

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

1979 Annual Report

n C S Z ~ O ~ \ S ~

The S- 1 Project

b

Prepared for
The Naval Systems Division, Office of Naval Research

The Command and Control Division,
Naval Electronics Systems Command

The Command, Control, Communication, and Intelligence
Program Office, Naval Material Command

Volume I: Architecture

OlSTIiBUTlON OF THIS 08GI MENT IS UNLIMITED ..' i;:*
/ 7

1.
I~WRENCE LIVERMORE IABORATO~Y I

Thanks to Christine Ghinazzi, Lois Jones, L. R. Mendonca,
Roland Portman, Joe Simpcon, and Cind~a Whccler fer kelp
in various cutting, pasting, copying, proofing, and purchasing
chores required to produce this book. Thanks to P. Michael
Farmwald for the program which indexed the SMA-4 docu-
men t.

CONTENTS

Executive Summa y
(EXS-79)

Lowell L. Wood

S-1 Multiprocessor Architecture
(MULT-2)

L. Curtis Widdoes, Jr.

Investigation of the Partitioning of Algorithms
Across an MIMD Computing System

(IMAP-1:)
Erik J. Gilbert

S- l Uniprocessor Architecture
(SMA-4

Steven Correll

UYK-7 Emulation
(uYK7-1)'

Richard Kovalcik

1 Executive Summary

The US Navy is one of the world's largest users of digital computing equipment having a
procurement cost of at least $50,000, and is the single largest such computer customer in the
Department of Defense. Its projected acquisition plan for embedded computer systems during the
first half of the 80s contemplates the install'ation of over 10,000 such systems at an estimated cost df
several billions of dollars. This expenditure, though large, is dwarfed by the 85 billion dollars
which DoD is projected to spend during the next half-decade on computer software, the
near-majority of which will be spent by the Navy; the life-cycle costs of the 700,000+ lines of
software for a single large Navy weapons systems application (e.g., AEGIS) have been conservatively
estimated at most of a billion dollars.

The S-1 Project is dedicated to realizing potentially large improvements in the efficiency with which
such very large sums may be spent, so that greater military effectiveness may be secured earlier, and
with smaller expenditures.

The fundamental objectives of the S-1 Project's work are first to enable the Navy to be able to
quickly, reliably and inexpensively evaluate at any time what is available from the state-of-the-art
in digital processing systems and what the relevance of such systems may be to Navy data processing
applications: and second to provide reference prototype systems to support possible competitive
procurement action leading to deployment of such systems.

The Project's efforts might seem to be addressed only to the hardware aspects of DoD's hundred
billion dollar computing-related expenditures through end-FY85, and thus to be of relatively low
leverage. However, many studies have documented the fact that use of efficient software generation
practices, such as the exclusive use of high-level, structured programming languages, can result in
software life-cycle cost savings of a factor of ten or more, relative to generating software in
low-level, unstructured fashions, such as assembly- or microcoding-type languages. Indeed,
extracting the maximum performance from its obsolescent computing plant has forced the Navy to
employ the latter approaches in the large. majority of its software generation activities. Computing
hardware which supports the former type of more manpower- and cost-efficient software
engineering practices with minimum penalties in utilization efficiency can therefore favorably impact
the entire Navy computing cost structure. It is to the creation of such hardware, and the basic
software necessary to support its cost-efficient utilization, that the S- 1 Project is directly oriented.

During FY'i9, the Project's third full year of effort, its focus remained 'directed on the development
of maximally cost-effective means' for .realizing digital data processing sjstems for use in Navy
applications environments, means which can endure into the indefinite future. The general strategy
which continues to be employed in pursuit of this capability is two-pronged:

deinonstration in fully operational prototypes of the maximally cost-effective hardware
base of such digital processing systems, realized in a fashion which is manifestly repeatable
as the underiying digxtal technology base continues to advance exponentially with time;

timely creation of a suite of system software which is sufficient to completely support a

1 Executive Summary

representative set of Navy digital computer-using applications employing this hardware
base, and which is readily extensible to support the remainder.

Demonstration of the maximally cost-effective hardware base of such systems and establishing that
the cost-effectiveness of this base may be maintained with the passage of time is at once the more
challenging and the more novel of the Project's two major strategy components. Attainment of
maximum cost-effectiveness of a digital processor at any given time clearly places an exponential
premium on implementation in components which represent current technology, inasmuch as the
underlying semiconductor technology has advanced exponentially in cost-effectiveness over the past
two decades.

Only slightly less obvious are the stiff premiums placed on efficient use of the best current
components to realize a complete Biit not excessively redundw~l: 01% specialized set of data processing
capabilities within a rapidly implemented processor system. Such a system must feature high ieveis
of innovation in architectural conception, discipline i r ~ ~rarislatiun of the architecture into a detailcd
design, and alacrity in the entire process of moving from conception through initial implementation
and evaluation to mass production of a proven prototype.

T h e type of digital data processing system on which the S-1 Project has focussed its attention is
essentially unrepresented in corr~mercial computer systems, as it is basically a hybrid of an advanced
programmable signal processor and a general purpose, high-performance scientific (i.e.,
non-business-oriented) computer system. Moreover, S-1 systems emphasize reliability,
maintainability and security features to extents almost unparalleled in commercial computer
offerings. S- 1 systems may therefore Be expected to find rnnrly ~rlilila~ y appli~ations, particularly
where uniquely great challenges are posed to the real-time reactivity, data throughputlperformance,
reliability and secure natures of digital data processing systems.

The primary means chosen by the S-1 Project to be able to design and implement its processor
systems in the most current technology has been the creation of the S-1 Structured Computer-Aided
Logic Design (SCALD) System, a powerful aid for the computer system architectldesigrier which
substitutes for essentially all the junior engneerldraftsman-level effort ordinarily required to
support such work. Use of' the SCALD System leaves [he system architect free to specify the design
on a relatively abstract, highly conceptual level, and requires only a specification of the technologies
in which the design is to be implemented and general directions as to how its major sub-systems are
to be located in three-dimensional space when the design is realized la a syslelll package.

The SCALD System supported the design and hardware implementation of the first S-1 processor
(the Mark I) in less than a year's time, through a process requiring only two person-years of total
effort. FY79 has seen its major extension to support the design of the much more powerful S-l
'Mark IIA processor, an endeavor which has been completed it1 ils ~i~ajot . aspects during this past
year with less than three person-years of design effort, and is expected to culminate in the initial
operation of a pair of fully functional Mark IIA systems in mid-FYSO, after the expenditure of
another two person-years of design and implementation endeavor. In contrast, the median time
hitherto required in industry to desi& and implement a state-of-the-art digital processor has been
four to six years, involving the expenditure of 100-300 person-years of effort.

1 Executive Summary

One year typically elapses between the announcement of 'a new digital processor-related technology
(e.g., a new integrated circuit memory element) and its availability in quantities which can
reasonably support prototyping; another year passes before quantities adequate for mass production
become available at reasonable prices. It therefore seems clear. that both of the first two generations
of the S-1 SCALD System adequately satisfy the timely design-and-implementation criterion noted
above: one year to design and construct, a state-of-the-art computer system, followed by a year for
evaluation prior to commitment to large scale production, tracks quite well the composite learning
curve of the underlying technologies. This time schedule was followed for the S-1 Mark I system
development, and has been tracked through most of the development of the substantially more
challenging Mark IIA system, as well. It therefore seems likely to be generally applicable to all
computing system developments which employ the SCALD System. This constitutes early
attainment of one of the Project's basic goals: providing the Navy and all of its potential computer
system suppliers in the industrial sector with the means for realizing computers on much shorter and
smaller time, effort and cost scales than hitherto attainable.

The first generation SCALD System has been described in two papers presented at the 15th A n n ~ a l
Design ~utomation Conference, and in last year's Annual Report. It has been extensively presented
during FY79 to American industr.7, as well as to academic and Governmental audiences, including
presentations made at two day-long Project Open House sessions held at LLL, primarily for
American industry. One of these was devoted exclusively to SCALD for benefit of the
then-emerging VHSIC community, by Navy direction.

SCALD I has been transported to a large number of organizations in these communities which are
interested in using it to support large digital design efhrts. The second generation of SCALD
(SCALD 11) is documented at high level in this Report, and will also be presented at the 17th
Annual Design Automation Conference. As a substantial generalization of SCALD I, it is expected
to be received even more enthusiastically than SCALD I has been. It will be distributed with
extensive supporting documentation as soon as its correct end-to-end functioning is verified by its
successful use in creating the Project's Mark IIA systems.

The high level of architectural innovation required to realize a new type of digltal computing
system--one which stresses extremely powerful real-time signal processing capabilities
well-integrated into a powerful general-purpose processor--has been insured by the usual practice
of considering all those features which have been found useful in previous digital systems of both
types, supplemented by the rather unique means of formally soliciting detailed comments and
suggestions from a relatively large group of academic, industrial and Government computer
scientists. This process determined the basic architecture of the Project's Mark I processor, as
reported in the end-FY 77 Report.

The existence and operational status of the Mark I processor stimulated a great deal more, and more
detailed, commentary on the S-1 architecture from the various segments of the American computer
science community during FY78 and, FY79, commentary made with the knowledge that criticisms
meeting with widespread peer approval would be reflected in the uniquely plastic S-1 architecture

4 1 Executive Summary

literally overnight. As a result, the S-1 architecture has rapidly become one of the most extensively
studied and criticized in existence, and is without doubt the most extensively revised in the history
of computer technology; it has presumably benefitted greatly from this intensive and unusually
broad-based peer review process.

A comprehensive effort has been made during FY.79 to integrate all such inputs consistent with
basic Project goals and Navy interests into the design of the Project's second-generation (Mark IIA)
processor. T h e external peer review portion of this inter-generation enhancement process has been
similar to that employed in developing the architecture of the Project's Mark I processor, and has
been' greatly facilitated by the completely non-proprietary, non-commercial nature of the Project.

Thp usually very demanding task sf maintaining the integrity of a computer architecture from one
generation to the next, work in which the Project has been substantially engaged during the past
two years, has been very substantially simplified by the Project's taking the unprecedented step of
carrying all the microcode wrmware) of its processors in wrieeable memory. A ur~iquely plastic
processor also results from this basic architectural decision, which has been supported by major
advances in pertinent semiconductor technology during the past few years.

Highly efficient, and thus maximally cost-effective, use of an S-1 processor's hardware then results
for any reasonable microcode specification by the processor's user(s). In particular, S-1 processors
may be readily re-configured to quite efficiently emulate other computer architectures (particularly
those with word lengths of <= 36 bits), simply by replac&g the largely microcode-expressed S-1
native architecture with a microcoded expression of the architecture of the target machine.

T h e first step in this process, the creation of a macrocode-based simulator, was completed during
FY78 for the widely used (e.g., by the DARPA community) PDP-10 computer systems and for the
central processing unit (CPU) of the Navy's top-of-the-line general purpose processor, the
ANIUYK-7. These S-1 Mark I processor-based simulators have been used to flawlessly execute
substantial low-level (e.g., numeric object-time) programs for each of these computer systems. Such
extensive, production-type use of these simulators during this past year included support of the
Project's design of the Mark IIA via routine execution of the Stanford University Drawing System
(which is written in 30,000 lines of PDP-10 assembly language) which serves as the graphics editor
of the SCALD System, and support of the creation of a true emulator of the ANIUYK-7 CPU
architecture which, for example, executes a Navy tactical air warfare program significantly faster on
the Mark I processor than does a real UYK-7.

Discipline in realization of a processor architecture in a detailed, implementation-directed design is
facilitated by the nature of the SCALD System itself; SCALD System usage discourages and
highlights designer-level architectural modifications, while supporting rapid design completion by a
small team of architect-designers who are able to communicate closely thro~ighsur the design period.
SCALD System extensions realized during this past year and tested in supporting the detailed
design of the Mark IIA processor system have further enhanced these aspects of realizing an
architecture in hardware.

T h e architecture of the S-1 family of processors and the rationale leading to it are described in

1 Executive Summary

detail in the S-1 Architecture section of this Report. The S-1 architecture is at once

powerful, as is indicated by the 15 MIPS instruction-issuing rate of its second generation
expression, the Mark IIA processor, its essentially 3-address instruction format and- its
advanced arithmetic/logic unit, all of which support its ability to execute a typical mix of
Navy technical applications codes written in high level language comparably rapidly as
any general-purpose processor in existence, and far more rapidly than any present Navy
computer system;

highly plastic, due to its completely writeable and very capacious microcode storage areas
and its sophisticated instruction-decode and operand-fetchi~~g unit, so that , it can
efficiently emulate a wide variety of other processors at the hardware level, thus affording
a very high level of protection to the Navy's investment in architecture-specific software
written for other computers;

readily extensible in stand-alone capabilities via.addition of specialized arithmetic modules
to its basic instruction-executing unit, and in system capabilities via interconnection to a
number of other such processors to constitute uniquely powerful and reliable
multi-processing systems;

@ time-wise durable, by virtue of both its uniquely large address space, which permits
immediate exploitation of exponentially decreasing memory costs and associated Navy
applications demands for ever larger working memory space, and by its very broad
hardware capabilities and extremely readily extended instruction set, which facilitates
adaptation to changing Navy applications requirements;

9 cost-effective, in that it makes very efficient use of its major hardware endowments,
employs the most modern LSI components effectively, and adapts readily and in a
software-invisible fashion to further semiconductor technology base advances (e.g. VLSI
MOS memory elements, LSI ECL and CMOS logic modules).

Continued evaluation of the Project's Mark I processor, primarily for reliability, maintainability and
performance in exceptional circumstances, was a significant hardware-related activity during FY79.
This work included the completion of microcoding of the processor to express the full instruction set
specifying the S-1 architecture, the examination of the functionality of the Mark I processor to
ascertain that the hardware-microcode combination proper!y expressed the system architecture under
all circumstances (including extremely rare exception cases and comblnat~ons thereof; of' which a
sophisticated pipeline implemention such as that of the Mark I has many), and the determination of
the performance of the Mark I processor on various types of applications programs.

In-order to carry out portions of this evaluation process, it was necessary to replace the 256 K word
main memory system of the Mark I processor, which was implemented in 8 K bit MOS RA'Ms and
had been procured in FY77 from a commercial custom memory systems source, with a -
Project-designed and -implemented memory system of 512 K words capacity, implemented in 16 K

6 1 Executive Summary

bit RAMs..This was accomplished expeditiously during FY78. Continuing evaluation work and
SCALD I1 exercise requirements during FY79 impelled the further expansion of the Mark I
memory implementation to 2048 K words, with a Project-designed and -implemented memory unit
which also served to prototype the memory module for Mark IIA uni- and multi-processor systems.
This extension was accomplished at a hardware and implementation manpower cost of 5
K#/megabyte, and involved no alteration of the Mark I uniprocessor. Thus, the S-1 Mark I system
now contains more computing power and more memory capacity than does the entire AEGIS
computing plant.

Extension of the high cost-effectiveness of single S-1 processors to Navy applications requiring
more computing capability than is available from single processors is accomplished by
interconnecting a number of such processors into an S-l multiprocessor system. Such a system at
once provides a very high bandwidth, completely flexible means by which all member processors
may exchange data (via a relatively very inexpensive full Crossbar Switch which uniformly
interconnects all processors with all memory banks), as well as a variety of means by which
processors may very rapidly signal to each other. In addition to carrying the extraordinary unit
cost-effectiveness of single S-1 processors into almost arbitrarily demanding Navy applications
regimes (which can exploit concurrent processing capabilities), the multiplicity of processors in such
an interconnection also allows the creation in system software of extremely graceful system failure
modalities: unexpected loss of any relatively small number of processors or memory banks need not
degrade system performance at all, if appropriate software constructs are employed to automatically
substitute reserve processors and memory units for ones which fail.

A general description of the S-1 multiprocessor architecture appears within this report, accompanied
by a discussion of the strengths and weaknesses of such an architecture, relative to alternative
approaches to meeting the digital processing requirements of the most demanding Navy applications.

The heart of the multiprocessor system, the Crossbar Switch, has been designed to be readily
partitionable into a number of smaller, electrically isolated crossbar switches, and includes a
diagnostics/maintenance processor which supports such software-controlled re-partitioning to isolate
faulted prscessors or memory banks. Use of ECL-1OK MSI circuits in implementation permits this
switch to sustain 8 billion bitlsecond data transfer rates between 16 processors and 16 memory
banks, while having an implementation cost somewhat less than that of a single processor.
Interestingly enough, only about 20% of this cost (or less than 1% of the cost of a 16 processor, 16
memory unit multiprocessor system) has a growth rate which is quadratic in the processor or
memory unit population size; the other 80% has a growth rate which is linear in this population size.
A 128 processor, 128 memory bank S-1 multiprocessor system implemented in current technology
would thus require a Crossbar Switch costing less than 10% of the cost of the total system. Since the
advance of semiconductor electronics into the VLSI regime will necessarily produce components that
reduce the size and cost of the Crossbar Switch before it produces components that reduce the size
and cost of processor and memory, the fractional cost of the crossbar switch portion of S-1
multiprocessor systems, already quite small at present, may be expected to decline especially rapidly.

Software for the S-1 prototype processor family must be available in an essentially complete, reliable,
documented, cost-effective and timely fashion to enable high hardware cost-effectiveness to be

1 Executive Summary 7

translated into compa.rably high system cost-effectiveness, and providing for such is the other major
component of the Project's strategy.

The S-1 Project, after surveying alternatives, elected to commence meeting, these requirements by
exploiting recent developments in software technology (e.g., highly transportable compilers and
operating systems) in a selected academic computer science environment, which offered relatively
inexpensive and highly talented (i.e., highly cost-effective). software design and implementation
capabilities. A FY77 sub-contract effort at Stanford University's Computer Science Department
supporting the S-1 Project produced and documented a PASCAL compiler, a FORTRAN compiler
design, a P-Code translator, a symbolic assembler and a. simulator for the first S-1 prototype .

processor; a companion loader was generated by the Project staff in FY77. The productivity of the
Stanford effort was determined to be about an order of magnitude higher than industry
programmer productivity standards, due both to its higher average talent level and the
comprehensive use of recent software technology.

This software development task has been greatly facilitated by several features in the processor's
architecture which permit high-level-language programs to make unusually efficient use of the
processor's hardware resources. For instance, the Stanford-produced Pascal compiler was
determined durivg this past year to produce code for a wide range of scientific-type problems which
required an average of only 34% greater execution time than did optimally hand-coded programs for
the same set of problems; the peephole and global optimizers whose development commenced in
FY79 are projected to bring this high-level language average efficiency penalty to less than 10%.
,Even the initial one-third efficiency penalty is unusually small for use of a high-level language on a
high-performance computer system.

T)

The previously commenced software development work at Stanford has been continued during
FY79. These efforts included detailed definition and initial development of the extended Pascal to
be used in future SCALD development, Pascal*; the completion of the development of the common
intermediate stack-oriented language, U-Code; the completion of the scientific function run-time
library implementation; major progress in the development of the common global optimizer for the
Pascal and E'OK'I'KAN compilers, and the completion of an enhancement program for the
FORTRAN compiler. These Stanford software projects were complemented by LLL-centered
software efforts which completed a Pascal-based general-purpose microcode assembler, extended the
single-user, batch-type operating system being used on the S-1 Mark I processor, and made notable
progress in the transport of the UNIX operating system to the S-1 processor family (the OS-1
effort) and in the detailed definition and design of the fu1:-capability operating system (0s-2, or
Amber).

Essentially all of this software will be transported without modification to subsequent generations of
S-1 processors, whose architectures will be upward-compatible with previous generations (in order
to minimize software development expenses associated with Navy evaluation of S-1 systems, and to
serve as a significant scale demonstration of such long-term architecture upgrading capability). *

The foregoing summarizes fulfillment of the S-1 Project's FY79 Work Statement referenced in

8 1 Executive Summary

ONR Order N00014-79-F-0021, as, re-negotiated with cognizant ONR and NAVELEX officials
during this past year to accommodate to changing Navy programmatic and budgetary guidance.

During FY80, the S-1 Project has proposed to:

implement a pair of prototypes of the second-generation S-1 processor (the Mark IIA),
which will incorporate the advances made in semiconductor technologies since the Mark I
processor was implemented, and which will include a very high performance arithmetic
module to enhance real-time signal processing performance levels to well beyond that of
any other general-purpose processor in existence;

+ complete the low-level d e s i p and the implemeneaeion of a 16 processor, 16 rrlelrlury ut~i t ,
high performance Crossbar Switch on which a full-sized S-1 multiprocessor system may be
ccn tcrcd;

implement a multiprocessor system with an aggregate processing capability at least an
order-of-magnitude greater than the most powerful single digital processing system in
existence, centered on the Crossbar Switch and containing 16 processors and 16 memory
units, thereby demonstrating an ability to extend processing capability and greatly augment
system reliability at constant, high cost-effectiveness for all Navy applications allowing
concurrent processing;

e implement two uniprocessor systems for installation and on-sire evaluation at two locations
to be designated by the Navy, and to provide reasonably comprehensive, LLL-based
systems support for such evaluation activities;

pursue software development (both at Stanford University, via continuation sub-contract
arrangements, and within the Project at LLL) through the development of a multi-tasking
operating system for an S-1 multiprocessor system, the design of a full-functionality
operating system for an S-1 multiprocessing system, completions of a microcode-augmented
emulator capability for 'the UYK-7 computer system, systefn inregrarlori, check-out and
documentation of S-1 LISP, completion of the Pascal* development, :he enhancement of
the SCALD System to support design and implementation of the Project's third-generation
processor, the Mark Ill.

@ support initial Navy evaluation of the S-1 architecture and the suitability of the Mark IIA
uni- and multi-processor systems for various Navy applications, by making them available
for both local and remote (via ARPANET) Navy applications studies.

The material in this Report is divided by topic area into three volumes for easier handling. The
remainder of this first volume is devoted to a detailed characterization of the S-1 architecture,
highlighted with examples. Two articles constitute this Report's second volume, and describe major
features of the Project's FY79 work: one reviews the basic features of the design of the Mark 1 1 .
uniprocessor system, and the other represents a highly user-oriented, comprehensive description of

1 Executive Summary 9

the Project's second-generation SCALD systein, which is intended to have widespread utility in US
computer creating activity following its validation in creating the first Mark IIA systems. Volume
111 contains a discussion of the 'Project's major FY 79 software developments,.and is supplemented by
a microfiche-based listing of all of the major software modules 'developed by the Project during the
FY79 period. A summary-by-title of both the articles-in-text and the microfiched software
immediately follows this Executive Summary.

. ,

2 Titles of the Articles of this Report - .

Volume I: Architecture

1. Executive Summary.
. .

2. S-1 Multiprocessor Architecture. An overview of a multiprocessor system composed of
multiple's-1 Uniprocessors sharing memory through a crossbar switch.

3. Investigation of the Partitioning of Algorithms Across an MIMD Computing
System. Research on adapting existing algorithms to take advantage of the additional
computing power available in a multiprocessing system.

4. S-1 Uniprocessor Architecture. The native mode instruction set for the S-1
Uniprocessur, ar~d lht: syr~lax fur a11 assembler which processes that instruction set.

5. UYK-7 Emulation. A novel technique which emulates the existing UYK-7 architecture
by ' appropriately substituting a sequence of S-1 Native Mode instructions, rather than
microcode, for each UYK-'I instruction.

Volume 11: Hardware

1. Highlights of the Design of the Mark IIA Uniprocessor. Annotated drawings
describing the high level aspects of the 'Mark IIA uniprocessor hardware, prepared as
input to the SCALD I1 computer-aided logic design system.

2. SCALD I1 User's Manual. A document describing the SCALD I1 system from a user's
viewpoint.

Volume 111: Software

1. Overview of the Amber Operating System. The Amber Base System serves as the
foundation for a family of problem systems capable of fully exploiting the power of both
S-1 Uniprocessors and Multiprocessors.

2. Overview of Interim Operating Systems. Descriptions of an interim operating system
for the Mark I Uniprocessor and of the effort to transport UNIX for use with the Mark
IIA Uniprocessor.

3. User's Guide to S-1 Pascal and Fortran. How to use languages and utilities available on
the interim Mark I system.

4. Pascal and Pascal* Compiler Systems; Pascal*: A Pascal Based Systems

2 Titles of the Articles of this Report

Programming Language. An overview of the family of language translators which share
a common intermediate languag= called U-Code; and a description of an extension to
Pascal for SCALD development support.

5. PASMAC: A Macro Processor for Pascal. A description of the Mark I Pascal macro
facility.

6. UFORT: A Fortran to U-Code Translator. A description of the FORTRAN facility of
the Mark I system.

7. S-1 U-Code: A Universal P-Code.' The definition of the U-Code intermediate language.

8. S-1 Code Generator and Optimizer. Documentation of a code generator and optimizer
for the S-1 family of language translators.

9. UASMINT: A U-Code. Assembler and Interpreter. An interpreter which executes
U-Code, allowing the testing of a language translator independently of the code generator.

10. Portable Runtimes for a portable U-Code System. Runtime support routines for the
family of lan'guage translators.

12 2 Titles of the Articles of this Report

2.1 Summary of Microfiche Accompanying this Report

The following files appear, in- order, on the microfiche included with this Report. The
three-character extension following the ".'" in each name indicates the source language:

FA1 FAIL (DECSystem- 10 assembly language)
SAI Stanford Artificial Intelligence Language (SAIL),

a variant of ALGOL.
.S 1 S-1 Native Mode Bssembly language
PAS Pascal

.FA1 The source for a macro assembler which processes S-1 Native Mode assembly
language. "S-1 Uniprocessor Architecture" in Volume I of this Report explains
how to use this assembler.

FSIMP.FA1 The source for a simulator for the S-1 Native ode architecture. Wser's Guide
to S-1 Pascal and Fortran" in Volume 111 of this Report explains how to use this
simulator.

RDOPS-FA1 The source for a program which reads a file defining opcode mnemonics and
produces a table which an assembler or simulator can use to map mnemonics -
onto opcode values.

CMD$CN.FAI The source for a program used by FASM2.FAI to parse a command line
specifying input, output, and indirect files.

FLINR.Sl A linker which processes ".LDP' files and produces a ".RIMn file. The linker is
automatically invoked by various command files described in "User's ~ u i d e to
S-1 Pascal and Fortran" in Volume I11 of this Report.

PPIMPL.PAS A version of a 2D hydrodynamics and heat conduction program used at
Lawrence Livermore National Laboratory, converted to Pascal and organized for
parallel compuradon. "Investigation of the Partitioning sf Algorithms Across an
MIMD Computing System" in Volume I of this Report describes this program.

The following files relate to the U-Code language translators. The programs themselves are .
preliminary versions.

UFORTZPAS Documented in "UFORT: A Fortran to U-Code Translator" in Volume I11 of
this Report,

UPASO.PAS A Pascal to U-code translator, whose use is described in "User's Guide to S-1
Pascal and Fortran", in Volume 111 of this Report.

UINT.PAS A U-code interpreter, documented in 'UASMINT: A U-Code Assembler and

2 1 Summary of Microfiche Accompanying this Report

Interpreter" in Volume III of this Report.

SUPNO5.PAS A U-code to S-1 code translator

PIO.PAS Pascal 40 runtimes, documented in "Portable Runtimes for a Portable U-Code
System" in Volume IlI of this Report.

FIO.PAS Fortran I/O runtimes, documented in "UFORT: A Fortran to U-Code
Translator" in Volume 111 of this Report:

SIO.Sl Primitive 110 runtimes, documented in “Portable Runtimes for .a Portable
' U-Code System" in Volume I11 of this Report.

SNUMSI Primitive numerical runtimes

VERCH.PAS A version-changer for Pascal programs, described in Vser's Guide to S-1 Pascal
and Fortran" in Volume I11 of this Report, which provides a facility similar to
the IF switches available in many assemblers.

PAS-SAI, PAS2.SAI
A Pseudo-monitor for the Pascal system at SAIL, described in Wser's Guide to
S-1 Pascal and Fortran" in Volume 111 of this Report.

S- 1 Multiprocessor
Architecture

L. Curtis Widdoes, Jr.

S-1 Multiprocessors ' Page 1

1 S 1 Multiprocessors

One of the S-1 Project's main thrusts is the development of a multiprocessor which computes at
an unprecedented aggregate rate on a wide variety of problems. The S-1 Multiprocessor will be
implemented first with second-generation S-1 Uniprocessors (S-1 Mark IIAs). For a large class of
important numerical problems, including signal processing, it will achieve .a computation rate
roughly an order of magnitude greater than that of the Cray-1 computer. The Cray-1 in turn
offers performance two to four times greater than that of the CDC 7600, and outperforms all
other existing computers in general numerical computation work.

A multiprocessor is a network of computers which concurrentlj execute a number of independent
instruction streams on separate data streams (i.e., a multiple-instruction-multiple-data machine,
according to [Flynn19721) and which closely s h e main memory. A typical S-1
Multiprocessor consists of sixteen independent, identical S-1 Uniprocessors and provides a
computation rate for many technical problems more than an order of magnitude greater than the
rate of a single S-1 Uniprocessor, which alone processes typical scientific mixes of logical and
numerical operations at approximately the same speed as a Cray-1.

Along each of several dimensions, a multiprocessor design offers significant advantages over a
uniprocessor design providing an equivalent computation rate: The advantages result from the
modularity inherent in a multiprocessor architecture, and can be categorized as advantages of
relkbility, economy, and size.

The advantage of reliabilitj has been validated by commercial systems such as the Tandem
Nonstop (see [Datapro 19791) and the BBN Pluribus (see [Ornstein 1975]), which
provide ultra-reliable operation in handling banking transactions and ARPA Network traffic,
respectively. In a well-designed multiprocessor system, failure of a single module (for example, a
component uniprocessor, a bus, a crossbar switch, or a memory bank) does not entail failure of the
entire system. Indeed, the S- 1 Multiprocessor Operating System (Amber) is designed to detect such
module failures and effect graceful replacement in function from the available complement of
reserve modules of the multiprocessor system.

Of primary importance among the advantages of economy are the economies during machine
construction due to replication of a single module type. This economy during the construction
phase is extremely important with respect to current and projected semiconductor technologies,
since the unit replication cost of VLSI chips varies nearly inversely with the replication factor,
except for a small additive base cost

A second economy of scale relates to the cost of the design work; the design cost per processing
element is reduced asymptotically to zero as the processing element is replicated. Actually, any real
multiprocessor must include some design costs per processing element which grow as the number
of processing elements is increased (for example, the cost of designing the interconnection
network), but these costs can be made negligible, and in fact are negligible in the case of the S-1
Multiprocessor.

A third important economy is the potentially reduced time lag between the freezing of the system
design and the delivery of the first operational system. By replicating a relatively simple
processing element many times and using a regular interconnection network, this lag can be made
very small; it is virtually independent of the processing power of the total system. As a result, the
semiconductor technology.used in a properly designed multiprocessor can be essentially state-of-
the-art, whereas the technology used in a more complex processing structure must be considerably
more out of date. This time lag phenomenon will continue to seriously degrade the cost-

Page 2 S-1 Multiprocessors

effectiveness of delivered complex systems as long as advancing semiconductor technology
continues to provide exponentially more cost-effective components, but may be greatly ,reduced in
advanced .multiprocessors.

One additional economj is the economy which results from the freedom of the multiprocessor
designer to choose the most cost-effective uniprocessor element structure, independent of the
processing rate of the element. Cost-effectiveness of uniprocessor structures is not constant over
all levels of processing power. Because the design of a d@tal processing system must be aimed
not only toward maximum cost-effectiveness, but also toward some minimum processing power,
designers of high-performance uniprocessor systems have not been able to utilize structures with
possibly higher cost-effectiveness but lower processing power. On the other hand, the designer of
a multiprocessor may be able to achieve a total cost-effectiveness which is nearly the same as the
cost-effectiveness of the component uniprocessor and, since, that uniprocessor need not be
constrained to have a large minimum processing power, to achieve substantially higher cost-
effectiveness of the resulting system.

Independent of these economic advancages is the advantage uf size. Regardless whether it is
economical to build arbitrarily powerful uniprocessors, at some point it becomes phy'sically
impassible (with 'state-of-the-art technology) to build these machines; multiprocessors, however,
have a higher processing-rate ceiling. This advantage of multiprocessor structures is important
because maximal computing rates will be necessary for certain applications into the foreseeable
future; numerical weather prediction with its real-time constraints .is an obvious example.

Figure 1-1 shows the logical structure of a typical S-1 Multiprocessor. This S-1
Multiprocessor includes sixteen independent S-1 Mark IIA Uniprocessors, of which two are
shown. The internal logical structure of the S-1 Mark IIA is indicated at a very high level. All
sixteen uniprocessors are connected to main memory through the S-1 Crossbar Switch; one
possible access pattern is shown with dots. Sixteen memory banks are shown, each of which can
contain up to zaO (one billion) bytes of semiconductor memory. Input and output are done
through peripheral processors (for example, LSI-11s); as many as eight can be attached to each S-
1 Mark IIA Uniprocessor. The Synchronization Box is based on a shared bus connected to each
member uniprocessor providing for specialized medium-bandwidth communication associated
with the synchronization of tasks performed by individual uniprocessors. Each module in the S-1
Multiprocessor is connected to a diagnostics-and-maintenance processor (an LSI-1 l), which allows
convenient remote display-oriented maintenance and control of the multiprocessor.

All sixteen idenhcal S-1 Uniprocessors can execute independent instruction streams on
independent data streams. Thus, all sixteen uniprocessors can cooperate in the solution of a single
large problem. The high-bandwidth, low-latency inter-processor communications provided by the
Crossbar Switch facilitate problem partitioning with little efficiency loss, but the sixteen
uniprocessors also have the capability to process completely independent tasks, for example, each
S-1 Uniprocessor might service different users. Memory requests from the member uniprocessors
are serviced by sixteen memory banks with an aggregate maximum capacity of 234 (sixteen
billion) nine-bit bytes. Connectivity between uniprocessors and memory banks affords ehe
maximum generality; any processor can uniformly access all of main memory through the S-1
Crossbar Switch. The programmer thus sees a huge, uniform address space, as each memory
request from each uniprocessor is decoded by hardware in the Crossbar Switch and sent to the
appropriate memory bank

The Crossbar Switch processes requests from member uniprocessors to perform read or write
access to specific (essentially randomly indexed) memory banks. In the first multiprocessor
implementation, the Switch allows only one request for a given memory bank to be honored at

S-1 Multiprocessors Page 3

any instant (hence, at most sixteen transactions can be ongoing simultaneously, and as many as
sixteen only if no two uniprocessor requests are for access to the same memory bank). Conflicting
requests are queued fairly, that is, in a queue which guarantees service to each requesting
processor once before service is given to any requesting processor twice.

The Crossbar Switch has a maximum peak bandwidth of over 10 billion bits per second when all
of its sixteen channels are transferring data simultaneously. Although the growth rate of such a
square crossbar is asymptotically o(N~), where N is the number of processors or memories, the S-
1 Crossbar costs somewhat less than a single S-1 Uniprocessor. Less than 25% of the Switch, or
0.8% of total system cost (arbitrarily assuming that half of the total system cost is invested in the
memory), exhibits 0(N2) growth rate; the remainder exhibits O(N) growth rate. Hence, it is
economically quite feasible to implement crossbar switches for uniprocessor and memory
populations much greater than sixteen; the generality of full interconnectivity between processors
and memory may be obtained at very low (although asymptotically o(N?) cost.

The S-1 Multiprocessor design allows component uniprocessors and memory banks to be
physically distributed over distances which are limited only by average bandwidth requirements
(which obviously degrade linearly with increasing length). Because of the relatively large latency
introduced in main memory transactions due to the lengths of the cables, because of the Switch
transaction time, and because of the access time of relatively slow but highly cost-effective memory
chips, each member uniprocessor contains private cache memories. These caches automatically
(that is, without guidance from the programmer) retain recently referenced data and instructions
within a relatively small amount of ultra-high-performance memory, in the expectation that those
data will be referenced again in the near future. Whenever a reference to such a retained datum
or instruction is made, the information is immediately delivered directly from the cache, thus
eliminating the latency required for a main-memory transaction. Although a similar efficiency
can be realized if main memory contains a special high-speed area (such as the SCM of the CDC
%00), such a design places on every programmer the burden of managing a variety of memory
systems in order to maximize efficiency of program execution.

The presence of caches in a multiprocessor necessarily introduces problems of cache coherence (see
[Censier 19781); without a guarantee of cache coherence, programming of certain problems
in a cache-based multiprocessor would be inconceivably difficult. A systerri of caches is coherent
if and only if a read done by any processor P of a memory location M (which may be cached by
other processors) always delivers the value written to M most recently. Most recently in this
context has a special meaning in terms of a partial ordering on reads and writes of memory
throughout the multiprocessor (see [Lamport 19781), but for an intuitive understanding of the
problem it is sufficient to think of recentness in terms of absolute time. In these terms, whenever
a write is done by one processor P to a memory location M, completion of the write must
guarantee that all subsequent reads of location M b~ any processor will deliver the new contents of
M, until another write to M is completed.

The caches of the member uniprocessors of S-1, Multiprocessors are private in the sense that there
are no special communication paths connecting the caches of one uniprocessor with the caches of
any other uniprocessor; the cache coherence problem is therefore especially challenging. To solve
it, the S-1 Multiprocessor includes a design .closely related to one independently proposed in
[Censier 19781: a small tag is associated with each line (a set of sixteen words) in physical
memory. This tag identifies the (unique) member uniprocessor (if any) which has been granted
permission to retain (that is, own) the line with write access, and identifies all processors which
own the line with read access. The memory controller allows multiple processors to own a line with
read access, but responds with a special error flag when a request is received to grant read or
write access for any line which is already owned with write access, or when a request is received to

8-1 Multiprocessors

grant write access for any line which is already owned with read access. Any uniprocessor
receiving such an access-denial response is responsible for requesting (through a simple interrupt
mechanism) that other uniprocessors flush the contested line from their private caches. This
procedure maintains cache coherence dynamically, hence extremely efficiently, without requiring
any effort by the programmer.

T o support low-latency, semaphore-type communication between member uniprocessors, a
Synchronization Box attaches to one of the eight 110 porn of each uniprocessor. The
Synchronization Box is centered on a shared bus; one majar function of this unit is to transmit
interrupts and small data packets from one uniprocessor to any subset of other uniprocessors in
order to coordinate processing streams.

For reliability, all single-bit errors which occur in memory transactions are automatically corrected,
and all double-bit errors are detected, regardless whether the errors occur in the Switch or in the
memory system. For single-point failure immunity, the S-1 Multiprocewr allows for the
permanent connection of multiple Crossbar Switches which are electronically selectable; operation
of the S-1 Multiprocessor can thus continue in the event of a single Switch failure. Furthermore,
the Crossbar Switch can be configured to keep a backup copy of every datum in memory, so that
failure of any memory bank will not entail loss of crucial da ta Each I/O processor may be
connected to 110 Ports on at least two uniprocessors, so that failure of a single uniprocessor does
not isolate any 110 device from the multiprocessor system. T o enhance maintainability, each
member uniprocessor, each Crossbar Switch, and each memory bank is connected to a diagnostic
computer which can probe, report, and change the internal state of all modules which it monitors,
in great detail and with precise timing.

s. 1 S-1 Multiprocessors ,Page. 5

In a typical S-1 Mark IIA Multiprocessor, sixteen Mark IIA Uniprocessors execup independent
instruction streams and communicate with main memory through a ,high-bandwidth Crossbar
Switch. Private caches implemented with. extremely fast but quite expensive memory components
within the member uniprocessors effectively hide the combined.latency of the Switch, and memory
system, and hence allow the use of relatively slow but extremely cost-effedive memory components
to store virtually all of the the data and instructions to be processed.

' 1 . .

1-14
- , - - - - - - - - - - -

Memory
. .

Controller
processor processor

\ .. :. .

W]
nostic store 0 . * store

R e a l - 8 time I /O Proc. 4-w storage Ma$ proc.

units
f -

1 - 6

Fi nostic , m l store 0 store 7

Real-
time

Peripheral 'equipment + Peripheral equipment +
I Synchr~nization box

Figure 1-1
Logical Structure of the S-1 Mark IIA Multiprocessor

Page 6 References

2 , References

[Censier 19781 Censier, L. M, and Feautrier, P., "A New Solution to Coherence Problems in
Multicache Systems", IEEE Transactions on Computers, December, 1978, Volume C-27, Number
12, pp. 11 12-18.

[Datapro 19791 Datapro Research Corporation, Tandem Non-Stop Systems", in Datapro Reports
on Minicomputers, 'Datapro Research Corporation, Delran, N.J., January, 1979.

[Ilynn 19721 Flynn, M. J., Some Computer ~rganiz&ions and Their Effectiveness: IEEE
T~unsactions on Computers, September, 1972, Volume C-21, Number 9, pp. 948-60.

Lamport 19781 Lamport, L., Time, Clocks, and the Ordering of Events in a Distribl~tcd System",
Communications $the ACM, July, 1978, Volume 21, Number 7, pp. 558-65.

[Ornstein 19751 Ornstein, S. M, et a]., "Pluribus -- a Reliable Multiprocessor", Proceedtngs
AFIPS 1975 NCC, 1975, Volume 44, pp. 551-59.

.- -..-

3

Investigation of the ,

Partitioning of
Algorithms Across an

MIMD Computing
System

(I W - 1)
Erik. J. Gilbert

,

Table of Contents

. 1 Introduction

2' Definitions .

S Motivation .

. 4 Techniques for partitioning

. 5 Selection of a sample application

. 6 Overview of SIMPLE

. 7 Partitioning S1MPL.E

. 8 Multiprocessor SIMPLE simulation

. 9 Analytic speedup computation

. 10 Synchronization and communication .

. 11 Directions for future study

. . 12 Conclusion ;

. 13 Acknowledgments

Multiprocessors (strictly speaking, Multiple-Instruction-Multiple-Data processor systems 143)
are potentially extremely attractive systems for realizing greatly enhanced computing capabilities.
Potential benefits 'include significant improvements over both the Single-Instruction-Single-Data
and Single-Instruction-Multiple-Data types of uniprocessor systems in the areas of availability,
configurability, cost-effectiveness, and raw computing power. The primary concem of this paper is
in the area of raw computing power enhancement available from a , multiprocessor. Particular
reference k made to a classic multiprocessor architecture being explored by the S-1 Project [8,91.

In order to best realize the computing power increase potentially available from a
multiprocessor on a single application problem, it must be possible to express the algorithmic
solution to. the problem in some partitioned fashion in order to make effective use of several
processors at once. The simplest and most obvious, but still useful, scheme for partitioning is to run
several different, independent copies of the application algorithm on different sets of data which are
of interest to the researcher; such an approach is predicated on the different data sets being totally
lndeperident of each other.

However, the more interesting case occurs when the algorithm is structured to take advantage
of parallelism inherent in the problem when processing a single set of data Such an approach
admits of possibly very large gains in effective processing speed, and thus potentially allows many
more casei of interest to be studied in ;rerid order per unit of wallclock time; such an approach is
required if subsequent data sets have features determined from computational study of previous
ones. It is this particularly useful case to which the present investigation is addressed.

This report documents aspects of progress made to date in the continuing investigation of
application partitioning across classic MIMD multiprocessors. The goal of this investigation is to
demonstrate the practicality of the partitioned application mode of multiprocessor use for large
classes of realistic problems, particularly in the context of a large-scale multiprocessor such as the
S-1 project has designed and will be implementing. The investigation so far has included a broad
spectrum of studies, ranging from general research on multiprocessing issues to specific experiments
with algorithms for particular application problems.

This report covers several different topics, roughly following the chronological development of
the investigation to date. After some definitions and further motivation for application partitioning,
there is a brief discussion of generally applicable techniques for partitioning. Next is a historical
perspective of the process of selecting a "representative" application for further detailed study. An
overview is then given of the algorithm chosen for specific study, followed by a descrlptiur~ of the
methods used for partitioning that algorithm. After that appears a discussion of some simulation
results, followed by some analytic results. Finally, there is a discussion of some of the detailed
implications of this study in terms of synchronization and communication mechanisms found to be
desirable for support of application algorithm partitioning. The report concludes with a discussion
of directions which such investigations may profitably take in the future.

.. .

2 Definitions

The term "multiprocessor" will be used in this paper to refer to a generalization of the
structure of the S-1 multiprocessor. A few' important attributes of this generalization are listed here.
It is assumed that there is a moderate number (say 2 to 200) of extremely fast single processors
tightly coupled to a relatively large amount (at least 10 million words) of uniformly accessible global
memory. Each processor may also have a moderate quantity of very high performance:memory (e.g.
cache) local to it, but it must also have high bandwidth (although not necessarily short latency)
access to the global memory. Many of the ideas contained herein apply also to other multiprocessor
structures (e.g. larger numbers of slower processors), but the S-1 structure has been the primary
focus for optimization of the partitioning approach developed in this study.

"Problem partitioning" refer6 to the prcxus of caking a particular application problem and
constructing an algorithmic solution for it which can take advantage of the potential for parallel
execution avilabl-e in a multiprocessor. The primary motivation assumed for partitioning a
problem is to substantially decrease the absolute wallclock time taken to sun each instance of the
application (as opposed to other motivations such as improved reliability and/or recoverability). For
partitioning to be realistically useful in this way, the partitioned application must run substantially
faster 'than a uniprocessor version, even when all possible overheads are taken .into account,
including operating system, multiprocess communication, and synchronization.

The "speedupn of a multiprocessor algorithm is the ratio of wallclock elapsed time for
uniprocessor execution to wallclock elapsed time for m~~ltiprwcrsor execution, It is, of esursc, a
hnction of the number of processors, and possibly other algorithm parameters. The speedup
provides a measure of the success with which the problem has been partitioned, indicating greater
success as the speedup approaches the nlltnhcr of procerrors. There are actually conditions in which
the speedup can theoretically exceed the number of processors; these will be noted in more detail
later.

3 Motivation

Depending on the exact nature of the application, the process of constructing an effectively
partitioned solution can vary greatly in difficulty. As mentioned earlier, any uniprocessor code can
be immediately run on a multiprocessor in the mode of multiple independent data files; but this is
not a partitioned single application 'as defined here. This mode does serve to characterize a class of
applications whose partitioning is trivial. Any application which consists of several already
independent computations can be easily partitioned in this way. A simple example (in which each
of the independent computations has the same structure) might be a Pascal compiler which has the
ability to process multiple input procedures in a "separate compilation' mode;

There is another class of applications which is almost as. easy to partition. It is all those
which have a basiciterative "outer loop" with perhaps a summary data gathering step at the end of
each iteration, but with several otherwise independent computation blocks occurring in each
iteration. Exaniples of this structure of computation may be found in Monte Carlo approaches to
simulation 151.

. To approach the issue of difficulty of partitioning from another standpoint, it is reasonable to
ask fo'r what kinds of applications is 'a 'substantial amount of partitioning effort justified. In.
particular, if an application is hard to partition it could be argued that it is better to run it
unpartitioned in timesharing mode along with other user problems in order to still gain the
cost-effectiveness benefits of' the multiprocessor. However, there are several interesting application
areas in which any gains in absolute wallclock execution time' are valuable. Classic exampl,es
inchde the weather prediction problem and many types of real-time processing, such as radar signal
processing. Also, as the number of processors in the multiprocessor increases, the akractiveness of
the partitioning approach increases for more and more problems.

4 Techniques for partitioning

As the number of designed or implemented multiprocessors increases, a few general techniques
for problem partitioning are beginning to emerge 161. Three such techniques which have been
considered could be called "synchronous partitioning," "asynchronous partitioning," and "pipelining."
From the descriptions below it' should become apparent that these techniques are by no means
mutually exclusive, and hence may be used in combination in a partitioned application.

The technique of synchronous partitioning is perhaps the most obvious and most widely
applicable of the three. In this technique, either the data structure or the program (or both) is
divided up into comparatively independent units, and multiple processes compute in parallel within
these units. Occasionally, two or mare processes must synchronize with each other in order to
maintain data consistency or pass summarizing information among processes.

The technique of asynchronous partitioning [I] is less intuitive and can lead to debugging
difficulties due to the lack of exact reproducibility of results, but offers advantages by avoiding the
potentially large overheads of frequent process synchronization. This technique is best understood
in the context of iterative numerical algorithms. For instance, consider an application containing a
large two dimensional matrix of real numbers which are being updated by an iterative algorithm
such that each new point value depends in some simple way on previous values of neighboring
points. The points may be partitioned into groups among the available processors. If the
correctness of the algorithm does not depend on the use of a precisely defined previous iteration
value for neighboring points in the updating procedure, and if instead any reasonably recent value
will suffice for convergence, then the processes may iterate without synchronization at each iteration.
The termination test for convergence i s most easily implemented if the error measure is defined so
that it can be tested locally in each process, determining process convergence independent of other
processes. Thus the only form of synchronization is implicit in the shared point values, which are
continually updated in parallel. Note that a pure implementation of this technique has the
characteristic that no process is ever in synchronization wait, and so all processes are always actively
working towards the solution. However, it is possible for convergence to be slower than in a
synchronized solution due to nonuniform use of previous values. The general ideas of this
technique have been the subject of research for several years, often appearing under the name
"chaotic relaxation" 121

The pipelining techniq~~c is very similar te the pipelined a p p ~ o ~ s h in laigh=perfot'm;~l~cu
uniprocessor hardware implementation. In this technique, the computation is divided into several
parts, called "stages," which have the characteristic that the output from one stage becomes the input"
to the next stage. So, once the computation is well under way, all of the stages can be computing in
parallel with the data streaming into the first stage and the results streaming out of the last stage.
An example of this approach might be the division of a compiler into scanner, parser, global
optimization, and code generation stages.

One note about the interaction between implementations and multiprocessor efficiency and
speedup deserves mention here. Some problem partitionings, especially those using pipelining, lead
to an implementation which has a fixed maximum speedup, eg. the number of pipeline stages.

4 Techniques for partitioning

'Other partitionings which are parameterized by the ,number' .of processors (and possibly some .

measure of data size) have no obvious fixed maximum. speedup, and thus (at least for large data
sizes). can continue to'benefit from: additional processors. Thus, the implementor should be aware
that, by requiring a fixed length pipeline or division into a fixed number of parallel processes, a
limit on future flexibility' for expansion is being imposed.

5 Selection of a sample application

Since the main goal of this investigation is to demonstrate the practicality of partitioned
execution of real-world problems, the study includes considering several application areas and
specific codes as possib1e.candidates for partitioning. A number'of possible codes were considered
from many difTerent application areas, but most of the emphasis to date has been concentrated on
one particular code, named SIMPLE [3].' SIMPLE may be characterized as a large scale numerical
physical simulation, using well '.known techniques for the widely important problem of solving
partial differential equations on a reasonably large two dimensional mesh.

SIMPLE was chosen for several reasons: (1) it seems to be representative of techniques used
in many physical modelling codes, in that it contains both explicit and implicit PDE solvers, it uses a .
two dimensional Lagrangian formulation, and it uses table lookup for the required equations of
state of the fluids being modelled; (2) it is sufficiently simplified from a full-scale code to be quite
manageable in size (as it consists of about 1800 lines of Fortran); (3) it has been studied by others in
the academic sector as a candidate application for a number of novel processor architectures, such as
data-flow machines.

Large scale numerical simulations such as these form one significant class of applications for
which multiprocessor partitioning seems to be appropriate. Several other application areas have
been suggested and studied by other researchers. One application considered because it is widely
used but still fairly self-contained is sorting. Internal (main memory) sorting is fairly CPU intensive
but still difficult to partition effectively, since obvious partitionings are often theoretically limited to
less than linear speedup [71. Another general area of application is heuristic search of large tree
structures such as those found in artificial intelligence problems. One other application which has
been studied In this light is set partitioning integer programming I71

. .
6 Overview of SIMPLE

The intent of the SIMPLE code is. to give a simple, yet realistic, example of computational
fluid dynamics and heat flow. It solves the differential equations of inviscid 'compressible shock
hydrodynamics and simple heat conduction using a Lagrangian formulation. It works in two
dimensions on a region with a regular boundary. It uses simple table lookup' to represent the
equations of state of an ideal gas.

The differential equations are reduced to difference equations. The equations for
hydrodynamics and for heat conduction are solved in separate sections of the code employing
different techniques. The hydrodynamics equations are solved explicitly, while the heat conduction
equations are solved implicitly.

The bisic data structure in SIMPLE is used in the representation of the mesh covering the
problem domain. This consists of 13 two dimensional arrays of real numbers to store the physical
quantities involved, plus a few additional arrays for working storage. There are also one
dimensional arrays to store the 'tabular definition of .the equation of state, and of course several
scalars to store miscellaneous other quantities.

The outer loop-structure (after the problem is set up) is a simple iteration as the time value is
increased:

repeat
hydrodynamics pass;
heat conduction pass;
compute new delta $

advance time by delta t;
until done

The hydrodynamics pass has the following structure:
for each mesh zone, calculate new pressure usir~g E03 Iwkup;
for each boundary zone, calculate geometry; ,

for each boundary zone, set up boundary physics;
for each mesh point, calculate new velocities;
fbr each mesh point, calculate new coordinates;
for each mesh zone, calculate new density and change in specific volume;
for the boundary, sum up the work done on the boundary by hydrodynamics;
for each mesh zone. calculate artificial viscosity and Courant delta t limit;
for each mesh zone, calculate hydrodynamic work and update energy, using EOS;
for all zones, sum up the kinetic energy for the entire problem;
for each mesh zone, calculate new temperature 'via table lookup;

The heat conduction pass has the following structure:
for each mesh zone, calculate two material properties;
for the boundary, set the boundary properties to neighboring values;
for each mesh zone, calcu!atrz coupling rnnstant-s in the K direction;

6 Overview of SIMPLE

- for each mcsh zone, calculate &upling constants in the L direction;
for the boundary, set some appropriate initial values;
over the entire mesh, perform a forward and backward sweep in L (see text);
over the entire mesh, p.eiform a forward and backward sweep in K (see text);
for each mesh zone, calculate new energy using EOS, and new delta t limit;
for the boundary, sum up the energy flow across boundaries;
for all zones, sum up a new internal energy for the entire problem;

Notice that, with one significant exception, all of the steps in both passes have a very similar
structure. . A typical step passes over the entire mesh (or maybe just the boundary) making local
computations at each mesh zone or mesh point. These local computations typically involve updating
one or more quantities at the given place in the mesh, after examining the previous value and
perhaps the previous values of a few neighboring elements. Also, of course, computations involving
only the boundary contribute ,much less to the CPU time used than computations over the whole
mesh. Below, in figure 1 is a -pictorial representation of a typical SIMPLE mesh processing step,
showing the obvious left to..right and top to 'bottom ordering .of mesh element computation. This
will be compared in the next section with the multiprocessor partitioned ordering.

6 Overview of SIMPLE

Figure 1: Typical mesh processing order

The one exception to this structure occurs in the steps in the heat conduction pass called
"forward and backward sweeps." Superficially, even these steps may appear to have a similar
structure. There is one important difference, arising from the implicit nature of the PDE solution
technique used. In order to solve a tridiagonal linear system of equations the sweeps evaluate a
recurrence of the form X[I] := A[IbXII-I] + B[I] for increasing values of I. The key here is that
each new X quantity depends on the new X quantity which was computed in the immediately
preceding inner loop iteration. This dependence causes some difficulty in the partitioning of the
sweeps, which will be discussed in the next section on partitioning of SIMPLE.

Another algorithmic structure which is used is the table lookup in the EOS and'temperature
calculations. In both cases this consists basically of locating between which pair of entries in an
increasing table of values some physical quantity belongs numerically, and then using the

10 6 Overview of SIMPLE

torresponding index into other tables to compute an interpolated function value. The lookup search
is a straightforward sequential ordered table search. The only unusual part of the algorithm is that
each table index is saved as a starting place for the next search, which reduces the search time
assuming that successive uses of the function tend to pass arguments of similar magnitude.

7 Partitioning SIMPLE

Given the basic structure of SIMPLE as mostly performing lqcalized operations fairly
uniformly across a large data structure (the mesh), the most reasonable approach seems to be a
data-directed synchronous partitioning. Specifically, each of several processes is assigned to operate
on some subset of the mesh, computing independently of the other processes whenever possible.
Occasional synchronization is required for keeping one mesh section from advancing too far beyond
the others, for mesh-wide data summarizing operations, and in the sweep steps (as explained later).

An important factor to consider in partitioning a program which has a large shared data
structure like SIMPLE'S mesh is the presence of per-processor cache memory on S-1 multiprocessors.
Due to the large difference in access time to a word in ,central shared memory and a word already in
a processor's cache, it seems reasonable to select a programming style which has a high degree of
per-processor data locality of reference. In a code like SIMPLE, where the computation within the
large shared data structure is quite evenly distributed, an easy way to do this is to statically partition
the data structure into fixed equal size pi,eces, with one piece per process. Each process is then
responsible for updating its piece, and most of the references to that,piece are made by that process,
thus .assuring locality. Notice that it is also being assumed that there is at least .an approximate
one-tpone mapping between processes and processors, and, that proce&es do not migrate from one
processor to another very often. Otherwise, the advantages of -having all recently referenced data in
cache would be lost. These assumptions are valid on the bare hardware of the S-1 multiprocessors,
and must be supported by any operating system which is .intended to maximally benefit from this
type of operation.

For SIMPLE, the chosen static mesh partitioning is into "column groups." Each process is
assigned a different fixed subrange of columns of all of the arrays representing the various physical
quantities in the mesh. Of course, any process can still actess any quantity at any point in the mesh
since the entire mesh is in global .shared memory. It is just. assumed that most of 'the references
within a column group will be by the assigned process, and hence that the column group data will
reside largely in.the corresponding processor's cache. Below in figure 2 the column grouping of the
mesh is shown, along with the ordering within processes of a typical mesh 'bmputation,
comesportding to the uniprocessor ' version in figure 1.

7 Partitioning SIMPLE

Figure 2: Partitioned mesh pr&ssing order (independent mesh computations!

The presence of the caches has another interesting performance implication. on the theoretical
speedup achievable for a program like SIMPLE. For some reasonable mesh sizes, it is quite
possible that all of the mesh data will not fit in a single processor's cache, but that it will all fit in all
of the caches combined. In this case, the uniprocessor execution of the program could continually
cause cache misses and corresponding lengthy, delays while cache lines are transferred to and from
main memory. However, the multiprocessor version, with properly partitioned references to the data,
would be able to retain the entire mesh distributed in all of the caches, thus causing cache missing to
be insignificant. In this way, if the efficiency of processor utilization is high enough, the speedup
over the uniprocessor version could actually exceed the number of processors executing the program!

Proc.
15

I

-\

/ - - - - - A

I
'W\
/------ /

I

\H\ ------ /
/

I-- 1
/ - -----

'\-I
7

/-----l

\-*,
/-----/

I

*\
------ /

I--, ------/ /
/

\\W,
/ - ---- /

'-w,
I /------/

'->->\
- - - - - - A

I

Here are some details of the process of partitioning a mesh-processing part of SIMPLE ather

..a

...

'

0 . .

Proc.
2

*\

r - - - - - J

:,-\
/ - -----

k H \
. / ------

I L+, J
/ - - - - - -

'--, J
/ - ----&

\;v,
/

/-----/

I

------ /

I--\
------/

I
/

\--\ /
/ - - - - - /

/ ----- '1

'-*\
I /--------

\.9->\ I
------I

'.> >

Proc.
0

. . .

-\

r - - - - - J

/ - - - - --/
I

\H\ ' /---- - -

I--\ 1
/ -----*

I+-+)

/ - - - - . - A

'9 X
I

/

I<-\
------/

/

\.w\ /
/ - - - - - /

, ,----- '1

'2--- >\

1
/------'

'-)-a;

/

I.>->

Proc.
1

-\

/ ----- J

(w\
/ . / ------

' 5 ~ \

\->->\ 1
/ - - - - - -

I.-\ I
/ - - - - - A

;
,----- 4)

I

*\
1

/------

I<>->\
I I - - - - - - /

\.w\ /
I - - - - - /

,
/ - ---- '/

\-w\
1 / - - - - - - /

\ ->->;
------ 2 .

I.) >

7 Partitioning SIMPLE 1 S

than the difficult sweep steps. One simplified typical code fragment might appear as follows (where
K is the row index and L is the column index):

for L := LMN to LMX do
for K := KMN to KMX do .

begin . . .
A[K,L] := .(X[K,L]+Y [K,LJ) * (Z[K,L-II-ZK- l,L&
B[K,L] := B[K,L] + Z[K,LErYIK-1,L+ I];
end;

for L := LMN to LMX do
for K := KMN to KMX do

begin
PKLI := P[K,LI + A[K-IL W[KLI:
(LCK,LI := q[K,L] + Bn(,L-lkBIK,LI: . .

end;

Notice that the computation at each mesh point is in terms of other quantities at the same
mesh point or at a neighboring mesh point, thus maintaining the desirable locality mentioned above.
The only references outside of local column groups occur when L is in the first or last column of a
group and an off-column reference like Z[K,L-11 or Y[K-1,L+11 is made. Also notice that within
each loop pair the computations at each mesh point are completely independent of each other, and
so they may be performed in parallel with no interprocess synchronization needed. However, the
second loop pair is dependent on the results of the first loop pair, so synchronization is needed to
insure that the second loop pair is not executed by some process before the A and B values needed
have been stored by perhaps a different process. An easy way to insure this is to insert a "synchall"
synchronization call between the loop pairs. This call forces each process to wait at that point of
execution until all processes have arrived there, and then they are all allowed to proceed. Since each
process is performing essentially the same amount of work on its column group as any other process,
all processes may be expected to complete the first loop pair at about the same time and not cause
vefy much overhead w d t time at the synchall point.

So, the partitioned version of the code fragment might appear as follows (where PR is the
index of the process executing the code, and LMN and LMX have been expanded into arrays
specifying the column boundaries of the column groups):

for L := LMNIPRI to LMXIPRJ do
for K := KMN to KMX do

begin
AIK,LI := (XIK,LI+Y[K,LI) * (Z[K,L-1I-Z[K-1,LR
B[K,LI := B[K,LI + Z[K,LhY[K-l,L+ 13; , :

end; .

SYNCHALL; , . . .

for L := LMN[PRI to LMXlPRj do
for K := KMN to.KMX do . t

begin . . ,,. .

7 Partitioning SIMPLE

P[K,L] := P[K,LI +.A[K- l,Ll*A[K,LI;
qCK,L] := QK,LI + B[K,L- lbrBEK,LI;
end; . .

Another code fragment worth considering is one which includes a summary data gathering of
some sort, such as the result of a summation or a maximum over some function of the mesh points.
Such a computation requires a complete pass over the mesh with a single scalar output, rather than
updated mesh values A typical step of this sort in SIMPLE might appear as follows:

TOTAL := 0.0;
for L := LMN to LMX do

fb r . K :e KMN tw KMX do
begin
TOTAL := TOTAL + A[K,LkX[K,LI; -.
end;

The-obvious approach to partitioning this code fragment is to let each process compute a total
for its column group, and then to have one process compute a grand total at the end. If the number
of processes is sufficiently large, the simple grand total computation should perhaps be replaced by a
rnultiprocess version which could compute pairwise subtotals, eventually reducing the number of
totals to one grand total. So, a partitioned version of this code fragment could appear as follows
(where MAXPROC is the number of processes):

PTOTALIPR] := 0.0;
for L := LMN[PRI to LMXIPRI do

for K := KMN to KMX do
begin
PTOTALPR]:= PTOTALLPRI + ,A[K,L].X[K,LI;
end;

SYNCHALL;
if PR = 1 then (* processor 1 computes the grand total *)

begin
TOTAL := 0.0; .
for P := 1 to MAXPROC do

TOTAL := TOTAL + PTOTAL[PI;
end;

One more code segment which should be discussed. is the table lmkup in the EOS and
temperature calculations. As mentioned previously, these code segments are essentially
straightforward sequential ordered table searches, which can be executed independently by several
processes in parallel with no synchronization since they are computing function values from
read-only data. The only exception to this is'.the mechanism for retaining the search index fr6m
the previous search for use as a starting point the next time. The obvious way of partitioning this
mechanism is to retain the previous search index on a per process basis, so that pracesses executing
in unrelated portions of the mesh do not try to use each other's previous search indices.

7 partitioning SIMPLE

Finally, some consideration must be given to the somewhat more difficult problem of
partitioningethe forwai-d and Sickward sweeps in the heat conduction pass. It was noted previously
that the difficulty arises from the recurrence inherent in the loops, in which each inner loop
iteration is dependent on results computed in the previous iteration. Even this structure would not
be difficult to partition if such iterations only traveled up and down columns, and hence were
evaluating each recurrence only within a single process. ~nfor tunate l~ , recurrence iterations are
performed both up and down columns and across rows. So, some of the recurrences must be
evaluated across process boundaries, requiring some form of synchronization at very frequent
intervals (once per process boundary crossed,, i.e. several times per row of the mesh in a single
sweep). All previously discussed partitioning5 of SIMPLE required only about one synchronization
per computation over the entire mesh.

A partitioned forward mesh sweep recurrence is diagrammed below in figure 3. In the figure,
the mesh rows have been grouped into blocks of three rows each; row blocking is not used in the
code below, but it will be discussed later in ;the section on analytic study. The vertically circled
column group boundaries show points at which synchronization must occur. The diagonally circled
column group, portions represent a single time snapshot of how much,computation can proceed in
parallel, due to the,skew enforced by the left to right recurrence. As time proceeds, more and more
processes become actively executing in The average degree of parallelism depends on the
"angle of attackn of the diagonal part, which is determined by the amount of row blocking, the mesh
dimensions, the number of processors, and. the synchroniiation overhead. These quantities will be
studied in detail later, in the analytic section.

7 Partitioning SIMPLE

Figure %: Partitioned forward sweep processing (with row blocking)

For reference, a slightly . . simplified version of the unpartitioned troublesome sweep d e
fragment appears below:

for K := KMN to KMX do

begin
for L :- LMN to LMX do

begin
ACK,Ll := qlKJ-I I'AIKL-11;
B K L I :a (Q K L - 1 kB[KL-13 I AIK,L- 11
end;

for L := LMX downto LMN do (nc note stepping by -1 rk)

7 Partitioning SIMPLE

begin
TIK,Ll := A[K,Ll*TCK,L+ lI+B[K,L];
end;

. . end (*for K*);
. <.

