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ABSTRACT 

The eigenmode equation describing ballooning 
collisionless drift instabilities is analyzed both 
analytically and numerically. A new branch of 
eigenmodes, which corresponds to quasi-bound states 
due to the finite toroidicity, is shown to be 
destabilized by electron Landau damping for typical 
Tokamak parameters. This branch cannot be under­
stood by the strong coupling approximation. However, 
the slab-like (Pearlstein-Berk type) branch is found 
to remain stable and experience enhanced shear damping 
due to finite toroidicity. 
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In slab geometry, both the collisionless and collisional 
electrostatic drift eigenmodes are found to be shear stabilized. 
The shear damping of drift waves is associated with the anti-
well structure in which energy convects away from the mode 

2 
rational surface. However, in a toroidal plasma the mode 
rational surfaces are closely packed. Due to toroidal coupling 
effects, such as magnetic curvature drifts, the eigenmodes of 
each poloidal harmonic are affected by the wave energy which is 
convected away from the neighboring mode rational surfaces. 
With finite toroidicity, the toroidal coupling effects can form 
local potential wells, which inhibit convection of wave energy, 
and hence significantly reduce the shear damping. The stability 
studies of drift waves in toroidal systems using Taylor's strong-
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coupling approximation" have been carried out. It was found that 
drift wave eigenmodes are stable for typical shear values in 
tokomaks, s = rq'/q > 1/2, where q = rH^/RBr, is the safety factor. 
However, the strong-coupling approximation, which requires large 
s (s > 1/2), does not correctly describe the formation of local 
potential wells. Recent studies of shear damping effects for 
two-dimensional drift wave eigenmodes5 in toroidal plasma using 
the ballooning mode formalism" indicated that two branches of 
eigenmodes exist. One is slab-like and the other is a new 
branch induced by finite toroidicity. The slab-like branch, 
which represents the extension of Pearlstein-Berk slab eigenmodes' 
has anti-well potential structures. It corresponds to an un­
bounded state experiencing finite shear damping and exists for 
small toroidicity. On the other hand, the tox-oidicity induced 
eigenmode branch, which has no counterpart in slab geometry, is 
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characterized by potential structures with local potential wells. 
It corresponds to a marginally stable, quasi-bound state and 
experiences negligible shear damping through tunneling leakages. 
However, in reference 5, adiabatic electrons and cold fluid ions 
were employed. The crucial question on stability of the colli-
sionless drift waves in toroidal plasmas is yet to be answered. 

In the present work we keep dissipative effects such as 
electron and ion Landau damping by retaining the full electron 
and ion 2 functions and adopt the ballooning mode formalism 
to investigate the stability properties of collisionless drift 
wave eigenmodes in toroidal plasmas. The toroidal coupling 
effects considered here are due to ion VB and curvature drifts. 
We find both analytically and numerically that the toroidicity-
induced branch becomes absolutely unstable in the presence of 
electron Landau damping, while the slab-like branch experiences 
enhanced shear damping. 

In the following we consider long wave length (k^p. << 1) 
electrostatic drift waves in a large aspect ratio (e = a/R << 1) , 
axisymmetric tokamak with concentric, circular magnetic surfaces. 
The perturbation, f, can be written in the form 

T(r,6,?,t) = £ <j>. (s) exp [i (m 6+je-n£-ut) ] (1) 
J J 

where (r,9,£) correspond to the minor radial, poloidal and 
toroidal directions respectively, s = (r-r )/Ar , r is the 
minor radius of the reference mode rational surface with 
m o = n (*< r

0>' A r s = V k B i , k e = m o/r o, s = (rq'/q)r = r and 
o 

l3l < <l m
0l- For simplicity, we ignore temperature gradients, 
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collisional and trapped particle effects. The two-dimensional 
eigenmode equation can be derived straightforwardly and is 
given by \ 

