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A .  GENERAL REMARKS 

1 . St~mmary 
.. . 

Several prototype ta rge t  counters and a veto tank have been bui 1 t. 
. . 

The e n t i r e  veto house. has been designed. The electronic  system has been .' 

planned and p a r t i a l l y  implemented. O u r  PDP 11/40 i s  being adapted and 

programed f o r  CAMAC : 

All fundamental technical problems associated w i t h  the 'above 

mentioned tasks a r e  resolved. For example, a neutron re jec t ion  i n  t h e  

t a rge t  counter by a fac tor  >I00 has been achieved. 

2. Remi n i  ng Problems . . 

. . 

a )  The most serious problem encountered . i  n estimating background, 
. . 

accidental s and fake events ,  a r e  the  neutrons from cosrni c rays.  Acci-, 

dental r a t e s  due t o . t h e  large r a t e ' o f  thermalized cosmic neutrons in  

the He3 counter a r e  unacceptable. I t  i s  necessary t o  improve the 

shielding d ras t i ca l ly  (water tanks, more concrete, Cd ins ide  veto, e t c )  . 

Additional experiments should be carr ied out . in  ren noble, using .the 

NE 235 C or  NE 21 3 t o  measure the f a s t  neutron. f lux  behind 0.3 m of Pb 

i n '  B42. The slow neutron ra te  i n  ~e~ should also be measured for .  a 

real i s t i c  configuration, i .e . ,  He3 counter surrounded with water equiv- 

a l en t  of the t a rge t  counters. I t  appears d i f f i c u l t  t o  reconcile the 

reported slow neutron ra tes  of 0.016 sec" f o r  a 1500 cm2 He3 counter 

w i  t h  the values taken from the work of Hess e t  aZ., (a1 so quoted i n  

Hayakawa, p .  431) which gives l o 3  n per sec between 0.01 and 1 eV per 

cm2 and MeV interval  a t .  sea level.. The expected r a t e  thus i s  

1 5 0 0 x 1 0 ~ / 1 0 ~  = 1.5 sec". 



. . 

b )  Other problems i nc l ude .  the mechanical aspects o f  mounting .and 

demounting the veto house as we1 1 as the shie ld i 'ng assembly and mobi 1- 

i t y  o f  the e n t i r e  detector  system. 



B. TARGET DETECTORS 

Three prototype detectors were tested and t h e i r  performances a r e  

described i n  t h i s  chapter. 

1. Description of the Prototype Detectors 

All three detectors use NE-235C, a l iquid s c i n t i l l a t o r  t h a t  gives 

a pulse height of 60% of anthracene, has a transmission length longer 

than 3 m, and a H:C r a t i o  of 1.67. I t  i s  well su i ted  f o r  n - y  discrim- 

inat ion.  . . 

a )  MkI (Fiq. 1 .  top).  Tile tank of MkI is.made from 0.6 cm thick 

UVT l u c i t e .  The external dimensions a r e  8x12~70 cm. The useful volume 

i s  5 L . Optimum l i g h t  col lect ion i s  achieved by to t a l  internal  ref lect ion.  

The tank i s  wrapped lvi t h  A t  f o i l ,  t o  r e f l e c t  back the  primary l i g h t  t h a t  

escapes. The two smal l e r  faces (Fig : -1 ) are  covered by 5" XP-2041 photo- 

mu1 t i p l i e r s .  . . 

b) MkII. .(Fig. 1 .  middle). This version employes. the  same tank 

as Mk'l. I t  has two 3" XP-2312 photomultipliers. The surface of the end 

faces which i s  not covered by the PMT i s  coupled over a i r  t o  a Ti02 

. . 

c) MkI I I .  (Fig. 1 .  bottom) . The tank made from 1 uci t e  ,' measures. 

