

MASTER

NEUTRINO DETECTOR*

A PROGRESS REPORT

CALTECH NEUTRINO GROUP

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91125

* WORK SUPPORTED BY DOE EY-76-C-0063

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

The members of the Caltech Neutrino group and their principal charges are:

F. Boehm, Target Counters, System.

A. Hahn, Programming, PDP 11.

H. E. Henrikson, Engineering Design.

H. Kwon, Target Counters, Veto Tank.

R. Powers, Electronics.

P. Vogel, Theory.

J.-L. Vuilleumier, Target, Veto, Electronics, System.

The help of V. Akylas, E. Garcia, S. Kellogg, G. Pauls and E. Redden, is gratefully acknowledged.

CONTENT

- A. GENERAL REMARKS
- B. TARGET DETECTORS
- C. VETO TANK
- D. ELECTRONIC CONFIGURATION
- E. BACKGROUND AND ACCIDENTALS
- F. APPENDIX: NEUTRINO SPECTRUM

A. GENERAL REMARKS

1. Summary

Several prototype target counters and a veto tank have been built. The entire veto house has been designed. The electronic system has been planned and partially implemented. Our PDP 11/40 is being adapted and programmed for CAMAC.

All fundamental technical problems associated with the above mentioned tasks are resolved. For example, a neutron rejection in the target counter by a factor >100 has been achieved.

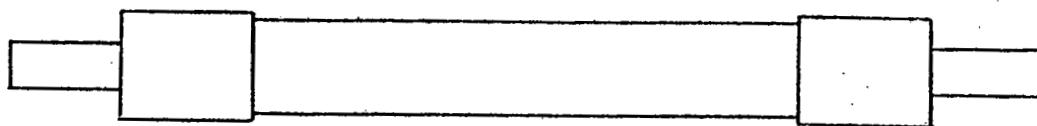
2. Remaining Problems

a) The most serious problem encountered in estimating background, accidentals and fake events, are the neutrons from cosmic rays. Accidental rates due to the large rate of thermalized cosmic neutrons in the He^3 counter are unacceptable. It is necessary to improve the shielding drastically (water tanks, more concrete, Cd inside veto, etc). Additional experiments should be carried out in Grenoble, using the NE 235 C or NE 213 to measure the fast neutron flux behind 0.3 m of Pb in B42. The slow neutron rate in He^3 should also be measured for a realistic configuration, i.e., He^3 counter surrounded with water equivalent of the target counters. It appears difficult to reconcile the reported slow neutron rates of 0.016 sec^{-1} for a $1500 \text{ cm}^2 \text{ He}^3$ counter with the values taken from the work of Hess *et al.*, (also quoted in Hayakawa, p. 431) which gives 10^3 n per sec between 0.01 and 1 eV per cm^2 and MeV interval at sea level. The expected rate thus is $1500 \times 10^3 / 10^6 = 1.5 \text{ sec}^{-1}$.

b) Other problems include the mechanical aspects of mounting and demounting the veto house as well as the shielding assembly and mobility of the entire detector system.

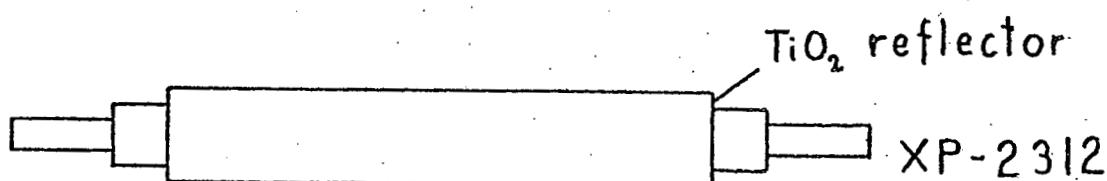
B. TARGET DETECTORS

Three prototype detectors were tested and their performances are described in this chapter.

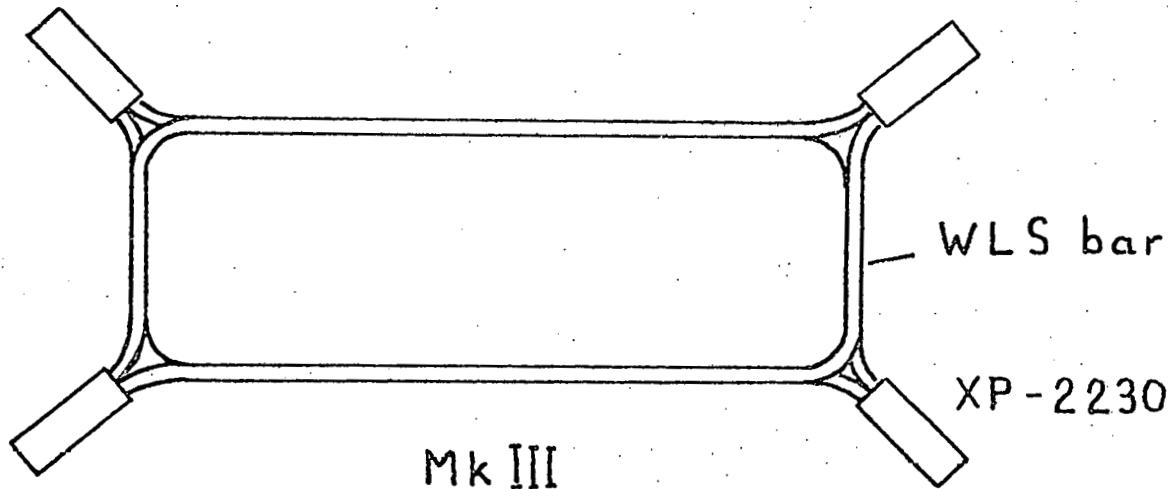

1. Description of the Prototype Detectors

All three detectors use NE-235C, a liquid scintillator that gives a pulse height of 60% of anthracene, has a transmission length longer than 3 m, and a H:C ratio of 1.67. It is well suited for $n-\gamma$ discrimination.