[L(s,j) + Q(s,j)-enT/fi]<t, (s) = 0 (2) 

where 

L = b 0 ( s 2 d 2 / d s 2 - 1 ) , 
Q = (l-Q)/(fi + 1/T) [1+C Z(C )] - T [ 1 + C , Z ( ^ . ) ] , 

T ^ ( s ) = J j + 1(s)+J j_ 1(s) + s ~ [*j + 1(s)-J j_ 1(s)l, 
b Q = k 2p|, t = T e / T i f P g = C s/o. c ±, C 2 = T e/M ±, 
e n = r n / R ' r n _ 1 = ' d l n N < r ) / d r | , ^ = JT/2 nns/|s-;i!, 
? e = i^/d, d = /M e/M ix, n 3 = qb^/e n, Z is the plasma 

dispersion function, and P = CU/OJ^ . The operator T is due to 

the ion magnetic drifts. 
Since, typically, |m |~|n|~ r /p ~ 0 (10 ) , we may employ 

the large n ordering which leads to the ballooning mode formalism. 
In zeroth order, we have, with z = s-j, $ . (s) = $(z) and 
<J). + 1 (s) = 4>(z + 1 ) ; i.e., there is no phase shift between 
adjacent, eigenmodes centered at each mode-rational surface. 
Equation(2) then reduces to a one dimensional differential-
difference equation 

11^ + Q - enT1/fl]*(z) = 0 
where L, = b A(§ 2d 2/dz 2-l) 

(3) 

Tjfcfz) = 4>(z+l)+$(z-l)+s d/dz[$(z-l)-$(z+l)] 

Equation (3) is the eigenmode equation describing collisionless 
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drift waves in toroidal plasmas. We also note that Equation (3) 
yields perturbations centered at the outside of the torus. The 

^ boundary condition imposed on equation (3) is that for large z, 
the outgoing wave decays asymptotically because of the onset of 
ion Landau damping. 

To proceed from here, we approximate the ion Z function by 

1 -*• i±Z (Ci) =-l/2g? + i/iT K± exp (-q2) 

since | £.| >> 1. Equation (3) can then be written in the form: 

[L2 + Q 1- W(2)]4>(z) = 0 (4) 

where QjMz) = [ (1 - f i ) / ( f i+ l / i ) + z2/Q2q^ - e T / f l ] $ ( z ) , 

and W{z) = [ ( l - « ) / ( f i + 1 / T ) ] S e Z ( £ e ) - i ^ r r q exp ( - £ ? ) . 

F o u r i e r t r a n s f o r m i n g e q u a t i o n ( 4 ) , we o b t a i n 

[ d 2 / d n 2 + Q(«,n) - w] £(n) = o (5) 

where <Kn) i s t h e F o u r i e r t ransform, of <5(z), 

Q(ff,n) = n 2 n | t b e ( i + s 2 n 2 ) - ( i - f t ) / ( f i + I / T > 

+ 2(e / f i ) ( cosn + sn s i n n ) ] , 

W<j>(n) = / f i 2 ' i~ W(z)'Mz) e x p ( - i n z ) d z . 

To analyze equation (5), we temporarily ignore the electron 
and ion dissipations and we have 

[dVdn 2 + Q(flo,n)]*0(n) = 0 (6) 
The relevant boundary condition for equation (6) is then, 

<J>0(n)-+ exp (i Q on sb esn z/2) as |n| ->• «., i.e., the wave energy is 
outward propagating. Equation (5) has been studied extensively5 

for T = <°, by using both the interactive WKB 8 and numerical 
shooting codes. It has been shown that there exist two damped 
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eigenmode branches. One is slab-like and the other is =>. new 
branch induced by finite toroidicity. The slab-like eigenmodes, 