8x30~90 cm. The useful volume i s  17 R. The .tank is  surrounded by 

wavelength s h i f t e r  which a re  not opt ica l ly  coupled to t h e  

tank. These bars a r e  1.6 cm thick and 4cm wide. Two bars a r e  arranged 

s ide by s ide.  Each bar surrounds two adjacent s ides  of the tank,. and 

i t s  ends a r e  opt ica l ly  coupled t o  a 2" XP-2230 PMT. Each PMT views 

two bars coming from opposite s ides .  There are  al together-four  PMT. In a 
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Figure 1 . The three tested detectors.  I4kI has an 8 x 1 2  x 70 cm tank made out 
of 0.6 cm thick l u c i t e .  MkII uses the same tank. MkIII has an 8 x 30 x 9 0  cm 
tank, and i s  surrounded by wavelength s h i f t e r  bars. 



0 
final version, the bars could be bent back, 45 to the short side of 

the tank, so that  several tanks can be stacked wi t h  a maximum of tank 

vol ume . 

The energy resolution and the pulse decay time spectrum, which i s  

relevant for  the n - y. discrimination were measured for  .various energies. 

For the energy resolution measurements, single-1 i ne y-ray sources 

were used. Only those events were selected, in which the Compton, 

scattered y-ray escaped in the backward direction. The energy of the 

Compton scattered el ectrons i s  then ki nema t i  cal ly we1 1 def i ned and 

monochromatic. The backscattered y ' s  were detected -in a Na(1) detector 

placed behi ng .the source. 

For the decay time spectra, an Am(Be) neutron source was used, and 

windows were s e t  on the ene'rgy spectrum. 

Some of the spectra obtained with the three tanks are presented 

i n  Fig. 2.  For the decay time -spectra, the spectrum measured with a . , 

pure y source i s  superimposed to the one obtained with the mixed n - y  . . 

. . 
Am(Be) source. 

To characterize the qua1 i ty of the n - y discrimi nation, we define 

the neutron background reduction factor ( N B R ) .  We s e t  a threshold on- 

the decay time spectrum so . t ha t  96% of the y events are below i t .  The 

NBR i s  the ra t io  of the total number of neutron'-events to the number . . 

of neutron events below this  threshold. 

The results  of the t es t s  are given i n  F i g  .2 and tab1 e 1 . The 

energy resolution (FWHM) a t  0.9 MeV i s  given. I t  scales with the square 



( d )  

Figure 2 .  ( a ) ,  ( d )  and ( g ) :  Energy spectra obtained w i t h ' ~ k 1 ,  MkII and MkIII 
respectively,  using a Z n b S  source; ( b ) ,  ( e )  and (h )  : Decay time spectra fo r  the 

: . saine detectors  f o r  an equivalent electron energy of IMeV; (c) and ( d ) :  the same,' 
f o r  0.6 MeV. 



TABLE 1.  Performance of Prototype Detectors  

Detector  AE Number of Non-uniformi t y  NBR N BR NBR 
(FWHM) photoelectrons a t  0.6 M ~ v ' )  a t  1 M ~ v ' )  a t  2 M ~ v ' )  

a t  0.9 MeV) a t  0.9 MeV 

MkI 16% 21 5 3% > 50 > 100 > 100 

MkI I 1 8% 1 70 7% ' . > 30 > 100 ' >  100 

MkIII 28% . . 

' ) ~ ~ u i  ual e n t  e l e c t r o n  energy. 



root of thsz energy. -Assuming a Poisson d is t r ibut ion ,  we a l so  derived 
. . 

the number of photoelectrons col 1 ected. The non-uni formi ty  of the 

response i s  given, which i s  the maximum pulse height var iat ion f o r  

a given energy when the source i s  a t  the center and near the ends of 
. . 

the.  tank. The NBR is  given f o r  three equivalent e lectron energies, 0.6, 

1.0 and 2.0'MeV. 

