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ABSTRACT

The eigenmode equation describing ballooning
collisionless drift instabilities is analyzed both
analytically and numerically. A new branch of
eigenmodes, which corresponds to quasi-bound states
due to the finite toroidicity, is shown to be
destabilized by electron Landau damping for typical
Tokamak parameters. This branch cannot be under-
stood by the strong coupling approximation. However,
the slab-like (Pearlstein-Berk type) branch is found
to remain stable and experience enhanced shear damping

¢ due to finite toroidicity.
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In slab geometry, both the collisicnless and collisional
electrostatic drift eigenmodes are found to be shear stabilized.l
The shear damping of drift waves is associated with the anti-
well structure in which energy convects away from the mode
rational surface.2 However, in a toroidal plasma the mode
rational surfaces are closely packed. Due to toroidal coupling
effects, such as magnetic curvature drifts, the eigenmodes of
each poloidal harmonic are affected by the wave energy which is
convected away from the neighboring mode rational surfaces.

With finite toroidicity, the toroidal coupling effects can form
local potential wells, which inhibit convection of wave energy,
and hence significantly reduce the shear damping. The stability
studies of drift waves in toroidal systems using Taylor's strong-
coupling approximation3 have been carried out.4 It was found that
drift wave eigenmodes are stable for typical shear values in
tokomaks, § = rq'/q > 1/2, where q = rBE/RBB is the safety factor.
However, the strong-coupling approximation, which requires large
8§ (8 > 1/2), does not correctly describe the formation of local
potential wells. Recent studies of shear damping effects for
two-dimensional drift wave eigenmodes5 in toroidal plasma using
the ballooning mode formalism® indicated that two branches of

eigenmodes exist. One is slab-like and the other is a new

branch induced by finite toroidicity. The slab-like branch,

t
t
I

which represents the extension of Pearlstein-Berk slab eigenmodes%
has anti-well potential structures. It corresponds to an un- .
bounded state experiencing finite shear damping and exists for
small toroidicity. oOn the other hand, the toroidicity induced

eigenmode branch, which has no counterpart in slab geometry, is



characterized by potential structures with local potential wells.
It corresponds to a marginally stable, quasi~bound state and
experiences negligible shear damping through tunneling leakages.
However, in reference 5 adiabatic electrons and cold fluid ions
were employed. The crucial question on stability of the colli-
sionless drift waves in toroidal plasmas is yet to be answered.

In the present work we keep dissipative effects such as
electron and ion Landau damping by retaining the full electron
and ion Z functions and adopt the ballocning‘mode formalism6
to investigate the stability properties of collisionless drift
wave eigenmodes in toroidal plasmas. The toroidal coupling
effects considered here are due to ion VB and curvature drifts.
We find both analytically and numerically that the toroidicity-
induced branch becomes absolutely unstable in the presence of
electron Landau damping, while the slab-like branch experiences
enhanced shear damping.

In the following we consider long wave lergth (k_,_pi << 1)
electrostatic drift waves in a large aspect ratio (e = a/R << 1),
axisymmetric tokamak with concentric, circular magnetic surfaces.
The perturbation, ¥, can be written in the form

¥(r,0,Z,t) = % ;j(s) exp [i(moe+j9—n£—wt)] (1)
J .

where (r,9,f) correspond to the minor radial, poloidal and

toroidal directions respectively, s = (r-ro)/Ars, r, is the

minor radius of the reference mode rational surface with

m = nq(ro), Ars = l/keé, ke = mo/ro, § = (rq'/q)r =r, and

|j;<<|mo|, For simplicity, we ignore temperature gradients,



collisional and trapped particle effects. The two-dimernsional

eigenmode equation can be derived straightforwardly7 and is

given by \g

[L{s,3) + 5(s,j)-€nT/9]¢j(s) =0 (2)
where
L = by(8%a%/ds®- 1),
0 = (1-0)/(Q + l/T)[l+£eZ(£e)] - T[l+£iZ(Ei)]:
~ . _ ~ ~ N a ~ A
T ¢j($) = ¢j+l(S)+¢j_l(S) + 8 3z [¢j+1(S)-¢j_1(s)],
ba = képé, = Te/Ti’ Pg = Cs/mci’ C; = Te/Mi’
e, = I /R, rn_l = |d@ 1nN(r)/dr|, £, = V1/2 QnS/{s~j!,
Ee = Ei/d, d = /Me/MiT, ng = qbg/en, 2 is the plasma

dispersion function, and ¢ = w/w*e. The operator T is due to
the ion magnetic drifts.

Since, typically, ]m0[~]n]~ r /oy ~ 0 (10%), we may employ

the large n ordering which leads to the ballooning mode formalism.