For partitioning' this code fragment, there must be a somewhat more detailed synchronization
mechanism than the synchall call used previously. Let A WAIT(n) and SIGNAL(n) correspond

. roughly to Dijkstra-style semaphore operations P(SEM[nD and V(SEM[nl). .So, AWAIT(n) will be
used' to await a signal on channel n, and SIGNAL(^) sends a signal on channel n. Notice that the
signal channels contain counters, so more than one signal may be outstanding on a channel. In this
example, AWAIT(n) will be used to wait for a signal from process n that it is finished with the next
row's worth of column group. Given these definitions, the partitioning discussed above might be
expressed in this code fragment as follows:

for K := KMN to KMX do

besin
if PR > 1 then AWAIT(PR-1);
for L := LMN[PRl to' LMXCPRI do

begin.
A[K,L] := a K , L I / ACK,L-I];
B[K,L] := (qEK,L- lhB[K,L-11) I A[K,L-11;
end;

if PR < MAXPROC then SIGNAL(PR);
end (*for K*);

for K := KMN to KMX do
begin
if PR < MAXPROC then AWAIT(PR+ I); .

for L := LMX[PR] downto LMNIPRI do ' (* note stepping by - 1 *)
begin
T[K,LI :- A[K,LI*T[K,L.I~II I BCK,L];
end;

if PR' > 1 then SIGNAL(PR); . .

end (*for K*);

There exists an alternative to the above frequently synchronizing structure for partitioning
the sweeps. It would be possible to transpose the mesh quantities needed, perform the sweeps in the
"easy" direction (up and down columns), and then transpose back. This unwieldy sounding
approach could actually be quite feasible in practice when compared to the high overhead method
outlined above, if the problem of efficiently transposing a matrix on the multiprocessor can be
solved. At the moment this problem appears to be quite complicated, since it must attempt to keep
all of the processors busy at the same time as avoiding delays from simultaneous access to any single
central memory unit. Some further analysis of how much time the high overhead method spends in
waiting will be presented below in the section on analytic speedup computation. Also, a new
hardware-supported mechanism will be proposed in the section on synchronization and
communication which should eliminate most of the overhead associated with loops like this one, thus

7 Partitioning SIMPLE

obviating the need for such a transpose mechanism.

The above examples tend to blur the distinction between variables which are shared by all
processes and variables which are private to each process. In any actual implementation, of course,
this distinction must be explicitly specified by the user to the system software. For SIMPLE, shared
variables include the .mesh quantities, the EOS lookup tables, and miscellaneous globally known
scalars. Private variables include loop indices and temporaries.

3 Multiprocessor SIMPLE simulation

As part of this study, a modest simulatiori of the SIMPLE code running on a multiprocessOr
has been implemented. One of the major goals 'of this simulation was just. to force the process of
considering the entire code line by line, to be sure there were no major conceptual problems in
partitioning it for a multiprocessor. ,Another goal was to study in general the effectiveness of the
previously discussed approaches to partitioning, with particular emphasis on the viability of a static
mesh partitioning. The simulation is accurate in the sense that it stin actually solves exactly the
same problem as that solved by the uniprocessor code, but it is incomplete in its consideration of the
complexities of the multiprocessor environment. The entire source code for the multiprocessor
SIMPLE simulator is included in the microfiche appendix to this report, in the file named
"PPIMPL.PASn.

The basic approach of the simulation was to begin with the code of SIMPLE (translated into
Pascal from Fortran), and to start by considering how to partition each stage for multiprocessor
execution. However, each code segment which was intended to run independently in different
processes is actually enclosed in a loop which executes the code segment successively for,each process,
varying the process number over all possible values. Variables which were private to each process
(and had a useful lifetime long enough to justify keeping the values across major processing steps)
were changed into arrays indexed by the process number.

To this structure were added timing, synchronization, and statistics gathering functions. The
main timing function is assignment of CPU time spent in mesh computation to the simulated process
which is spending that time. This is done by surrounding each code segment with calls to start and
stop.charging of CPU time to a specified process. The only synchronization function simulated at
present is the synchall fbnction described earlier. It is simulated by a procedure call to update
timing statistics at each synchall point. The most interesting statistic is of course the speedup
achieved. It. is computed by assuming that wallclock time advances at the same rate as the
maximum CPU time used by any process at each stage. Again, this assumes essentially that each
process has its own dedicated processor. Other statistics gathered include per-process CPU usages,
which may be examined to determine how successfully the workload is being balanced among the
processes.

The results of sample runs of the simulation were quite encouraging. The per-process CPU
usage was very well balanced, indicating that the static mesh partitioning appears to be a reasonable
choice. The speedup reported for a small mesh on a 16 processor system varies between 9.7 and
14.5, depending on how it is chosen to account for CPU time which was spent but not attributed by
the simulation to any particular process. Both the accuracy .of the simulation and the speedup value
are expected to increase as the size of the mesh increases.

There are a number of ways in which the simulation to date is incomplete, and so future
hpprovements could increase the accuracy of the simulation. One minor improvement would be to
accrlrately model the subtotal accumulation part of each summary data gathering step; at present
these parts are assumed to be negligible and are not included. Also lacking is a detailed study of
exactly which synchall points are absolutely necessary; at the moment they are scattered liberally

20 8 Multiprocessor SIMPLE simulation

throughout the code wherever there is any possibility that global resynchronization might be needed.
The influence of the caches was included in some analytical study (discussed later), but the
simulation assumes uniform access to all of shared memory. The critical points in SIMPLE where
cache misses will happen due to column group boundary crossing have been isolated but not yet
included in the simulation. Probably the most important omission in the present simulation is
accurate accounting for the complicated interactions in the heat conduction forward and backward
sweeps. At present the simulation assumes that a no cost mesh transpose is done; this is obviously
unrealistic.

' 9 Analytic speedup computation

The simulation studies of SIMPLE, to date have ignored the implications-on memory access
times imposed by the per-processor caches of S-1 multiprocessors. The presence of the caches is.
quite important to consider due to the possibility of a more than tenfold increase in access time for a
word not in cache over the access time for a word in the proper cache. In particular, accessing a
word in cache takes only about 50 nanoseconds, whereas accessing a word from the cache of another
processor will probably take about 300 nanoseconds (averaged assuming all words of a cache line
will be accessed, corresponding to a cache line access time of 4 to 5 microseconds).

To augment the simulation results, some analytic study has been done of potential speedup of
portions of the SIMPLE code, allowing for the presence of the caches. The portions chosen for
analytic study are the sweep steps in the heat conduction pass and a time-consuming nested loop
representative of the hydrodynamics pass. The sweep analysis is simplified by only considering the
overhead implied by cache misses and cache line transfers, and not considering any overhead
associated with process synchronization. The next section of this report proposes a mechanism
which can reduce both types of overhead.

. I

, The sweep analysis will be presented for the forward sweep only. The forward sweep part of
the slightly simplified code fragment which appeared earlier is repeated below for. reference:

for K ::= KMN to KMX do - ,.

begin
for L := LMN to L'MX do

begin
A[K,Ll:- QJK,LI / A[K,L-11
B[K,L] := (q[K,L-lbKBIK,.L-11) I A6KsL-l'J;
end;

end (*for K*);

It 4 assum.ed that the two dimensional arrays are stored by columns, i.e. that element Af 1,lI is
followed in m&ory by element A[2,11 Thus each S-1 16 word cache line contains 16 elements of a
column of an Brray. Since cache transfers happen in units of 16 word lines rather than single
words, it is reasonable to assume that the overhead would be less if each computes the above
recurrence on a block of rows within .its column p u p before letting the next process start on those
rows, rather than synchronizing on each single row. This blocked approach allows more than one
word to be used from each ' cache line each 'time it is transferred across from one processor. to
another at a column group boundary., For 'simplicity, the unit of time used here will be the length of
time it takes one processor to execute a single loop iteration with no cache misses.

Define' the following parameters:

B blocksize = number of rows in a block
W 6 time to compute the -iecurrence over one block of one column group
P number of processors

9 Analytic speedup computation

. .

R P number of rows (KMX-KMN+ 1)
C = number of columns (LMX-LMN+ 1)
TSP = elapsed time for entire ,forward sweep on single processor
TMP = elapsed time for entire forward sweep on multiprocessor

The speedup for this section 'of code is then defined by:

TSP
Speedup = - TMP

By the definition of the unit of time,

Similarly, notice that since a block is B rows high a d C/P columns wide, W would hc q l l a l

to B a / P in the absence bf cache misses.

T o formulate the value of TMP, the exact sequence of the multiprocessing sweep execution
must be obskrvea. Each of the P processors computes the recurrence at each element in all R rows
in its assigned column group of C/P columns. In other words, each processor computes over RIB
blockh taking time W*R/B for the whole computation. If all the processors could execute for the
whole sweep fully in parallel, W*R/B would also be the elapsed time of the entire computation.
However, no processor can begin its computation until the previous processor has finished
computing on its first block. So, processor P must wait for P-1 block computations until it can start
on its first block. From then on all processors can run in parallel, assuming that each block
computation takes the same amount of time. Thus, accounting for the delayed startup of processor
P, the total elapsed ti~rie is:

R TMP 0 W -(P-I + E)

In formulating W, processor to processor cache line moves must be accounted for, In additinn

to the basic iteration compute time. The basic iteration time (of the real code in SIMPLE) is
estimated at about one microsecond, and a cache line move takes 4-5 microseconds, so it seems a
reasonable estimate 'that a cache line move takes about the same time as 4 basic iterations.
Assuming that a previous, step computed values for the array Q causing its data to reside in the
caches of assigned column group processors, the read-only use of QIK,L-I] in each iteration causes
each processor to participate in two cache line moves (one from the previous processor and one to
the next processor) every 16 rows. So, the contribution .to each block computation of accessing
QK,L-11 is twice B/ 16 times the cache line move time, i.e. 2*B/ 16.4.

Each iteration also uses the values of AIK,L-11 and B[K,L-11, but not in a read-only fashion,
te. each value used was written on a recent earlier iteration. So, the cache lines containing 'these
values at column group borders must be moved between processors (twice) for every block which is
processed, not just every 16 rows In other words, when processor p finishes computation on a block,
the cache line containing the last column of that block must be moved to processor p+l, and if the

9 Analytic speedup computation 23

'next block to be computed by processor p also contains any part of that cache line it must be moved
back to processor p. So, where rx) ("ceiling of x")s the smallest integer greater than or equal to x,
the contribution to each block computation of accessing both A[K,L-11 and B[K,L-11 is twice
2-rB1161 times the cache line move time, i.e. 2-2-rBI161-4.

. .

Therefore, the final formula derived for W is:

C-B W = - B B
P + 2- -4 + 2-2-r 1-4

From all of the above, the speedup can be expressed:

Notice that this formula has the expected quality that as the number of rows and columns in
the mesh approaches infinity, the speedup approaches the number of.processorr

For determining some numeric. values of the speedup formula, some interesting parameter
values can be substituted. Specifically, by letting P=16, choosing sample values for R and C, and
then maximizing over B, the following speedups are obtained:

R C speedup max occurs a t B =

128 128 7.8 4
128 1824 11.4 2
1024 1024 14.1 4

Now, a time-consuming ilested loop representative of the hydrodynamics .pass will be
analyzed. The loop chosen performs the function listed earlier in the SIMPLE overview as "for

. each mesh point,.calculate new veldties." This loop forms the majority of a subroutine which uses
39% of the CPU time used in the hydrodynamics pass, and 26% of the total CPU time in SIMPLE.
It is also in the class of easily partitioned loops in SIMPLE, since it requires no potentially costly
synchronization calls within the loop body. Thus, the major factor which . might . limit speedup for
this section is the overhead of cache misses due to shared array access. For reference, the exact text
of the loop in question appears below:

for L := LMN to LMX do
for K :- KMN to KMX do

beg"'
AU := (P[K,L]+QK,LI) * (Z[K,L- 11-Z[K- 1,LI) +

(P[K+ l,LI+q[K+ l,LI)*(Z[K+ 1,Ll-Z[K,L-lI) +

9 Analytic speedup computation

(P[K,L+ ll+QfK,L+ ll)*(Z[K- 1,Ll-Z[K,L+ ll) +
(P[K+ 1,L+ ll+q[K+ 1,L+ ll)w((Z[K,L+ 11-ZK+ 1,Ll);

A W := (PCK,LI+q[K,LI) * (RIK,L- 11-R[K- 1,LI) +
(PK+ l,LI+q[K+ 1,Ln * (R[K+ 1,Ll-R[K,L-lI) +
(PK,L+ ll+QJK,L+ ll) * (R[K- 1,Ll-R[K,L+ ll) +
(P[K+ 1,L+ lI+QJK+ 1,L+ 11) * (R[K,L+ l>R[K+ 1,L&

AUW := RHO[K,LhA J[K.LI+RHO[K+ 1,LEwA J[K+ 1,Ll
+RHO[K,L+ 1kA J[K,L+ ll+RHO[K+ 1,L+ 1hA J[K+ 1,L+ 11;

AUW := Z.O/AUW;
AU :- -AU*AUW;
AW :=AW+AUW;
U[K,Ll:= U[K,LI+DTN*AU;
VR,Ll:= V[K,LkDTNwA W;
if ABS(U[K,LJ) <= VCUT then U[K,LJ := 0.0;
d ABS(V[K,LI) <= VCUT then VCK,LY := 0.0;
end (*for L,K*);

Define the following parameters:

P = number of processors'
R = number. of rows (KMX-KMN+ 1)
C = number of columns (LMX-LMN+ 1)
K = number of cross-cache references within one row of a .column group
S = time,for a single inner loop iteration with no cache misses
V = time to move one word from .one cache to another
T = total time spent on all iterations on single processor '

2

First, observe that:

Now, there .are K cross-cache references within one row. of a column group. There are R rows
and P column groups. Each cross-cache move takes time V. So, the total time' spent moving cache
words on the multiprocessor is.K-V-P.R. But, this time is divided evenly among the P processors,
so the cache word moving overhead contribution to the elapsed time is K-V-R. Assuming this is
the only overhead and that the normal iteration time is also divided evenly among the processors,
the speedup can be expressed as:

Speedup - - T

+ K-V-R P
m

9 Analytic speedup computation

P
= K-V-P

1+ - C-S .

For the above code fragment, K can be computed by simply counting the number of different
accesses of adjacent columns, i.e. column L-1 or L+1. In this case, K = 12 (not counting duplicate
references to the same off-cohmn element). The average value of V was estimated earlier to be
about 300 nanoseconds. The value of S for this loop could be about 1200 nanoseconds. So, the
speedup can be estimated:

Now, again letting P=16, and choosing the same sample values for R and C as for the sweep
analysis, the following speedup estimates are obtained:

R C epeedup

128 128 11.6
128 1024 15.3

1824 1024 15.3

And finally, a speedup estimate for the entire code-can be computed, assuming that the sweep
speedup is a good estimate of the heat conduction pass speedup and that the sample hydrodynamics
loop speedup is a good estimate of the hydrodynamics .pass speedup. The. heat conduction pass
consumes about 30% of' SIMPLE CPU time, and the hydrodynamics pass consumes about 70%. The
speedups are combined using the equation:

This yields the following entire code speedup estimates:

R C speedup

128 128 9.7
128 1824 13.9

1824 1024 14.9

10 Synchronization and communication

The above studies have pointed. out that a variety of process synchronization and
communication mechanisms may be desirable for use under varying circumstances. The most
obvious form of communication between processes on a multiprocessor like the S-1 is through the
use of shared memory, which .is implemented on the S-1 multiprocessor as several shared main
memory modules and a cache coherence algorithm to keep the state of main memory and local
caches consistent throughout all read and write accesses.

Shared memory does not necessarily directly implement the desired synchronization primitives,
however. The (statically) most ftequent synchronization primitive used in partitioned SIMPLE is
the synchall call described earlier. Recall that it forces each process to wait at a giv~rr point of
execution until all processes have arrived, after which all processes may continue. Synchall can be
easily implemented in terms of classic Dijkstra-style P and V semaphore operations. For exampl~,
letting MAXPKUC be the number of processes, if SLEEPINGPROCS is of type integer and
MUTEX and SLEEP[l..MAXPROCJ are semaphores, the following code can be used to implement
synchall on process number PR:

(* Initially SLEEPINGPROCS-0, MUTEX-0, SLEEP[l..MAXPROCI=O *)
P(MUTEX);
SLEEPINGPROCS := SLEEPINGPROCS + 1;
if SLEEPINGPROCS = MAXPROC then

begin
for I ;= 1 to MAXPROC do V(SLEEP[rI); .

SLEEPINGPROCS := 0;
md;

V(MLJTEX);
~(SLEEPCPRU;

The performance of this code in practice would of course depend very greatly on the
underlying implementation of the P and V primitives. Also, it is impartant to note that in this code
one process (the last one to execute the synchall) is responsible for issuing the V's that wake up all
of the other processes. If the CPU time required for executing a V primitive is large enough
compared to the CPU time between synchalls, and if the number of processes is large enough, this
can be a severe performance bottleneck.

For allowing the implementation of synchronization primitives, the S-1 architecture contains
"conditional move" instructions. One such is the MOVCSF ("move conditionally, skip on failure")
instruction. This instruction tests to see if the values of its first and second operands are equal. If
so, the contents of the first operand are replaced by the contents of register R12 (decimal). If not, the
first operand is left unchanged and a skip is taken to the skip destination. The instruction operates
indivisibly, so that nothing can change the value of the first operand before it is (conditionally)
replaced.

Synchall can also be implemented in terms of the MOVCSF instruction. The following

10 Synchronization and communication 27

'example implementation is written in S-1 assembler code. It is implemented at a very low level,
without any operating system calls such as might be desired for a more general implementation - all
waiting isbusy-wait' looping. Notice that ,the process local index SW is used to toggle between the
first and second words of SLEEPINGPROCS, on successive synchalls, to avoid race condition
trouble if one process reaches its next synchall before another process has realized it is time to wake
up from the previous synchall.

; ; ; I ni t i a l l y (SWI =0, (SLEEPINGPROCSI =0, (SLEEPINGPROCS+4) =0
I NCSLEEP: MOV A, SLEEP I NGPROCS (SW 1

INC %12.,A
ROVCSF SLEEPINGPROCS(SW),A,INCSLEEP ;Increment SLEEPINGPROCS i n d i v i s i b l y '

SKP.NEQ %12.,UAXPROC,SLEEP
UOV 'SLEEP I NGPROCS (SW I , #0 ; I f incremented t o UAXPROC, zero i t

SLEEP: JflPZ.NEQ SLEEPINGPROCS(SW1,SLEEP ;Wait for SLEEPINGPROCS = 0
SUBV SW, SW, #4 ;%itch: SW:=4-SW

For some kinds of synchronization and communication, it appears that a mechanism other
than simple shared memory is very desirable. The cache line size of 16 words requires a substantial
amourit of overhead per cache line moved from one processor to another. This overhead can be
amortized over the 16 words if the memory access pattern causes most of the 16 words to be used
before the cache line.must.be moved again. This type of amortization is the reason that SIMPLE
arrays were assumed to be stored by columns, and then the rows were processed in blocks in the heat
conduction sweep analysis. In a straightforward non-blocked implementation, the sweeps in
SIMPLE would require that about 4 words per CIP microseconds be transferred between processors:
Especially for small numbers of columns, the "bulky* 16 word cache moves can be a significant
bottleneck.

Also, timing cache line mesh data moves only includes communication overhead, and does not
account for any synchronization overhead (mentioned in the "partitioning SIMPLEn section as
AWAIT and SIGNAL primitives). So, it is reasonable to propose a new general purpose
mechanism which combines the functions of communicating small packets of data at high
bandwidth and providing synchronization between the processes sending and receiving the data

The new proposal is a simple inter-processor message sending mechanism; Messages are
transmitted on one-way "links," which are allocated in 110 memory space much like normal UO
mechanisms. The 110 memory. allocation is performed by the operating system, so that transparent
reallmation can be done if it becomes necessary to move a process from one.processor to another.
Once the link is set up, the user processes can use it at high speed via special instructions without
substantial operating system intervention.

The user instructions are called SNDMSG and RCVMSG. They are specified.to operate on
small messages (doublewords) at very low overhead per message transmission. The hardware
contains a small amount of buffering for smoothing the message flow, but both instructions have
failure returns, indicating that either the buffers are momentarily full (for SNDMSG) or empty (for
RCVMSG). It is expected that both instructions can execute in the 100-200 nanosecond- range, with

28 10 Synchronization and communication

.a message latency between processors limited largely by physical factors such as interprocessor cable
lengths.

As an example, a possible irnplementation.of the forward sweep part of the slightly simplified
SIMPLE code fragment which appeared earlier using AWAIT and SIGNAL is included below:

for K := KMN to KMX do

begin
if PR > 1 then RCV~WORDS(LINK~PR-~],AKLM~,BKLM~) else '

begin
AKLM ~:=A[K,LMN[17- I];
BKLM l : = B ~ , L M ~ l I 11;
end;

for L := LMN[PR] to LMXIPRI do
begin
A[K,L] :Q q l K , ~ 4 / AKLMI;
B[K,L] :- (QJK,L- l]*BKLM 1) / AKLM 1;
AKLM 1 := A[K,LI;
BKLM 1 := B[K,LI;
end;

if PR < MAXPROC then SEND2WORDS(LINK[PRl,AKLM 1,BKLM 1);
end (*for Ka);

11 Directions for future study

In a broads ranging study such as this, there 'will .always remain interesting problems to be
addressed. ' ~ h e r k ~ i s more woik to be done in. each of the areas discussed in this report, and there
are also many other related afeas requiring.study.

The simulation of'partitioned SIMPLE is still incomplete in several ways mentioned earlier,
especially in simulating the overhead time required for cache line moves and/or synchronization
primitive execution. Also, a higher-level simulation could be done which does not actually solve the
physics equations, but still models the multiprocessor behavior of the code for various mesh sizes
and other parameters. The analytic studies of SIMPLE could be,continued in several directions,
including detailed analysis of othef code sectioiis, or studying previously analyzed sections under
different zissumptions, such as the use of SNDMSG and RCVMSG primitives. A more quantitative
statement about the sensitivity of the speedup of various code segments to variations in the mesh
size would also be useful.

Further detailed study of synchronization and communication mechanisms is desirable. Such
mechanisms should be as easy to use and as general as possible, but must not sacrifice performance.
It hasalready been observed that a variety of mechanisms with a variety of functional and timing
characteristics is likely to be needed. In conjunction with these mechanisms, more study should be
done on general techniques for partitioning of applications. The special issues arising in debugging
a multiprocess implementation are particularly important. More tools need to be developed for
evaluating the effectiveness of alternative implementations.

Another, important dimension of study is the range of applications chosen for partitioned
implementation. Study of partitioning in detail should be done (as it was for SIMPLE) for several
other real-world applications, such as those mentioned in the section on "selection of a sample
application.* Also, several entirely different non-numerical areas of application should be
considered in more detail for multiprocessing feasibility.

One final area of investigation needed is the implications of trying to use the S-1
multiprocessor hardware as cost-effectively as possible. A mapr topic is the interaction of the
partitioned multiprocessing approach with the powerful vector processing capabilities of the S-1
Mark IIA. One other topic mentioned earlier is researching the possible implementation of a very
efficient multiprocessor matrix transposition algorithm, for possible use in situations where matrix
processing does not efficiently align with the chosen data partitioning of matrices.

12 Conclusion

This study to date has added to the, evidence in favor of the partitioned application mode of
multiprocessor use. It has demonstrated that applications representative of real-world large scale
problems can reasonably be considered for multiprocessor partitioning. Some simulation and
analytic estimates of code speedup have been obtained. Some general methodologies for partitioning
have been suggested, and some specific mechanisms for multiprocess cooperation have been
proposed.

It seems certain that general purpose multiprocessors will play a large role in the future
spectrum of the world's computing needs. Part of this role will be assumed by large scale
multiprocessors executing some of the most compute-intensive applications, partitioned across
multiple processors to gain valuable increases in raw computing power per wallclock hour.

13 Acknowledgments

I am indebted to many of my fellow staff members of the S-1 Project for encouraging this
research, and particularly to Mike Farmwald, whose stimulating advice and helpful comments from
beenning to end of this work have been most warmly appreciated. Professor Gio Wiederhold also
provided much useful guidance. I am also grateful to the Fannie and ~ o h n Hertz Foundation for a
Hertz Fellowship, which provided personal support during much of the time that this research was
conducted.

The ,S-1 Project is sponsored by the Naval Material Command, through the Office of Naval
Research and the Naval Electronic Systems Command. The Lawrence Livermore Laboratory is
operated by the University of California for the US Department of Energy under Contract
W-7405-Eng-48.

14 References

[I] Baudet, Gerard M., The Design and Analysis of Algorithms for Asynchronous
Multiprocessors, Ph.D. thesis, Carnegie-Mellon University, April 28, 1978.

[21 Chazan, D. and W. Miranker, Chaotic Relaxation, Linear ~lgebra"and Its Applications, 2,
1969, 199-222.

t31 Crowley, W. P., C. P. Hendrickson, and T. E. Rudy, The SIMPLE Code, Lawrence
Livermore Laboratory report no. UCID-17715, February 1, 1978.

r41 Flynn, M. J., Very High-Sped Cnmp~ting Systems, Proceedings of the IEEB, 54(12),
December 1966, 190 1- 1909.

[53 Hammersley, J. M., and D. C. Handscomb, Monte Carlo Methods, Wiley, N. Y.. 1964.

[6] Jones, Anita K. and Peter Schwarz, Experience Using Multiprocessor Systems: A Status
Report, technical report, Carnegie-Mellon University, October 14, 1979.

[71 Raskin, Levy, Performance Evaluation of Multiple Processor Systems, Ph.D. thesis,
Carnegie-Mellon University, August 1978.

181 S-1 Project Staff, Advanced Digital Processor Technology Base Development for Navy
Applications: The S-1 Project, Lawrence Livermore Laboratory report no. UCID-18038,
1978.

191 Widdoes, L. C., High-Performance Digital Computer Development in the S-1 Project,
Proceedings of IEEE CompCon, Spring 1980, in press.

Table of Contents

. 1 Introduction

. Notation
Words. Memory. . and Registers

..... 1.2.1 Words ;
. 1.2.2 Memory'
. 1.2.3 General Purpose Registers

. Program Counter
. Processor and User Status Registers

. Instruction Formats
. 1.5.1 Two-address Format (XOP) : . .

. 1.5.2 -Three-address (TOP) Format
. 1.5.3 HOP Format

1.5.4 . skip (SOP) Format 1
1.5.5 Jump (JOP) Format

. 1.5.6 Vector Instructions
. Operand Descriptors

.I. 6.1 Subfields of an Operand Descriptor
. 1.6.2 Constant Operands

1.6.3 .Short Operand .Variables
1.6.4 Long.OperandVariables
1.6.5 Combined Long and Short operand Variables
1.6.6 NEXT Versus FIRSTISECOND

.1. 6.7 Forbidden Operand Formats
Virtual to Physical Address Translation

. ~ 1.7.1 Paging ;
. 1.7.2 Segmentation

1.7.9 Segrnentito and P a g ~ Table Entries
. Rings and Protection . .

1.8.1 Pointer Format '
. 1.8.2 Address Validation

1.8.3 Pointer Validation
. Traps and Interrupts

1.9.1 How the Processor Responds to a Trap or ~nterrupt
. 1.9.2 Soft Traps

1.9.3 TRPSLF and TRPEXE Traps
. 1.9.4 Hard Traps

1.9.5 Interrupts
1.9.6 Recursive Traps
Inputloutput
1.10.1 110 Memory Translation
Instruction Execution Sequence
Mark IIA Implementation

Table of Contents

2 Instruction Set .

. Signed Integer Arithmetic
. 2.1.1 Integer Arithmetic Exceptions

2.1.2 CARRY Algorithm
. 2.1.3 Signed Integer Arithmetic

. Unsigned Integer Arithmetic
. Floating Point Arithmetic

. 2.3.1 Floating Point Data Format
. 2.3.2 111ltrgri~y uf Fluallr~g Polnt Arithrnedc

. 2.3.3 Floating Paint Exception Values
. 2.3.4' Comparing Floating Point Valuee

. 2.3.5 Floating Point Rounding Modes
. 2.3.6 .Floating Point Exception Handling

. 2.3.7 . Propagating Floating Point Exceptions 1

. 2.3.8 Floating Point Arithmetic
Complex Arithmetic

. Mathematics ;

Chained Vectors
. Data Moving

Skip, Jump. and Comparison
Shift. Rotate. and Bit Manipulation
Byte Manipulation
Stack Manipulation
Routine Linkage and Traps

2.12.1 The Stack Framf! Convention
. 2.12.2 Cross-ring Calls

2.12.3 Routine Linkage Instructions
Interrupts and 110
Cache Handling
Context (~ a ~ . Register Files. and Status Registers)
Performance Evaluation

. Miscellaneous

. 3 The FASM Assembler I

. 3.1 Commands to invoke FASM
3.2 Preliniinaries .
3.3 Expressions .

. 3.3.1 Operators
3.3.2 Numbers

. 3.3.3 Symbols

. 3.3.4 Literals
. 3.3.5 Text Constants

Table of Contents iii

3.3.6 'value-returning Pseudo-ops . . , . . .
3.3.7 Combining terms to make expressions . .

3.4 Statements
3.4.1 Symbol Definition
3.4.2 S-1 Instructions '

3.42.1 Operands
3.4.2.2 Opcodes and ~ o d i f i e r s
3.4.2.3 Instruction Types
3.4.2.4 Data Words

3.5 Absolute and ~elocatable Assemblies '

3.6 Pseudo-ops
3.7 Macros

3.7.1 Macro Definition
3.7.1.1 T h e Parameter List

. . 3.7.1.2 The ~ a c r b Body
3.7.2 Macro Calls

3.7.2.1 Argument Scanning
3.7.2.2 . Macro Argument syntax
3.7.2.3 Special Processing in Macro Arguments

4 Index

Introduction
The S-1 Mark IIA uniprocessor is the second generation of a pipelined vector and scalar processing
computer with a virtual address space of 229 thirty-six bit words, addressable in quarterwords, and
a physical address Space of zS2 singleGords. This manual describes its native mode instruction tet

. .
and an assembler for that instruction set.

While a Mark IIA uniprocessor can operate alone or as part of a multiple-instruction-stream
multiple-data-stream (MIMD) multiprbcessor, this rnanu a1 deals only with single processor
operation. It also avoids implementation-dependent details like instruction timing and numerical
values corresponding to opcode mnemonics.

Section 1 presents an overview of the architecture. Section 2, which assumes knowledge of the
material in Section 1, divides the native mode instructions into groups, preceding each group with
architectural details pertaining to that group. Section 3 describes the FASM assembler, but one can
understand the assembly language examples in the previous sections without having read this
description.

2 1 Introduction

1.1 Notation

T h e remainder of the manual uses the following conventions for the sake of conciseness (the reader
may want .to skim these now and read them carefully only after encountering them in the text):

Radices Throughout the text, numbers appear in radix 10 unless otherwise noted. In the
assembly language examples, numbers appear in radix 8 unless they include
decimal points, which indicate they are in radix 10.

. , . . .
a . . b , stands for the integers or elements from a through b inclusive.

(a,b,c.dl represents some one of a, b, c, or d.

M[xl represents the contents of memory at quarterword address x. Context should
make clear whether this is a quarterword, halfword, singleword, or doubleword.

R[xl represents the contents of the registers at location x.. Again, context should make
clear whether this is a quarterword, halfword, singleword, or doubleword. .

RO . . R31 . refer to the 32 singlewords in the register space (see Section 1.2.3). ., , .

X.Y denotes a field (that is, a series of consecutive bits) named "Y" within a memory
location or register named "X".

X<n:m> denotes a field within X beginning at bit n and ending at bit m. X<n> represents
the nth bit of X. We number the most significant ("lftmost") bit of a singleword
"0" and the least significant bit "35". Sometimes, when we talk about an
indlvldual Kield wiL11i11 a wurd, we will number the birr sart!pg at fhe leftmost
bit within the field itself.

represent the result of evaluating the operand field of instruction--that is, the
register, memory location, or constant specified by the operand field rather than
the operand field itself. Thus, for example, OD2 refers to the second operand
field within an. XOP instruetian while OP2 refers to the register, rnwavy
location, or constxnt specified via that field.

SIGNED&) means that X is a two's complement integer

UNSIGNED(X) means that X is an unsigned integer, where all bits (including the most
significant) contribute to the magnitude.

ZERO,EXTEND(X)
says to extend the precision of X by attaching zeroes to the left of it.

1.1 Notation

SIGN,EXTEND(X) .

says to extend the precision of X by replicating its sign bit.

LOW,ORDER(X), HIGH,ORDER(X) .

designate the least-significant and most-significant portion of X, respectively.
When context does not make clear how much of X to include, we will state the
precision explicitly.

In addition,'the assembly language examples use two constructs which may not immediately be clear.

First, it uses 'ow instead of "()" brackets to parenthesize expressions, indicatingethe precedence of
operators.

Second, when the operand of an instruction consists of one or more values separated by "?" marks
and enclosed in square brackets, the assembler places those values in consecutive singlewords in
memory and uses as the instruction operand the address of.the first of those singlewords. Thus, the
following examples have essentially the same effect:

DSPACE
F: 128 . .

256
512
1028

I SPACE
PUSHADR SP, F .

'and:

I SPACE
PUSHADR SP,1128 ? 256 ? 612 ? 10281

Data literals are discussed in section 3.3.4.

4
w

1.2 Words, Memory, and Registers

1 Introduction

1.2.1 Words

T h e fundamental "word" in the S-1 native mode architecture is called a singleword, and is 36 bits
long: Bits within a singleword are. numbered from 0 upward, beginning at the,most significant bit.

Many instructions access data in any of four different precisions--quarterword. (v), .halfword
(HW), singleword (SW), or doubleword (DW)--with equal ease.

Four quarterwords
. . . . '

0 35

Which precision a particular instruction deals with is either implicit in the instruction--the D JMPZ
instruction, for example, always compares singlewords--or indicated by tacking a nodij2er onto the
instruction name. For example, the notation "ADD.(Q,H,S,D]" means that

High Order -
Low Order .:

ADD. Q

f l Lnl
\ '

flln+41 , , . I

adds quarterwords while

36 . 71 . .
- .

Doubleword

ADD. D

adds doublewords.

Unless otherwise specified, instructions address memory in terms of quarterwords regardless of the
precision they deal with. For example, the first singleword in memory lies at address 0, the second

1.2.1 Words ' 5

lies at address 4, the third lies at address 8, and on. Quarterwords within a halfword, singleword.
or doubleword have increasing addresses from left to right. Thus if a quarterword and a
singleword have the same address, then the quarterword is the high order (most significant, or
leftmost) quarterword of the singleword. Similarly, the more significant singleword in a doubreword
has the lower address.

Halfwords and singlewords must be aligned: the address of a halfword must be a multiple of 2 or
y~ ALIGNMENT-ERROR hard trap will occiir. Similarly, the address of z singleword must
always be a multiple of 4.

Any two consecutive singlewords can constitute a doubleword (though some implementations of the
architecture may access a doubleword more efficiently if it is aligned on true doubleword
boundaries, so that its address is a multiple of 8).

. From now on, we use the term "word" interchangeably with "singleword" and refer to "anyword"
when any of the four precisions is acceptable.

1.2.2 Memory

The processor has a physical addreis space of zJ2 singlewords (quarterword addressable). At . any
time there are four (possibly) different virtual address spaces, one for each level of protection, called
rings.

We use the term ADDRESS(X) to mean the virtual address of X and PHYSICALADDRESS(X)
to mean its physical address.

More precisely, ADDRESS(X) is a singleword in the form of a pointer, as described in Section 1.8.1:
a five-bit tag field, one of whose purposes is to specify a ring, followed by a 31-bit address field
which can address any quarterword in an entire 229-singleword space. Thus, .ADDRESS!X)
specifies both a tag and a quarterword address.

The architecture permits one to regard a virtual address space as a set of segments instead of a
single vector of quarterwords, and thus an address may specify three coordinates: a ring, a segment
and a quarterword address within that segment. The 31-bit address field specifies both the segment
and the address within the segment.

The rings are numbered 0 . . 3, with ring 0 the topmost in the hierarchy. A ring can be protected
against improper access on the part of a ring which lies below it in the hierarchy. In addition, the
processor establishes a level dividing the rings. Those above the level are privileged while those
below the level 'are not. Another term for unprivileged execution is user mode. Certain instructions
are called privileged" because attempting to execute them in user mode causes a

1 Introduction 6

PRIVILEGE~VIO'LATION hard trap (Section 1.9.4).

1.2.3 General Purpose Registers

An unprivileged process can access a single register file, a set of general purpose registers equivalent
to 32 singlewords of memory. As with memory, instructions can access quarterword, halfword,
singleword and doubleword entities within the registers, and they always address the registers in
terms of quarterwords. The alignment rules that apply to memory also apply to the repsters.

The architecture actually provides sixteen different repster files numbered 0 through 15. When in
privileged mode, the p;ocessor can access various register files and can choose which file is to be
used by a particular unprivileged process.

Placing a X" in front of an address tells the assembler to access the register space instead of
memory. For'example, an instruction which refers to 3 4 " will access the fifth quarterword in the
register space (if it is dealing in quarterwords) or the third haifword (if it is dealing in half word.^),
and so on. The registers act as a circular list, so %O follows %127. Thus, for example, the eight
quarterwords from %I24 through %3 can constitute one doubleword.

Because one most often manipulates the registers as singlewords, the remainder of this manual will
use the notation "RO" to represent the singleword at register address %O, "kl" to represeiif ehe
singleword at register address %4, and so on up to "R31". Within the assembler, one can easily define
the symbols "ROW through '231" to have this meaning.

Certain register addresses have advantages over the rest while others have restrictions.

Indexing: Registers RO, R1, and R2 cannot be used as base registers for the "pseudoregister"
addressing mode, which is explained further in Section 1.6.3.

Program counter: Register R3 has a dual identity. When an instruction uses R3 as the base for an
address calculation (see Section 1.6.3), it accesses the program counter instead of R3 itself. When an
instruction uses R3 in any other way, it accesses the true R3. There is no connection between the
value in KS and the value of the program counter; one particular usage of R3 willrin 111e arlrl~essir~g
modes is simply defined to give the program counter instead.

SIZEREG: Register R3 is also used to specify the lengths of vectors, and is then called SIZEREG.

R T A and RTB: Registers R4 and R6 are in a sense "easier" to access than the rest, and are named
RTA and RTB respectively. For example, a three-operand instruction cannot in general access three
different registers--but it can do so if the destination register is either RTA or RTB (Section 1.5.2).

When an instruction accesses RTA as a doubleword, it obtains both R4 and R5; we often refer to

1.2.3 General Purpose Registers

.R5 as "RTA 1". Similarly, we often refer to R7 as "RTB 1".

Stack frame and closure pointers: One: of the subroutine calling mechanisms provided by the
architecture maintains stack frames by using register R28 as a closure pointer and R29 as a frame
pointer (Section 2.12).

Stack pointerllimit: Traps, interrupts, ana subroutine calling instructions all use an
upward-growing stack in memory to store r'eturn addresses and other context information.
("Upward-growingy' means that pushing an item increases the address of the top of'the stack.) R30
and R31 serve as the stack pointer and stack liinit registers for this particular stack, and are also
called SP and SL respectively. SP points to the first free location on the stack. SL points to the first
location past the end of the area reserved for the stack. (The instruction set makes it easy to use
other registers or even memory locations as stack pointerllimit pairs to implement additional stacks
for other purposes, as described in Section .2.11. But when we talk about "the stack" rather than "a
stack", we mean the stack whose pointer is register SP.)

The table below summarizes the uses of the registers.

Register
RO . . R2
R3

S~ecial characteristics .

Cannot be base for pseudoregister mode
When used as I?ase gives program counter instead;
also used to specify vector length
RTA area
RTB area
None
Closure and frame pointers, CP and FP
Subroutine stack pointerllimit, SP. and SL

1 Introduction

1.3 Program Counter

The program counter (PC) is an internal processor register (not part of any general purpose register
file) containing a pointer to the instruction in memory that is currently being executed. Because
instructions consist of singlewords aligned' on singleword boundaries, the contents of the PC must
always be a multiple of four. When an instruction contains multiple words, the PC continues to
point to the first of them throughout the execution of that instruction.

Some operations refer to P C B E X T J N S T R , which is the value the program counter will have for
the following instruction in memory. A subroutine call, for example, places- P C B E X T J N S T R on
the stack as its return address.

One can consider the PC to have a tag specifyin6 the ring number used to fetch inslructions,~This
ring is called the ring of execution. Any attempt to alter the contents of PC--a jump, call, or return
instruction, for example--is subject to the validation checking described in Sectdon 1.8.2.

1.4 Processor and User Status Registers

1.4 Processor and User Status Registers

PROCESSORSTATUS, the processor status, is an internal register (not part of any general
purpose register file) which contains a number of fields' affecting the behavior of the processor as a
whole. Instructions which access this register are privileged. The following table and paragraphs
describe briefly the purpose of each field; details generally appear elsewhere in this document.

Bits -
0.. 1
2
3 . . 4
5 . . 6
7 . . 10
11. . 15
16
17
18
19
20
21 . . 31
32. :35

Purpose
EMULATION
VMM
PRIVILEGED
RINGALARM
REGISTER-FILE
PRIORITY
TRACEXNB
TRACESEND
CALL-TRACEJNB
CALL-TRACESEND
UNMAPPEDMODE '

Reserved
. .

FLAGS

EMULATION Determines which . instruction set the processor currently executes.
EMULATION=O gives the native mode described in this document.

VMM Enables virtual machine mode, in which attempting to execute any privileged
instruction and certain user mode instructions causes a trap.

PRIVILEGED Any ring whose number is less than or equal to PRIVILEGED is privileged.

RING-ALARM When the processor fetches an instruction, if the PC specifies a ring whose
number is greater than RINGALARM, the RINGALARM-TRAP hard trap
occurs. This permits deferral of an event until a critical inner ring operation
completes.

REGISTER-FILE
Determines which of the sixteen register files is currently available to
unprivileged processes. See Section 2.15.

PRIORITY Determines what priority an interrupt must have in order to interrupt the
processor. See Section 2.18.

TRACE-ENB If this bit is on at the beginning of .an instruction, TRACESEND,is set' at the
end of the instruction--in other words, setting this bit enables trac; traps for
subsequent instructions, m d the trap effectively occurs after each of those
instructions. Clearing this bit permits one final trap after the instruction which

1 Introduction

does the clearing. See Section 1.1 1.

TRACE-PEND If this bit is on at the beginning of an instruction, the processor traps before
executing the initructicin. Ordinarily, instead of manipulating TRACESEND
directly, one manipulates T R A C E l N B and allows it to manage
TRACESEND.

CALL-TRACE-ENB
Analogous to TRACEJNB, this bit enables a separate trap for tracing
instructions which call subroutines and return from them. Section 1.1 1 details the

. . , behavior of' the trap and Section 2.12 enumerates the instructions to which it
applies. - .

CALL-TRACE-PEND
Analogous to TRACESEND, this bit applies only to instructions that call a
subroutine or return from one.

UNMAPPED-MODE
Causes the processor to bypass the usual virtual-to-physical mapping scheme
and instead to use 31-bit addresses to access the first 2" quarterwords of
physical memory. The processor ignores tags and does not check segment bounds.
This mode is useful for starting up a system or for simple diagnostics which run
without a general purpose operating system.

Reserved T h e effect of attempting to set these bits is undefined.

PLACG This field is available for use by software.

USERSTATUS, the user status, is an internal register (not part of any general purpose register
file) containing fields which affect the processor's behavior for a particular user or process.
Instructions which access this register can execute in user mode.

T h e following table shows the position of the fields within register USERSTATUS.

1.4 Processor and User Status Registers

Purpose
CARRY
FLT-OVFL-MODE
FLT-UNFLMODE
F L T A A N M O D E
INT-OVFLMODE
I N T Z D I V M O D E
RND-MODE
FLT-OVFL
FLT-UNFL
F L T A A N
INT-OVFL
I N T Z D I V
F L T B E P
Reserved
FLAGS

The fields which deal with integer arithmetic (CARRY, INT-OVFL, I N T Z D I V ,
: INT-OVFLMODE, and I N T Z D I V M O D E) are described in Section 2.1 and the fields which

deal with floating point arithmetic (FLT-OVFL, FLT-UNFL, FLTAAN, FLTBEP,
FLT-OVFLMODE, FLT-UNFLMODE, FLTBAN-MODE, and RND-MODE) are described
in Section 2.3.

The effect of attempting to set the reserved bits is undefined.

The FLAGS field provides software-definable bits whose purpose is not specified by the
architecture.

1 Introduction

1.5 Instruction Formats

T h e heart of every instruction is a singleword which specifies one opcode' and up to three operands.

Opcode: An opcode tells the processor what operation to perform--an ADD, a DIV, a MOV, or
whatever. In addition, the architecture uses the 12-bit opcode field of an instruction word to encode
modifiers which are represented by a dot followed by one of several possible choices. For example,
the ADD instruction comes in four different flavors:' deal deals with quarterwords, ADD.H with
halfwords, ADD.S with singlewords, and ADD-D with doublewords. In this manual,,
*ADD.(QH,S,D)" denotes a choice of these four flavors. Similarly, the SHFA instruction actually
uses two different opcodes to incorporate its modifier: SHFA.LF for a left shift and SHFA.RT for a
right shift.

If an insrruaian takes more than one modifier, the order of the modifiers is significant. If one
modifier refers to the first operand and the other to the second, the modifier for the first npcranrl

comes first. For example, M0V.S.Q converts a quarterword to a singleword whereas MOV.QS
converts a singleword to a quarterword.

T h e mapping of the "virtual" opcodes shown in this manual onto actual, numerical opcode values is
implementation dependent. In particular, if two virtual opcodes have the' same.effect--or can be
made to have the 'same effect by swapping the order ,of their operands--an implementation may
choose to map them to a single actual opcode.

' . ,

/'

Operands: Most instructions specify operands by means of an operand descriptor (OD), a 12-bit field
that can indicate a constant, a register, a memory location anywhere within the 229 singleword
address space, or indexed addressing using some combination of constants, registers, and memory.

Sometimes the OD itself suffices to encode the operand--a small constant or a register, for example.
Such an operand is called a shod operand or SO. Obviouily, more elaborate operands require more
than twelve bits, so frequently an operand descriptor will tell the processor to use a word following
the instruction as an extended word (EW). Such an operand is called ,a long operand or LO. Note
that "long" and "short" refer to the length of the addressing mode, not to the length--quarterword,
halfword, and so on--of the opora.nd itself.

Thus, a two-operand instruction with operand descriptors OD1 and OD2 could require a
singleword in memory if each descriptor specifies a short operand (that is, the 12-bit field can
completely describe the operand):

OPCODE I OD1 I OD2 J
Both operands fit inside ODs

or would require two consecutive singlewords in memory if, for- example, the second of the operands
is an L O and thus calls for extended addressing:

1.5 Instruction Formats
. .

r
OPCODE I 001 I OD2

Extended word for OD2

OD2 calls for extended word

or would require. three consecutive singlewords in memory if both operands called for extended
- . i

addressing:

002

Extended word f o r OD2

Extended word for. OD1

Both operands call for extended words

Note that when both extended words are present, the one used with OD2 occurs first.

The processor logically evaluates all operands, hcluding extended addressing if necessary, before
executing the instruction and before updating the program counter. The order of operand
evaluation is undefined.

The preceding examples all showed the most common format for the initial singleword of an
instruction: an opcode and two operand descriptors. In all, however, there are five different formats,
called XOP, TOP, HOP, SOP, and JOP. We will first explain the formats and then explain how
an operand descriptor and extended word combine to encode an operand.

1 Introduction

1.5.1 Two-address Format (XOP)

I XOP 1 ' OD1 I OD2 I
- 0 11 12 , 23 24 35

X O P Format

Typically a two-address instruction evaluates operand descriptors OD 1 and OD2 to obtain operands
O P l and OP2 respectively, then reads from OP2, performs the specified operation, and writes into
O P 1.

Unless otherwise noted, if an XOP instruction uses only one operand then it uses OD1 and requires
that the field used to encode OD2 be zero, or an OPERAND-NOT-REQUIRED hard trap will
occur. If an XOP instruction uses no operands, the fields for both OD1 and OD2 must be zero, or
that trap will occur. The FASM assembler automatically handles these cases. Tf an instruction uses
neither operand, FASM sets both fields to zero. If you write only one operand and the instruction
needs only one, FASM sets the unused OD field to zero. If the instruction needs two, FASM uses
the same operand twice.

For example, FASM emits the same code for the following two instructions because the INC
instruction requires two operands:

INC COUNT,COUNT : COUNT : = COUNT + 1
INC COUNT : COUNT := COUNT + 1

The following example uses INC. more flexibly:
. .

I

INC COSTPLUSl, COST ; COSTPLUSl : = COST + 1 - , .

The RUS instruction requires only one operand, so providing two would be an error:

RUS RTA ; RTA := USER-STATUS

When an X O P instruction stores results in both operands, it stores OP2 first (see the example under
the EXCH instruction in Section 2.7).

1.5.2 Three-address (TOP) Format

1.5.2 Three-address (TOP) F ~ t m a t

I TOP ' 1 T 1 OD1 1 OD2 I

T O P Format

. .

A typical three-address instruction operates on data from two op&ands A d deposits the result in
the third.

Because not enough bits are available td provide three operand descriptor fields, a TOP contains
only two, OD1 and OD2. A two-bit field called "T" describes how the instruction uses those two
operands and what it uses for the third.

If we use "TOP" to represent the operation performed by any. particular T O P instruction, then we
can use the following equation to represent the effect of the instruction:

DEST : = S1 TOP S2

The "T" field determines which operands to use for DEST, S1, and $2 according to the following
table:

r DEST S_L SA
0 OP1 OP1 OP2
1 O P 1 RTA OP2
2 RTA OP1 OP?
3 RTB OP1 OP2

FASM automatically sets T". The following are all legal combinations:

ADD X,X,Y ; X := X + Y (T f i e l d = 0)
ADD X,RTA,Y ; X := RTA + Y (T f i e l d = 1)
ADD RTA,X,Y ; RTA :=. X + Y (T f i e l d = 2)
ADD RTB,X, Y ; RTB := X + Y '(T f i e l d = 3)

If X, Y, 2, and RTA are all distinct, the following examples are illegal and FASM will give error
messages:

ADD X,Y,Z, ;. I I legal
ADD X,Y,Y ; I l l e g a l
ADD X,Y,X ; I1 legal

This special ability to specify RTA and RTB via the T field does not preclude specifying RTA or
RTB as ordinary operands inside the descriptors OD1 and OD2, however. The following examples
are therefore perfectly correct:

1 Introduction

ADD RTB,X,RTA ; RTB := X + RTA (T - f i e l d = 3
; a n d OP2 = RTAI

ADD X,RTA,RTB ; X :'= RTA + RTB (T f i e l d = 1
; and OP2 = RTBI

Reverse form: T h e T.field of a T O P instruction provides asymmetric features: it can specify that
the first operand (S1) is either RTA or identical with the destination (DEST), but it cannot do the
same for the second operand (S2). The asymmetry would handicap non-commutative instructions
like those for subtraction and division, so such instructions generally have reverse forms that swap
S1 and $2. The name of i reverse form instruction is that, of the normal form with a V" appended.

If we use T O P n to represent. the operation performed by any particular reverse form, then we can
use the following equation to represent the effect of the instruction:

DEST : = S2 TOP S 1

T h e instruction SUBV, for example, is the reverse form of the T O P instruction SUB:

SUB X,RTA,Y ; X := RTA - Y
SUBV X,RTA,Y ; X := Y - RTA
SUB X,Y ; X : = X - Y
SUBV X, Y ; X : = Y - X

Without SUBV, subtracting RTA from Y and storing the result in X would be impossible in a
single ingtruction:

SUB X',Y,RTA ; I l l e g a l

A reverse form swaps the precidonsof the opefands as well as their order in the expression that
describes the instruction. If, for example, the normal form of an instruction expects $1 to have twice
the precision of S2, then the reverse form expects ~ 2 ' to have twice the precision of S 1, If the normal
form uses a single operand from S2 and a pair from S1, the reverse form uses S i +n'd a pair from
S2.

Short form: If only two operands appear, FASM will use the first one as both S1 and DEST. Thus
the following pairs of instructions g e equivalent:

ADD X,X,Y : X : = X + Y
ADD X,Y : X : = X + Y

SUBV X ,X ,Y ; X : = Y - X
SUBV X,Y ; X : = Y - X

When an ordinary T O P instruction stores more than two results, it stores S2 before S1 and SI

1.5.2 Three-address (TOP) Format 17

before DEST. when a reverse form TOP instruction stores more than two results, it stores S1
before's2 and 52 before DEST. Any unused .OD field must be set to zero; the assembler does this
automatically. . .

18

1.5.3 HOP Format

1 Introduction

I HOP I J I
' 8 6 7 35

HOP Format

A single instruction, SJMP, uses this format to jump to a location relative to the current program
counter. The processor uses the "J" field as an unsigned displacement, expressed in singlewords.
The address calc~lation.~wraps around" if it exceeds the maximum address:

GOT0 (PC+4*SIGNED . . (J) 1 NOD (2931 1

Thus the instruction can actually jump to my singleword in a vlrtual adclluss space. To jump
backward, the instruction merely uses a J field large enough to cause the address calculation to wrap
around.

In practice, the assembly language programmer simply provides a label for the branch destination
and lets the assembler calculate the J field.

1.5.4 Skip (SOP) Format

1.5.4 Skip (SOP) Format

SOP SKP 001 I OD2 I
0 7 8 11 12 23 2 4 35

SOP Format

Generally a SOP instruction compares two operands and, depending on the result, branches relative
to the current program counter. The term "skip" has a broader meaning here than in many
architectures; the destination of the branch can be any location within -8.. 7 singlewords of the
program counter (which i~ as defined in Section 1.3. considered to point to the first word of the skip
instruction itself).

The SOP field tells the processor what condition to test for, the SKP field tells it where to branch,
,md operand descriptors OD1 and OD2 can specify two operands to be compared. The following
statement describes a typical SOP instruction: . .

I F OP1 SOP OP2 THEN GOT0 PC+4*SI GNED (SKP)

T o usti a SOP instruction in FASM. simply provide a label for the skip destination.'The assembler
will automatically subtract the current location to compute the offset..

; I f X i s greater than Y, suap them

SKP.LEQ X,Y,NOSWAP
EXCH X, Y

NOSWAP: ...
Omitting the label is the same as skipping the next instruction. Thus, the following example has the
same effect as the previous one:

; I f X i s greater than Y, swap them

SKP,LEQ X,Y
EXCH X, Y

NOSWAP: ...

1 Introduction

1.5.5 Jump (JOP) Format

JOP 0 OD1 I . OD2 I
0 10 11 12 23 24 35

I JOP 1 OD1 I J I
JOP Format

Jump instructions generally perform an operation on a piece of data and then branch. The JOP
field is the opcode and OD1 is an operand descriptor that specifies the operand OP1.

When bit 11 (called the "PR" bit) is 1, the processor. performs a relative jump. The "J" field is a
signed offset that permits branching to any singleword location within -2048 . . 2047 singlewords of
the current location. (By definition, the program counter points to the JOP instruction itself while
the processor interprets the instruction.) The processor adds "J" to the PC to obtain a jump
destination, or JUMPDEST.

When bit 11 is 0, the processor performs an absolute jump. It evaluates operand descriptor OD2
and, if necessary, an extended word to obtain the JUMPDEST, allowing direct, indirect, or indexed
addressing--but sometimes costing an extra word of memory to do so. If OD2 specifies a register or
constant, an ILLEGAL-OPERANDMODE or ILLEGALMEMORY hard trap occurs.

T h e FASM assembler decides automatically whether to use an absolute or relative JOP; simply
provide it with a branch destination label:

JHPZ.GTR..S X,AWAY . ; I F X .GT. 0 THEN GOT0 AWAY

Specifying a more complicated operand for the JUMPDEST--the contents of a register, for
example--forces FASM to emit an absolute jump:

JHPZ.CTR.6 X , (R I G 1 0 t I F X - 6 T . 0 THEN GOT0 (tho
; address found In R161

Omitting the jump destination label in FASM has the same effect as jumping past the following
instruction. Thus the next two examples are equivalent:

1.5.6 vector Instructions

1.5.6 Vector Instructions

Vector instructions generally use the same format as X O P instructions. OD1 and OD2 are operand
descriptors which may specify either scalars or vectors, depending on the particular instruction.

A vector is simply a series of consecutive scalars which must lie in memory, not in the registers.
Unless noted otherwise, vector instructions obtain from register R3--also called SIZEREG--the
length of the vectors they operate on. SIZEREG expresses lengths in terms of elements, not
quarterwords. Thus, for example, SIZEREG=100 indicates the vectors are 200 quarterwords long if
the current instruction operates on halfwords or 800 quarterwords if the current instruction operates
on doublewords.

.Wherl an instruction uses O D 1 to specify a vector, it. evaluates O D 1 to obtain O P 1, regards O P 1 as
the first element of the vector (not a pointer to the vector) and assumes the remaining elements
follow OP1 in memory. The same is true of 0D2. Thus, when we refer to "the vector x" we mean
the vector whore first elementis x. . .

. .

When a vector instruction needs more than two operands, it uses registers RO, Rl, and R2--also
' called SRO, SR1, and SR2 respectively--as pointers to the additional vectors in memory.

Unless otherwise noted, the result of a vector operation is undefined if . , a source operand and a
destination operand overlap (unless they coincide).'

Many vector instructions permit the user to choose by means of a (SR,OPl) ,modifier whether to put
the result back into OP1 or into an arbitrary vector pointed to by the appropriate SR register.

At the beginning of the description of each vector instruction, to the right of the name of the
instruction, a symbolic equation describes its operands. For example, the following means that a
vector operand and a scalar operand produce a vector result:

V:=VS

while the following means that two vector operands produce two scalar results:

ss:=vv

1 Introduction

1.6 Operand Descriptors

This section explains the capabilities of the operand descriptors referred to in the preceding
instruction formats. Note that some operands are specified through operand descriptors and others
are not. For example, the relative-jump version of the JOP format uses an operand descriptor
called OD1 to specify operand OP1 while it uses a field called J--which does not obey the rules for
an operand descriptor--to specify the jump destination. The fields which are not operand
descriptors have already been described under each of the instruction formats.

1.6.1 Subfields of an Operand Descriptor

As mentioned earlier, operands which are specified by aperand descriptors belsng to two classes. If
an operand fits inside an OD, we call it a short operand (SO); if it requires an extended word (EW),
we call it a long operand (LO). Note that "long" and "short" refer to the complexity of the
addrsssing mode, not to the precision of the operand: a short operand may, for example, be a,
quarterword, halfword, singleword, or doubleword. \

A 12-bit operand descriptor field is generally partitioned into three subfields called OD-X,
OD.MODE, and 0D.F:

X NODE F I

The sole exception occurs when the four high-order bits of 0D.MODE are all zeros, in which 'case
the low-order bit of 0D.MODE joins the 0D.F field to form a field called 0D.REG:

X I @ I REG I

When X=l the OD requires an EW, and that EW can be partitioned in three ways, depending on
the value encoded in the OD:

1.6.1 subfields of an Operand Descriptor

I
-- - - --

CONSTANT

0 35
Constant EW

[TAG 1 ADDR I

I . T A G I . R E G I 'DISP I

t.6.2 .Constant . . Operands

Any operand descriptor can specify a constant, though particular instructions may prohibit them.
For example, operand descriptor OP1 of a M0V.S.S instruction can encode a constant, but the
instruction will encounter an ILLEGAL-CONSTANT hard trap because storing into a constant is
illegal. Similarly, it is illegal for an instruction to attempt to obtain ADDRESS(x) if x is a constant.

The assembler interprets an expression preceded by "#" as a constant. The assembler will encode
the constant as compactly as possible. Constants in the range -32.. 31 will fit in S O format while
the L O format accommodates up to 36-bit signed constants:

AD0.S A,#-5 . ; -5 would become an SO constant
A0D.S A,#TABLESIZE ; I l l u s t r a t e s the use of expressions
A0D.S A,#<TABLESIZE-l> ; a s constants

Bracketing the number or expressionwith "[I" symbols forces FASM to use the L O format even if
the constant is small enough to fit in the S O format. This makes it possible to use a symbolic
debugger to patch the constnnt to a larger value later on, and guarantees that the size of the code
emitted will not vary with the size of the constant:

(Note that because a "#" precedes them, the square brackets here do not denote assembly literals.)

The precision of an instruction is inherent in the opcode, not the operands, so a constant in either

24 1 Introduction

SO or LO format is ordinarily converted from a 36-bit entity to the desired precision at execution
time, either reducing precision by discarding high-order bits or increasing precision by extending
the sign bit.

. If an instruction calls for doubleword precision, however, it is possible to specify different
conversions. Putting ?O ?" in front of the constant but within the brackets sets the high-order half
of the doubleword to zero and the low-order half to the constant. Putting U? !O" after the constant
but within the biackets sets the high-order half of the doubleword to the constant and the
low-order half to zero:

M0V.D.D A,#[-11 ; , A := 77777777777777777///1777 o c t a l
MOV.D.0 A , # [1 0 ? -11 ; A := 008000000008777777777777
~ o V . o . n A , # r-1 ? !@I A : - 777i777?7777ooooaoo~0800

Note that these conversions are not available unless the instruction calls for doubleword precision.
For any other precision, it is possible to encode these conversions in the OD format, but the
processor will convert the constant in the ordinary manner--by discarding high-order bits or
extending the sign bit.

Indexed constants: This operand format specifies a 36-bit signed constant and a
singleword-aligned register. .It adds the value in the register to the constant, converts the sum to the
precision of the instruction by either discarding bits or extending the sign, and uses the result as a
constant operand. Note that the addition ignores integer overflow. and that specifying R J accesses
register R3 rather than the program counter:

; one instruction.. .
A0D.S RTA,RTA,.#[41 (RTB) ;: RTA := RTA + RTB + - 4
; versus two.. .
ADD.S RTA,RTA,RTB ; RTA := RTA + RTB
A0D.S RTA,#4 ; RTA := RTA + 4

2 ; (x+ll* (x-11 or x -1:
MULT-S R T A , # [l I (RTAI.,#[.-11 (RTAI ; RTA := (RTA + 1) * (RTA - 1)

; o r RTA := R T A ~ - 1

1.6.2 Constant Operands 25

NOTATION

Symbol Meaning '

'SC - 3 2 . . 31 short constant
lc -zS5.. ~ ~ ~ - 1 long constant
ar 0 step 4' until 124 aligned register

SHORTOPERANDCONSTANTS

(If the constant is too big, the assembler automatically uses the LO form)

FASM n o t a t i o n Eva lua t i on OD Format

0 1 5 6 11

LONGOBERANDCONSTANTS

FASM n o t a t i o n Eva lua t ion 0 0 orm mat EW Format '

0 1 5 6 11 0 35

#C!0 ? l c l ZERO-EXTEND (l c l

I l c ? !O1 l c*2T36

I I c l (%ar l SignExtend(lcl
+R I a r l

Figure 1-1 '

Constant Operand Formats

1.6.3 Short Operand Variables

The SO format can denote two kinds of variable: a register or a location in memory accessed as a
pseudoregister.

Registers: The S O format can access any quarterword address within the register space, subject to
the usual rules for alignment of entities ,larger- than a quarterword. Specifying register R3 accesses
register R3, not the program counter. .

1 Introduction

; Add contents of singleword a t reg %8
; (th i rd singleword in r e g i s t e r s) to RTA
; Add contents of quarterword a t r eg i s t e r
; %11 t o RTA (due t o misal ignment, AD0.H.
; ADD.S, or ADD.0 would be i l l e g a l)

A0D.H RTA,%<COUNTER+Z> ; I l l u s t r a t e s the use of expressions

Pseudoregisters: In itself, pseudoregister addressing provides a compact means of specifying a
memory location. The name Pseudoregister arises because the more elaborate addressing modes
described in Section 1.6.5 incorporate this pseudoregister mode to give a memory location the same
capabilities as a register.

Pseudoregister addressing uses a singleword-aligned register to point to an address in memory and
provides a quarterword offset to select an anyword in the vicinity of the address pointed to. The
offset must lie in the range -128 . . 124 and be divisible by 4.

The register serves as a base pointer--an important concept throughout all the memory addressing
modes. Its upper 5 bits serve as the tag which, among other things, specifies the desired ring. Its
lower 31 bits contain an address. The concept of a base pointer is additionally important because it
determines the meaning of register R3. When one uses R3 as a base pointer, one obtains the
program counter instead of R3 itself. And last of all, the base pointer determines the segment in
which an operand lies (Section 1.7.2). The fir& term of every memory addressing calculation is
considered a base pointer, and a singleword fetched from memory to serve as an indirect address is
considered' a base pointer also.

As for pseudoregister addressing in particular, note that. while the register containing the base
pointer must be singleword-aligned, the alignment of the entity it points to is governed only by the
precision of the instruction. Thus, for a halfword instruction, the register must point to an aligned
halfword. Similarly, the actual operand obtained by adding the offset to the pointer must be
aligned properly for the precision of the instruction.