As one sees, the best  r e s u l t s  were obtained with M k l .  . The NBR 
. . 

i s  almost ' p e r f e c t  ( > l o o ) .  MkII i s  pract ical ly  as  good, although 

the uniformity i s  a t  the l imi t  of the tolerable .  I t  shows t h a t  the 

r a t i o  of the photocathode area t o  the area of the tank end should not 

be reduced more. The uniformity with MkI I I i s  aga.in excel l e n t .  . However 
. . 

the number'of photoelectrons. per 1 MeV quantum is ' .only about one third 
. . 

of t h a t  of MkI. As a consequence, the energy resolution i s  worse than 

with MkI, but st'i 11 good enough f o r  our purpose.. The NBR a t  1 MeV 

however, i s  only 10, which does not compare we1 1 w i t h  e i t h e r  MkI or  

MkII. A1 though MkIII i s  the most economical' solut ion,  i t  should only be 

considered in  case the neutron background i s  not severe. 



3. Proposed Configurations 

From the r e su l t s  of section 2 i t  i s  c lear  tha t  a configuration 

close to  tha t  of MkI or 11 should be an acceptable solut ion.  However 

, the  f ina l  choice wi 11 depend on 

n y separation needed 

energy resolution needed 

useful vol ume 
+ 

op,timum thickness ( n  and e eff iciency)  
. . 

cost  o f ,  PM and labor. 

a )  Final MkI. Using  5" PM f o r  each cel l  (made of 0.6 cm luc i t e )  

several dimensions can be contemplated. The maximum length . .  given by. . . 

the dimension of the veto tank (130 cm) and PM tubes i s  '66 cm. (outside 

dimensions a re  g-i ven) . . . 

# Cells Cell Cross Section Vol ume perf orma.nce 

5 x 9  ' .  . 8  cm x 12 crn 211 9, Same as MkI 

11.3 cm x 13.3 cm 351 R Similar t o  MkII 

13.3 cm x 13.3 cm 421 R. Somewhat worse 
than'MkI1 

Req~ii res:  45 c e l l  s  , 90 5" PM .($54,000). . ' 

Note ti7at the 5" PM i s  13.3 cm wide .incl. shield.. 

b )  Final M ~ I I .  Using two 3" PM per ce l l  and Ti02 re f l ec to r  on 

short. sides. Maximum l e n g t h  of ce.11 i s  90 cm ( the  length of the 3" PM 
. . 

with socket is  20 cm). 



# Cel l s  Cell Cross Section Vo 1 ume Performance 

5 x 12 . 8 x l O c m  317 R SameasMkII  . 

+ 5 x 6  9 x 21 cm 412 2 Same as  MkI I 

. Both vers ions  r equ i r e  120 PM ($42,000). In the version quoted on the  

second 1 i ne the re  a r e  4 PM per  c e l l .  This version i s  more economical , 

saving manufacturi ng o f  ' ce l l  s and i ncreasi ng the t o t a l  vol ume. ' A1 1 f o u r  

PM a r e  connected together  t o  g ive  one output  s igna l .  

c )  Firial MkIII. T h i s  ve r s ion  is  worth,  consider.irtg i f  a neutron 

suppression of l e s s  than' 10:l .is required.  .' 

# Cells  Dimension of Cell Vol ume Performance 

As MkIII 

Requires wave length s h i f t e r  bars  and 80 2" PM ($17,000). 

5 x 4 29 x 12 x 90 cm 536 A Worse than MkIII 

Requires 3" PM ($28,000). 

d )  Curlcl usion. I t  appears t h a t  t h e  cdnfi gura t i  on marked +quoted 

i n  b)  i s  probably bes t .  In this conf igurat ion t he  i n s i d e  th ickness  i s  

7.8 cm. 

Reference? 
, . 

' 6 .  Keil ,  NIM 87 (1970) 111. 

2 ~ .  Barish e t  at., CALTECH r epo r t  68-623 (1977). 



C .  VETO COUNTER 

The veto counter consist's of 6 mechanically and optical ly indepen- 

dent liquid scin.ti l l a to r  planes, arranged in such 'a fashion that  the 

"radiation leaks" between plane boundaries are only 9 mm wi de. The 

inner dimension of the veto house is 130 x 129 x 90 cm, however the 

90 cm dimension can s t i l l  be altered. ' The tanks have an inner thickness 

o f  12, crn and are f i l l e d  w i t h  NE 235 H .  The. outer dimension of the house 

without tubes, i s  169 x 169 x 129 cm. For  detai ls  see drawings Fig. 1-3. 

