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ABSTRACT

Feasible images in tomographic image reconstruction are defined as those
images compatible with the data by consideration of the statistical process
that governs the physics of the problem. The first part of this paper reviews
the concept of image feasibility, discusses its theoretical problems and
practical advantages, and presents an assumption justifying the method and
some preliminary results supporting it. 1In the second part of the paper two
different algorithms for tomographic image reconstruction are developed. The
first is a Maximum Entropy algorithm and the second is a full Bayesian
algorithm. Both algorithms are tested for feasibility of the resulting images
and we show that the Bayesian method yields feasible reconstructions in
Positron Emission Tomography.

1. INTRODUCTION

Over the last two years we have been involved in a detailed study of the
behavior of solutions to the image reconstruction problem in emission
tomography (ET), with data generated both by computer simulation and by the
ECAT-III tomograph at UCLA. 1In the process of studying the behavior of the
Maximum Likelihood Estimator (MLE) method of image reconstruction at our
Laboratory, we became aware, along with other workers, oflthe need to either
stop the iterative procedure before the images deteriorate”, or to choose the
solution from a set of smooth images.

As we progressed into the study of this phenomenona, we became aware of the
fact that the observed deterioration is a direct consequence of the MLE
criterion itself. By definition, the Maximum Likelihood method tries to find
an image that would give the experimental data with the highest probability.
In other words, the Maximum Likelihood criterion favors images whose forward

projections are as close to the data as possible. This fact is undesirable
when working with noisy data. If the reconstruction is forced to fit the data
too closely, it will include features due exclusively to the noise. On the

other hand, if the reconstruction fits the data too loosely, it would be a
poor representation of the object.

: : : : 4
In the case of Positron Emission Tomography (PET), it was found that a
true radioactive source equal to the reconstructed MLE image at convergence
could not have yielded the experimental data by a Poisson disintegration

* On leave from the Department of Physics, University of Barcelona, Spain.
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process. They observed, however that the images recovered after iterations
within a certain range could have generated the data. That initial finding
led them to formulate a stopping rule for the MLE algorithm. Upon further
investigation, Llacer and Veklerov® realized that the stopping rule is
actually based on the concept of Image Feasibility (called Causality in that
paper) as discussed below.

The first part of this paper is concerned with reviewing the concept of
feasibility in some detail, its application to testing the reconstructions and
discussing the difficulties in carrying out a correct test for feasibility
within the framework of hypothesis testing. The second and third part of the
paper describe the development of two independent algorithms for image
reconstruction in Emission Tomography. The first algorithm is a Maximum
Entropy algorithm and the second is a full Bayesian reconstruction algorithm.
Finally, the results of both algorithms are tested using the feasibility
concept.

2. THE CONCEPT OF FEASIBILITY OF A RECONSTRUCTION

—_— = = s s S e a2

The concept of feasibility, as presented here, has been developed by our
group for the Poisson data case as a bgssult of the study of the image
deterioration during MLE reconstruction. Several variations of the same
concept for Gﬁgssian noise have been reported by other authors working mainly

in astronomy.

Throughout this paper we shall use the following notation:

pj j=1,....,D - the projection data or the number of coincidences
detected in detector pair (or tube) j;
i i=1,....B - the emission density;
ji . - the point spread (transition) matrix;
hj = 1§1fji a; - the forward projection;

where B and D are the number of pixels and the number of projections,
respectively. We shall consider specifically the case of emission tomography
in which disintegration data follow Poisson statistics.

The basic idea of the feasibility concept is that the residuals should be
distributed in accordance with the Poisson nature of the process. Two
definitions have been presented:

Definition 1: The reconstruction a; j=1,....B is said to be strongly
feasible with respect to data pj j=1,....D, if and only if we can accept (not
reject) the statistical hypothesis that pj j=1,....D is a Poisson sample with
respect to the projections hj j=1,...D.



Definition 1 is difficult to implement as a constraint in an optimization
problem. For that reason we have introduced another definition:

Definition 2: The reconstruction a, i=1,....B is said to be k-feasible
with respect to data pj j=1,....D, if and only if the first k moments of pj
j=1,....D are consistent with the Poisson hypothesis, namely:

D
(py - hj>“

}: fn(h') = D n=1,....k (1)

=1 )
where fn(x); n=1,...k is the expression for the n-th moment of the Poisson

distribution with mean x.