a) MkI (Fig. 1. top). The tank of MkI is made from 0.6 cm thick UVT lucite. The external dimensions are 8x12x70 cm. The useful volume is 5 l. Optimum light collection is achieved by total internal reflection. The tank is wrapped with Al foil, to reflect back the primary light that escapes. The two smaller faces (Fig. 1) are covered by 5" XP-2041 photomultipliers.


b) MkII. (Fig. 1. middle). This version employs the same tank as MkI. It has two 3" XP-2312 photomultipliers. The surface of the end faces which is not covered by the PMT is coupled over air to a TiO_2 reflector¹).

c) MkIII. (Fig. 1. bottom). The tank made from lucite, measures 8x30x90 cm. The useful volume is 17 l. The tank is surrounded by wavelength shifter bars^{1,2}), which are not optically coupled to the tank. These bars are 1.6 cm thick and 4 cm wide. Two bars are arranged side by side. Each bar surrounds two adjacent sides of the tank, and its ends are optically coupled to a 2" XP-2230 PMT. Each PMT views two bars coming from opposite sides. There are altogether four PMT. In a


Mk I

XP-2041

Mk II

XP-2312

Mk III

XP-2230

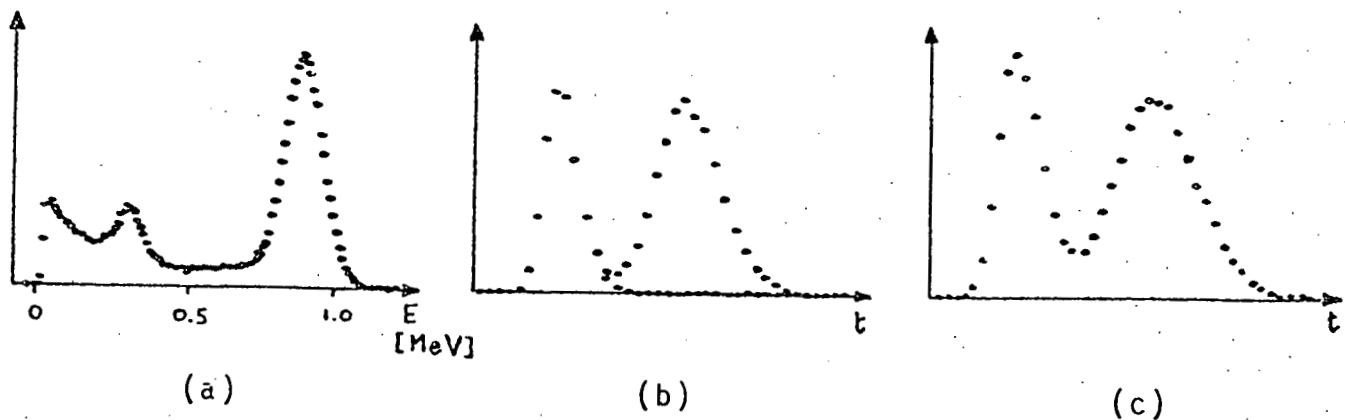
10 cm

Figure 1. The three tested detectors. MkI has an 8 x 12 x 70 cm tank made out of 0.6 cm thick lucite. MkII uses the same tank. MkIII has an 8 x 30 x 90 cm tank, and is surrounded by wavelength shifter bars.

final version, the bars could be bent back, 45° to the short side of the tank, so that several tanks can be stacked with a maximum of tank volume.

2. Results

The energy resolution and the pulse decay time spectrum, which is relevant for the $n-\gamma$ discrimination were measured for various energies.


For the energy resolution measurements, single-line γ -ray sources were used. Only those events were selected, in which the Compton scattered γ -ray escaped in the backward direction. The energy of the Compton scattered electrons is then kinematically well defined and monochromatic. The backscattered γ 's were detected in a Na(I) detector placed behind the source.

For the decay time spectra, an Am(Be) neutron source was used, and windows were set on the energy spectrum.

Some of the spectra obtained with the three tanks are presented in Fig. 2. For the decay time spectra, the spectrum measured with a pure γ source is superimposed to the one obtained with the mixed $n-\gamma$ Am(Be) source.

To characterize the quality of the $n-\gamma$ discrimination, we define the neutron background reduction factor (NBR). We set a threshold on the decay time spectrum so that 96% of the γ events are below it. The NBR is the ratio of the total number of neutron events to the number of neutron events below this threshold.

The results of the tests are given in Fig. 2 and table 1. The energy resolution (FWHM) at 0.9 MeV is given. It scales with the square

(d)

(e)

(f)

(g)

(h)

Figure 2. (a), (d) and (g): Energy spectra obtained with MkI, MkII and MkIII respectively, using a Zn^{65} source; (b), (e) and (h): Decay time spectra for the same detectors for an equivalent electron energy of 1 MeV; (c) and (d): the same for 0.6 MeV.

TABLE 1. Performance of Prototype Detectors

Detector	ΔE (FWHM) at 0.9 MeV	Number of photoelectrons at 0.9 MeV	Non-uniformity	NBR at 0.6 MeV ¹⁾	NBR at 1 MeV ¹⁾	NBR at 2 MeV ¹⁾
MkI	16%	215	3%	> 50	> 100	> 100
MkII	18%	170	7%	> 30	> 100	> 100
MkIII	28%	70	2%	-	10	15

¹⁾Equivalent electron energy.

root of the energy. Assuming a Poisson distribution, we also derived the number of photoelectrons collected. The non-uniformity of the response is given, which is the maximum pulse height variation for a given energy when the source is at the center and near the ends of the tank. The NBR is given for three equivalent electron energies, 0.6, 1.0 and 2.0 MeV.

As one sees, the best results were obtained with MkI. The NBR is almost perfect (> 100). MkII is practically as good, although the uniformity is at the limit of the tolerable. It shows that the ratio of the photocathode area to the area of the tank end should not be reduced more. The uniformity with MkIII is again excellent. However the number of photoelectrons per 1 MeV quantum is only about one third of that of MkI. As a consequence, the energy resolution is worse than with MkI, but still good enough for our purpose. The NBR at 1 MeV however, is only 10, which does not compare well with either MkI or MkII. Although MkIII is the most economical solution, it should only be considered in case the neutron background is not severe.