Each tank has two sides provided with luci t e  windows a1 1 owing the sci n t i l -  

lat ion l igh t  to escape into a wave length shi f ter  bar ( re f .  2 ,  Chapter B ) .  

On each side,  three 1.6 x 4 cm bars arranged next to each other are used. 

A single 5" PM views the l ight  from two adjacent sides. A1 together only 

6 5" PM a re  needed for  the ent i re  veto system. 

The tanks, made of a1 uminum, are  provided. with ref 1 ectors . The 

reflectors on the large s l  des are luci t e  panels sealed on the edges to 

an aluminum sheet, thus taking advantage of the total  reflection o f  the 

1 uci t e  ai-r interface. The ref 1 ectors on the short sides opposite to the 

luci t e  windows are aluminum sheets painted w i t h  Ti02, a n d  covered and 

sealed w i t h  a luci t e  sheet. (This l a t t e r  version i n  the optimum reflector 

that  .can be concei ved) . 
The volume of the front  and rear tanks i s  250 R, that  of the other 

tanks i s  180 R .  

One fu l l  s i ze  tank ( the front  panel tank) has been com~leted and 

i s  being tested. 



Cost Estimate. Fabrication of t he  present tank c o s t  about $4,400. Each 

addi t ional  tank can probably be bui 1 t f o r  $2,000. Cost .  of NE 235 H 

(1 220 R ) . is about $5,000. Cost of PM and sh i f  t e r  bars $5,000 .'. There 

i s  a support  platform needed t o  accommodate the  t a r g e t  c e l l s .  Total 

est imated c o s t  i s  about $25,000. 

Notes. I f  i t  turns out  t h a t  t he  9 mm cracks represent  a se r ious  

"leakage", i t  w i l l  be poss ible  t o  cover them with s t r i p s  o f  Cerenkov 

p l a s t i c .  . . 

Also, t o  f u r t h e r  improve t he  e f f i c i e n t y o f  t h e  veto ( reduct ion of 
. ' '  

neutron background by vetoing muons stopped i n  the lead sh ie ld ing)  a 

l a rge  wire chamber umbrel l a  could be i n s t a l l e d .  

Attention should be paid t o  the  l o g i s t i c  problem of .assembling 
. . . . . 

and disassembling of t h e  veto panels. This operation w i  11 have t o  be 

performed frequent ly  i n  the  ea r ly  phase of the  experiment. An overhead 

crane o r  precis ion fork l i f t  wi l l  be needed. 
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VETO TANK Jan.  7978 

LIFTING BOI,VTX' FCY 
'TOP PACvEL 



CROSS SECTION OF VETO TANK 

6 Cm. 0 ,D.h  4 ok XD.K 34 C M  Lon4 SPACED AS sifdwq 

O R  A PLATfoer? 34 c n  x 1 2 5  c w  8 5 C m  
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''LAN VIEW OF VETO TANK (TOP PANEL REMOVED)  an. 1978 



D.  ELECTRONICS 

The suggested c i r c u i t  diagram i s  presented in  Fig. 1 .  I t  is  

essent ia l ly  self-explanatory, and. on1.y a few remarks a r e  given in ' the 

following . 
. . 