Note that for the case of n=2 (only the second moment is considered) the
left side of (1) 1is identical to the eﬁPression of the chi-square (x)
statistic and, thus, Eq. (1) is reduced to x* = D. This equation is precisely
the constraint used by several authors in the maximum entropy method for the
Gaussian noise case. The case of k=2 has been called weak feasibility.
Note also that if k - o a k-feasible reconstruction becomes strongly feasible.

3. FEASIBILITY TESTS

Several tests can be derived from the above definitions. The easiest one
is to test for weak feasibility. It is important to note that this test is
not a chi-square test of significance but a constraint that should be
satisfied. A problem arises when we want to determine an upper and a lower
limit to the constraint, as will be discussed in detail below. A test for
strong feasibility has been developeda by means of an algorithm that, instead
of computing the different moments of the distribution, analyzes the shape of
the histogram of the residuals. The histogram is defined in Ref. 4 with N
bins of equal probability for a Poisson process and the algorithm computes a
function called H that is used to test the goodness of fit of the residuals to
the Poisson hypothesis. A critical discussion of its validity is also given
in Llacer, Veklerov and Nunez.® Let us outline the procedure for testing the
feasibility.

We want to test the joint hypothesis that pj(l) is a realization drawn from

a Poisson distribution with mean h, (1), pj(2) is a realization of hj(2), etc.
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A common method to test the hypothesis is the Pearson’s goodness of fit test.
The method consists of defining N mutually exclusive classes for the
residuals, assigning each residual to a class and then comparing the observed
number of residuals assigned to each class with the expected numbers
determined by the Poisson hypothesis. The discrepancy between the two is
measured by the chi-square statistic. If the chi-square statistic exceeds a
certain threshold, the hypothesis is rejected. This chi-square test should
not be confused with the weak feasibility test discussed above. In the weak
feasibility test we are comparing the left side of Eq. (1) (for n=2) with its
desired value (the number of data points) while here, we are working with the



chi-square of the N classes (usually N=20) into which the residuals are
divided and making a true chi-square test of significance.

A fundamental objection affecting not only the above procedure but also the
computation of the upper and lower limits for any k-feasibility test stems
from the fact that the image against which we are testing has been generated
by the same set of data that we are testing; i.e., the data and the image are
not statistically independent. On the other hand, we have observed that
images generated by the MLE, when stopped according to the rule derived from
the feasibility test, are visually good, with a useful compromise between edge
sharpness and low noise in regions of high activity. Results similar to ours
have been also obtained by Hebert et al. o Many other researchers (mostly in
the fields of astronomy and geophysics) have used several variations of the
same tests w?%;{&qjthey proposed to wuse as constraints for image
reconstruction. ' The practical usefulness of the feasibility-based
tests or constraints and the theoretical difficulty stated above are two
aspects that ought to be reconciled.

From statistics, we know that the hypothesis tests that can be derived from
the above definitions of feasibility would have complete validity if the
parameters that determine the Poisson process against which we are testing
were completely and independently specified. This fact can lead us to a
useful assumption that, if proven correct, may justify our feasibility-based
testing:

We have an image a; i=1,...B and its projection hj j=1,...D. We do not

know if the image was obtained during a reconstruction process or if it was
generated by the proverbial team of monkeys making images by strewing white
dots at random, ay being the number that land in the i-th pixel. We have also

a set of data pj j=1,...D and we are asked to test the hypothesis that that

image, as if completely specified, could have been the source that generated
the data by a Poisson process. We would then proceed with testing the
hypothesis by the methods developed or implied by the definitions of
feasibility given above.