3. Proposed Configurations

From the results of section 2 it is clear that a configuration close to that of MkI or II should be an acceptable solution. However the final choice will depend on

- n γ separation needed
- energy resolution needed
- useful volume
- optimum thickness (n and e^+ efficiency)
- cost of PM and labor.

a) Final MkI. Using 5" PM for each cell (made of 0.6 cm lucite) several dimensions can be contemplated. The maximum length given by the dimension of the veto tank (130 cm) and PM tubes is 66 cm. (Outside dimensions are given).

# Cells	Cell Cross Section	Volume	Performance
5 x 9	8 cm x 12 cm	211 l	Same as MkI
	11.3 cm x 13.3 cm	351 l	Similar to MkII
	13.3 cm x 13.3 cm	421 l	Somewhat worse than MkII

Requires: 45 cells, 90 5" PM (\$54,000).

Note that the 5" PM is 13.3 cm wide incl. shield.

b) Final MkII. Using two 3" PM per cell and TiO_2 reflector on short sides. Maximum length of cell is 90 cm (the length of the 3" PM with socket is 20 cm).

# Cells	Cell Cross Section	Volume	Performance
5 x 12	8 x 10 cm	317 l	Same as MkII
→ 5 x 6	9 x 21 cm	412 l	Same as MkII

Both versions require 120 PM (\$42,000). In the version quoted on the second line there are 4 PM per cell. This version is more economical, saving manufacturing of cells and increasing the total volume. All four PM are connected together to give one output signal.

c) Final MkIII. This version is worth considering if a neutron suppression of less than 10:1 is required.

# Cells	Dimension of Cell	Volume	Performance
5 x 4	29 x 8 x 90 cm	340 l	As MkIII

Requires wave length shifter bars and 80 2" PM (\$17,000).

5 x 4	29 x 12 x 90 cm	536 l	Worse than MkIII
-------	-----------------	-------	------------------

Requires 3" PM (\$28,000).

d) Conclusion. It appears that the configuration marked → quoted in b) is probably best. In this configuration the inside thickness is 7.8 cm.

References

¹G. Keil, NIM 87 (1970) 111.

²B. Barish *et al.*, CALTECH report 68-623 (1977).

C. VETO COUNTER

The veto counter consists of 6 mechanically and optically independent liquid scintillator planes, arranged in such a fashion that the "radiation leaks" between plane boundaries are only 9 mm wide. The inner dimension of the veto house is 130 x 129 x 90 cm, however the 90 cm dimension can still be altered. The tanks have an inner thickness of 12 cm and are filled with NE 235 H. The outer dimension of the house without tubes, is 169 x 169 x 129 cm. For details see drawings Fig. 1-3. Each tank has two sides provided with lucite windows allowing the scintillation light to escape into a wave length shifter bar (ref. 2, Chapter B). On each side, three 1.6 x 4 cm bars arranged next to each other are used. A single 5" PM views the light from two adjacent sides. Altogether only 6 5" PM are needed for the entire veto system.

The tanks, made of aluminum, are provided with reflectors. The reflectors on the large sides are lucite panels sealed on the edges to an aluminum sheet, thus taking advantage of the total reflection of the lucite air interface. The reflectors on the short sides opposite to the lucite windows are aluminum sheets painted with TiO_2 , and covered and sealed with a lucite sheet. (This latter version is the optimum reflector that can be conceived).

The volume of the front and rear tanks is 250 l, that of the other tanks is 180 l.

One full size tank (the front panel tank) has been completed and is being tested.

Cost Estimate. Fabrication of the present tank cost about \$4,400. Each additional tank can probably be built for \$2,000. Cost of NE 235 H (1220 ℓ) is about \$5,000. Cost of PM and shifter bars \$5,000. There is a support platform needed to accommodate the target cells. Total estimated cost is about \$25,000.

Notes. If it turns out that the 9 mm cracks represent a serious "leakage", it will be possible to cover them with strips of Cerenkov plastic.

Also, to further improve the efficiency of the veto (reduction of neutron background by vetoing muons stopped in the lead shielding) a large wire chamber umbrella could be installed.

Attention should be paid to the logistic problem of assembling and disassembling of the veto panels. This operation will have to be performed frequently in the early phase of the experiment. An overhead crane or precision fork lift will be needed.

VETO TANK

Jan. 1978

TO REACTOR

LIFTING POINTS FOR
TOP PANEL

TOP
P.M.

RIGHT P.M.