2 similar to the Pearlstein-Berk modes found in the slab limit, 
have basically anti-well potential structures as shown in 
Fig. (lev) and therefore experience finite shear damping. This 
branch does not exist for s < s and toroidicity further en-
hances the shear damping rates. The toroidicity induced (T-I) 
eigenmodes correspond to eigenstates quasi bounded by local 
potential wells. Depending on s for fixed e , the potential 
structure for weak T-I (large s) eigenmodes is shown in Fig. 
(lb) and for strong T-I (small s) eigenmodes is shown in Fig. 
(lc). It is clear that shear damping can occur through tunneling 

~~ 3 

leakages and is, in general, negligibly small with -Q^ - 0(10 ). 
It is also interesting to note that both eigenmode branches can 
coexist for a certain parameter regime. Furthermore, we note 
that the slab-like eigenmodes have turning points ±n. close to 
0 = 0, i.e., |n | << 1, and therefore can be understood by using 
Taylor's strong-coupling approximation. On the other hand, the 
T-I eigenmodes cannot be described by the strong-coupling 
approximation. We now proceed to show that electron dissipation 
can destablize the T-I eigenmodes. 

Since tokamaks typically have large shear, s > 1/2, we will 
concentrate our analytic theory on weak T-I eigenmodes. From 
Fig. (lb), we can readily see that the eigenmodes will be 
localized around n = n Q+0 where Q'(nQ) = O, i.e., 

bs 2n Q + (eR/fl)[(s-l)sinn0 + §n 0 cosnj = 0. (7) 
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Letting 8 = n-n , we can expand Q about n to 0(6 2) and equation 

(5) becomes 

[d2/de2+Q(rio) + Q"(no) 9 2/2 - W] <f>(n) = 0 (8) 

where ReQ"(n ) < 0- Inverse Fourier transforming equation (8) 
1 and setting <j>(t) = j ^ f d6<J>(n) exp(i6t) = *{t) exp(-inC)t), we 

obtain 
t-(i/2)Q"(ri0)d2/at2 + Q(n0)-t2-nznjw(t)](}.(t) = o (9) 

Equation (9) can be rewritten as 
[dVdy 2 + A - y 2 - A] <|>(y) = 0 (10) 

where y = t/(-Q"(nQ)/2)h, A = Q(no)//-Q"(nQ)/2, 
A = Q2r\l W(t)//-Q" (nQ)/2. Taking A(t) to be small compared with 
A and y 2, which will be justified by comparing with numerical 
results, we can carry out a perturbative treatment of equation 
(10) and obtain the zeroth order solution 

£o(y) = exp (-y2/2) (11) 
for the n = 0 eigenstate. The corresponding dispersion relation 
is given by 

Q(no)//-Q"(no)/2 = 1 (12) 
To further analyze equation (12) we need to obtain n from 

equation (7). Since weak T-I eigenmodes generally exist for 
|en/n| > |b es|, and | n | > 1, we find n = TT/2 for § ~ 1. Thus, 

Q(n0) -.72n2U+be(i+§2Tr2/4) - jnti/T) h ten*/M < 1 3 > 
and 

* / r Q " ( n „ ) / 2 = «n r e Sir/2G - ha^2)H (14) 
o s n y 

The s o l u t i o n of e q u a t i o n (12) can be o b t a i n e d f o r (e § i r / 2 f i - b Q g 2 ) < < 1 
n 6 

and T <•: 1, and i s a p p r o x i m a t e l y g i v e n by 
% = ( l - s e n T T ) / [ l + b e ( l + g 2 7 r 2 / 4 ) ] (15) 
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With the addition of the A term, we obtain the dispersion 
relation 

Q(no)//=0"(no)/2 = l + i(r-s), (16) 
where 6 is included to represent shear damping effects through 
tunneling leakages and can be estimated by examining the W = 0 
limit of equation (5) and 

Hfi) = / A ^dy/Z^dy. 
To obtain an analytical expression for r, we approximate the 
electron Z function by retaining only the resonant term, and 
have 

r = 4a3{[(l-ft)/(fi+l/T)] (d/x)Ko(2da)-Ko(2a)}, (17) 
, j, 

where a = fin >/T/2/(-Q"(n )/2)", and K is the modified Bessel 
function of the second kind. For typical tokamak parameters, 
we find a >> 1 and da << 1, so that 