~

In zeroth order, we have, with z = s-j, ¢j(s) = ¢(z) and

¢j+1(s) = ¢(z ¥ 1); i.e., there is no phase shift between
adjacent eigenmodes centered at each mode-rational surface,

Equation(2) then reduces to a one dimensional differential-

difference equation

[L; +0Q - e T,/01%(z) =0 . (3)
where L; = by (8?d%/dz*-1)

Tlé(z) = &(2+1)+d(z-1)+8§ d/dz[d(z-1)-¢(2+1)]

Eguation (3) is the eigenmode equation describing collisionless
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drift waves in toroidal plasmas. We also note that Equation (3)
yields perturbations centered at the outside of the torus. The
boundary condition imposed on equation (3) is that for large z,

the outgoing wave decays asymptotically because of the onset of

ion Landau damping.

To proceed from here, we approximate the ion Z function by
v - - 2 ; _r 2
1+ 6,2 () =-1/28] + i1 £, exp (-£;%)

since | Eif >> 1. Equation (3) can then be written in the form:

L, + Q- W(z)]t(z) = 0 (4)
where Qg (z) = [(1-0)/(Q+1/1) + zZ/an; - e, T,/019(z),
and W(z) = [((1-/(Q + 1/1)1 (g, - i/?Tgi exp (-E;).

Fourier transforming equation (4), we obtain

[a?/dn? + Q(%,n) - Wl o(n) = 0 (5)
where $(n) is the Fourier transform of ¢(z),

Q(&,n) = @*nl [bg(1+8%n?) - (1-0)/(Q + 1/7)

+ 2(e /9 (cosn + &n sinn)],

W&(n) = fQZH; Wizj®!{z) exp(-inz)dz.

To analyze equation (5), we temporarily ignore the electron
and ion dissipations and we have

[a%/an* + Q(a,,m) 16, (m) = 0 (6)

The relevant boundary condition for equation (6) is then,

¢O(n)* exp (i Qonsbgénz/z) as |n| + », i.e., the wave energy is

outward propagating. Equation (6) has been studied extensively5
for T = », by using both the interactive WKB8 and numerical

shooting codes. It has been shown that there exist two damped
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eigenmode branches. One is slab-like and the other is = new
branch induced by finite toroidicity. The slab-like eigenmodes,
similar to the Pearlstein-~Berk modes found in the slab 1imit,2
have basically anti-well potential structures as$ shown in

Fig. (la) and therefore experience finite shear damping. This
branch does not exist for § < §c and toroidicity further en-
hances the shear damping rates. The toroidicity induced (T-I1)
eigenmodes correspond to eigenstates quasi bounded by local
potzntial wells. Depending on § for fixed €n the potential
structure for weak T-I (large §) eigenmodes is shown in Fig.
{1b) and for strong T-I (small §) eigenmodes is shown in Fig.
(lc). It is clear that shear damping can occur through tunneling

).

leakages and is, in general, negligibly small with —Qi . 0(10”?

It is also interesting to note that both eigenmode branches can
coexist for a certain parameter regime. Furthermore, we note
that the slab-like eigenmodes have turning points tng close to

n=20, i.e., [n,| << 1, and therefore can be understood by using

I
t
Taylor's strong-coupling approximation. On the other hand, the
T-1 eigenmodes cannot be described by the strong-coupling
approximation. We now proceed to show that electron dissipation
can destablize the T-1 eigenmodes.

Since tokamaks typically have large shear, § > 1/2, we will
concentrate our analytic theory on weak T-I eigenmodes. From

Fig. (lb), we can readily see that the eigenmodes will bhe

localized around N = no+0 where Q'(no) =0, i.e.,

b§2nO + (En/n)[(§—l)sinn° + §n0 cosn,] = 0. (7)
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Letting 6 = n-n_, we can expand Q about no to 0(6?) and equation
(5) becomes

[dz/d62+Q(no) + Q" (ng) 9272 ~ Wl ¢(n) =0 (8)

where ReQ"(no) < 0. Inverse Fourier transforming equation (8)
and setting ¢(t) = %; S deé(n) exp(ift) = &(t) exp(-in,t), we
obtain

[-(1/2)Q" (n)d?/dac? + Q(n )-t?-Q?nlW(t)j¢(t) = 0 (9)
Equation (9) can be rewritten as

[d?/dy® + 2 - y* - A] ¢(y) =0 (10)
where y = t/(—Q"(no)/Z)%, A= Q(no)//:6“75377’3
A= an; W(t)/,CETTﬁ;T77. Taking A(t) to be small compared with
A and y?, which will be justified by comparing with numerical
results, we can carry out a perturbative treatment of equation
(10) and obtain the zeroth order solution

6, (¥) = exp (-y*/2) (11)
for the n = 0 eigenstate. The correspondi..g dispersion relation
is given by

Q(n)//=0"(nJ1/2 = 1 (12)