This assumption gives us also the way to compute the upper and lower limits
for the 2-feasibility test (x2 = D) stated above. If we are testing the image
as if completely specified, the left side of Eq. (1) for n=2 possesses a xz
distribution with D - 1 degrees of freedom. Statistical analysis indicates
some upper and lower limits which )(2 can plausibly take in a "two tail!
chi-square test. The margins depend on the desired confidence levels. Fﬁg X
the largest acceptable value at 99% confidence is about D ; 3.29 (D)"'".
For D=20000 data points that means an upper limit for x gf 20465. 1If
normalized to the number of data points, the upper limit for x /D is 1.023.
The corresponding lower limit in a "two tail"™ chi-square test is about 0.977.
Hebert et al.”  have developed their stopping criterion for the MLE algorithm
based also on the xz test of significance. It is important to keep in mind,
however, that the expression x =D is a constraint and that the statistical
theory has been used only to define some confidence interval around the
desired value D.



The above assumption would be justified, in practice, if an analysis of the
distribution of the statistic H defined by Veklerov and Llacer' or the
chi-square function values (for Def. 2) for reconstructions of a large number
of different realizations of a fixed image source distribution were found to
be chi-square distributed with the expected number of degrees of freedom. We
have recently initiated such a study by generating 100 different realizations
of a given source and reconstructing all of them by the MLE method. Although
the study is not complete, preliminary results indicate that, for the range of
iteration numbers of interest, where the images appear to be good
repres?ntations of the original source, the function H of Veklerov and
Llacer , has a chi-square distribution. This finding justifies, in our
opinion, the feasibility-based tests and stopping criteria developed although
a theoretical justification is still missing.

The concept of feasibility has been used by our group, to develop the
stopping rule for the MLE algorithm both in its first version and in its more
robust version ~ for real data from a tomograph. In the next sections of this
paper it will be used to test two different reconstruction algorithms, the
first based on entropy maximization and the second on full Bayesian
reconstruction.

4. MAXTMUM ENTROPY RECONSTRUCTION

Maximum entropy techniques are receiving increasing attention in the field
of image reconstruction from a set of projections. The maximum entropy
solution yields the image with the lowest information content compatible with
the data. Thus, the criterion will give an image which avoids any bias while
satisfying the constraints. The method consists of maximizing the entropy of
the image and of the noise subject to constraints. We have used in this work
the noise model proposed initially by Frieden'® and the Gauss-Seidel-Newton
iterative solution method described by Gullberg and Tsui.'® The
Newton-Raphson method used initially by Frieden cannot be applied to the large
problems that we are dealing with. We formulate the problem as follows:

Maximize:
B ai ai D n, n,
-y < log =% - p ) -1 log - (2)
N N . N N
i=1 j=1 n n
where B D
N=1Y a,; N =3 n_; a, = 0; n, 20
i=1 * moge1d ' J
subject to:
B
Y f., a, +n, - n_=p, j=1,....D (3)

et R S S B B

In the formulation (2) we use the Shannon form of entropy which was first
used by Frieden in image reconstruction. Parameter p 1is the weight
quantifying the relative importance of the entropy of the noise vs. that of
the image. The noise, computed as the difference between the data and the



forward projections, can be represented as tﬁ -, where nj is a biased
(always positive) noise term and no is a constant noise bias which insures the
positivity of nj. To be consistent with the Poisson nature of the data, we

have chosen:

n = max [ 2 JFBE ] =1,....D
and
D D
[J-El(nj ) “m)] /D=0 Ny = j§1“j =Dy

The parameter p effectively controls the smoothness of the solution. The
larger the constant, the less smooth an image will result for the given data.
If the data contains very little noise, p can be made very high thus obtaining
high sharpness. The bias n also controls the smoothness of the image. In this

case the larger the bias, the smoother the image, with a resulting higher
background. Note that in this model, the noise nj is a wvariable in the

optimization problem and the solution gives unbiased estimates of both the
image and the noise. However, the model does not contain prior information
about the Poisson nature of the data. It seems well suited to handle
situations of little or no noise but we cannot expect it to be an accurate
model for the case of Poisson noise.

