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DIELECTRONIC RECOMBINATION THEORY

K. J. LaGattuta

Applied Theoretical Physics Division
Los Alamos National Laboratory
Los Alamos, NM 87545

INTRODUCTION

A theory now in wide use for the calculation of dielectronic recombination cross sec-
tions (¢ PR) and rate co=fficients (aPR) was one introduced originally by Feshba:h! for nuclear
physics applications, and then later adapted for atomic scattering problems by Hahn?. In the
following, we briefly review this theory in a very general form. which allows one to account
for the effects of ovarlapping and interacting resonances, as well as continuum-continuum
coupling. An extension of our notation will then also allow for the inclusion of the effects of
direct radiative recombination, along witn a treatment of the interference between radiative
and dielectronic recombination. Other approaches to the calculation of PR have been de-
scribed by Fano® and hy Seaton!. We will not consider those theorics here.

Calculations of aPR have progressed considerably over the last 25 years, since the ear|v
work of Burgess®>. Advances in the re'iability of theoretical predictions have also been pro-
moted recently by a variety of direct laboratory measurements®~!! of 2R,

While the measurements of PR for An # 0 excitetions have tended to agree very wel!
with calculations, the case of An = 0 has been much more problematic. However, by invok-
ing a mechanism originally proposed by Jacobs!?, which takes into account the effect of stray
electric fields on high Rydberg states (HRS) participating in the DR process, new calcula-
tions have improved the agreement between theory and experiment for these cases®®!%!!,
Nevertheless, certain discrepancies still remain,

DISCUSSION

\We write the hamiltonian for N+ electrons and an ionic core as
H=Ho+ D {1}

where H is the hamiltonian for N+1 electrons interacting with each othervia V' = T, ,(1/r,).
and with a nucleus of charge Z. through £,(Z./r,), and D x £,(#.€) is the electron-photon in-
teraction. We define the idempotent projection operators P, Q, and R such that 1,,=P+Q+R.
where 1,503 the unit operator, and PQ=QP=QR=RQ=RP=PR=0. The operator P projects
onto states of N electrons bound, with one elect*on in a continuum state of the N electron
ion of charge Z; = Z. - V. and no photons: Q projects onto doubly excited states of N +1
olectrons bound and no photons: and R projects onto the ground and singly excited states of



N +1 electrons bound. plus one photon. The wavefunction ¥ satisfies the equation
HY=HP+Q+RWV=EVY=EP+Q+ RV 2
for the total energy E. This single equation may be rewritten as
PHoPY¥p+ PVQVWq = EVp ]
QHQUq+QVPYp +QDRVR = EV¥g o
RHoRVY R + RDQW¥gq = EV¥p VT

where ¥p = PV . Wg = QV, and Yp = RV, and we ignore here temporarily the coupling
between the R and P states. mediated by D (which gives rise to radiative recombination.
Eqn 5 may be rewritten in terms of ¥q as

Yr=(E - RHQR)_IRDQ‘[’Q = grRDQVq Y
which also defines gr. Similarly, eqn 4 may be rewritten as
Wp=®p +(E - PHoP)"'PVQW¥q = ®p + gpPVQ¥q 7

npou inclusion of the homogeneous solution ®p, for which (PHoP - EY®p = 0. If eqns 6 and
T are substituted back into eqn 4, then one obtains an equation for ¥g which is

(E-QHoQ)Wq =QDRyprRDQV¥q + QVP(®p + gpFVQV¥q )
with the solution
Vg =(E~QHoQ - QDRgrRDQ - QV PgpPVQ) 'QVPOp = GqgQV Pép ()

which also defines the operator Gq.