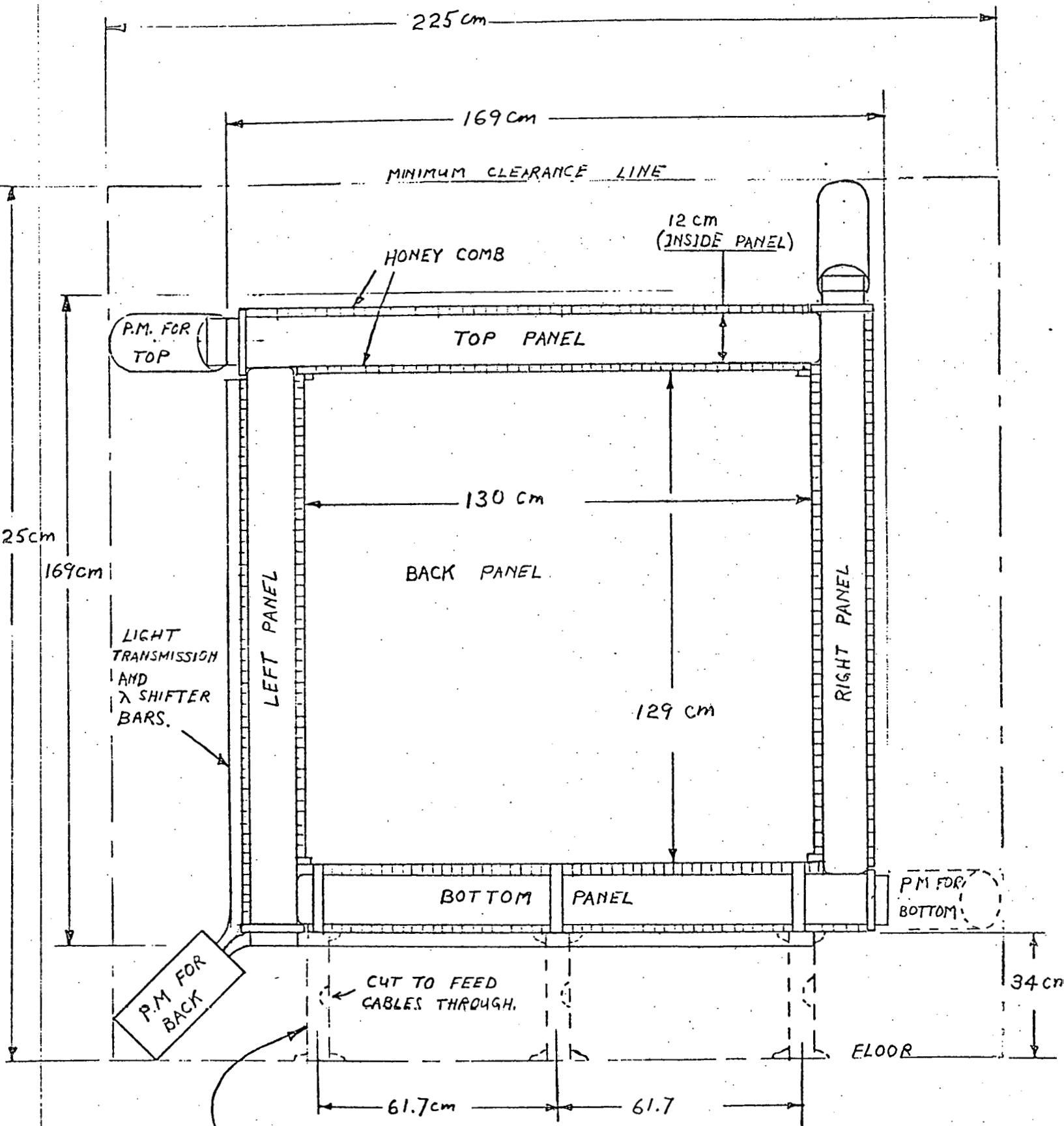
FRONT P.M.

SCINT. FLUID
FILL HOLE

LIFTING POINTS (TWO OTHERS
ARE ON THE INSIDE OPPOSITE
THE TWO SHOWN).

ASSEMBLY SUPPORT POINT

BACK
P.M.


BOTTOM P.M.

LEFT P.M.

MOUNTING PLATFORM TO
CLEAR LEFT AND BACK P.M.s. IT
MUST HAVE ACCESS FOR CABLES
TO FEED UP THROUGH BOTTOM
PANEL AND MUST SUPPORT
2500 Kg.

CROSS SECTION OF VETO TANK

Jan. 1978

ENTIRE TANK MAY BE SUPPORTED BY NINE TUBES
 6 cm. O.D. x 4 cm I.D. x 34 cm LONG SPACED AS SHOWN
 OR A PLATFORM 34 cm HIGH x 125 cm x 85 cm

PLAN VIEW OF VETO TANK (TOP PANEL REMOVED)

Jan. 1978

TO REACTOR

225 cm.

169 cm.

MINIMUM CLEARANCE LINE

61.7 cm

12 cm
(INSIDE PANELS)

P.M. FOR
BACK

41.7 cm.

BACK PANEL

P.M. FOR
RIGHT

CORNER
COUPLINGS

185 cm

130 cm

90 cm

LEFT PANEL

BOTTOM
PANEL

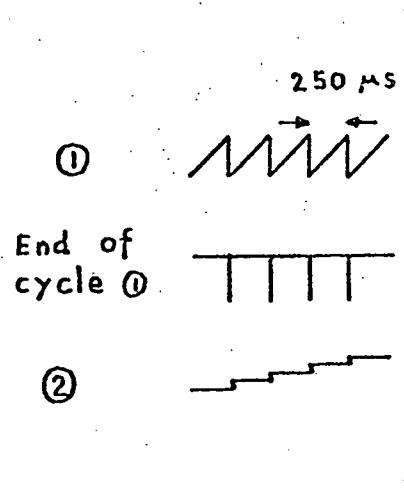
RIGHT PANEL

FRONT
P.M.

BOTTOM
P.M.

FRONT PANEL

LIGHT TRANSMISSION AND λ SHIFTER BARS.


P.M. FOR
LEFT

9 CABLE FEED THROUGHS 2.1 cm. I.D.

D. ELECTRONICS

The suggested circuit diagram is presented in Fig. 1. It is essentially self-explanatory, and only a few remarks are given in the following.

The two buffered ADC's (12 channels per module, charge sensitive, 8 bits, dead time of $3 \mu s$) analyze all the pulses originating in the target and veto tanks. Only the events coinciding with low energy veto signals (Veto Low) are rejected. The pulse areas and, for the target tanks, decay times, are digitized. Up to 6 modules share the same ADC channel. Tag words (Attenuator 1/2... 1/64 in logic signal) are used to identify the detectors which fire. In parallel to the pulses, the amplitude of two continuously cycling sawtooth signals is analyzed. It provides the time information. The first sawtooth signal has a period of $250 \mu s$. Since the ADC has 8 bits, we have a time resolution of about

$1 \mu s$. The second signal is a sawtooth like stepfunction which switches when the first signal ends a cycle. There are 128 steps, and the cycle duration is 32 ms. Ambiguities may occur when the ADC's try to analyze the signal height when one or both sawtooth signals end a cycle. A tag word is used to indicate if this is the case. When the slow sawtooth ends a cycle, the ADC's are caused to digitize. This is done to notify the data acquisition system that a new cycle has begun.

FIG. 1. Circuit diagram. It is assumed that the target consists of 5 planes of 6 scintillation detectors, each being fitted with 4 PMT. There are 4 He^3 chambers, and 6 independent veto detector panels.

PSD: Pulse shape discriminator.

