhat, as 2[ increu~.
However. since larger Z[-wdues lead t~ larger dues for the minimum accessible n.value, this
effect seems to disappear for 2[ greater than two or three.

Electric Field Effect~

The enhancement of calculated UDR dues. for An = O excitations, due to Stark mixing
d participating lugh Rydberg states by stray electric fields, has been remarked on frcqupntly
over the past 5-10 years. Measurements of these cram sections by several different groups
have confirmed the reaIity of this effecte-14.
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[t is now well-known that field induced enhancements of DR prot)al)iilfil+ VI-I;’ :: :..

an incre=e in the number of angular momentum sraces accmsihle ro dieieclronl( ra;;- ::11.
Ordinarily, capture only occurs with an appreci~.ble probability to states O( orbir;il anu:,,:

momentum 1 < .5 - 10. even for very high Rydberq states n >> 10. However. in an os’ir
nally applied electric field. states of high angular momerltum acquirp low angular momml ii!::
character due to Stark mixing. Thus. captures to ~ery !Iigh Ry’ill(?rtz~ra[es are promOr~ti il:-
the presence lJf an elec[,ric fie:d, \fore detailed arguments rrlay be found in mf, 26.

.igreement between DR thwry and experiment. for An = O excitations. e.x-istsnow
generally to wirhin a faccor of+ 2. Discrepancies remain. how-ever, and work should umrin:il’

in order to resolve these problems ‘.s’27. The application of interacting resonance ~heory. IS
described earlier in this review. should be attempted. .\nd the effect of angular factors. plI-
culiar to the geometry of any given DR measurement. needs to be looked at very carefully.
xev~rtheless. the situation is today much improved from that which obtained in the early
l~SI)’s. when measur~ DR cr~s s~tions were an order of magnitude larger than the tllwI-

retical predictions.
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