As an example of pseudoregister addressing, let VSP be a register used to point to an
.upward-growing stack of parameters and variables in memory. Pseudoregister mode makes it easy to
access variables relative to the top of the stack:

; Add 7 to top singleword on stack
; (for upward-grow i ng stack, pointer
; indicates next f r ee location) \

EXCH. S (VSPI -8. . (VSP) -4 ; Swap top two singlewords nf stack

SKP. EQL. S (VSP) -20. , (VSP) -4 : Compare top singleword with f i f t h

; singleword

As another example, suppose that register R7 contains a tagged pointer to a Pascal record structure.
Pseudoregster addressing can access components of that record:

1.6.3 Short Operand Variables 27

\

HOV.S.S RTA, (R714 ; move second word of record t o RTA
MULT.S RTB, (R71, (I3718 . ; RTB ge ts product o f f i r s t and

; t h i r d words

. .
As Section L6.4 explains, one of the LO addressing modes has the same syntax as the.
pseudoregister mode, and permits a larger offset. The assembler. automatically uses the LO format if
the desired offset is too large.

I .
t

NOTATION

Symbol Meaning
r 0 . . 121 register

Pr 12 step 4 until 124 pseudoregister base
sao -128 .step 4 until 124 short aligned offset
R[xl , . Contents of register .location x
MIXI Contents of memory location x
B[xl . Evaluate x as a base pointer; if x=R3 use PC instead

. . SHORT OPERAND VAR'IABLES

FASfl notation Eva!uation OD Format

%r R Crl

(%pr) sao H CB [R [prl I +saol

Figure 1-2
Short Operand Formats

1.6.4 . Long Operand Variables

Long operand variable formats use the extended word alone to encode various memory address
computations.

Fixed-base: This mode uses a 31-bit field to specify a base address in memory. (The tag is implicitly
that of the ring in which the instruction is executing; no field Is provided to encode a tag explicitly.)
One may either use the entity at that address as the operand, or treat it as a new base pointer for
indirect addressing:

1 Introduction

M0V.S.S RTA,AVAR ; Copy the s ing leuord a t
: memory l o c a t i o n AVAR t o RTA

M0VP.P.A APTR,AVAR : Make APTR p o i n t t o AVAR
M0V.S.S RTA,APTRs ; Address AVAR i n d i r e c t l y through APTR

Variab1.e-base:'This mode uses a singleword-aligned register as a base pointer (that is, it has a tag
in its upper 5 bits and an address in its lower 31 bits.) The computation adds a 26-bit signed offset
to the address field of the pointer. One may use the resulting address either to fetch the operand or
to fetch a new b&e pointer which in turn specifies the operand:

NOV.II.I.lRTA,(R7)1000. ; Cupy toRTA the h a l ~ w a r u
: which i s 1000 quar teruords above the
: quarterword po in ted t o by R7

MOV. Q. Q RTA, (R7) 1 : The assembler au toma t i ca l l y uses the
: LO format here because the SO
: pseudoregis ter format r e q u i r e s the
; o f f s e t t o be a m u l t i p l e o f 4

M0VP.P. A (R7) 1800.. AVAR ; Make (R711000. p o i n t t o AVAR
M0V.S.S RTA,(R7)1000.e ; Address AVAR i n d i r e c t l y through

: the p o i n t e r a t (R711000.

1.6.4 Long Operand Variables

NOTATION I .

Symbol Meaning
ar 0 step 4 until 124 aligned register
la 3 1 0..2 -1 long address
sd -225 . . zZ5- 1 short displacement
MIXI Contents of memory location x
Rrxl Contents of register location x
B[x] Evaluate x as a base pointer; if x=R3 use PC instead

LONG OPERAND VARIABLES ' A

FASM n o t a t i o n E v a l u a t i o n OD Format ' . EW Format

0 1 5 6 11 0 4 5 910 35 .
l a M [B [I a l l

(Xa r l sds M CB [M [B [R [a r l I +sdl I I

Figure 1-3
Long Operand Variable Formats

1.6.5 Combined Long and Short Operand Variables

These addressing modes use both the short operand and the extended word to encode memory
address calculations. In each case, one may choose to use a pseudoregister in place of one of the
registers involved in the address calculation, thus nesting one calculation inside another.

In their most general form, these calculations sum three terms: a base pointer, an offset, and an index
(though not every term need always appear) aftek shifting the index:

(BASE POINTER)OFFSET[INDEX]tSHIFT

Unless otherwise mentioned, the base pointer is a singleword pointer (that is, it has a tag in the
upper five bits and an address in the lower 31 bits.) The offset and index values are added to the
31-bit address ufing modulo 2" arithmetic. Thj,s means that the rum cannot overflow into the tag

SO 1 Introduction

field, and that when the offset is 31 bits long, one may regard it either as a signed value or as an
unsigned value that luraps aroundv the virtual address space.

The shift moves the index 0, 1, 2, or 3 bits leftward (multiplying it tiy 1, 2, 4, or 8) so that the index
can effectively represent a number of quarterwords, halfwords, singlewords, or doublewords. (For
example, because the architecture always addresses memory in terms of quarterwords, singlewords
are 4 addresses apart rather than 1 address. apart. T o step through a table of singlewords, one must
either increment the index by 4 each time--which is usually inconvenient--or use the built-in shift
feature to multiply by 4.) If omitted, the shift defaults to 0.

The modes which provide indexing permit indirect addressing either before the indexing operation:

(BASE POINTER)OFFEETs[INDEXlf3HIFT

or afterward:

(BASE POINTER)OFFSET[INDEXITSHIFTe

In the first case, the calculation adds the offset to the base pointer, obtains a new base pointer from
the resulting address, and adds the index to the new base pointer to find the operand. In the second,
the calculation adds both the offset and the index to the base pointer, obtains a new base pointer
from the resulting address, and uses that base pointer to find the operand. When indirection
follows the indexing operation, the shift must be either 0 or 2.

Based:*This mode uses a base pointer (which can be either a.singleword-aligned register or a
singleword memory location specified by means of pseudoregister addressing) and a 31-bit offset.

fl0VP.P.A (R71-4,F ; Make the singleword a t (R71-4
; p o i n t to F

fl0V.S.S R T A , ((R7) -4) 100. ; Move t o RTA the singleword

I uh i ch l i ea 18R qr.!ar ter.r.rur.ds above

; F
N0VP.P.A ((R7)-41180. ,AVAR : Make F+100 p o i n t t o AVAR
fl0V.S.S RTA, ((R7)-41100.e : Use tha t p o i n t e r t o address AVAR

; ind i rec t lb j

Based-indexed: This mode uses a base pointer (which can be either a singleword-aligned register or
a singleword memory location specified by means of pseudoregister addressing), a 26-bit signed
offset, and a singleword-aligned register for indexing. Indirect addressing' is possible either before or
after the indexing operation:

1.6.5 Combined Long and Short Operand Variables

MOV. Q. Q RTA, (R71100. [RTBI i

i

,
I

i

i
M0V.Q.Q RTA, ((R71 -41100. CRTBI ;

:
:
:

M0V.H.H RTA, ((R71-41100. CRTBIl'1 ';

i

i

MOV. Q. Q RTA, (R7) 100..@ CRTBI i

,:

:
I

9

i
MOV. H. H RIA, (R71100. CRTBI 92e ;

:
:

Move t o RTA the quarterword

obtained .by us ing R7 as a base

p o i n t e r t o memory, adding a

100-quarterword o f f s e t t o the

po in te r , and o f f s e t t i i n g f u r t h e r

by the va lue found i n RTB

S i m i l a r t o the prev ious example,

bu t use as the base p o i n t e r the

singleword s p e c i f i e d by

pseudoregi s t e r (R71 -4
S i m i l a r t o . t h e prev ious example,

bu t m u l t i p l y the index reg i ' s te r by

2 s ince we a re .address ing ha l fwords

. In any o f the prev ious three

examples, one may use the o f f s e t t o

f i n d a new base pointer;indirect

address through i t , and then use

the index r e g i s t e r as a f u r t h e r

o f f se - t ' ,

. .

A l t e r n a t i v e l y , .one may choose t o

use the s ing leword obta ined by the

index ing opera t ion as an i n d i r e c t

addressing po in te r .

Fixed-based-indexed: This mode provides a 31-bit base address and an index* (which can be either
a singleword-aligned register or a singleword in memory specified by a pseudoregister). Because the
31-bit base address provides no means of encoding a tag, the tag is implicitly that of the ring in
which the instruction is executing. One may choose .indirection either immediately before or

immediately after the indexing operation.

i t .

MOV. Q. Q RTA, BPTR IRTBI ; Move t.0 RTA'the quarterword found.

: by us ing BPTR t o p o i n t t o memory and the

: value s to red i n RTB as an o f f s e t from
; . t h a t l o c a t i o n

MOV. D. D RTA, BPTR [RTBI 1'3 ; L i k e the p rev ious example, bu t m,u l t ip l y

: the index by 8 s ince we a re dea l i ng w i t h

: doub l ewords

MOV. Q. Q RTA, BPTR C (R71-41 ; Shows the use o f pseudoregis ter

: (R71.-4 as the index

MOV. Q. Q RTA, BPTRe CRTBI : Use the s ing leword a t 'BPTR as an i n d i r e c t

: address p o i n t e r and index from the l o c a t i o n

: t o which i t p o i n t s

MOV.Q.Q RTA,BPTRCRTBI~ ; S i m i l a r t o the f i r s t example, b u t use the

: singleword located by the index ing oper-

: a t i o n as an i n d i r e c t address p o i n t e r

1 Introduction

Register-based-indexed: This mode provides a singleword-aligned register .IS the base pointer, a
26-bit signed offset, and an index (which may be either a singleword-aligned register or a
singleword' in memory specified by a pseudoregister). One may' choose indirection either preceding
or following the indexing operation.

MOV. Q. Q RTA, (R7) 100. I (R8)-41 ;

;

i

;

i
MOV. S. S RTA, (R71100 , I (R8) -41 92 ;

:
*

M0V.Q.Q RTA, (R7) 100.~3 1 (R81-41 ;
N0V.Q.Q RTA, (R71100 . I (R 8) - 4 1 ? 2 ~ 3 ;

Move t o RTA the quarterword found

by us ing R 7 t o p o i n t t o memory, adding

an o f f s e t o f 188. t o the address g iven

i n R7, and then adding as an a d d i t i o n a l

o f f s e t the va lue s to red i n the s ing leword

spec! f 1 ed ab psf?~.ldnreg i 3 ter (R8) -4
Like the l n l t l a l example, but m u l t i p l y

the index by 4 because we a re

dea l i ng w i t h s inglewords .

I nd i r e c t i on preced i ng' i ndex i ng

I n d i r e c t i o n f o l l o w i n g index ing

T o illustrate the usefulness of a combined short and long operand variable addressing mode,
consider the following fragment of a Pascal procedure:

VAR

I : I NTEGER; TABLE: ARRAY ' 15. -91 flF I NTEGER,
BEGIN
FOR I := 5 TO 9 00

TABLELII := 1:

T o construct the operand for TABLECII, assume first that SF is a register pointing to the beginning
of the stackframe for the procedure, and that the TABL'th byte in the stackframe points to the
memory location which would be the 0th element of TABLE if TABLE had a 0th element. The
following operand would specify that pointer:

and the following operand would specify that firtional 0th element:.

If VI is the byte offset from the beginning of the stackframe to variable I, then thc following
indexes to find the Ith element of TABLE. Note the use of a shift to access singlewords properly:

The entire loop might look like this:

1.6.5 Combined Long and Short Operand Variables

R0V.S. S (SF) VI ,#5 '

LOOP: V0V.S.S (SF)TABL@[(SF)VIITZ, (SFIVI
1SKP.LEQ (SF)VI,#S.,LOOP

. ,

(We assume VI and TABL are not too large, to fit within this operand format, and that the value of
.I is not used again following the loop.)

34 1 Introduction

NOTATION
Symbol Meaning Symbol Meaning
ar , 0 step 4 until 124 M[xl Contents of memory location x
Pr 12 step 4 until 124 R[xl Contents of register location x
sao -128 step 4 until 124 BCxl Evaluate x as a base pointer
la 0 . . z9'-1 (if x=R3 use PC instead)
~d -Po . . 230-1 sh o . . ~
sd -2z5 . . 2z5- 1 ssh o or 2

COMBINED LONG AND SHORT OPERAND VARIABLES
Substitute either of these short operands . . .
FASM N o t a t i o n Eva lua t i on OD Format

0 1 4 5 6 910 11

%31" R Carl

(%pr 1 sao fl IB CR Cprl I +saol

. . . for "SO" in the following:

FASfl no t a t i on Eva lua t i on

(SO) l d fl CB CSOI + I d l

(SO) l de HCBCMCB [S01+Idl l1

(SO) sd C%arl Tsh fl CB [SO1 +sd+R Carl u2Tshl

(SO) sds C%arl Tsh H CB C f l CB [SO1 +sdl I +R Carl
rc2Tshl

(SO) sd [Xarl ' l 'ssh~ fl CB C f l [B CSOI +sd+R [ar lu2Tsshl 1 I

EW Format

0 4 5 9 10 35

(%ar l sd [Sol Tsh fl CB CR Carl I +sd+SOu2Tshl

(%at- I s d ~ CSOI Tsh fl [B C f l CB CR Carl I +sdl I
+SOxcZTshl

(%at-) sd [SO1 Tsshs H CB C f l CB CR Carl I +sd
+SO*2Tsshl I I

Figure 1-4
Combined Long and Short Operand Variable Formats

1.6.6 NEXT Versus FIRSTISECOND

1.6.6 NEXT Versus FIRST/SECOND

Certain instructions are defined to deal not just with an operand but also with elements that follow
that operand in, memory.

Vector instructions are an important example. If the first element of a vector is x, we use the
terminology "NEXT(x)" to describe the element which follows x in memory and has the same
precision as x. Thus, if the first element of a vector is F, then the second element is NEXT(F), the ,

third element is NEXT(NEXT(F)), and so on.' The elements are handled independently, so no
special alignment .rules govern them.

Certain other instructions deal with pairs of elements: the operand and the single element following
that operand. For example, the DIV instruction divides two integers, stores the quotient in operand
DEST, and stores the remainder in the element following DEST. In these cases, we use the
terminology "FIRST(x)" and "SECOND(x)" to describe the operand x and its successor. If the .
precision of the instruction is quarterword or halfword, then the two elements must align together to
form a single entity of twice that precision.

Operands described in terms .of NEXT also differ from those described in terms of
FIRSTISECOND with respect to constants.

When an operand described in terms of NEXT is a constant, the instruction replicates the constant
to provide the required number of elements, each having the precision specified by the instruction.
The VTRANS instruction, for example, copies one vector to another, so the following sets each
element of vector A to 7:

When an operand x described in term.s of FIRSTISECOND is a constant and the precision of the
instruction is quarterword, halfword, or singleword, the instruction expands the constant to twice
that precision, uses the high order half as FIRST(x), and uses the low order half as SECOND((x).
(When expanding a singleword constant to a doubleword, it observes the special constapt addressing
modes for doing so.) For instance, the BNDSF.B instruction is a T O P which sets its destination true
or false according to whether S2 lies within the bounds specified by FIRST(S1) and SECOND(Sl),
so the following example:

will test to see whether A lies within the range 0 . . 7 and set RTA accordingly.

When an operapd x described in terms of FIRSTJSECOND is .a constant and the precision of the

36 1 Introduction

instruction is doibleword, the instruction replicates the constant to provide FIRST(%) and
SECOND(x). Thus, for example,

will test to see whether A lies between 7 and 7.

1.6.7 Forbidden Operand Formats

certain combinations of bits in the OD and EW formats d o not constitute legal addressing modes.
The processor interprets these as invalid long operands, causing a RESERVED- ADDR ESS-MODE
IiruLi hap:

OD Format EW Format
0 1 5 6 11 0 4 5 35

Figure 1-5
Forbidden Operand Formats

1.7 Virtual to Physical Address Translation

1.7 Virtual to Physical Address Translation

The address translation mechanism maps 31-bit virtual addresses onto 34-bit physical addresses,
providing. both segmentation and pagng. It provides four different virtual address spaces, one per
ring, which may overlap.

1.7.1 Paging

The paging mechanism permits a virtual address space to be mapped onto widely scattered pieces of
physical memory, eliminating problems of memory fragmentation in a multiprogramming system. It
facilitates demand p q n g by recording whether a page has been accessed or altered, and by
trapping on any attempt to access a page that is absent from memory. And it permits one to restrict
the right to read, write, or execute each individual page.

A page is 4096 quarterwords long. Because a single virtual address space may contain as many as
219 pages, it is evident that the page mapping tables may thems~lves need to be paged.

In fact, the address translation mechanism has four different steps. Instead of a giant page table 2 19

entries long, it uses many little page tables each 16 entries long, so not every page table need be in
memory at once. Taken together, the 16 pages pointed to by one page table make up a segmentito.

A giant table called a Descriptor Segment contains a pointer to each of the (at host) 215 page tables
for each of the 4 virtual address spaces--or 2" page tables in all. If the Descriptor Segment were
wired permanently into memory, an address reference would require two translations: one to find the
proper page table and another to find the proper page. But the Descriptor Segment itself is
composed of pages grouped into segmentitos, so an address reference first requires two translations
to find the appropriate point in the Descriptor Segment, and then two more translations to find the
target address.

Figure 1-6 traces the entire process. A register called the Descriptor Segment Pointer (DSEGP) holds
the 34-bit physical address of the first word of. the Descriptor Segmentito Table. Because the
Descriptor Segment pbints to (at most) four sets of 215 segmentitos and each pointer requires 8
quarterwords, the ~ e s c r i ~ t o r Segment never exceeds 220 quarterwords. That translates into a
ma.ximum of 16 segmentitos, which mealis at most 16 entries (called Segmentito Table Entries, or
STEs) in the Descriptor Segmentito Table. The 2-bit number of the ring being accessed together
with ,the first 2 bits of the virtual address select one entry from the 16 in the Descriptor Segmentito
Table. In turn, tliat entry points to the physical address of the first word of a Descriptor Page
Table, which has an entry (called a Page Table Entry, or PTE) for each of the 16 pages comprising
that segmentito. Bits 2 . . 5 of the virtual address select one entry from the 16 in that particular
Descriptor Page Table, which points to one page of the Descriptor Segment itself.

The Descriptor Segment, of course, contains nothing but pointers to segrnentitos that make up the 4

38 1 Introduction

virtual address spaces. In fact, this page of pointers is identical in form to the ~ e s c r i ~ t o k Segmentito
Table, except that it has more entries and the entries point to pages inside one of the virtual address
spaces instead of inside the Descriptor Segment. Thus, we have labeled it a "Target Segmentito
Table." (Note, however, that the page shown is probably only one of many pages of segmentito
pointers required to describe the entire ring, and that the Descriptor Segment is a continuous list of
such pointers, not a separate table for each ring.) Bits 6 . . 14 select one STE from this table, which
points to the physical address of the first word of a Target Page Table, which has an entry for each
of the 16 pages comprising that segrnentito.

Bits 15 . . 19 of the virtual address select'one PTE from that page table, which points to the
physical address of the first word of a page. Lastly, bits 19 . . 30 of the virtual address select a
quarterword from that page.

Using less than the full mapping: One need not use the entire mapping; structure provided, Any
segrnentito or page table entry may be null, either because the corresponding segmentito or page is
absent from memory or because the virtual address space in question is smaller than the maximum
allowable size;

Overlapping virtual address spaces: It is possible to make part or all of different virtual address
spaces overlap, simply by making some of their STE or PTE entries point to the same physical
memory. Some operzting systems have customarily placed user and executive together in one address
space, providing protection by restricting access to particular pages. T o achieve such operation with
this architecture, one may simply arrange the entries in the Descriptor Segmentito Table to point to
the same set of Descriptor Page Tables for each ring, thus mapping all four rings onto the same
physical memory and reducing the size of the mapping tables by roughly a factor of four.

. .

1.7.1 Paging

V i r t u a l Address

IRing#] I Descr ip to r address I Target address I

I I
0 21 22 33

Physica l address

Descr i p t o r
Segmentito Table

Figure 1-6
Virtual-to-physical address translation

30 0 1 0 5 6

0 33
7' (4uR I ng#+

. DSegmen t i to#) *8QW
4 ---

STE

0 1 2 5 I
DSegmentito#

Descr i p t o r
Page Table

t
DPage#n4QW

5.

DPage#

,

PTE

1
Trans lated TSegmentito# TPage# Of fse t
Descr i p t o r

Address . 6 14 15 18 19. 30

L.
Target

Segmentito Table
(1 page o f the

desc r i p to r segment)

T TSegmen ito#u8QW '

A Tar e t
Page !able . STE

t

* -
f

TPage#*4QW
&

PTE

P

1 Introduction

1.7.2 Segmentation

One can view a virtual address space as a set of segments, so that the address for any particular
entity consists of a pair of coordinates: the segment number and the offset from the beginning of the
segment. If an index or offset causes an address calculation to exceed lower or upper segment
bounds, an OUT-OF-BOUNDS hard trap occurs.

Segments can vary in size, consisting of one or more segmentitos, b ~ ~ t a sPgmPnt mllrt obey three
ttiles: the number of segmentitos in the segment must be a pQwer of two, the segmentitns mnst h~

consecutive within the virtual address space (which means simply that the pointers to them must be
consecutive in the descriptor segment) and the virtual address of the beginning of the segment must
be an integer multiple of the size of the segment.

Those three rules make it easy to check segment bounds. Given any virtual address known to be
within. a segment, plus the size of the segment, the processor can determine whether a second,
"suspect" address lies within the same segment merely by comparing the upper 19-x bits of the
31-bit addresses (where x is the base 2 logarithm of the number of pages in the segment).

As a result, the processor need not maintain an explicit table of segment boundaries. Instead, the
pointer to each segmentito merely contains a field giving the size of the segment containing that
segmentito.

As an example, assume we know some address x lies within a particular segment, and we know the
S segment contains 8 (2) segmentitos. T o see whether an address y lies in the same segment, first

discard the 12 low order bits of x and y, which merely represent varying addresses within a page;
because a segment must start and end on segmentito boundaries a.nd thus page boundaries, we need
merely check that the suspect address lies on a permissable page, without worrying about where
within the page it lies. But then we can discard an additional 4 low order bits from each of x and y
because they merely represent varying addresses within a segmentito; given that a segment must star:
and end on segmentito boundaries, we need merely check that the suspect address lies on a
permissable segmentito, without worrying a-bout where within that segmentito it lies. Finally, we c q
discard an additional 3 bits just because the size of the segment is 23 segmentitos. Those 3 bits must
be zero for the first of the 8 segmentitos in order for the segment to start on an integer multiple of
its size, and as a result they must equal 7 for the last of the 8 segmentitos. Since the 3 bits can have
any value from 0 to 7 and still lie within the segment, we need not worry about them, either. The
remaining bits should be identicai for every legal address within the segment, so we compare the
remaining bits of x and y. Only if they match did the two original addresses lie within the same
segment.

Segment bounds checking: Every memory address calculation begins with a base pointer,
establishing which segment is being addressed. T h e rule for bounds checking is simply that a

1.7.2 Segmentation 4 1

memory access must lie within the same segment as the previous base pointer. Thus, the base pointer
plays the role of address x in the previous example, and the actual operand being accessed serves as

Y-

When an address calculation involves indirection, the indirect .pointer must lie within the same
segment established by the base. But the pointer then establishes a new base, possibly in a different
segment, and subsequent memory accesses must lie within the same segment as the .new base.

Bounds checkfng occurs only on actual memory accesses, so it is permissable for an offset to reach
outside the segment bounds provided a subsequent indexing operation brings the calculation back
within bounds before the access occurs.

1.7.8 Segmentito and Page Table Entries

Segmentito table entries: Each STE is a doubleword (shown in Figure 1-7) with the following
fields:

VALID If this bit is set, the page table for this segmentito is in memory and the processor

uses the remainder of the doubleword as described. Otherwise, the segmentito is
absent, the processor ignores the rest of the doubleword and.software may use it
as desired. Attempting to access an absent segmentito causes a
SEGMENTITOIAULT hard trap (or, if the segmentito is part of the
descriptor segment, a DSEGSEGMENTITOIAULT hard trap).

PTA Singleword physical' address of the corresponding page table.
. .

WB Write bracket. Attempting to write into this segmentito from a ring (or, more
formally, with . a validation level) greater than WB causes an
ACCESS-VIOLATION hard trap.

EB . Execute bracket. Attempting to execute this segmentito from a ring (or,- more
formally, with a validation level) greater than EB causes an
ACCESS-VIOLATION hard trap. Note that a cross-ring call via the
instruction CALLX and the gate mechanism (Section 2.12.2) is not considered an
attempt to execute the called regmentito, and is thus exempt from EB restriaions.

RB Read bracket. Attempting to read this segrnentito from a ring (or, more formally,
with a validation level) greater than RB causes an ACCESS-VIOLATION
hard trap.

ACCESS Specifies access modes as defined later in this section for all pages in this

1 Introduction

segmentito.

SIZE Specifies the size of the segment that contains this segrnentito, expressed as a
base 2 logarithm of the number of pages in the segment (for example, SIZE=8
indicates the segment contains z8 pages, which is 2' segmentitor). SIZE must not

4 be less than 4 (2 pages, or 1 segmentito) or greater than 19 (2'' pages, or 15
3 1 segmentitos, or an entire 2 quarterword address space.)

FLAGS Reserved for use by software.
. .

VAL I D PTA I RB ACCESS^ SIZE I FLAGS

Figure 1-7
Segmentito table entry format

Page table entries: Each PTE is a singleword (shown in Figure 1-8) with the following format:

VALID If this bit is set, implying that this page is in memory, the processor uses the
remainder of the singleword as described here. Otherwise, the page is absent
and the software may use the remainder of the singleword as desired.
Attempting to access an absent page causes a P A G E J A U L T hard trap.

USED If VALID=l, this bit indicates the page has been accessed. (More precisely, the
processor sets this bit when it brings into the map cache (Section 2.14) llle
mapping information for this page.)

MODIFIED If VALIDcl, this bit indicates the page has been modified. (More precisely, the
processor sets this bit when it ma.rks the corresponding map cache entry to show
that the page has been written into.)

FLAGS Reserved for use by software.

ACCESS Specifies access modes for this page as defined later in this section.

PAGENO . T h e 22 high order bits of the physical address of this page.

Figure 1-8
Page table entry format

1.7.3 Segmentito and Page Table Entries 43 :

Access modes: The access permitted for a particular page is the logical AND of the ACCESS fields
in the STE and the PTE for that page. They permit an operating system to mark a page for
read-only access, write-only access, execute-only access, or any combination of reading, writing, and
execution. An instruction which attempts to access a memory location in violation of these markings
will cause an ACCESS-VIOLATION hard trap. (Of course, the attempted access must pass the
checking defined by the RB, EB, and WB fields in the STE, too.) Within each ACCESS field, the
bits have the following meanings:

WRITE-PERMIT .
Instructions may alter this segmentitolpage.

EXECUTE-PERMIT
A process may execute instructions fetched from this segmentitolpage

READ-PERMIT Instructions may read from this segrnentitolpage.

110-PACE 110 instructions may address this page, but ordinary instructions may not. Note
that the WRITE-PERMIT and READSERMIT bits determine whether the
110 instructions can write or read this page. . ,

Figure 1-9
Bits in ACCESS field

1 Introduction

1.8 Rings and Protection

T h e uniprocessor architecture provides three principal kinds of protection.

T h e first, specified in the PRIVILEGED field of the PROCESSORSTATUS register as
mentioned earlier, determines the rings from which privileged instructions may -be fetched for
execution.

T h e second, discussed in the preceding sections, applies to privileged and non-privileged
instructions alike, and to all four rings: unless otherwise noted, the architecture provides segment
bounds checking (which prevents a memory address calculation from erroneously exceeding the
boundaries of a segment) and access mode checking (which controls the ability of any instruction to
read, write, or execute a particular page).

A third kind of protection allows "downward" accesses (in which an instruction cxecuting in a given
ring reaches into a less protected ring to access an operand) but forbids "upward" accesses (in which
an instruction reaches into a more protected ring). This involves a process called validation, which
checks the TAG field of a pointer and alters it or, if necessary, invokes a BADA-VALIDATION
or BADP-VALIDATION hard trap to protect more protected (lower-numbered) rings against
forbidden accesses from less protected (higher-numbered) rings. There are two kinds of validation:
address validation occurs when a pointer is used in addressing an operand or specifying a jump
destination; and pointer validation occurs when a pointer is itself an operand (usually when the
pointer is being moved from one place to another). The following sections discuss the pointer
format, address validation. and pointer validation.

1;B.l Pointer Form at

As mentioned earlier, the pointers that serve as the base for most memory addrm.9 calculatiunr vr~d
all indirect references incorporate both a TAG field and an ADDRESS field (Figure 1-10). Pointer
tags play an important role in dynamic linking, in memory accesses from one ring to another, and in
calls from one ring to another.

Though the architecture also features self-relative pointers and byte pointers, the word "pointer" by
itself in this manual will always mean a tagged pointer with the format shown in Figure 1-10.

I TAG I ADDRESS I
0 4 5 35

Figure 1-10
Pointer Format

1.8.1 Pointer Format

Various values of the TAG field have the following meanings:

T~ Meaning

Fault. When an instruction ,attempts to access memory through this pointer, or
when the instructions MOVP or BASEPTR attempt to manipulate this pointer,
a BADJOINTER-TAG hard trap occurs.

Gate. As explained in Section 2.12.2, the CALLX instruction can use a pointer
with a gate tag to implement a procedure call from one ring to another. If any
instruction' attempts to use such a pointer to reference memory, however, or if the
BASEPTR instruction attempts to manipulate such a pointer, a
BADJOINTER-TAG hard trap occurs.' The MOVP instruction may,
howev,er, move such a pointer.

NIL. If an instruction attempts to use this pointer to reference memory, or if the
BASEPTR instruction attempts to operate on this pointer, a
BADADDRESS-TAG hard trap occurs. The MOVP instruction may, however,
move this pointer. A language translator such as LISP, Pascal, or PL/I may use
this painter to implement the NIL or NULL construct.

3 Reserved. Any attempt to reference memory using this pointer, or to manipulate
it with MOVP or BASEPTR, causes a BAD-POINTER-TAG hard trap.

4 'Ring 0 tag. An instruction which references memory through this pointer will

. . attempt to access the specified ADDRESS within the ring 0 address space.

Ring 1 tag. An instruction which references memory through this pointer will
attempt to access the specified ADDRESS within the ring 1 address space.

Ring 2 tag. An instruction which references memory through this pointer will
&tempt to access the specified ADDRESS within the rink 2 address space.

Ring 3 tag. An instruction which references memory through this pointer will
attempt to'access the specified ADDRESS within the ring 3 address space.

User tag. An instruction which references memory though this pointer will
attempt to access the specified ADDRESS within the same ring from which it
obtained the pointer (more precisely, it will access memory using as the initial
validation level the validation level derived in fetching the pointer; see Section
1.8.2.) Because these 23 tags are equivalent architecturally, software may use
them for its own purposes, such as encoding the data type of the entity being
addressed.

Fault. This behaves exactly like a tag of zero. Because all but the

1 Introduction

largest-magnitude positive and negative integers will have either 0 or 31 in the
tag field, assigning special meanings to tags of 0 and 31 increases the likelihood
that the erroneous use of a random singleword as a pointer will be detected as an
error.

1.8.2 Address Validation

T h e address validation that occurs during operand or jump destination evaluation applies to two
classes of pointers: those with TAG values in the range 4 . . 7, which are called ring pointers; and
those with TAG values in the range 8 . . 30, which are called user pointers. (One frequently refers
to ring tags and user tags in a similar fashion.).

An instruction or pointer is "trusted" by the ring from which it is fetched, and by higher-numbered
rings. Address validation enforces two rules. First, an instruction cannot access a ring unless the
instruction and each pointer used in computing the address are trusted by that ring. Second, an
instruction cannot access a location unless the instruction and each pointer used in computing the
address of that location are trusted by the ring specified by the EB, WB, or RB field--whichever is
appropriate--of the STE (Section 1.7.3) for the segmentito containing that location.

Because the architecture' allows virtual address spaces to overlap, it is imprecise to say that an
instruction, pointer, or operand "lies within a ring". The page containing the instruction, pointer, or
operand may lie within multiple rings. For an instruction, we refer instead to the "ring of execution",
meaning the ring specified by the PC in fetching the current instruction. For a pnin t~r or operand,
we refer to the validation level, an internal value derived by the addressing mechanism which
specifies which ring number to use in accessing the desired entity.

Using those terms, here is the algorithm for address validation:

1. For each operand, the address calculation mechanism initializes the validation level to the number
of the ring of execution.

2. Each time the calculation handles a pointer, it uses the validation level and the tag tn rleriv~' a.
new validation level:

a If the tag is a ring tag and the ring number is less than the validation level, a
BADA-VALIDATION hard trap occurs.

b. If the tag is a ring tag and the ring number is greater than or equal to the validation
level, the new validation level is the ring number.

c If the tag is a user tag, the validation level is unchanged.

1.8.2 Address Validation 4 '7

Note that the validation level can never decrease, because that would allow access to a more
protected ring.

Of course, an attempt to access memory is' also subject to checking specified by the ACCESS fields
' in the STE and PTE entries, and to that specified by the WB, EB, and RB fields in the STE entry:

the validation level derived'in computing the address must be less than or equal to that specified by
the WB, EB, or RB field--whichever is appropriate.

T o illustrate the rule that an instruction cannot use a pointer to access a ring which is more
protected than the ring of execution, suppose the following instruction executes in ring 1:

MOV RTA,(R 7) 100.e

The initial validation level is therefore 1. The address calculation first. uses R7 as its base pointer.
If R7 contains a pointer with a ring 2 tag and an address F, then the calculation proceeds legally
because 2>1, and the validation level increases to 2. Next the calculation fetches an indirect pointer
from address F+100 within the virtual address space of ring 2. Suppose that pointer has a tag of 1
and an address of B. Because 1 is less than the current validation level, a hard trap occurs--even
though the instruction itself is executing in ring 1 and could' have accessed location B in ring 1
directly. In this fashion, the cross-ring access mechanism prevents a pointer which is only trusted to
the level of ring 2 from exploiting the capabilities of a more trusted instruction executing in ring 1.

T o illustrate the additional checking provided by the EB, WB, and RB fields in the STE entry,
suppose that ring 1 and ring 2 are mapied to the same physical memory. If address F lies in a
segmentito for which the WB field in the segmentito is 1 and the RB field is 2, then either of the
following instructions can execute in ring 1:

(Recall from Section 1.6.4 that the tag for the operand "F" is implicitly that of the ring in which the
instruction executes.) The first instruction can execute in ring 2 as well, because RB.2. But the
second instruction will trap if it executes in ring 2, because WB=l. In this manner, one can give the
executive readlwrite access to a segmentito while limiting the user to read-only access.

The validation mechanism discussed in this section applies to the operands of jump and call
instructinns as well. The PC is itself a pointer. When the PC changes due to a jump, call, or return,
the new tag of the PC is the ring tag corresponding to the final validation level of the jump
destination or pointer used to change the PC. This prevents an instruction executing in a
higher-numbered ring from calling a routine located in a lower-numbered ring. Because such calls
are needed to permit user code to obtain operating system services, the architecture provides two
mechanisms that circumvent the validation scheme in a controlled fashion: the TRPEXE
instruction, discussed in section 1.9, and the CALLX instruction with gates, discussed in section
2.12.2.

1 Introduction

1.8.3 Pointer Validation

By itself, the address validation mechanism discussed in the previous section is not sufficient to
protect lower-numbered rings against mischief from higher-numbered rings. The ring number used
to fetch a pointer helps determine its validation level, so simply moving the pointer from a
higher-numbered ring to a lower-numbered one could give it additional capabilities.

For example, a user executing in ring 3 might construct a pointer tn data. in ring 0 and then pass
the pointer as the address of a parameter to an operating system routine executing in ring 0, thereby
deceiving the operating system into accessing, on behalf sf the user, data whirh i.s forbidden to the
user.

Therefore, whenever one moves a ring pointer or user pointer, it undergoes a second kind of
validation, called pointer validation, which alters its tag or, if necessary, traps to avoid giving the
pointer additional privileges. This validation is built into an instruction called MOVP, which
should be used in place of MOV whenever one moves a pointer. If a pointer is moved implicitly--if
it is passed from one ring to another via a register, for example--the recipient must deliberately
validate it using the VALIDP instruction.

Pointer validation involves two steps:

1. If the pointer is in a rpglriter, the initial validation level is thc number of the ring uf
execution. If the pointer is in memory, set the illltlal valirlaliu~~ level co equal the address
validation level derived in fetching it from memory.

2. Use that validation level to derive a new tag:

a. If the tag is a ring tag and the validation level is'greater than the number of
the ring specified by the tag, invoke the BADS-VALIDATION hard trap

(because this pointer wants to access a more protected ring than thc one from
.

which it was obtained).

b. If the tag is a ring tag and the validation level is less than or equal to the
number of the ring sp,ecified by the tag, preserve the tag (because this pointcr
wants to access a less protected ring than the one from which it was obtained).

c. If the tag is a user tag and the validation level equals the number of the ring
of execution, preserve the tag. (Because the pointer was obtained from the ring
of execution, it cannot possibly' be moving to a more protected ring. Moving it to
a less protected ring is harmless; at worst, if the pointer is fetched from that ring

1.8.3 Pointer Validation 49

and used for indirection, it will appear to point to a less protected entity than it
did before.)

d. If the tag is a user tag and the validation level is greater than the number of
the ring of execution, replace the tag with the ring tag corresponding to the
validation level.(the pointer may be moving to a more protected ring than the
one from which it was obtained, so make the latter explicit).

T o illustrate these rules, suppose a user routine called USER, executing in ring 3, has called an
operating system routine called EXEC, executing in ring 0. USER has constructed a ring pointer
called BAD, located in ring 3 but pointing to ring 0, and h.as passed in register RO a pointer to
BAD. (For the moment, we .will assume the pointer in RO is correct and trustworthy.) EXEC
executes the following instruction to move BAD into a location called TRUSTED within ring 0:

NOVP. P. P TRUSTED, (RBI

The processor first calculates the' address of BAD, using the address validation algorithm. The
address validation level starts at 0, the ring of execution, and becomes 3, the ring number specified
by the.pointer in RO. .

Once the instruction has addressed BAD, the pointer validation algorithm starts with 3, the
validation level derived during the address calculation, and examines the tag field of BAD ,itself,
which is a ring tag for ring 0. Because 0 is less than 3, the MOVP instruction traps.

Suppose instead that BAD is a user pointer. This time, when EXEC attempts to move it to
TRUSTED, the processor first calculates the validation level as 3, and then moves BAD to
TRUSTED. Because the validation level is greater than the ring of execution, the processor replaces
the user tag with the ring tag for ring 3. No error (and thus no trap) occurs.

But suppose instead thal Lhe 'pointer passed in register RO is itself bad--that is, USER has
constructed it to point to data in ring 0. The validation level of a pointer located in register 0 and
pointing to ring 0 is in fact 0, so no trap will occur when EXEC addresses memory through RO.
Even if EXEC is suspicious and attempts to move the pointer from RO to TRUSTED before using
it, the validation level still matches the ring tag, so no trap occurs:

T ~ A C illustrates the importance of using the VALIDP instruction to validate a pointer generated by
LII untrustworthy process and passed to a trustworthy routine through a register. Provided a called
routine applies VALIDP properly to every pointer passed in a register, it is protected completely
because the validation mechanisms will prevent violations by any other pointers inside structures
passed to it.

1 Introduction

1.9 Traps and Interrupts

Traps and interrupts signal the processor to change its context temporarily and deal with an
exceptional situation. Traps usually result from errors, while interrupts are usually invoked by
external devices in need of 110 service.

For each trap and interrupt which may occur, a series of singlewords in memory called a trap vector
or interrupt vector provides information on handling the trap or interrupt. The processor obtains
new state information from the vector, pushes its previous state onto a stack, and branches to a trap
handler address specified by the vector.

(Conventions vary on whether 'vector" applies to the group of singlewords pertaining to a particular
trap, or to the group of groups pertaining to all traps. We will always use "vcctor" to refer to Lhe
series of singlewords for a particular' trap, and will use "set of vectors" to refer to several consecutive
vectors for several similar traps.)

Traps which can be handled by a process at its own level of privilege. These include soft
traps caused by errors as well as traps caused by the TRPSLF instruction.

0 Traps which must be handled by privileged code. These include hard traps caused by
errors.

Q) Interrupts, all of which must be handled by privileged code.

Traps caused by the TRPEXE instruction, which are in effect calls to the executive.

@ The trap-like mechanism which uEes gntcs to make cross-ring calls (Sectlon '2. i2.2).

Each class of traps and interrupts has its own set of vectors. A register called the trap descriptor
block pointer (TDBP) contains the 34-bit physical address of a series of singlewords containing
ordinary tagged pointers, each of which points to the first singleword of a set of vectors:

Points to set of vectors for:
Ring 0 TRPSI..F traps
Ring 1 TRPST,E traps
Ring 2 TRPSLF traps
Ring 3 TRPSLF traps
Ring 0 soft traps
Ring 1 soft traps
Ring 2 soft traps
Ring 3 soft traps
Hard traps
Interrupts from I/O
Interrupts from counters
TRPEXE traps
Gate descriptor block for entering ring 0

1.9 Traps and Interrupts

Gate descriptor block for entering ring 1
Gate descriptor block for entering ring 2

Note that a set of vectors may lie in any desired ring, and the vectors may in turn point to handlers
in any ring which can be accessed from the ring containing the vectors. The vectors for ring 3 soft
traps may, for ejtample, lie in ring 2 even though ring 3 cannot access ring 2; but the handlers must
lie in ring 2 or ring 3, because r ing2 cannot access rings 0 or 1.

Each trap or interrupt vector has the following format: "

TRP-PARfl-DESC-SW

New USER-STATUS

New PROCESSOR-STATUS

ADDRESS (Hand l er l

(S i ng l ewordl

(Sing l eword)
Increasing

(S i ng l eword) addyesses
&

(S i ng l ewordl

Gates are a trap-like mechanism for cross-ring procedure calls which will be described in Section
2.12.2.

1.9.1 How the Processor Responds to a Trap or Interrupt

When the processor responds to a trap, it follows these steps (the same steps apply to interrupts):

1. Locate* the trap vector.

Within each set of traps, the possible traps are numbered consecutively starting at 0. When
a particular trap occurs,. the processor finds the appropriate trap vector using the TDBP,
the pointer to the appropriate set of traps, and the number of that trap within the set. If,
for example, hard trap number five occurs, the processor fetches (from the eighth
singleword past the one pointed to by TDBP) a pointer to the set of hard traps, and then
uses the vector located 5*4 singlewords beyond the start of that set (because each trap
vector is 4 singlewords long).

2. Push the current state onto the stack pointed to by the SP in the register file specified
by -the new PROCESSORSTATUS found in the trap vector. The act of pushing this
information onto the stack is atomic, and any interrupts will'remain pending until it is
complete. A hard trap may result, however--if, for example, the SP crosses a segment
boundary, exceeds SL, or touches an absent page--and such a hard trap does intercede
(Section 1.9.6).

1 Introduction

T h e information is pushed onto the stack in the following format, known as the save area
for the trap:

*I o ld PROCESSOR-STATUS I
0 I ~ S E R R _ S T A T U S

old PC

o l d PCJEXT-INSTR

SIZE
-

INSTRUCTIQN-STATE

PARAMETER-AREA

SP-, 0 35 '
Top o f stack

(1 s i ng 1 euord)

(1 sing l euordl

(1 singleword)

(1 s i ng l eword)

(1 sing l eword)

(GI ZE 9 i ng l euords)

(v a ~ ' . ~ i I ~y I I U I I I L J ~ ~ . u t sl ng l ewor'ds)

(32 s i ng l ewordsl

(1 singleword)

(1 singleword)

If the trap is a soft trap or TRPSLF, it pushes a 'singleword zero in place of the old
PROCESSORSTATUS, because such traps are not privileged and thus may not access
PROCESSORSTATUS.

SIZE is the number of sii-~glewords occupied by the INSTRUCTIONSTATE portion of
the save area If SIZE=O, then INSTRUCTIONSTATE does not appear at all.
INSTRUCTIONSTATE itself stores instructinn-dcpcndcnt and
implementation-dependent information required for restarting the instruction that was in
process when the trap occurred. Some instructions are said to be interruptable, meaning
that interrupts can occur during their execution. A vector arithmetic instruction, for
example, may encounter a trap or interrupt part way through the Processing of the vectnr.
INSTRUCTIONSTATE would in such a case contain the information needed to
proceed with the. remainder of the vector ,after handling the trap or interrupt, since it
would be wasteful or even incorrect to start over at the beginning of tho instruction.

PARAMETERAREA contains information about the cause of the trap, and varies in
content and size from one trap to another. The programmer may infer the size of this area
in any particular instance by comparing S P with the old SP value provided on the stack.

REGISTERSAVEAREA is not used by the architecture; the trap handler routine may
save the registers here if it so desires.

The "old SP" pointer specifies where the top of the stack was prior to the trap (note that it
points to the stack used in handling the interrupt, not necessarily the same as the stack that
was in use when the trap occurred). Because the SP stack grows upward and the pointer
for upward-growing stacks indicates the free location atop the stack, it turns out that "old
SP" points to the beginning of the save area itself.

1.9.1 How the Processor Responds to a Trap or Interrupt

3. Load the new USER-STATUS value given by the trap. Provided the trap is not a soft
trap or TRPSLF, load the new PROCESSORSTATUS value given by the trap vector.
(Because the' user may be allowed to handle soft traps and TRPSLF traps within an
unprivileged ring, these traps cannot alter PROCESSORSTATUS.)

4. Jump to the trap handler specified in the trap vector. The trap handler address is a
pointer, so this jump is subject to pointer validation checking, using as the initial
validation level the number of the ring containing the trap vector.

1.9.2 Soft Traps

As mentioned, earlier, soft traps are those which can be handled without increasing the level of
privilege.

Soft traps supply the following information within the PARAMETERAREA pushed onto the SP
stack:

If the destination operand is a memory location, DESTINATIONADDRESS is a standard pointer
with tag and address fields. If the destination is a register, then DESTINATIONADDRESS gives
zero (fault) as its tag and the register address (in terms of quarterwords) as its address.

DESTINATION-ADDRESS

UNSTORED-RESULT

Operand 1

Operand 2

UNSTORED-RESULT is the result that would have been stored in the destination address if no
trap had occurred. If it is an integer, it is sign-extended to be four singlewords long, with the most
significant portion in the singleword having the lowest address. If it is a floating point value, it
appears in the following format, where "S" is the one-bit sign and "-S" is the hidden bit (Section
2.3.1):

(Sing l eword)

(4 S i ng l ewords).
I nc reas ing

(Doub l eword) addresses

(Doub l eword)
4

1. Introduction

"Operand 1" and "Operand 2" are the values of the source operands, sign-extended as necessary to
be doublewords. If the instruction has only one ,operand aside from the destination, then "Operand
2" is undefined.

EXP

RANT (hi gh-order),

MANT

NANT (l ow-order1

Soft traps include:

(S i ng l eword)

(Sing l ewordl
Increasing

(Sing l eword) addresses

(Sing l eword)
5.

0: NO-FAULT No fault has occurred. This trap never occurs; it is defined simply so that
software can use the value "0" to encode the absence of a trap.

b FLT-OVFL-TRAP
Floating point overflow occurred with FLT-OVFLNODE=O.

% FLT-UNFL-TRAP
Floating point underflow occurred with FLT-UNFL_MODE=O.

3: PET-NAN-TRAP
T h e floating point result was not a valid number and FLT.-NAN-MOnF,=O

4: INT-OVFL-TRAP
Integer overflow occurred and INT-OVFLMODE=O.

!k INT-Z-DIV. .TRAP
Integer division by zero occurred and INTZDIVJfODE=O.

6: BOUNDS-CHECK
T h e BNDTRP instruction found its argument out of bounds.

A FFT-TOO-LONG
An FFT instruction was required to operate on a vector whose size exceeded the
maximum for this implementation.

8: LOST-PRECISION
An instruction such as FSIN or FCOS would deliver an imprecise result because
its source operand is much larger than 1.

1.93 TRPSLF and TRPEXE Traps

1.9.3 TRPSLF and TRPEXE Traps

The TRPSLF and TRPEXE instructions effectively let the user add a number of software-defined
instructions to the instruction set. Simply assign a trap vector number to each new instruction and
provide a corresponding trap handler routine to implement the instruction. Like XOP instructions
in general, TRPSLF and TRPEXE instructions can take zero, one, or two operands. And like
certain X O P instructions, they can place restrictions on whether each operand can be a constant, a
quarterword, a singleword, et cetera.

The number of operands and the restrictions on operands for a particular trap are specified in-a
word called T R P S A R M D E S C S W (trap parameter descriptor singleword) in the trap vector itself,
which has the following'format:

When the instruction executes, it evaluates OD1 as specified by TMODEl and places the result in
the first doubleword of the PARAMETERAREA pushed onto the SP stack. It evaluates OD2 as
specified by TMODE2 and places the result in the second doubleword of the
PARAMETERAREA. Those two doublewords constitute the entire PARAMETERAREA for
TRPSLF and TRPEXE traps.

A TMODE value outside the range 0 . . 7 causes a BAD-TMODE hard trap to interrupt the
execution of the TRPSLF or TRPEXE. TMODE values within that range have the following
meanings:

0: Unused operand
The operand must be unused (that is, the descriptor must be zero) or a hard trap
interrupts the execution of the TRPSLF or TRPEXE.

'

k Undecorled OD Without decoding it, sop9 the operand descriptor into the high order half of the
doubleword parameter, right-justified in a field of zeroes. Do not fetch any
extended address word. This is analogous to the treatment of the JUMPDEST
field 1n the relative form of a JOP instruction. The low-order half is undefined. '

2: Undecoded OD and extended word
Without altering it, copy the operand descriptor into the high order half of the
doubleword parameter, right-j~lstified in a field of zeaees, If the descriptor calls
for an extended word, copy that into the low ,order half; otherwise, the low-order
half is undefined.

1 Introduction

3: Virtual address
Obtain a pointer to the operand and store that, rather than the operand itself, in
the high order half of the doubleword parameter. The low order half is
undefined. This corresponds to the behavior of instructions like MOVP-PA
and PUSHADR. Note that the address validation mechanism must use the ring
number of the ring which executes the TRPEXE, not the ring containing the
vector or the TRPEXE handler. If the operand is a constant or a register, a
hard trap interrupts the execution of TRPSLF or TRPEXE.

4: Quarterword Interpret the operand descriptor to obtain a quarterword and store it in the high
order half of the 'doubleword parameter, left justified in a field of zeroes. The
low order half' is undefined. 'l'his treats the operand exactly as would a .".qi
i~SrrUctiOtI like "AI3D.W thus, for example, it discards the high order bits of' a
constant if necessary.

5: Halfword .Interpret the operand descriptor to obtain a halfword and'store it in the high
order half of the doubleword parameter, left justified in a field of zeroes. The
low order half is undefined. This treats the operand exactly as would a ".H"
instruction like "SUB.HW: thus if, for example, the operand specifies a memory
location, that location must be halfword aligned or a hard trap interrupts the
execution of TRPSLF or TRPEXE.

6: Singleword Interpret the operand descriptor to obtain a singleword and store it in the high
order half of the doubleword parameter. The low order half is undefined. This
treats the operand exactly as would a ".S" instruction like SHFA.LF.Sn: thus if,
for example, the operand specifies a memory location, that location must be
singleword aligned or a hard trap interrupts the execution of TRPSLF or
TRPEXE.

7: Doubleword Interpret the operand descriptor to obtain a doubleword and store it in the
duuLlewurd pararrleler. This iriterprets the operand exactly as would a ".DW
instruction like "ANDTC.Dn: thus if, for example, the operand specifies a
memory location, that location must be singleword aligned or a hard trap
interrupts the execution of TRPSLF or TRPEXE. Similarly, if the operand
specifies a constant nddrcssing modc using 90 3" or "? !Ow, the constant will be
extended properly before it is placed in the doubleword.

Note that the return from a handler routine for TRPSLF or TRPEXE will ordinarily use the
RETUSA or RETFSA instruction to avoid repeating the trap indefinitely.

1.9.4 Hard Traps

1.9.4 Hard Traps

Hard traps are:

0: NO-FAULT No fault has occurred. This trap never occurs; it is defined simply so that
software can use the value "0" to encode the absence of a trap.

1: DSEG-SEGMENTITO-FAULT
The VALID field in the STE for a segmentito within the descriptor segment is
zero, implying the required segmentito ismot present in memory.

2: DSEG-PAGE-FAULT
The VALID field in the PTE for a page within the descriptor segment is zero,
implying the required page is not present in memory.

S: SEGMENTITO-FAULT
The VALID field in the STE for a target segmentito is zero, implying the
required segmentito is not present in memory.

4: PAGE-FAULT
The VALID field in the PTE for a target page is zero, implying the required
page is not present in memory.

5: ACCESS-VIOLATION
Accessing an operand would have violated access mode checking (the ACCESS

. ;field .within'an, STE or PTE) or .segmentit0 ring bracket checking (the WB, EB,
and. RB fields within &.STE).

6: GATE-INDEX-TOO-BIG . .

A cross-ring call used a gate pointer whose index exceeded the maximum index
for the ring in question, or.whose ring number was 3.

. . 7: BAD-POINTER-TAG
An ordinary instruction tried. to.use a. pointer with a fault tag or reserved tag to
reference memory; or the MOVP or BASEPTR instruction tried to manipulate a
pointer with a fault tag or reserved tag,

8: BAD-ADDRESS-TAG
An instruction tried to reference memory through a pointer with a NIL or gate
tag, or a BASEPTR instruction tried to manipulate a pointer with a NIL or gate
tag. .

1 Introduction

9: OUT-OF-BOUNDS
Accessing an operand would have violated segment bounds checking.

10: PRIVILEGE-VIOLATION
A privileged instruction attempted to execute in user mode.

11: ILLEGAL-INSTRUCTION
The instruction opcode is undefined.

1% TRACE-TRAP
The TRACEJENB bic in PROCESSC)R,STA.TTJ i.c 1.

13: CALL-TRAP T h e CALL-TRACESEND bit in PROCESSORSTATUS is 1.

14: STACK-OVERFLOW
The instruction would have caused a stack pointer to exceed the corresponding
stack limit.

15: RESERVED-ADDRESS-MODE
An O D and/or its associated EW has an undefined value.

16: OPERAND-NOT-REQUIRED
An unu~ed 'o~e rand descriptor was not set to zero.

17: ALICNMENT,ERROR . 1

An operand was not properly aligned.

18: ILLEGAL-OPERAND-MODE
The instruction attempted to use a register as an operand where forbidden;
examples are vector instructions and instructions which f'ind ADDRESS(x).

19: ILLEGAL-CONSTANT
Thp instrt~rrinn attempted to use a conrtant as a destination or a jump addrcm,
or attempted to find the address of the constant.

20: ILLEGAL-BYTE-PTR
The position or offset field of a byte pointer was invalid.

21: ILLEGAL-SHIFT-ROTATE
The bit count for a shift, rotate, or bit reversal instruction was negative or too
large .

22: ILLEGAL-TRACE-PEND
An instruction (such as SWITCH or RETFS) is attempting to resume execution

1.9.4 Hard Traps 59

of an interruptable instruction which was left unfinished due to a trap or
interrupt. The PROCESSORSTATUS.TRACE_PEND bit is set. Because the
TRACESEND bit could not have been set at this point in the execution of the
interruptable instruction, this indicates that privileged code must have
erroneously set the bit some tiine between the interrupting of the instruction and
the attempt to resume execution; The trap occurs on the instruction which
attempts to transfer control back to the interruptable instruction, not on' the
interruptable instruction itself.,

211: ILLEGAL-IOMEM
An instruction attempted to access an 110 memory not attached to this
uniprocessor.

24: RING-ALARM-TRAP
A ring alarm occurred upon changing the.ring of execition.

25: ILLEGAL-STATUS
An instruction attempted to place an illegal value in USERSTATUS or
'PROCESSORSTATUS.

26: ILLEGAL-REGISTER
One of the privileged register access instructions specified a register or register
file number out of range.

* .

2% ILLEGAL-PRIORITY
The WIPND instruction specified a priority level outside the range 0 . . 31.

28: NONEXISTENT-MEMORY
The processor attempted to access memory which does not physically exist at this
installation.

29: BAD-A-VALIDATION
A memory access would violate the rules for address validation. '

30: BAD-P-VALIDATION
A memory access would violate the rules for pulr~ter validaliu~~.

31: VMM-TRAP The processor was in virtual machin? mode and attempted to execute any '

privileged instruction, or one of the user mode instructions which are specified to
trap in virtual machine mode.

32: BAD-T-MODE
A TRPSLF or TRPEXE instruction found an invaiid value in the TMODEI or
TMODE:! field of the trap parameter descriptor singleword.

60 1 Introduction

Parameters for hard traps: Only the following hard traps push any PARAMETERAREA within
the save area:

1. DSEGSEGMENTITOJAULT, ' DSEGSAGEJAULT, SEGMENTITOJAULT,
PAGE-FAULT, and ACCESS-VIOLATION provide one sing!eword giving the virtual address,
in pointer form, of the operand being referenced.

2. GATEJNDEX-TOOBIG provides a copy of the gate pointer containing the invalid index.

3. BADSOINTER-TAG and BADADDRESS-TAG give a copy of the pointer whose tag was
invalid.

4. OUT-OFBOUNDS provides a copy of' the last base pointer encountered prior to the efrsr,
followed by a singleword giving the effective offset from that pointer (which may be the sum of an
offset and index) which caused the error.

1.9.5 Interrupts

There is one interrupt vector for each 110 memory associated with the processor. Interrupts do not '

push any PARAMETER information within the save area Interrupts are described further in
Section 1.10.

1.9.6 Recursive Traps

When a trap attempts to push information onto the SP stack, a hard trap may occur due to stack
overflow, a page fault, an access violation, and so on.

If the original trap was a soft trap, the SP is left at its original position preceding the soft trap while
the hard trap occurs. If the handler for the'hard trap solves the stack problem and returns with a
RETFS.R instruction, the operation which caused the soft trap is restarted and presumably the soft
trap will recur, this time completing without encountering a hard trap.

If the original trap was a hard trap, the processor will halt. The front end processor must take
appropriate action, since this situation indicates a serious system failure.

An S-1 processor performs 110 by reading and writing one.or more 110 memories, each of which is
shared between the S-1 processor and an, 110 processor (IOP). The architecture places few
constraints on the IOP, which might be a commercially available minicomputer or specially designed
hardware. Similarly, the architecture does not dictate how to use the memory to control devices, or
how many devices to control through each memory. Instead, these details are determined by the
IOP and by the device handler software within the S-1 processor.

An I10 memory appears to the S-1 processor as one or more pages of 36-bit singlewords. The IOP
itself may have a much different memory format, because both the hardware and the 110
instructions themselves can provide transformations between the S-1 processor memory format and
that of the IOP.

For proper operation, the S-1 processor must set the I O P A G E bit within the ACCESS field of
each of the STEs and PTEs corresponding to an 110 memory page. This permits 110 instructions to
access the page and prevents non-110 instructions from accessing it. The S-1 processor must also set
the READSERMIT and WRITESERMIT bits to grant the access desired. The RB and WB
fields in each STE entry will also restrict access to 110 pages.

16 Each 110 memory has a unique number in the range 0 . . 2 -1. (In a multiprocessor system, the
numbers are unique throughout the system, and an attempt by a uniprocessor to refer to an 110
memory not connected to that uniprocessor causes an ILLEGALJOMEM hard trap.) When an 110
instruction addresses an operand on an 110 page, the usual virtual-to-physical address translation
occurs, and the resulting physical address provides the 110 memory number and the address within
that 110 memory:

Physical Address

0 15' 0 17
I / O Memory Number Offset Within I / O Memory

A vector 110 transfer performs this translation once for the first element of the vector. It obtains
succeeding elements from succeeding 110 memory locations, without translating their virtual
addresses, even if those elements lie on different pages which might specify different I10 memories
or even main memory. If the length of the vector causes it to overrun the end of the I10 memory,
the result is undefined.

Each I10 memory has one interrupt whose number is the same as that of the 110 memory, an
ENABLE bit which is controlled by the S-1 processor, and a priority ranging from 1 . . 31, which is
controlled by the associated IOP. The S-1 processor itself can have a priority ranging from 0 . . 31,
specified by the PRIORITY field in PROCESSORSTATUS. When an interrupt occurs, the S-1
processor traps through the interrupt vector corresponding to the 110 memory number only if the

1 Introduction

ENABLE bit is true and the priority of the memory is greater than that of the S-l processor.
Otherwise, the interrupt remains pending until those conditions become true.

If multiple interrupts satisfy those conditions at once, the S-1 processor services them in descending
order of priority. When multiple interrupts have the same priority, the S-l processor services them
in a consistent order, but the order is implementation-dependent.

Note that setting the S-1 processor priority to 0 permits..every 110 memory to interrupt, while setting
it to 31 prevents any I10 memory from interrupting.

Section 1.9 explains how the processor reacts to an interrupt, obtaining a new context from the
~nterrupt vector and pushing its old context onto the SP stack. Note that the PRIORITY field in
the new PROCESSORSTATUS obtained from the interrupt vector is ignored. Instead, the
processor priority is set to match the priority level of the interrupt and, unless otherwise altered,
remains at that level until the interrupt handler returns and restores the old
PROCESSORSTATUS.

1.10.1 110 Memory Translation

Mapping the IOP memory format onto the S-1 processor format may involve two separate
transformations. First, the hardware design of the I/O memory converts the IOP format to a 36-bit

- singleword format. Second, certain 110 instructions translate portions of the singleword as they copy
between 110 memory and non-110 memory.

T h e hardware conversion will vary among IOPs, so the architecture does not specify it. But in most
cases, a reasonable conversion is obvious. The following diwm shows reasonable cnnversinns for
8-bit, 16-bit, and 36-bit IOPs:

1.10.1 110 Memory Translation

8-bi t IOP I/O Memory

Increasing
addresses

4,

16-bi t , byte-addressed I /O Memory
I OP

Increasi ngFl 8 10 17 19 26 28 35
addresses

J.

16-bi t IOP. I/O Memor-y

Increasing
addresses

4,
0 7 8 15

36-bi t IOP I /O Memory

Some 110 instructions perform no further transformation, but simply copy an anyword between 1 1 0
memory and non-I/O memory. Others--the 110 instructions which use the modifiers
(B,QH,S]--provide four different ways to translate singlewords by shifting fields within them:
bitwise, quarterword, halfword, and singleword translations. In the diagrams that follow, "X"
indicates that the corresponding field is ignored when an 110 instruction reads it or set to zero when
an 110 instruction writes it.

Bitwise translations map the eight low-order bits of each quarterword in 110 memory onto all 36
bits of each singleword in non-110 memory:

I /O Memory' Non-I/O flemor
1 7 9 17 19 27 29 35 0 7 8 18 16 2324 31 32...

Quarterword translations map each quarterword of 110 memory onto the corresponding
quxtvrword of non-110 memory:

1 Introduction

I /O Memory Non-I /O Memory

A I B I C I I B I C I D I
0 8 9 1718 2627 35 0 8 9 1718 2627 35

Halfword translations map the eight low-order bits of two successive qtiarterwords within an
aligned halfword of 110 memory onto the sixteen low-order bits of a halfword in non-110 memory:

I /O Memory Non-I [O flemor y

Singleword translations map the eight low-order bits of four s~lrcessive quarberwordc within an
aligned singleword of 110 memory onto the 32 low-order bits of a singleword in non-110 memory:

I / O Memory Non-I /O Memory

A B I C D

1 8 10 17 19 26 28 35 4 11 12 19 20 27 28 35

1.1 1 Instruction Execution Sequence

1.11 Instruction. Execution Sequence

The architecture divides the effect of an instruction into two halves, operand evaluation and
instruction execution, and requires that the processor behave as if operand evaluation were complete . .
before instruction execution begins.

Thus, unless otherwise stated, all operands required for execution are prefetched--that is, all address
computations (including indirection) are done and all source operands ' are available before the
operation specified by the instruction is performed and before results ar2 stored.

The second half, the instruction execution sequence, consists of the following steps:

1. Process interrupts: If an interrupt is pending and has sufficient priority, trap through
the appropriate interrupt vector to the specified interrupt .handler. On returning from the
interrupt handler, start at the beginning of step 1 'again, sb that- if further interrupts are
pending, they will also be serviced.

. .: ..

2. Process trace traps and clear the TRACE-PEND bit: If the TRACE-PEND bit in
PROCESSORSTATUS is 1, set TRACE-PEND to 0 so that traps encountered in step 3
do not cause the instruction to be traced redundantly, and invoke the TRACE-TRAP
handler. Next, if the CALL-TRACE-PEND bit in PROCESSOR-STATUS is 1, set
CALL-TRACESEND to 0 so that traps enccuntered in step 3 do not cause the
instruction to be traced redundantly, and invoke the CALL-TRAP handler. Finally, if
either handler was invoked, restart the instruction-execution sequence at step 1.

3. process pre-operation traps: If any other traps (such as page faults or illegal memory
accesses) that can be detected prior to the operation specified by the, instruction are
pending, invoke the appropriate trap handlers. On returning from the l a t trap handler,
restart the instruction-execution sequence at step 1.

4. Save TRACE-ENB and CALL-TRACE-ENB: Save the values of the T R A C E J N B
and CALL-TRACEXNB bits internally.

5. Operation: Perform the specific operation defined for this instruction, after first
examining the instruction state. Some lengthy instructions--vector instructions, for
example--are said to be interruptable. This means that an interrupt can suspend execution
during step 5, saving the state of the instruction execution on the SP stack in
INSTRUCTION-STATE as described in Section 1.9. Thus, if the instruction is known to
,be interruptable, and INSTRUCTIONSTATE indicates the instruction is in such a state
of suspended execution, step 5 will pick up where execution left off; otherwise, step 5 will
start from the beginning.

When an instruction is interrupted in the fashion just described, the processor proceeds to
execute the instructions of the trap handler, following this sequence for each one. On
returning from the trap handler, the processor reencounters the interrupted instruction,
and begins processing it again from step 1. Only when the processor reaches step 5 and

0

1 Introduction

interrogates INSTRUCTIONSTATE does it become clear that this is the resumption of
a suspended instruction.