The two buffered ADC's (12 channels per module, charge sens i t ive ,  

8 b i t s ,  dead time of 3 ps) analyze, a l l  the pulses or i  yinating in the 

t a rge t  and veto tanks. Only the events coinciding \vi,th low energy veto 

s ignals  (Veto Low) a r e  rejected. The pulse areas and, f o r  the target  

tanks, decay times, a re  d ig i t ized .  , Up to 6 lnodules share the same 

ADC channel. Tag words (Attenuator 1/2.. . 1/64 in  logic  signal) a re  used to 

ident i fy the detectors which f i r e .  In paral le l  t o  the pulses,  the 

amplitude of two continuously cycling sawtooth s ignals  i s  analyzed. I t  

provides the time information. The f i r s t .  sawtooth signal has a period. . 

of.250 ps. Since the ADC has 8 b i t s ,  we have a time resolution of about 

/ 1 s .  ' The second signal i s  a sawtooth 

End of 
crc le  0 .  'm 

1 i ke stepfuncti on whi ch swi tches when 

the f i r s t .  signal ends a .cycle .  . There 

a re  128 s teps ,  and the  cycle duration 

i s  32 ms. Ambiguities may occur when 

the ADC's t r y  t o  analyze the signal 

height when one or '  both sawtooth s ignals  

end a cycle. A tag word i s  used to  

indicate  i f  t h i s  i s  the case. When the slow sawtobth ends a cycle, the  . .  

A D C ' s  a r e  caused t o  d ig i t i ze .  This i s  done t o  not i fy the  data acquisit ion 

system t h a t  a new cycle has begun. 



F I G ,  1, Circui t  diagram. I t  i s  assumed tha t  the ta rge t  consists.  c f  . 

5 planes of 6 s c i n t i l l a t i o n  detectors ,  each being f i t t e d  with 4 PMT. 

There a r e  4 ~e~ chambers, and 6 independent veto detector  panels. 

PSD: Pulse shape discriminator . ' . 

CFTD: Constant f ract ion timing discriminator . 
Pul se decay time . T: . . 

Energy deposi ted . Each   lane of 6 c e l l s  has 
a cha'nnel. 

WT: Tag word. Indicates 
what combination of 
c e l l s  f i r ed . .  1 . . 

. . 

Ev: Energy deposited i n  the veto tanks . 
TWV: Tag word. veto '  tank. Indicates what combination of panels 

f i r e d .  
. . 

tl: Fine time given by the height of the fas t  stepfunction generator . . 

(250 us f o r  1 cycle).  

t2: Coarse time given by the height of the slow stepfunction generator 
(32  ms f o r  1 cycle).  

. . 

TW: Tag word. Indicates i f  the He3 chambers o r  the  end of cycle of 
the step. function generator caused the ADC's t o  d i g i t i z e .  



cha rn b. 



Each channel of the ADc has a 32 word memory where the r e su l t s  of 

the d ig i t a l i za t ion  a re  stored. The memory i s  of the l a s t - i  n / f i r s t -out  

type and always contains the l a s t  32 events. 

The pulses from .the He3. chambers. a r e  analyzed i n  an 8-channel 
. . 

peak sensing ADC. Whenever a neutron i s  detected, a LAM signal . i s  

generated. The content of a l l  the ADC buffers and r eg i s t e r s  i s  then 

t ransferred to '  the computer. 

We conclude t h i s  section by giving a 1 i s t  of modules necessary 

to  build t h e . c i r c u i t  given i n  Fig. 1. . . 
. . 

. . 



Necessary A1 ready bought TY pe 

Channels ( #  uni t s  ( #  un i t s )  Pr ice  US$ 

L i  near fan i n/out 56(14). (3) LRS 428F (675) 

Discriminator 37(5) (2) . LRS 623 (1 195) 

PSD . . 5 (6) Canberra 21 60 ( 1250) 

CFTD 5 (6) Canberra ,1428 (750) 

Logic fan in/out  

Slow ADC 

Buffered ADC. 

Coincidence 

Latch 

Step funct ion 
generator  

HV power supply 

NIM bin 

CAMAC c r a t e  

CAMAC i nterface  

(1) LRS 429 (545) 

(1) Ortec AD81 1 (1.450) . 

being 
bui l't 

LRS 2250L (2250) 

LRS 365AL (745) 

LRS222 (875) 

~ a l  tech 

2 LRS 4032P. (4100) 
1 Canberra 3002' (575) 

LRS 108P-6 (820) 

N E  9503,951 3 (1675) 

Standard DCC-11 (1425) 

In add i t ion ,  several  delay l i n e s ,  cables ,  terminators have t o  be bought. 