In order to maximize (2) with the constraints (3), we introduce the
Lagrangian function and solve the unconstrained problem of maximizing:

B a; a; D n, n,
L=-3 — log—-p I - log 4
. N N . N N
i=1 j=1 "=n
D B 1
-y A, [ p. -n, +n_ - Y f.. a, ] —
j=1 J J J moosqJ+ N
where Aj j=1,... D are Lagrange multipliers. To compute the maximum of the
function L we set the partial derivatives of L with respect to a;, nj and Aj
i=1,...B; j=1,...D equal to zero, with the following solution:
D
a; = Nexp(-1) T'T exp(£5; 2)

j=1

@)
nj = Nn exp(-1) exp(ij/pNn)

where the Lagrange multipliers are determined by the system of D nonlinear
equations:



B D
N exp(-1) iglfji }:I exp(fji Aj) + Nn exp(-1) exp(ij/pNn) -0 + pj =0
j=1,....D

The solution of this system of D nonlinear equations for the Lagrange
multipliers is obtained by using the Gauss-Seidel-Newton non-liQ%ar iterative
algorithm described, for example, in Ortega and Rheinboldt. Once the
algorithm converges, the resulting Lagrange multipliers are subtituted in
(4) and the solution is obtained. As the iterative algorithm for obtaining the
Lagrange multipliers progresses, we can substitute the multipliers in (4) and
monitor the formation of the image as well as its various statistics.

4.1 Results

To test the algorithm we have wused the computer generated brain-like
phantom with one million counts shown in Fig. la). Figure 1b) shows the
maximum entropy reconstruction of the brain phantom in the absence of noise,
at convergence after 10 iterations, with p = 50. The image plane contains
128x128 pixels and the pr?Jection data are obtained by simulating the 512
detector ECAT-III of UCLA. Note that the reconstruction is nearly perfect.
This shows that the algorithm works very well in the case of no noise in which
it is possible to use large values of p. 1In the presence of Poisson noise,
the images obtained by the above algorithm are not satisfactory. Nevertheless,
we have obtained reasonable results by adjusting p to a suitable value and
smoothing the final image.

The images in Figs. 2a) and 2b) show the maximum entropy reconstructions of
the brain phantom la) with Poisson data corresponding to 1 million counts,
using p = 8. Image 2a) is after twenty iterations, at convergence. Image 2b)
is obtained by filtering image 2a) by convolution with a Gaussian kernel with
o = 0.75 pixels, which improves its appearance. Note that the structures of
the phantom are clearly visible in reconstructions 2a) and 2b) but the
application of the feasibility concepts developed in Sects. 2 and 3 shows that
none of the images pass the tests of weak feasibility nor the Veklerov and
Llacer test. In our opinion, the two main reasons for the failure of the
algorithm to pass the feasibility tests are the lack of an adequate noise
model (Poisson) in the algorithm and that the Lagrangian method requires the
fitting of all the individual constraints (Eq. 3) separately, which results in
a large number of Lagrange multipliers (one per tube). TPF solution is then
very sensitive to any occasional abnormally large errors.

There are several ways to reformulate the problem in an improved manner but
the introduction of an appropriate Poisson data model will result in the
addition of even more constraints to the model. However, the concept of
maximum entropy proved useful as a prior probability function in a full
Bayesian framework.

5. FULL BAYESIAN IMAGE RECONSTRUCTION

A natural mechanism for incorporating prior knowledge is through Bayesian
theory. A Bayesian reconstruction seeks an 1image that maximizes the



Figure 1 - a) Mathematical brain-like phantom with 1 million counts, b)
Reconstruction by maximum entropy with constraints for the case with no
noise in the process of assigning counts to projections.

XBB 880-11783 XBB 880-11784
Figure 2 - a) ME reconstruction for the case of assignment of counts to
the projection data according to a probability matrix f. b) After slight
filtering. Neither of the two images are feasible.



probability of that image given the measurement data. If we consider the case
of an image source a, an imaging instrument that transforms that source by a
matrix f into a measurement vector p, then a Bayesian approach to
reconstruction will seek an estimate of a, such that the probability P(a|p) is
maximized. By Bayes rule,

P(alp) = P(pla) P(a) / P(p) (5)