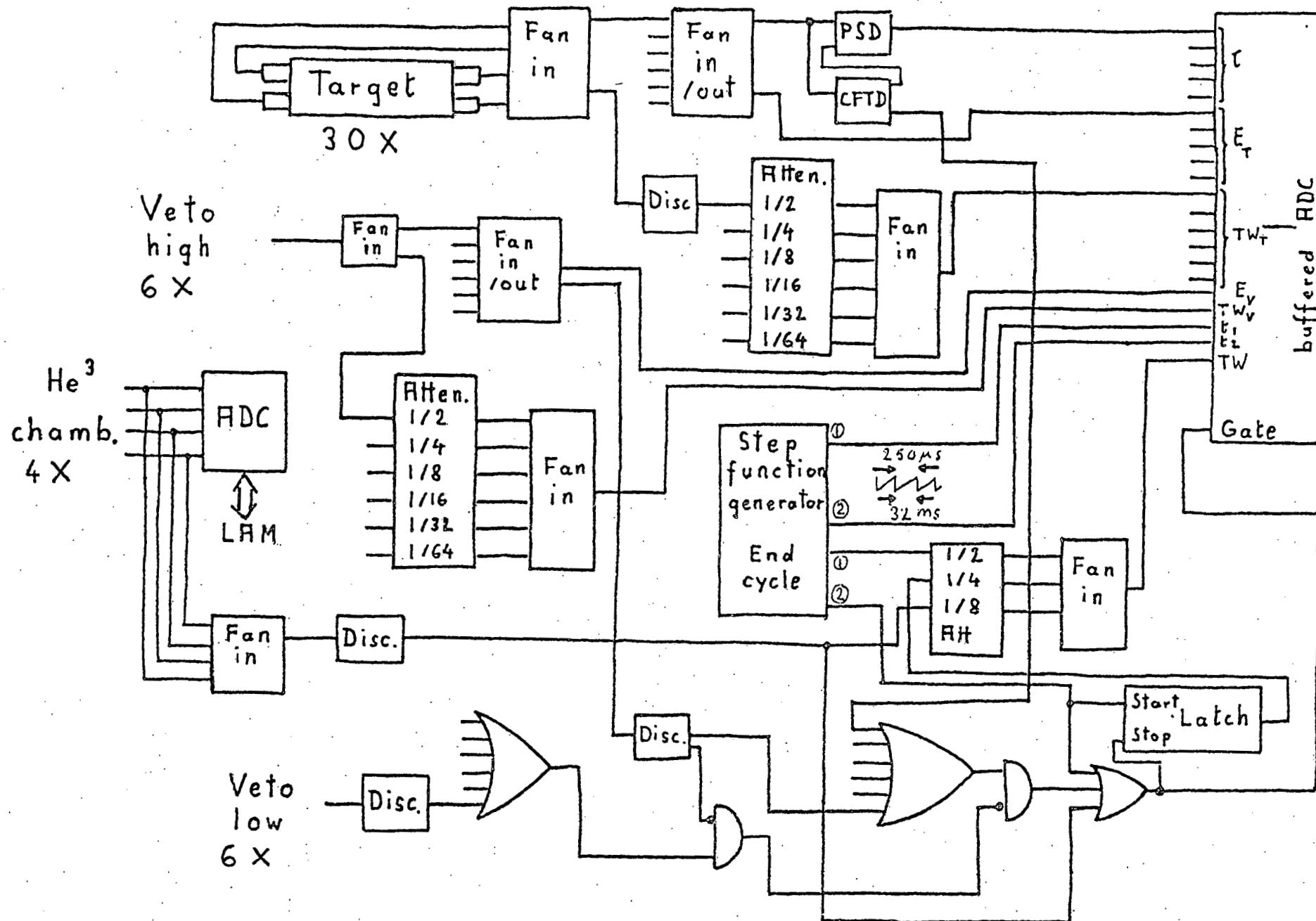
CFTD: Constant fraction timing discriminator.

τ : Pulse decay time.

E_T : Energy deposited.

TW_T : Tag word. Indicates what combination of cells fired.

E_V : Energy deposited in the veto tanks.


TW_V : Tag word veto tank. Indicates what combination of panels fired.

t_1 : Fine time given by the height of the fast stepfunction generator (250 μs for 1 cycle).

t_2 : Coarse time given by the height of the slow stepfunction generator (32 ms for 1 cycle).

TW : Tag word. Indicates if the He^3 chambers or the end of cycle of the step function generator caused the ADC's to digitize.

Each plane of 6 cells has
a channel.

Each channel of the ADC has a 32 word memory where the results of the digitalization are stored. The memory is of the last-in/first-out type and always contains the last 32 events.

The pulses from the He^3 chambers are analyzed in an 8-channel peak sensing ADC. Whenever a neutron is detected, a LAM signal is generated. The content of all the ADC buffers and registers is then transferred to the computer.

We conclude this section by giving a list of modules necessary to build the circuit given in Fig. 1.

	Necessary Channels (# units)	Already bought (# units)	Type Price US\$
Linear fan in/out	56(14)	(3)	LRS 428F (675)
Discriminator	37(5)	(2)	LRS 623 (1195)
PSD	5	(6)	Canberra 2160 (1250)
CFTD	5	(6)	Canberra 1428 (750)
Logic fan in/out	5(2)	(1)	LRS 429 (545)
Slow ADC	4(1)	(1)	Ortec AD811 (1450)
Buffered ADC	20(2)	(2)	LRS 2250L (2250)
Coincidence	2(1)	(2)	LRS 365AL (745)
Latch	1	(2)	LRS222 (875)
Step function generator	1	being built	Caltech
HV power supply	66 ¹ (3)	(3)	2 LRS 4032P (4100) 1 Canberra 3002 (575)
NIM bin	3	(2)	LRS 108P-6 (820)
CAMAC crate	1	(1)	NE 9503,9513 (1675)
CAMAC interface	1	(1)	Standard DCC-11 (1425)

In addition, several delay lines, cables, terminators have to be bought.

Total remaining cost of electronics: about \$13,000

¹Each channel of the LRS 32 channel unit supplying two PM.