Since Wg = QV is the projection onto doubly excited states of the exact wavefunction
{'. then the matrix element describing the DR probability amplitude is

TPR =< ®gRDQ¥q >=< ®RRDQGLQV Pop > (10)
where (RHoR — E)®p = 0. Expanding Q in eigenstates of Q HoQ as
Q = Sala >< a (1

where

QHoQla >= ¢, |a > (1
the DR probability PPR 3 |TPR|? becomes

PPR = | < ®pRDT.]a >< a|GQEy|a’ >< a'|VPep > |? (1)

where integration over incoming eleccron and outgoing photon momenta is understood. In
a region of energies where resonances are nonoverlapping and/or interactions between reso-
nances are ignored, eqn 13 may be written as

PPR = £,| < ®gRD|a > Gg, < a|V PEp > | (rn

where (7, =< alGigla >= (E - ¢,~- < a|DRgrRD|a > - < a|V' PgpPV|a >)~!, which is
the nsual form of the DR probability in the isolated resonance approximation (IRA).

Interacting Resonances

If resonances are interacting, then we have recourse to the following procedure. We
rowrite eqn 8 an an explicit q-component equation, where q is the dimension of the Q-space,
iy

(K =, )Wqn =< alVP®p > +T,[«  0|DRypRD|I > + < a|V' PgpPV|3d >|¥ ), (1D



where J and a ranges from | to q. Then eqn 9 hecomes
Vo =(E - €,— < alDRgrRDlc > - < a|VPypPV'a >)7! Cin
A< a|lVP®p > +Z34a(< aiV PgpPVi3 > + < a|DRgrRD|3 > ¥y i
or. in a condensed notation,
WQa S GQal< alVPOp > +¥ 14, N5V q5) (1
which defines A,;. The solution of eqn 17 is
VYo = S50 1apyGqa < 3|V POp > ey
where Q~! is the inverse of the matrix Q with elements
Qag = bag = (1 = 623)GoaNas (1)

and 6, is the Kronecker 6. The DR probability is then

PPR - |T.5, < ®pRD|a > (27 ")a3Gqs < IV P&p > |? (20)

We refer to this last equation, which includes the effects of interactions between resonances.
but does not take into account radiative recombination. nor exrlici* continuum-continuum
coupling, as the “multiple interacting resonance approximation™ (MIRA).

We point nut that the interactions between resonances being discussed here occur «n-
tirely through tae coupling of distinct doubly excited states (eigenstates of Q HoQ)). as these
make virtual transitions into the electron and photon continua; se2 eqn 16. For the purpose
of this discussion, we assume that the Q-space, as well as the P and R-spaces states, have
been prediagonalized. However, the subject of configuration interaction (CI) among the Q-
space states alone is a significant one in its own right, and effects of this “restricted” C'I have
been computed for select ions'®, Similar remarks are presumably true also for CI among the
P-space states alone.

Eqn 20 can be reduced analytically for certain mode! problems: see ref. 16 for details.
In the following. we consider three special cases.

(i) If the Q-space stat~s do not couple through either the P or R-spaces, then .\, =0
for all a and J. Consequent y, Q,5 = 6,3, and eqn 20 reduces to eqn 14, which is the isolated
resonance approximation (IRA). This is the trivial case.

(ii) Suppose instead that the \,; are identical and nonzero for all @ and J. Then sqn
20 becomes

PPR = 4, A, |GQol!|EaSu( 21 )aal? (21)

having assumed u complete degeneracy in energy of the states labeled by a. where (/g = (7.
for all @, and where we have defined the autoionization and radiative rates as

A, 2 =2Im < |V PgpPV|a > (22)
A, m =-2Im < a|DRgrRD\a >
which, in this example. are the same for all @. Under these condiiions. one has that
Qay = oy + u(l = 4,4) (29)
where the complex variable u i« given by
= (i(An + A)/)E = ¢ #1204, + A,)/2)
so that, after a considerable amount of algebra,

(07 ) = (14 (V= Dby = [ = 8 D/CL4 [V = 2p = [V = 1) 129



where N is the dimension of the Q-space and. in the preceding. we have ignored e reas v
of \y3. The double sum in eqn 21 becomes

LSS = N[+ (N = 1y VMG
which implies for the DR probability
PPR = N2A A J(E =€) +iN( A, + A0)/2° B

~ 20N Aa A E = €)/(Ax + A,)

which is the same, for this example as the [RA result, given by eqn 14.