K (2da) = -ln(da)-C, (18) 
o 

where C (=0.5772...) is Euler's constant, and 
K (2a) = 1.25 (2a) - S s exp(-2a) . (19) 

We note that |r|<<l. Thus, with 52 = n H-iŜ  and | f^/f^ | <<1, 
we have,- from equation (16), 

tii = g{4a3[(d/T) (l-fi0)/(J20+l/T) (-ln(do)-C) 
-1.25(2a)_!2exp(-2a)]-6} (20) 

where 0 = (e S7T/2Q -bfl§2)V[ncU+bfi(l+s-2TT2/4))]. n o o s o 
Examining equation (20), we find that the electron Landau 
damping term has a destablizing effect and is proportional to 
/m /m., while the ion Landau damping term is stabilizing and is 
independent of the mass ratio. 
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We have also solved the differential-difference equation 
(Eq. 3) numerically by using the cubic B-spline finite element 
method in order to verify the perturbative treatment and pro­
vide more understanding. Numerical results are exhibited in 
Figs. (2a) and (2b) for bg = cn=0.1, ;=1,T=10, 1^/1^=1837. For 
this set of parameters we note from the analysis of equation (6) 
that weak T-I eigenmodes exist for s ~ 0.5. In Fig. (2a) we 
plot the growth rate versus shear § and the real frequency is 
plotted in Fig. (2b). Five curves are compared: (a) the 
numerical solutions of equation (3) for T-I eigenmodes; (b) 
numerical solutions of equation (3) for slab-like eigenmodes; 
(c) numerical solutions of equation (3) in the slab limit, 
i.e., T = 0; (d) perturbative solutions for weak T-I eigenmodes; 
equations (12) and (20) by neglecting tunneling effects, i.e., 
& = 0; (e) numerical solution of equation (3) in the strong-
coupling limit, i.e., T.$(z) = 2$ + (l-2s) (d2/dz2)$. The results 
clearly demonstrate that, while in the slab limit the eigenmodes 
are always stable, T-I eigenmodes become unstable for B i 1.2 
and slab-like eigenmodes experience enhanced damping due to 
finite toroidicity compared with the eigenmodes in the slab 
limit. We also note that for T-I eigenmodes the agreement between 
perturbation theory and numerical results is reasonably good for 
"-. They both predict instability for s 5 1.2 for the set of 
parameters presented here. In order to further justify the 
perturbative analysis for T-I eigenmodes, we have also numerically 
solved equation (3) by artificially inserting a factor X in the 
electron nonadtabatic term E Z(5 ) and varied X from zero to one, 

e e e 
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We found that, as an example, for s = 0.75, U. evolved from 
negative (damping) at ) = 0 to positive (instability) at A = 1, 
and is ]inear in >. . We also emphasize that the strong-couplinq 
approximation predicts fairly well the damping rates for the 
slab-like branch for s > 0.5; however, it fails to account for 
the instability of the T-I eigenmodes. Finally, we note that 
even though only the T = 10 case is presented, the basic results 
are not changed for T -. 0(1). 
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FIGURE CAPTIONS 

Typical potential structures Q(n) for (a) the slab-like. 
(b) weak and (c) strong toroidicity induced eiqenmodes. 
Plot of eigenmode frequencies U versus o for 
br«f, =0.1, q-1, T = 10, m./m = 1837. Curves (a), (b), 
(c) correspond, respectively, to T-I eigenmodes, slab­
like eigenmodes and uniform plane slab eiyenmodes from 
numerical solution of equation (3). Curve (d) 
corresponds to perturbative results for T-I eigenmodes 
and curve (e) to numerical solution of equation (3) in 
the strong-coupling approximation. 
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(b) Slab Like 
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