The maximization of P(a|p) is done by maximizing the product P(pla) P(a).
The first term of the product is precisely the likelihood function. Since P(p)
is constant, the main difference between the Bayesian approach and the MLE is
the inclusion of the prior probability P(a) function for the image. The
conditional probability P(p|a) describes the projection noise and its possible
object dependence. It is fully specified in the statement of the problem as
the likelihood. We use the Poisson assumption and we generalize an important
concept originally introduced by Frieden and Wells: A Poisson image
projection consists of a number of counts in each detector unit, implying the
existence of a smallest intensity increment Apj associated with each detector

to register one count. Frieden and Wells use a constant value Ap independent
of the detector, but we introduce the detector dependence because, in real ET
cases, the intensity increment can depend on the detector (for example, when
detectors have different gains or there 1is attenuation in the emitting
object). Under the previous assumptions, the conditional probability is:

p;/bp,
o = TT o
P(pla) = exp(-h!) (6)
j=1 h] (pj/ApJ.)!
where B
h'! = .. 4, . j = Cen
: (iz le a; )/ApJ i=1, D | (7)

The prior probability P(a) is a probability distribution function for the
image we are seeking. For each pixel, P(a) contains the probability that it
takes a particular set of values. In general, and particularly in medical
imaging, P(a) is not known with any degree of accuracy. Faced with that
situation, Bayesian reconstructions have aimed at using a function for P(a)
that corresponds to some general truth about the object being imaged. One
prior knowledge function that has received substantial attention for more than
30 years is the entropy function. ' 2 The practical interest in using the
entropy as a prior (and maximizing it in Bayes’ framework) is that the
resulting reconstruction has minimal configurational inform?tion, so there
must be evidence in the data for any structure which is seen.

Let us now describe an additional concept following Frieden.'® Suppose that
N is the total number of counts in the object and that there is an intensity
increment Aa describing the finest known intensity jumps that are possible in
the object. Now the values ai/Aa i=1,...B are dimensionless numbers since Aa

contains the unit of radiance. It is now possible to define the prior
probability of an image as proportional to the number of ways in which that



image can occur.?* The logarithm of the prior probability is then the entropy
of the image: ‘

B
log p(a) = - ), (a;/pa) log(a;/Aa) + const. terms.
i=1

We have, then, formulated a problem with only one Lagrange multiplier (u)
that constrains the solution to a fixed number of counts N in the image. After
taking the log of the product entropy and likelihood, the function to be
maximized is:

B D B

BY = - } (a,/ha) log(a,/Aa) + } ( -hi + (p./Ap,) log(h!) ) - p( L a - N)
-1 * i g 3 I J =1

(8)

with hj as defined in (7). Parameters Aa and Apj j=1,....D, defined above,

control the relative weight of the entropy vs. likelihood functions.

Parameter Aa can be either computed theoretically or adjusted. If the
unknown image source were known to have 30 distinct levels of activity, for
example, Aa should be set to the finest jump in the image or, approximately Aa
= m/30, where m is the maximum intensity in the image. Alternatively,
parameter Aa can also be used to adjust the contrast of the resulting image,
and, in particular, it can be set to a value that results in convergent,
feasible solutions, according to our criterion. Theoretical work is still
needed to fully understand the relationship between th% interpretation of the
values of Aa and Apj proposed by Frieden and Wells and our experimental

findings.
The problem of maximizing Eq. (8) has been solved by the direct

maximization algorithm.8 Taking the partial derivatives of BY, Eq. (8), with
respect to a; and setting them equal to zero we obtain, for each of the pixels

i=1,2,...,B one equation of the form
g-g? - -(1/2a) log(a,/Aa) - 1/ha +
D
-£, . /Ap, ./Ap.) (1/h! ./Bp. -p=0 9
+j§1[ 31/8P5 + (py/8py) (L/h)) (£,,/8p) 1 - o (9

Exponentiating Eq. (9) and placing a; from the first term into the 1left

side, we obtain an expression that can be used to derive an iterative
formula. Taking into account the definition of hj, the resulting pixel

values for iteration k+l are obtained in terms of the wvalues of the k-th
iteration and the data by

10



D B

a. (1 - a) a. + a Kexp Aa i | (1/apj) (pg / 1 £, - 1)
Ji j-1 J1 1

(10]

where K 1is a normalization constant that is recomputed at the end of each
iteration to keep the total number of counts equal to N, and is equivalent to
obtaining the Lagrange multiplier /i of Eq. (8). Note that the parameters Ap”"

allow us to account for the absorption and detector gain corrections for
reconstruction from real data. Eg. 10 contains a new parameter a. The
correction computed by each iteration is the result of the exponentiation fn
that equation. These corrections correspond to a vector in a multidimensional
space with the right direction but with too large a magnitude because of an
instability introduced by the exponential function. Only a small fraction of
the correction, which is determined by the parameter a, must be used at each
iteration in order to insure convergence.