6. Process post-operation traps:' If any traps (such as arithmetic overflow) resulted from
step 5, invoke the appropriate trap handlers.

7. Set TRACE-PEND and CALL-TRACE-PEND: If the value of TRACEXNB saved
i n step 4 is 1, set TRACEJEND to 1. Thus, if tracing was enabled when this instruction
commenced or if this instruction itself sets TRACE-PEND during step 5, a trace trap will
occur on the following instruction even if this instruction disables tracing.

Similarly, if the value of CALL-TRACEINB Saved in step 4 is 1, and the instruction
just executed in step 5 was a call w return (Section 2.12 defines these), then set
CALL-TRACESEND to 1.

8. Clear the instruction state.

1.12 Mark IIA Implementation

1.12 Mark IIA Implementation

Individual implementations of the S-1 Native Mode Architecture may vary in some respects from
the description in this document. The S-1 Mark IIA Uniprocessor embodies the following:

1. Segment bounds checking does not take place during the evaluation of an operand which is
fetched as an instruction rather than as data.

2. Segment bounds checking does occur when an instruction is fetched from address
PCNEXTJNSTR. Due to the instruction pipeline, the four singlewords following the first
singleword of an instruction must lie within the segment and on a page with EXECUTEPERMIT
access, regardless of the number of singlewords occupied by the instruction and its operands.

3. The USED bit in a PTE may, as a result of wrong-branch evaluation in the pipeline, indicate
that a page was used when in fact it was not. A similar statement applies to the MODIFIED bit.

4. Attempting to take the FFT of a vector of more than 2'* elements causes an FFT-TOOLONG
soft trap.

5. Only the 11 low-order bits of address space IDS are significant.

6. Instructions for which rounding is inexact guarantee their results are monotonic--that is, if x2y
then F(x)lF(y)--with an error that is less than or equal to 0.75 of the least significant bit of the
mantissa. Instructions for which rounding is exact guarantee an error less than or equal to 0.5 of the
least significant bit.

The following instructions exhibit inexact rounding:

FRECIP
FCMAG, VFCMAG
FSQRT, VFSQRT
FLOG
FEXP
FSIN
FCOS

, FSINCOS
FATAN, FATANV
VF2DIS, VF3DIS
FCFFT, FCFFTV

7. RETFS.A will not copy CALL-TRACEJENDING from the value of
CALL-TRACEXNABLE in the saved PROCESSORSTATUS. If one aborts a call or return
instruction, one must intervene anyway to patch up the control flow of the program, and one can
explicitly reinvoke tracing. RETFSA will handle TRACESENDING as specified.

2 ' Instruction Set
This section describes the S-1 native mode instruction set. For conciseness, it assumes familiarity
with the architecture as described in Section 1; for example, instead df explicitly stating the number
and types of operands for each instruction, it simply, classifies each instruction as an XOP, TOP,
HOP, SOP, or JOP; Similarly, it avoids restating again and again the rules given in Section I for
vector operands.

2 Instruction Set

2.1 Signed Integer Arithmetic

Signed integer arithmetic instructions interpret their operands--whether quarterwords, halfwords,
singlewords, or doublewords--as two's complement da ta For any given precision, we call the largest
positive integer M A X N U M and the negative integer with the largest magnitude M I N N U M .

Precision MINNUM MAXNUM
Quarterword -256 255
Halfword -131 072 131 071
Singleword -34 '359 738 368 - 34 359 738 367
Doubleword -2 361 183 241 434 822 606 848 2 36 1 183 241 434 822.606 84'1

U . 1 Integer Arithmetic Exceptions ' . .

. . . . :. .

Inside ,the USERSTATUS register, three bits called CARRY,INT-OVFL (integer overflow), and
I N T Z D I V (integer division by zero) record the ride effects o r exceptions that occur during integer . .

arithmetic. INT-OVFL and I N T Z D I V are sticky--that is, integer arithmetic operations may set
them but never clear them, so once one of these bits is set it remains set until explicitly cleared by
manipulating USERSTATUS. CARRY is not sticky; instructions which affect CARRY will slcar
it if they do not set it.

CARRY cury-ou't or borrow-in from integer arithmetic.

INT-OVFE Integer overflow (that is, the result is greater than or equal to.MAXNUM or the
result is less than or equal to MINNUM).

INT-2-DIV Integer division by zero.

For example, the following three instructions set CARRY, INT-OVFL, and I N T Z D I V :

I NC RTA, #-I ; -1+1 invnkes CARRY
INC RTA,#C377777,,7777771 ; NAXNUfl+l invokes INT-OVFL
REV RTA, #0 ; Rema i nder (RTA/0) i nvokes INT-Z-DI V

Two additional fields called INT-OVFLMODE and INT. Z ,DTV-.MODE t ~ 1 1 the processor how
to respond to the INT-OVFL and I N T Z D I V exceptions respectively--whether to trap or what to
use as the result of the arithmetic operation which encountered the exception. (Note that setting one
of the exception bits by manipulating USERSTATUS will not produce the specified response; the
bit must be set by integer arithmetic):

2.1.1 Integer Arithmetic Exceptions 7 1

_ : . . '

INT-OVFL-MODE
0 Invoke INT-OVFL-TRAP soft trap without storing a result.
1 Retain as many low-order bits of the result as possible for the precision

in question, overwriting the sign bit.

INT-Z-DIV-MODE
0 Invoke INTZDIV-TRAP soft trap without storing a result.
1 Use 0 as the result.

2.1.2 CARRY Algorithm

To determine whether a particular instruction sets CARRY, evaluate the following formula XI,
X2, and X3 are the values shown for that instruction in the following table, and C J N is the state of
CARRY at the beginning of the instruction:

CARRY = (X I <0 A X2<01 v (X I <0 v X2<0) A (X l+X2+X3 L 0) 1

In the following table, "1" mearis one's-complement; and "-1" is the two's-complement of 1.

Instruction
ADD
ADDC
SUB
SUBV
SUBC
SUBCV
INC

DEC

NEG

ABS

X8
0
C J N
1
1
C J N
C J N
0
(i-e., CARRY:=I if O P 2 = -1)
0
(i.e., CARRY:= 1 if O P 2 * 0)
1
(i-e., CARRY:= 1 if OP2 = 0)
1
(i-e., CARRY:=I if O P 2 - 0)

72

2.1.3 Signed Integer Arithmetic

2 Instruction Set

2.13, Signed Integer Arithmetic 7 3.

:..- f ' .:.. Integer add

ADD . (QH,S,D) TOP,

. . . Purpose: DEST:=S l+SZ. The integer sum of S A and S2 is stored in DEST. :..,

Restrictions: None ,

Exceptions: CARRY, INT-OVFL ,

Precision: S 1, S2, and DEST all have the . precision. . specified. by .the modifier. , :

is set by; the;following in>truction. .,Note . . . that 777 . . . has the signed..interpretation -1 and th.e r
unsigned interpretation 2'- 1:

/ -

1.
.

I I . ' ..;
t

A0D.Q. RTA,#333,#777.. . ,, . -. .:RTA: -332 (QW) . .

L . ,. . ,, . .
. % ' : ,

_I
. h . : >

, . . . I . . '.:
. :

'a . . . 3 , : . ' < , . " . : . . .; . .-< '

. . .! i . ., , ' . 7 . . : , : . . . , " ' ? ; . . , . < . , .,,,; , _ ! \ 3 ; . :
. I . . . r . . , . . , . .

, , . . I . . . : . . .
.: :,.. ' * . . ._ : : . , . : . - :

. ; : . , . . ,
. >a,*. ! . , . : . . ', . , ' . . ,

2 Instruction Set

ADDC Integer add with carry

ADDC . (QH,S,D) TOP

Purpose: DEST:=S l+SZ+CARRY

Restrictions: None

Exceptions: CARRY, INT-OVFL

Precision: S 1, 52, and DEST all have the precision specified by the modifier.

Fry is set after the execution of the first instruction;arid cleared after the second: , 1
AD0.Q RTA,#666,#777 ; RTA r -665 (QW 1
ADDC.Q RTA,RTA,#l ' .; RTA: =667 (QW 1

The'following adds two "quadruple-word" integers at X, a ~ d Y represented, as a pair of DWs
with the low-order DW having the higher address. The result is stored in X and X+8:

Similarly, suppose that NUM 1 and NUMZ aretwo blocks of singlewords, each of length N (N22)
and representing an N-word integer, with. lower-order words having higher addresses. These
can 'be added and the resuit stored in an (N+l)-word block NUM3 in this manner: .

. .

NOV.S.S RTB,#<N-I> ;RTB counts words

ADD. S RTA, NUV1 IRTBI 9 2 , NUN? [RTBI t 2 ; add l ow-,order words

NOV. S NUfl3+4*1 ilH I t l l t Z , H I'A ; s tore low-order r e s u l t
LOOP: AD0C.S R T A , N U M ~ - ~ * ~ C R T B I ~ ~ , N U M ~ - ~ ~ C ~ [R T B I ~ ~ ;add next uords p lus c a r r y .

NOV. S. S NUN3 [RTBl t 2 , RTA ;s tore nex't word
DJMPZ.GTR RTB,LOOP ;DJMPZ.does not a l t e r c a r r y !

. . CPlPSF.LSS.S RTA,NUM1,#0 ;produ~b sign-extension o f

, CMPSF, LSS RTB, NUM2, #0 ; NUMl and NUM2
A0DC.S NUfl3,RTA,RTB

L
;produce high-order r e s u l t '

2.1.3 Signed Integer Arithmetic

SUB . : . Integer subtract
, .

. . .
.

SUB . {Q,H,s,D} TOP
. . . . suav . {Q,H,S,D} a TOP

I

Purpose:,,SUB computes. . . . DEST:=S 1-$2; SUBV computes DEST:=S2-S I : .

Restrictions: None

. . . Exceptions: CARRY, INT-OVFL - . .

Precision: S 1, S2, and DEST . . . all have the ., precision, , specified . . . b,y the. modicier. . , ., - . . . I

This example subtracts .I from . . . -.l to obtain -2. After execution, CARRY . . . 1s set, r . .
clear, A d RTA contains -2: .: . . , . ' , . . . ? . >.. , ,

L .
SUB. S RTA, #-I, #1 ; RTA: =-2

, 7 . '

76 2 Instruction Set

SUBC Integer subtract with carry

' .
SUBC . (Q,H,S,D) TOP
SUBCV . (Q,H,S,D) TOP

Purpose: SUBC computes DEST:=S 1-S2-l+CARRY; SUBCV computes DEST:=S2-$1-l+CARRY.

Restrictions: None

Exceptions: CARRY, INT-OVFL

Precision: S1, S2, and DEST all have the precisinn specified by the modifier.

Ft X and Y be two pairs o f DWs representing a long integer with the low-order DW having
the lower address. The following sets X to the difference of X and Y: 1

SUB.D X,Y

L '
SUBC.0 X+8.,Y+8.

J

2.1.3 Signed Integer Arithmetic 7 7

MULT Integer multiply

.. - - , . , .

MULT . IQ,WS,Dl , TOP

Purpose: DEsT:=LoW-ORDER(S 1*S2) . .

Restrictions: None

Exceptions: INT-OVFL . .

Precision: S1, S2, . and . DEST all have the precision specified ,by the,.modifier. ., + , .
;..

PT-OVFL is set by the following instruction which multiplier 333 octal by 3, giving a

result-- 122 I . octal--which . . is larger t h e , . can :fit in ,nine !?its: .. , . .

NULT. Q RTA, # 13331 , #3 ; RTA: =221 . (QW) . . . ?., .-

L
. 3 . .

78 2 Instruction Set

MULTL Integer multiply long, long result

MULTL . (Q,H,S) TOP

Purpose: DEST:=S 1*S2

Restrictions: Next

Exceptions: None

Precision: S 1 and S2 have the same precision as the modifier. DEST has a precision twice that of
the modifier and must be aligned accordingly.

p e following instruction does not set INT-OVPL since the result fits in a halfword: 1
I MULTL. Q RTA, # 13331 , #3 ; RTA: =001221 (H W)

2.1.3 Signed Integer Arithmetic

QUO

79

Integer quotient

QUO . (QH,S,Dl
QUOV . (Q H S D)

TOP
TOP

Purpose: QUO computes DEST:=sldS2; QUOV .co,mputes DEST:=SZ/Sl.. . . QUO (or QUOV)
rounds its result toward zero.

Restrictions: None

Exceptions: INT-OVFL, I N T Z D I V / . 2

Precision: S 1, S2, and DEST all have the precision specified by the modifier.
.,. . . .

p e following illustrates a simple quotient calculation:

QUO. Q RTA, # 13451 , #3 ;RTA: =115 (QWI

. . # , . . .

Given a positive singleword NUM, this code stores in RTA the next-higher number with the
same number of one-bits. .This can be useful in combinatorial algorithms. For example, starting
with 178 and repeatedly applying this algorithm until the result exceeds 100008, will produce bit

masks indicating all possible ways of choosing feur bits out.of twelve:

XOR. S RTB, NUN, TEMP

;RTA ge ts j u s t the lowest b i ' t o f NUM

;TEMP ge ts NUM w i t h t he louest s t r i n g o f "1"
; b i ' t s c 1 eared, and a new "1" b i t above where

; they were

;RTD ge t just the d i f f e r e n c e s between

; TEMP and NUI, i.e. a copy o f t h e ' lowest

; s t r i n g o f "1" b i t s i n NUN p l u s one more

; "1" b i t t o the l e f t

; r e c a l l t h a t RTA has one b i t set , and

; so i s a power o f two; the e f f e c t i s t o
; r i g h t - j u s t i f y th'e s t r i n g i n RTB, which i s

; one b i t longer than the lowest s t r i n g o f

; "1" b i t s i n NUM

; s h i f t t h i s two b i t s t o the r i g h t ; now the

1 s t r i n g i s one b i t SHORTER

;merge RTB and TEMP t o form' t he . f i n a l r esu l t

2' Instruction Set

QUOL Integer quotient, long dividend

QUOL . (Q,H,SI
QUOLV . (QH,S)

TOP
TOP

Purpose: QUOL complites DEST:=SI/S2; QUOLV corr.putes DEST:=S2/S 1. QUOL (or QUOLV)
rounds its result toward zero.

Restrictions: None

Exception*: INT-OVFL, I N T Z D I V

Precision: DEST has the same precision as the modifier. For QUOL, S2 has the precision of the
modifier and Sl has twice the precision of the modifier. For QUOLV, S1 has the precision i f the
modifier and S2 has twice the precision of the modifier. The double precision operand must be
aligned accordingly.

p h e following example takes a quotient with a long dividend:
. .

2.1.3 Signed Integer Arithmetic 8 1

QUO2 Integer quotient by power of 2

QUO!?. {QHJs,D> TOP
QUOW . IQH,S,DI TOP

Purpose: QUO2 computes DEST:JI/(~'~); QUOZV computes D E S T : - S ~ / (~ ~ ' ~ . QUO2 (or
QUOPV) rounds its result toward zero. - (Alternatively, the SHFA.RT instruction may be used tr,
divide by a power of two, rounding toward negative infinity.) ... , . .

The operand serving as the exponent may be negative, in which case a multiplication by a positive
power of two is performed.

.. ,

Restrictions: None . . - , . .

Exceptions: INT-OVFL (INT-OVFL is not set during the 2s2 portion of the operation. This
exponentiation is done with unlimited precision.) i s

.
/

Precision: S 1, S2, and DEST all have the precision specified by' the modifier.

F e following divides -3 by +2, giving a different result than does SHFA.RT with the same
operands:

. .
1

L
QU02. S RTA , #-3, #1 ; RTA: =-I

82 2 Instruction Set

QU02L a , ' , Integer quotient by power of 2, lotig dividend

TOP
TOP

$2 . , Purpose: Q U 0 2 L computes DEST:=S II(2); QUOPLV computes DEST:=SY(~~'). QUOZL (or
QUOZLV) rounds its result toward zero. The,operand serving as the exponent may be negative, in
which case a multiplication by a positive power of two is performed.

Restrictions: None

Exceptions: INT-OVFL (INT-OVFL is not set during the 2% portion of the operation. his
exponentiation is done with unlimited. precision.)

Precision: .DEST has the same precision as the-modifier. For QUOZL, S 1 has twice the precision of
the modifier and SZ has the precision of the modifier; for QUOZLV, S2 has twice the precision and
S1 has the same precision as the modifier. The double precision operand must be aligned
accordingly.

p h e following divides the ,long operand by: .I6 (decimal):

2.1.3 Signed Integer Arithmetic 83

REM Integer remainder

REM . (Q,H,S,D)
REMV . (Q,H,S,D)

TOP
TOP

Purpose: REM, stores in DEST. the remainder from S1 / S2. The.result is the remainder produced
by a division that rounds toward zer.0. (w i n the QUO instruction). The result (DEST) has the
same sign as the dividend (S I), or is zero.

REMV, the reverse form, stores in DEST the remainder from SP I- S 1. .: -

Restrictions: None

Exceptions: I N T Z D I V

Precision: S 1, .S2, and DEST all ,have the precision specified by the modifier. ' . '

. ,

F h e following illustrate the. results of various combinations of signr
. '.

. .
REM.Q R T A , # 5 , # 3 ;RTA: =2 (QW) ! .

REM.Q RTA,#5 ,# -3 ;RTA:=2 (QW)
REM. Q RTA,.#-5, #3' . , . .. ;RTA:,=-2 (QW) ; .. , , .

REM. Q RTA, #-5, #-3 ; RTA: =-2 (QW)
. J

2' Instruction Set

REML. . Integer remainder, long dividend

REML . (QH,S)
REMLV . (QH,S)

TOP
TOP

Purpose: REML stores in DEST the remainder from $1 / S2. The result is the remainder produced
by a division that rounds towards zero (as in the QUOL instruction). The result (DEST) has the
same sign as the dividend (Sl), or is zero.

REMLV, the reverse form, stores in DEST the remainder from S2 1 S 1.

Restrictions: None

Exceptions: I N T Z D I V

Precision: For REML, S2. and .DEST have the same precision as the modifier. S 1 has a precision
twice that of the modifier and must be aligned accordingly.

For REMLV, S1 and DEST have the precision of the modifier; S2 has twice that precision and
must be aligned accordingly.

p h e following illustrates the remainder using a long dividend:

L
RENL. P RTA, # 1123451 , # [3001 ; RTA: =245 (QW 1

2.1.3 Signed Integer Arithmetic 85

MOD Integer modulus

MOD . (Q,H,S,D)
MODV . (Q,H,S,D)

TOP
TOP

Purpose: The MOD instruction produces the remainder from a division S1/S2 that rounds toward
negative infinity (in contrast with the REM instruction, which produces the remainder from a
division that rounds toward zero) and stores that remainder in DEST. That remainder has the same
sign a's the divisor, or is 0.

,: . .

MODV, the reverse form; computes the rem.ainder from- S21S . .

Note that the MOD function provided in many high-level languages such as Pascal actually
corresponds to the assembly language REM instruction, not the MOD instruction.

Restrictions: None . .
. . t

. . . - Exceptions: I N T Z D I V . .
. ,

. , . . , . .

Precision: S 1, S2, and ,DEST..all have the precision specified by the modifier.
.. . . . ,. , . I . < .

F h e following examples illustrate the operation of MOD and REM for various combinations
signs. In each case, the instruction discards the quotient and ,places the remainder in RTA:

M0D.Q RTA,#5,#3
REfl.Q RTA,#5,#3
M0D.Q RTA,#S,#-3
REM.Q RTA,#5,#-3
V0D.Q RTA,#-5,#3
REN.Q RTA,#-5,#3
MOD..Q RTA, #-5, #-3 L REfl.QRTA,#-5.1-3

= 1 remainder: 2 . .

= 1 remai nder 2
= -2 remainder -1
= -1 remainder 2 - -2 remainder 1
= -1 remainder -2
= 1 remainder -2
= 1 remainder. -2

86 2 Instruction Set

MODL Integer modulus, long dividend

MODE . (QH,S)
MODLV . (QH,S)

TOP
TOP

Purpose: MODL computes the remainder from a division Sl/S2 that rounds toward negative
infinity rather than toward zero as the REML instruction does, and stores it in DEST. That
remainder has the same sign as the divisor (SZ), or is zero.

MOISLV, the reverse form, computes the remainder from S2/S1. Note that the MOD function
provided in many high-level languages such as Pascal actually performs the assembly language
REM instruction, not the MOD instruction.

Restrictions: None

Exceptions: INTZDIV

Precision: For MODL, S2 and DEST have the same precision' as the modifier. S1 has a precision
twice that of the modifier and must be aligned accordingly.

For MODLV, S1 and DEST have the precision of the modifier and S2 has twice that precision.
. ' *

b e following illustrates the modulo operation using a long dividend.

L
MODL. Q RTA, #12345, #300 : RTA: ~ 2 4 5 (QWI

2.1.3 Signed Integer Arithmetic

Dl\/ Integer divide

DIV . (QH,S,D)
DIVV . (QH,S,D)

TOP
TOP '

Purpose: DIV computes FIRST(DEST):=SI/S~ and SECOND(DEST):=Sl ren SP. DIV is like
doing both a QUO instruction and a REM instruction.

DIVV, the reverse form, divides S2 by S 1 instead.

Restrictions: None

Exceptions: INT-OVFL, I N T Z D I V . . .

Precision: S1, S2, FIRST(DEST), and SECOND(DE.ST) have the same precision as the ,modifier.
FIRST(DEST) and SECOND(DEST) must align together tb form a single entity with twice .the
precision of the multiplier.

. . .

F e following produces a quotient-remainder resulk 1
D1V.Q RTA,#C3451,#3 a ;RTA: ='114001 (two QWS)

The following subroutine accepts a positive singleword in location X (which is destroyed) and
prints it in a radix in the range 2 . . 35 specified by RADIX, using the digits 0-9 and A-Z
(A-10, B= 1 I, etc.). The subroutine should be called by JSR X+4, PRINUM. Location X+4 (the
singleword after X) is used, but its original contents are saved and restored. The subroutine
prints a character by using TRPEXE.13, which is assumed to trap to an executive character
print routine. The remainder method of generating digits produces them "backwards", and so a
recursive call using JSR saves each digit on the stack as it is generated, and then the digits are
printed as the stack is unwound.

PRINUM: D1V.S X,RADIX ;X+4 ge ts nex t d i g i t , X ge ts quo t i en t
SKP.EQL.S X,#0 ; s k i p i f r e s u l t i n g quo t i en t i s zero
JSR X+4,PRINUM ;otherwise save t h a t d i g i t and do more
CMPSF.LEQ.S RTA,X+4,#9. ; d i g i t now i n X+4; i s i t 19?
A0D.S X+4,<CnB" ? "A"-18.1+4>CRTAI t 2 ; i f so, use 0-9; i f not , use A-Z
TRPEXE.13 X+4 ; p r i n t charac te r
RETSR X+4, (SP) ; re tu rn , r e s t o r i n g X+4 t o p rev ious va lue

88 2' Instruction Set

DIVL , Integer divide, long dividend

, DIVL . (QH,S}
DIVLV . (QH,S)

TOP
TOP

Purpose: DIVL computes FIRST(DEST):=Sl/S2 and SECOND(DEST):=Sl rem S2. DIVL is like
doing both a QUOL instruction and a REML instruction.

DIVLV, the reverse form, divides S2 by S1 instead.

rest riot ion^^ None

Exceptions: INT-OVFL, I N T Z D I V

Precision: or DIVL, operands S2, FIRST(DEST), and SECOND(DEST) have the same precision
as the modifier. S1 has a precision twice that of the modifier 'and must be aligned accordingly.
FIRST(DEST) and SECOND(DEST) must align together to form a single entity having twice the
precjsion of the modifier.

F h e following produces a quotient-remainder for a long operand:

D1VL.Q RTA,#1123461,#[3l301 ;RTA: a33245 (two UWs)

. 2.1.3 Signed Integer Arithmetic 89
I

IMC Integer' increment

INC . !(LH,S,D) XOP

Purpose: OP 1:=OP2+ 1

Restrictions: None . .

Exceptions: CARRY, INT-OVFL ; . . .

Precision: OP 1 and OP2 have the same precision as: the modifier,. { ,

p h e following adds ope to RTB ,md stores the result in, RTA. '1

If the source and destination are. identical, ADD is. .preferable from , a performance standpoint:

ADD. S RTA, #1 ; RTA: =RTA+l

L.

2 Instruction Set

DEC Integer decrement

DEC . (QH,S,D} XOP

Purpose: O P 1:=OP2- 1

Restrictions: None

Exceptions: CARRY, INT-OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

p e following subtracts one from A and puts the result in B:

0EC.S B,A . :8: =A-1

If the source and destination are identical, SUB is preferable from a performance standpoint:

2.1.3 Signed ,Integer Arithmetic 9 1

TRANS Signed integer translate

TRANS . (QH,S,D) . (Q,H,S.D)
VTRANS . (QH,S,D) . (Q,H,S,D)

XOP
v:=v

Purpose: TRANS copies a signed integer from OP? to OP1, converting its precision if necessary by.: .
sign-extending or by discarding high order bits.

\
I . -

VTRANS performs TRANS on individual elements of vector OP2 and stores the result in vector
OPl . If the source and destination vectors have the same precision, the vector; may overlap; the
instruction guarantees not to alter any element of the source until it has copied that element to the
destination.

. .

If the source vector's precision exceeds that of the destination vector, the two vectors may be
identical, but must not otherwise overlap. : . ,. .

If the source vector's precision is less than that of the destination *
, .

. vector,. the two vectors may. not
overlap at all.

Restrictions: None
. " . " ' . - . . :, ..

Exceptions: INT-OVFL . . "
. , . ,

Precision: OP1 has the precision of the first modifier and OP2 has the precision of the second
modifier. ,: .

. , . .

Fe second instruction illustrates the signixtension of TRANS:
. . . , _ (. , .., ,.. . ' . . , . , . - .

fl0ViH.Q RTA,W 1 : RTA: -000777 (HWI

L
TRANS.H.Q RTA,#-1 ; RTA 3 -777777 (HW)

92 2 Instruction Set

NEG . . . Integer negate

NEG . (Q,H,S,D)
VNEG . (H,S,D)

XOP
v:=v

Purpose: For NEG, O P l:=two's-complement(OP2).

VNEG performs NEG on each element of the vector beginning with OP2 and stores the results in
the vector beginning with OP1; ' '

R ~ . ~ t r i ~ t l ~ n , s : N ~ n a

Exceptions: CARRY, INT-OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

p e following negates the value in RTA: 1
NEG. S RTA ;RTA:=-RTA

This piece of code jumps to TWOPOWER if the non-negative singleword integer in HUNOZ
is an exact power of two (where zero is considered to be such a power):

NEG . S' RTA , HUNOZ ; RTA: =-HUNOZ
ANDC'I' . s H I A , HUNOZ ; ~ T A : = (YRTA) AHUNOZ
JNPZ.EQL.S RTA,TWOPOWER ;jump If RTA now i s zero

The BITCNT instruction can be used to do the same thing if zero is not to be considered a
power of two. L

2.1.3 Signed Integer Arithmetic

ABS - Integer absolute value

ABS . {QH,S,D} XOP
VABS . {H,S,D} Vr=V

Purpose: For ABS, O P l:=abs(OP2). .

VABS performs ABS on each element. of the vector beginning- at OP2 and stores the results. iq the
vector beginning at OP 1. . ,

' 1 . .

, .: . . .
. .

Restrictions: None

Exceptions: CARRY, INT-OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

p e , following takes the absolute value of RTB and -puts i f in RTA: . - .

94 2 Instruction Set

MlN Integer minimum

MIN . (Q,H,S,D)
VMIN . (SR,OPl) . (H,S,D)

TOP
v:=vv

Purpose: MIN stores in DEST the smaller of the signed Integers S1 and S2. .

VMIN performs MIN on a series of pairs: one element from the vector beginning with OP1 and the
corresponding element of the vector beginning with OP2. If the first modifier is OP1, results go
back into the vector beginning with OP1; if it is SR, they go into the vector pointed to by SRO.

Exceplluas: None

Precision: For MIN, operands S1, 52, and DEST all have the precision specified by the (QH,S,D)
modifier. For VMIN, the elements of, each . vector have -the precision specified by the (H,S,D}
modifier,

p e folywing sets RTA to 0 if RTA is positive:

2.1.3 Signed Integer Arithmetic

MAX Integer maxinium

. . .
.

MAX . {QH,S,D) TOP
VMAX . {SR,OPl) . {H,S,D) V:ivV

: ? .

Purpose: MAX places in DEST..the larger of the signed integers S1 and S2. . .

VMAX performs MAX on a serier of pairs an element from the vector beginning with O P l and
the corresponding element of the vector beginning with OP2. If the first modifier is O P l , the
instruction stores the results back into the elements of vector OP1; if the modifier is SR,.it :stores the
results into the vector pointed' to by SRO.

. .
Restrictions: None < . .

Exceptions: None

Precision: For MAX, S1, S2, and DEST all have the precision specified by the (QH,S,D). modifier.
For VMAX, the elements of each vector have the precision specified by the (H$,D) modifier.

p e following sets RTA to 100 if RTA is less thin LOO: . ' . 1
. .

MAX. S RTA, RTA, # C1003

Suppose that .A and B are two byte pointers. Then the following.instruction puts in RTA the
byte pointer which indicates the byte starting higher in memory than the other;or, if they start
at the same bit, whichever points to the longer byte. .(This is a consequence of the representation
of byte pointers--see Section 2.10). Similarly, all D-precision integer comparison.
instructions--such as MIN.D, CMPSF.D, SKP.D, etc.--can be used to compare byte pointers in
this fashion:

;RTA := p o i n t e r t o higher by te

J

96 2' Instruction Set

LWllNMAX Lengthwise integer minimum and maximum

LMINMAX . (H,S,D) SS:=V

Purpose: Select the minimum and maximum elements of a vector of signed integers whose first
element is OP2. Put the minimum in FIRST(0P 1) and the maximum in SECOND(OP1).

Restrictions: None

Exceptions! None .

Prection: FIRST(OPl), SECOND(OPl), and each element of vector OP2 have the precision of the
modifier. FIRST(OP1) and SECOND(OP1) must align to form m entity with twice the precision of
ehc iiioditier.

I he 'folldwing sets RTA to -4 and RTA 1 to 16: . .

M0V.S.S %SIZEREG,#7

L
Lfl1NRAX.S RTA, C7 ? 12. ? -2 ? . - 4 ? 8. '? 16. ? '31

2.2 Unsigned Integer Arithmetic 97

2.2 Unsigned Integer Arithmetic
' - * 'c.;. ' . ' . ..

The unsigned integer data type uses no sign bit, making all bits of the word. available for
8 . 8 representing magnitude. Thus, whereas a signed quarterword ranges from -2 to 2 -1, an unsigned

9 quarterword ranges from 0 to 2 .

The architecture provides instructions rpecific~lly for unsigned ,multiplication and division. These
instructions were designed to be used for arithmetic on numbers of arbitrarily great precision (as
exemplified by "bignums" in Maclisp). The. instructions for signed addition and subtraction work
properly on unsigned data provided the program ignores the INT-OVFL side effect and uses the
CARRY to signal overflow or to propagate bits from one word of a bignum to another.

' >: ,

2 Irtstruction Set

UMULT Unsigned integer multiply

UMULT . (Q,H,S,D) TOP

Purpose: DEST:=LOW-ORDER(S laS2)

Restrictions: None

Exceptions: INT-OVFL; UMULT sets INT-OVFL whenever MULT does. In addition, UMULT
sets INT-OVFL whenever one operand has its high order bit set and the other operand exceeds 1.

Precision: S1, $2, and DEST all have the precision specified by the modifier.

p h e following instruction puts the low order QW of the unsigned square of 2'-1 in RTA. This 1
value is the low-order nine bits of 218-210+1, that is, 001. Since the full result is greater than
2'-I, INT-OVFL is ~ I S O set:

T

UMULT. Q RTA, #777, #777 (QW 1

L J

2.2 Unsigned Integer Arithmetic 99

UMULTL . . Unsigned integer multiply, long,result

UMUETL . (QH,S) , TOP

Purpose: DEST:=S 1*S2

Restrictions: None

Exceptions: None

Precision: S1 and S2 have the same precision as the modifier. DEST has a precision twice 'that of
the modifier and must align accordingly.

. .

F h e following instruction puts the unsigned square of . '29-1 , in RTA. This v a l u e 7
18 10 . , - . 2 -2 + 1--that is, 776001: ' ' '

. . . , I'

I UNULTL . P RTA, #777, #777 ; RTA: =776001 (HGI)

100 2' Instruction Set

UDI\/ Unsigned integer divide

UDIV . {Q,H,S,D)
UDIVV . {Q,H,S,D)

TOP
TOP

Purpose: UDIV places the quotient of the unsigned integer division Sl/S2 in FIRST(DEST) and
the unsigned integer remainder S1 rem S2 in SECOND(DEST).

UDIVV produces the quotient and remainder from integer division S2/S 1.

Exceptions: INT-OVFL. INT-Z .DIV

Precision: For UDIV, Sl, S2. FIRST(DEST), and SECOND(DEST) all have the same precision as
the modifier. FIRST(DEST). and SECOND(DEST) must align together to form an entity having
twice that precision.

F h e following sets RTA to the unsigned quotient-remainder of ?'-9 divided by twenty-two: 1

2.2 Unsigned Integer Arithmetic

UDlVL Unsigned integer divide, long dividend

UDIVL . (QH,S) TOP
UDIVLV . (QH,S) TOP

Purpose: UDIVL places the result of the unsigned integer division Sl/S2 in FIRST(DEST) and the
unsigned integer. remainder S 1 rem S2 in SECOND(DEST).

. I

Restrictions: None

Exceptions: INT-OVFL, I N T Z B I V

Precision: For UDIVL, S2, FIRST(DEST), and SECOND(DEST) all have the same precision as
the modifier. S l 'has a precision twice that of -the modifier and must align accordingly.
FIRST(DEST) and SECOND(DEST) must align together to form a single entity with twice that
precision.

p e f o l l o w i n g sets RTA to the unsigned q,uotient-remaindt?r of .. 377377 . (octal) divided by 777
(octal):

.. .

1

L
UD1VL.Q RTA,#377377,#777 UDIVL:=377776 (two QWs)

102

2.3 Floating Point Arithmetic

2.3.1 Floating Point Data Format

2 Instruction Set

Floating point data can occur in three of the four standard precisions: halfword, singleword, or
doubleword. The floating point representation is made up of three fields: SIGN, EXP, and MANT.

S 1 5 6 17
Halfword floating point format

I MANT I
0 1 9 10 35

Singleword floating point format

 SIGN I EXP I MANT I
0 1 15 16

Doubleword floating point format

SIGN is 1 if the floating point number is negative.

EXP Is the exponent, expressed in excess-16 format in halfword precision, excess-256 format for
singleword precision, or excess-1638% format .for doubleword precision. 1f SIGN is 1 (that is, the
number is negative, EXP is one's complemented.

MANT represents only part of the true mantissa of the number; to obtain the entire mantissa,
concatenate the sign bit, a hidden bit, a binary point, and the MANT field:

The complete mantissa consists of the concatenation of <hidden bit> and the MANT field. The
entire mantissa is normalized to obey the following:

1 S mantissa < 2
or

-2 5 mantissa < -1

As a result, chidden bit> and SIGN are always opposites, and it is possible to omit <hidden bit>
from the floating point representation and infer its value from that of SIGN.

2.3.1 Floating Point Data Format 103

Converting to floating point format: While the FLOAT instruction automatically converts an
integer to floating point format, the following description of an algorithm for doing so may help
make the format clear:

1. Set the SIGN field of the floating point version to 0.

2. Multiply a copy of the number by 2', where you ~hoose x so the result is greater than or
equal to 1 but less than 2. Set the EXP field to (-x+16) for a quarterword, (-x+256) for a
singleword, or (-x+ 16384) for a doubleword.

3. Starting with the most significant bit of the original number, discard bits until you
encounter the first 1-bit. Discard it, too. Place the remaining. bits into the MANT field,
left- justified.

. .

T o convert zero to floating point format, set the entire word to 0 (zero is an exceptional case).
. " - .

T o convert a negative integer t'o floating point format, take iti absolute value and represent that
according to the steps just given for positive integers. Then take the two's complement negation of
the entire floating point representation, without regard to format.

(For the skeptical, here is an outline for a proof that two's-complement negation works correctly on
floating point numbers. If MANT * 0 then no carry from the two's-complement operation can
reach the EXP field, since it will be absorbed by the right-most, non-zero MANT bit. Therefore,
the EXP field will be one's-complemented. If MANT = 0 then there are three cases. Case 1: The
floating point number was originally negative. The mantissa was, therefore, -2.0 and the floating
point number was -2 exponent+ l Wh . en this number is two's-complemented, the MANT field is still
zero but the EXP field is two's-complemented. The mantissa becomes 1 and the carry from the
fraction has increased the exponent by one. This gives 1*2 exponent+ 1 or 2exponent+ 1 , the negative

of the original number. Case 2: The floating point number was originally zero. The
two's-complement of zero is zero. Case 3: The floating point number was originally positive. The
mantissa was, therefore. 1 and the floating point number was 1*2exP0nent. When this number is
two's-complemented, the MANT field is still zero but the EXP field is two's complemented. The
mantissa becomes -2.0 and the carry from the fraction has decreased the exponent by one. (It
increased the EXP but decreased the one's-complement of the EXP). This gives -(2.0)*2exp0nent-1
or -2 exponent, the negative of the original number.)

Here are a few examples of the floating point format for halfwords:

I

Halfword 10.0
SIGN=O
EXP=-(-3)+ 16= 19=238

MANT=(hidden 1)O 10 000 000 0002=20008

Result: 232 0008

2' Instruction Set

Halfword - 10.0
Two'sComplement(232 0008)=546 0008

Halfword 3.1415
SIGN=O
EXP=-(- I)+ 16= 1'732 l8

MANT=(hidden 1)100 100 LOO 0 l 0 ~ = 4 4 4 2 ~

Result: 2 14 44z8

2.3.2 Integrity of Floating Point Arithmetic

The architecture specifies that floating point arithmetic will be performed so that the following
equalities hold for all floating point' values A and B:

.

. .

2.3.3 Floating Point Exception Values

Besides zero, five floating point numbers have special meanings. The positive floating point
number with the greatest magnitude (in a given precision) is called OIJF (nv~rflow). Tlltl
two's-complement of OVF is called MOVF (minus overflow). The smallest positive floating point
number is called UNF (underflow). The largest negative floating point number is called MUNF
(minus underflow). The floating point number with the sign bit set to 1 and a11 n t h ~ r hits set to 0 is
called NAN (not a number); all floating point instructions consider it ill~gal.

OVF, MOVF, UNF, MUNF, and NAN correspond to side effects or exceptions that occur during
floating point arithmetic. One happy consequence of the floating point format is that each of the
special floating point values has the same bit reiresentation as an easily recognizable integer, as the
following table shows:

2.3.3 Floating Point Exception Values 105

Name Meaninrg Integer with identical . . .

bit remesentation

OVF Positive overflow MAXNUM
MOVF Negative overflow MINNUM + l (i.e., -MAXNUM)
UNF Positive infinitesimal + 1
MUNF Negative infinitesimal - 1
NAN Indeterminate ("not MINNUM

a numbern)

The range of values representable in the three floating point precisions is approximately the
following:

Precision Underflow Overflow Digits
Halfword 1.53 * lo-' 6 . 5 5 ~ ~ 1 0 ~ -3.91
Singleword 8.63 * 1.16 * lo7' 8.13
Doubleword 8.41 * 10- 4959 1.19 * 10 4932 17.16

2.3.4 Comparing Floating Point Values

Another happy consequence of the floating point format is the ability to compare floating point.
numbers as if they were signed integers, without decoding the format: Thus, the architecture does
not provide a separate set of test and branch instructions for floating point numbers. ~nstead, a
single set serves for both signed integers and floating point numbers.

. . .
Integer comp'arisons will treat the floating point exception values in an intuitivel'y reasonable
fashion, too. For example, they will treat MUNF as greater than my other negative value but less
than zero. The only exception is NAN, which will be treated not as an illegal value but as a value.
that is less than any other floating point value.

2.3.5 Floating Point Rounding Modes

During floating point operations, rounding of the result may be necessary. The FIX instruction
includes a modifier that specifies how it rounds; all other floating point instructions which round
their results do so according to the field R N D A I O D E in the U S E R S T A T U S register. Instructions
RRNDMD and WRNDMD (Section 2.3) 'read and write that field.

Let F be the magnitude of the difference between a true floating point result, R, and the greatest

106 2 Instruction Set

representable floating point number N which is less than or equal to R, expressed as a fraction of
the least-significant representable bit of R. The bits of R N D M O D E have the following functions
(reversals of rounding direction accumulate):

Bit Value Effect . . -
0 0 Round as specified by 2ND-MODE< 1:4>

1 Reserved.

1 0 If F ;t 0, round as specified by RND_MODE<2:4>
else deliver R exactly.

1 If F 112 then round as specified by RNU_MODE<P:4>
CISP mlmd to tho floating point number ne;llesL lo R.

0 ' Round toward negative infinity. ,

1 Round tuwa~d puslcive infinity.

0 No effect.
1 If the least significant bit of the mantissa of N is one,

reverse the rounding direction.

4 0 No effect.
1 If and only if R is negative, reverse the rounding direction.

Various combinations of the above'bits provide a variety of rounding modes. Some of the more
common modes are;

R N D M O D E (octal)
0 .. .
1
4
5

12
14

Function Modifier for FIX
Floor FL
Diminished magnitude DM
Ceiling CL
Augmented magnitude
Stable ST
Half rounds toward positive HP
infinity (PDP-10 FIXR)
Approximate PDP-10
FLTR rounding

Inexact rounding: Certain instructions exhibit inexact rounding--that is, the ~rncertainty in their
founding behavior slightly exceeds the uncertainty specified for floating point computations in
general. The list of i~structions which exhibit this characteristic is implementation dependent.

2.3.6 Floating Point Exception Handling

2.3.6 Floating Point Exception Handling

In the USERSTATUS register, four bits record "side effects" or exceptions by floating point
arithmetic operations:

FLT-OVFL Floating-point overflow (that is, the result of the instruction is.greater than or'

equal to OVF or less than or equal to MOVF).

FLT-UNFL Floating-point underflow (that is, the result of the instruction is less than or
equal to UNF and greater than or equal to MUNF, but not equal to zero).

,
FLT-NAN Floating-point result is "not a number" (NAN).

FLT-REP Floating-paint result cannot be represented exactly within the allowed .mantissa
(and must therefore be rounded). This bit signals a condition that may happen
most of the time in ordinary floating point arithmetic. .' , . r ' " , ' ' - , "

These bits are "stickym--that is, floating point instructions may set them but not cleai- them, so once a
bit is set it will remain set until explicitly cleared via manipulation of USERSTATUS.

In the following example, the first instruction sets FLT-OVFL, the second sets ,FLTdJNFL;, :and the
third sets. FLTDAN: . .

.

FSUBV . H RTA , #0, # C400001 I . : OP2 is MOVF t o begin u i t h
.FSC . H RTA , # C0100001, #-I ; Result too small t o . r e p r e s e n t .

FD1V.H RTA,#0 : Division b y ' 0 i s . u n d e f i n e d S :

In addition to these exception bits, USERSTATUS contains fields called FLT,oVFEMODE, .

FLT-UNFLMODE, and F L T J J A N N O D E which tell the processor how to react to FLT-OVFL,
FLT-UNFL, and FLTJJAN exceptions respectively. (Note that setting an exception bit by
manipulating USERSTATUS will not invoke the specified behavior; the bit must be set during
floating point arithmetic):

FLT,OVFL,MODEtO:l>
0 Invoke FLT-OVFL-TRAP soft trap without storing a result.
1 If the result was positive, use OVF as the result; if it was negative, use

MOVF as the result.
2 Retain the sign and mantissa but replace the EXP .field with a

wrapped-wound exponent,
f) Undefined. Attempting to set this value in the user status register

causes an ILLEGALSTATUS hard trap.

2 Instruction Set

FLT-UNFL,MODE<O:l>
0 Invoke FLT-UNFL-TRAP soft trap without storing a result.
1 If the result was positive, use UNF as the result; if it was negative, use

MUNF as the result.
2 Retain the mantissa and sign of the result, but replace the EXP field

with a wrapped-around exponent.
3 Use floating point 0.0 as the result.

FLT-NAN-MODE
0 Invoke FLTNAN-TRAP soft trap without storing a result.
1 IJsc NAN as the recult,

2, 3 Undefined. Attempting to set these values in the user status re@sret
causes an ILLEGALSTATUS hard trap.

2.3.7 Propagating Floating Point Exceptions .

If either operand of a floating point instruction is one of the exception values, the instruction
propagates the exceptional condition according to .a precisely defined algorithm.

The tables in this section describe the standard propagation algorithm for all operations. (The
algorithm is implemented in tables in RAM within the S-1 processor, so a front end procerror could,
dictate adifferent algorithm if desired.)

In the tables, X and Y are assumed to be "ordinary" positive floating point numbers--that is, greater
than UNF and less than OVF--which do not in themselves invoke exceptions.

U~lary operations

A FNEG (A) FABS (A) FIX(AI FTRANS (A)
J.
MOVF
MUNF
UNF
OVF
NAN

OVF OVF f NT-OVFL MOVF
l.lNF UNF B PIUNF
MUNF UNF 0 UNF
MOVF OVF INT OVFL OVF
NAN NAN I NTIOVFL NAN

2.3.7 Propagating Floating Point Exceptions 109

.

, Addition '(A+B)

Multiplication (A+B)

MUNF 0 UNF Y OVF NAN A B+ MOVF -Y

AOVF MOVF MOVF MOVF HOVF MOVF NOVF NAN NAN

A B- MOVF -Y MUNF 0 UNF Y OVF NAN

-X
MUNF
0
UNF
X
OVF
NAN

-X
NUNF
0
UNF NAN MUNF
X MOVF -X*Y

NAN' NAN

MOVF -X-Y -X -X -X -X+Y OVF NAN
MOVF -Y MUNF MUNF 0 Y OVF NAN
MOVF -Y MUNF 0 UNF Y OVF NAN
MOVF -Y 0 UNF UNF Y OVF NAN
MOVF X-Y X X X X+Y OVF NAN
NAN OVF OVF OVF OVF OVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN

Division (A/B)

A B--,

AOVF
-X
MUNF
0.
UNF
X .
OVF
NAN

NAN . 0 NAN MOVF MOVF NAN
UNF 0 MUNF -X*Y MOVF NAN
UNF 0 MUNF MUNF NAN NAN
0 0 0 0 0 NAN
MUNF 0 UNF UNF NAN NAN
MUNF 0 UNF X*Y OVF NAN
NAN 0 NAN OVF OVF NAN
NAN NAN NAN NAN NAN NAN

MOVF -Y NUNF 0

NAN OVF OVF ' NAN
UNF X/Y OVF - NAN
UNF UNF NAN NAN
0 0 0 NAN
MUNF MUNF NAN NAN
MUNF -X/Y MOVF NAN
NAN MOVF MOVF NAN
NAN NAN NAN NAN

UNF -
MOVF
MOVF
NAN
0
NAN
OVF
OVF
NAN

Y OVF NAN

MOVF NAN NAN
- X / Y . MUNF NAN
MUNF MUNF NAN

- 0 0 NAN
UNF UNF NAN
X / Y UNF NAN
OVF NAN NAN
NAN NAN NAN

The rules for the remaining instructions are simple enough to state without using additional tables:

F S U B he algorithm. behaves as if' the processor applied FNEG to the second argument
and then performed FADD.

FMAX, FMIN If either argument is NAN, the result is NAN: Otherwise, the algorithm
considers MOVF<-X<MUNF<O<UNF<X<OVF for any unexceptional positive
number X.

FSC The exponentiation portion of the instruction FSC or FSCV is effectively done
in infinite precision and will not produce an exception; the subsequent
multiplication follows the rules given in the tables.

110

2.3.8 Floating Point Arithmetic

2' Instruction Set

2.3.8 Floating Point Arithmetic

FADD . . Floating point, add
. . .

. .

FADD . (H,S,D} - :TOP
, . .

Purpose: DEST:=S 1+S2.
. . . P . . , . ? < s .. ,

Restrictions: None.
. . ,, c - ..,

Exceptions: FLT-OVFL, FLT-UNFL, FLTNAN
. . I . /'.. .

,:: 1 .

Precision: S1, S2, and DEST all have the precision specified by the modifier.
.'% . ..

F h e first instruction adds 1.0 to RTA. The second instruction doubles RTA; alternatively,
.

. *
. . . -

FMULT, FSC, or FDIV might. be used:. ., . . " .
1 , , :.

.
.. . FAD0.S RTA,#[1 .01. , t : , , .: , : . : , ! , , _ . .

FADD. s RTA, RTA ;RTA:=2.0*RTA; FSC RTA,#l i s preferable
1- . :. :. .
. 3 A:

' - -....

2 Instruction Set

FSUB; Floating point subtract

FSUB . (H,S.D)
FSUBV . (H,S,D)

TOP
TOP

Purpose: FSUB calculates DEST:=S 1-S2.

FSUBV, the reverse form, calculates S2-S I.
> .

Restrictions: None
. .. : I

Exceptions: FLT-OVFL, FLT-UNFL, F L T J A N

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

p e following subtracts a floating point value of one from RTA: . .
1

L
FSUB. S RTA , # C1.O1 ; RTA: =RTA-1.0

I

2.3.8 Floating Point Arithmetic

FMlULT Floating point multiply

FMULT . (H,S,D} . . TOP

Purpose: DEST:=S I*SS.

Restrictions: None

Exceptions: FLT-OVFL, FLT-UNFL, FLTDAN
. - .

Precision: S1, S2, and DEST all have the precision specified. by the modifier. .

, . .. 3

p h e following instruction doubles the value in R T A . Alternatively, FSC, FADD! or FDIV
. might be used: " ' - '

. . . .
L , . .

1
_ - .

L .
FMULT. S. RTA, # C2.01 ;RTA:=RTA*2.0

. .
8 . . . I . .. *

2 ' Instruction Set

FMULTL Floating point multiply, long result

FMULTL . (H,S) TOP

Purpose: DIEST:=Sl*SZ. Note that the long result format will have more than twice as many
mantissa bits as either operand.

Restrictions: None

Exceptions: FLT-OVFL, FLT-UNFL, FLTNAN. (These can occur only if one of the operands
was a floating - - point exception value to begin with. The operation of m~iltiplication itself cannot
overflow or underflow because DEST has such a large exponent field.)

Precision: S1 and SZ havethe same precision as the modifier. DEST has precision twice that of thk .
modifier and must align accordingly.

p e following instruction will place in RTA all significant, bits of the square of X: 1
L

FflULTL.S RTA,X,X ; RTA: =X?2

2.3.8 Floating Point Arithmetic 115

FDIV Floating point divide

FDIV ;. (H,S,D) TOP
FDIVV . (H,S,D). TOP .

VFDIV . (SR,OPl) . (H,S,D) V:=VV
. .

Purpose: FDIV computes the floating point quotient, S1 divided by S2, and stores it in DEST.

FDIVV swaps the roles of S l and S2.

VFDIV divides each element of the vector beginning with OP1 by the corresponding element of the
vector beginning with OP2 and stores the results .either in the vector pointed ,to by SRO (if the
modifier is SR) or back into the vector beginning with OP1 (if the modifier is OP1).

,
Restrictions: None ,

Precision: For FDIV and FDIVV, S lDaS2, and DEST . . . all have the precision specified .by the.
modifier. For VFDIV, the e~ernekts of all three vect6hhave . . the pre~ision ... specified . . b i the modifier.

p h e following instruction doubles the value in RTA. Alternatively, FADD, FMULT or FSC
might be used:

1

116 2 Instruction Set

FDWL Floating point divide, long dividend

FDIVL . {Has)
FDIVLV . {H,S)

TOP
TOP

Purpose: FDIVL divides S 1 by S2 in floating point and stores the result in DEST.

FDIVLV, the reverse form, divides S2 by S 1 instead.

Restrictions: Norie

Exceptions: FLT-OVFL, FLT-UNFL, FLTBAN

Precision: For FUIVL, S2 and DEST have the precision of the modifier. S1 has precision twice
that of the modifier and must align accordingly,

For FDIVLV, Sl and DEST have the precision of the modifier and S2 has twice that precision

p e following uses a doubleword 1.0 to reciprocate a singleword in RTA. Note that this is
NOT the same constant that would be used for .FDIV:

1

L
FD1VL.S RTA,#E200000 , ,0 3 !Bl ,RTA ; RTA:=1.0 (OW) / RTA

2.3.8 Floating Point Arithmetic 1.1 7

FRECIP Floating point reciprocal

FRECIP . (H,S,D) . . XOP
. , . .

Purpose: OP1 := 1.0 / OP2. In most implementations, FRECIP offers higher performance than
FDIV but inexact rounding. . .

. . , . . .

Restrictions: None ! . I . . ' .

Exceptions: FLT-OVFL, FLT-UNFL, FLTNAN
' . . . , .

Precision: OP1 and OP2 have the same precision as the modifier.
. , . . . , : ' ; a, j . _

. . instruction reciprocates 2.0: - '

118 2 Instruction Set

FSC Floating point scale

FSC . (H,S,D)
FSCV . (H,S,D)

TOP
TOP

Purpose: DEST := S l * zS2. S 1 is a floating point number and S2 is a signed integer.

FSCV computes the floating p ~ i n t number S2 * 2", where 52 is a floating point number and S l is
a signed integer.

Restrictions: None'

Exceptions: FLT-OVFL, FLT-UNFL, F L T J A N . (FLT-OVFL and FLT IJNFL are not cet

during the exponentiation, which is done with unlimited precision:) .

Precision: For FSC, S1 and DEST have the same precision as the modifier and S2 is a singleword.
For FSCV, Sq and DEST have the precision of the modifier and S 1 is a singleword.

F h e following instruction may be used to double the value in RTA. Alternatively, FADD,
FMULT, or FDIV might be used:

1

2.3.8 Floating Point Arithmetic

FIX Convert floating point to fixed (integer)

FIX . (FL,CL,DM,HP,ST,US) . (Q,H,S,D) . (H,S,D)
VFIX . (H,S,D) . (H,S,D)

XOP
v:=v

Purpose: FIX converts the floating point number ,specified by OP2 into an integer and stores it in
OP1. The first modifier specifies which of the rounding modes (explained in Section 2.3.5) to use
in the conversion:

CL Ceiling
DM Diminished magnitude t . d .. , ~

H P Half rounds toward positive infinity

S T . Stable . . , . .

US Whichever mode USERSTATUS-RND-MODE specifies , . . . %. . .

VFIX converts each element of the vector beginning with OP2 to an integer and stores the result in
the corresponding element of the vector beginning with OP1. Instead of specifying rounding modes
via a modifier, it ,always uses the, rounding mode. .specified in USER-STATUS; the additional cost
of executing a VIRND.MD instruction .to -change the roun.ding mode is negligible for vectors of
reasonable length.: . ..

If the two vectors have equal precision, they may overlap. If the.precision of the source vector
exceeds that of the destination, tke two vectors may be identical but must not otherwise overlap; If.
the precision of the destination vector exceeds that of the source, the two vectors must not overlap at
all. Violating these rules produces undefined results.

Restrictions: None

Exceptions: INT-OVFL

Precision: For FIX, OP1 has the precision of the second modifier and OP2 has the precision of the
third modifier. For VFIX, the elements of OP1 have the precision of the first modifier and the
elements of OP2 have the precision of the second.

F h e following converts a floating point value in RTA into an integer. The exact result
on the value and the rounding mode specified in USER-STATUS.RND_MODE:

2 Instruction Set

FLOAT Convert to floating point

FLOAT . (H,S,D) . (QH,S,D)
VFLOAT . (H,S,D) . (Q,H,S,D)

XOP
v:=v

Purpose: FLOAT converts the integer specified by OP2 into a floating poilit number and stores it
in OP1.

VFLOAT converts each element of the vector beginning with OP2 to a floating point number and
stores the result in the corresponding elemefit of the vector beginning with O P 1.

If t h i two vectors have the same precision, they may overlap. If the precision of the source vector
exceeds that of the destination vector, the two vectors may be identical but may not otherwise
overlap. If the precision of th2 destination vector exceeds that of the source, the vectors must not
overlap. Violating these rules produces undefined results.

Restrictions: None

Exceptions: FLT-OVFL. (This can occur only in the cases of FL0AT.H.S and FL0AT.H.D. For
all other conversions, the floating point format can express the corresponding integer with--at
worst--only the loss of the least significant bits.)

Precision: OP1 has the precision of the first modifier. OP2 has the precision of the second
modifier.

Fe following loads RTA with the floating point value 1.0:

2.3.8 Floating Point Arithmetic

FTRANS Floating point translate

FTRANS'. {H,s,D) . (H,s.D)
VFTRANS . {H,S,D) .{H,S,D)

XOP
v:=v

Purpose: FTRANS c0pies.a floating point number from OP2 .to OP1, converting-its precision if
necessary. .. .

VFTRANS performs FTRANS on individual elements of vector OP1 and stores the result in vector
OP2. If the source and'destination vectors have the same precision, the vectors may overlap; the
instruction guarantees not to alter any element of the source until it has copied that element to the
destination.

If the source vector's precision exceeds that of .the destination vector, the two vectors. may. be
identical, but must not otherwise overlap.

. . . . i

If the source vector's precision is less than that of the destination vector, the two vectors may not
overlap at all. .. , , , . . .

. ,

In some implementations FTRANS.S.S will offer better performance than M0V.S.S when operating
on floating point data because a seriu of floating point instructions permits the processor to
maintain the data in an internal format that is easier to handle.

Restrictions: None

Exceptions: FLT-OVFL, FLT-UNFL, FLTAAN. If OP2 has no greater precision than OP1,
then these can occur only if OP2 is one of the floating point exception values.

Precisinn: OF:! has the precision of the second modifier. OP1 has the precision of the first
modifier.

p h e following illustrate; the precision alteration possible with FTRANS. The exact values
produced wil l , . in general, .depend on the rounding mode defined in
USERSTATUS.RNDXODE:

L
FTRANS.S.0 RTA,#[200000,,0 ? !O1 ; Funny constant is 1 . 0 OW

122 2 Instruction Set

FNEG. Floating point negate

FNEG . (H,S,D)
VFNEG . (H,S,D)

XOP
v:=v

Purpose: FNEG negates the floating point number in OP2 and stores the result in OP1. VFNEG
performs NEG on each element of the vector beginning at OP2 and stores the results in the vector
beginning at O P 1.

The difference between NEG and FNEG is that FNEG handles floating point exceptions.
..

Rcstrictionsl Nonc

Exceptions: FLT-OVFL, FLT-UNFL, FLTAAN ,

Precision: OP1 and OP2 have the same precision as the modifier.

F h e r e examples show how floating point exceptions are propagated by FNEG. 1
FNEG. H RTA, #-1 ;RTA:=NUNF, signal FLT-UNFL
FNEG. H RTA , #677777 : RTA: =OVF, s i gna 1 FLT-OVFL
FNEG. H RTA , #'I 00000 1 RTA: =NAN, s i gna 1 TLT-NAN

2.3.8 Floating Point Arithmetic 123

FABS Floating point absolute value
t

FABS . {HISID)
VFABS . {H,S,D)

XOP
v:=v

Purpose: FABS takes the floating point absolute value of OP2 and, stores it in OP1. In Comparison
with ABS, FABS handles floating point exceptions. . .. , . , ...

VFABS performs FABS on each element of the vector OP2 arid stores the results in the vector
. . . .

O P 1,. < , 8 , , , , ,

. ' , .

Restrictions: None , . , . , .

Exceptions: FLT-OVFL, FLT-UNFL, F L T J A N

Precision: O P 1 and OF2 have the same precision. as the modifier. . . . , .

. , , .

p e i e examples show how the user of FABS ~ ~ A B S . 6" floating point .numbers differ.
. .. \ . i: {' ! , 1 . -.

ABS.H RTA,#C-11 (. *. . . ;RTA:=-1, no s ide - e f f e c t s ' ' .

FABS.H RTA,#1-11 ;RTA:=NUNF; s ignal FLT-UNFL
ABS. H RTA, # 13777771 ;RTA:=MAXNUM, no side. eff 'ects

FABS. H RTA, # 13777771 ; RTA: =OVF, s i gna l FLT-OVFL
ABS. H RTA, # 1-4000001 ;RTA:=NAN, s ignal INT-OVFL .:

L
FABS. H RTA, # 1-4000001 ; RTA: =NAN, s i gna l FLT-NAN

. J

124 2 Instruction Set

FMlN Floating point minimum

FMIN . (H,S,D) TOP
VFMIN . (SR,OPl) . (H,S,D) V:=VV

Purpose: FMIN places in DEST the smaller of the floating point numbers S1 and S2. The primary
difference between MIN and FMIN is that FMIN properly propagates the floating point exception
values.

VFMIN performs FMIN on a series of pairs: an element of the vector beginning with OP1 and the
corresponding element of the vector beginning with OP2. If the first modifier is OP1, the results go
back into the vector OP1; if it is SR, they go into the elements of' the vector pointed to by SRO.

Exceptions: FLT-OVFL, FLT-UNFL, FLTBAN-

Precision: For FMIN, S1, .S2, and DEST all have. the- precision specified by the (H,S,D) modifier.
For VFMIN, the elements of vector OP1, vector OP2, and the vector pointed to by SRO all have the
precision specified by the (H,S,D) modifier. .

p i s instruction sets RTA to the smaller of X and 43.0: 1

2.3.8' Floating Point Arithmetic 125

FMAX Floating point maxiniuin

FMAX . {HISID) TOP
VFMAX . {SR,OPl) . {HISID) V ~ = V V

Purpose: FMA.X places. in DEST thelarger of the floating point numbers S1 and S2. The primary
difference between MAX and FMAX, is that FMAX properly propagates the floating point
exception values. :

VFMAX peieforms FMAX on a series of pairs: an element of the.vector beginning with OP1 and
. the corresponding element of the vector beginning with QP2. If the first modifier, is OP.1, the results

'

go back into the elements of vector OP1; if it is SR, they go into the elements of the vector pointed
to. by SRO. . :

Restrictions: None . ,

. ,

Exceptions: FLT-OVFL, FLT-UNFL, (. , .. F L T 3 A N (. :.: . ,

. . ' . I . :
. .

. .
Precision: For FMAX, SI, S2, and DEST all have the precision iikcified by the (H,S,D} modifier.
 or VFMAX, the elements of vector OP1, vector OP2, and the vector pointed t o by S,RO all have
the precision specified by the (HISID) m'odifier.

.
F h i s sequence of :instructions taker the number F and %lips9' i t to be within the

10.0,1.01: . .

FNAX.S RTA,F,#0.0 ; l a rger o f F and 0.0 t o RTA

L
, Ffl1N.S F , R T A , # ~ . ~ ;smal ler o f t h a t and 1.0 t o F

J

126 2 Instruction Set

RRNDMD, WRMDMD Readlwrite rou~lding mode

RRNDMD XOP
WRNDMD XOP

Purpose: RRNDMD sets O P 1 to USERSTATUS.RNDM0DE. WRNDMD sets
USERSTATUS.RNDMODE to OP1. In both instructions, OP2 is unused. For WRNDMD, if
O P 1 contains bits outside the field that specifies rounding modes, the. result is undefined. See
Section 2.3.5 for a description of rounding modes.

Exceptions: None

Precision: O P 1 is a singleword. OP2 is unused.

F e following Jumps to ISFLOOR if floor rounding ir specified b y U S E R S T A T U ~
Otherwise, it selects ceiling rounding:

FLOOR=0
. , *

CEILING04
RRNDMD RTA

. - - . . SKP.EQL,S RTA,#FLOOR,ISFLOOR
WRNDMD #CE I L I NG

2.4 Complex Arithmetic 127

2.4 Complex ~ r i t h m e t i e . '

Certain instructions operate on halfword or singleword complex .numbers in either signed integer or
floating paint format. A complex number acttially c o n k s of two conseiutive integers or floating
point numbers; the one at the lower memory or register address is the real part and the one at the
higher address is the imaginary part. Thus, a halfword complex number occupies two halfwords or
one singleword (and must align as a singleword) while a singleword complex number occupies two
singlewords.

REAL PART

IMAGINARY PART . .

fl Cnl

N Cn+41
. .

35 3 ,

Figure .?- 1 . .
A singleword complex number

. . . . I : .
. . . I '

. .

128 2 Instruction Set

CMAG Complex magnitude

CMAG . (HIS)
FCMAG . (H,S)
VCMAG . (HIS)
VFCMAG . (H,S)

XOP
XOP
v:=v
v:=v

Purpose: Compute the scalar magnitude of a complex number.

CMAG regards the complex number as a pair of signed integers, while FCMAG regards it as a pair
of flnating pni.nt numbers.:

VCMAG and VFCMAG are vector versions of CMAG and FCMAG. Assuming that "in
increments by the precision of the modifier, they compute:

FOR i := 0 TO SIZEREG-1 D O
OP l[il:= SquareRoot(FIRST(OP2I2'~cil)t2 +

SECOND(OP2[2*il)t2)

Restrictions: None

Exceptions: INT-OVFL (for' CMAG and VCMAG); FLTDAN, FLT-OVFL, and FLT-UNFL
(for FCMAG and VFCMAG)

Precision: For CMAG and FCMAG, OP1, FIRST(OP2), and SECOND(OP2) have the precision
specified by the modifier. FIRST(OP2) and SECOND(OP2) must align together to form an entity
having twice that precision.

For VCMAG and VFCMAG, the elements of all three vectors have the precision specified by thrt
modifier.