{iii) More interestingly, we suppose again that N states in the Q-space are complete]v
degenerate in energy, the < a|V PgpPV|a > are again identical for all a, but now the
Im < a|DRgrRD|3 > are instead proportional to A,.é,5. This chioice of parameters mimics
the case of DR in single, or few times charged ions, where large aumbers of high Ryvdberg
states participate. For such systems. one has that Im < n|V PgpPV|n' >x 1/(nn’)¥3. where
n labels the HRS principal quantum number. But since radiative stabilization. for such an ion,
involves the inner (non-Rydberg) electron only, one has also that < a| DRgrRD|.] >x ¢,,..
Procedures similar to those described in the last example lead now to

PPR = YA A /ME-)+i(NAL + 4,)/2)2 (2N)

~ 2t VALANE - €)/(VA, + 4;)

This "multiple interacting resonance™ ( MIRA) calculation approaches the IRA prediction only
in the limit in which A, >> ¥ A,. However, if A, << VA,, then P(DRMIRA)/PDR(IR.-\) ~
1/.V. Note, however, that this result holds only if the resonances are strictly degenerate in
energy. a rather unrealistic condition.

(iv) Elaborating on the previous example, where the Q-space statnrs are again labeled by
n. we now choose specific values for the widths: Im < n|VPgpPV|n' >= =2A,9/(nn")"/? =
~0.4/(nn")¥?, and Im < n|DRgrRD|n’ >= -2A,6,, 3 =2210736,,, with resonance eper-
gies ¢, = —0.5/n?, all in atomic units (a.u.), and for the range of n-values 2 < n < 100, In
natural units, the choice of atomic parameters made here corresponds to a radiative rate of
{r10''/sec. and an autoionization rate of 3x10'4/sec (for n=3). Then, a numerical evaluaiion
of eqn 20, for this choice of parameters, vields the results depicted in Fig. | (for n > 16).
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For comparison. we plot in Fig. 2 the [RA prediction | from eqn L 1), for rhe <ime chon
of parameters. The two results are virtually indistinguishable. unul PR sxeeeds = 0.5, Ior
larger values. the [RA prediction becomes increasingly unreliable, eventually even rising be-
vond total probability equal to 1. as £ — (. when resonances become completely overlapped,
For this example. one can show that PPR _ 270,25 E — 0.

Continuum-Continuum Coupling

In the following. we will extend the formalism of the preceding sections. in order to
include the effect on PPR of the coupling between distinct projectile continua. due ro their
interaction with the target in its ground and singly excited states. This extension also has
implications for the calculation of electron-ion impact (resonance) excitation probabilities.
Our formulation of the excitation probability, which includes interacting resonance and inter-
ference effects, represents a continuation of previous work by other authors!"~!9. Resonance
excitation is generally thought to be of importancein the evolution of nonequilibrium plasmas.

We begin by dividing the P-space into two subspaces: P, projects onto the incoming
state: the remainder of the P-space will be denoted by P;: i.e..

P = P| + P) (2M
such that

P|P-2=P1P|=0 (30

Then, eqns 3.5 become
PlVP-;Wp,+Pﬂ'QWb:(E-PlHQPl)WH (3N
P’)VP[WP‘ + P:VQW'Q =(F - Pg"on)‘vﬁ (N
QVP V¥R +QVP¥p + QDRYR = (E - QHQ)V¥g CE
RDQW, = (E - RHoR)Vy 3

Where necessary, primes have been included to distinguish functions modified by continuum-
continuum coupling from their unmodified versions which have appeared in earlier sections.