Total remaining c o s t  of e l ec t ron i c s :  about $1 3,000 

' ~ a c h  channel of t he  LRS 32 channel u n i t  supplying two PM. 



E. BACKGROUND AND ACCIDENTALS 

~ a s e d  on data discussed i n  Grenoble l a s t  July and handbooks on 

cosmi c rays,  the accidental r a t e s ,  cosmic re1 ated neutron r a t e s  (which 

would simulate a good event) and dead. time of the system have been 

estimated; The lower par t  o f  Table 1 shows the values reported i n  . 

Grenobl e i n  July 1977.' The upper part  g i ves. forecasts  assumi ng t h e .  

Grenoble y-ray f lux  data and t h e  l i t e r a t u r e  value f o r  pt f l  ux$s a t  

sea 1 eve1 ( ~ a ~ a k a w a ) .  

The obvious serious problem i s  the large number of accidentals ,  

caused mainly by the estimated l a r g e  number of cosmic or iginated neutron 

pulses i n  the He3. T h i s  nurnber i s a t  variance with the  measured Grenoble 

He3 background ra t e .  

The discrepancy can a lso  be seen by comparing the  l i te ra ture .  neutron 

f lux (Hayakawa) of l o 3  n per sec between 0.01 and 1 eV per cm2 and MeV, 

giving r i s e  t o  an expected r a t e  of 1.5 sec" in  the 1500 cm2 ~e~ detector, 

w i t h  the observed value of <0.016sec". ' . 



TABLE 1 . Background Events ' ( ~ a t e s  i h sec;' ) 

'1 Fast n thermal i zed i n Li'qu'i d Sci n t i  11 a to r .  

3, Assume 0.3 rn W on top and bottom of veto s top  70 sec-' u-.Take s o l i d  angle and n mu l t i p l i c i t y  2.5 i n  
capture .  (Hayakam, Cosmi c Ray P hysi cs ) . 

') Wf t h  e- thresh01 d 1 MeV (corresponding t o  E n  2.5 MeV) 10% of n de tected,  with e f f i c i ency  20%, 
veto reduction 0.5. 

Acci denta ls  
(200 ps ) 

- 

0.8  
(3000 h r-i) 

. . 

. . 

6 hr-' 

Veto Dead Time 

0 -05 f o r  200 ps 

. . 

5 x 1 0 - ~  f o r  100 ns 
~-p 

Fake 
Events 

- 

0'.4/NBR 
' (1500/NBR 

hr-l) ' 

S i  ngl es 
Target 
>1MeV, 360. R 
30 cm Pb 

100 

0.8')' 

100 

(25 R )  
(10' cm ~ b )  
90 .  

100 

Veto 
(2m2) 

(1600 2) 

225 

500 

,Singles  
He 

4x99~150 cm 

- 

40 2, 

(.I000 cm2) 
1 

7 hr' 

0 1 

Cosmic 

Cosmic f a s t  n 
from p'stop i n  
Pb 

Cosmic slow n 
from above 

y > 1 MeV 

Grenoble 
Input 1977 

.Flux (2m2) 

1 25pf 1 0 0 ~ '  

.!& 

80 3)* 

40 

Scaled up 
by volume o r  . . 

sur face  



F. APPENDIX 

Notes on Reactor antineutrino spectrum 

1 .  The r a t e  i n  the neutrino detector a t  distance d i s  given by 

where R i s  the number of f i ss ioning  2 3 5 ~ / s e c ,  I' resolution of the 
0 .  

detector ,  8 neutrino mixing angle, A* neutrino mass difference,  

F(h) = I 4 ( 1 - ~ 0 ~ ( 2 . 5 4 ( ~ / E ) )  G ( E )  N ( E ) ~ E / J  O ( E )  N(E)dE. 