F h e following finds the length of the hypoten~lw of a right triangle who~e Alder have lnlplhs of
3 and 4: 1

L
CHAG.S RTA, [3 ? 41 ; RTA : = 5

2.4 Complex Arithmetic

CADD complex add

CADD . (H,S) . . TOP
FCADD . (H,S) . . TOP

Purpose: Add complex n u m b e r ~ ~ w h e r e FIRST(S1) and FIRST(S2) hold the real parts of the
numbers and SECOND(S 1) and SECOND(S~) hold the imaginary parts. . : .

FIRST(DEST):=FIRST(S 1) + FIRST(SZ);,(* Real part^ *)
SECOND(DEST):=SECOND(Sl) + SECOND(S~); (* Imaginary part *) , 3

.

CADD deals with signed integers while FCADD deals with floating point numbers.

Restrictions: None . .

Exceptions: CARRY and INT-OVFL (for CADD); FLT-OVFL. FLTJJNFL and, fLTNAN.(for
FCADD) < . .

:
Precision: FIRST(DEST), SECOND(DEST), FIRST(S l), SECOND(S I), FIRST(SZ), and
SECON?(S2) have the *precision specified by the modifier. Each FIRST must align with the
corresponding SECOND to form an entity with twice that precision. . . r ,

F h e following leaves in RTA and RTAl the sum of the complex numbers 4+i5 and 3 + 4

L
CAD0.S RTA.14 ? 51.13 ? 12.1. ; RTA := 7; R T A l := 17

130 2 Instruction Set

CSUB Complex subtract

CSUB . (H,S)
FCSUB . (H,S)

TOP
TOP

Purpose: Subtract complex numbers, where FIRST(S1) and FIRST(S2) hold the real parts of the
numbers and SECOND(S I) and SECOND(S2) hold the imaginary parts.

FIRST(DEST):=FIRST(S 1) - FIRST(S2); (* Real part *)
SECOND(DEST):=SECOND(S 1) - SECOND(S2); (* Imaginary part *)

CSUB deals with signed integers while FCSUB deals with floating point numbers.

Restrictions: None

Exceptions: CARRY and INT-OVFL (for CSUB); FLT-OVFL; FLT-UNFL and FLTxAN (for
FCSUB)

Precision: FIRST(DEST), SECOND(DEST), FIRST(Sl), SECOND(Sl), FIRST(S2), and
SECOND(S2) have the precision specified by the modifier. Each FIRST must align with the
corresponding SECOND to form an entity with twice that precision.

F h e following leaves in RTA and RTAl ihe difference of the two complex numbers 4+i5 and
S+i 12:

1

L
CSU0.S RTA, C4 ? 51, C3 3 12.1 . RTA : = 1; R T A l : = -7

2.4 Complex Arithmetic 131

CMULT Complex multiply

CMULT . (H,S)
FCMULT . (H,S)

TOP
TOP

Purpose: Multiply complex numbers, where FIRST(S1) and FIRST(S2) hold the real parts of the
numbers and SECOND@ 1) and SECOND(S2) hold the imaginary parts.

FIRST(DEST):=FIRST(S 1) * FIRST(S2) -
SECOND(S1) * SECOND(S2); (* Real part a)

SECOND(DEST):=FIRST(S I) * SECOND(S2) +
SECOND(S I) rn FIRST(S2); (* Imaginary part *)

The .instruction actually finishes the computation before altering DEST or NEXT(DEST), so
operands bay overlap without harm.

CMULT deals with signed integers while FCMULT deals with floating point numbers.

. Restrictions: None

Exceptions: INT-OVFL (for CMULT); FLTJAN, FLT-OVFL, and FLT-UNFL (for
FCMULT)

Precision: FIRST(DEST), SECOND(DEST), FIRST@ l), SECOND@ l), FIRST(S2), and
SECOND(S2) have the precision specified by the modifier. Each FIRST must align with the
corresponding SECOND to form an entity having twice that precision.

F h e following leaves in RTA and RTAl the result of multiplying the-complex numbers 4+i5
and 3+il?;

1

L
CMULT.S RTA, 14 ? 51, [3 ? 12.1 ; RTA := -48; RTB := 63

132

2.5; Mathematics

2 Instruction Set

2.5 Mathematics

SQRT Square root

FSQRT . (H,S,D)
VFSQRT . (R,S,D)

.: , XOP
v:=v

Purpose: Compute the principal square root in floating point: OPl:=SquareRoot(OP2). ,

I .

VFSQRT performs FSQRT on each element of vector OP2 and places the results in vector O P 1.
. .

The implementation is guaranteed to be monotonic--that is, if xly then SQRT(x)lSQRT(y).
Attempting to take the square root of a negative number invokes FLTDAN, which will result in
either a FLTDAN-TRAP hard trap or NAN, depending on the setting of USERSTATUS. .

Restrictions: None, - ;
, . . r . . , . . .

. , * f'<

Exceptions: F L T B A N

Precision: Both O P 1 and OP2 .have the precision specified by 'the modifier. * , .

p h e following leaves the square root pf 25 in RTA: , I

L
FSQRT.S RTA.kf25.0 ; RTA := 5.0

. .

134 2 Instruction Set

FLOG Floating point logarithm (base 2)

FLOG . (H,S,D)
VFLOG '. (H,S,D)

XOP
v:=v

Purpose: FLOG computes the base 2 logarithm of OP2 and stores the result in OP1. The results
are guaranteed to be monotonic--that is, if xzy then FLOG(x)zFLOG(y).

VFLOG performs FLOG on each element of OP2 and places the result in the corresponding
element of OP1.

Restrictions: None

Exceptions: FLT-OVFL, FLT-UNFL, F L T J A N . Taking the logarithm of a non-positive
number invokes FLTJJAN, resulting in either NAN or a FLTJJAN-TRAP hard trap, depending
on the setting of USERSTATUS.

Precision: OP1 and OP2 have the precision specified by the modifier.

F e following leaves RTA set to the base 2 logarithm of 32:

FL0G.S RTA,#32 .0 ; RTA := 5.0

Using the rule that logbz = log2z I log2b, the following instructions compute the base 10
logarichrn of 1000.0:

FL0G.S RTB,#lB.B ; RTB := .base 2 l o g o f 10.0
FLOG. S RTA , #I000.0 ; RTA := base 2 log o f 1000.0
FD1V.S RESULT,RTA,RTB ; RESULT := 3.8

2.5 Mathematics

FEXP . Floating point exponential (base 2)

FEXP . {H,S,D) XOP.
VFEXP . {H,S,D) . . -V:=V.

Purpose: Raise 2.0 to a power: .FEXP computes O P 1:=2,0?0P?,. VFE.XP performs, FEXP on each :
element of OP2 and places the result in the corresponding element of OP'I: The results, are
guaranteed to be monotonic--that is, if x ~ y then FEXP(x)lFEXP(y).

C . .
.

Restrictions: None , .

Exceptions: FLTJJAN, FLT-OVFL, FLT-UNFL

Precision: OP1 and OP2 have the precision specified by the modifier.

prig the rule that xty = 2t(y * log2x), the following raises 81.0 to the power 0.25 1
FL0G.S RTA,#81.0 ;,. . . .

FHULT.S RTA,#0.25 ; RTA ': = 8.25 * FLOG (81.01
FEXP. s RTB, RTA . ; RTB,-:= 3.0

. . .

136 2 Instruction Set

FSlN Floating point sine

FSIN . (H,S,D)
VFSIN . (H,S,D)

XOP
v:=v

Purpose: FSIN computes OPl:=Sine(OPZ). OP2 specifies the angle in cycles--that is, a "1.0"
corresponds to 360 degrees or 2*PI radians.

VFSIN performs FSIN on each element of OP2 and places the result in .the corresponding element
of OP1.

Exceptions: FL'I'A A N

Precision: Both operands have the precision specified by the modifier.

F h e following ~ o & ~ u t e s the sine of an angle expressed in degrees:

fl0V.S.S ANGLES#3B.0 ; 3 0 degrees
F0IV.S RTA,ANGLE,#360.0 ; convert t o cycles
FS1N.S RTA ; RTA := 0.5

2.5 . Mathematics 137

FCOS Floating point cosine

FCOS . {H,S,D) XOP
VFCOS . {H,S,D) V:=V

Purpose: FCOS computes 0~1 :=~os ine (0~2) . OP2 'specifies the ' angle in cycles--that is, a ul.O''.
corresponds to 360 degrees or 2*PI radians.

VFCOS performs FCOS on each element of OP2 and places, the result in the corresponding element
of OP1.

Restrictions: None
. .

Exceptions: F L T N A N
, :

Precision: Both operands have the precision specified .by the modifier.

p e following computes the cosine of an angle expressed in degrees 1
R0V.S.S ANGLE,#60.0 ; 60 degrees
FD1V.S R T A , A N G L E , # ~ ~ ~ . ~ ' ; convert to cyc les . ,

FC0S.S RTA ; RTA := 0.5

2 Instruction Set

FS l MCOS Floating point sine and cosine

FSINCOS . {H,S,D) XOP

Purpose: Computes FIRST(0P l):=Cosine(OP2) and SECOND(0P l):=Sine(OP2). OP2 specifies the
angle in cycles--that is, a "1.0" corresponds to 360 degrees or PI radians.

Note that because the cosine appears in the first anyword of the pair and the sine in the second, the
result can be used as a complex number.

Restrlctions: None

Exceptions: FLT. NAN

Precision: FIRST(OPl), SECOND(OPl), and OP2 have the precision specified by the 'modifier.
FIRST(OP1) and SECOND(OP1) must align together to form an entity having twice that precision.

F h e following computes both the sine and the cosine of an angle expressed in degree$ 1
N0V.S.S ANGLE,'#60.0 ; 60 degrees
FD1V.S RTA,ANGLE,#360.,0 ; convert t o cyc les

L
FSINC0S.S RTA

FATAN
. .

Floating point arctangent

FATAN . {H,S.D)
FATANV . {H,S,D)
VFATANV . {SR,OPl] . (M,S,D)

TOP
TOP

v:=vv

Purpose: FATAN computes DEST:=Arctangent(Sl/SZ). Expressing the tangent as a quotient
instead of a single value -allows the instruction to determine the'correct quadrant for the result,
which is expressed in cycles--that is, "1.0" corresponds to 360 degrees or 2vPI radians.

, .

FATANV, the reverse form, swaps the roles of S1 and S2: . . .

VFATAN performs FATAN on each pair of elements, one from vector O P l and the other from
vector OP2, and places the result in the corresponding element of either vector OP1 or the vector
pointed to by SRO, depending on the first modifier:

I S ' :

. .
FOR i:=O TO SIZEREG-1 DO

IF (modifier is O P 1) 'THEN
O P l [i & ~ i c t a n ~ e n t (~ P l[i1/0~2'[i1)' ' I ' '

) , ' ELSE
. . I

~ ~ ~ @ [i l : = ~ k t a n g e n t (O P . . 1 [il/OPZ[i]) ,

.. .

Restrictions: None

Exceptions: F L T Y A N
. . . .

Precision: All three operands have the precision specified by the (H,S,D) modifier.

Fe following computes a11 actangent in degrees

FATAN.S RTA,#1.0,#1.0
FMULT . S RTA , #360.0 ; RTA := 45.0 degress

2 Instruction Set

W2DSQ, W3DSQ Vector 2- or 3-dimensional.distance squared

Purpose: Compute the sum of squares of a series of coordinate pairs or triples.

V2DSQ and VFZDSQdeal wit1.1 coordinate pairs, where the vector beginning with OP1 holds the
first coordinate of each pair and the vector beginning with OP2 holds the second, Depending on
the first modifier, these instructions put the result back in vector OP1 or in the vector pointed to by
SRO. V2DSQdeals with integers, while VFZDSQdeals with floating point numbers:

FOR i:=O T O SIZEREG-1 DO
'IF (modifier is OP) THEN O P I[i]:=OP l[ilt2 + OP2[ilt2
ELSE SROe[il:=OP lliIt2 + OPZCiIt2

VSDSQ and VFSDSQdeal with coordinate triples, where the vector beginning with O P 1 holds the
first coordinate of each triple, the vector beginning with OP2 holds the second, and the vector
pointed to by SRO holds the third. Depending on 'the first modifier, these instructions put the result
back in vector OP1 or In the vector pointed to by SR1. V3DSQ deals with integers, while
VF3DSQ deals with floating point numbers:

FOR i:-0 TO 8fZEREC-1 DO
IF (modifier is OP1) THEN OPl[il:~OBl[ilt2 + OP2[i312 + SRO@[il'l'2
ELSE SR l@[i]:=OP l[ilT2 +.OP2[ilt2 + SROe[ilT2

Restrictions: None

Exceptions: For the integer instructions, INT-OVFL; for the floating p in t instructions,
FLT-OVFL, FLT-UNFL, and FLTJAN

Precision: Each element of each vector has the precision specified by the second modifier.

p h e following example illustrates the use of VPDSQ:

MOV.9.9 912EREG,.#3 : Specl fy length of vectors .

M0VP.P.A SR0,RESULT ; Set up SR0 t o p o i n t t o r e s u l t

V2DSQ.SR.S 11 ? 2 7 3 1 , [4 ? 5 ? 61

L
; RESULT now holds [17. ? 29. ? 45.1

J

2.5 Mathematics

V2DIS, V3DlS Vector 2- or 3-dimensional distance .

VZDIS . {SR,OPl). (H,S,DJ V:=VV
VFPDIS . (SR,OPl) . (H,S,D) V:=VV

V3DIS . (SR,OPl) . (H,S,D) . . V:=VVV
VF3DIS . {SR,OPl) . {H,S,D) ' . V:=VVV

Purpose: Comp.ute the square root of the sum of squares for a series of coordinate pairs or triples.

V2DIS and VFZDIS operate on coordinate pairs, where the vector beginning with OP1 contains the
first coordinate of each pair and the vector beginning with OP2 contains the second. Depending on '

the first modifier, the resulting vector goes back into O P l or into.the vector pointed to by SRO.
V2DIS deals with integers while VF2DIS deals with floating point numbers:

FOR i:= 1 T O ,SIZEREG- 1 DO
IF (modifier is O P 1) THEN

O P l[il:=SquareRoot(OP l[i]tZ + OP2[il72)
ELSE

SRO~[il:=SquareRoot(OP l[il72 + OPZ[ilt2)

. VSDIS and VFSDIS operate on triples, with the vector beginning at OP1 containing the first
coordinate of each triple, the vector begnning at OP2 containing the second, and the vector pointed
to by SRO containing the third. Depending on the first modifier, the result goes back into the vector
starting at O P 1 or into the vector pointed to by SR 1:

FOR i:=O T O SIZEREG-1 DO
IF [modifier is O P 1) THEN

O P l[il:=SquareRoot(OP 1CiIt2 + OP2[ilt2 + SROdilt2)
ELSE

SR le[il :=Square~oot(O~ l[i]T2 + OP21il~2 + SRO~OI 'T~)

Restrictions: None

Exceptions: For the integer instructions, INT-OWL; for the floating point instructions,
FLT-OVFL, FLT-UNFL, and F L T J A N

Precision: Each element of each vector ha3 the precision spccifi~d by the second modifier

p p p o s e X D I S P and YDISP represent a drawing as a series of line segments, describing each 1
segment as a pair of displacements in the X and Y directions from the endpoint of the preceding
segment. The following program fragment converts this data to represent each segment as an
angle and magnitude:

; Obtain a vector o f angles

2 ' Instruction Set

M0V.S.S SIZEREG,#@
M0VP.P.A RTA,X-DISP
M0VP.P.A RTB,Y-DISP

NEXT: FATAN.SANGLE~SIZEREGlf2,RTA[SIZEREGIf2,RTB~SIZEREGI~2
ISKP.LSS SIZEREG,LENGTH,NEXT

; Now SIZEREG = length of vector
VF2DSQ.OPl.S XJ1SP.Y-DISP ; X-DISP becomes a vector

L
; o f magni tudes

J

2.5 Mathematics 143

VDOT Dot product

VDOT . {H,S,D)
VFDOT . (H,S,D)

Purpose: Compute the dot product of two vectors:

RTA:=O;
FOR i:=O TO SIZEREG-1 DO

RTA:=RTA + O P 1CiI * OP2[il

T o avoid overflow and underflow problems, the processor accumulates the sum with as much
precision as it can, regardless of the (H3.D) modifier. If that modifier is 'H", the result' goes into
RTA as a singleword, and if the modifier is "S", RTA .is a doubleword. If the modifier is "D",
however, the result is still a doubleword.

Restrictions: None

Exceptions: INT-OVFL (for VDOT); FLT-OVF.L, .FLT-UNFL, and FLT_NAN (for VFDOT).

Precision: The elements of each vector have the precision specified by the modifier. RTA has twice
that precision unless the modifier is D, in which case RTA is a doubleword.

F p p o s e that. singleword vector V contains the results from sampling a voltage. waveform at 100
Hz for one second. The following computes the RMS voltage:

1
fl0V.S.S SIZEREG,#100. ; Put length i n SIZEREG
VFD0T.S V,V ; Sum o f squares

FDIV .0 RTA, W100.0 ; Mean

L
FSQRT. D RTA, RTA ; Root

144 2 Instruction Set

CONV Convolution

CONV . (H,S,D)
FCONV . (H,S,D)

Purpose: Compute the convolution of two vectors. OP1 and OP2 are the initial elements of the
vectors, SIZEREG defines the length of vector OP1, and SRl defines the range of integration (and
therefore the length of vector OP2). The result appears in the vector pointed to by SRO:

. ,

FOR i:=O TO SIZEREG-1 DO
BEGIN
3RO@Cil:=O;
FOR j:=O TO SR 1-1 DO

$Ro@[~]:=sRoQ[~] + OP2Cjl m OP 1CSR 1-1 + i - jl
END

Restrictions: None

Exceptions: INT-OVFL (for CONV); FLT-OVFL, FLT-NAN (for FCONV)

Precision: SRl and the elements of each of the vectors have the precision specified by the second
modifier.

~ n v n v o l v e A with B and store the result i n C:

H0VP.P.A RB,C ; SR0 po in ts t o d e s t i n a t i o n
M0V.S.S SIZEREG,#100. ; A i s 100 elements long
ROV. S. S R1 , #10. ; B ' i s 10 elements long

C0NV.S A , B

2.5 Mathematics 145

RFLT2 Second order recursive filter

RFLTZ . (H,S,D) V:=V
FRFLTZ . (H,S,D). V:=V

Purpose: Apply a second order recursive, filter to the vector whose first element is OP2 and leave
the results in the vector whose first element .is OP1. T h e instruction obtains the coefficients of the
filter from the five element vector pointed to'by SRO. The result is actually two elements shorter
than SIZEREG indicates, since it begins at OP1[21 instead of OPl[Ol. The user must initialize the
first, two elements of the.OP 1 vector to start the recursion properly.

FOR i:=O TO SIZE RE^ - 3 D O , .

O P l[i+21:=SRO~[OI * O P 1CiI
+ SRO@[l] * OPl[i+ll
+ $Rod21 * OP2Cil
+ SROd31 * OP2[i+ll
+ $Rod41 * OP2[i+21

. ,, . .

Restrictions: None

Exceptions: INT-OVFL (for RFLT2); FLT-OVFL, FLT-UNFL, ,and F L T . 3 A N (for FRFLT2)

Precision: The coefficients and the elements of each vector have the precision specified by the
modifier.

F h e following example filters the signal in vector SENSEJN:

M0VP.P.A SRB,COEFFICIENTS ; P o i n t e r t o f i v e c o e f f i c i e n t s .

MOV.S.6 RESULT, H.73476 ? 1,734761
; I n i t i a l i z e the recursion .

M0V.S.S SIZEREG,#1000. ; Spec i f y l eng th of SENSE-I N
FRFLT2.S RESULT,SENSE-IN

L

146 2 Instruction Set

INTRAM In-place square matrix transpose

INTRAN' . (H,S,D) V:=V

Purpose: Transpose a square two-dimensional matrix without moving the matrix to a different area
of memory. (The TRANSP instruction can operate on a matrix which is not square, but must move
the matrix to a new, non-overlapping area of memory as it does so.)

OP1 is the first element of the matrix, which must be stored in row major order (second subscript
varying more rapidly than the first). OP2 gives the ~~urnber of rows (which is, of course, the same
as the number of columns) in the matrix, and must be a multiple d 8 hr. halfwnvd precision (or a
multiple of 4 fur singlewords, or a multiple of 2 fnr doublewords).

Exceptions: None
*

Precisioli: Every element of the matrix has the precision specified by the modifier. OP2 is a
singleword.

transpose the following matrix:

one could use the INTRAN instruction like this:

DSPACE
; Expressions separated b~ 'I?" assemh l e

; successive singlewords i n memory
FOURBY: 0 ? 1 ? 2 ? 3 ? b ? 5 ? 6 ? 7 ? 8

9 ? 10? I1 ? 12 7 13 ? 14 ? 15

I SPACE
I NTRAN. S FOURBY, #4.

; Now FOURBY = 0 ? 4 ? 8 ? 12 ? 1 ? 5 ? 9 ? 13

2.5 Mathematics 147

TRANSP . .Matrix transpose

TRANSP . (H,S,D) V:=V

Purpose: Transpose a two-dimensional matrix, moving it to a different, non-overlapping area of
memory in the process. (The INTRAN instruction transposes a matrix without moving it, but
requires that the matrix be square.)

The instruction expects the matrix to be stored in row major order with its first element at OP2.
The result of the transposition appears in row major order with its first element at OP1.

Registers RO and R1 respectively specify the number, of rows and columns in the source matrix.
Registers R2 and R3 specify the number of columns to ignore between each row in the source and
destination matrices respectively. T o transpose an entire matrix, one sets R2 and R3 to zero; to
transpose a submatrix, one sets R2 and R3 to skip over the columns that lie outside the submatrix.

The number of rows (and the number of columns) in the source matrix must be a multiple o f 8 for
halfword precision (or 4 for singlewords, or 2 for doublewords.)

% .

Restrictions: None

Exceptions: None

Precision: All elements of the source and destination matrices have the precision specified by the
modifier. ROD R 1, R2, and R3 are singlewords.

transpose the following matrix:

use the TRANSP instruction like this:

; Assume the mat r ix i s stored as a s e r i e s o f doublewords
; i n the fo l lowing order: 8.1 2 3 4 5 6 7
I SPACE

M0V.S.S %R0,#2 ; Number o f rows
M0V.S.S %R1,#4 ; ~umbek o f columns
fl0V.S.S %R2,#0 : Do not skip anything
fl0V.S.S %R3,#0
TRANSP,S NEWPLACE.TWOBY4

; The r e s u l t i s a s e r i e s o f doubleuords in the f o l louing
: order: 0 4 1 5 2 6 3 7

148 2 Instruction Set

As an example of how to use R2 and R3 to transpose a submatrix, suppose we have the
following matrices (in Pascal notation):

VAR A: ARRAY [0..ARows, 0..ACols-11 OF INTEGER;
B: ARRAY [0. . BRous, 0. . BCo l s-11 OF I'NTEGER;

and we want to transpose the submatrix of A whose origin is A[Ax,Ayl and whose size is SRows
by SCols, storing the result in the submatrix of B whose origin is B[Bx,Byl. Assuming the
submatrices are proper (that is, they truly fit within A and B) we can use the following
instructions:

MOV. S. S XR.0, SRorto ; Number a f rows i n siibl~~e 11. i x

MQV.S,S XR1,SColo 1 Number o f oolumns i n submat i - ix
M0V.S.S XR2,ACols
SUB.S %R2,SCols ; S k i p (ACols-SCols) columns.betueen source r o u s
fl0V.S.S %R3,BCols
SUB.S %R3,SCols ; Skip (BCols-SCols) columns between d e s t rows

MOVP. P. A RTB, B [By1 T 2
ARR I NO. RTB 4*BCo l s, Bx ; RTB: =ADDRESS (€j [Bx, Bgl ?
TRANSP. S (RTB) , (RTAI

2.5 Mathematics 149

MATMUL Matrix multiply

MATMUL . (H,S,D)
FMATMUL . (H,S,D)

Purpose: Multiply two 2-dimensional matrices stored in memory in row major order. OP1 is the
first singleword of a 9-singleword vector which describes the two source matrices and the destination
matrix.

. Word
0
1

Meaning
Number of rows in source matrix 1
Number of columns in source matrix 1
Number of columns in source matrix 2
Number of columns to skip between rows of source matrix 1
Number of columns to skip between rows of source matrix 2
Number of columns to skip between rows of destination matrix
Poirrter to origin of source matrix 1
Pointer to'origin of source matrix 2
Pointer to origin of destination matrix

OP1[3lt2, OP1[4lT2, and OPlC51t2 are used when multiplying submatrices. To multiply entire
. .

matrices, one ordinarily sets these to zero.

Like VFDOT, FMATMUL and MATMUL accumulate results internally in the greatest feasible
precision regardless of the precision of the result. ,

Restrictions: ,None
. .

Exceptions: INT-OVFL (for MATMUL); F L T J A N , FLT-OVFL, and . F L T N N F L (for
FMATMUL)

Precision: Every element of each matrix has the precision specified by the modifier. O P 1 is the first
element of a, vector of 9 singlewords.

Fe following example multiplies the two matrices shown and stores the result in matrix D: 1

; Rows i n source m a t r i x ' l
; Columns i n source mat r ix 1
; Columns i n source mat r ix 2

2' Instruction Set

M0V.S.S %R4,#0
M0V.S.S %R5,#0
R0VP.P.A %R6,A ; P o i n t e r t o source m a t r i x 1
M0VP.P.A XR7,B ; P o i n t e r t o source m a t r i x 2
M0VP.P.A XR8,D ; ? o i n t e r t o d e s t i n a t i o n m a t r i x
MATMUL. S %R0

A s an example o f how to mult iply submatrices, assume we have the following matrices (in Pascal
I

notation):

VAR A: ARRAY [B..ARows-1, 0..ACols-11 OF REAL;
0: ARRAY C0. . BROWS-1, D. . QCo Is-11 OF REAL;
01 ARRAY EB. e DRo~a. - l , Qi i DCO I 9-11 OF REAL;

and that we want to mult iply the submatrix whose origin is at A k x , A y l w i th the submatrix
whose origin is at BEBx,ByI, storing the -result in D[Dx,Dyl. T h e submatrix o f A has R rows by
S columns and the submatrix o f B has S rows b y .T columns. Assuming further that the
submatrices are proper (that is, they fit. inside the corresponding matrices), we can use the
following code:

M0V.S.S DESC,R ; Number o f rows i n source m a t r i x 1
M0V.S.S DESC+4*1,S ; Number o f columns i n source m a t r i x 1
MOV . S . S DESC+4*2, T : Number s f columns.. i n source m a t r i x 2
M0V.S.S DESC+4*3,ACols
SUB. S D E S C + ~ * ~ , S ; S k i p (ACol s-S) columns . b e t ~ e e n rows i n m a t r i x 1
MBV.5.S nF5C+4m4,RCnl~
SI IR . S OFSC+brrl, T ; S k i p (0Co l o-TI c o l umna between rot lo i n m a t r i x 2
M0V.S.S DESC+4*5,DCole
SUB.S DESC+4*5,T ; S k i p (OCol s-TI columns betueen rows i n

; d e s t i n a t i o n

M0VP.P.A RTA,A[Ayl'i'2
ARRIND.RTAACols,Ax .

M0VP.P.P DESC+4*6,RTA ; P o i n t e r t o ACAx,AyI

M0VP.P.A RTA,B[Byl'i'2
ARRIND.RTA BCols,Bx
M0VP.P.P DESC+4*7,RTA ; P o i n t e r t o B[Bx,ByI

M0VP.P.A RTA,DCDylT2
ARRINO.RTA DCols,Dx
R0VP.P.P DESC+4*8,RTA ; P o i n t e r t o D[Dx,DyI
FMATMUL.S DESC

2.5 Mathematics 15 1

FFT In-place complex FFT and inverse FFT -

CFFT . (H,S) V:=V
FCFFT . (H,'S) V:=V
CFFTV . (H,S) : V:=V
FCFFTV . (M,S) V:=V

Purpose: Compute the fast Fourier transform (FFT) or inverse fast Fourier transform of a vector of .

complex numbers.. .

CFFT and FCFFT compute the FFT, with CFFT .operating on complex signed integers and FCFFT
on complex floating point numbers.

CFFTV i d FCFFTV compute the inverse FFT, with CFFTV operating on complex signed
integers and FCFFTV on complex floating point numbers.

For all four instructions,, O P 1 .designates the first element of the vector to be transformed. In each
case, the instruction puts its results back into the original source vector. The number of elements in
the vector must be a power of 2; OP2 contains that power (i. e., the base 2 logarithm of the number
of elements). If OP2 is not positive, the instruction leaves the vector untouched.

. .

If the source vector exceeds the maximum allowable length, an FFT-TOOLONG soft trap occurs.
(This limit is implementation-dependent; see Section 1.12.) If desired, one can provide a software
trap handler that operates transparently to the user on vectors of arbitrary size, transforming a
lengthy vector by repeatedly applying the instruction to subvectors.

The last step of the FFT algorithm is a "scrambling" operation which swaps elements of the vector
whose indices within the vector are bit reversals of each other. (For example, in a 16-element vector
where i,nrlic~s range from 0 to 15, this scrambling would swap element 12 with element 3 because
reversing the bits of the four-bit binary representation of 12 yields 3. Similarly, the scrambling
would swap element 1 with element 8, and so on.) Because this step represents a considerable
fraction of the time required for the total FFT, the architecture does not incorporate it in the FFT
instructions themselves, but provides a ieparate instruction called BADREV to perform it.

Similarly, "scrambling" is the first step of the complete inverse FFT algorithm, but it is omitted from
the inverse FFT instructions, which expect their source arrays to be scrambled.

Thus, a complete FFT would require the CFFT instruction (for example) followed by the BADREV
instruction. A complete inverse FFT would require the BADREV instruction followed by (for
example) the CFFTV instruction.

Providing a separate instruction for swapping elements saves time in many applications where one
wants to transform a signal, operate on it, and transform it back. Because the FFT instiuctions
produce a scrambled result and the inverse FFT instructions expect a scrambled input, one can

1 52 2 Instruction Set

simply omit to unscramble and rescramble between them--provided the operations that take place
between the FFT and inverse FFT instructions preserve the scrambled order.

~estr ic t ions: None

Exceptions: INT-OVFL, (for CFFT and CFFTV); FLT-OVFL, FLT-UNFL, and FLTJAN (for
FCFFT and FCFFTV)

Precision: Every element of the vector has the precision specified by the modifier. OP2 is a
singleword.

F n s i d e r a simple filtering operation where one transforms the input signal, multiplies it by a
vector of selected filter coefficients, and transforms it back. One could write:

1
HOVP.P.ARTA,COEFtTC ; P o i n t t o f i l t e r c o e f f i c i e n t s
CFFT.S INPUT,LOGSIZE ; FFT
BADREV.0 INPUT
VUSX".S OUTPUT,INPUT ; F i l t e r s i g n a l u s i n g c o e f f i c i e n t s
BA0REV.D OUTPUT,LOGSIZE
CFFTV.S OUTPUT,LOGSIZE ; I n v e r s e FFT

But by scrambling the coefficient vector itself (an operation which need be performed only once
no matter how many signals are to be passed through the same filter),

BADREV.0 COEFFIC

one can remove both BADREV np~rations from the prcccding Bequence:

NOVP.P.ARTA,COEFFIC ; P o i n t t o s c r a m b l e d c o e f f i c i e n t s
CFFT.S INPUT,LOGSIZE ; FFT
V"SX".S OUTPUT,INPUT : F i l t e r u s i n g scrambled coefficients
CFFTV.S OUTPUT,LOGSIZE ; I n v e r s e FFT

T h e following example uses the FCFFT, RAT)REV, and INTRAN inst~uetions toge~l~er to
perform a two-dimensional FFT;

;2DFFT - Two d imens iona l complex FFT
; h a l f - w o r d f l o a t i n g - p o i n t
;Transform complex 2D a r r a y whose o r i g i n i s i n ORG
;S ize o f a r r a y i s 2TLOGSIZE by 2tLOGSIZE

;
; C a l l e d v i a JSR PC,2DFFT

*
ZDFFT: SHF.LF.S RTA,#l,LOGSIZE ;Get number o f rows (and columns)

fl0V.S.S ESIZE,RTA ;Save number o f e lements i n rows and columns

2.5 Mathematics 153

SHF.LF.S SIZE,RTA,#2
MOVP.P.P .T,ORG
fl0V.S.S RTA,ESIZE

2 d f f t l : FCFFT.H (T1,LOGSIZE
BADREV.S (T1,LOGSIZE
A0D.S T,SIZE
DJNPZ.GTR R T A , Z d f f t l
1NTRAN.S (ORG1,ESIZE

' fl0VP.P.P T,ORG
, fl0V.S.S RTA,ESIZE ,

2 d f f t 2 : FCFFT.H (T1,LOGSIZE
BADREV. S (T 1 , LOGS I ZE
ADD.S T,SIZE
DJflPZ.GTR RTA,Zdfft2.
1NTRAN.S (ORG1,ESIZE
RETSR PC, (SF)

L . :

;Convert t o ha l f -word complex s i z e and save
; I n i t i a l i z e row p o i n t e r ' t o f i r s t row

.:
;Loop coun te r
;Transform. a row '
;Un-bi t 7 r e v e r s e t h i s row
;Ste@ t o n e x t row
;Last row?
. .
;Transpose a r r a y

; Transform a ,co l umn

; ~ n - b i t - reve rse ' th i s c o 1,umn

; s t e p t o next ' column
;Last column?
;Transpose a r r a y back
;Re turn

154 2 Instruction Set

,~

BADREV In-place bit address reversal

BADREV . {H,S,D) V:=V

Purpose: Within a vector, swap each pair of elements whose addresses represent bit-reversals of
each other. The instruction is primarily useful in conjunction with the FFT and inverse FFT
instructions.

T h e last step of the FFT algorithm is a "scrambling" operation which swaps elements of the vector
whose indices within the vector are bit reversals of each other. (For example, in a 16-element vector
where indices range from 0 to 15, this scrambling would swap element 12 with element 9 hecause
reversing the bits of the four-bit binary representation of 12 yields 3. Similarly, the scrambling
would swap element 1 with element 8, and so on,)

O P 1 is the first element of the vector to be scrambled; the instruction puts the results back into the
same vector. The number of elements in the vector must be a power of 2. OP2 specifies that power
(or, in other words, the base 2 logarithm of the number of elements). If OP2 is not positive, the
instruction leaves the vector .untouched.

Restrictions: None

Exceptions: None

Precision: The elements of the vector all have the precision specified by the modifier. CP2 is a
singleword.

p t e that when one uses BADREV to complete an FFT operation, the precision must be iwice

each data point comprises two values:

1
that of the FFT instruction because the vector in question contains complex numbers and ti;r.:~s

CFFT. S SIGNAL : Fourier transform leaves the vector
; scranibled

BADREV. D S I GNAL ; Undo the scrambling

2.5 Mathematics 155

QPART Quicksort partition inner loop

QPART
. . v:=v

Purpose: Pipelined processors must predict with considerable accuracy whether conditional branch
instructions will alter the flow of control, or execution speed suffers. Because sorting algorithms
usually contain unpredictable conditional branches, the architecture provides an instruction to
perform the inner loop of the Quicksort algorithm, eliminating branches.

OP1 is a pointer to the first element of a vector of records and OP2 is a pointer to the last record in
the vector. Each record consists of a singleword key followed by a singleword of data (typically a
pointer to a larger amount of data).

RTA contains a partitioning value. . 1

The instruction rearranges the elements of the vector, segregating them into two groups so that all
the records in one group have keys exceeding RTA and all the records in the other have keys less
than or equal to RTA. Within each group, the records may still be disordered (though in moving
records about to achieve the segregation, the instruction does attempt to order them locally); the
instruction guarantees merely to partition the vector into two groups relative to the value in RTA.

T

When the instruction finishes, the first part of the vector contain; the group of records with keys
less than or equal to RTA, and OP2 points to the last record in that group. OP1 points to the next
record, which is the first record in the group whose keys exceed RTA. RTA contains a code that
reports the status of the two partitions: t

, 0 , The lower partition is sorted, but the upper one is not.
1 The upper .partition is sorted, but the lower one is not.
2 Both partitions need sorting. The upper has fewer,records. . !

3 Both partitions need sorting. The lower has fewer records. :
. . 4 Both partitions are sorted.

In simplified form, the instruction does the following:

Before

I Not sor ted by key I

After

2 Instruction Set

Restrictions: None

Exceptions: None

Precision: Each element o f the vector is a pa i r o f singlewords, the first serving as a key and the
second as data which the instruction moves along wi th the key. RTA is a singleword.

F h e fol lowing exarnpie illustrates how to use QPART to implement the complete quicksort
algorithm:

1
; Q u i c k s o r t
: C a l l e d v i a : .ISR #-l.,QUICKSORT
; On e n t r g :
; LOW - p o i n t e r t o f i r s t r e c o r d o f a r r a y t o be s o r t e d
; HIGH - p o i n t e r t o l a s t r e c o r d o f a r r a y t o be s o r t e d

i (HIGH must immedia te ly f o l l o w LOW)
; On e x i t :
: A r r a y between LOW and HIGH i s c o m p l e t e l y s o r t e d
QU I CKSORT :

ADJSP.UP SP,#10 ;Reserve space t o save HIGH and LOW
; l a t e r on

QUICK1: SUB.S RTB,HIGH,LOW ; C a l c u l a t e s i z e o f a r r a y - 8
SHFA.RT.S RTB,#4 ;Get h a l f t h e s i z e

; (i n double-words)
SEXCH. D (LOW) , (HIGH) ;Swap t h e f i r s t , l a s t . and m i d d l e
SEXCH. D (LOW) 0 [RTBI t3 , (HIGH) ; words nf the a r r a y as necoooary
SEXCH. D (LOW 1 , (LOW 0 bRTB103 ; sn f i r s t c m i d d I ~ ~ . I o r c
M0V.S.S RTA, (LOW)0[RTBlf3 ; P a r t i t i o n a r r a y around m i d d l e ' s v a l u e
M0V.D.D (SP)-lB,LOW ;Save h i g h and low p o i n t e r s
OPART LOW,HIGH ;Do t h e p a r l i t i o n l n g
JNPA QU I CK2 CRTAI 03 :D i spa tch t o c o r r c c t r n u t i n c

QUICk'f: ; W i ' spatch t a b l e .
; I t i s impor tan t t h a t a l l s e c t i o n s (except t h e l a s t)
; be t u o words long

; S o r t upper h a l f o n l y => t a i l r e c u r s i o n
M0V.S.S HIGH, (SPI-4
JNPA QUICKl

; S o r t lower h a l f o n l y => t a i l r e c u r s i o n
M0V.S.S LOW, (SPI-10
JNPA QUICKl

; S o r t upper f i r s t then lower => f u l l r e c u r s i o n

2.5 Mathematics

EXCH.S HIGH, (SPI-4
JMPA QUICKSORT

. .
;Sor t I'ower then upper => f u l l . recurs i b n

EXCH. S LOW, (SP) -10
. .

JMPA QUICKSORT

; A l l s o r t e d
M0VP.P.A SP, (SPI-10 ;D isca rd t h e HIGH and LOW j u s t saved
R0V.D.D LOW, (SP) -10 ;Restore p r e v i o u s HIGH and LOW
: I f LOW i s t h e -1 v a l u e pushed by t h e JSR t h a t invoked t h e q u i c k s o r t ,
; we're f i n i s h e d , so r e t u r n t o t h e c a l l e r . Otherwise, t a i l r e c u r s i o n
; c o n t i n u e s s o r t i n g .
JMPZ. GEQ. S LOW, QUICK1 ; Ta i l r e c u r s i on

L
RET (SPI-4, (SP) ;D isca rd -1 and r e t u r n t o o r i g i n a l c a l l a r

J

2 Instruction Set

2.6 Chained Vectors

. These instructions perform arithmetic on vectors, often combining two or more operations. This
results in faster execution not only because it reduces the number of instructions the processor must
fetch--a single multiply-and-add instruction can take the place of a multiplication followed by an
addition, for example--but also because the processor can use its adder and multiplier in parallel.

Because the mnemonics for chained vector instructions explain themselves, and because the
arithmetic operations are logical extensions of those for scalars, this section will not describe each
instruction in detail.

Each mnemoni'c consists of a V followed by up to two letters definlng the data type and then an
equation within quotation marks:

For <data type>, a "CF" indicates complex floating point, a "C" alone indicates complex signed
integer, and "F" alone indicates floating point. If <data type> is missing, the instruction deals with
signed integers.

Within the equation, "X", "Y", and '2'' are the first, second, and third source vectors whiie "S" and
"R" are the first and second source scalars. As in algebrz, concatenating variables indicates
multiplication.

Thus, for exai-nple, the instructiorc:

performs the operation:

FOR i:=0 TO SIZEREG-I DO
QPl [i l :=OF1 [i l + RTA x Q P Z [i l

2.6 Chained Vectors

Two Vector Operands and One Scalar

S+X, S-X, SX

V"S+X" . {H,S,0) W:=VS
VFmS+X" . {H,S,B) Vi=VS
FOR i:=O TO SIZEREG-1 D O OPl[il:=RTA + OP2[il

V1'S-X" . {H,S,DQ V:=VS
VF1'S-X" . {H,S,D) V: =VS
FOR i:=O TO SIZEREG-1 D O OPlCil:=RTA - OP2[il

V"SXm' . {H,S,D) V:=VS
VF"SXII . {H,S,D) W:=VS , .

FOR i:=O TO SIZEREG-1 D O OPl[i]:=RTA u 032[i l

160 2 Instruction Set

Three Vector Operands

X+Y, X-Y, Y-X. XY

VmX+Y" . {SR,QP'l). (H,S,D) V: =VV
VFWX+Y" . (SR,8%91} . (H,S,D] V:=VV
FOR i:=O T O SIZEREG-1 D O

IF (modifier O?) THEN O P l[i]:=OP l[il + OP2[il
ELSE SRO@[il:=OP 1CiI + OP2[il

wl'x-yl' . (SR,OBI 2 . (H,s,D) v.: =vv
VPB'X-Y1' . {SW,OB.%) I gCJ,s,ed> V:=VV
FOR i:=O T O SIZEREG-1 D O

IF {modifier O P) THEN O P l[il=OP l[i] - OP2[i1
~ L S E S;RO@[ll=OP l h j - O?,XiI

". - ..

V"Y-X" . (SR,OPl] . {H9S,D) V:=VV
VF2'Y-X'l . {SR,OP'I) . {H,S,D) V:=VV
FOR i:=O T O SIZEREG- 1 DO

IF (nodifier O P) THEN O P l[il:=OP2iil - O P l[il
ELSE SROe[iI:=OPZ[il - GP liil

V1'XY" . {SR,BPI) . {B.O,S,D) V:=VV
WFs'Xa/" . {SR,OPI}. {W,S,D] V:=VY
VCalXYs' . {SR,CP1) . CH,S) V:=VV
VFCI~XYI~ . {SR,OPII) . {H~S) V:=WV
FOR i:=O TO SIZEREG-I DO

IF (modifier OP] THEN O P l[il:=OP l[il u OP2[iI
ELSE SRO@[il:=OP 1[il * OP2CiI

. 2.6 Chained Vectors

Three Vector Operands and One Scalar
. . . . , . .

X+SY. SX+Y, SY-X, SX-Y, SX+SY. SX-SY, S+XY, s-XI?

VmX+SY" . {SFi,OP'I). {H,S,,D> V:=VVS
VF"X+SY1\ {SR,QP4) . {#,S,D) V:=VVS. . .

FOR i:=O T O SIZEREG-1 DO .

IF (modifier OP) THEN O P l[il:=OP l[il + RTA * OP2[il
ELSE SRO@[il:=OP 1CiI + RTA #(OP2iil

V-SX+Y" '. {SW,OPI 1 . {H,s,D) v:=wvs.
VFW%X+Y" . {SW,OPI>. {W,S,D> V:=V&*S
FOR i:=O T O SIZEREG-1 DO . .

IF .(modifier OP] THEN O P l[il:=RTA 'a O P 1EiI + OP2[il
ELSE SRO@[il:=RTA * OPl[il + OP2[il

~ ~ ~ s v - x ~ ~ . {SW,OPI~ . {H,S,D) v: =vvs
VFnlSY-X1l . {SW,09)4) . (H,%,D} V:=VVS
FOR i:=O T O SIZEREG-1 DO

IF (modifier OP) THEN O P l[i]:=RTA * OP2iil - G P l[il
ELSE SRO@[il:=RTA a OP2[i! - OPl[il

V'lSX-Y1l . {SR,OPI> . (H,S,D} V:=VVS
VF~SX-Y" . <GSR,OPI~ . {w,s,D] V:=\IVS
FOR i:=O T O SIZEREG-1 DO

IF (modifier OP) THEN OPl[i]:=RTA * OPl[il - OP2[il
ELSE SRO@[il:=RTA a OPl[il - OP2[il

V"SX+SY" . {SW,OQI} . {H,S,D} W:=WVS
VF"S)(+SY1' . {SR.OPl) . {HISID) V:=W,VS
FOR i:=O T O SIZEREG-1 DO

IF (modifier OP) THEN O P l[iI:=RTA * (OP l[i] + OPZ[il)
ELSE SRO@[il:=RTA * (OP l[ij + OPZ[il)

V1'SX-SY1l . {SW,OPl} . {H,S,D) W:=VVS
VF~~SX-SY" . {CSR,OQI] . {H,s,D) V:=VVS
FOR i:=O T O SIZEREG-1 DO

IF (modifier OP} THEN OPlCiJ:=RTA * (OPlLiI - c)PZ[~I)
ELSE SRO@[il:=RTA a (OPl[il - OP2[il)

V ~ S + X Y ~ . {SR,OPI 1 . CH,S,D) v:=wvs
VF"S+XY'\ {SR,OP1} . {H,S,D} V:=VVS
FOR 1:=0 TO SIZEREG-1 DO

IF (modifier OP) THEN OPl[iI:=RTA + (OPl[il * OP2[i1)
ELSE SRO@Lil:=RTA + (OPl[il * OPZCi])

2 Instruction Set

vmms-xvan . {SR,OPI . {H,s,D) V:=VVS
VF'IS-XY" . (SR,8P1] . {H,S,D) W:=VVS
FOR i:=O 'TO SIZEREG- I DO

IF (modifier OP) THEN OPl[i]:=RTA - (OP1CiI u OPZ[il)
ELSE SROe[il:=RTA - (OP l[i] rk OPZ[iI)

2.6 Chained Vectors

TWQ Vector Operands and Two Scalars

V"S+RXm . {H,S,D} V:=VSS . ,,

VF"'S+RX" . {H,S,D} ' V:=VSS ' , O) . ' : .
I , : . :

VC"S+RX" . {H,S} V:=VSS ,

WFC"S+RX" . {H,S} . .' . . , V:=VSS . . .
. , .

FOR i:=O TO SIZEREG-1 DO OPl[il:=RTA + RTB :* OP2CiI . . .

2' Instruction Set

Four Vector Operands

V-X+YZ" . {SR,OPI}. CH,S,D} v:=wvv
VFWX+YZ" {sR~OPI}. {HyS,D} V:=VVV
FOR i:=O T O SIZEREG-1 DO

IF (modifier OP) THEN OP l[i]:=OP l[il + OP2CiI * SROdil
ELSE SR le[i]:=OP 1[il + OP2[il * SROdil

2 ~nstruction Set

MOW Logical move

XOP

Purpose: OPl:=OP2. If OP2 has greater precision than OP1, the low-order bits ,of OP2 are used.
If O P 2 has smaller precision than OP1, it is zero-extended to the left. This is best thought of as a
logical" or "unsigned" move operation. No conditioil bits (e.g., carry or integer overflow) are
affected. Note that the TRANS instruction can be used to perform sign-extended or truncated
integer moves.

It is preferable to use FTRANS rather than M ~ V an floating point numbers, because the former
will execute faster on most implementations.

Exceptions: None

Precision: T h e two modifiers specify the precisions of OP1 and OP2 respectively.

p e following copies the low-order QW of RTA into the high-order QW:

T h e next example shows how MOV extends an integer with zeroes rather than sign bits:

; HIH := 800777 oc ta l
; RTB := 777777 octa l

2.7 Data Moving

NIO\/MQ Move many quarterwords

MOVMQ. (2 .. %2,64) XOP

Purpose: Moves a series of quarterwords beginning with OP2 into the series of quarterwords
beginning with O P 1, so that O P 1:=OP2, NEXT(0P I):=NEXT(OP2), and so on. The modifier
specifies how many quarterwords to move. If the source and destination regions overlap, .the result
is undefined. Unlike vector instructions, M0,VMQcan access the registers.

Restrictions: None . .

Exceptions: None '

Precisi~n: This instruction deals with quarterwords for both source and destination precisions.. : ,

F h e following copies the three high-order QWs from RTA into RTB:

168 2' Instruction Set

MOVIWIS Move many singlewo;ds

MOVMS . (2 .. 32 1 XOP

Purpose: Moves a series of singlewords beginning with OP2 into the series of singlewords beginning
with OP1, so that OPl:=OPZ, NEXT(0P I):=NEXT(OP2), and so on. The modifier specifies how
many singlewords to move. If the source and destination regions overlap, the result is undefined.
Unlike vector instructions, MOVMQcan access the registers.

. .

Restrictions: None

Exceptions: None ,

Precision: This instruction deals with singlewords for both sourCe and destination precisians.

F h e following saves all the registers from RTA on in a block strrting at SAVEBK:

NOVNS.28 SAVEBK,RTA

1

The following clears the registers:

L
flOVR9.32 XRB, #0

2.7 Data Moving

VlNl Vector initialize

. .,.. , .

VINI ; (QH,S,D) V:=S

Purpose: Initialize each element.of a vector OP 1 to match the scalar OP2.

Restrictions: None

6

Exceptions: None
-.

Precision: The elements of the vector OP1, like the scalar OP2, have the precision specified by the
modifier. . .

F h e following stores in each element o f A the value, in RO:. ; . . , :. ! . _ _.. . .

170 2 Instruction Set

VREV Vector reverse

VREV . (HsSsD) V:=V

Purpose: Reverse a vector end-for-end by swapping the first element with the last, the second
element with the next-to-last, and so on. O P 2 is the first element of the source vector and OP1 is
the first element of the destination. Either O P 1 and OP2 must be identical or the two vectors must
not overlap at all; otherwise, the result of the instruction is undefined.

Restrictions: None

Exceptions: None

Precision: The elements of the two vectors have the precision specified by the modifier.

Fe following stores in DOWN the reverse of the vector in UP: . . l
R0V.S.S SIZEREG,#5
VTRANS.S.S UP, C1 ? 1 ? 3 ? 4 ? 51
VREV.S DOWN,UP ; DOWN := 5 , 4 , 3 , 2, 1

2.7 Data Moving

EXCH Exchaiige

EXCH . (QH,S,D) XOP
VEXCH . (QH,S,D)V:=V

Purpose: EXCH exchanges OPl, with ,OP2; VEXCH exchanges vector..OP 1 with vector.OP2,. ,..
L +

. .

Restrictions: None ,

Exceptions: None

Precision: O P 1 and OP2 each have the precision specified by the modifier. . , . , j . ..

. . ::: F h e following swaps RTA and RTB: . . . , ,,. , . .l

One' can contrive a situation where the result depends on two rules: the processor;.prefetches
operands, e d X O P inskuctioos store OPl after storing OP2:

.. ..

fl0V.S.S RTA,#5
fl0V.S.S RTA1,#6
fl0V.S.S RTB,#7
EXCH.0 RTA,RTAl ; RTA:=6; RTA1:=7; RTB:=6

; (f i r s t RTA1:=5 a n d RTB:=~; then

L
; RTA: =6 a n d RTA1: =7)

172 2 Instruction Set

SEXCH, USEXCH Signed and unsigned sorted exchange

SEXCH . (Q,H,S,D)
USEXCH . (Q,H,S,D)

XOP
XOP

Purpose: If OP1 > OP2 then exchange OP1 with OPZ. The instruction requires read and write
access to both O P 1 and OP2 even if the'inequality is false and no exchange takes place. SEXCH
treats the operands as signed integers, whereas USEXCH treats them as unsigned integers.

'Restrictions: None

Excey tioas: Noise

Precision: OP1 and OP2 each have the precision specified by the modifier.

Fe following rwzps RTA and RTB only if RTA > RTB:

2.7 Data Moving 173

SLR Save and load register

SLR, . ,(RO .. RI1) . XOP

Purpose. Loosely speaking, the instruction saves the contents of the register specified by the modifier
in OP1 and then loads that register with OP2. ., r :

More precisely, note that..the processor prefetches operands and that X O P instructions store into
O P l last. ThusSLR effectively does the following: . . .

TEMP l:=Rn

TEMPP:=OPZ . .

R~:=TEMPz . .

0,P l:=TEMP 1
$

, :. 1

As illustrated belo&, one can contrive'situations where this behavior makes a difference.

~estrictions: None

~ x & ~ t i o n s : None
,

Precision: A11 operands involved are singlewords. The modifier must be a multiple of 4 wittiin the
range 0 . . 124.

" . . 3

F h e first instruction moves RTA into RTB and zerk RTA; The second a n d third instructions 1
, show what happens when one of the operands is the register specified in the instruction. The

fourth shows what happens when the operands are the same.
. ,

SLR. nTA RTD, #8 ; RTB: =RTA, RTA: -0
SLR.RTA R T A , F ;essentially a NOP '

; .(TMPR: =REG; TMP2: =OPZ; REG: tTVP2; OP1 :.=TflPR)
. ,

; (TMPR: =RTA; . TVP2: =F; RTA: =TMPZ; RTA: =TflPRI

SLR.RTA F,RTA ; e f f e c t i v e l y VOV F,RTA
; (TMPR:=RTA; TVP2:sRTA; RTA:=TVP2; F:=TEflPR)

SLR.RTA F,F ; e f f e c t i v e l y EXCH RTA,F -

; (TMPR: =RTA; TflP2: =F; RTA: =TflP2; F: =TflPR)

1 74 2 Instruction Set

SLRADR Save and load register with address

SLRADR . (RO .. R31) ' XOP

Purpose: Loosely speaking, the instruction saves in O P 1 the register specified by the modifier and
then loads the register with ADDRESS(OP2).

Because the processor prefetches operands, and because XOP instructions store into OP1 last, it is
more precise to say that:

TEMP l:=Rn
Rn:=ABDRESS(OP2)
OP l:=TEMP 1

As illustrated below, one can concoct examples where this behavior makes a difference.

Restrictions: None

Exceptions: None

Precision: All operands involved are singlewords. The modifier must be a multiple of 4 in the range
0 . . 124

F h e first instruction moves RTA into RTB and puts ADDRESS(F) in R T A . The second shows

shows what happens when the operands are the same.

1
w h a happens when the first operand is the register specified in the instruction. The third

SLRADR.RTA RTB,F ;RTB: =RTA, RTA: =ADDRESS (F)
SLRADR.RTA RTA.F ; e f f e c t i v e l y a NOP

; (TflP: =REG: REG: =ADDRESS (OP2) ; OF1 : =TtlP)
r (TIPI -RTA! RTAr -ADDRESS (F I B RTA e -Tf lPl

2.7 Data Moving

ARRIND

175

Array index

XOP

Purpose: RTA:= (RTA + OPl MC OP2) Modulo 2" or RTB := (RTB + OP1 * OP2) Modulo 2".
The instruction uses RTA (or RTB) to accumulate an array index.

Restrictions: None

Exceptions: None

Precision: All operands are singlewords.

p v e n the following fragment of a Pascal program:

TYPE DECADE = 0 .. 9;
V AR

I, J: DECADE;
TABLE: ARRAY [DECADE, DECADE1 OF INTEGER;

BEG I N
...
TABLE [I , J l : 525;

. . .one might implement the assignment statement with the following code:

N0V.S.S RTA, J
ARRIND.RTA # l o . , I ; index i s 10 * I + J

L
MOV. S. S TABLE CRTAI 92, #25. ; TABLEC1,JI := 25

2 Instruction Set

NIOVP Move pointer

MOVP . (P,R) . (P,R,A) XOP

Purpose: Move pointer, optionally transforming it.

This instruction deals with three kinds of "pointers", as the modifiers "P", "R", and "A" indicate. "P"
specifies true pointer format, with tag and address. "R" specifies an untagged relative address, simply
a signed displacement (in quarterwords) from the address of the pointer itself. "A" specifies the
virtual address of the operand instead of the operand itself.

Thus there are ~ i x cmes!

M0VP.P.P Treat Or2 as a tagged pointer, validate a copy of it according to the rules of
Section 1.8.3 (possibly altering the tag or invoking the BAD-P-VALIDATION
hard trap) and store the resulting tagged pointer in OP1. A pointer with a fault
or reserved tag will cause a BADSOINTER-TAG hard trap, but a pointer
with a NIL or gate tag will not.

M0VP.R.P Treat OP2 as a tagged pointer and validate a copy of it according to the rules of
Section 1.8.3 (possibly altering the tag or invoking the BADS-VALIDATION
hard trap). If the resulting tag i s NIL, store the validated pointer in OP1.
Otherwise, if the result is a tag for the current ring, subtract ADDRESS(OP1)
from the address field within OP2, and store the result in OP1. Otherwise, a
BAD.,-P VAL.IDATIC)N hard trap nccurs.

This instruction need not check bounds because checking will occur whenever
the pointer is converted back to "P" form.

M0VP.P.R If O P 2 has a NIL tag, move it to OP1 without change. Otherwise, add OP2 to
ADDRESS(OP2) and perform segment bounds checking. Store the address in
O P 1 along with the tag appropriate to the ring containing OP2.

M0VP.R.R OP2:=OP2+ADDRESS(OP2)-A DDR ESS(0P 1)

M0VP.P.A Store into O P l the ADDRESS(OP2) along with the tag appropriate to the ring
contdning OP2.

M0VP.R.A Store ADDRESS(OP2) - ADDRESS(0P 1) into O P 1.

In every case, the operand corresponding to the "R" modifier must not be a register, or an
ILLEGAL-OPERAND-MODE hard trap will occur. Neither operand may be a constant, or an
ILLEGAL-CONSTANT hard trap will occur.

2.7 Data Moving

Restrictions: None

Exceptions: None

Precision: Both operands are singlewords.

p e following makes register RO point to location DATA:

L
NOVP. P. A R0, DATA

1'78 2 Instruction Set

VALlDB Validate pointer

VALIDP XOP

Purpose: Validate the pointer OP1 with respect to the ring containing OP2. The address for OP2
is computed following the usual address validation rules, but OP2 itself is not actually fetched.
(Thus this operation might cause an OUT-OF-BOUNDS trap, but not a P A G E J A U L T trap.)
Then, O P 1 is validated and moved to itself using the address validation level of 0 8 2 instead of
that of O P 1 to derive the new tag. If the tag of OP1 is a ring tag and the number of the ring is
less than the validation level of OP2, trap; if the tag of OP1 is a fault or reserved tag, a trap also
occurc;

If the tag of OP1 is a user tag and the validation level of OP1 is equal to the validation level of
O P 2 then preserve the tag.

If the tag of OP1 is a user tag and the validation level of O P I is greater than the validation level
of OP2 then change it to a ring tag corresponding to the validation level of OP1.

Sections 1.8.2 and 1.8.3 describe the address and pointer validation mechanisms.

Restrictions: None

Exceptions: None

Precision: Both operands are singlewords.

p p p o s e a process executing in ring 9 has called a routine executing in ring 1, passing it a 1
parameter in register R27. The routine in ring 1 could use the return address saved on the
stack--which by definition specifies the caller's ring of execution--to assure that the pointer in
R27 is tru;tworthy. That return address is within the save area pushed by CALLX during the
gate crossing (Section 2.12.2) at' (SP)-12:

VALIOP R27, (SP) -12

J

2.7 Data Moving

BASEPTR Base pointer

BASEPTR XOP

Purpose: Store in OP1 a pointer to the beginning of the segment containing OP2. (The instruction
stores ADDRESS(OP2) in OR1 and then sets to zero the low order SEGSIZE+PGSIZE bits of OP1,
where SEGSIZE is the base 2 logarithm of the number of pages in the segment and PGSIZE is the
base 2 logarithm of the number of quarterwords in a page.)

Restrictions: None

Exceptions: None

, Precision: Both operands are singlewords.

p & e BP point to the beginning of the segment containing the followihg instruction: 1
L'

BASEPTR BP; . . .

2' Instruction Set

RMW TOP

Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system) DEST:=S2 and then S2:=S 1. (More precisely, because the processor prefetches
operands and because TOP instructions store DEST last, this instruction makes a temporary copy of
SZ, stores S 1 in S2, and then stores the copy into DEST.)

Other atomic instructions are MOVCSF and MOVCSS.

Restrictions: None

Exceptions: None

Precision: S 1, S2, and DEST are all singlewords.

F h e following illustrates the use of RMW to implement a test-and-set lock for interprocessor

and 0 if the lock is free:

1
communication. T h e lock is a singleword flag which is -1 if some processor has seized the lock

SEIZE: RflW RTA,#-1,LOCK ;attempt t o s e i z e lock
JNPZ.NEQ.SRTA,SEIZE ;busy-wait i f so t feonee lsehas i t
... ':do . . . 1 f lock was zero (nsw I have i t l

. F E : PlOV.5.SLOCK,#@ : re lease the lock

2.7 Data Moving 18 1

MQWPHY Move physical address

'.
MOVPHY XOP

Purpose: OPl:=PHYSICALADDRESS(OPZ). If OP2 is an immediate constant or a register, an
ILLEGAL-OPERANDMODE or ILLEGAL-CONSTANT hard trap will occur.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP 1 is a singleword. . .

Fe following loads RTA with the physical address of F: , , . : . 1
NOVPHY R T A , F ;RTA:=PHYSICAL-ADDRESS(F1

.. . .

. .

182 2 Instruction Set

RPHYS, WPHYS Readlwrite physically addressed location

RPHYS XOP
WPHYS XOP

Purpose: RPHYS reads into O P 1 the contents of a memory location whose physical address is
specified by the 34 low order bits of R3. WPHYS writes OP1 into a memory location whose
address is specified by the 34 low order bits of R3. .

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP1 is a singleword. R3 is a singleword whose 34 low order bits are a physical address.
OP2 is unused.

p h e following moves SOURCE to DESTINATION even if the mapping tables are changed
following the first two instructions:

1
HOVPHY R3,SOURCE
MOVPHY R2,DESTINATION
...
RPHYS RTA
EXCH.5 R3,R2
WPHYS RPA

2.7 Data Moving

Move hardware representation

MOVHWR . (N,C) . (1,16} XOP

Purpose: This implementation-dependent instructiofi exists for use by memory diagnostics. It reads
words from a block beginning with OPZ and writer them to a block beginning with O P l , bypassing
the cache. Depending on the second modifier, it copies either 1 or 16 singlewords.

If the first modifier is N (for "no correction"), the instruction copies each singleword along with its
associated error-correction bits into a doubleword, right-justified. with .leading zeros, instead .of
applying the error correction algorithm. If the first modifier is C (.correction1'), the instruction copies
source singlewords into destination singlewords, applying the correction algorithm and then
discarding the error-correction bits.

Restrictions: None.

Exceptions: None . ..

Precision: OP2 is the first .element of a vector of (1,161 singlewords. For MOVHWR.N, OP1 is the
first element of a vector of {1,16] doublewordq for M0VHWR.C. OPI is the first of a vector of
(1,161 singlewords.

pe following example copies a vector o f 16 singlewords into a vecior of 16 doublewords,
revealing the error-correction bits:

1

2' Instruction Set

2.8 Skip, Jump, and Comparison

Skip and jump instructions branch to locations other than that of the next sequential instruction.
Skip instructions branch within a short range while jumps branch anywhere in the z2' singleword
address space.

Many skips or jumps occur only if a condition specified by a modifier to the instruction is true. An
arithmetic condition (ACOND) can be any of the following :

ACOND = {GTR,EQL,GEQLSS,NEQLEQ

These correspond to the conditions >, =, 1, c, ;t , r respectively.

T h e SKP instruction may use a logical condition (LCOND) as well. The LCONDs are:

LCOND = {NON,ALL,ANY,NAL)

These correspond to the logical conditions that relate two operands (say OP1 and OP2) as shown in
the table below. Here OP2 is considered to be a mask whose "1" bits select bits of OP1 to be tested.

Modifier Condition Meaning
NON (OP1 A OP2) = 0 If no masked bits are 1
ALL (one's-complement(0P 1) A OP2) = 0 If all masked bits are 1
ANY (OP1 A OP2) t 0 If any masked bit is 1
NAL (one's-complement(0P 1) A OP2) ;t 0 If not all masked bits are 1

Combining the ACONDs and the LCONDs gives the arithmetic and logical conditions
(ALCONDs):

ALCOND = (GTR,EQL,GEQ,LSS,NEQLEQ,NON,ALL,ANY,NAL]

2.8 Skip,, Jump, and Comparison 185

SKP Skip on condition

SKP . (GTR,EQLsGEQLSSsNEQLEQJ'lON,ALLsANYJ'JAL} (QHBSBD} . SOP

Purpose:-If OP1 ALCOND OP2 is true (where ALCONDc(GTR, EQL, G E Q LSS, N E Q LEQ,
NON, ALL, ANY, NAL~), control' is transferred to the specified, location that is within -8 . . 7
singlewords of the current PC. If the comparison is false, control is , tranrferred to the next
instruction.

Restrictions: None : . r . ,

~xceptions: None , : >.

Precision: The precision of O P 1 and OP2 is specified by the second . modifier. .

F h e following instructions compute the functio?, 1 F . RTA is O d d THEN . . BEG^
. RTA:=3nRTA+ 1 END; RTA:=RTA/S;" repeatedly while RTA>l. Note that FASM 'determines

the SW offset automatically from the JUMPDEST operand:

THREEN :
SKP.LEQ.S RTA,,#l,DONE
SKP.NON.S RTA,#l,RTAEVN ; s k i p i f RTA has an even ., integer

NULT.S RTA,#3 . ; m u l t i p l y by th ree

' ADD.S RTA,#l ;add one - r e s u l t must be even,

RTAEVN: ; so f a l l i n t o even case.