Fiqns 32 and 34 may be solved formally in terms of ¥ 5 and ¥, to give

¥p = gp(PIVPYR + PVQV,) (3%
and
Wa = gRRDQV (36)
where
9P, =(l':—P1”()P‘)-l (|
and gp is given as in eqn 6. Then, a formal solution for ¥ 5 can be obtained in terms of W'Q
HE}
Va = ®p + gin PV + V Pygp, PV )Q¥ (%)
=®p +gp AV'QVY
whers
Via b+ Vhgn PV (49)
and where @), ix the solution of
(b‘ - Pl ,'uP| - I,l "P"l”l‘ l,“.P| )o',,l = 0 l “)l

The modified P -space propagator is given by

',;’l =(FE-~-PHDP - "|"P”Hi, l’)‘rlp|)_| (i



As per the development leading up to eqn 16. the Q-space wavelunctions sat.~iv -
equation
Voo = S4Q71, G0 < IV POp > i

where the Q-space Green’s functions are

(V9x = E = ¢,— < a|DRgpRDla > — < aiV Pygp, PV a > ~ <ol Pgp PV 0 PR

The Q-space mixing operator is now l“‘
5 = bag = (1 - 855)Gg,\, 5 i
where the operator .\’ has the elements
\,3=<a|lDRgrRD|3 > + < a|lV Pagp,P,V[3 > + < a|V'Pigp PV'|J > (43
The DR nrobability amplitude is then
1'PR = €, < ®pRD|a > T5(0"),yGlh < V' Pl > (16)

In order to facilitate actual computations based on eqn 46, it is first necessary to con-
struct explicit solutions for the coupled asymptotic state in the incoming channel @', . and the
coupled Pj-space propagator gp . Accordingly, we discretize the momentum in the incoming
channel. Further. and for purposes of exposition. we assume that the P,-space consists of just
one state. Generalization is straightforward, and is discussed in a prior publicationé®. Eqn
40 becomes

(E—ep— < i|VPgp PV]i > &p, = T,5 < ilVPigp PiV]j > ®p,, (47)

where i (or j) labels the initial target state, incoming continuum partial wave, and a particular
value of the incoming momentum. The total energy in the incoming channel is
ep, =< i|PLHoP |1 >, and @'Pl, =< iIQ’H >. The solution of eqn 47 is

¢'F'lu = S](‘J_l)u¢P|) (1R

where ® g, is the single-momentum P;-space asymptotic wavefunction which solves the equa-
ton

(E = ep= < i|lVPigpPV]i >)0p, =0 (19
and the P-space mixing operator w has the elements
Wiy =8, = (1 =4,)gpiA, (30)
The single momentum P,-space propagator gp, has the form
gAs = (E = ep,~ < i|V Pigp, PiV]i >)"! (51
and the P-space interaction operator A has the elements
Ay =< iV Pigp PV0) > (52)
Elements of the full P,-space propagator are obtainable as
< ilgpli>= (w™')9m, (53

For a two channel problem, and if only a single electron (continuum) momentum participates,
then A, =0, for ¢ # j, s0 that w,, = 9,,.

In order to illustrate the results of this seztion, we consider the example of two con
pled channels, each made up of a Rydberg series of resonances, when just one continunm
momentuta participates in the incoming channel. Such a case wight he described by the
transitions

la+ ki(ly = 1) e 20rpin >2] = lodo + 9



ls+hyly=1)—=2pr's(n' 23 — {sn's = -
28 + ky({; = 1) — 2pn’s(n’ > n;)

where P, nrojects onto 13 + kj(!y = 1). and P; projects onto 2s + kaly = 1). The threabhoud
value of n’, bevond which the process 2pn's — 2s + k,l; is allowed is denoted n.. [f rin
difference in energy between the ls and 2s target states is labeled Ny, = ¢y = ¢1,. Then
on-shell. k§/2 = k3/2 + Ay, if the 25 channel is open. In this example, we assume thar the
total energy ranges from below to above the threshold for 2s excitation. but always remains
below the 2p threshold. thus justifving the assumption of just two participating P-space states.