The osc i l l a t ion  function F(A) only weakly depends on the detailed. 

shape of the 7 spectral  function . N ( E ) ,  provided the resolution i s  

su f f i c i en t ly  good, I'5 2MeV. 

2.  For absolute determination of the cross sect ion,  one has to  know 

the spectrum N(E). There a re  three sources of N(E). in  the 1 i t e ra ture .  
. 

2.1 Carter e t  aZ., Phys. Rev. - 113, 280' (1959) measured t h e  B - '  

spectrum and converted i t  approximate9y in to  a 7 spectrum. They obtain 

N(E) = 5.01 exp (-0.505E - 0.0544E2). ( 2 )  

2.2 Nezrick and Reines, Phys. Rev. 142, 852 (1966) measured the. 

8' spectrum in  the inverse neutron B decay. Assuming t h a t  they know 

the elementary cross.  section 



they f i t  the.' shape of N ( E )  t o  

N(E) = (19.4.5 1.3) exp(-1 .28E +0.040E2). . .  (4) 

The constant 19.4 21.3 i s  determined from the condition t h a t  the to ta l  

number o f .  neutrinos wi-th energies > 1.8 MeV per f i s s ion  i s  given- by 

The function. ( 2 )  a l so  f u l f i l l s  condition ( 5 ) .  

2.3 Avignone and Greenwood, Phys. Rev. l& D ,  Dec. l', 1977 

determi ne N! E )  from r e c e n t  experimental decay data. The-i r N (E) also 

obeys eq. (5) . 

3. . .The three distri.butions (2 ) ,  ( 4 )  and 2 . 3  are compared i'n the 

lower par t  of Fig. 1 .  Note tha t  . ( 2 )  and . ( 4 )  decrease cons<de.rably 

f a s t e r  in  the relevant region between 2-6 MeV. The d is t r ibut ions  a r e  

up  to 30% di f ferent .  . .  

4. The function a(E) N ( E )  using a(E) eq.. (3)  and N ( E )  eq. ( 4 ) .  (dashed) 

and 2.3 ( f u l l  curve) are  shown i n  the upper part  of F i g ,  1  ; .  Note tha t  
+' 

the f u l l  curve i s  inconsistent w i t h  the measured 6 spectrum by Nezrick 

and Reines. Besides, the in tegra ls  

are  65 x lo-"" cm2 f o r  eq.(4) and 75 x lo-"" cm2 f o r  2.3. If  one 

compares the to ta l  r a t e  of Nezrick and Reines with 2 based on eq. (4)  o r  

2.3 one finds 



- I - / 0.88 k 0.1 3 (Nezri ck and Rei nes ) , -. 
'exp/ " t h  = \ 0.75 + 0.13 (Avi gnone and Greenwood) ( 7 )  

5. Conclusion:. 1 )  The e x i s t i n g  information 'on N ( E )  i s  incons i s ten t .  I t  

would be important t o  u se  the  reac to r  data  l i b r a r y ,  such a s  ENDF-IV 

( see  R. E .  Sche.nter e t  aZ., HEDL-SA-1346, Hanford (1977) ) t o  deterrni ne 

N ( E )  independently. 2)   he r e s u l t  of Nezrick and Reines does no.t r u l e  

ou t  neutr ino osci  1 l a t i ons .  
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NEUTR.IN0 SPECTRA N(E)/MeV FISSION 

FROM DIFFERENT SOURCES 
. . 

E Avignone 77 C a r t e r  and Reines 59 Nezr ick and Reines 66  soulf fan i d i s  71 
1 .  2. 3.  4. 

Notes: 1. Ca lcu la ted  b y  Avignone and Greenwood, Phys. Rev. D, 3977. 

2. ' Converted B- spectrum, Phys. Rev. 113, 280 (1959). - + 
3. Deduced f rom B measured spectrum, Phys. Rev: -. 142, 852 (1966). 

4. Converted 8- spectrum,. as i n  2. b u t  us ing data  by T s o u l i a n i d i s  e t  aZ., 
Nucl. Sci .  and Eng. - 43, 42 (1971). 