QU02. S RTA, #1 ; t h i s i s b e t t e r than QUO RTA,#2
JUPA THREEN

186 2' Instruction Set

ISKP Increment, then skip on condition

ISKP . (GTR,EQL,GEQ,LSS,NEQLEa) SOP

Purpose: OPl:=OP I + 1. CARRY is not . affected. Then if OP1 ACOND OP2 (where
ACONDE{GTR,EQL,GEQLSS,NEQLEQ), control is transferred to a location that is within
-8 . . 7 singlewords of the current PC. If the comparison is false, control is transferred to the next
instruction.

Restrictions: None

Exceptions: INT-OVFL may be set by the incrementing operation.

Precision: OP1 and OP2 are both singlewords.

F h e following is a typical loop of the form, "FOR I:=M TO N D O ...". The inner part of the
loop must not exceed 8 singlewords when assembled:

. .

1
M0V.S.S 1,M

LOOP :

2.8 Skip, Jump, and Comparison 187

DSKB Decrement, then skip on condition

DSKP . (GTR,EQL,GEQLSS,NEQLEa) . .
., ,

SOP

Purpose: OPI:=OP 1-1,. CARRY is not affected. . Then .if O P 1 ACOND OP2 is true (where
ACONDE~TR,EQL,CEQL~~S,NEQLEQ)). contrql is transferred to a location that is within
-8 . . 7 singlewords of the current PC. If the comgarison,is false, control is transferred to the next
instruction.

Restrictions: None

Exceptions: INT-OVFL may be set by the decrementing operation.
. .

Precision: OP1 and OP2 are both singlewords.

p h e following instructions search an array of N singlewords starting at TABLE for the largest 1
index I such that TABLE[Tl=T. Assume that TABLECOI contains 0 to ensure loop termination,
and that N singlewords follow this entry. In the following, i must be a register. Note. that since
the loop is one instruction long the singleword skip offset is zero. The "-4" added to the base
address TABLE compensates for the fact that the address calculation occurs before the
decrementation operation, but the skip condition is tested after the decrementation operation. In
turn, "N+l" is used instead of "N" in the initialization to compensate for this compensation:

N0V.S.S I,#<N+ls
DSKP.NEQ I,<TABLE-4>[137'2,LOOP

J

188 2' Instruction Set

JMP Jump on condition

JMP . (GTR,EQL,GEQ,LSS,NEQ,LEQ
Purpose: If FIRST(OP1) ACOND SECOND(OP1) is true (where ACONDE~GTR, EQL, GEQ
LSS, N E Q LEQ),,control is transferred to' the location specified by JUMPDEST. If the condition
is false, control is transferred to the next instruction.

Restrictions: None -
Exceptions: None

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords which are together treated as a
doubleword.

Fe following loop searches down a chain of pointers for a specified tail painter FPTR. Let P

impli'citly used by this routine to hold the comparison operand:

1
be a register and HEAD the address of the first link in the chain. Note that NEXT(P) is

VOV. D. D P, #< [HEAD ? FPTRI > ; i n i t i a l ize P and NEXT(P1
; (t h i s i s an assembler l i t e r a l
; wh69e address becomes a constant)

LOOP: V0V.S.S P , (P l
JVP.NEQ P,LOOP

2.8 Skip, Jump, and Comparison 189

JMPZ Jump on condition relative to zero

Purpose: If OP1 AC'OND 0 is true (where ACONDc(GTR, .EQL, GEQ LSS, N E Q LEQ)), control
is transferred to the location specified by JUMPDEST. If the condition is false, control is
transferred to the next instruction. . .

Restrictions: None

Exceptions: None

Precision: O P 1 has the precision specified by the second modifier.

using the indexed constant addressing mode (Section 1.6.2), a programmer can use the J ~ ~ q
instruction to compare the contents of a register against any integer constant, not just against
zero. For example, the following jumps to AWAY iff R T A I l :

L
JMPZ. LEQ,S # [-I1 (RTA) ,AWAY

190 2 Instruction Set

JMPA Jump always

JMPA J" ='

Purpose: Jump unconditionally to JUMPDEST. For a simple jump to a label, the SJMP
instruction is often more compact, but JMPA allows indexing and indirect addressing, usually at the
expense of an extra singleword.

Restrictions: None

Precision: None

F h e following instruction jumps to the RTA-th address stored in a list of indirect pointers that
begins at JVECTS:

1

L
JMPA JVECTS [RTAI f 2~3

2.8 Skip, Jump, and Comparison

Increment, then jump on condition

I JMP . (GTR,EQL,GEQLSS,NEQLEQI ... :. JOP

Purpose: FIRST(0P l):=FIRST(OP I)+ 1. CARRY is not affected. Then if FIRST(OR1). ACOND
SECOND(0P 1) is true (where ACONDE{GTR,EQL,GEQLSS,NEQ,LEQ), control. is transferred to
the location specified by JUMPDEST. If the.'condition is false, control is transferred to the next
instruction.

. . . ,

Restrictions: None
,

Exceptions: INT-OVFL may be set by the incrementing operation.

Precision: FIRST(0P I) and SECOND(0P I) are both singlewords which together are treated as a
doubleword. . :

F h e following is a typical loop of theform, TOR I:=M T O N DO . . .?. The inner-part of the
loop .may be any length when assembled:

1
M0V.D.D I, [H ? N1

LOOP:
;M,N are assembly literals

192 2 Instruction Set

l JMPZ Increment, then jump on condition relative to zero

I JMPZ . (GTR,EQL,GEQLSS,NEQLEQ) J" P

Purpose: OPl:=OPl+l. CARRY is not affected. Then if OP1 ACOND 0 is true (where
ACONDE(GTR,EQL,GEQLSS,NEQLE~), control is transferred to the location specified by
JUMPDEST. If the condition is false, control is transferred to the next instruction.

Restrictions: None

Exceptions: INT-OVFL may be set by the incrementing operation.

Precision: OP 1 is a singleword.

Fe following increments N and jumps to AWAY if N=O:

2.8 Skip, Jump,. and Comparison 193

IJMPA Increment and jump always

IJMPA

Purpose: O P l:=OP 1+ 1. CARRY is not affected. Jump unconditionaIly to JUMPDEST.

4 :

Restrictions: None

Exceptions: INT-OVFL may be set by the incrementing operation.

Precision: O P 1 is a singleword.
. .

Fe following is an extremely inefficient way to add RTA into RTB, assuming that integer
. .

overflow traps are disabled. However, it shows off the IJMPA instruction: '

LOOP: DSKP.EQL RTA,#-1 ;decrement RTA; s k i p n e x t i n s t r u c t i o n i f -1

I IJMPA RTB,LQOP ;o the rw ise . increment RTB and loop I

194 2 Instruction Set

DJMP Decrement, then jump on condition

D JMP . {GTR,EQL,GEQLSS,NEQLE@ - JOP

Purpose: FIRST(0P l):=FIRST(OP 1)-1. CARRY is - not affected. Then if FIRST(0P I) ACOND
SECOND(0P 1) is true (where ACONT)E{GTR,EQL,GEQLSS,NEQLEQ), control is transferred to
the location specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Exceptions: INT-OVFL may be set by the decrementing operation.

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords which together are treated as a
doubleword.

p h e following is a typical loop of the form, "FOR I:=M DOWNTO N D O ...". The inner part of
the b o p may be any length when assembled:

1
M0V.D.D I, [M ? N l

LOOP :
...

L
DJHP.GEQ 1,LOOP

;M,N are assembly literals

2.8, Skip,, Jump, and Comparison 195

Decrement, then jump on condition relative to zero

. :.

D JMPZ . (GTR,EQL,GEQLSS,NEQLEa) .lo ='

Purpo'se: OPl:=OPl-1. CARRY is not affected.. Then if OP1 ACOND 0 is true (where
ACONDE(GTR,EQL,GEQ,LS$NE'QLEQ), control is tiansferied to 'the location specified by
JUMPDEST. If the condition is false, control is transferred to the next instruction.

Restrictions: None

Exceptions: INT-OVFL may be set by the decrementing operation.
. .

? . .

Precision: O P 1 is a singleword.

Fe following decrements N and jumps to AWAY if N-0: '1

196 2 Instruction Set

DJMPA Decrement and jump always

D JMPA J o P

Purpose: OPl:=OPl-1. CARRY is not affected. Jump unconditionally to JUMPDEST.

Restrictions: None

Exceptions: INT-OVFL may be set by the decrementing operation.

Precision: OP 1 is a singleword.

Fe following dwementr N and jumps to AWAY:

L
DJMPA N,AWAY

2.8 Skip, Jump, and Comparison

SJMP .. .

197

Simple jump .

S JMP HOP

Purpose: Unconditionally jump anywhere in the address space.

The HOP format performs a PC-relative jump using a 29 bit unsigned displacement field. Because
the address calculation ."wraps aroundn..if it exceeds the maximum virtual address, it can :reach any.
singleword in the virtual address space.

.

While SJMP never occupies .more than 1 singleword, it allows only a direct memory address
reference. One must use JMPA for any other addressing mode, such as indexing or indirect
addressing.

Restrictions: None

Exceptions: None .

. . .
Precision: None ,

.>. . , . . .

to CRUNCH: ' : "1

L
SJNP CRUNCH

198 2 Instruction Set

MOVCSF, MOVCSS Move conditionally, skip on failure/success

MOVCSF . (QH,S,D)
MOVCSS . (QM,S,D)

SOP
SOP

Purpose: For MOVCSF, IF O P 1=OP2 THEN OPl:=%R3 ELSE G O T 0 DEST.

For MOVCSS, IF O P 1=OP2 THEN BEGIN O P l:=%R3; G O T 0 DEST END.

In a multiprocessor system, these instructions are atomic (that is, they finish work on OP1 before
any other processor can alter that operand). Another atomic instruction is RMW.

Restrictions: None

Exceptions: None

Precision: O P 1, OP2, and %R3 have the precision specified by the modifier.

F n g l e w o r d LOCK represents a lock, which holds -1 if unlocked and 0 if locked. The f~llowing
sequence seizes the lock, using busy-waiting if the lock is not free:

1
;;; Seize the lock s t o red i n l o c a t i o n LOCK.

M0V.S.S %R3,#-1 ;Prepare the va lue -1 t o he s tored.
LOOP: M0VCSF.S LOCK,#B,LOOP ;Store -1 when LOCK ho lds 0.

T h e following code sequence atomically turns on bit 35 of word F01.

;;; Turn on b i t 35 o f word FBI.
LOOP: NOV. 5. S RTA, FBI ;Pick up a copy o f the former va lue o f F01.

OR.5 XR3,RTA,#2 ;Turn on b l t 35, c r e a t i n g the new va lue i n XW3.
M0VCSF.S FBl,RTA,LOOP ;Store the new va lue i f the va lue has no t

;changed s i nce we began.

T h e following code sequence leaves in %Rt3 a 11ni.que number; no two callers will ever be
returned the same number even if they run this routine simultaneously from different processors.
T h e location UNIQUE holds a number, whose value is increased by one atomically to get the
new unique value.

::; Retu rn a un ique va lue i n XR3.
LOOP: M0V.S.S RTA,UNI'QUE ;Get the o l d va lue o f UNIQUE.

AD0.S.S %R3,RTA,#l ;The new va lue should be one g rea te r .
M0VCSF.S UNIQUE,RTA,LOOP ;Store the new va lue i f the va lue

;of UNIQUE has no t changed in the meantime.

2.8 Skip, Jump, and Comparison ,199

The following code sequence atomically adds a new element to a singly linked list.. The pointer
to the first list element is stored in location HEAD; the first,,word of each element contains a
pointer to the next element. Register %R3 contains a pointer to a new element to be added to the
head of' the list.

;;; Add the element inXR3 t o the 1is.t. .

LOOP: , fl0V.S.S RTA,HEAD ;Pick u p , t h e poin ter t o the former, f i r s t
;element of the l i s t .

fl0V.S.S (X R 3) ,RTA ;Make the new element point t o i t .
fl0VCSF.S HEAD,RTA,LOOP ;Store the new poin ter i f the old one

;has not changed.

200 2 Instruction Set

CMPSF, UCMPSF Signedlunsigned compare and set flag

CMPSF . (GTR,EQL,GEQLSS,NEQLEQ) . (QH,S,D)
UCMPSF . {GTR,EQL,GEQ,LSS,NEQ,LEa) . (QH,S,D)

TOP
TOP

Purpose: If S1 condition S2 then DEST := -1 else DEST := 0, where condition is the first modifier.
CMPSF performs a two's complement signed comparison whereas UCMPSF performs an unsigned
comparison.

Kestrictions: None

Precision: S1 and $2 have the sanie precision as the modifier. DEST is a singleword.

F t X, Y, and Z be singlewords, with Y=NEXT(X). The following code implements setting 1
RTA to X if Z10 and to Y otherwise. It uses indexing rather than a conditional jump or skip.
Such use of indexing can often make more effective use of instruction ,pipelining than jumping
or skipping:

CRPSF.GEQ.S RTA,Z,#0
HOV,S.S.RTA,Y[RTAl'T'2 ; indexing w i t h f l a g r e s u l t

CMPSF.LSS can be used to produce an extended-sign word for a number. TRANS or
FTRANS can be used to sign-extend a number to one of the four standard precisions, but this
trick is useful in dealing with numbers of very large precision:

CMPSF.LSS.S RTA,NUV,#0 ; a l l b i t s o f RTA get the sign b i t o f NUN

Though instructions CMPSF.(NOM,ALL,ANY,NAL) do not exist, their effect can be obtained
by an AND or ANDCT followed by a CMPSF.EQL or CMPSF-NEQ

AN0CT.S RTA,ARGl,ARG2 ; t h i s behaves as would the f i c t i o n a l
CflPSF.EQL.S RTA,Q0 ; I n s t r u c t i o n CHPSF.ALL RTA,AHGl,ARG2

2.8 Skip, Jump, and Comparison

BMDSF Bounds-check and set flag

BNDSF . {B,MIN,MI,O,I) . (QH,S,DJ TOP

Purpose: Check S2. against the bounds specified by- the first .modifier and by S1. If .S2 is within
bounds then DEST := -1 else DEST :='o. The following table explains the first modifier:

Modifier Meaning
B ("bothn) FIRST(S 1) 5 s 2 5 SECOND(S i j
MIN MINNUM, I S2 5 S 1
'M 1 -1 5 S2 5 S1
0 O S S 2 5 S l
1 1 5 S 2 I S 1 . .

Restrictions: None

Exceptions: None

Precision: DEST is a singleword. S2 has the precision specified by the second modifier. If the first
modifier is B, then, FIRST(S 1) and SECOND(S 1) have .the same precision as S2 and must align
together to form a single entity with twice that precision; otherwise, S1 has the same precision as S2.

. .

p i s first example shows a standard way to use BNDSF:

This second example shows how to use a constant addressing mode to obtain a different kind of
check. This makes use of the rule that a singleword instruction which expects a
FIRSTISECOND operand pair will expand a constant to twice the specified precision and use
half for the FIRST part and half for the SECOND part:

202 2 Instruction Set

BNDTRP Bounds check and trap on failure

BNDTRP . (B,MIN,M1,0,1) . (QH,S,D) XOP

Purpose: Check OPi against the bounds specified by the first modifier and by OP1. If OP2 is out
of bounds then a BOUNDS-CHECK soft trap will occur. The following table explains the first
modifier:

Modifier Meaning
B ("both") FIRST(0P I) r OP2 r SECOND(OP 1)
M'lN . 'MlNNUM 1 0P2 r OP 1
MI -1 I OP2 I OP1
o 0 5 O P Z ~ O P ~
1 1 1 O P 2 r O P 1

Restrictions: None

Exceptions: None
\

Precision: OP2, the upper bound, and the lower bound all have the precision specified by the
second modifier. If the first modifier is B, then the instruction uses FIRST(OP1) and
.SECOND(OP 1); thus, each has the precision specified by the second modifier, but both must align
to form an entity with twice that precision.

Fe following instruction traps if IRTAPP.O:

2.8 Skip, Jump, and Comparison 203

STRCMP String conipare

. .

STRCMP . (RTA,RTB) XOP

Purpose: Consider OP1 and OP2 to be vectors.of quarterwords--in other words, strings of
characters--whose quarterword length is specified by SIZEREG. Signed comparison is used, and
each quarterword character is compared-separately. The result of the comparison is computed as
shown in the following table and is stored into (RTA,RTB). The result values are designed to have
two useful properties. First, the result (as a signed integer) bears the same relation .to zero that
STRING1 does to STRINGZ. Second, the value can be used as an index into the string no matter
what the result, because indexing arithmetic "wraps around" the address space.

Condition Result
STRING 1 = STRING2 0
STRING 1 > STRING2 n
STRING1 < STRING2 , - ~ ~ ~ + n (i.e. MINNUM+n)
(n is the position of the first character to differ),

Restrictions: None

Exceptions: None

Precision: OP1 and OP2 are quarterword vectors, and thus may designate registers. RTA and
RTB are single words.

p e following sets R T A to the result of comparing the eighty-character blocks a t X and 1 Y.

MOV. S. S %SIZEREG, #80.
STRCMP. RTA X, Y

The following illustrates a more general sort of comparison. Assume that XLENG'TH contains
the length of a string beginning at X and YLENGTH that of string at Y. For the purposes of
this comparison we will imagine that appended to the two strings are infinitely many imaginary
characters defined to be "less than" all real characters. We will then define the result of the
comparison as the result of a STRCMP performed on these extended strings. (This definition is
similar to that used in some high-level languages):

M1N.S RTA,XLENGTH,YLENGTH ;set RTA t o minimum r e a l l eng th

M0V.S.S %SIZEREG,RTA
1NC.S RTB,RTA ;save one g rea te r i n RTB f o r unequal case

STRCMP. RTA X, Y ; do compar i son

JMPZ.NEQ.S RTA,DONE ;d i f f e rence found

SKP . NEQ. s XLENGTH , YLENGTH ;done i f s t r i n g s a re equal l eng th

JNPA DONE

2' Instruction Set

N0V.S.S RTA,RTB ;RTB i s index o f "imaginary" character
SKP.LEl3.S XLENGTH,.YLENGTH,OONE ;se t high-order b i t i f necessary
0R.S RTA,#<400000,,0> ;or DIBYT RTA,#l ,#l t o save a word!
... ;RTA contains r e s u l t

$9 Shift, Rotate, and Bit Manipulation

2.9 Shift, Rotate, and Bit Manipulation

These instructions all manipulate bits withiri a word, either by shifting, by rotating, or by
performing bitwise logical functions. Note that a left shift (or rotate) by N is equivalent to the
corresponding right shift (or rotate) by -N. The SHFA instruction, which shifts signed.integers,
appears in Section 2.1 with the other signed integer arithmetic instructions.

2 Instruction Set

MOT Logical bit-wise NOT

NOT . (QHySsD)
VNOT . {H,S,D)

XOP
v:=v

Purpose: NOT computes OP I:=(-OP2), where "-" signifies one's complement

VNOT performs NOT on each element of the vector beginning with OP2 and stores the result in
the corresponding element of the vector beginning with OP 1.

Exceptions: None

Precision: OP1 and OP2 (or the elements of vectors OP1 and OP2) have the same precision as the
modifier.

p h e following is an alternate to NEG RTA:

2.9 Shift, Rotate, and Bit Manipulation. 20'7

AND Logical bit-wise AND

AND . {QH,S,D)
VAND {SRIOP1) . (HIS,D)

Purpose: AND computes DEST:=S 1 ~ S 2 . .

VAND performs AND on each element of vector OP1 and the corresponding element of OP2. It
puts the results either back into vector OP1 or into the vector pointed to by SRO, depending on the

. . first modifier: , I .

. .

FOR i:=O TO SIZEREG-I DO
IF (modifier OP) THEN O P lli]:=OP 1Cil A OP2Cil
ELSE SRO@[il:=OP 1CiI A OP2[il

Restrictions: None

Exceptions: None

Precision: For AND, S1, S2, and DEST all have the precision specified by the (QH,S,D) modifier.
For VAND, the elements of the vectors all have the precision specified by the (HISID) modifier.

. .

F h e following instruction illustrates the effect of AND: 1

208 2' Instruction Set

ANDTC Logical bit-wise AND truefcomplement

ANDTC . (Q,H,S,D)
VANDTC . (SR,OPl) . (H,S,D)

TOP
v:=vv

Purpose: DEST:=SIA(-S2). Note that the T C " in ANDTC means True-Complement" and refers
to the fact that S1 and one's-complement(S2) respectively are operands to the AND function. The
revery form of ANDTC is ANDCT, not ANDTCV.

VANDTC performs ANDTC on pairs of corresponding elements in the vectors beginning at OP1
and OP2. It puts the results back into the vector OP1 or into the vector pointed to by SRO,
depending on the first modifier.

FOR 1:-0 TO ETZEREC .. 1 DO
IF (modifier O P 1) THEN O P l[il:=OP l[il A (-OP2CiI)
ELSE SROdiI:=OP l[il A (-OP2Cil)

Restrictions: None

Exceptions: None

Precision: For ANDTC, S1, S2, and DEST all have the precision specified by the (QII,S,D}
modifier. For VANDTC, the elements of the vectors all have the precision specified by the (H,S,D)
modifier.

F h e following instruction illustrates the effect of ANDTC:

Suppose that MASK is a mask whose "1" bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a "field", and the contents of that field decremented as
an integer "in place" in WORD, without affecting non-selected bits of WORD. This can be
done as follows:

AN0.S RTA,WORD,flASK ;RTA:=WORD with non-selected b i t s zeroed
SU0.S RTA,#l ;zeroed b i t s propagate the borrow
AND.S RTA,flASK ;mask out non-selected b i t s
AN0TC.S WOR0,flASK ;mask out SELECTED b i t s in WORD
0R.S WOR0,RTA ;merge the two r e s u l t s

2.9 Shift, Rotate, and Bit Manipulation 209

AMDCT Logical bit-wise AND complementltrue

ANDCT . (QH,S,D)
VANDCT . (SR,OPl) . (H,S,D)

TOP
v:=vv

Purpose: ANDCT computes DEST:=(-S 1) ~ S 2 Note that the "CT" in' ANDCT means
"Complement-True" and refers to the fact that one's-complement(S1) and S2 respectively are
o i e r s -~ds to the AND function. ./ . . ~he ' reverse form of ANDCT is ANDTC,not ANDCTV.

, .
a .

VANDCT performs ANDCT on pairs of elements from the vectors beginning at O P 1 and OP2. It
puts the results back into the vector OP1 or into the vector pointed to by SRO, depending on the
first modifier.

FOR I:=O T O SIZEREG-1 DO
IF (modifier O P 1) THEN O P l[il:=(-OP l[il) A OP2[il
ELSE SROdi]:=(-OP l[il) A OP2[il

Restrictions: None ..:., .
: .,

. , a

Exceptions: None

Precision: For ANDCT, S1, S2, and DEST all have the precision specified by the (QH,S,D)
modifier. For VANDCT, the elements of the vectors all have the precision specified by the (H,S,D)
modifier.

p h e following instruction illustrates the effect of ANDCT:

210 2 Instruction Set

OR Logical bit-wise OR

OR . (QH,S,D)
VOR . (SR,OPl) . (H,S,D)

TOP
v:=vv

Purpose: OR computes DEST:=S 1vS2.

VOR performs OR op pairs of elements from the.vectors OP1 and OP2, putting the results into
vector OP1 or the vector pointed to by SRO, depending on the first modifier:

FOR i:=O T O SIZEREG-1 DO
TF {mndifi~r OF) THEN OP l[il=OP llil v OP2[il
ELSE SROe[i]:=OP l[il v OP2[il

Restrictions: None

Exceptions: None

Precision: For OR, $1, $2, and DEST all have the precision specified by the modifier {QH,S,D).
For VOR, the elements of the vectors all have the precision specified by the modifier {M,S,D).

F h e following instruction illustrates the effect of OR:

2.9 Shift, Rotate, and Bit Manipulation 21 1

ORTC Logical bit-wise OR true/complement

ORTC . (Q,H,S,D)
VORTC . (SR,OPl) . (H,S,D)

TOP
v:=vv

Purpose: ORTC computes DEST:=Slv(-S2). Note that the "TC" in ORTC means
'True-Complement" and refers to the fact that S1 and one's-complement(S2) respectively are
operands to the OR function. The reverse form of ORTC is ORCT, not ORTCV.

VORTC performs ORTC .on pairs. of elements of the vectors O P 1 and OP2, putting the results in
'either vector O P 1 or the vector pointed to by SRO, depending on the first-modifier: .

FOR i:=O T O SIZEREG-1 DO
IF (modifier OP) THEN OP l[i]:=OP 1[il v (-OP2[il)
ELSE SRO@[~I:Z-OP l[il v (-OPZ[iI)

Restrictions: None i .

Exceptions: None ,

Precision: .For ORTC, S1, S2, and DEST all have the precision specified by the second modifier.
For VORTC, the elements of the vectors all have the precision specified by the second modifier.

pe following instruction. illustrates the effect of ORTC: . .

0RTC.Q RTA,#3,#5 ; RTA: =773 (QW)

Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a "field", and the contents of that field incremented as
an integer "in place" in WORD, without affecting non-selectedbits of WORD. This can be
done as follows:

0RTC.S RTA,WORD,flASK ;RTA:=WORD with non-selected b i t s s e t t o "1"
A0D.S RTA,#l ;"ll' b i t s propagate the ca r ry
AN0.S RTA,flASK ;mask out non-selected b i t s
AN0TC.S WORD,flASK ;mask out SELECTED b i t s in WCRO
0R.S WORD,RTA ;merge the two r e s u l t s

2 12 2 Instruction Set

ORCT Logical bit-wise OR complement/true

ORCT . {QH,S,D)
VORCT . {SR,OPl). (H,S,D)

TOP
v:=vv

Purpose: ORCT computes DEST:=(-Sl)vS2. Note that the "CT" in ORCT means
"Complement-True" and refers to the fact that one's-complement(S1) and S2 respectively are
operands to the O R function. The reverse form of ORCT is ORTC, not ORCTV.

VORCT performs ORCT on pairs of elements of vectors OP1 and OP2, putting the results either
in vector O P 1 or in the vector pointed to by SRO, depending on the first modifier:

FOR i:=O T O SIZEREG-1 D O
IF {~r~udifiel O F) THEN O F l[il:-(-.OFl[ll) v OP2111
ELSE SROe[il:=(-OP 1CiI) v OP21il

Restrictions: None

Exceptions: None

Precision: For ORCT, S1, S2, and DEST all have the precision specified by the (Q,H,S,D) modifier.
For VORCT, the elements of the vectors all have the precision specified by the .{H,S,Dj modifier.

p e following instruction illustrates the effect of ORCT:

L
ORCT'Q RTA,#3,#5 ; RTA: -775 (QW 1

2.9 Shift, Rotate, and Bit Manipulation

NAND

213

Logical bit-wise NAND

NAND . '(QH,s,D)
VNAND . (SR,OPl) . (H,S,D)

TOP
v:=vv

Purpose.: NAND computes DEST:=-(S l~S2) .

VNAND performs NAND on pairs of elements of the vectors OP1 and OP2, putting the results
either in vector 0 P l . o r in the vector pointed to by SRO, according to the first modifier:

FOR i:=O T O SIZEREG-1 D O
IF (modifier OP} THEN O P l[il:=-(OPl[il) A OP2CiI
ELSE SROe[il:=-(OP l[il A OP2[il)

Restrictions: None

Exceptions: None
,

Precision: For. NAND, S1, S2, and .DEST all have the precision specified by the (QH,S,D)
modifier.. For VNAND, the elements of.the vectors all have the precision specified by the (H,S,D}
modifier.

pL following instruction illustrates the effect ofSNAND: 1

214 2 Instruction Set

NOR Logical bit-wise NOR

NOR - .(QH,SID)
VNOR . (SR,OPl) . (H,S,D)

TOP
v:=vv

Purpose: NOR computes DEST:=-(S IvS~) , where "-" signifies one's complement.

VNOR performs NOR on pairs of elements of the vectors OP1 and OP2, putting the results either
in vector OP 1 or in the vector pointed to by SRO, according to the first modifier:

FOR i:=O T O EIZEREC-1 D O
IF (modifier OP) THEN O P l[il:--(OP l[il v OP2LiI)
ELSE SROe[i]:=-(OP ICil v OPSCi])

~estrictions: None

Exceptions: None

Precision: For NOR, S1, S2, and DEST all have the precision specified by the (QH,S,D) modifier.
For VNOR, the elements of the vectors all have the precision specified by the (H,S,D) modifier.

p e following instruction illustrates the effect of NOR:

L
N0R.Q RTA,#3,#5 ; RTA: =770 (QW 1

2.9 Shift, Rotate, and Bit Manipulation

XOR Logical bit-wise XOR

XOR . (QH,S,D)
VXOR . (SR,OPl) . (H,S,D)

TOP
v:=vv

Purpose: XOR computes DEST~=(SLA-(S~)) v (-(S ~)Asz), where ."-" represents the one's complement
operation.

VXOR performs XOR on pairs of elements of the vectors OP1 and OP2, putting the results either
in vector O P 1 or in the vector pointed to by SRO, depending on the first modifier: ,

FOR i:=O T O SIZEREG-1 DO
IF (modifier OP) THEN OF! l[il:=ExclusiveOR(OP l[il,OP2[il)
ELSE SRO~[il:=ExclusiveOR(OP l[iI,OP'L[il) . .

Restrictions: None

Exceptions: None

Precision: For XOR, S1, S2, and DEST all have the precision specified by the (QH,S,D) modifier.
For VXOR, the elements of the vectors all have the precision specified by the (HISID] modifier.

Fe following instruction illustrates the effect ' of XOR: 7

The following code exchanges the two words QUUX and ZTESCH. .(A better way to do this is
with the EXCH instruction; but this example demonstrates an interesting information-preserving
property of XOR.)

216 2 Instruction Set

EQW Logical bit-wise equivalence

EQV . (Q,H,S,D> TOP
VEQV . {SR,OPl) . (H,S,D) V:=VV

Purpose: EQV computes DEST:=(S 1~S2) v (-(S I)/\(-SZ)), where "1" represents'the one's complement
operation.

VEQV performs EQV on pairs of elements of the vectors O P 1 and OP2, putting the results either
in vector O P 1 or in the vector pointed to by SRO, according to the first modifier:

FOR i:=O TO SIZEREG 1 DO
IF (modifier OP] THEN O P l[il:=EQV(OP l[i].OP2Cil)
ELSE SRO@1iI=EcjLv (UP I[iJ,C)PZLiJ)

Restrictions: None

Exceptions: None

Precision: For EQV, S1, S2, and DEST all have the precision specified by the (QH,S,D} modifier.
For VEQV, the elements of the vectors all have the precision specified by the (H,S,D) modifier.

Fe following instruction illustrates the effect of EQV:

EW.U RTh,ft3,#5 ; RTA: =771 (QW)

The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving
property of EQV.)

EQV.S QUUX,ZTESCH
EQV.S ZTESCH,QUUX
FnV. S Q111 I!!, ZTESCH

2.9 Shift, Rotate, and Bit Manipulation . 217

SHFA Shift arithmetically

SHFA . {LF,RT) . {Q,H,S,D) TOP

SHFAV . {LF,RT) . (Q,H,S,D) TOP

VSHFA . {LF,RT) . (H,s,D) v:=VS

Purpose: SHFA computes DEST:=Sl arithmetically shifted (left,right) by S2. Shifts to the (true) left
introduce "0" bits; shifts to the (true) right ;eplicate the sign bit and discard bits shifted out the low
end. This is equivalent to a multiplication. or division by a power of two, where it is understood
that such a division rounds towards negative infinity. For division. by a power of two, rounding
towards zero, the QUO2 instruction should be used instead. Note that a left shift by S1 is
equivalent to a right. shift by -S 1. If the absolute value of S2 exceeds the width of the, anyword
being shifted, an ILLEGAL-SHIFTBOTATE hard trap occurs.

SHFAV swaps the roles of S1 and S2.
. .

VSHFA performs SHFA on each element of the vector beginning at OP2 and stores the results in
the corresponding elements of OP1. RTA specifies how far to shift each element.

Restrictions: None

Exceptions: INT-OVFL (the instruction behaves exactly as would a multiplication by a power of 2)

Precision: For SHFA, S2 1s a singleword, and DEST and S1 have the precision specified by the
second modifier.

For SHFAV, S1 is a singleword, and DEST and S2 have the precision specified by the second
modifier.

For VSHFA, the elements of vectors OPl and O P 2 have the precision of the modifier and RTA ,is
a scalar singleword.

p h e following'rwo instructions illustrate the difference between SHF,RT and SHFA.RT: 1
SHF.RT.Q RTA,#-1,#1 ; RTA: =377

I
SHFA. RT. Q RTA, #-I, #I ; RTA: =777

2 18 2 Instruction Set

SHF Logical shift

SHF . (LF,RT) . (Q,H,S,D)
SHFV . (LF,RT) . (QM,S,D)
VSHF . (EF,RT) . (H,S,D)

TOP
TOP

v:=vs

Purpose: SHF computes DEST:=Sl logically shifted (left,right) by S2. Bits shifted in are "0" bits;
bits shifted out are lost. Note that a left shift by S2 is identical to a right shift by -S2. If the
absolute value of S2 exceeds the width of the anyword being shifted, an
ILLEGAL-SHIFT-ROTATE hard trap occurs.

SHFV, the reverse form, behaves identically except that it swaps the roles and precisions of S1 and

S2.

VSHF performs SHF on each element of the vector beginning with OP2 and stores the results in
the corresponding elements of the vector beginning with OP1. RTA specifies the number of bit
positions by which to shift.

Restrictions: None

Exceptions: None

Precision: For SHF, S2 is a singleword; DEST and S1 have the precision specified by the second
modifier. For SHFV, S1 is a singleword; DEST and S2 have the precision of the second modifier.
For VSHF, RTA is a singleword; the elements of OP1 and OP2 have the precision specified by the
modifier.

Fe following shows the effect of a positive left-shift argument:

L
SHF. LF. Q RTA, #-I, #1 ' ; RTA: =-2 (QW)

2.9 Shift, Rotate, and Bit Manipulation ' 219

DSHF Extended logical shift

-
DSHF . (LF,RT} . ((LH,s} TOP
DSHFV . (LF,RT) . (Q,H,S) TOP

Purpose: Just as a programmer can use the ADDC instruction repeatedly to add numbers of
arbitrarily great precision, the programmer can use the DSHF instruction repeatedly to shift an
arbitrarily long .string of bits. Ordinary logical shift instructions are difficult to chain in this
fashion because they shift zeros into the word. DSHF solves the problem by shifting in bits from the
adjacent word in memory instead.

More precisely, DSHF.LF concatenates S 1 and NEXT(S l), logically shifts the resulting double
precision entity left by S2 bitsandstores in DEST the high order 9, 18, 01- 36 bits (corresponding to
Q H, or S preclsions). DSHF.RT logically shifts the entire entity right by S2 bits and stores in
NEX'l'(UES'1') the iow order 5, 18, or 36 bits.

I S 1 NEXT (S1)

DSHF.LF DEST,Sl,S2 . .

Careful use of DSHF even permits in-place shifting--that is, leaving the result of the shifting in the
original memory locations: right shifts must itart at the right end of the series of words, and long
left shifts must start at the left end.

An ILLEGALSHIFT-ROTATE hard trap occurs if the absolute value of S2 exceeds the width of
ehe anyword being stiifltrd.

DSHFV, the reverse form, swaps the roles of S l and S2.

See also the vector instruction VDSHF.

Restrictions: None

-Exceptions: None

Precision: For DSHF, operands S1, NEXT(Sl), and DEST (or NEXT(DEST)) all have the
precision specified by the modifier. S2 is a singleword. S1 and NEXT(S1) need not be aligned
specially: using DSHF.H, for example, S l must be a properly aligned halfword, but $1 and
NEXT(S1) together need not be a properly aligned singleword.

220 2 Instruction Set

For DSHFV, the same is true except that the roles of S1 and S2 are swapped.

Fe following illustrates the result of shifting, a long operand:

Suppose that a 30-word block of bits MARKERS is to be logically shifted in place three bits to
the left. While using VDSHF provides better performance, the following example illustrates the
use of DSHF within an explicit loop:

Mnv.S.S HIH,#M if?TB indowes MARKERS from l e f t t o r . i y I 1 1

LOOP: 0SHF.LF.S RARKERSCRTBlf2,#3 ;produce one r e s u l t word
ISKP.LSS RTB,#29.,LOOP ;increment RTB and l ~ o p i f 23.
SHF.LF.S flARKERS+29.*4,#3 ;do the l a s t word in s i n g l e prec is ion

T h e same block of bits can be logically shifted three bits to the right as follows. Note that the
operation must proceed in the other direction within the block, i.e. from right to lefk

M0V.S.S RTB,#29. ;RTB indexes MARKERS from r i g h t t o l e f t
LOOP: DSHF. RT. S MARKERS IRTBI T2, #3 ; produce one resu l t word

DSKP.GTR RTB,#@,LOOP ;decrement RTB and loop i f > 0
SHF,RT.S MAR#ERS,#3 ;do the l a s t uor-d i n s i n g l e precision

T h e same block of bits can be arithmetically shifted three bits to the right by using the same bp but changing the last SHF.RT instruction to SHFA.RT.

2.9 Shift, Rotate, and Bit Manipulation 22 1

VQSHF Lengthwise vector logical shift

Purpose: Logically shift .an arbitrarily long series of bits. OP2 is the first word of the source vector,
OP 1 is the, first word o f . the destination vector, SIZEREG gives the length of the vector in
singlewords, and RTA specifies how far to shift the bits.

If the source and destination vectors overlap at all, they must coincide completely, or the result is
undefined. An ILLEGALSHIFT-ROTATE, hard -trap .occurs if the absolute value of RTA, is
greater than 36.

VDSHF.RT does not alter the first word of the vector, and VDSHF.LF does not alter the last word.
This allows the programmer to use a scalar shift or rotate instruction to finish the operation, and.
thereby obtain a logical shift, arithmetic shift, or rotation. This also permits chaining of VDSHF
instructions. , . . . _ . , ,

This instruction accomplishes the same task as a loop that applies the scalar DSHF instruction to a
series of words; one at . a . time . (see. the. example.. under the discussion of DS,HF).For .all but the.
shortest series of bits, the vector version will execute more rapidly, but the scalar version gives a
choice of precisions.

, . :. i ,

Restrictions: None

Exceptions: None .* . ,

Precision: The elements of both vectors are singlewords in terms of alignment (though the
instruction can operate on larger sections of the vector to achieve greater speed). RTA and
SIZEREG are singlewords.

p h i s is a simple illustration of VDSHF and SHF combined to perform a logical shift: 1
M0V.S.S SIZEREG,#3 ; Length o f vec to r i s 3 s ing lewords

M0V.S.S RTA,#19. ; S h i f t by 1 9 b i t p o s i t i o n s
VTRAN5.S.S SOURCE, 11, ,2 ? 3, ,4 ? 5, ,61

; "a , ,bU t e l l s FASN t o p u t a i n
; t h e l e f t ha l fword , b I n t h t : ~ ' . i g h t

VDSHF.LF DEST,SOURCE ; R e s u l t i s

SHF.LF.S <SOURCE-4*1>[SIZEREGl'l'2,RTA . ; [4 , , 6 ? 8 . , , 1 0 . ? 1 2 . , , 0 1

222 2' Instruction Set

ROT Logical rotate

ROT . (LF,RT} . (Q,H,S,D)
ROTV.. (LF,RT) . (Q,H,S,D)

TOP
TOP

Purpose: R O T computes DEST:=Sl rotated (left,right) by S2. Rotation introduces bits shifted out
of one end into the other end, so that no bits are lost. An ILLEGALSHIFTXOTATE hard trap
occurs if the absolute value of S2 exceeds the width of the anyword being shifted.

ROTV, the reverse form, rotates S2 left or .right by S 1 bits.

Restrictions: Nope

Exteptionsr Nonc '

Precision: For ROT, S2 is a singleword. DEST and S1 have the precision specified by the second
modifier.

For ROTV, S1 is a singleword; DEST and S2 have the precision of the second modifier.

F h e following illustrates a right. rotation by a positive amount:

R0T.RT.Q RTA,#l,#l ; RTA: -408 (QW 1

2.9 Shift, Rotate, and Bit Manipulation

BITRW Bit reverse

BITRV . {QH,S,D) TOP
BITRVV . (QH,S,D) TOP

Purpose: BITRV reverses the order of the S2 low-order bits of S 1, and zero-extends.the result into
DEST. An ILLEGAL-SHIFTBOTATE hard triip occurs if ,S2 .is negative or .exceeds the word
width.

BITRVV reverses the order of the S 1 low-order' bits of S2 instead.
. .

Restrictions: None
. . . ' .

Exceptions: None

Precision: For BITRV, S1 and DEST have the same precisior. as the modifier. S2 is a singleword.
, .

. ,

For BI.TRVV, S2 and DEST have the precision of the modifier; S 1 is a singleword.
. . , . , - \' .

p h e following reverses ail nine, bits of i;i operand: " 1

224 2 .Instruction Set

Bit ex tract

BITEX . (QH,S,D)
BITEXV . (QH,S,D)

TOP
TOP

Purpose: BITEX extracts the bits of S1 selected by the "1" bits of S2. It squeezes these selected bits
to the right, zero-extends them, and stores them into DEST.

BITEXV, the reverse form, swaps the roles of S 1 and S2.

Restrictions: None

Exceptions: None

Precision: S 1, S2, and DEST all have the precision specified by the modifier.

p e following extracts alternate bits from. the operand: .

L
B1TEX.Q R T A , # C ~ ~ S I ,#[5251 ; RTA: -37 (Q W)

2.9 Shift, Rotate, and Bit Manipulation 225

BlTCNT I. Bit count
. .

BITCNT . (Q,H,S,D) XOP
VBITCNT . (H,S,D) . .

. . v:=v
LBITCNT . (H,S,D) S:=V

. , _ , . . , . . .

Purpose: BITCNT computes OPl:=number of "I" bits in OP2. This instruction is useful' for
counting the number of elements in a Pascal set.

VBITCNT performs BITCNT on each element of the vector beginning a t 'OP2 and stores the
results in the corresponding elements of the vector beginning at OP1.

LBITCNT counts all the "1" bits in all elements of the vector OP2 and stores the resulting totai in
singleword O P 1.

Restrictions: None

Exceptions: None

Precision: For BITCNT, O P 1 is a singleword and OP2 has the same precision as the modifier. For
VBITCNT, the elements of vector OP1 are singlewords and those of OP2 have the same ?recision
as the modifier. For LBITCNT, O P 1 is a singleword and the elements of vector OP2 have the
precision specified by the modifier.

F h e following sets RTA to -1 if RTA has odd parity, 0 otherwise:

B1TCNT.S RTA,RTA
AN0.S RTA,#l
NEG. S RTA

The parity of an arbitrarily long block of bits can be obtained by using the XOR instruction to
condense the block. (The XOR operation essentially causes pairs of one-bits to cancel.) If
TABLE is a block of N singlewords (N>2), this code sets RTA (flag-style) if TABLE has odd
parity:

XOR. S RTA, cTABLE+4* (N - 1) >, cTABLE+4* (N-21> ;RTA gets XOR of two words

UOV. S. S RTB, # IN-4*31 ;HTB counts a l l other words

LOOP: XOR. S RTA, TABLE [RTBl f 2 ;XOR i n next word
DSKP.GEQ RTB,#B,LOOP ; loop - u n t i l a l l words done

B1TCNT.S RTA,RTB ;count r e s u l t as be fore

AN0.S RTA,#l
NEG.S RTA

A non-zero integral power of two always has a two's-complement representation with exactly one

226 2' Instruction Set

bit set. Assuming that HUNOZ contains a positive singleword integer, this code jumps to
TWOPOWER if HUNOZ is an exact power of two:

B1TCNT.S RTA,HUNOZ ; RTAtl i f HUNOZ i s a power o f two

DJHPZ.EQL RTA,TWOPOWER ;jump t o TWOPOWER i f RTA-1 i s zero

Lfffero is to be considered a power of two, D JMPZ.EQL can be changed to DJMPZ.LEQ _1

2.9 Shift, Rotate, and Bit Manipulation 227

BITFST Bit number of first "1" bit

BITFST . .(QH,S,D) .

LBITFST . (H,S,D)
XOP
S:=V

Purpose: For BITFST, if OP2=0 then OP~:=-1 else OP l:=bit number of the leftmost "1" bit in OP2.
This instruction is useful for finding the index of the first element of a Pascal set.

LBITFST finds the first "1" bit m-ttector OP2 and puts its number--or, if there are no,"l" bits in
the vector, a zero--into scalar singleword OP1.

Restrictions: None

Exceptions: None . .

precision: O P l ' i s a singlewdr'd. For BITFST, 0 P 2 has the same precision as the modifiir. FO;

LBITFST, each element of OP2 has the same precision as the modifier.

p h i following sets RTA to floor(log2(RTA)) with RTA assumed to be a ;on-zero unsigned
singleword integer:

1

This piece of code constructs a byte pointer in (doubleword) RTA to the sm~llest byte, containing
all the one-bits in HUN0,Z:

B1TFST.S RTA,HUNOZ ;number of leading "8" b i t s
B1TRV.S RTAf,HUNOZ,#36. ; reverse IlUNOZ in to RTA1
B1TFST.S RTAl ;number of t r a i l ing "8" b i t s
A0D.S RTA1,RTA ;number of surrounding "0" b i t s
SUBV. S RTA1, #36. ; l ength of smal l e s t containing byte
M0V.H.S RTA1,RTA ;put pos i t i on in high halfword of RTAl

I
MOVP. P. A RTA , HUNOZ ;make poin ter t o HUNOZ in RTA

228 2 Instruction Set

2.10 Byte Manipulation
I

Bytes, byte pointers, and byte selectors: A -byte is simply a field of zero or more bits within a
singleword 'or doubleword. The native mode architecture does not tie,the concept of a byte to the
representation of a character. Instead, it lets the programmer specify the position and width of a byte
by constructing a byte pointer:

-
TAG I ADDR

POSITION I LENGTH

The TAG and AUUK fields comprise a pointer (as described in Sectinn 18,1), and are subject to
the validation checking described in Section 1.8.2. They must point to an aligned singleword in
memory--that is, ADDK must be a multiple of 4. The POSITION field gives the bit number
within the singleword or doubleword at which the byte begins, and must lie within the range 0 . . 35
for singlewords or 0 . . 71 for doublewords. The LENGTH field gives the number of bits within
the byte, and must lie within the range 0 . . 36 for singlewords or 0 . . 72 for doublewords. A
singleword byte instruction requires each byte operand to lie within an aligned singleword. A
doubleword byte instruction requires each byte operand to lie within the doubleword specified by
T A G and ADDR.

If the POSITION and OFFSET fields of a byte pointer violate any of those rules, an
ILLEGALBYTEJTR hard trap occurs.

Immediate byte instructions use an operand to specify the singleword or doubleword containing a
byte, b d thus can access a byte within a constant or register as well at in memory. They use a
simplified version of the byte pointer, called a byte selector, eliminating the TAG and ADDRESS
fields:

I POSIT ION I LENGTH 1

One useful consequence of the format for byte pointers is the ability to compare them as if they
were ordinary doublewords (provided that one knows the tag fields of the pointers match). The
comparison will reveal which byte is higher in memory or, if the two bytes begin at the same
position of the same word, which byte is longer.

2.10 Byte Manipulation

LBYT

229

Load unsigned byte

XOP

Purpose: The instruction copies the byte specified by byte pointer OP2 and stores it, right justified
in a field of zeros, in OP1.

Restrictions: None

Exceptions: None

Precision: OP1 has the precision specified by the modifier. O P 2 is a byte pointer. The b~te~which
OP2 points to must obey the length and alignment rules for the precision specified by the modifier.

. .. . ! I ,

p e following sets RTA to the exponent field' of the singleword floating point n u h b e r . . ~ (the

. exponent field is 9 bits wide and starts at bit 1 of the word):
'1

230 . 2' Instruction Set

LlBYT Load immediate unsigned byte

LIBYT . (S,D) TOP

Purpose: T h e instruction copies from S 1 the byte specified by byte selector S2 and stores it, right
justified in a field of zeros, in DEST.

Restrictions: None

Exceptions: None

Precision: S1 and DEST have the same precision as the modifier. S2 is a byte selector. .

F h e folloking sets RTA to the exponent field of the singleword floating point number X
exponent field is 9 bits long and starts at bit 1 of the5.word): . .

2.10 Byte Manipulation

LSBYT Load signed. by-te

~ u r ~ o s e : T h e instruction copier the byte specified by byte pointer OP2, sign-extends it, and stores it
in OP1. . .

. . Restrictions: None , . -

Exceptions: None . . ,

Precision: OP1 .-has the .precision specified by. the modifier. OP2 is- a byre 'pointer. The..byte
specified by OP2 must obey the length and alignment rules for the precision specified by . the .

modifier. , . , . . . , , . . ::.. 1 _)

. . . . , , , 6 . ' . , < , . ; .

following uses RTB as a b p pointer, setting RTA to the ligned "due of t he sign and
exponent fields 'of the singleword floating point number X:

. .,

1
' .

M0VP.P.A RTB,X ; Set address p a r t o f po in ter
. ..

M0V.S.S RTB1,#[0,,10.1 ; Set p o s i t i o n , length p a r t s

L
L9BYT.S RTA,RTB

232 2 Instruction Set

LISBYT Load immediate signed byte

LISBYT . (S,D) TOP

Purpose: T h e instruction copies from S1 the byte specified by byte selector S2, sign-extends it, and
stores it in DEST.

Restrictions: None ., ..

Exceptions: None

Precision: $1 and DEST have the same precision specified by the modifier. S2 is a byte selector.

Fe fallbvmg sets X I ' A to the signed value of the sign and exponent fields of the singleword

the byte selector is zero:

1
floating point number X. Notice that a short constant can be used, because the position field of

L
LIS0YT.S RTA,X,#10. ; Same as #c0,,10.>

2.10 Byte Manipulation 233

DBYT Deposit byte

DBYT . (S,D) XOP

Purpose: The instruction copies the appropride number. of low-order, bits :from O P 2 and stores
them in the byte specified by byte pointer OP1. - , . .

Restrictions: -None :> ' , .. ;;. s . .

' . Exceptions: None / . ' :

Precision: OP1 is a byte pointer.. The byte specified by OP1 must obey the length and alignment
rules of the precision specified by the modifier. O P 2 has the precision specified by the modifier.

, " . . . , . . . :: :. ', . . ((

F h e following setsthe mdtissii of the singleword floating point number 7 to the .. ;wenty-six . low.
order bits of RTA (the mantissa is .26 bits long and 'begins at bit 10:

. . , . . .
. .

DBYT. S [TAG+X 7 10.. ,26. I , RTA

2' Instruction Set

DlBYT Deposit immediate byte

DIBYT , (S,D) ' TOP

Purpose: T h e instruction copies the appropriate number. of low-order -bits from S 1 and stores them
in the byte within DEST specified by byte selector S2.

Restrictions: None

Exceptions: None

Precision: S 1 .and DEST have the precision specified by the modifier.' S2 is a byte selector:
, ,

p e following set; the exponent field of the singleword flbating point number in RTA to zero.
-

(The exponent field is 9 bits long and begins at bit 1): ' " .
,

" I '

1

2.10 Byte Manipulation 235

ADJBP Adjust byte pointer

ADJBP . ~c,A,z) TOP
. ,

Purpose: This instruction assumes S 1 is a byte pointer which points to one byte in a series of packed
bytes. It copies that byte pointer from S1, adjusts it to point to an earlier or later byte in the series,
and stores the new pointer in DEST. S2 specifies how many bytes forward (or, if S2 is negative, how
many bytes backward) to move the pointer.

The modifier specifies one o f ' three different ways, to pack bytes with respect to singleword
boundaries.

If the modifier is UC", the instruction positions bytes continuously, one after another, splitting a byte
across a singleword boundary when necessary. The pointer S1 must specify LENGTH s 7% and
(LENGTH + POSITION) 5 72.

If tlie modifier is U ~ " , the iristruction positions bytes contin~ously, except that it will leave biti ., .'.

"unused" if'necessGy to prevent a byte 'froin being split across a singleword . boundary. . It m'ainta*tis - .

the same alignment of 6ytes (that:is, the s h e pattern of bytes and unused bits) in each sitiglew&rd.
The pointer S1 must specify a byte which does not cross a singleword boundary, and whose le,ngth . < , ;

does not exceed 36 bits. ' i

. . .

If the modifier is Z", the instruction positions bytes beginning at the bit-zero (high-order) end of
each singleword. ~ o ' b ~ t e ever crosses a singleword boundary, and if 36 is not evenly divisible by the
b e length, then the lefiover" bits all appear at the low-order end of the word. It is 'illegal for the
byte pointer S1 to point to a byte which crosses a word boundary or whose length exceeds 36 bits. It
may point to abyte whose pdsition within the word suggests that the bytes are not bit-zero aligned;
if so, the instruction will impose bit-zero alignment if S2 causes it to point to a different singleword.

Given that ADDRESS, POSITION, and LENGTHare fields of the byte pointer, &d DIV and
MOD indicate integer division and modulo in the Pascal language sense rather than the S-1 native
mode assembly language sense, the algorithms for this instruction are:

AD JBP.C

ADDR := ADDR + ((POSITION + SZ*LENGTH) D IV 36) * 4;
POSITION := (POSITION + SZ*LENGTH) MOD 36;

BP :a POSITION D IV LENGTH; (m BYTE NUMBER *I
BPW := BP + ((36-POSITION) OIV LENGTH); (* BYTES PER WORD XI
ADDR := ADDR + ((SZ+BP) DIV BPW). * 4;
POSITION := POSITION + ((SZ+BP) MOD.BPW) * LENGTH;

2 ' Instruction Set

.BPW := 36 DIV LENGTH; (* Bytes per word *)
B P := POSITION DIV LENGTH; (* Byte number *)
IF S2 > 0 THEN

BF := (36-POSITION-LENGTH) DIV LENGTH (* Bytes after m)
ELSE BF := BP; (* Bytes before *)
IF ABS(S2) > BF

THEN BEGIN (x New byte pointer points to different word *)
ADDRESS := ADDRESS + ((S2+BPW-BF-1) DIV BPW) * 4;
POSITION := ((S2+BPW-BF-1) MOD BPW) * LENGTH;
END

ELSE (* New byte pointer stil1,points to same word *)
POSITION := PO.SITION + S~*LENGTH;

T o show the effect of the three different modifiers, assume that RTA is a byte pointer to an 8-bit
byte beginning at bit 2 of singleword Mlnl. - Executing the instruction ."ADJBP.(C,A,Z) RTA,aln
eight times will cause it to point to eight successive bytes in memory, as shown in the drawings:

Restrictions1 None

Exceptions: None

Precision: S 1 and DEST are byte pointers. S2 is a singleword.

F h e following advances the byte pointer at BP by one byte:

2.10 Byte Manipulation

suppose that TABLE'is a vector of NBYTES four-bit bytes, packed nine per dngleword.
Suppose that a purported index into this table is in RTB. This code checks the purported
index for validity and then produces the ddsired byte in RTA, or zero if the index was invalid.
It produces a.flag indicating whether the index is valid, and then selects one of two byte pointers
to adjust. If the index is valid, a'byte pointer to the beginning of the table is adjusted to point
to the desired byte; if not, a byte pointer to a zero-length byte is produced. Loading a byte using
a zero-length byte pointer always produces a zero. Note the "t3' in the ADJBP instruction: it
causee . . the indexing by RTA to be doubleword indexing, because byte pointers are two words
long:

BNDSF.O.S RTA,#[NBYTES-11,RTB ;RTA:=-1 i f index okay, e l s e 0
ADJBP.A RTA,<BPTRS+10>[RTAlf3,RTB ;get p t r t o desired byte , or nut l p t r
LBYT.S RTA,RTA ; load byte i n t o RTA

BPTRS: TABLE ? 0, ,4

I
TABLE ? 0 , , 0

;byte po in ter to beginning o f TABLE
;zero-length by te po in ter

2' Instruction Set

2.11 Stack Manipulation

A stack is specified' by any two consecutive singlewords. The architecture interprets these
singlewords as a stack-pointer and a stack-limit. While this pointerllimit pair may reside in
memory or in registers, the stack itself always resides in memory. The architecture supports both
stacks which grow upward in memory toward higher addresses and stacks which grow downward in
memory toward lower addresses. Instructions which manipulate stacks generally specify either "UP"
or 'DOWN" as a modifier, indicating the direction in which they consider the stack to grow.

For upward-growing stacks, the first of the two consecutive singlewords of the poiriterllimit pair is
the stack-pointer and the second is the stack-limit. For downward-growing stacks, the first is the
limit and the second is the pointer. When an upward-growing stack and a downward-growing stack
share the same segment of memory, this allows the same pointerllimit pair to serve both stacks: the
pointer of. the upward-growing stack is the limit of the downward-growing stack, and vice versa.

. .

For upward-growing stacks, the stack-pointer specifies the next free sing!eword on the stack, so that
a push operation first stores the item and then increments the pointer. For downward-growing
stacks, the pointer specifies the top item of the stack, so that a push operation first decrements the
pointer and then stores the new item.

for upward-growing stacks, the stack-limit points to thefirst singleword beyond the end of the stack.
For downward-growing stacks, the stack-limit points to the last singleword into which one may-
legally store an item.

The processor compares SP with SL using signed 36-bit arithmetic and invokes the
STACK-OVERFLOW hard trap on any instruction that would cause the stack to overflow.

Registers %R30 (called SP) and %R31 (called SL) specify a particular upward-growing stack for
implicit use by interrupts, traps, and linkage instructions such as JSR and ALLOC. The
instructions in this section can operate on that stack, but usually they operate on additional stacks
specified by other st'ack pointerllimit pairs.

Note that both the stack pointer and the stack limit are truly painters, and t h ~ s ~ ~ n d ~ r g n t h ~ p n i n t ~ r
validation described in section 1.8.2.

2.1 1 Stack Manipulation

ADJSP . . Adjust designated stack pointer

XOP

Purpose: Adjust the size of an (upward-growing, downward-growing) stack. The instruction
assumes that FIRST(OPI) and SECOND(OPI) a r e a stack pointkr/limit pair, and adjusts the stack
pointer to point to operand OP2.

* . -
The pointer itself is subject to segment bounds checking during ADJSP. If the instruction would
make the stack pointer exceed thestackfirnit, a STACK-OVERFLOW hard trap will occur.

Restrictions: None

Exceptions: None

Precision: FIRST(0P I), SECOND(0P I) and OP2 are singlewords.

. .
F e fo,1owing thmwi awai 'the t o p 4 singlbwoid stick elements of the upward-growing stack

designated by the stack pointer/limlt pair SPL:
1

I
ADJSP. UP SPL, (SPL) -4*4

2 Instruction Set

PUSH Push onto designated stack

PUSH . (UP,DN) . (QH,S,D) XOP

Purpose: Push O P 2 onto the upward-growing or downward-growing stack designated by stack
pointer/limit pair FIRST(0P 1) and SECOND(0P 1).

If the instruction would cause the stack pointer to pass the stack limit (that is,
OP 1+(1,2,4,8)>NEXT(OP 1) for PUSH.UP or NEXT(0P 1)-{1,2,4,8)<OP 1 for PUSH.DN) a
STACK-OVERFLOW hard trap will occur. Similarly, causing the stack pointer to cross a segment
boundary results in an OUT-OF3OUNDS hard trap.

Rcstrictinns: Nnnc

Exceptions: None

Precision: FIRST(OP1) and SECOND(OP1) are singlewords. OP2 has the precision of the
modifier.

F h e following pushes RTA on the stack designated by stack pointerllirnit pair SPL: 1

POP , Pop from designatedstack

POP . (UP.DN} . {(LH,S,D) . XOP

Purpose: From the upward-growing or downward-growing stack designated by pointer/limit pair
FIRST(OP2) and SECOND(OPP), pop the top value (whose precision is specified by the second
modifier) and store that value in OP1.

A STACK-OVERFLOW hard trap occurs if the instruction would make the stack pointer pass the
stack limit, and an OUT-OF-BOUNDS hard trap occurs if it would make the stack pointer cross a
segment boundary.

Restrictions: None . '
. . .

c m

Exceptions: None

Precision: FIRST(OP2) and SECOND(OP2) are singlewords; OP1: .has the :precis.ion :of: the
modifier.

.
' I . : .

p h e following pops the top halfword on an upward-grnwing stack into RTA. i e t SPL b e t 4
pointerllimit doubleword designating the stack:

:. 8 . ;

L
P0P.UP.H RTA,SPL

J

242 2' Instruction Set

PUSHAQR Push address onto designated stack

PUSHADR . (UP,DN) XOP

Purpose: Compute a tagged pointer to O P 2 and push that pointer onto an upward-growing or
downward-growing stack specified by stack pointerllimit pair FIRST(OP 1) and SECOND(0P I).

If the instruction would cause the stack pointer to pass the stack limit (that is, OP1+4>NEXT(OPl)
for PUSH.UP or NEXT(OP1)-4<0P1 for PUSH.DN) a STACK-OVERLOW hard trap will
occur. Similarly, causing the stack pointer to cross a segment boundary results in an
OUT-OF-BOUNDS hard trap.

Rastrictin,ns: Nnno

Exceptions: None

Precision: FIRST(0P 1) and SECOND(0P 1) are singlewords.

pe following pusher a pointer to WHIRR onto the stack specified by a pointer at ZR25 and a
I . .

limit at %R26:
i

. l

2.12 Routine Linkage and Traps

2.12 Routine Linkage and Traps

These instructions 'provide call and return 'mechanisms for subroutines, coroutines, trap handlers,
and interrupt handlers. (Additional instructions WTDBP and RTDBP, used to specify the
locations for trap and interrupt vectors, appear in Section 2.15.)

The architecture provides several complete sets of call and return instructions with varying degrees
of sophistication. They include:

JSR, ALLOC, RETSR, RET
Jump to and return from simple subroutines. JSR calls the subroutine, pushing
a single parameter on the stack; ALLOC may be used to save. registers and
allocate space upon the stack; and RETSR returns from the subroutine, restoring
the parameter. Alternatively, RET returns but discards the parameter pushed by
JSR and, if desired, a number of words preceding it on the stack.

CALL, JSP, ENTRY, UNCALL
Call and return from an internal procedure, using a stack frame. C ~ ~ ~ . c a l l s the'
procedure, ENTRY builds the stack frame, and UNCALL returns from the

. . procedure, dropping back to the preceding stack frame. SSP. is usefu.1 whenzttie'
'chain of procedure calls permits calls to share a stack frame;

.

- g .
- .

CALLX, ENTRY, RETGATE,:UNCALL '.

Call and return from an external procedure,. using a stack frame.. CALLX talls,
the procedure and ENTRY builds the stack frame. If the call crossed a ring
boundary, the procedure returns with RETGATE rather than with UNCALL. .

1 ,

TRPSLF, RETUS . I
. r

Cause a trap to one of the vectors for the current address space, and return from
the corresponding trap handler. See Section 1.9.3 for details. RETUS is also
used to return from the handler of a soft trap.

TRPEXE, RETFS
Cause a trap to the executive and return from the corresponding trap handler.
See Section 1.9.3 for details. RETFS is also used to return from the handler of a
hard trap or interrupt.

JC R Jump between coroutines without using the stack.

JMPCALL, JMPRET
These are simple jump instructions which are considered to be call and return
instructions for purposes of call tracing.

The followir~g irrsLr,u~tiuiis will invoke the CALL-TRAP hard trap when the call tracing
mechanism in PROCESSORSTATUS is enabled:

2' Instruction Set

CALL
CALLX

JCR
JMPCALL
JMPRET

JSP
JS R
RET
RETGATE
RETSR
UNCALL

2.12.1 The Stack Frame Convention

All of ,the linkage instructions 'use registers R30 and R31 as stack pointer (SP) and stack limit (SL).
T h e CALL1 JSPIENTRYIUNCALL family of instructions establish a stack frame convention which
fhrther defines R28 to be a closure pointer (CP), defines R29 to be a frame pointer (FP), and defines
a stack frame consisting of three singlewords called SF.EP, SF.FLAGS, and SF.R.ETADDR. F.P
points to SF.EP for, the current procedure.

,-

CP The closure pointer points to the stack frame for the procedure which is
immediately global to the one which is currently executing. In Pascal, this is the
procedure (or main program) inside which the currently executing procedure. was.
declared. This pointer establishes the static scope of a language.

FP T h e frame pointer points to the stack frame for the currently executing
procedure.

Though the stack frame need contain only three singlewords, we'll present a more elaborate example
that contains the following;

SF.CP The closure pointer that points to the stack frame of the procedure which
statically encloses the current one.

SF.PREV-FP T h e frame pointer which points to the stack frame of the procedure which called
the current one.

An entry pointer, which points to the first singleword of code for the current
procedure. This permits the placing of debugging and runtime information
between the physical beginning of the procedure and the first instr1.1cti.on.

2.12.1 The Stack Frame convention

SF.FLAGS A word,of flags which is zeroed on entry to the routine.
. .. -

SF.RET-ADDR The return address, a pointer to an instruction within the current procedure.
When the current procedure calls another. one, this pointer.specifies where to
resume execution when the other procedure returns.

. .

To illustrate the stack frame convention, consider the following 'fra&nent'.of a P,ascal ,program:
, -+. .

. . . PROCEDURE .A; ' ' .,

VAR Al,:A2, A3;
PROCEDURE C;

VAR C1, C2, C3;
BEGIN
. . .
END . (m C *I ;

PROCEDURE B;
VAR B1, 82, 83;
BEG I N

c:
...
END (m B *I ;

BEGIN.

B; ' . . .
END (m 'A *I ; .

Suppose that someone calls procedure A, which calls procedure B, which in turn calls procedure C.
'We stop the processor some time after C begins to execute, but before it has called any further
procedure. Following the stack frame convention, Figure 2-2 shows the appearance of the stack and
tho code frame.