E. BACKGROUND AND ACCIDENTALS

Based on data discussed in Grenoble last July and handbooks on cosmic rays, the accidental rates, cosmic related neutron rates (which would simulate a good event) and dead time of the system have been estimated. The lower part of Table 1 shows the values reported in Grenoble in July 1977. The upper part gives forecasts assuming the Grenoble γ -ray flux data and the literature value for μ^\pm fluxes at sea level (Hayakawa).

The obvious serious problem is the large number of accidentals, caused mainly by the estimated large number of cosmic originated neutron pulses in the He^3 . This number is at variance with the measured Grenoble He^3 background rate.

The discrepancy can also be seen by comparing the literature neutron flux (Hayakawa) of 10^3 n per sec between 0.01 and 1 eV per cm^2 and MeV, giving rise to an expected rate of 1.5 sec^{-1} in the 1500 cm^2 He^3 detector, with the observed value of $<0.016 \text{ sec}^{-1}$.

TABLE 1. Background Events (Rates in Sec.⁻¹)

	Flux (2m ²)	Singles He ³ 4x90x150 cm	Singles Target >1MeV, 360 λ 30 cm Pb	Accidentals (200 μ s)	Fake Events	Veto (2m ²) (1600 λ)	Veto Dead Time
Cosmic	125 μ^+ 100 μ^-	-	100	-	-	225	0.05 for 200 μ s
Cosmic fast n from μ^- stop in Pb	80 ³⁾		0.8 ¹⁾		0.4/NBR (1500/NBR hr ⁻¹)		
Cosmic slow n from above	40	40 ²⁾		0.8 (3000 hr ⁻¹)			
$\gamma > 1$ MeV			100			500	5×10^{-5} for 100 ns
Grenoble Input 1977		(1000 cm ²) 7 hr ⁻¹	(25 λ) (10 cm Pb) 90				
Scaled up by volume or surface		01	100	6 hr ⁻¹			

¹⁾ With e⁻ threshold 1 MeV (corresponding to E_n 2.5 MeV) 10% of n detected, with efficiency 20%, veto reduction 0.5.

²⁾ Fast n thermalized in Liquid Scintillator.

³⁾ Assume 0.3 m Pb on top and bottom of veto stop 70 sec⁻¹ μ^- . Take solid angle and n multiplicity 2.5 in capture. (Hayakawa, Cosmic Ray Physics).

F. APPENDIX

Notes on Reactor antineutrino spectrum

1. The rate in the neutrino detector at distance d is given by

$$R(d) = \frac{R_0}{4\pi d^2} \int_{E_0 - \Gamma/2}^{E_0 + \Gamma/2} \sigma(E) N(E) dE \cdot (1 - \sin^2(2\theta) F(\lambda \div \Delta^2 d)), \quad (1)$$

where R_0 is the number of fissioning $^{235}\text{U}/\text{sec}$, Γ resolution of the detector, θ neutrino mixing angle, Δ^2 neutrino mass difference,

$$F(\lambda) = \int \frac{1}{2}(1 - \cos(2.54(\lambda/E))) G(E) N(E) dE / \int \sigma(E) N(E) dE.$$

The oscillation function $F(\lambda)$ only weakly depends on the detailed shape of the $\bar{\nu}$ spectral function $N(E)$, provided the resolution is sufficiently good, $\Gamma \lesssim 2 \text{ MeV}$.

2. For absolute determination of the cross section, one has to know the $\bar{\nu}$ spectrum $N(E)$. There are three sources of $N(E)$ in the literature.

2.1 Carter *et al.*, Phys. Rev. 113, 280 (1959) measured the β^- spectrum and converted it approximately into a $\bar{\nu}$ spectrum. They obtain

$$N(E) = 5.01 \exp(-0.505E - 0.0544E^2). \quad (2)$$

2.2 Nezrick and Reines, Phys. Rev. 142, 852 (1966) measured the β^+ spectrum in the inverse neutron β decay. Assuming that they know the elementary cross section

$$\sigma(E) = 8.85 \times 10^{-44} (E - 1.29) \sqrt{(E - 1.29)^2 - .511^2} \text{ cm}^2. \quad (3)$$

they fit the shape of $N(E)$ to

$$N(E) = (19.4 \pm 1.3) \exp(-1.28E + 0.040E^2). \quad (4)$$

The constant 19.4 ± 1.3 is determined from the condition that the total number of neutrinos with energies > 1.8 MeV per fission is given by

$$\int_{1.8}^{\sim 10} N(E) dE = 2.1 \pm 0.1. \quad (5)$$

The function (2) also fulfills condition (5).

2.3 Avignone and Greenwood, Phys. Rev. 16 D, Dec. 1, 1977 determine $N(E)$ from recent experimental decay data. Their $N(E)$ also obeys eq. (5).

3. The three distributions (2), (4) and 2.3 are compared in the lower part of Fig. 1. Note that (2) and (4) decrease considerably faster in the relevant region between 2-6 MeV. The distributions are up to 30% different.

4. The function $\sigma(E) N(E)$ using $\sigma(E)$ eq. (3) and $N(E)$ eq. (4) (dashed) and 2.3 (full curve) are shown in the upper part of Fig. 1. Note that the full curve is inconsistent with the measured β^+ spectrum by Nezrick and Reines. Besides, the integrals

$$\bar{\sigma} = \int_0^{\infty} N(E) \sigma(E) dE \quad (6)$$

are 65×10^{-44} cm 2 for eq.(4) and 75×10^{-44} cm 2 for 2.3. If one compares the total rate of Nezrick and Reines with $\bar{\sigma}$ based on eq. (4) or 2.3 one finds

$$\bar{\sigma}_{\text{exp}} / \bar{\sigma}_{\text{th}} = \begin{cases} 0.88 \pm 0.13 & (\text{Nezrick and Reines}) \\ 0.75 \pm 0.13 & (\text{Avignone and Greenwood}) \end{cases} \quad (7)$$

5. Conclusion: 1) The existing information on $N(E)$ is inconsistent. It would be important to use the reactor data library, such as ENDF-IV (see R.E. Schenter *et al.*, HEDL-SA-1346, Hanford (1977)) to determine $N(E)$ independently. 2) The result of Nezrick and Reines does not rule out neutrino oscillations.

$$N(E)G(E) \times 10^{-44} \text{ cm}^{-2}$$

CONTRACTOR'S CROSS SECTION
PRINTED IN U. S. A.