From eqn 46. the DR probability becomes

POR = ULk SIS0 S aky Dyl Q1 )asGlp b {41 1300
where f enumerates the “final™ states 1s2s, 1s3s. lsds, ..., and a labels the Q-space states
252p. 2s3p. 2sdp. .... as well as 2p3s, 2pds. 2p3s. .... The function {7, is

Uiz = (1 + kikaV /97! 300

which also appears in the expression for the modified P,-space propagator according to
gr, = Ugn (37

and where V7, is the matrix element of the electron-electron interaction between the ground
ils) and first excited (2s) target states, with one electron in the continuum: i.e., the 1s — 2
excitation matrix element. In deriving these formulas. the “pole approximation™ has heen
invoked everywhere: i.e.. all Green's functions have been reduced to their imaginary parts.
[f the continuum energy is held below the 2s threshold, then k2 < 0 so that, all quantities
proportional, in the preceding equations, to k3 would be set to zero: e.g., U'y3 = l: gp = gp;:
1" =17 etc.

Defining the autoionization and radiative widths as
."‘¢|(a) = kl"l’a

Ana(a) = kb, (53
As(a) = E,k.’,D:,
we constructed a inodel problem in analogy to example (iv) in the last Section. Specifically,

we rhose

k\V3(28mp — 1s + kily) = A, /nd(n > 2)
kiV3(2pn's = Ls + kily) = Aa;r/n(n' > 3) (50)
kzvz(?-Pﬂ'-’ — 2+ kal2) = n'lml”/"'a( n' 2 ng)

and
k3D¥2snp — 1828 + y) = .A,o/n°

k3D 2pn's — lsn's + y) = Ao (60)

Wo chose the values A,y = 221073, n =18, and ¢;p —¢;, = 1.542r107", aliin a.u. The range of
Rydberg states included was 10 € n € 40, 10 < n' < 65, and the zero of total energy was set at
the 2p threshold. In Fig. 3 we %lot values of POR vs E when A,;=0.0, and A, g7 = Ayyp=0.2
a.n., while in Fig. 1 we plot PPR when Aar=0.2 2.1, and A,y = A,711=0.0. The complete
PUR appears in Fig. 5, where dqg = dagp = Aagir=0.2 a.u.

Note that, althongh the 29np series (Fig. §) does nor contribute greatly 1o PPR when
considored in isolation from the 2png series (Fig. ), its offect on the total POR (Fig, 51 s
profound. The interaction between the 29np and 2pn’« seriee Hf resonances has been discussmd
recently?! in the context of calculations perforined of the photoionization rates for nentral
helinm, in the resonance region. The oceurtonee of especially sharp structures in the cross



section was noted in that work. and is also apparent bere tnonr tmodel caweation.

In order to emphasize this last point. we plot in Fig. 6 an expanded version of tie to0y,
PRDR for a restricted range of energies (solid liner. The corresponding values from Fiw. 5 .-
also plotted for comparison (dasted linel. The verv sharp peaks arise fror1 the 2pn's warn .

-1

of Q-space states. modified by QVP coupling to rhe 2snp series. Only resonances tor wi .

12 < n' €15 are displayed.

The IR A prediction. for this choice of atomic parameters. exceeds the probabilitv baund
(PPR > 1), for energies just below the excitation threshold: see ref. 20 for further derails.
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From the foregoing. the 13 — 2s excitation probability ran be easily constricri-i. i'- -
probability amplitude for this process can be divided into two parts: The amplitude for diri
excitation is

TPE =< ®p, P,V P ¥ p, > e

while the amplitude for resonance excitation (through s+ k{ly — 2pn's — 25+ kyly) is given
by
TRE =< &p, P,V Q¥ > 52,

where the asymptotic final state function ® p, satisfies
(E - P,HoP;)®p, =0 i 631
The total excitation probability is then
PEX = k,k,|TPE 4 TRE? 1641
The amplitude for direct excitation can be written in a more explicit form as
TDE = 71,V [l + (=iky/2)Sa VY, ¥ 0 (63

while the amplitude for resonance excitation can also be expressed as

TRE = £.12.¥qa (66)
where ¥q, appears in eqn 44. This formulation of PEX conserves total probability in that
0 < PEX 4 PDR < 1, We refer the reader to ref. 20 for further information.