The CALL and CALLX instructions save SF.RETADDR within the stackframe, and the ENTRY
instruction saves SF..EP and clears SF.FLAGS. The remaining portions of the stack frame must be
handled by a sequence of individual instructions. In Figure 2-2, for example, the instructions
required for procedure B to call procedure C might look like:

Within procedure B:
CALL CP, C ; C a l l C, g i v i n g i t the same

NI : ... ; CP as B because b o t h a re

; nested i n A. The address N I
; is saved as SF.RET-ADDR
; ' w i t h i n the s tack frame o f B

At the beginning of procedure C:
< in fo rma t i on f o r run t ime debugging>

C:ALLOC.2 CP,(SPl4*<3+SizeOfLocals> ; Push the CP and FP, a l l o c a t e

ENTRY (SPI-4*<3+SizeOfLocaIs,C

<Code o f procedure C>
U N C A ~ (FPI 4 ~ - 1 , (FP) 4u-2

2 ' Instruction Set

; 3 SWs f o r the r e s t o f the
; stack frame, a l l o c a t e more for

; the local var !ab les
; Hake SF.EP p o i n t t o C,
; c l e a r SF.FLAGS, make FP
; p o i n t t o SF.EP

; Return, r e t r i e v i n g B 's FP

; from our frame and popping
; our frame from the stack

2.12.1 The Stack Frame Convention

Stack Code Segment

Debug Hooks u
L SF.PREV-FP -

r . -

SF.EP . a

SF. FLAGS
CALL FP, B

SF. RET-ADDR -:
I LOCALS I l ~ e b u ~ Hooks I

SF. EP

- . .

SF. RET-ADDR

LOCALS rl
Top o f Stack 7

Figure 2-2
Stack Frame Illustration

If procedure C expected parameters, the sequence could easily be changed to use the modifier and
OP1 of the ALLOC instruction to push additional registers onto the stack preceding SF.CP and
.SF.FP:

2 Instruction Set

2.12.2 Cross-ring Calls

T o simplify the user interface to the operating system, it is desirable to make the mechanism for
calling operating system procedures appear identical with the mechanism for calling external
procedures in general.

T o achieve this, the architecture provides an instructinn c a l l ~ d CALLX, a special kind of pointer
called a gate pointer,'and a vector of entry points called gates. When the CALLX instruction
employs a ring or user pointer to specify the called procedure, it cannot--due to the validation
mechanism described in Section 1.8.2--call a procedure in a lower-numbered ring. When the
CALLX instruction employs a gate pointer, however, it invokes a trap-like mechanism which
permits calling a routine in a lower-numbered ring, but subjects the call to some protective
mechanisms.

Thus, the only difference between calling an ordinary external procedure and calling an operating
system procedure is in the TAG field of the pointer used to link to the procedure.

the ring in question: .

New FP

New SP'
h

New SL

New USER-STATUS

New PROCESSOR-STATUS

T h e "set of gates" pointed to by the gate descriptor corresponds to a set of trap vectors. The gates
are numbered consecutively beginning at 0, and each has the following format:

M [nl

M Cn+41

fl [n+81

M [n+121

fl Cn+163

Maximum Vector Index

ADDRESS(Set o f Gates)

I ADDRESS (Gate Rout i ne) I M [nl

M [n+201

l l [n+24J

I New CP I f l Cn+41

2.12.2 Cross-ring Calls

A gate routine is actually the routine to be called by the CALLX instruction, but here it roughly
corresponds to a trap handler. When the CALLX instruction executes using a gate pointer, the
following Sequence occurs:

. .

1. Use the gate pointer to determine the desired ring and gate index. The usual pointer
ADDRESS field is redefined, so the format of a gate pointer is the following:

[TAG=1 Il(.s&vedI RING I INDEX I

If RING=S, a GATEJNDEX-TOO-BIG hard trap occurs (there are no gates into ring 3
because the address validation mechanism does not prevent any ring from making
ordinary calls into ring 3). Otherwise, the processor consults the gate descriptor for the
specified ring. If INDEX is greater than the maximum vector index specified by that gate
descriptor, a GATEJNDEX-TOOiBIG hard trap occurs. Otherwise, the processor uses
INDEX to select the specified gate from the set of gates pointed to by the gate descriptor.
Note that the pointer-and-index mechanism for finding the proper gate is subject to
address validation.

2. Save,FP, SP, SL, PROCESSORSTATUS, and USERSTATUS internally. Load FP,
SP, SL and USERSTATUS with the new values specified in the gate descriptor. If the
ring specified by RING is privileged, load PROCESSORSTATUS with the value
specified in the gate descriptor.

3. Push the current state onto the SP stack specified by the new PROCESSOR-STATUS
and SP found in the gate descriptor. The act of pushing this information onto the stack is
atomic, and any interrupts will remain pending until it 'is complete. A hard trap can result,
however--if, for example, the SP would cross a segment boundary, exceed SL, or touch an
absent page--and such a hard trap does intercede (Seceion 1.9.6).

The information is pushed onto the stack in the following format, known as the save area
for the gate crossing (if the ring specified by, RING is not privileged, push zero in place of
PROCESSORSTATUS):

2 Instruction Set

old FP

old SP . S.

old SL

I o ld PROCESSOR-STATUS I
I o ld USER-STATUS I
I PC-NEXT-INSTR o f t h e CALLX I
I PC o f t h e CALLX I
I Gate Poin ter I

Top o f stack

4. LuaJ CP with Lhe value specified in cPle gate fnelf. Load PC with the address of' the
gate routine specified in the gate itself and resume execution. By thus changing the ring of
execution before executing the first instruction of the called routine, the processor
effectively bypasses the usual address validation mechanism and the ,checking of the
execute bracket (STE.EB field) of the.corresponding segrnentito.

r /

A typical operating system would rely on address validation checking to prevent higher-numbered '
'

rings from calling or jumping into lower-numbered rings arbitrarily; a user wishing to call into a
privileged ring would have to use the gate mechanism. (If the operating system mapped itself into
the same address space as the user, it would additionally use the STE.EB execute bracket
mechanism to prevent the user from calling operating system routines except via gates.)

2.12.3 Routine Linkage Instructions

2.12.3 Routine Linkage Instructions

252 2' Instruction Set

CALL Call an internal procedure

CALL J" F'

Purpose: Call an internal procedure, assum'ing the use of the standard stack frame. First CP:=OPl,
then SF.RETADDR:=PC_NEXTJNSTR (SF.RETADDR is the singleword at (FP)4*2). Then
G O T 0 JUMPDEST, which must lie within the ring of execution.

Restrictions: None

Exceptions: None

Precision: OP1 is a memory address; OP2 is a jump destination. .

F p p o s e a procedure named C is declared within a procedure named B. The following sequence
would call C from B:

1
V0VP.P.A XR27,Parmlist
CALL F P , F i r s t C

; P o i n t e r t o parameters
; C a l l C. Use 6 ' s FP as C's
; CP.because C i s nested
; wlthin B

2.12.3 Routine Linkage Instructions

CALLX Call an external procedure

CALLX XOP

Purpose: Call an external procedure, assuming the use of t he standard, stack frame. First CP:=OP 1,
then SF.RETADDR:=PCNEXTJNSTR (SF.RETADDR i r t h e singleword at (FP)4*2). Then
fetch OP2 and treat the resulting value as a pointer. If the pointer has' a gate tag, perform a
cross-ring call through a gate (see Section 2.12.2); otherwise, simply go to the instruction it points to
and resume execution there.

If OP2 is a register or constant, an ILLEGALcOPERANDcMODE or ILLEGALcCONSTANT
hard trap occurs.

. . ; . . .

Restrictions: None

, . Exceptions: None

Precision: OP1 and OP2 are singlewords. The contents of OP2 must point to a singleword.

p s u m e that a procedure has been parred as a parameter to the current routine, and that the two

To invoke the procedure, the current routine would execute:

1
singlewords at (AP)O are a pointer to the code for that procedure, followed by its closure pointer.

L
CALLX (AP) l u 4 , (AP) 0u4

2 Instruction Set

JSP Jump and save PC

JS P JO p

Purpose: First OP l:=PCJJEXT JNSTR, then go to .JUMPDEST.

Restrictions: None

Exceptions: None

Precision: OP 1 is a singleword.

F e following saver the return address in RO and calls PRSTR:

I JSP R0,PRSTR

2.12.3 Routine Linkage Instructions 255

ENTRY ~nitiaiize a stack frame

ENTRY XOP

Purpose: Initialize the stlck frame assumed ,by the Q i L L and . C A L L X instructions.
OPl:=ADDRESS(OPZ), typically ,ulsed to make SF.EP point to the first instruction of, the called
routine. NEXT(OPl):=O, typically used to clear SF-FLAGS. FP:=ADDRESS(OP l), typically used to
make FP point to SF.EP, marking the location of the stack frame.

, , ,

Note that ENTRY does not alter SP. It assumes that an instruction such as ALLOC has allocated
space for the stack frame. ;

Restrictions: None

Exceptions: None , c *

~rec is id i : O P 1 and OP2 are singlewords. . . ,.,I . .

1 F e following sequence raves the entire register file, with thee~ceptian of SP and SL, preceding .I
the portion of the .stack frame initialized. by ENTRY: . . ' '. . . .

ALLOC.30 R0,4*<3+SizeOfLocals> ; Save r e g i s t e r s . a n d a l l o c a t e space
; fo r stackframe and l o c a l s

ENTRY (SPI-4*<3+SizeOfLocaIs>,C ; flake SF.EP p o i n t t o C, c l e a r

256 2 Instruction Set

UNCALL Return from a call

UNCALL. XOP

Purpose: Return from a procedure called by the CALL or CALLX instruction. FP:=OPl;
SP:=ADDRESS(OP2). Go to the instruction pointed to by SF.RETADDR. (SF.RETADDR is
(FP)4*2 after OP 1 has been moved to FP.)

If the instruction causes SP to cross a segment boundary, an OUT-OF-BOUNDS hard trap occurs.

Use RETGATE, not UNCALL, to return from cross-ring calls.

Restrictions: None

Exceptions: None

Precision: OP 1 and OP2 are singlewords.

F e following sequence restores the entire register file; with the exception of SP and SL, from
the area of the stack preceding SF.EP, pops t'he stack frame, and returns to the caller:

MOVNS. 3B RB, (FPI - 4 ~ 3 0 . ; Restore reg i s terms

L
UNCALL (FPI -4*1, (FP) -4*30. ; Restore o l d FP, pop a1 l

2.12.3 Routine Linkage Instructions 257

RETGATE , , , Return from a cross-ring call

RETCATE XOP

Purpose: Return from a cross-ring call initiated by the CALLX instruction. O P 1 is the first of six
singlewords specifying new values for FP, SP, SL, USERSTATUS, PROCESSORASTATUS, and
P C respectively. If the new value of PC specifies a ring whose number is less than that of the ring
of execution, a BADA-VALIDATION hard trap occurs. Otherwise, the instruction loads the new
values into the FP, SP, SL,*and ,USERSTATUS registers. If the ring of execution is privileged, it
also loads the new value specified for PROCESSORSTATUS. In any case, it loads the new value
into P C and resumes execution.

Use UNCALL, not RETGATE, to return from ordinary calls. . ,

Restrictions: None .. , .

Exceptions: .None .
' *

Precision: O P 1 is a singleword. OP2 is unused.

Fcross-ga te call will present the called routine with a stack like the one shown in Section 2.12.2.
The callee might use the following instruction to return:

1
RETGATE (SPI -4u8. ; Restore the c a l l e r ' s s t a t e from the

; f i r s t 6 .s ing lewords o f the 8 s ing lewords

; pushed by the CALLX i n s t r u c t i o n . "..

J

258 2 Instruction Set

JSR Jump to subroutine

Purpose: Push first O P 1 and then the return address onto the stack whose pointer is4SP. Then
transfer to JUMPDEST.

If this instruction would cause SP to pass SL, a STACK-OVERFLOW hard trap occurs; if it
would cause SP to crdss a segment boundary; an OUT-OFBOUNDS hard trap occurs.

Restrictions: None

Exceptions: None

Precision: All operands are singlewords.

p e following pushes RTA and ADDRESS(FO1) on the stack before jumping to BAZ: 1
JSR RTA,BAZ

I
. . . : re turn address

OP1

PC-NEXT-I NSTR

0 35
Top o f stack

Figure 2-3
JSk Save Area Format

2.12.3 Routine Linkage Instructions 259

ALLOC Allocate space atop stack

Purpose: This instruction pushes a specified group' of singlewords onto the SP stack (the one ~ised
by the subroutine, calling mechanism) and then adjusts the stack pointer, possibly allocating
additional space atop the stack. Typically it is used to save registers and make room for a stack
frame.

More specifically, the instruction first moves a vector of 1 . . 32 singlewords starting with OP1 to the
vector pointed to by SP (if the two vectors 'overlap, the result is undefined). Then
SP:=ADDRESS(OPP). Thus, OP2 is typically a memory location beyond the last of the words
moved, though this is not required. If this instruction would cause SP to pass SL, a
STACK-OVERFLOW hard trap occurs; if it would cause SP to cross a segment boundary, an
OUT-OF3OUlJD3 Isud trap occurs.

Restrictions: None

Exceptions: None

Precision: OP1 and OP2 must be singlewords.

F h e following saves all the registers and reserves an additional DW on the stack as well: 1
ALLOC. 32 XR0, (SP) <4* (40+2) >

Note that the modifier is a decimal number, but the numbers in the operands are octal. The
same instruction could be written:

L
ALLOC. 32 %R0, (SP1<4* (32. +2) >

260 2' Instruction Set

RETSW Return f roll1 subroutine

RETSR XOP

Purpose: Return from a subroutine that was invoked by the JSR instruction. First the instruction
copies ADDRESS(OP2) into SP. Then it pops the first singleword (return address) from the stack
pointed to by SP and stores it in the PC. Then it pops the second singleword (typically the value of
O P 1 placed there by the JSR instruction) and stores it in OP1.

T o be sure that RETSR is the exact reverse of JSR, the programmer must use the same OP1 in
both JSR and RETSR, and assure that OP2 in the RETSR instruction is the same memory location
that SP pointed to immediately after the JSR. If the subroutine does not alter SP, then OP2 should
be "(SP)"; otherwise, the subroutine should save a stack marker and use it as OP2.

If the instruction would cause SP to cross a segment boundary, an OUT-OFBOUNDS hard trap
OCcUrS.

Restrictions: None

Exceptions: None

Precision: All operands involved are singlewords.

F h e following code call; BAZ,' which returns to FOl, saving and restoring RTA on the stack.
Assume SP is the stack .pointer:

1
JSR RTA, BAZ '

FBI: ... ; r e t u r n here

BAZ: . . . ;t ial l ~ d r o u t i n e

RETSR RTA, (SP)

Suppose that BAZ needs N words of temporary stack space while it is running. These words
can be allocated using the AD JSP instruction (or A T..T.OC if registers must also be saved), and
the RETSR instruction can automatically discard these words and pop the JSR save area as well:

BAZ: ALLOC.2 %R8,(SPI<N+27*4 ;save %R8 and %R9, and a l l o c a t e N words

. . . ; c a l l e d r o u t i n e

MOVNS. 2 %R8, (SPI -<N+2>*4 ; r es to re r e g i s t e r s %R8 and %R9

L
RETSR RTA,(SP)-<N+2>*4 ;pop s tack and r e t u r n from subrou t ine

2.12.3 Routine Linkage Instructions 26 1

il RET Return and pop parameters

RET XOP

Purpose: Return *without restoring parameters., F i r i t the instruction makes SP point to OPZ. Then
it pops one singleword (the return address) from'the stack pointed to by SP and stores it in the PC.
Then it makes SP point to OP1, thereby optionally popping and discarding parameters (such as the
one pushed onto the stack by the' JSR instruction).

If the instruction would cause SP to cross a segment boundary, an OUT-OF-BOUNDS hard trap
occurs.

Restrictions: None

Exceptions: None

Precision: All operands involved are singlewords.

p h e following returns from a previous JSR call, throwing away the operand previously pushed
on the stack by the JSR: , . J ,

7

L
RET (SP) -4, (SP)

262 2 Instruction Set

TRPSLF Trap to self li

TRPSLF . (0 .. 63) XOP

Purpose: Trap to a routine in the current address space. The operation of TRPSLF is explained in
detail in Section 1.9.3; briefly, the modifier selects one of 64 trap vectors. The selected vector itself
specifies a handler address ,and - a word called TRP-PARMDESC-SW: Within
T R P S A R M D E S C S W are two fields called TMODEl and TMODE2 which can be set to tell the
processor to evaluate the operands of the TRPSLF instruction as it would the operands of an
ordinary instruction. .The processor pushes the evaluated operands onto the SP stack so that the trap
handler can access them and operate upon them, prnviding software emulation of whatever
instruction i& desired.

Restrfctiaurs: None

Exceptions: None

Precision: Determined by T R P S A R M D E S C S W for each operand

p h e following causes a trap to the 'number 0'' trap routine in the current address space, passing
to it the operands X and Y:

1

2.12.3 Routine Linkage Instructions 263

RETUS Return, restoring. user status '

RETUS . ~ R , A]

Purpose: Return from a soft trap or TRPSLF trap-This instruction uses the save area beginning at
OP1 to recover the pre-trap state of the processor, and. pops the stack by making SP point to OP2.
(Thus, OP2 should ordinarily be the value of SP preceding the trap, and OP1 should be the first
word of the save area pushed by the trap.)

The instruction loads USERSTATUS with the old USERSTATUS found in the save area.
(Section 1.9 illustrates the save area format.)

Ordinarily, RETUS.R repeats the instruction that was in progress when the trap or interrupt
occurred (that is, the instruction at the PC stored in the save area) whereas RETUS-A skips to the
following instruction.

However, if the instruction that was in progress is interruptable--a vector arithmetic instruction, for
example--and the instruction state within the save area is non-zero, RETUS-R reprocesses the
unfinished element of the vector whereas RETUS.A skips that element and proceeds with-the next.

Note that the instruction does not copy REGISTERSAVEAREA back into the registers.

If the instruction would cause SP to cross a segment boundary, an OUT-OFJ3OUNDS hard trap
occurs.

Restrictions: None

Exceptions: None

Precision: Both operands are singlewords.

F h e following example shows how to use the RETUSA instruction as a one-word trap handler 1
that ignores the trap and resumes execution at the instruction following the one that caused the
trap. The pseudoregister (SP)-4 obtains the old SP from the last singleword of the save area.
The operand ((SP)-4)O thus indicates the singleword pointed to by the old SP. Because the SP
sta.ck. grnws upward, SP always points to the free location atop the stack, and thus in this case it
also designates the first word of the save ,area:

RETUS. A ((SP) -4) 0, ((SP) -4) 0

264 2 Instruction Set

TRBEXE Trap to executive

TRPEXE . { 0 .. 63) XOP

Purpose: Trap to an executive routine. The operation of TRPEXE is explained in detail in Section
1.9.3; briefly, the modifier selects one of 64 trap vectors. The selected vector itself specifies a handler
address and a word called T R P S A R M D E S C S W . Within TRPJARMDESC-SW are two
fields called TMODEl and TMODE2 which can be set to tell the processor to evaluate the
operands of the TRPSLF instruction as it would the operands of an ordinary instruction. The
processor pushes the evaluated operands onto the SP stack so that the trap handler can access them
and operate upon them, providing software emulation nf whatever instruction is desired.

Restrictions: None

Exceptions: None

Precision: Determined by TRPSARMDESC-SW for each operand

F h e following causes a trap to the "number Oyy trap routine in the executive's address space with
operands X and Y:

1

2.12.3 Routine Linkage Instructions

RETFS Return, restoring full status

purpose: Return from a hard trap, interrupt, or TRPEXE trap. This instruction first pops the stack
used by the trap handler by making SP point to OP2 and then recovers the pre-trap context of the
processor from the save area pointed to by OPl . (Thus, OP2 should ordinarily be the value of SP
for the trap handler's stack preceding the trap, and OP1 should be the first word of the save area
pushed by the trap. .The value of SP for the task interrupted by the trap is assumed to exist
unaltered in the register file used by that task.)

T o recover the pre-trap context, the instruction loads USERSTATUS and
PROCESSORSTATUS with the old USER-STATUS and the old PROCESSORSTATUS
found in the save area.. (Section 1.9 illustrates the save area format.)

Ordinarily, RETFS.R repeats the instruction that was in progress when the trap or interrupt
occurred (that is, the instruction at the PC stored in the save area) whereas RETFS.A skips to the
following instruction.

. However, if the instruction that was in progress is interruptable--a vector arithmetic instructio,n, for
example--and the' instruction state within the save area is nonlzero, RETFS.R reprocesses the
unfinished element of the vector whereas RETFS-A skips that element and proceeds with the next.

When the instruction state is non-zero, RETFS-A sets the TRACE-PEND bit to match the
TRACE-ENABLE bit in the saved PROCESSORSTATUS and the CALL-TRACESEND bit
to match the saved CALL-TRACETEND bit, just as the instruction would if it were allowed to
finish; thus, aborting an instruction does not erroneously disable tracing.

Note that the instruction does not copy REGISTER.,_SAVEAREA back into the registers.

If the instruction would cause SP to cross a segment boundary, an OUT-OF-BOUNDS hard trap
occurs.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: Both operands are singlewords.

p h e following shows a trap handler for a hard trap. The pseudoregister ((s;)-4)0 specifies the 1
last word of the save area, which contains the old SP for the trap handler's stack: Because the
SP stack grows upward, SP points to the free location atop the stack, so the old SP also points to
the first word of the save Lea pushed onto the stack by the trap:

2 Instruction Set

(code t o handle t he t r a p w i t hou t a l t e r i n g SP)
RETFS. R ((SP) -4) 0 , ((SP) -4) 0

2.12.3 Routine Linkage Instructions 26.7

JCR Jump to coroutine

JC R XOP
' 4 . . ., ' '.

Purpose: The instruction first exchanges OP1 (usually register SP) with OP2 (usually a memory
location holding a saved copy of the value of SP used by the. other coroutine). Then it copies..the
saved "return iddress" from NEXT(OP2), stores P C N E X T J N S T R in NEXT(O'P~), and branches
to the return address. . .

Restrictions: None

Exceptions: None

Precision: A11 operands involved are singlewords.

p h e n each oP two coroutines has its own distinct stack, the JCR instruction transfers between 1
them without using either stack. Instead, it stores the stack pointer and program counter for the
currently inactive coroutine in two consecutive singlewords pointed to by OP2. In the following
example, let SAVEAREA be the first of those two singlewords. Then the following instruction
saves the stack pointer and PC for the current routine, sets up the stack pointer and PC for the
other routine, and branches to it.

JCR SP,SAVE.AREA

L
; c a l l o t h e r c o r o u t i n e

268 2 Instruction Set

JMPCALL, JMPRET Jump to calllreturn

JMPCALL
JMPRET

Purpose: These instructions are identical with the JMPA instruction, except that JMPCALL is
considered to be a call instruction and JMPRET is considered to be a return instruction when call
tracing is enabled.

2.13 Interrupts and 110

2.13 Interrupts and 1/0

See Sections 1.9 and 1.10 for explanations of the interrupt and inputloutput mechanisms.

The (B,(LH$) modifiers that appear on certain inrtructions refer to bitwise, quarterword, halfword,
and singleword translations, which are likewise explained in Section 1.10.

270 : 2' Instruction Set

110 read

IOR . (QH,S,D).
VIOR . (B,QH,S)

XOP
' v:=v

Purpose: Transfer from an I10 memory to main memory.

IOR transfers a scalar from O P 2 (which must lie on an 110 page) to OP1 (which must lie on a
non-110 page) without translation.

V l U K transfers the vector OP2 (which must lie within' an TI0 page) to vector OP1 (which must lie
within a non-110 page), translating each singleword according to the modifier.

Restrictions: None

Exceptions: None

Precision: For IOR, OP1 and OP2 have the precision of the modifier. For VIOR, OP1 and OP2
are vectors of aligned singlewords regardless of the modifier, and SIZEREG specifies the number of
singlewords in the destination (main memory) vector.

F s u m e BUFFER is a legitimate IOBUF address. T o read eighty characters from the 110

instruction sequence could be used:

1
memory (starting at BUFFER) to a block in memory starting at IMAGE, the following

P1OV.S.S XSIZEREG,#<~VI. /~> ;se t XSIZEREG t o e ighty BWs
V I0R .Q IRAGE,BUFFER ;do read

2.13 Interrupts and 110 27 1

110 write

IOW . (Q,H,S,D)
VIOW . (B,Q,H,S)

XOP
v:=v

Purpose: Transfer from main memory to, an 110 memory.

IOW transfers a scalar from OP2 (which must lie i n a non-U0 page) to O P l (which must lie on
an 110 page) without translation.

.
VIOW transfers the vector OP2 (which must lie within a non-110 &e) to vector O P l (which must
lie within an 110 page), translating each singleword according to the modifier.

Restrictions: None

~ x c e ~ t i o n s : None . . . I .. -

Precision: For IOW, O P I and O P 2 have the precision ofJhe modifier. For VIOW, . . O P l ,and OP2 '
are vectors of alig-ned'singlewords regardless of the modifier, and SIZEREG sp;cifies the number of
singlewords in the source (main memory) vector.

1 p s u m e BUFFER lies within an 110 page. T o transfer the four characters "S-I!" into the
I

IOBUF starting at BUFFER the following instructions could be used:

fl0V.S.S %SIZEREG,#c4/4> ;make vector 4 charac te rs long

VI0W.Q BUFFER,#iUS-1 !'!I ;do w r i t e

Because no translation is required, however, the following instruction would work just as well:

L
1OW.S BUFFER, ["S-I! "I ;copy a singleward

J

272 2 Instruction Set

IORMW 110 readlmodifylwrite

IORMW TOP

Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system) DEST:=S:! and then S2=S 1.. (More precisely, because the processor prefetches
operands and because T O P instructions store DEST last, this,instruction makes a temporary copy of
S2, stores S1 in S2, and then stores the copy into DEST.)

DEST and S1 must lie in main memory. S2 must lie on an 110 page.

Restrictions: None

Exceptions: None

Precision: S 1, S2, and DEST are all singlewords.

Fe following illustrates the use of IORMW:

2.13 Interrupts and 110 273

VPIOR, WPIOW Vector 110 readlwrite by physical address

VPIOR . (B,Q,H,S) .V:=V
VPIOW . (B,Q,H,S) V:=V

.
Purpose: VPIOR copies a vector from O P l , which must lie on an.II.0 page, to the vector in main
memory whose physical address is specified by the 34 low order bits of RTA.

VPIOW copies a vector from main memory, beginning at the location whose physical address is
specified by the 34 low order bits of RTA, to O P l , which must lie on an 110 page. . .

Both instructions perform the translation *specified by the modifier.

Restrictions: Illegal in user mode.

. . . : I -
Exceptions: None

Precision: Regardless of the modifier, OP1 is a singleword and the ,Sow order .34 bits of RTA are
the physical address of a singleword. SIZEREG specifies the number of'singlewords in the vector in
main memory.

ppy 4000 singlewords, treated as packed &bit characters, from TTYMEM to BUT in main
memory:

1
NOVPHY RTA,BUF
M0V.S.S SIZEREG,#4000.
VPIOR TTYMEM

274 2 Instruction Set

INTIOP Interrupt 110 processor

INTIOP XOP

Purpose: Interrupt the I10 processor connected to the I10 memory containing OP1, and pass OP2
to the I10 processor as a parameter whose purpose,is not specified by the architecture.

Restrictions: None

Exceptions: None

PI@CiSiOII! OP1 Wd OPZ are singlewords. OPI must. lie within an 110 page having
WR TTESF.RMLT access.

p s u m e BUFFER lies within an '110 page. The following instruction will interrupt the 110
processor connected to the 110 memory containing BUFFER: 1

L'
INTIOP BUFFER,#B

2.13 Interrupts and I,O

WAIT . . , Wait for interrupt
.. -

WAIT XOP

Purpose: Cause the ,processor to wait for,,an interrupt: ; '. ,. :, . ,

. . .,
< t . .

Restrictions: Illegal in user mode.
. . . .

, .

.Exceptions: None
.. .

Precision: OP 1 and OP2 are unused.
8 .

, : 1" : ' ' ' ' '

Fe following instruction w i t s for an interrupt:
. I ' , . . . ' > ' . . . , .

. . , . ! * : t i . '. ! '. 2 . ,I

276 : 2 Instruction Set

RlEN Read interrupt enable

RIEN XOP

Purpose: If interrupts are enabled for the I10 memory containing singleword OP2,' then OP1 := -1
else OP 1 := 0.

I '

Restrictions: Illegal in user mode.
)."

Exceptions: None
. ~

, :.

Precision: OP1 and OP2 are, both singlewords; OP2 must lie on an 110 page.
. I . ,

p e following jumps to DISABLED if interrupts are not enabled for the 110 memory which
contains TTYMUX:

-1 1.

R I EN RTA, TTYIUX
JflPZ.EQL.S RTA,DISABLED

2.13 Interrupts and 110 .277

. .
WlEN Write interrupt enable

W IEN XOP

Purpose: If the low order bit of OPZ is .I", enableinterrupts for . . the 110 memory . . containingOPl;
otherwise, disable interrupts for that 110 memory.

Restrictions: Illegal' in user mode.

- .
Exceptions: None

. . . . Precision: O P 1 and OP2 are both singlewords. O P 1 must lie on an 110 page. ' *' - -

pe following enables all interrupts for the '110 memory i6ntainingtTTYMUX: . , , . ,l

278 2 Instruction Set

RlPMQ - Read interrupt pending

RIPND XOP

Purpose: O P 1 gets the priority level of the pending interrupt for the 110 memory containing OP2.
(OP 1=0 indicates no interrupt is pending.)

Restrictions: Traps if the processQr is in virtual machine mode.

Exceptions: None . . I

precision: O P 1 and OP2 are both singlewords. OP2 must lie on an 110 page.

F T h e following sets RTA to ihe level of interrupt for the ,110 memory containing
TTYMUX:

L.
RIPND RTA,TTYNUX

2.13 ,Interrupts and I /O 279

WlPND Write interrupts pending

WIPND . . XOP

Purpose: If an interrupt is pending for the 110 memory containing O P 1, change the priority of the
interrupt to the level specified by OP2. If not, cause an interrupt with priority specified by OP2 on
behalf of the 110 memory containing OP1 (whether the interrupt occurs immediately or remains
pending depends, as always, on the relative priority of the uniprocessor). If OP2=0, the instruction
effectively clears any pending interrupt for the 110 memory in question. If OP2 is not a valid level,
an ILLEGALSRIORITY hard trap occurs.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: O P 1 and OP2 are both singlewords. O P 1 must lie on an 110 page.

PO following clears any pending interrupt for the. 110 rnemorj. containing TTYMUX: 1
WIPND TTYVUX,#0

2 Instruction Set

2.14 Cache Handling

T h e S-1 uniprocessor has four caches: an instruction cache, a data cache, an instruction map cache,
and a data map cache. T h e first two hold recently used words from address spaces, and the latter
two hold recently used entries from the virtual-to-physical address mapping tables (described in
Section 1.7).

If the uniprocessor accesses memory to fetch an instruction, then that access involves the instruction
cache and the instruction map cache. If the access reads or writes a piece of data, then it involves
the data cache and the data map cache. If the ACCESS bits for a particular page specify
EXECUTE-PERMIT as well as READ-PERMIT or WRITE-PERMIT, then conceivably one
could, by alternately reading (or writing) a location and executing it, cause that location to appear in
both the instruction cache and the data cache; no problems need result. (In the more likely situation
where the AC;C;ESS bits are used to enforce separation of instructions and data, such a situation
wn11lr-l not occrir)

In general, the caches employ a least recently used (LRU) algorithm to decide which cache residents
to evict to make room for new residents. Not every instruction causes its operands to be regarded as
used, however. 110 instructions do not update the LRU status bits for their operands, for example,
since the data involved in an I10 operation is unlikely to be accessed repeatedly.

While the caches are usually invisible to software, instructions are provided to sweep them--that is,
deliberately update main memory to reflect any changes in cache contents--if this is felt to improve
performance. T h e cache sweeping instructions take ordinary operands which specify memory
location on the pages to be swept; the instructions implicitly examine the addresses of those operands
rather than the operands themselves to determine which pages to sweep.

2.14 Cache Handling 28 1

SWPlC Sweep instruction cache

SWPIC . ~V,P) XOP

Purpose: Sweep the instruction cache by removing a vector of consecutive singleword residents
without writing them back to main memory. (Since access to an instruction page prevents writing,
the contents of the cache cannot differ from the corresponding portions of main memory.) OP1 is
the vector.

The (V,P) modifier tells the processor how to determine which locations are Uconsecutive". In either
case, it first evaluates O P l & it would for any ordinary memory reference. If the modifier is V, it
then sweeps the vector of words whose virtual addresses follow 'that of OP1. If the modifier is P, it
sweeps the vector of words whose physical addresses follow that of OP1.

Restrictions: Physical sweeps are legal only in privileged mode.

Exceptions: None

Precision: OP1 is a vector of singlewords. OP2 is unused.

F h e following sweeps all instructions from START up to but not including the following
instructions:

1
fl0V.S.S %SIZEREG,<.-START> ;spec i fy the length o f the vector

L
SWP1C.V START ;sweep cache

282 2 Instruction .Set

SWPD6 Sweep data cache

SWPDC . (V,P) . (UIUK) XOP

Purpose: Sweep the data cache by.writing a vector of consecutive singleword residents back to main
memory. If the second modifier is U, merely update main memory; if it is UK, update main memory
and then remove the specified residents from the cache ('kill" them). OP1 is the vector.

T h e (VIP] modifier tells the processor how to determine which locations are "consecutive". In either
case, it first evaluates O P l as it would for any ordinary memory reference. If the modifier is V, it
then sweeps the vector of words whose virtual addresses foilow that of OP1. If the modifier is PI it
sweeps the vector of words whose physical addresses follow that of OP1.

Restrictions: Physical sweeps are legal only in privileged mode.

Exceptions: None

Precision: OP1 is a vector of singlewords. OP2 is unused.

F e following updates the first 128 quarterwords in the address space, without removing them
from the data cache (i.e., not killing them):

1
N0V.S.S %SIZEREG,#128. ;specify the vector length

I
SWPDC. V . U a . 0 ;sweep cache

2.14 Cache Handling 28 3

SWPIM, SWPDM, FLSHIM, FLSHDM Sweep/flush instructionldata map cache .

SWPIM
SWPDM
FLSHIM
FLSHDM

XOP
XOP
XOP
XOP

Purpose: Sweep a map cache, removing one resident, or flush a map cache, removing all-residents.

SWPIM removes from. the instruction map cache the entry for the page 'containing OP1. SWPDM
removes from the data map cache the entry for the. page containing OP1.

FLSHIM removes all entries from the instruction inap cache. FLSHDM removes all entries from the
data map cache.

None of these instructions update main memory.

~estrictions: Illegal in user mode.

Exceptions: None +

Precision: For SWPIM and S.WPDM, OP1 is a singleword and OP2 is unused. For FLSHIM and
FLSHDM, O P 1 and OP2 are unused.

F h e following kills the instruction map entry for the first page in the user's address space: 7
SWPIM 0

The follbwing kills the data map entry for the page containing the memory location pointed to
by RTA:

L
SWPDM (RTA)

2 Instruction Set

2.15 Context (Map. Register Piles, and Status Registers)

This section describes a number of instructions which an operating system can use to set up the
proper environment for a task. They manipulate the user and processor status registers, the multiple
sets of user registers, the mapping system, and the origin of trap, interrupt, and gate vectors. Sections
1.2.3, 1.4, 1.7, and 1.9 explain details of these features of the architecture.

T h e logical conditions (LCONDs) mentioned in this section are described at the beginning of
Section 2.8.

Address Space IDS: In a multiprogramming environment, it is likely that various tasks will
alternately use the same virtual address space but different portions of the physical address
space--in other words. that the operating system 'could k ~ ~ p multiple tasks in various regions of
physical memory and switch between them by changing the virtual-to-physical address mapping
tables. The operating system would have to sweep the map caches before switching from one task to
the next to prevent the new task from being affected by mapping information left in the caches by
the old one. T o obviate this time-consuming process, the operating system can specify via the
SWITCH instruction a different code, called an address space ID, for each task. The caching
mechanism combines this code with virtual address references made by that task, rendering them
unique from virtual address references made by other tasks. Thus, for example, a reference to
virtual address 1000 in ring 3 with address space ID 5 is distinct from a reference to virtual address
1000 in ring 3 with address space ID 20; the mapping information for both of these may reside in
cache simultaneously and can provide two different address transformations. It is the responsibility
of the operating system never to specify the same ID for two .different tasks which use the same
address space unless it sweeps the map caches between instances of the two tasks.

2.15 Context (Map, Register Files, and Status Registers) 285

SWITCH Switch context

SWITCH XOP

Purpose: OP1 is a vector describing .the st$e of' a task to be run. The instruction loads the
appropriate internal registers, with.the information from this vector and resumes execution
(restarting an interrupted instruction .if INSTRUCTIONSTATE so demands.)

,-

The vector contains the following information:

Singleword Information
0 DSEGP
1 Address space ID for ring 0
2 Address space ID for ring 1
3 Address space IU for riiig 2
4 Address space ID for ring.3
5 PROCESSORSTATUS
6 USERSTATUS
7 PC
8 SIZE of INSTRUCTIONSTATE
9 . . . INSTRUCTIONSTATE

Address space IDS are explained in Section 2.15. The DSEGP is explained in Section 1.7.

Restrictions: Illegal in user mode. . .

Exceptions: None . . . :.,... .

Precision: QPl is the first element of a vector of singlcworrls OP:! is nnased. '

Ft executing the task described in the vector beginning at NextTask:

L
SWITCH NextTask

286 2 Instruction Set

WASJMB Write address space and jump

Purpose: O P 1 is a vector describing a particular rtiapping of four virtual address spaces onto the
physical address space. ' The instruction loads the DSEGP and address space IDS from this vector,
thereby causing the address translation mechanism to adopt this mapping, and resumes executicn at
JUMPDEST (where JUMPDEST is translated according to the newly established mapping).

T h e vector contains the following information:

Sinpleword Infarmarion
0 DSEGP
1 ~ d d r e u space ID for ring 0
2 Address space TD for ring 1
3 Address space ID for ring :!
4 Address space ID for ring 3

Address space IDS are explained in Section 2.15.

Restrictions: Illegal in user mode.

Exceptions: None

t

Precision: OP1 is the first element of a vector of singlewords.

Fll the address translation mechanism to use the mapping specified by NewMap, and resume
execution at Newprocess:

L
WASJMP NewMap,NewProcess

2.15 Context (Map, Register Files, and Status Registers) 287

RWFILE . ..! ., . Read register file identity

RRFILE XOP

Purpose: OP l:=PROCESSORSTATUS.REGISTER:2ILE;.right justified 'and padded, with zeros.
This instruction tells which register file iscin .use. e P'! .

, I . . . ,

Restrictions: Illegal in user mode. . . .

Exceptions: None

Precision: OP1 is a singleword. OP2 is unused. .- .I,,> :. . .

I Set RTA to the number (in the range 0 .. 15) of the current register .%file:

L
RRFILE RTA

288

WRFILE

2 Instruction Set

Write register file identity

WRFILE XOP

Purpose: PROCESSOR-STATUS.REGISTER_FILE:=OP 1. This instruction chooses which register
file to use. If OP 1 is not within the range 0 . . 15 the consequences are undefined.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP 1 is a singleword. OP2 is unused.

p e c t register file number 2

L
WRFILE 172

2.15 Context (Map, Register Files, and Status Registers) 289

RREGFILE . , ! . . ' Read register file. '

RREGFILE XOP

Purpose: OP2, is a singleword specifying ,a-aegister.flle. Th,e instruction . . copies the entire register file
into vector O P 1, which is 32 singlewords long. . . I ' . . .

If OP2 is ouside the range.0 + . 15, an IEEEGAL_REGISTER hard. trap occurs. . : .

Restrictions: Illegal in user mode. , , . .

Exceptions: None . . .

Precision: O P 1 is a vector of 32 singlewords..OP? is a singleword. , .,.. , . . , . .

F s h register file 7 onto the stack pointed. t p by A ~ S P : _: i ..

ADJSP. UP ANSP, (ANSPI <32. *4>

L
RREGFI LE (ANSP) -4, #7.

2 Instruction Set

WREGFILE Write register file

WREGFILE XOP

Purpose: OP1 is a singleword specifying a register file. The instruction copies vector OP2, which is
32 singlewords long, into that register file.

If OP 1 is ouside the range 0.. . 15, an ILLEGALXEGISTER hard trap occurs.

'Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP2 i; a vector of 32 si~&lewords. O P 1 i i B singleword. I ,

p t i a l i z e register file 7 using 32 singlewords popped' from, the stack pointed to by ANSP: 1
WREGFILE #7, (ANSP?<-32.*4>
AD JSP ; UP ANSP , (ANSP 1 <-32. *4> I

2.15 Context (Map, Register Files, and Status Registers) 29 1

RREG ..' Read register

RREG XOP

Purpose: OP2 is a singleword specifying a register 'within a particular register file. The instruction
copies that register into OP1. The format of OP2 is: I : . . , .

I e I FI.LE I REGISTER. I. . ." , ..

where FILE is in the range 0 . . 15 and REGISTER is in the range 0 . . 31'. If OP2 is invalid, an
ILLEGAL-REGISTER hard trap occurs. , . . .

+ . . .

Restrictions: Illegal in I.mr mode.

Exceptions: None

Precision: Both operands are singlewords.
. , : ..:

I Copy the version of %R4 in register file 7 into the cuirent RTA:
.

L
RREG RTA, #<32. *7+4>

2 Instruction Set

Write register

WREG XOP

Purpose: OP1 is a singleword specifying a register within a particular register file. The instruction
copies OP2 into that register. OP 1 has the following format:

where FILE is in the range 0 . . 15 and REGISTER is in the range 0 . . 31. If OP 1 is invalid, an
ILLEGAL-REGISTER hard trap occurs.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: Both operands are singlewords.

Fpy the current register ZR3 into the version of register %R3 in register file 7 (note that this
involves register 3, not the PC): 1

L
WREG #<32. *7+3>, XR3

2.15 Context (Map, Register Files, and Status Registers)

RPS , Read processor status

. .

RPS . ,XOP '

Purpose: OP l:=PROCESSORSTATUS

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

Fe following copies PROCESSORSTATUS into RTA:

294 2 Instruction Set

WFSJMP Write full status and jump

WFS JMP JoP

Purpose: USERSTATUS:=FIRST(OP 1); PROCESSORSTATUS:=SECOND(OP 1). Note that
an ILLEGALSTATUS hard trap will occur if an illegal value of USER-STATUS or
PROCESSORSTATUS is specified.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: FIRST(0P 1) and SECOND(0P 1) are singlewords.

Fe following sets USERSTATUS to FIRST(NEWPST), sets PROCESSORSTATUS to
SECOND(NEWPST) and, jumps to BRAZIL:

1

L
WFSJMP NEWPST,BRAZIL

. .
. /
(' I '

., ...:

2.15 Context (Map, Register Files, and Status Registers)

RUS Read user statu?

RUS ; XOP

Purpose: O P l:=USERSTATUS. ,OP2 is unused.# . .
. . . .

I...

Restrictions: None

Exceptions: None

Precision: OP 1 is a singleword.

. " . '
. .

p e following loads RTA from USERSTATUS:

RUS RTA

I . .

2 Instruction Set

JUS Jump on selected user status bits

JUS . (NON,ALL,ANY,NAL) Jo p

Precision: If USERSTATUS LCOND O P 1 (where LCONDe(NON,ALL,ANY,NAL)) is true,
control is transferred to the location specified by JUMPDEST.

Restrictions: None

Exceptions: None

'
Precision: A I1 operands concerned are singlewords.

Ft ERRORS be a mask for several bits in USERSTATUS. The following jumps to
any of these bits are set:

L
JUS ERRORS,ZIP

2.15 Context (Map, Register Files, and Status Registers) 297

JUSCLR ,., Jump on selected user status bits andxlear

.#. .

JUSCLR . {NON,ALL,ANY,NAL) . . JOP

Purpose: O P 1 ,is a mask for selecting bits from USERSTATUS; The instruction . . first tests those
bits using the.condition specified. by the modifier..Then it clears those bits.,Finally, if the test . yielded . .

true, the processor jumps to JUMPDEST.

Formally: . . l i

TEMP:=USER-STATUS; . '.!.
(* - represents one's complement *)
USERSTATUS:=USERSTATUSA(-OP 1);. . ,, -. %

If TEMP (FN,ALL,ANY,NAL) OP1 THEN G O T 0 JUMPDEST;
.

Note that an ILLEGALSTATUS hard'trap will occur if clearing the specified bits would produce
an illegal value for USERSTATUS.

< .

Restrictions: None , . . .

Exceptions: None

Precision: All operands are singlewords.

p t ZDIV be the mask for the I N T Z D I V bit in USERSTATUS. The following jumps to
YOW and clears this bit if it is set:

1

2 Instruction Set

WUSJIWIP Write user status and jump

Purpose: USERSTATUS:=OPl. Control is then transferred to the location specified by
JUMPDEST. Note that an ILLEGALSTATUS hard trap will 'occur if an illegal value of
USERSTATUS is specified.

Restrictions: None

Exceptions: None

Precision: All operands concerned are singlewords.

Fe following sets the USERSTATUS to N E W U ~ and jumps to AWAY:

L
WUSJMP NEWUS,AWAY

2.15 Context (Map, Register Files, and. Status Registers) 299

SETUS Set specified user statusbits

SETUS XOP

Purpose: USERSTATUS:=USERSTATUSvOPl.: OP2: is. whused. .':-Note that an
. ILLEGALSTATUS hard trap will occur if an illegal 'va1u.e. of USERSTATUScis' specified.

: * . .

Restrictions: None
. '. . > {

Exceptions: None
. .' '*,

Precision: OP1 is a singleword. OP2 is unused. '

. - . . .

.. . . : . .. 7 ; . . > - . .

L .
SETUS #1

.

300 2 Instruction Set

CLRUS Clear specified user status bits

CLRUS XOP

Purpose: USERSTATUS:=USERSTATUSAO~~'S-~O~~~~~~~~(OP 1). Note that an
ILLEGAL-STATUS hard trap will occur if an illegal value of USERSTATUS is specified. The
JUSCLR instruction can clear specified user status bits and simultaneously test them.

Restrictions: None

Exceptloas: N U I I ~

Precision: OP 1 is a singleword. OP2 is unused (OD:! must equal kro).

b e following clears the low order bit in USERSTATUS:

CLRUS #1

1
L J

2.15 Context (Map, Register Files, and Status Registers) . 30 1

RTDBP, WTDBP
* . , . ., 5 , . .

Read and write $DBP

RTDBP . . , XOP
WTDBP XOP

Purpose: These instructions read and write the trap descriptor base pointer, the .register which
specifies the origin of a table which in turn specifies the origins of each set of trap, interrupt, and
gate vectors.

RTDBP loads into OP1 the 34-bit physical address stored in TDBP. WTDBP loads into TDBP
the rightmost 34 bits of OP1.

The effect of altering the trap descriptor table without executing a WTBP instruction is undefined.

Restrictions: Illegal in user mode

Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.
I

F e
following specifies that the table of trap vector origins begins at the first singleword

memory:

WTDBP #0

L ' J

2 Instruction Set

2.16 Perf orm ance Evaluation

T h e processor has several doubleword counters which can be configured to count different events. A
user mode program can read these counters, but only a privileged mode program can write them or
alter the bits that enable them. Counter zero is always enabled, by convention, to count real-time
cycles.

2.16 Performance Evaluation

RCTR Read counter

... . .

RCTR xop

Purpose: OP2 is a counter number. OP1 gets the contents of the counter specified by OP2.

Restrictions: Traps if the processor is in virtual machine mode. . .

Exceptions:. None

Precision: OP1 is a doubleword. OP2 is a singleword.

I The following sets RTA (DW) to the current real-time cycle .count: .

L
RCTR RTA, #0 ,

304

WCTR

2 Instruction Set

Write counter

WCTR

Purpose: OP1 is a counter number. Write OP2 into the counter specified by OP1.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: O P 1 is a singleword. OP2 is a doubleword.

The following zeros the real-time cycle counter: r
L

WCTR #0, #0

XOP

2.16 Performance Evaluation 395

RECTR Read enable bits for counter

. .

RECTR XOP

Purpose: OPZ is a counter .number. O P l gets the contents of the enabling register for the counter
specified by OP2.

Restrictions: Traps if the processor is in virtual .machine mode. - ; C

Exceptions: None

Precision: O P 1 is a doubleword; OP2 is a singleword. , . . , ,

F h e following reads the enabling bits for. counter .COUNT into,.RTA:

RECTR RTA,COUNT . > . .

L . . .

J

2 Instruction Set

WECTR Write enable bits for cou~lter

WECTR XOP

Purpose: OP1 is a counter number. Write OP2 into the enabling register for the counter specified
by OP1.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: OP 1 is a singleword. OP2 is a doubleword.

F e following writer ENABLE into the enabling 'register for cointer COUNT: ' 1
L

WECTR COUNTPENABLE

2.17 Miscellaneous

2.17 Miscelllaneous

308 2 Instruction Set

NOP No operation

NOP XOP

Purpose: NOP may have operands, but it performs no operation and stores no result. It always
transfers control to the next instruction. The operand addressing calculations are carried through;
while the operands themselves are not referenced, an invalid addressing mode will cause a
RESERVEDADDRESSNODE hard trap.

Restrictions: Noiie

Exccptionsr None

Precision: O P 1 and OP2 may be any precision since they are not fetched.

F h e following three instructions are, respectively, one, two and three word NOPs: 1
NOP #0, #0
NOP #0,# [01

I
NOP # 101 , # 101

2.17 Miscellaneous 309

HALT Halt this processor

. ,. .

HALT

Purpose: Halt the processor. ~xecution continues a t JUMPDEST when, t h e halted processor
continues. HALT affects only the processor that executes it. OP1 is unused.

. . . .

Restrictions: Illegal in user mode.
. .

Exceptions: None
. . . .

Precision: O P 1 is unused
. . .

. . . . i ' 3

Fe first instruction continues at CONT; the recond halts immediately upon continuation:

HALT CONT

L
HALT .

2 Instruction Set

RPlD Read processor identification number

RPID

Purpose: O P l:=PROCID

Restrictions: Traps if the processor is in virtual machine mode.

Exceptions: None

Precision: OP 1 is a singleword. OP2 is unused

Fe following sets RTA to the processor ID number.

L
RPID RTA

XOP

3 The FASM Assembler

3.1 Commands to invoke FASM

FASM is a cross-assembler which executes on the PDP-10 and emits code for the S-1 native mode
instruction set. T o use it with the WAITS operating system at Stanford University, type:

<input> is the name of the file containing assembly source language. The file extension defaults to
". S 1" if omitted.

<output> is the file FASM puts relocatable code into. The file extension defaults to ".LDI" if
omitted. . , . .

* . ' . ,

<listing> is the file FASM puts its listing into. If you omit the file extension, FASM assumes
". LST".

hltcrnatively, type the following and FASM will suppress the listing

O r type the following and FASM will suppress the listing, putting relocatable code in a file whose
name matches that of <input> but whose extension is ". LDI":

O r type the following and the program will prompt with b" and wait for the rest of the command

3 The FASM Assembler

line.

R FASM

It .is possible to segment the input into severa! files. T o assemble files INl, IN2 and IN3, for
-0

example, type:

or:

or create a file called IN containing the line "IN 1+IN2+IN3" and then type:

A file which, like IN, contains part of the command line is an indirect file. Within an indirect file a
semicolon tells the program to ignore the rest of the line, including the carriage return and line feed.
This allows the command to extend over more than dne physical line, as the following example
shows:

The first linefeed that is not ignored will cause the indirect file to be closed and command line
processing to continue from where the indirect file was called. An indirect file may also call another
indirect file (up to 10 levels).

Use the SNAIL commands LOAD and COMPILE to automatically run FASM and then optionally
call FSIM. The /L switch may be used with SNAIL to force FASM to make a listing.

3.2 Preliminaries

3.2 Preliminaries

FASM makes three passes over the input file to do a good (but not perfect) job of substitutfi.lg
relative-JOP instructions for generally bulkier absolute-JOP instructions. During the first pass,
FASM uses only absolute jumps, setting each label to the maximum possible value it will attain.
During the second pass, FASM replaces absolute jumps with relative ones where possible, provided
the jump destination is in instruction space only and not external. During the third. pass, FASM
generates the code.

FASM accepts the superset of the ASCII character- set used at the Stanford Artificial Intelligence
Lab (SAIL), but wherever its syntax uses special, characters. from the'SAIL set, it also accepts
substitutes from the standard ASCII set. This section will present both choices.

Because each page of S-1 memory can be marked EXECUTESERMIT, READSERMIT, and/or
WRITESERMIT, FASM maintains separate location counters controlled by the ISPACE,
DSPACE, XSPACE, IPAGE, and DPAGE pseudo-ops explained later.

Like any assembler, FASM processes statements, each of which may define a symbol, emit an S-1
instruction, or emit a dataword.

But unlike many assemblers, which simplemindedly parse lines 'looking for label, opcode, and
operand fields, FASM starts by scanning the text character by character, expanding macros. The
resulting strings go to the portion of the assembler that .recognizes assembly language constructs.
Many of those constructs themselves (symbol definitions, literals, pseudo-ops, and so on) return
values just as functions in a high-level language, do, so the programmer may einbed them in
expressions with considerable flexibility.

3 The FASM Assembler

3.3 Expressions

T h e primary building block of a FASM statement is the expression. An expression is made up of
terms separated by operators with no embedded blanks. The simplest legal expression is a single
term with no operators.

Attributes: An expression may have one or more attributes. The possible attributes are: register,
instruction value (IVAL), data value (DVAL), and external value (XVAL). These attributes are
derived from the terms and operators that make up the expression.

A term in an expression may be a number, a symbol, a literal, a text constant or a value-returning
pseudo-op.

When it encounters expression, FASM attempts to perform the indicated operations on the
specified terms. Sometimes, the value of a term is not available (for example, is undefined or is
external) at the time the expression is evaluated. Sometimes this is permissible and sometimes it will
cause an error. In the descriptions that follow it will sometimes be said that an expression must be
defined at the time it is evaluated.

3.3.1 'Operators

The following are the valid operators along with their precedences. Each is binary unless marked
"(una.ry)".

Purpose ASCII symbol SAIL symbol Precedence

Addition
Subtraction
Multiplication
Division
Bitwise OR

. Bitwise AND
Bitwise XOR'
Power of 2
Bitwise N O T
Plus
Minus
Register

attribute

1
1

2
2
3
9
3
4

5 (unary)
5 (~~na ry)

5 (unary)
5 (unary)

(Though FASM recognizes no ASCII equivalent for "-", the programmer can achieve the effect of
"-X" by writing "c-l#X>".)

3.3.1 Operators

ATB has the value of A shifted left (if B is positive) or right (if B is negative) by B bits.

The % symbol gives the term following it the register attribute (though context may override that
attribute; for example, a 9 5 " in an expression inside a constant operand merely contributes an
integer "5" to the expression which then becomes a constant.)

Each operator has a precedence which is used to determine order of association. For operations
with the same precedence, association is to the left. Angle brackets o (also known as brokets and
pointy brackets) may be used to parenthesize arithmetic and logical expressions. (Parentheses ,"()"
themselves may not be used for this purpose because they are significant for expressing various
addressing modes.) A parenthesized (or rather, broketed) expression may take more than one line, in
which case the value of the last line is used as the value of the expression. However, a11 the lines
are evaluated and then all the values are thrown out except for the last one. These evaluations may
have side effects like defining symbols, or executing macros, etc.

A string of digits is interpreted as a number. If it contains ".", FASM assumes it is decimal.
Otherwise, FASM assumes the current radix, which defaults to base 8 (octal) but mag be changed
with the RADIX pseudo-op. A singleword floating point number has digits on both sides of a
decimal point and may be followed by an El an optional + or -, and a one or two digit exponent,
which is assumed to be a decimal number and should not have an explicit decimal point.

3.3.3 Symbols

A symbol is a one- to sixteen-character name made up from letters, numbers, and the characters ". ",
" - " a and "$. (A -symbol may actually contain more than sixteen characters, but all characters after
the twelfth are ignored.) Lower-case letters are permitted, but are considered to' be the same as the
equivalent upper-case characters. A symbol must n ~ t look like a number; for example, 43. is an
integer and 0.1 is a floating point number, whereas O..1, 1.E5, and 2.3E.5 are symbols (because they
do not quite qualify as floating poisrt r~umbers).

Following the initial character of a symbol, one may enclose in quotation marks any characters
which would otherwise be forbidden. The quotation marks and the otherwise forbidden characters
all become part of the symbol. For example, the first of the following two lines is an arithmetic
expression involving symbols "CAT", "A", and "DOG", whereas the second is a single symbol

3 The FASM Assembler

Symbols have values and attributes. The values are.36-bit numbers which are used in place of the
symbol when it appears in an expression. The attributes are: register, instruction value (IVAL),
data value (DVAL), hay-killed, external value, and macro name.

If a symbol is a macro name, then instead of having a value, the symbol has a macro definition
associated with it. This macro definition is expanded when the symbol is seen under certain
circumstances and the expansion is used in place of the symbol in the expression. (See the section
on macros for more details on macro definition and expansion.)

Pfedef ined symbois: PASM recognizes certain symbois without requiring the programmer to define
them.

A lone dot represents the cui-rent location coutiter. It is either an IVAL or a
DVAL, depending upon whether ISPACE, DSPACE, IPAGE, or DPAGE is in
force. Its value is the quarterword address at which the next instruction or data
will be assembled. Its default attribute is IVAL and its initial value is 0 for a
relocatable assembly or 10000 octal for an absolute assembly.

RTA,RTB - RTA and RTB represent %16 and %24 respectively, so their attribute is register.

3.3.4 Literals

A literal is any set of assembler statements enclosed in [I (called square brackets) and separated by
U 89 #I- 91
w , ? , or linefeeds. A literal directs the assembler to assemble the statements appearing inside the

square brackets and store them at some location other thzn the current location counter. Tf
embedded in an expression, the entire literal returns a value: the address a.t whirh the first
singleword of the literal is assembled. There are certain restrictions on just what may appear inside
a literal. Certain pseudo-ops are illegal inside of literals (see the section on pseudo-ops). Currently,
labels are not permitted inside a literal, although this may change in the future. The symbol "." is
not affected by the fact that it 1s referenced from inside a literal. It will have the value it had at the
point where the literal was begun even though the literal may already have assembled some
statements.

Just where the literal is assembled is determined by several factors. First it is determined whether
the literal is an instruction-space or a data-space literal. This is determined in .the following
manner. If the next characters immediately after the that beg-ins the literal are ! I or 10, then the

. . . . 3.3.4 Literals .. , 31'1

literal is an instruction-space or data-space literal, respectively. If not, then the literal will be an
instruction-space literal if it contains any opcodes. Otherwise it will be a data-space literal. All
instruction-space literals..will be assembled starting.:at the current rlocation counter when a LIT
pseudo-op is encountered ,while in instruction-space. A similar statement is true of the data-space
literals. Certain*other pseudo-ops cause an implicit LIT .to be d.one first. . .

. a

One typical use of a literal is to move a doubleword from data memory into register space. The
following initializes %40 to the largest doubleword integer:

',, '

M0V.D.D %40,BIGNUM
OSPACE

B I GNUM: 377777, , -1
-1
I SPACE

. ,. < ~.
but a more elegant way, using a' literal, would be: :

. . . .
,. . .* ;; . . ,

M0V.D.D %40, C377777,,-1. ? -11

Similarly, the following example uses %40 to index into a table of indirect ~ointers, perhaps to
implement a CASE statement in Pascal:

. .
. c . . , ..; . L; , > '.. b :

JMPA CTABL [%40l T2e '." " ' . . .

DSPACE , a : .: . . . " : . . -.,
CTABL: CA,SEB+T/~G"

*
. . . .

.
CASEl+TAG
CASE2+TAG

%
. < . .. \

I SPACE . .

. /_ : . . but a fiterdt expresies'th sah'i;structuii'more ~ o i h ~ i i c t ~ ~ : . '
. , .." , ; 3 : . . ; :':.. - :-, , , ,

. .

3.3.5 Text Constants

An ASCII text constant is enclosed in double-quotes and has the value of the right-adjusted ASCII
characters packed one to a quarterword. For example:

.... , . , :'

3 The FASM Assembler

Is the same as the number 14114Z8. If more than four characters are specified, then only. the value

of the last four will be used. If the trailing double-quote is missing, the assembler will stop
accumulating characters when it sees the end of line. The last four characters will b,e used in the
constant and no error message will be given.

A delimiter such as a space must irecede a text constant so FASM does not consider it to be a
quoted portion within a symbol.

Some pseudo-ops generate values and may be used as terms in an expression. See the descriptions
of the individual pseudo-ops to learn what values they return.

3.3.7 Combining terms to make expressions

FASM determines the value of an expression simply by combining the values of the individual
terms according to the operators between them.

Determining the attribute of the expression is a bit more complicated, however.

When a symbol with the register attribute appears in an expression, then the entire expression has
the register attribute. At most one external symbol may appear in an expression. It does not matter
how it appears in the expression; it is assumed to be added in. This causes the expression to be an
XVAL. If an IVAL (DVAL) ever appears in an expression then the whole expression is an IVAL
(DVAE) with one exception. An IVAL (DVAE) minus an IVAL (DVAL) is no longer an IVAL
(DVAL). Note: in a relocatable assembly all relocation is done by addition of the I space or D space
relocation or of an external symbol's value. Therefore using the negative of an IVAL, DVAL or
external value will not have the right effect.

3.4 Statements

A statement can accomplish three things: define a symbol, emit an S-1 instruction, or emit a data
word.

3.4 Statements

How a statement is terminated will depend upon the exact type of statement. In general, a statement
is terminated with a linefeed, a ct, a ?, or a semicolon that begins a comment. (The comment itself
terminates' at the next linefeed. Some statements, like symbol definitions, can also be terminated
with a space or a tab.

3.4.1 Symbol Definition

A symbol may be defined to have a specific value either with the assignment statement or by
declaring the symbol to be a label. The assignment statement has two forms:

An = may be used in place of a t. These statements define or redefine the symbol to have the
value of the expression. The expression must be defined at the time the assignment statement is
processed. Any attributes of the expression are passed on to the symbol (except for the half-killed
attribute). For example, if the expression has a register value, then the symbol is given the register
attribute. In addition if the second form is used (with two left-arrows) then the symbol will
additionally be given the half-killed attribute. This attribute is not used by the assembler but is
.passed on to the debugger, where it means that the symbol should not be used in symbolic typeout.
It does not affect the ability to use the symbol for type-in.

A symbol may be declared to be a label by saying either of:

SYMBOL: o r SYMBOL::

These both define the symbol to be equal to the location counter. T h e attributes of the location
counter are passed on to the symbol. The double colon (: :) causes the symbol to be half-killed.

It is legal to redefine a symbol's value with an assignment statement but it is not possible to redefine
a label's value or to define as a label any symbol that has previously had a value assigned.

An assignment statement can itself be an expression and has the value of the expression to the right
of the arrows. Therefore it is possible to assign the same value to multiple symbols as follows:

which will define all of A, B and C to have the register value 1. An assignment statement is
terminated by almost any separator, including space and tab. Therefore it is possible to put more
than one assignment statement on one line, or to put an assignment statement on the same line with
other statements.

3 The FASM Assembler

3.4.2 S-1 Instructions

An instruction is a statement that can cause the assembly of me, two or three singlewords. It is
made up of an opcode with modifiers followed by a list of operands.

8.4.2.1 Operands

(Throughout the following discussion, either "#" or "?" indicates a constant, and "1)", "c 9,
and "[..... l" are all equivalent pairs of brackets.)

In general, an operand may be any of the following:

Register or memory reference:

expressi on If the attribute of the expression is "register", FASM interprets it as a
quarterword address in the registers; otherwise, FASM interprets it as a
quarterword memory reference. If an instruction requires a singleword
address, FASM derives it by dividing the value of the specified label
or expression by four. If an instruction requires a relative address,
FASM derives it by subtracting the current location counter from
whatever label or expression the programmer provides.

General constant:

#expression If the expression is in the range -32 . . 31 (decimal) the assembler will
generate a short constant. If' not, it will generate a long, sign-extended

. cur~sLariL. (It is Jarlgeruus LU use an as yet undefined symbol in this
expression, because the assembler might decide to switch from one
length to the other, confusing the rest of the assembly.)

Pseudoregister:

(r e g i s t e r expression)expression

3.4.2.1 Operands

Long constants:

#cexpression>
[express i on1
#c!S w expression3
[!S ? expressi on1

Any of these produces an L O constant (even if the number is small
enough to fit inside an SO) right justified with sign extended or
compressed as necessary.

#cexpression * !03
[expressi on ? !O1

Either of these produces an LO constant which, if the instruction using
it calls for a doubleword, is left justified and extended with zeroes. The
spaces around the "tt" or "?" are optional.

[!0 ? expressi on1
#c!0 H expression3

Either of these operands produces an L O constant which, if the
instruction. using it calls for a doubleword, is right justified and
extended with zeroes. The spaces around the "tt" or "?" are optional.

Indexed constant:

#cexpress i on> (reg i s t e r expression)
#cexpression>[regis ter expression1
[expressi on1 (regi s t e r expression)
[express i on], [reg i s t e r express i on1

An indexed constant adds a constant to the contents of a singleword
register. The register expression must lie in the range 0 . . 124 and be
divisible by 4.

Operand descriptor:

! express i on Intended primarily for patching, this generates an operand descriptor
(OD) that matches the low 12 bits of the result of the expression.
FASM does not check to be,sure such an O D is legal, and does not
generate an extended word even if the O D calls for one.