NO. 7000

CHARLES BRUNING COMPANY, INC.
10 x 10 to the half inch.

$$N_{ij} - N_{Aij}$$

-1

10 x 10 THE NEW MEX.

PRIMER OF THE

20

10

0

-1

-2

-3

-4

1

5

9

13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

101

105

109

113

117

121

125

129

133

137

141

145

149

153

157

161

165

169

173

177

181

185

189

193

197

201

205

209

213

217

221

225

229

233

237

241

245

249

253

257

261

265

269

273

277

281

285

289

293

297

301

305

309

313

317

321

325

329

333

337

341

345

349

353

357

361

365

369

373

377

381

385

389

393

397

401

405

409

413

417

421

425

429

433

437

441

445

449

453

457

461

465

469

473

477

481

485

489

493

497

501

505

509

513

517

521

525

529

533

537

541

545

549

553

557

561

565

569

573

577

581

585

589

593

597

601

605

609

613

617

621

625

629

633

637

641

645

649

653

657

661

665

669

673

677

681

685

689

693

697

701

705

709

713

717

721

725

729

733

737

741

745

749

753

757

761

765

769

773

777

781

785

789

793

797

801

805

809

813

817

821

825

829

833

837

841

845

849

853

857

861

865

869

873

877

881

885

889

893

897

901

905

909

913

917

921

925

929

933

937

941

945

949

953

957

961

965

969

973

977

981

985

989

993

997

1001

1005

1009

1013

1017

1021

1025

1029

1033

1037

1041

1045

1049

1053

1057

1061

1065

1069

1073

1077

1081

1085

1089

1093

1097

1101

1105

1109

1113

1117

1121

1125

1129

1133

1137

1141

1145

1149

1153

1157

1161

1165

1169

1173

1177

1181

1185

1189

1193

1197

1201

1205

1209

1213

1217

1221

1225

1229

1233

1237

1241

1245

1249

1253

1257

1261

1265

1269

1273

1277

1281

1285

1289

1293

1297

1301

1305

1309

1313

1317

1321

1325

1329

1333

1337

1341

1345

1349

1353

1357

1361

1365

1369

1373

1377

1381

1385

1389

1393

1397

1401

1405

1409

1413

1417

1421

1425

1429

1433

1437

1441

1445

1449

1453

1457

1461

1465

1469

1473

1477

1481

1485

1489

1493

1497

1501

1505

1509

1513

1517

1521

1525

1529

1533

1537

1541

1545

1549

1553

1557

1561

1565

1569

1573

1577

1581

1585

1589

1593

1597

1601

1605

1609

1613

1617

1621

1625

1629

1633

1637

1641

1645

1649

1653

1657

1661

1665

1669

1673

1677

1681

1685

1689

1693

1697

1701

1705

1709

1713

1717

1721

1725

1729

1733

1737

1741

1745

1749

1753

1757

1761

1765

1769

1773

1777

1781

1785

1789

1793

1797

1801

1805

1809

1813

1817

1821

1825

1829

1833

1837

1841

1845

1849

1853

1857

1861

1865

1869

1873

1877

1881

1885

1889

1893

1897

1901

1905

1909

1913

1917

1921

1925

1929

1933

1937

1941

1945

1949

1953

1957

1961

1965

1969

1973

1977

1981

1985

1989

1993

1997

2001

2005

2009

2013

2017

2021

2025

2029

2033

2037

2041

2045

2049

2053

2057

2061

2065

2069

2073

2077

2081

2085

2089

2093

2097

2101

2105

2109

2113

2117

2121

2125

2129

2133

2137

2141

2145

2149

2153

2157

2161

2165

2169

2173

2177

2181

2185

2189

2193

2197

2201

2205

2209

2213

2217

2221

2225

2229

2233

2237

2241

2245

2249

2253

2257

2261

2265

2269

2273

2277

2281

2285

2289

2293

2297

2301

2305

2309

2313

2317

2321

2325

2329

2333

2337

2341

2345

2349

2353

2357

2361

2365

2369

2373

2377

2381

2385

2389

2393

2397

2401

2405

2409

2413

2417

2421

2425

2429

2433

2437

2441

2445

2449

2453

2457

2461

2465

2469

2473

2477

2481

2485

2489

2493

2497

2501

2505

2509

2513

2517

2521

2525

2529

2533

2537

2541

2545

2549

2553

2557

2561

2565

2569

2573

2577

2581

2585

2589

2593

2597

2601

2605

2609

2613

2617

2621

2625

2629

2633

2637

2641

2645

2649

2653

2657

2661

2665

2669

2673

2677

2681

2685

2689

2693

2697

2701

2705

2709

2713

2717

2721

2725

2729

2733

2737

2741

2745

2749

2753

2757

2761

2765

2769

2773

2777

2781

2785

2789

2793

2797

2801

2805

2809

2813

2817

2821

2825

2829

2833

2837

2841

2845

2849

2853

2857

2861

2865

2869

2873

2877

2881

2885

2889

2893

2897

2901

2905

2909

2913

2917

2921

2925

2929

2933

2937

2941

2945

2949

2953

2957

2961

2965

2969

2973

2977

2981

2985

2989

2993

2997

3001

3005

3009

3013

3017

3021

3025

3029

3033

3037

3041

3045

3049

3053

3057

3061

3065

3069

3073

3077

3081

3085

3089

3093

3097

3101

3105

3109

3113

3117

3121

3125

3129

3133

3137

3141

3145

3149

3153

3157

3161