To further analyze equation (12) we need to obtain S from
equation (7). Since weak T-I eigenmodes generally exist for
]sn/Q[ > ]beél, and Ino] > 1, we find n = n/2 for § ~ 1. Thus,

(1+1/1)

92,2 482 -
@(ng) =a%ng [1+be (L48%n°/4) - (opmy + 8e /0] )
and

/:aﬁjﬁo)/z > Qns[sngn/ZQ - be§2];E (14)

The solution of equation (12) can be obtained for (en§ﬂ/29—be§2)<<l
and T << 1, and is approximately given by

9, = (1-8e,m)/[1+b, (1+821%/4) ] (13)



With the addition of the A term, we obtain the disnersion
relation

Q(n ) /=" (n)/2 £ 1 + i(r-9), (16)
where § is included to represent shear damping effects through
tunneling leakages and can be estimated by examining the W = 0
limit of equation (5) and

T(Q) = J A o2dy/feldy.
To obtain an analytical expression for ', we approximate the
electron Z function by retaining only the resonant term, and
have

r = 4a3{[(l—9)/(9+1/r)](d/T)KO(zda)—Ko(zu)}, 17n
where o = Qns/?7§/(-Q"(no)/2)%, and K is the modified Bessel
function of the second kind. For typical tokamak parameters,
we find o >> 1 and da << 1, so that

Ko(2da) = -1n(da)-C, (18)
where C (=0.5772...) is Euler's constant, and

K, (20) = 1.25 (20)7 % exp(-2a). (19)
We note that |[I'[<<l. Thus, with Q = a +iQ, and IQi/Qo|<<l,
we have, from equation (16),

9, = 8{4a’[(d/7) (1-8) /(2 +1/1) (-1n(da)-C)
-1.25(20) exp (~20) 1~} (20)
where
(enﬁn/ZQo—be§2)%/[ns(l+be(l+§2112/4))].

Examining equation (20), we find that the electron Landau
damping term has a destablizing effect and is proporticnal to
ﬁﬂ;ﬁﬁz, while the ion Landau damping term is stabilizing and is

independent of the mass ratio.



We have also solved the differential-difference equation
(Eq. 3) numerically by using the cubic B-spline finite element
method9 in order to verify the perturbative treatment and pro-
vide more understanding. Numerical results are exhibited in
Figs. (2a) and (2b) for b8=sn=0.l, =1,1=10, mi/me=1837. For
this set of parameters we note from the analysissof equation (6)
that weak T-I eigenmodes exist for § 2 0.5. 1In Fig. (2a) we
plot the growth rate versus shear § and the real frequency is
plotted in Fig. (2b). Five curves are compared: (a) the
numerical solutions of equation (3) for T~I eigenmodes; (b)
numerical solutions of equation (3) for slab-like eigenmodes;
(c) numerical solutions of equation (3) in the slab limit,
i.e., TL = 0; (d) perturbative solutions for weak T-I eigenmodes;
equations (12) and (20) by neglecting tunneling effects, i.e.,
8 = 0; (e) numerical solution of equation (3) in the strong-
coupling limit, i.e., T,;®(z) = 20 + (1-28) (d2/dz%)®. The results
clearly demonstrate that, while in the slab limit the eigenmodes
are always stable, T-I eigenmodes become unstable for 8§ £ 1.2
and slab-like eigenmodes experience enhanced damping due to
finite toroidicity compared w.th the eigenmodes in the slab
limit. We also note that for T-I eigenmodes the agreement between
perturbation theory and numerical results is reasonably good for
;. They both predict instability for § I 1.2 for the set of
parameters presented here. 1In order to further justify the
perturbative analysis for T-I eigenmodes, we have also numerically
solved equation (3) by artificially inserting a factor Ae in the

electron nonadfidbatic term Eez(gej and varied Ae from zero to ane,.




We found that, as an example, for s = 0.75, Qi evolved from
negative (damping) at )e = 0 to positive (instability) at he = 1,
and is linear in Ae' We also emphasize that the strong-coupling
approximation predicts fairly well the damping rates for the
slab-like branch for § > 0.5; however, it fails to account for
the instability of the T-1 eigenmodes. Finally, we note that
even though only the t = 10 case is presented, the basic results

are not changed for 1 - 0(1).
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FIGURE CAPTIONS

Typical potential structures Q(n) for (a) the slab-like,
(b) weak and {(c) strong toroidicity induced eigenmodes.
Plot of eigenmode frequencies {: versus % for

bOﬁan=0.l, aq=1, =10, mi/me = 1837, Curves {a), (b),
(c) correspond, respectively, to T-I eigenmodes, slab-
like eigenmodes and uniform plane slab eiyenmodes from
numerical solution of equation (3). Curve (d)
corresponds to pzriurbative results for T-I eicenmodes
and curve (e} to numerical solution of equation (3) in

the strong-coupling approximation.
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