Radiative R binati

The effect of radiative recombination (RR) on DR has been discussed lately, with in-
creasing frequency??~%% although no direct experimental tests of theoretiral predictions have
as yet emerged. Usually, RR is of importance at very low energies of the incident electron.
while DR rates become appreciable only at elevated energies. Consequently, the opportunity
for interference between the two processes would seem to be limited. Nevertheless. we reca-
pitulate here our approach to the formulation of this problem. building on the work described
in the previous Sections.

The total probability amplitude {or electron-inn recombination can be written as a sum
of two terms
TRDR = IRR + IDR (67)

where we refer to the joint process as “radiative dielectronic recombination™ (RDR). and
where the underscore signifies a function modified by coupling between the RR and DR
channels. The amplitude for RK (in the presence of DR) can be 4escribed by

TRR =< @RRDPYp > (68)

while the amplitude for DR (in the presence of RR) may be expressed as

IPR =< ®RRDQYq > - (69)

where in eqn 68 ¥ 5 is the exact wavefunction desc.ibing the incoming state. As in the
previous Section, we assume that the P-space has been divided into two parts; P projects
onto the incoming channel and P; projects onto all other states of N electrons bound and une
electron in the continuum.

Upon addition of the terms P,DRYr. PADRYR.and RDP ¥ p + RDP:¥ p, to the left-
hand-sides of eqns 31, 32, and 34. respectively, with all wavefunctions underscored to denote
RDP coupled quantities, an analogous set of (four) equations results which can be reduced



by the procedures already described. For example, we note that rhe asvmptoric % <n..
wavefunctior 'p now satisfies

(E- P HoP, - ADRgrROP, - P Pgp P2V PR PT

where

V.=V + DRgrRD Tl

and
9p, = (E - P,HoP;, - P,DRgrRDP;)""} (72

instead of eqn 40. in which RDP coupling was not included. The R-space propagator ggr is
still given by eqn 6. Similarly. instead of eqn 43, the Q-space propagator is now

GQa = (E - €ga— < a|DRgrRD|a > - < ¢;|r|}'_"P|2;,,i AVla> -« alL.Pg, PrVja >\t

(T
where
V=V +Vhgp PV i T4
which generalizes eqn 39. and
g_',,l =(E - PHoP, - PADRgpRDP, - Pl_KP'Zng Py P! (T3)

which generalizes eqn 41. Further reduction of these equations is somewhat complex. and the
reader is referred to ref. 23 for details.

In general, the effects of RR on DR (or viceversa) should be most apparent when the
RR rate alone is roughly comparable to. or greater than, the rate of stabilizing radiative
decay in DR. Since the RR rate scales approximately as Z}, where Z; is the net ionic charge.
while the stabilizing radiative rate varies as Z} for An # 0 transitions, and as Z; for An =0
decays, it is most promising to look for interference effects at low Z; for An # 0 transitions.
and at high Z; for An = 0 decays. Also, since RR rates are relatively '- '2 at the iowest
continuum energies. ii is best to confine oneself to the region oi energies co:. -onding to the
lowest lying DR resonances. in accordance with these ideas, in the followiig we examine the
results of <alculations of PRPR performed for the two RDR processes

ls + kil ~ 2pns(n > 2) = lsa's + v (7T6)
ls + ki == lsn's(n' > 2) + v
for ground state He* targets, involving a An # 0 stabilizing radiative transition, and
Js+ kil; = 3pnl(n >3) = 3sn'l + v (77)
s + kili =— 3sn’l(n' 2 3) + «

for ground state sodium-like targets, in'olving a An = 0 stabilizing radiative decay. We
assume that, in each case, only one target state participates in the RDR process, so that
P; = 0 and P, = P. In addition, since we will confine our attention entirely to the region
of energies around the lowest lying DR resonance (which is usually well seperated from the
resonance next highest in energy) we make the isolated resonance approximation (IRA).