3165

3169

3173

3177

3181

3185

3189

3193

3197

3201

3205

3209

3213

3217

3221

3225

3229

3233

3237

3241

3245

3249

3253

3257

3261

3265

3269

3273

3277

3281

3285

3289

3293

3297

3301

3305

3309

3313

3317

3321

3325

3329

3333

3337

3341

3345

3349

3353

3357

3361

3365

3369

3373

3377

3381

3385

3389

3393

3397

3401

3405

3409

3413

3417

3421

3425

3429

3433

3437

3441

3445

3449

3453

3457

3461

3465

3469

3473

3477

3481

3485

3489

3493

3497

3501

3505

3509

3513

3517

3521

3525

3529

3533

3537

3541

3545

3549

3553

3557

3561

3565

3569

3573

3577

3581

3585

3589

3593

3597

3601

3605

3609

3613

3617

3621

3625

3629

3633

3637

3641

3645

3649

3653

3657

3661

3665

3669

3673

3677

3681

3685

3689

3693

3697

3701

3705

3709

3713

3717

3721

3725

3729

3733

3737

3741

3745

3749

3753

3757

3761

3765

3769

3773

3777

3781

3785

3789

3793

3797

3801

3805

3809

3813

3817

3821

3825

3829

3833

3837

3841

3845

3849

3853

3857

3861

3865

3869

3873

3877

3881

3885

3889

3893

3897

3901

3905

3909

3913

3917

3921

3925

3929

3933

3937

3941

3945

3949

3953

3957

3961

3965

3969

3973

3977

3981

3985

3989

3993

3997

4001

4005

4009

4013

4017

4021

4025

4029

4033

4037

4041

4045

4049

4053

4057

4061

4065

4069

4073

4077

4081

4085

4089

4093

4097

4101

4105

4109

4113

4117

4121

4125

4129

4133

4137

4141

4145

4149

4153

4157

4161

4165

4169

4173

4177

4181

4185

4189

4193

4197

4201

4205

4209

4213

4217

4221

4225

4229

4233

4237

4241

4245

4249

4253

4257

4261

4265

4269

4273

4277

4281

4285

4289

4293

4297

4301

4305

4309

4313

4317

4321

4325

4329

4333

4337

4341

4345

4349

4353

4357

4361

4365

4369

4373

4377

4381

4385

4389

4393

4397

4401

4405

4409

4413

4417

4421

4425

4429

4433

4437

4441

4445

4449

4453

4457

4461

4465

4469

4473

4477

4481

4485

4489

4493

4497

4501

4505

4509

4513

4517

4521

4525

4529

4533

4537

4541

4545

4549

4553

4557

4561

4565

4569

4573

4577

4581

4585

4589

4593

4597

4601

4605

4609

4613

4617

4621

4625

4629

4633

4637

4641

4645

4649

4653

4657

4661

4665

4669

4673

4677

4681

4685

4689

4693

4697

4701

4705

4709

4713

4717

4721

4725

4729

4733

4737

4741

4745

4749

4753

4757

4761

4765

4769

4773

4777

4781

4785

4789

4793

4797

4801

4805

4809

4813

4817

4821

4825

4829

4833

4837

4841

4845

4849

4853

4857

4861

4865

4869

4873

4877

4881

4885

4889

4893

4897

4901

4905

4909

4913

4917

4921

4925

4929

4933

4937

4941

4945

4949

4953

4957

4961

4965

4969

4973

4977

4981

4985

4989

4993

4997

5001

5005

5009

5013

5017

5021

5025

5029

5033

5037

5041

5045

5049

5053

5057

5061

5065

5069

5073

5077

5081

5085

5089

5093

5097

5101

5105

5109

5113

5117

5121

5125

5129

5133

5137

5141

5145

5149

5153

5157

5161

5165

5169

5173

5177

5181

5185

5189

5193

5197

5201

5205

5209

5213

5217

5221

5225

5229

5233

5237

5241

5245

5249

5253

5257

5261

5265

5269

5273

5277

5281

5285

5289

5293

5297

5301

5305

5309

5313

5317

5321

5325

5329

5333

5337

5341

5345

NEUTRINO SPECTRA $N(E)/\text{MeV FISSION}$
FROM DIFFERENT SOURCES

E	Avignone 77 1.	Carter and Reines 59 2.	Nezrick and Reines 66 3.	Tsoufianidis 71 4.
1.5	1.53×10^0	2.08×10^0	3.11×10^0	2.70×10^0
2.0	1.27×10^0	1.47×10^0	1.76×10^0	1.89×10^0
2.5	9.19×10^{-1}	1.01×10^0	1.02×10^0	1.30×10^0
3.0	6.57×10^{-1}	6.75×10^{-1}	5.99×10^{-1}	8.64×10^{-1}
3.5	4.76×10^{-1}	4.39×10^{-1}	3.60×10^{-1}	5.65×10^{-1}
4.0	3.23×10^{-1}	2.78×10^{-1}	2.20×10^{-1}	3.63×10^{-1}
4.5	2.10×10^{-1}	1.71×10^{-1}	1.38×10^{-1}	2.28×10^{-1}
5.0	1.30×10^{-1}	1.03×10^{-1}	8.80×10^{-2}	1.40×10^{-1}
5.5	8.48×10^{-2}	6.01×10^{-2}	5.73×10^{-2}	8.50×10^{-2}
6.0	5.30×10^{-2}	3.42×10^{-2}	3.81×10^{-2}	5.04×10^{-2}
6.5	3.27×10^{-2}	1.89×10^{-2}	2.58×10^{-2}	2.94×10^{-2}
7.0	1.79×10^{-2}	1.02×10^{-2}	1.79×10^{-2}	1.67×10^{-2}
7.5	1.07×10^{-2}	5.32×10^{-3}	1.26×10^{-2}	9.25×10^{-3}
8.0	5.54×10^{-3}	2.71×10^{-3}	9.08×10^{-3}	5.03×10^{-3}
8.5	3.08×10^{-3}	1.34×10^{-3}	6.67×10^{-3}	2.64×10^{-3}
9.0	1.97×10^{-3}	6.49×10^{-4}	5.00×10^{-3}	1.32×10^{-3}

Notes: 1. Calculated by Avignone and Greenwood, Phys. Rev. D, 1977.
 2. Converted β^- spectrum, Phys. Rev. 113, 280 (1959).
 3. Deduced from β^+ measured spectrum, Phys. Rev. 142, 852 (1966).
 4. Converted β^- spectrum, as in 2. but using data by Tsoufianidis *et al.*, Nucl. Sci. and Eng. 43, 42 (1971).