5,1 Results

Simulated data: Figure 3a) shows the reconstruction of the phantom 1la)
carried out with the Bayesian method at convergence with slight post-filtering
with a Gaussian kernel of 0.4 pixels standard deviation. Since the data are
simulated, Ap.—1 for all j was chosen. From previous analysis we know that the

maximum of the image 1is approximately 200 counts in one pixel and the number
of levels is 4. Thus, Aa — 200/4 — 50 was chosen. Note that the reconstruction
is visually better than the one obtained with the maximum entropy method,
figures 2a) and 2b). The reconstruction passes the feasibility tests described
earlier

XBB 880-11785 XBB 880-11786
Figure. 3 - a) Bayesian reconstruction with entropy prior and slight
post-filtering of the simulated brain phantom, b) Bayesian reconstruction
of a Hoffman brain phantom set of data with 1 million counts, with slight
post-filtering.
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Real data: Figure 3b) shows the results of our reconstruction with the
above method for the UCLA ECAT-II1I Hoffman brain phantom with 1 million
counts, at convergence. We know from previous computations that the maximum
intensity of the image is approximately 3000 counts and that the number of
activity levels is 5. Parameter Aa was, therefore, set to Aa = 3000/5 = 600,
Since this is a case with real data, absorption and detector gain corrections
have to be applied. The data pj were multiplied by factors gj. One count

received by a detector pair j corresponds to an increment of gj counts. Thus
parameters Apj should be set to the values Apj - gj. The resulting

reconstruction passes the feasibility test described by Llacer and Veklerov'®
for real data. The image of Fig. 3b), has been filtered slightly with a
Gaussian kernel of ¢ = 0.6 pixels, which improves the appearance of the image,
while keeping the image feasible.

In both the reconstructions presented, parameters Aa and Apj have been

computed theoretically and the results fit the feasibility theory. We do not
have at this time, however, the theoretical knowledge to insure that this will
always be the case. A practical adjustment of Aa for a given class of images
could be carried out by starting with a guess for Aa (we suppose Apj known

from the absorption and gain corrections), carrying out the reconstructions
and monitoring the moments of ths distribution of the residuals or the
parameter H of Veklerov and Llacer during the iterations. If the resulting
images are not feasible, the Aa parameter should be modified.

The quality of the images of Figs. 3a) and 3b) appears quite comparable to
the best of the MLE solutions, and clearly superior to the Filtered
Backprojection reconstructions that we have used for comparison. The merit of
our preliminary Bayesian work can be summarized, in our view, in the following
two points:

1) If the choice of parameter Aa is made so that the final results are
feasible, the iterative procedure converges to stable images which are
visually good in a reasonable number of iterations (50 to 100).

2) The method of solution shown offers a methodology for emission tomography
image reconstruction from Bayesian functions. The method is not limited to
entropy prior distributions and can béecome the basis for successful future
work.

6. CONCLUSIONS

In this paper we have reviewed the concept of image feasibility and its
applicability to image reconstruction in Emission Tomography. We conclude that
the feasibility based stopping criteria and residual analysis are powerful
tools, but more theoretical study is needed to fully understand their basis.

We have developed two different reconstruction algorithms. The first onme,
based on Maximum Entropy, works well in cases of no noise but, in presence of
Poisson noise, its reconstructions are inadequate due to the lack of an
appropriate noise model. The second algorithm developed is a full Bayesian

12



method in which we have incorporated a fundamental "sharpness" parameter Aa
that can be computed theoretically or adjusted experimentally for feasibility,
obtaining high quality reconstructions in presence of Poisson noise. Our new
Bayesian reconstruction algorithm, defined by Eq. (10), has been applied to
simulated and real data resulting in an iterative procedure which converges
with excellent image stability. We are presently working on an improved
algorithm to maximize (8) that does not require the exponentiation step or
parameter a of Eq. (10).
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