From eqns 67-75 and the results of ref. 21, the RDR probability for the processes of
eqns 76 and 77 is

PRPR = ME.|W gl = (iM/2)SaGgnda(n)] + SnGondlHmAYBpu?  (78)

where A, is the stabilizing radiative decay rate; 2p — 's + v, in the case of eqn 76. and
Jp — 33 + y for eqn 77. The direct radiative recombination rate to Rydberg state n is**

Warn = 7.52107°Z1/(n(1/n? + 2 E + Xe)/2])) (79)



all in a.u.. where Ae¢ is the excitation energy. and E is the total energy 1adjusred <o tha =o
at the excitation thieshold). The prefactcr M is defined as

M =1/(1+ S WRaR/ 1) 0.
the autoionization rate modified by RDP coupling is
Au(n) = [AV3(n) — (/)W AV -y
and the modified Q-space propagator is given by
Ggn = (E = €0 + (i/2)[A, + M A, (n)]))7! (821

Tig. 7. we plot values of PRDR for the process of eqn 76. with A,(n) = 9.5z10~3/n°
a.u..and A, = 1.6210~7 a.u.. for Z; = 1 (ground state He* targets). In Fig. 8, we plot values
of PRDR for the process of eqn 77, with A4(n) = 1.2z10"/n% a.u.. and A, = 6.1z10~° a.u..
for Z; = | (ground state Mg+ targets). For comparison. in both Figs. 7 and 8 we include
plots of the DR component alone (dashed line).

The lack of any significant effect of the RR process on the RDR probability, for An # 0
excitations, is demonstrated by the result displayed in Fig. 7, at Z; = 1. For larger Z,.
the effect is even smaller. However. for the An = 0 excitation described by Fig. 8, there
is a perreptible effect of RR at Z; = 1: and this effect increases somewhat, as Z; increases.
However, since larger Z;-values lead to larger values for the minimum accessible n-value. this
effect seems to disappear for Z; greater than two or three.

Electric Field Effects

The enhancement of calculated oP® values. for An = 0 excitations. due to Stark mixing
of participating huigh Rydberg states by stray electric fields, has been remarked on frequentiy
over the past 3-10 years. Measurements of these cross sections by several different groups
have confirmed the reality of this effect®-14,
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[t is now well-known that field induced enhancemuents of DR probabiiities tosir 0r o
an increase in the number of angular momentum states accessible ro dieiecrronic vap:iro
Ordinarily, capture only occurs with an appreciable probability to states of orbiral anw:ia:
momentum [ < 5 — 10, even for very high Rvdberg states n >> 10. However, in an oxrer:
nallv applied electric field. states of high angular momentum acquire low angular momenrun:
character due to Stark mixing. Thus. captures to very high Ry.dberg states are promoted b
the presence uf an electric field. More detailed arguments may bhe found in ref. 26.

Agreement between DR theory and experiment. for An = 0 excitations. exists now
generally to within a factor of ~ 2. Discrepancies remain. however. and work should courinue
in order to resolve these problems™2?. The application of interacting resonance theory. as
described earlier in this review. should be attempted. And the effect of angular factors. pe-
culiar to the geometry of any given DR measurement. needs to be looked at very carefully.
Nevertheless, the situation is today much improved frora that which obtained in the early
1920°s. when measured DR cross sections were an order of magnitude larger than the theo-
retical predictions.
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