3 The FASM Assembler

Long operand variable:

(base) o f f se t [i ndexl Tsh i f t
cbase>offset(index)fshift

base [i ndexl Tsh i f t
base(index)?shi f t

This is the general syntax for a long operand (LO) variable. The
processor computes the address as if by scanning the expression from
left to right. It starts with the contents of the memory location or
register specified by "base". Then it adds "offset", if any. Finally it
takes the conterlcs sf the memory location or reglster specified by
Ui~.rdex", sl~ifts i t IefL by Llle ~~ul~iber . of bils specified by "shift", arld
adds it to the base-offset combination to obtain the address of the
operand. -

If "@" appears after. the entire phrase, indicating indirect addressing, the
processor interprets the operand as a pointer and uses i t , to fetch the
ultimate operand. If, on the other hand, the "@" appears after the offset,
the processor uses the base+offset address to fetch a pointer from'
memory, and indexes from it.

T h e T . 0 variahl~ addr~ssing rnndps h a v ~ c p a ~ ~ 1.1s~ the fob a Sort
of "nested" short operand (SO) variable, and they fall into three
categories based on how they use this SO va.riable: a.s the base, as the
index, or not at all.

DEFINITION OF TERMS:

SW-REG
~nwc-cl I sr
LONG-ADDR
SHORT-0 I SP

SHIFT
SHORT SHIFT
I NOEX-REG
SF

<%R0 . . %R31>
31-11 i i: s i ynkd d i sp I aceaie1-1 t:

31-bit unsigned address

2 6 - b i t signed d isp lacement
0 .. 3 b i t l e f t s h i f t

8 Qr 2 b i t l e f t s h i f t
<%R3 .. %R31>
-32 . . 31

I lSTNG THF Sfl AS THE BASE:

3.4.2.1 Operands

((INDEX-REG1SF)LONG-DISP
((INDEX-REGISFILONG-DISPe
((I NOEX-REG) SF) SHORT-01 SP [SW-REG1 %HI FT
((I NOEX-REG) SF) SHORT-DI SPe [SW-REG1 %HI FT
((INDEX-REG)SF)SHORT-DISP[SW-REGITSHORT-SHIFT@

'USING THE SO AS THE INDEX:

LONG-ADDR [SW-REG1 ?SHI FT
LONG-ADDRe [SW-REG1 f SH I FT
LONG-ADDR CSW~REGl.?SHORT~SH I FT@
(SW-REG) SHORT-DISP [SW-REG1 ?SHI FT
(SW-REG) SHORT-DI SP@ [SW-REG1 ?SHIFT

. (SW-REG) SHORT-DI SP CSW-REG1 ?SHORT-SHI FT@

LONG-ADDR [(I NDEX-REG) SF1 ?SH I FT
LONG-ADOR@ [(I NDEX-REG) SF1 TSH I FT
LONG-ADDR[(INDEX-REG)SFl?SHORTTSHIFT@
(SW-REG) SHORT-DI SP 1. (INDEX-REG) SF1 tSH I FT
(SW-REG) SHORT-DI SPe 1 [J NDEX-REG1 SF1.TSHI FT
(SW-REG) SHORT-DI SP C (I NDEX-REG) SF1 ?SHORT-SH I FTm

NOT USING THE SO:"'

'LONG-ADDR . '

LONG-ADORIS
(SW-REG1 SHORT-D I SP
(SW-REG) SHORT-DI SPe

3.4.2.2 Opcodes sand Modifiers

An opcode is built out of a base opcode name followed optionally by a "." and an opcode .modifier
and another "." and another modifier, etc. The modifiers are standard as defined in .the opcode
files. Numeric n~odificrs are in decimal ir~ithout a decimal point.

It is also possible to use an already defined symbol as a modifier. For example, if A h'as been
defined by At%4 then SLR.A assembles the same way as SLR.4 does. Note. that an expression may
not be used in place of a modifier. For example, SLR.4+4 is not permitted in place of SLR.8 . Also
note that if there is a conflict between a legal modifier name and a symbolic value, the legal
modifier name will win. For example:

S The FASM Assembler

will N O T be the same as:

because M1 is a legal modifier for BNDTRP and takes precedence over the lookup of the symbol
M 1.

Modifiers should not be omitted from instrllrtion opcodes, with one cxccptiur~: a precision modifier
(Q H, S, D) which is omitted will be assumed to be S. Mnrlifi~rs should be written in t l ~ ulder
defined by the instructiurr descriptions.

The,opcode must be separated frnm thp operand list by spe.ccs or tabs,

3.4.2.3 Instruction Types

There .are several basic instruction types: XOPs, TOPS, SOPS JOPs, and HOPS. For the assembler,
they differ as to the number and interpretation of operands.

An X O P is (in general) a two-operand instructidn. If no operands are given, than the instructiol-I
must be one (e.g. WAIT) which requires no operands, and the operand descriptors are set to zero.
If exactly one operand is given then, depending upon the specific instruction, either it is used for
both operands or the second operand is defaulted to be register zero (%RO). For example,

INU COUNT

is equivalent to

I NC COUNT j COUMT.

A T O P is a three-operand instruction, where one of the operands is restricted. Operands may be
written only in certain combinations indicated by a two-bit field called T within the instruction.
FASM automatically sets this field based on the operands specified by the programmer. If X and Y
represent two operands which are distinct from each other and ftom RTA and RTB, then there are
four possible combinations for the operands, as the following shows:

SUB X,X,Y
SUB RTA,X,Y
SUB X,RTA,Y

3.4.2.3 Instruction Types

SUB RTB,X,Y

Other combinations, such as the following, are illegal:

ADD X,Y,RTA

If the programmer writes only two operands for a TOP, FASM repeats the first:

An SOP is a two-operand instruction with a skip destination. Both of the operands must be
present. The skip destination is written as if it were a third operand, and should be an expression
which evaluates to the quarterword address of the instruction that is to be skipped to. If the skip
destination is missing, then the instruction is assembled so as to skip over the next instruction,
however long it is. For example,

ISKP. GTR %1, #100, EX1 T

assembles a conditional skip to the label EXIT. During the last pass of the assembly, the assembler
checks to see that the skip is within range. This means that the value of the skip destination
operand must be within -8. . 7 singlewords of the location of the SOP. The difference in this
range is assembled into the SKP field of the instruction.

A JOP is a two-operand instruction, the second of, which is the jump destination. If only one
operand is specified, then which operand .it is assumed to be depends upon the exact opcode. Some
opcodes expect only one argument, in which case that argument is the jump destination (JMPA, for
example). The opcodes JSR and JCR expect one or two operands. If only one is supplied it is
assumed to be the ~ u m p destination. For other JOPs, if there is only one argumeht, it is assumed to
be O P 1 and the jump is assembled to skip over the next instruction (just as for an SOP with an
omitted skip destination). The assembler will try its best to assemble the jump with the PR-bit 011

(using relative addressing). It even takes a whole extra pass through the source file' just for this.
For example,

assembles a jump to location LOOP.

The only HOP instruction is SJMP, which expects a single operand, which should be a simple label
or expression that evaluates to the quarterword address of the jump destination. FASM subtracts
the current location counter from the operand value and divides by 4 to obtain the necessary
singleword relative address. While compact and useful for patching, this instruction lacks the
flexibility of the unconditional branch JMPA, which can use indexing or indirect addressing.

3 The FASM Assembler

3.4.2.4 Data Words

An expression standing alone on a line (or, more precisely, an expression which by itself constitutes
a statement) causes FASM to emit a singleword containing the value of the expression.

- 1 ; A s ing leword w i t h a l l b i t s se t

%7+347. ; A s ing leword c o n t a i n i n g 354 decimal

NANE*2 ; A s ing leuo rd c o n t a i n i n j tw i ce the va lue
; , nf t h ~ sumhnl NAMF

If two expressions appear on either side of ",,", FASM emits a singleword with the left halfword set
to the first expression and the right halfword set to the second.

30 , , 7 ; A singlewo'rd w i t h 30 i n i t s l e f t .

; ha l fwo rd and 7 i n i t s r i g h t ha l fwo rd

T h e following example illustrates a simple use of a literal. Because the literal 'itself returns the
address of the first word it emits, FASM generates four singlewords in all. At the next "LIT"
pseudo.-op in data space it generates three singlewords containing 1, 2, and 4 respectively. At the
current location counter, it generates a singleword containing the value returned by the literal.

3.5 Absolute and Relocatable Assemblies

5.5 Absolute and Relocatable Assemblies

An assembly is either absolute or relocatable. Initially it is assumed that the assembly is relocatable.
Certain things in the input file may cause the assembler to try to change its mind if it is not too .late.
The pseudo-ops ABSOLUTE and RELOCA will force absolute and relocatable respectively. A
LOC will force absolute.

In a relocatable assembly, there is one instruction space and one data space. These spaces may be
. interleaved in the input file (by use of the ISPACE, DSPACE and XSPACE pseudo-ops) but will

be separated into two disjoint spaces in the output. The data space will be output~immedia.tely after
the instruction space and it is up to the linker to further relocate it to begin on a page boundary (or

' whatever).

Whenever a word is assembled, the attributes of the expressions involved in the assembly of that
word are passed on to the word itself. The assembler outputs i,nstructions'to the linker to relocate
every IVAL by adding to it the starting address of the instruction segment, and similarly for every
DVAL and the starting address of the data segment. Notice that this does not do the right thing for
the difference between an IVAL and a DVAL. This is because the assernbier does not keep track
of whether the relocation should be positive or negative.

In an absolute assembly, no' relocation is done. There may be multiple instruction and data spaces.
The pseudo-ops IPAGE and DPAGE cause the assembler to move the location counter to a new
page boundary and switch to the indicated space. The assembler output will contain multiple spaces
which occur in the same order as the 1PAGE.and DPAGE statements. The LOC pseudo-op may

, be used to set the value of the location counter to any desired absolute address (with some
restrictions). It cannot be used to change spaces. .

An IPAGE, DPAGE, or .LOC pseudo-op may not be used in a relocatable assembly, and an
ISPACE, DSPACE, or'XSPACE pseudo-op,may not be used in an absolute assembly.

3 he FA'SM Assembler

T h e following lists all the pseudo-ops in alphabetical order.

If a "." appears in front of the pseudo-op here, then the "." is mandatory; otherwise it is optional.

Certain pseudo-ops require a string of characters, denoted by e t e x t a. This indicates that FASM
regards the first character (other than a blank or tab) following the pseudo-op as the delimiter for
the beginning of the string, and looks for a matching character to delimit the end of the string.
Thus, for example, the following produce identical strings:

ASCII "Now i s the time"
ASCI-I 'No11 i a tho time'
ASCII bNow i s the timeb

ABSOLUTE
Forces the assembly to be absolute.

. ALSO, < condi t i ona l I y assemb l ed t e x t > r e s t of program

. ELSE, < condi t i ona l l y assemb l ed t e x t > r e s t of program
These pseudo-ops conditionally assemble the text in brokets depending upon the success or failure
of the immediately preceding conditional. There is an assembler in:?rnal symbol called .SUCC
which is set when a conditional succeeds and is cleared when one fails. .ALSO will succeed if
.SUCC is set and .ELSE will succeed if it is clear. If a conditional succeeds, .SUCC is set both at the
beginning and at the end of the conditionally assembled text. This enables the inclusion of
conditionals within ,conditionals while using .ALSO or .ELSE following any outer conditional. For
example,

IFN A-B,<IFIDN <X>,<Y>,< ... >>

. ELSE < . . . >

Here, the .ELSE tests the success of the IFN A-B independent of whether the IFIDN succeeded or
failed.

ASCII e t e x t a
Assembles text as ASCII characters into consecutive quarterwords, padding the last used singleword
with zeros. This pseudo-op may cause more than one word to be assembled as long as it is not
enclosed in any level of brokets. However, the "value" of this pseudo-op is the value of the last
word it would assemble. So if it is used in an expression, the arithmetic applies only to the last
word. If it is enclosed in brokets, then all but the last word are thrown away. For example,

~ + A S C I I /ABCDEFG/

is the sam'e as

ASCII /ABCD/
<ASCII /EFG/>+l

but not the same as

l+<ASCI I /ABCDEFG/>

which is the same as
, ,

ASCBlV e t e x t e

Is the same as ASCII except that macro expansion and expression,evaluation are enabled from the
beginning of text as in PRINTV. "\", "'", and "'" may be used as in PRINTV.

ASClZ e t e x t e

Same as ASCII except that it guarantees that at least one null character appears at the end of the
string.

ASClZV e t e x t e

Is the same k ASCIIV except it does ASCIZ.

. AUXO c f i I mama> . .
Prepares the file <filename> to receive auxiliary output. Auxiliary output can be generated with the
AUXPRX and AUXPRV pseudo-ops. The auxiliary output file remains open until the next
A U X O or the end of the assembly is encountered. It is probably most appropriate' to do the
A U X O during just one pass of the assembly. This can be done, for example by.

\

AUXPRX a t e x t e

The text is output to the auxiliary file. An error message is generated if no auxiliary file is open.

/

AUXPRW e t e x t e

330 3 The FASM Assembler

Is the same as AUXPRX except that macro expansion and expression evaluation'are enabled from
the beginning of t ex t as. in P R I N T V . "\", "'", and "' may be used as in PRINTV.

BLOCK express i on
Adds expression*4 to the location counter. That is, the expression is the number of singlewords to
reserve. The expression must be defined when the BLOCK pseudo-op is encountered.

BYTE (sl)bl l ,b12,b13 ,... (s2)b21.b22.b23 ,...
T h e BYTE pseudo-op is used to enter bytes of da ta The s-arguments indicate the byte size to be
used until the next s-argument. The b-arguments are the bytp vellles. An argument may be any
defined expression. The BYTE pseudo-op may not evaluate to more than one word. The s-values
are interpreted in decimal radix. Scanning is terminated by either 3 or >, so a BYTE pseudo-op
may be used in an operand or in an expression. For example,

MOV A,#cBYTE (7)15,12>
MOV B, Cl+<BYTE (7115,12>1

COMMENT e t e x t e
T h e t ex t is totally ignored by the assembler

DEFINE name argument- I i s t
This pseudo-op is used to define a macro. See the section on macros for a description.

DPAGE
If the current space is instruction space, it does an implicit LTT, advanc~s the location counter to the
next page boundary, and sets the space to data. If the current space is data, it merely advances to
the next page boundary. This pseudo-op may not appear inside of a literal or in a relocatable
assembly.

DSPACE
This is a no-op if the current space is already data Otherwise it switches to data space and restores
the location counter from the last value it had in data space. This pseudo-op may not appear inside
of a literal or in an absolute assembly.

END exljress' i on

Indicates the end of the program. The expression, which may be omitted, is taken to be the starting
address. This pseudo-op may not appear inside of a. literal. END forces an implicit LIT to be done
first for both instruction and data space. The expression must be defined when the END
pseudo-op is encountered.

EXTERNAL syml, sym2, sym3,. :.
This pseudo-op defines the symbols in the list to be "external" symbols. The symbols in the list
must not be defined anywhere in the program. Only one external reference may be made per
expression. The value of the external will be ADDED by the linker to the word containing the
expression regardless of the operation the expression says to perform on the external symbol.

IFl, <condi t i ona l l y assembled t e x t > r e s t o f program

I F M l ,<condi t i onal l y assembled t e x t > r e s t o f program

IF2, ccondi t i ona 1 1 y agsembl ed t ex t> r e s t o f program

I F M 2 , ~ c o n d i t i ona 1 l y assembled t e x t > r e s t o f program

IF3, <condi t i ona l I assemb l ed t e x t > r e s t o f program '

lFM3, <condi t iona 1 1 y assembled t e x t > r e s t o f program

Assembles conditionally assembled text'if the assembler is in pass 1, 2 or 3 for IFl, IF2 and IF3 or if
the assembler is not in pass 1, 2 or 3 for IFN 1, IFN2 IFN3.

lFDEF symbol ,<condi t iona l l y assembled t e x t > r e s t o f program '

IFNDEF symbo I, ccondi t 1 ona l l y assemb 1 ed t e x t > r e s t o f program

Assembles condition all^ assembled text if the symbol is defined or not for IFEEF and IFNDEF
respectively.

IFE expr, <condi t i ona 1 l y assemb I ed t e x t > r e s t of program

lFM expr,<condi t i onal 1 y assemb 1 ed t e x t > r e s t o f program

IFL expr, <cond i t i ona 1 1 y assemb 1 ed t e x t > r e s t o f program

IFG expr, <condi t i ona l l y assemb 1 ed t e x t > r e s t o f program

lFLE expr, <condi t iona l 1 y assembled t e x t > r e s t o f program

IFGE expi-, ecorwli t iona l l y asaemb 1 sd t e x t > r e s t o f program

Assembles conditionally assembled text if the condition is met. If the condition is not met, then the
program is assembled as if the text from the beginning of the pseudo op to the matching > were not

332 . , 3 The FASM Assembler

present. For IFE the condition is "the expression has value zero," for IFN it is "the expression has
non-zero value," etc. In any case the expression must not use any undefined or external symbols.
T h e comma, < and > must be present but are "eaten" by the conditional assembly statement. In
deciding which is the matching right broket, all brokets are counted, including those in comments,
text and those used for parentheses in arithmetic expressions. Therefore one must be very careful
about the use of brokets when also using conditional assembly. For example, the following example
avoids a potential broket problem:

I FN SCANLSS, <

SKP.NEQ A , # " < " ;> MATCHING BROKET

JtlPA FOUNDLESS

>#END OF IFM SCANLSS

T h e broket in the comment is used to match the one in double quotes so that the conditional
assembly broken will match.

lFlDM < s t r i n g l > , < s t r i n g h , < c o n d i t i o n a l I y assembled t e x t > r e s t o f program

IFB)!F < s t r i ng l> , < s t r i ng2>, <condi t i o n a l l y assembled t e x t > r e s t of program

These are text comparing conditionals. The strings that are compared are separa:ed by commas and
optionally enclosed in brokets. If the strings are identical (different for IFDIF) then the text' inside
the last set of brokets is assembled as for arithmetic conditionals.

IFB < s t r i n g > , <cond i t i ona I l y assemb l ed t e x t > r e s t of program . .

lFMB < s t r i n g > , <condi t i ona l I y assembled t e x t > r e s t o f program

These text testing conditionals compare the one string against the null string. They are equivalent
to

. INSERT <f i I ename>

Starts assembling text from the new file <filename>. When the end of file is reached in the new file,
input is resumed from the previous file. .INSERTS may be nested up to a level of 10.

INTERNAL syml, s y m ~ , sym3,. . .
Defines each symbol in the list as an "internal" symbol. This makes the value of the symbol
available to other programs loaded separately from the one in which this statement appears.

IPAGE
If the current space is data space, i: does an implicit LIT, advances the. location counter to the next
page boundary and sets the space to instructions. If the current space is instructions, it merely
advances to the next page boundary. This pseudo-op may not appear inside of a literal or in a
relocatable assembly.

Is a no-op if the current space is already instructions. Otherwise it switches to instruction space and'
restores the location counter from the last value it had in instruction space. This pseudo-op may
not appear .inside of a literal or in an absolute assembly.

. .

.LENGTH a t e x t GZJ

Has the value of the length of the string text. A CRLF counts as one character.

LIST
Increments listilig counter. Listing is enabled when the count is positive. The count is set to one at
the-beginning of each pass. XLIST is used to decrement the count.

LIT
Forces all literals in the current space (instruction or. data) that have not yet been emitted to be
assembled starting at the7cur;ent, location counter. It has no effect on the literals in the "other"
space. This pseudo-op may not appear inside of a literal.

LOC express i on
Sets the location counter to the.specified quarterword address. May not appear inside of a literal or
in a relocatable assembly.

MLlST

Increments macro listing counter. Macro expansion listing is enabled when the count is positive.
The count is set to one at the beginning of each pass. XMLIST is used to decrement the count.

3 The FASM Assembler

PWINTV e t e x t B

Prints tex t on the console. It is identical to PRINTX except that macro expansion may occur within
the text. I \ , ', and ' may be used within the text as in macro arguments and expression evaluation.
See the section on special processing in macro arguments for an explanation of \ and " processing.
Macro expansion is intially enabled at the beginning of text and may be disabled with \.

Prints text on the esrssele. .

.QUOTE e t e x t e

Legal only inside a macro definition. It allows the assembler to see text without scanning it for a
DEFINE or a TERMIN.

RADIX express i on

Sets the current radix to expression. The radix may not be set less than two.

Forces the assembly to be relocatable.

REPEAT express i on, <body> . .

Assembles bod9 concatenated with a carriage return expression many times. The expression must be
defined at the time the REPEAT pseudo op is encountered. The expression must be non-negative.
If it is zero, the body will not be assembled.

TERMBN
This pseudo-op is legal only during a macro definition. It is used to terminate a macro definit-'m.
See the section on macros for a description.

TITLE name o t he r - tex t

Sets the title of the program to name. Everything else on the line is ignored.

XLlST
Decrements listing counter. Listing is enabled when the count is positive. The count is set to one at
the beginning of each pass. LIST is used to increment the count.

XMLIST . .
Decrements macro listing counter. Macro expansion. listing is enabled when the count is positive.
The count is set to one at the beginning of each pass. MLIST is used to increment the count.

XSPACE
Has the effect of ISPACE if the current space is data and DSPACE if the current space is
instructions. This pseudo-op may not appear inside or a literal or in an absolute assembly.

3 The FASM Assembler

3.7 Macros

The FASM macro facility shows a strong resemblance to those of FAIL (the macro assembler for the
PDP-10 developed and used at the Stanford Artificial Intelligence Laboratory) and MIDAS (the
macro assembler for .the PDP-10 developed and used at the M.I.T. Artificial Intelligence
Laboratory), which are hereby acknowledged.

Macros are essentially procedures that can be invoked by name at almost any point in the assembly.
They can be used for abbreviating repetitive tasks or for moving quantities of information from one
part of the assembly to another (in fact even from one pass to another). Macro operation is divided
into two parts: definition and expansion.

The macro facility does differ in an important way from those of other assemblers, however. Macro
expansion in FASM is performed at the "read-next-character" level, whereas in most other
assemblers it is done at symbol lookup time during expression evaluation. Due to this difference,
macro expansion in FASM inherently produces "string" output rather than evaluated expressions as
is sometimes the case in other assemblers. Wherever a macro call is seen, the effect can be predicted
by substituting the body of the called macro in place of the call.

3.7.1 Macro Definition

Macros are defined using the DEFINE pseudo-op. which has the following format:

OEFI NE niacrclnamc argc~mon t l i R t

body o f macro d e f i n i t i o n

TERM I N

This will define the symbol macroname to be a macro whose body consists of all the characters
starting after the CRLF that ends argumentlist and ending with the character immediately
preceding the TERMIN.

3.7.1.1 The Parameter List

Basically, the parameter list is a list of formal parameters for the macro. This is similar to the list of
formal parameters for a procedure in a "high" level language. The parameters are symbol names
and are separated by commas. The number of macro parameters must be in the range 0 . . 64. The
macro parameter list is terminated by either a ; (which begins a comment, as usual) or a CRLF.

3.7.1.1 The Parameter List 337

Each macro parameter has certain attributes associated with it. In FASM these attributes are
balancedness, gensymmedness, and parentherizedness. From now on, it shall be said that a parameter
is or is not balanced, is or is not gensymmed, and that certain pairs of parentheses can or cannot
Parenthesize a parameter. If a parameter is not balanced or gensymmed then it is said to be normal.

Parameter attributes are specified by enclosing a string of characters in double quotes preceding a
parameter in the parameter list. The attributes specified by that string are "sticky"; that is, they
apply to all following parameters until the next such string is specified. The characters B and G
. .
may appear in the string to indicate that the parameter is to be balanced or gensymmed respectively.

. There are four parenthesis pairs: (and), [: and I, < and >, and (and). Any of these characters may
appear in the string to indicate that that set of parentheses may be used to parenthesize thai:
parameter. One final thing thzt may appear in the string is a statement about the concatenation
character for the macro body. If the string !=IS appears, where -a is any character other than CRLF,
then -a will be the concatenation character. If the string O! appears, then there will be no
concatenation character. Only the last statement made in the parameter list about the concatenation
character will apply to the macro body.

At the bzginning of the parameter list, the attributes have the following defaults: ! is the
concatenation character, parameters are neither balanced nor gensymmed, and any pair of
parentheses may be used to parenthesize a parameter. Whenever an attribute string is encountered,
the previous set of attributes are forgotten and the new on'e applies to future parameters .until the
next string is specified.

Here are some examples of valid macro definition lines:

DEFINE MAC
DEFINE MACl -A,B,C
DEFINE MAC2 " ! = ' " A,B, "G" C
DEFINE MAC3 " ([B I) " A, " [0 ! " B

With these definitions, MAC has no parameters and has ! for the concatenation character. MACl
has three normal parameters A, B and C with ! for the concatenation character. MAC2 has two
normal parameters A and B and a gensymmed parameter C, and uses ' as the concatenation
character. MAC3 has a balanced parameter A, for w.hich () and [I can be used as parentheses, and
a normal parameter B, for which [I can be used as parentheses. MAC3 has no concatenation
character.

3.7.1.2 The Macro Body

The macro body begins at the character following the CRLF at the end of the DEFINE line and
ends with the last character before the matching TERMIN. Within the macro body, FASM replaces

338 3 The FASM Assembler

all delimited occurrences of formal parameters with a mark that indicates where the actual argument
should be substituted. Any character that is not a symbol constituent is considered a delimiter for
this purpose. T h e concatenation character is also considered a delimiter. However, the
concatena~on character is deleted wherever it occurs and will not appear in the macro body
definition. The concatenation character is useful to delimit 2 formal parameter where, without the
concatenation character, the formal parameter would not have been recognized as such. For
example,

DEFINE MAC A , B , C
PUSH.UP.S SP,B
PUSH.UP.S SP,C
JSR A!RT[u
TERMIN .

If the arguments X, Y, and Z were substituted 'for the formal parameters A, B, and C, then the third
line would assemble as JSR XRTN. Without the concatenation character, it would always assemble
as JSR ARTN regardless of the actual value of the parameter A.

In addition to scanning for formal parameters in the macro body, FASM also scans for occurrences
of the names DEFINE and TERMIN. It keeps a count of how many it has seen so that it can find
the TERMIN that matches the DEFINE that began the macro definition. This allows a macro
body to contain a macro definition entirely within it. For example,

DEFINE MAC1 A
nFF J NF, MAC 1 A
b...

TERM I N
TERN I N

defines a macro called MAC l which contains a complete macro definition sequence within itself.

Note that FASM does not recognize either comments or text constants as special cases in its search
for DEFINES, TERMINs and formal parameters. Therefore, the user must be careful when using
the words DEFINE and TERMIN in those places. They will be counted in order to find the
TERMIN that marks the end of the current definition. There is a pseudo-op called .QUOTE that
can be used if it is desired to inhibit FASM from seeing a DEFINE, TERMIN, or macro parameter
name. .QUOTE is like an ASCIZ statement in syntax, taking the first nonblank character after the
.QUOTE as a delimiter and passing all characters up to the matching delimiter through to the
rnacrn rl~finition. For. example,

DEFINE MAC
. . . . ;how t o put a .aUOTE /DEFINE/ i n a comment

TERM I N

3.7.1.2 The.Macro Body

will define MAC'S body to be

- , ;how t o p u t a DEFINE i n a comment

3.7.2 Macao Calls

A macro call occurs whenever a macro name is recognized in a context where macro calls are
permitted. When this happens, the macro call is processed in two distinct phases. The first is
argument scanning and, the second is macro body expansion.

s .

Argument scanning is the, process, of assigning. text strings to the formal parameters of a macro.
These text strings come from the input stream. If a formal parameter is not assigned a string by the
call, then it is assigned the null string as its value, unless the argument is defined to be gensymmed.
In that case, the argument is assigned a six character string beginning with G and follbwed by 5
decimal digits which represent the value of an internal counter which is incremented before being
converted to a text string.

Argument scanning is performed for those macros that have formal parameters. If a macro does not
have any formal parameters, then the character that terminates the macro name is left to be
reprocessed after the macro expansion is complete, even if it is a comma.

If the macro has formal parameters, then how the argument scan is done depends on the character
immediately following the macro name. If it is a CRLF, then the argument scan is terminated and
all of the formal parameters are assigned the null string or are gensymmed as appropriate. The
CRLF is left to be reprocessed after the macro expansion is complete.

If the character following the macro name is a space or a tab, then all immediately following spaces
and tabs are thrown out. The entire sequence of spaces and tabs can be considered to be the macro
name delimiter.

If the character following the macro narne is a (, then the macro call is said to be a parenthesized
call; otherwise it is a normal call. A parenthesized call differs from a normal call in the way
argument scanning is terminated. In a normal call, argument scanning is terminated by either
CRLF (or its surrogates, ? and e), semicolon, or the argument terrr~itlator for the last argument
(which may be a comma). If terminated by a CRLF or semicolon, the terminator is left to be

3 The FASM Assembler

reprocessed after macro expansion is complete. In a parenthesized call, only the matching) can
terminate the call. T h e) is not reprocessed after the macro expansion is complete. The following
paragraphs will describe the syntax of macro arguments and explain how they are terminated. The
phrase "... macro call terminator" refers to the character that terminated either the normal or
parenthesized call, as described in this paragraph.

3.7.2.2 Macro Argument Syntax

T h e first macro argument begins with the first character following either the (that de~narks a
parenthesized call or the macro name delimiter in a normal call. This chzracter i s looked a.t by
FASM to determine how to scaii the argument.

If' the first character is a left parenthesizing character that belongs to the set of characters that may
be used to parenthesize the argument that is being scanned (as determined by the character string in
force at the time this formal parameter was seen in the macro define line), ti-:en the argument is
taken to be all characters following that open parenthesis until, but not including, the matching
closed parenthesis. Any characters may appear between the parentheses. Only the particular type of
parentheses that enclose the argument are counted in finding the matching closed parenthesis. This
type of argument is called a parenthesized argument.

If the first character is a comma, then the argument is the null string; the ccimma is taken to be an
argument separator.

If the first character is a macro call terminator, then this argument and all further arguments are
not assigned strings. That is, if the arguments are gensyrnmed, they will be assigned u ~ i q u e
gensymmed strings, and if they are not gensymmed they will be assigned the null string.

If the first character is not one of the above, then argument scanning depends on whether the
argument is to be balanced or not. If tne argument is not to be balanced, then the argument is
taken to be all characters from the first character until, but not including, a cumma, CCRLF (or w or
?), semicolon, or the macro call terminator. If the argument terminator is a comma, it is thrown out;
a macro call terminator, however, will be kept to terminate the macro call. If the argument
terminator is not a comma, then it is usually a macro cdll Lermlnator. However, if the call is
parenthesized, a CRLF or semicolon will terminate the argument but not the macro call. In this case
the remainder of the line (if the terminator was a semicolon) is ignored and the CRLF is thrown
out. Argument scanning continues on the next line. This allows the arguments of a parenthesized
call to take multiple lines; each CRLF acts as if it were a comma (with comments thrown out)
allowing the next line to continue supplying arguments.

If the argument is to be balanced, then all types of parentheses are treated the same. A count is
kept of the parenthesis level. If there are no unbalanced parentheses, then a comma or macro call
terminator will terminate the argument as if it were a normal argument. Also, if the parentheses are

3.7.2.2 Macro Argument Syntax 34 1

balanced, any close parenthesis will terminate the argument and the call. If it is a parenthesized call,
the close parenthesis must be a) or an error is .reported. If .it is not a ,parenthesized call, the
parenthesis will be left to be reprocessed after the macro call is complete. In either case, the
remaining formal parameters are assigned the null string or gensymmed as appropriate.

3.7.2.3 Special Processing in Macro Arguments

Ordinarily, macro arguments are the quoted forms of the strings that appear between delimiters
within the macro call. However, it is possible to call a macro or even evaluate an expression within
a macro argument during the macro argument scan.

If a macro argument is not parenthesized, then the appearance of the character \ (backslash) in the
argument will enable macro calls to be recognized during the scanning of the macro argument. The
appearance of a second \ will again disable this feature. If a macro call is detected during this time,
then that new macro is expanded and its expansion appears as if it .were written in line in the
macro 'argument that is currently being read. Every time a new macro. call is seen and macro
argument scanning is started, the macro-in-argument recognition feature is disabled until re-enabled
by a \., The \ character,dtself is discarded. . .

Perhaps this will be clearer if explained in terms of the actual implementation. FASM maintains a
flag, called the \ flag, which when set enables macro expansion. This flag is pushed when a macro

. . . ;
name is recognized and initialized to be off at the beginning of the argument scan. It is
complemented every time a \ is seen in the input. When the entire macro call has been scanned (but
expansion has not yet started) the \ flag is popped.

.-

In fact, the \ flag has wider application than just in macro calls. It is also applicable at expression
evaluation time. Normally it is set during expression evaluation, thereby allowing macros to be
expanded. It is perfectly legal to use \ during expression evaluation to inhibit macro expansion.

There is a second feature, analogous to the \ feature, which allows the expression evaluator to'be
called during a macro argument, or in fact even at expression evaluation time. If an expression is
enclnscd within "'" and "'" charasters, the expression evaluator is called upon to produce a value,

. .
which may possibly be null, which is then converted into a character string of digit's representing
that value in the current radix. The conversion always treats the value as a 36-bit unsigned integer.
A null value is converted to the null string. The surrounding singlequotes act in a similar way to
parentheses in arithmetic expressions, in that multiple lines may be used, but only the expression on
the last line is converted. This converted string js used in place of the singlequoted expression. As
in the case of \ this can occur in non-parenthesized macro arguments or in expression evaluation.
The ~inglequote characters therns~lv~s are thrown out.

Following are some examples of the use of these features:

S The FASM Assembler

X c t l F00 'X' : JMPA F 0 0 l

wilt assemble as

F001: JMPA F001

If FOO was a macro name, it would have been expanded in the previous example. This could be
inhibited with:

\F00\ ' X ' : JHPA I-UU1

Next consider:

X c e l
DEFINE MAC
XccX+l
X ! TERMIN

,. F00 'MAC' :

will define the label F002 while incrementing X to be 2 The next time FOO'MAC': appears, the
label F003: will be generated.

It is sometimes useful to extract the value of a symbol in a macro argument before the macro call
changes that value?

DEFINE MAC A
BRRe+BRR+l
A*BRR
TERM I N

MAC 'ERR'

will call MAC with the current value of B R R . . Withopt the singlequ~tes, the string BRR wn~ild he
passed to the macro and used where "A" appears, which is after BRR is incremented.

Index

!D 316
!I 316

% 6
2-dimensional 149
PDFFT 152
3-dimensional 140- 14 1
ABS . (QH;s,D) 93

' absolute assembly 327
absolute jump 20 .

ABSOLUTE, in FASM 327-328
absolute-JOP 31 3
ACCESS-VIOLATION 41,43, 57,60
ACCESS 41-43,47, 57,61,280
access modes, defined 43
access modes, field in PTE 42
access modes, fields in STE 41
access modes, role in 1/U 61

ACOND 184, 186-189, 191-192, 194-195
ACOND, defined 184.
ADD . ,{QH,s,D) 73
ADDC . (QH,s,D) 74
address calculation 6, 18, 29, 40-41, 44, 46-

4'7,49, 187, 197
ADDRESS fleld of pointer 44
address space 5
address space IDS 284
address space IDS, Mark IIA restriction 67
address translation 37
address translation, for 110 memory 61
address validation 46-49, 56, 59, 178, 249-

250, 543
ADDRESS0 notation 5
addressing modes 22 .

ADJBP . (C,A,Z) 235
AD JBP 235-237
ADJSP . (UP,DN) 239
ADJSP 158,239, 280,289-290
alarm 59
ALCOND 184-185
ALCOND, defined 184
ALIGNMENT-ERROR 5,58

alignment of anywords 5
alignment of bytes 228
ALL (logical condition), defined 184
ALL 184-185, 200,296-297
ALLOC . (1 .. 32) 259
ALSO, in FASM 328
AND. {QH,S,D) 207
AND 34,43,79,200,20'7-209,2 1 1,225, 3 14
ANDCT . {QH,s,D) 209 . .

ANDCT 92, 200,208-209
; , .

ANDCTV 209
ANDTC . (QH,S,D) 208
ANDTC 56,208-269.2 i i
ANDTCV 208
ANY (logical condition), defined 184
ar 25, 29, 34
argument-list 330, 336
arithmetic condition, defined 184
ARRImPdD . {RTA,RTIZ) 175
ASCII '3 13-3 14, 3 17, 328-329
ASCIIV 329
ASCIZ 329, 338
ASCIZV 329
assignment statement 3 19
attributes, expression 3 14
attributes, macro parameter 337. ,.
attributes, symbol 3 16
augmented magnitude rounding mode 106
AUXO 329
AUXPRV 329
AUXPRX 329-330'
backslash 341
backslash flag 341
BADA-VALIDATION 44, 46, 59, 257
BADADDRESS-TAG 45,57,60
BAD-P-VALIDATION 44,48, 59, 176
BADSOINTER-TAG 45, 57,60, 176
BAD-TMODE 55, 59
BADREV . (H,s,D) 154
BADREV 151- 154
balanced macro argument, semantics 340
balanced macro parameter, syntax 337
base pointer, defined 26

base pointer, in long operand addressing 29
base pointer, role in segment bounds check-

ing 40
base-offset 322
based addressing mode 30
based-indexed addressing mode 30
BASEPTR 45, 57, 179
bignums (extended precision arithmetic) 97,

3 17
bit manipulation instructions 205
bit-reversals 154
BITCNT . {QH,S,D) 225
BITCIqT 92, 225-226
BITEX . {QFl,S,D) 224
BITEX 224
BITEXV . {QH,S,D) 224
BITEXV 224
BITFST . {QH,S,D) 227
BITFST 22'7
BITRV . {QH,S,D) 223
BITRV 223,227
BITRVV . {QH,s,D) 223
BITRVV 223
bitwise translation for 110 memory 63
BNDSF . {B,MIN,M l,O, 1) . {QH,S,D)

20 1
BNDSF 35-36. 201,237
BNDTRP . {B,M1~,~ '1,0,1) . {QH,S,D)

20'2
BNDTRP 54, 202, 324
BOUNDS-CHECK 54,202
bounds checking (for segmentation), Mark

IIA exception 67
bounds checking, on segment 40
brokcts, in FAEM 3 15

'

hu,sy-wait 180, 198
BYTE 235, 330
byte manipulation instructions 228
byte pointer, format of 228
byte sclcctor, format of 228
byte, defined 228
byte-addressed 63
BYTES 235

C I N '71
cache handling instructions 280
CADD . {H,S) 129
CADD 129
CALL-TRACEXNABLE 6'7
CALL-TRACEXNB 9- 10,65-66
CALL-TRACEXNB, bit in PROCESSORSTATUS

10
CALL-TRACE-PEND 9- 10,58,65-66,265
CALL-TRACESEND, bit in PROCESSORSTATUS

10
CALL-TRACESENDING 67
CALL-TRAP 58,65,243
CALL 243-249, 247, 252, 255-258
call tracing, in PROCESSORSTATUS 10
call tracing, instructions affected 243
call tracing, Mark TIA implementation limit

6 7
call tracing, role in instruction execution 65
calls across ring boundaries 248
CALLX 41,45,97, 178,243-245,248-250,

253,255-257
CALLX, use of 248
CARRY 11'70-71,73-'76,89-90,92-93,97,

129-130, 186-18'7, 191-196, 344
CARRY, algorithm for computing 71
CARRY, defined 70
ceiling rounding mode 106
CFFT . {H,s) 15 1
CFFT 151-152, 154
CFFTV . {H,S) 151
CFFTV 15 1- 152
chained vector instructions 158
chaining 158-159, 16 1, 163, 221, 344
characteristic 10G
cluoiire 7, 2-44 253
closure pointer 7
closure pointer, role in stack frame 244
CLRUS 300
CMAG . (I-1,~) 128
CMAG 128
CMPSF . {GTR,EQL,GEQLSS,NEQLE@

- {QH,S,D) 200

CMPSF 74, 87, 95,200
CMULT . {H,s) 131
CMULT ,131

' ' colon 31 9
column 153
COMMENT 330
comparison instructions 184
comparisons, on floating,point 105
complex arithmetic 127, 129, 131, 344
complex-base 23
concatenation. character, syntax 337
constant operands 23
constants, extending with FIRST() 35
constants, vectors of 35
context-switching instructions 284
CQNV . {H,s,D) 144 ,

coroutines 243, 267
coroutines, instructions for 243
cosine 137- 138
CP, within stack frame 244
cross-assembler 3 1 1
cross-gate 257
cross-ring 4 1, 47, 50-5 1, 57, 248-249, 253,

256-25'1, 344
cross-ring calls 248
CSUB . {H,s) 130
CSUB 130
data cache 280
data map cache 280
data moving instructions ,165
data type encoding, defined 45
DBYT . {S,D) 233
DBYT 233
debugger 23, 319
debugging 244-245
DEC . {QH,S,D) 90
DEC '71, 90
DEFIP4E 990, 931, 336-339, 342
DEFINES 338
DEFINITION 322
descriptor segment pointer, defined 37
descriptor segment, defined 37
DESTINATIONADDRESS 53

DIBYT . {s,D) 234
DIBYT 204,234
dimensional 152
diminished magnitude rounding mode 106
displacement 18,29, 176, 197, 322
displacements 14 1
DIV . (QH,s,D) 87
DIV 12, 35,87,235-236
DIVL . {QH,s) 88
DIVL 88
DIVLV . {QH,S) 88
DIVLV 88
DIVV . {QH,S,D) 87
DIVV 87
D JMP . {GTR,EQL,GEQLss,NEQLE~

194
DJMP 194
DJMPA 196
D JMPZ . {GTR,EQL,GEQLSS,NEQLEQ

195
D JMPZ 4, '74, 153, 195, 226
dot product 143
double-quote 3 18
double-quotes 3 17
doubleword constants 24
downward-growing 238-242
downward-growing stack 238
DPAGE 313, 916, 327, 330
DPAGE, in FASM 327
DSEGSAGEJAULT 5'7,60
DSEGSEGMENTITOJAULT 4 1,57,BO
DSegmen tito 39
DSEGP 37, 39,285-286
DSEGP, defined 3'7
DSHF . {LF,RT) . {QH,S) 219
DSHF 2 19-221
DSHFV . {LF,RT) . {QH,S) 2 19
DSHFV 2 19-220
DSKP . {GTR,EQL,GEQLss,NEQ,LE~$

187
DSKP 187, 193,220, 225
DSPACE 3, 146, 313, 316-31'7, 32'7, 330,

335

DSPACE, in FASM 327
DVAL 314, 316, 318, 327
DVAL, in FASM 327
EB, field in STE 41
ELSE, in FASM 328
ENABLE bit, role in interrupts 61
END 144, 185, 198,236, 245, 331-332
entry pointer, within stack frame 244
EP, within stack frame 244
EQL (arithmetic condition), defined 184
EQL 20,26,87, 92, 126, 184-189, 191-195,

200,226,276
EQV (Q,H.s,n) 21 6
EQV 216
error-correction 183
E3IZE 152-153
EW, defined 12
exception handling, floating point 107
exception values, floating point 104
exceptions, integer arithmetic 70
exceptions, propagating floating point 108
EXCH . (QH,S,D) 171
EXCH 14, 19-20, 26, 157, 171, 173, 182,

215-216
exclusiveOR 2 15
EXEC 49
EXECUTE-PERMIT 43,67,280, 313
EXECUTESERMIT access mode 43
execute bracket 4 1, 250
execute bracket, field in STE 41
execution sequence of an instruction 65
EXIT 325
EXP, floating point 102
exponent 8 1-82,102- 103,107- 108,114,229-

232,234, 315
exponential 135
exponentiation 8 1-82, 109, 1 18
expression, attributes 3 14
expression, broketed 3 15
expression, data value 314, 318
expression, external value 3 14, 318
expression, in FASM 314
expression, instruction value 3 14, 3 18

expression, register 3 14
extended word, defined 12
extended word, fields of 22
EXTERNAL 331
external procedures, with CALLX 248
F field, in operand descriptor 22
FABS . {H,s,D) 123
FABS 108, 123
FADD . {H,s,D) 11 1
FADD 109, 111, 113, 115, 118
FAIL 336
FASM asse~nbler, invoking 3 1 1
fast fourier transform 161
FATAN . (H,s,D) 188
FATAN 67, 139, 142
PATANV . {H,S,U) I Y Y

FATANV 67, 139
fault tag, defined 45
FCADD . (H,s) 129
FCADD 129
FCFFT . (H,s) 151
FCFFT 67, 151-153
FCFFTV . (H,s) 151
FCFFTV 67, 151-152
FCMAG . (H,S) 128
FCMAG 67, 128
FCMULT . (H,s) 13 1
FCMULT 131
FCONV . (H,S,D) 144
FCONV 144
FCOS . {H,s,D) 137
FCOS Li4,67, 137
FCSUB . (H,s) 130
FCSUB 130
FDIV . (H,s,D) I 15
FnTV 1n7, I l l , 117, 115=118, 134, 136-138.

143
FDIVL . (H,s) 116
FDIVL 116
FDIVLV . (H,s) 1 16
FDIVLV 116
FDIVV . {H,s,D) 1 15
FDIVV 1 15

fetching 45-46, 48
FEXP . {H,s,D) 135
FEXP 67, 135
FFT 54,67, 151- 152, 154
FFT, Mark IIA restriction on vector length

67
filter 145, 152
filtering 1 52
filters 145
finished 157
FIRST() notation 35
FIX . {FL,CL,DM,HP,ST,US) . {Q,H,s,

D) . (H,S,D) 1 19
FIX105-106;108,119 .

fixed-base 27
fix&-ba.sk addressing mode 2'7
fixed-based-indexed 3 1
fixed-based-indexed addressing mode 3 1
FIXR 106
FLAGS, field in PROCESSORSTATUS

10
FLAGS, field in PTE 42
FLAGS, field in STE 42
FLAGS, in USER-STATUS 11
FLAGS, within stack frame 245
FLOAT . (H,s,D) . {QH,s,D) 120
FLOAT 103, 120
floating point 11, 53-54, 102-125, 127-131,

133-141, 151, 158, 166,'229-234, 315,
344

floating point arithmetic 102, 104, 10'7, 110-
111, 113, 115, 117, 119, 121, 123. 125,
344

floating point comparisons 105
floating point data format 102- 103, 344
floating point exception handling 107, 344
floating point exception values 104- 105.12 1,

124-125, 344
floating point exceptions, propagating 108
floating point overflow, defined 104.
floating point rounding modes 105
floating point underflow, defined 104
FLOG . {H,S,D) 154 . ,

FLOG 67, 134-135
floor rounding mode 106
FLSHDM 283
FLSHIM 283
FLTJJANMODE 11, 54, 107-108
FLTJJAN-MODE, defined 107
FLTJJAN-TRAP 54, 108, 133-134
FLTJJAN 11,107, 11 1-1 18, 121-125, 128-

131, 133-141, 143-145, 149, 152
FLT-OVFLMODE 11, 54, 107
FLT-OVFLMODE, defined 107
FLT-OVFL-TRAP 54, 107
FLT-OVFL 11,10'7,111-118,120-125,128-

131, 134-135, 140-141, 143-145, 149,
152

F L T X E P 11, 107
FLT-UNFLMODE 1 1, 54, 1.07- 10:8
FLT-UNFLMODE, defined 107, ' .

FLT-UNFL-TRAP 54, ,108
FLT-UNFL 11,10'7,111- 1 18,. 121- 125,128-

131, 134-135, 140-141, . . 143, 145, 149,
152

FLTR 106

flush 283. .

FMATMUL . {HSD) 149
FMATMUL 199-150 . , . ,

FMAX . {H,s,D} 125
FMAX 109, 125
FMIN : .{H,s,D) 124
FMIN 109, 124-125
E'M U LT . {H,s,D) 1 13
FMULT.l1IL,113,115,118,135,139 .

FMULTL . {H,s) 114 ,

FMULTL 114
FNEG . {H,s,D) 122 .

FNEG 108-109, 122
ids 44

fourier transform 151, 154
FP, within stack frame 244
FPTR 188
fraction 103, 106, 151
fragmentation 37
frame pointer 7, 244

frame pointer, role in stack frame 244
FRECIP . {H,s,D) 1 17
FRECIP 67, 1 1'7
FRFLT2. (H,S,D) 145
FRFLT2 145
FSC . {H,s,D) 118
FSC 107, 109, 11 1, 113, 115, 118
FSCV . {H,s,D) 118
FSCV 109, 1 18
FSIM 312
FSIN . {H,s,D) 136
FSIN 54,67, 136
FSINCOS . {H,s,D) 138
FSINCOS 67, 138
FSQRT . (H,S,D) 133
FSQRT 67, 133, 143
FSUB . (H,S,D) 1 12
FSUB 109, 112
FSUBV . {H,S,D) 112
FSUBV 107, 112
FTRANS . {H,s,D) . {H,s,D) 121
FTRANS 108, 121, 166,200
GATE JNDEX-TOOBIG 57,60,249
gate descriptor block, location of 50
gate descriptor, format of 248
gate pointer, fields within 249
gate tag, defined 45

gate, format of 248
gates, role in cross-ring procedure calls 248
general purpose registers 6
gensymmed 337, 339-341
gensymmed macro parameter, semantics 339
gensymmed macro parameter, syntax 997
gensymmedness 337
GEQ(arithmetic condition), defined 184
global 244
GTR (arithmetic condition), defined 184
half rounds toward positive 106
half-killed 3 16, 3 19
half-killed symbol 3 19
half-word 152- 153
hard traps 50-51, 57, 59-60, 343
hard traps, defined 50

hidden bit 53, 102
hidden bit, floating point 102
hidden bit, in floating point format 102
HIGH-ORDER() notation 3
H O P 13, 18, 69, 197, 325, 343
H O P format 18
HOPS 324 .
110-PAGE access mode 43
I10 61
I10 instructions 269
I /O memory translation 62
I10 memory, addressing 6 1
110 memot y, defined $1
I10 processor, defined 61
IF 19-20, 139-111, 160-162, 164, 185, 198,

20'7-216, 236
IF1 331
IF2 331
IF3 329, 331
IFB 332
IFDEF 331
IFDIF 332
IFE 331-332
IFG 331
IFGE 331
IFIDN 328, 332
IFL 331
IFLE 331
IFN 328, 331-332
IFN1 331
IFN2 331
IFN3 331
IFNB 332
IFNDEF 331
IJMP . (GTR,EQL,GEQLSS,NEQLE@

191
IJMP 191
IJMPA 193
I JMPZ . {GTR,EQL,GEQLsS,NEQLEQ~

192
IJMPZ 192, 325
ILLEGALJBYTESTR 58, 228
ILLEGAL-CONSTANT 23, 58, 176, 181

ILLEGALJNSTRUCTION 58
ILLEGALJOMEM 59,61
ILLEGALMEMORY 20
ILLEGAL-OPERAND-MODE 20,58,176,

18 1
ILLEGALSRIORITY 59,279
ILLEGAL-REGISTER 59,289-?92
ILLEGALSHIFT-ROTATE 58,2 17-2 19,

221-223
ILLEGALSTATUS 59,107-108,294,297-

300
ILLEGAL-TRACEJ'END 58
illegal value, floating point 107
illegal value, in floating point format 104
implementation-dependent 1, 52, 62, 15 1,

188
implementation-dependent features 67
imprecise 46, 54
INC . (QH,S,D) 89
INDEXXEG 322-323
INDEX, field within gate pointer 249
index, in long operand addressing 29
index, role in segment bounds checking 40
indexed constants 24
indexing, restrictions on registers 6
indirect 20, 26-27, 30-31, 41, 44, 47, 190,

197, 312, 317, 322, 325
indirect addressing 30
indirection 30-32, 4 1, 49, 65
inexact rounding 67, 106, 1 17
inexact rounding, Mark IIA spec 67
information-preserving 2 15-2 16
inputloutput 6 1
inputloutput instructions 269
INSTRUCTIONSTATE 52,65-66, 285
instruction cache 280
instruction execution sequence 65
instruction formats 12
instruction map cache 280
instruction set 69
instruction state, used in traps and'inter-

rupts 52

instruction tracing, bits in PROCESSOR--
STATUS 9

instruction tracing, role in instruction ex-
ecution 65

instruction, in FASM 320
instruction-dependent 52 ,

instruction-space 3 16-3 17
INT-OVFLMODE ,11, 54, 70-7 1
INT-OVFLMODE, defined 70
INT-OVFL-TRAP 54, '71. ;
INT-OVFL 1.1, 70,. '73-82, 87-93, 97-98,

100-101, 108, 119, 123, 128-131, 140-
. 141, 143-145, 149, 152,.186-187, 191-

196,217
INT-OVFL, defined 70
I N T Z D I V M O D E 11, 54, 70-71
I N T Z D I V M O D E , defined '15
INTZDIV-TRAP 54, 71
INT_.ZDIV 1 1, 70, 79-80,83-88, 100- 10 1,

297 . .

I N T Z D I V , defined 70 . .

integer' arithmetic .exceptions 70 . , .

integer division by zero, defined, 70:
integer overflow, defined:70 . .
integrity 104, 344 . .

interface 248
INTERNAL 332. . .
interprocessor 180 . . ,

interrupt vector 50-51, 60-62, 65
interrupt vector format 51
interrupt-related instructions 269
interruptable instruction, defined 52
interruptable instruction, execution sequence

of 65
interrupts, role in instruction execution 65
interrupts, save area for 52
INTIOP 274
INTRAN . {H,S,D) 146
INTRAN 146-147, 152-153
I O S A G E 61
IOBUF 270-27 1
IOP 61-63
IOPs 62

IOR . {Q,H,s,D) 270
IOR 270
IORMW 272
IOW . {QH,s,D) 27 1
IOW 271
IPAGE 313, 316, 327, 333
IPAGE, in FASM 327
ISKP . {GTR,EQL,GEQLSS,NEQLEQ

186
ISKP 33, 142, 186, 220, 325
ISPACE 3,146-147,3i3,316-317,327.333,

335
ISPACE; in FASM 327
WAL, in FASM 327
J field, in format 18
JCR 243-244,267, 325
JMP . {GTR,EQL,GEQLSS,NEQLEQ~

188
JMP 188, 317
JMPA 156-157,185, 190,19'7,203,268,317,

325, 332, 342
JMPCALL 243-244, 268
JMPRET 243-244,268
JMPZ . {GTR,EQL,GEQ,Lss,NEQLEQ~

. {QH,S,D) 189
JMPZ 20,92, 157, 180, 189,203,276
JOP 13, 20, 22, 55, 69, 188-196, 252, 254,

258, 268, 286, 294, 296-298, 309, 325,
343 ,

JOP format 20
JOP, in FASM 325
JOPS 324-325
JSP 248 244,264
JSR 87, 152, 156- 157, 238, 243-244, 258,

260-261, 325, 338
jump format 20
jump instructions 184
JUMPDEST field in JOP format 20
JUS . {NON,ALL,ANY,NAL) 296
JUS 296
JUSCLR . {NON,ALL,ANY,NAL) 297
JUSCLR 297, 300
largest-magnitude 46

LBITCNT . {H,S,D) 225
LBITCNT 225
LBITFST . {H,S,D) 227
LBITFST 227
LBYT . {S,D) 229
LBYT 229,237
LCOND 184,296
LCOND, defined 184
LCONDs 184,284
least-recently-used algorithm in caches 280
LENGTH, field in byte pointer 228
lengthwise 96, 221
L E Q (arithmetic conditiop), defined 184
LIBYT . {s,D) 230
LIBYT Xsn
linefeed 3 12, 319
linefeeds 3 16
linkage instructions 243
LISBYT . {s,D) 232
LISBYT 232
LISP 45
literal, in FASM 316
LMINMAX . {H,s,D) 96
LMINMAX 96
LO, defined 12
T.OC 527, 333
LOC, in FASM 327
locals 255
location counter 3 16
log 134- 1 55
log2 227
logarithm 40, 42, 134, 151, 154, 179
luglcal condition, defined 184
LONGADDR 322-323
LONGDISP 322-323
long operand variables 27
long operand, defined 12
LOST-PRECISION 54
LOW-ORDER() notation 3
LRU 280
LSBYT . {S,D) 23 1
LSBYT 231
LSS (arithmetic condition), defined 184

maclisp 97
macro 316, 329-330, 333-342, 345
macro-in-argument 34 1
macroname 336
macros 313,315-316,330,334,336,339,341,

345
macros, argument scanning 339
macros, argument syntax 340
macros, body 337
macros, calls 339
macros, defining 336
macros, parameter list format 336
MANT, floating point ,102
mantissa 67, 102-103, 106-108, 114,233
map cache 280
mapping-related - . instructions 284
mathematical instructions 132
MATMUL ,. {H,S,D) 149
MATMUL 149- 150
matrices '14'7- 150
MAX . {Q,H,S,D) 95
MAX 95, 125
maximum integer- value 70
MAXNUM 70, 105, 123
MAXNUM, defined 70
MIDAS 336
MIMD 1
MIN . {QH,S,D) 91
MIN 94-95, 124,201-203
minicomputer 6 1.
minimum integer value '70
MINNUM 70, 105,201-203
MINNUM, defined 70
misalignment 26 .

miscellaneous instructions 307
MOD . {QH,s,D) 85
MOD 18, 85-86, 235-236
MODE field, in operand dt?scriptor 22
modifer, in opcode 12
modified 42
MODIFIED, field in PTE 42
modifier, in opcode 4
MODL . {Q,H$) 86

MODL 86
MODLV . {QH,s) 86
MODLV 86
MODV . {QH.s,D) 85
MODV 85
monotonic 67, 133- 135
MOV . {QH,S,D) . {QH,S,D) 166
MOVCSF . {QH,S,D) 198
MOVCSF 180, 198-199
MOVCSS . {QH,S,D) 198
MOVCSS 180, 198
move instructions 165
MOVF 104-105, 107-109
MOVF, defined 104
MOVHWR . {N,c) . (1,) 183
MOVHWR 183
M O V M Q . (2 .. 32.) 167
MOVMQ 167-168
MOVMS . { 2 .. 32) 168
MOVMS 168, 256, 260
MOVP . {P,R) . (P,R,A) 176
MOVP 28, 30, 45, 48-49, 56-57, 140, 142,

144-145, 148, 150, 152-153, 157, 174,
176-177, 227,231,252

MOVPHY 181-182,273
MSG 329
MULT . (QH,S,D) 77
MULT 24,27, 7'7, 98, 185
multiprocessor 1, 61, 180, 198, 272
multiprocessor, 110 memories in 6 1
rnultiprugral~l~~~ir~g 97, 294
MULTL . {QH,S) 78
MULTL 78
MUNF 104-105, 107-109, 122-123
M[x12
NAL (logical condition), defined 184
NAN 104-105, 107-109, 122-123, 133-134
NAN, defined 104
NAND . {QH,S,D) 2 13
NAND 213
NEG . {QH,S,D) 92
NEG 71, 79, 92, 122,206, 225
NEQ(arithmetic condition), defined 184

NEWPST 294
NEWUS 298
NEXT 35, 131, 142, 167-168, 188,200,219,

240,242,255,267, 343
NEXT() notation 35
nextTask 285
NI 245
NIL tag, defined 45
NO-FAULT 54, 57
NON (logical condition), defined 184
NONEXISTENT-MEMORY 59
NOP 173-174, 308
NOPs 308
NOR . {QH,S,D) 214
NOR 214
N O T . (Q,H,S,D) 206
N O T 116,206, 314, 323-324
not a number, floating point 104, 107
NULL 45
OD, defined 12
offset, in long operand addressing 29
offset, role in segment bounds checking 40
opcode, format of 12
opcode, in FASM 323
OPERANDBOTBEQUIRED 14,58
operand descriptor, defined 12
operand descriptor, fields of 22
operand descriptors 22
operand descriptors, unused 14
operands, illegal formats of 36
operands, order of storing into 14, 16
operands, prefetching of 65
OR . (QI I,S,D) 2 1 o
O R 79, 198,204,208, 2 10-2 12, 3 14
ORCT . (QH,s,D) 212
ORCT 211-212 '

ORCTV 212
ORG 152-153
ORTC . {QH,s,D) 2 1 1
ORTC 211-212
ORTCV 2 1 1
OUT-OFBOUNDS 40, 58, 60, 178, 240-

242,256,258-26 1,263,265

overflow, floating point 107
overflow, in integer arithmetic 70
overlap 21,37-38,46,91, 119-121,131,167-

168, 170,22 1,259
overrun 61
OVF, defined 104
PAGE-FAULT 42, 57,60, 178
page table entries 41-43, 343
page table entry, format of 42
page table entry, used in address translation

3 7
paged 37
PAGENO, field in PTE 42
PARAMETERAREA 52-53, 55,60
parainel.er area, fflr trap nr Interr1.1pt 52
parenthesized macro argument 340
parenthesized macro call arguments, con-

tinuation 340
parenthesized macro parameter, semantics

340
parenthesized macro parameter, syntax 337
parity 225
P C J E X T J N S T R 8,52,6'7,250,252-254,

258,267
P C B E X T JNSTR, defined 8
PC, defined 8
PC-relative 19'1
PDP-10 106, 311, 336
PDP-10 rounding modes 106
performance evaluation instructions 302
PHYSICALADDRESS 5, 18 1
YHY SICALADDRESSO notation 5
physical address spait 5
pipeline 67
pipelined 1, 155
pipelining 200
POINTER 29-30
pointer validation 44, 48-49, 53, 59, 178,

238, 343
pointer, byte, format of 228
pointer, format of 44
pointer, meaning of tags 44
pointer, self-relative 176

pointer-and-index 249
pointy brackets, in FASM 315
POP . {UP,DN) . {QH,S,D) 241
P O P 241
POSITION, field in byte pointer 228
PR bit in JOP format 20
PR bit, in FASM 325
precedences 3 14
prefetched 65
prefetches 171, 173-174, 180, 272
P R E V J P 244,247
PREVJP, within stack frame 244
PRINTV 329-330, 334
PRINTX 334
PRIORITY 9,61-62
prlurity, in PROCESSOR-ETATUS 9
priority, role in interrupts 61
PRIVILEGE-VIOLATION 6, 58
privilege 50, 53
privileged 5-6, 9,44, 50, 52, 58-59,249-250,

257,281-282, 302
PRIVILEGED 9,44
PRIVILEGED bit in PROCESSORSTATUS

9
privileged mode 5
privileges 48
PROCJD 310
procedures, calling with CALLX 248
PROCESSORSTATUS 9,44, 51-53, 58-

59, 81-62, 65, 67, 213, 218-250, 257,
265,285,287-288, 293-294

processor priority, in PROCESSOR-STATUS
9

processor status 9, 284, 293
processor status register 9
program counter 6-8, 13, 18-20,24-26,267,

343
program counter, defined 8
program counter, dual identity of R3 6
propagating floating point exceptions 108
pseudo-op 3 14-3 15, 3 17, 326-328, 330-33 1,

333-336, 338

pseudo-ops 313,316-318,327-329,331,333,
335, 345

pseudoregister 6-7, 25-32, 263, 265, 320
pseudoregister addressing mode 26
pseudoregister mode, restriction on registers

for 6
pseudoregisters 26
PTA, field in STE 41
PTE 37-39,42-43,4'7, 57,67
PTE, format of 42
PTE, used in address translation 37
PTEs 61
PUSH . {UP,DN) . {QH,s,D) 240
PUSH 240,242, 338
PUSHADR . {uP,DN) 242
PUSHADR 3, 56,242
QPART 155-156
quicksort 155-1 57
QUICKSORT 156- 157
QUO . (QH,S,D) 79
QUO 79,83,87, 185
QUO2 . {QH,S,D) 81
QUO2 81, 185,217
QUO2L . {QH,S) 82
QUO2L 82
QU02LV. {QH,S) 82
QUOZLV 82
QUO2V . {QH,S,D) 81
QUO2V 81
QUOL . {Q,H,s) 80
QUOL 80,84,88
QUOLV . {QH,S) 80
QUOLV 80
QUOTE 334, 338 ,
QUOTE, in FASM 338
quotient-remainder 87-88, 100- 10 1
QUOV . (QH,S,D} 79
QUOV 79
QUUX 215-216
R16 20
R3 6-7,2 1,24-27,29,34, 147- 149,182,198-

199,292, 322
R3, dual identity with program counter 6

radians 136- 139
RADIX 87, 315, 334
RB, field in STE 41
RCTR 303
READ-PERMIT 43, 61,280, 31 3
READSERMIT access mode 43
read bracket 4 1
read bracket, field in STE 41
real-time counters 302
reciprocal 1 16- 1 1 7
RECTR 305
recursive traps 60, 343
KEG field, in operand descriptor 22
REGISTERXILE 9,287-288
REGISTERSAVEAREA 52,263, 265
register file 6, 8-10, 51, 59, 255-256, 265,

287-292
register file manipulating instructions 284
register file, in PROCESSOR-STATUS 9
register files 6
register save area, for trap or interrupt 52
register-based-indexed 32
register-based-indexed addressing 32
registers, addressing mode for '25
relative jump 20
relative polnter 176
relative- JOP 3 13
relative-jump 22
RELOCA, in FASM 327
relocatable assembly 327
REM . {Q,H,S,D} 83.
REM '70,83,85-8'7
REML . {(LH,s) 84
REML 84,86, 88
REMLV . {QH,s) 84
REMLV 84
REMV . {Q,H,s,D} 83
REMV 83
REPEAT 334
RESERVEDADDRESS-MODE 36,58,308
reserved tag, defined 45
R E T A D D R 244-245,247,252-253,256
RETADDR, within stack frame 245

RET 157,243-244, 26 1
RETFS . {RA) 265
RETFS 56, 58,60,67,243,. 265-266 ,

RETFS, Mark 11. implementation limit 67
RETGATE 243-244, 256-257
RETSR 87, 153,243-244,260
RETUS . {RA) 263
RETUS 56,243,263
RFLT2 . (H,s,D) 145
RFLT2 145
RIEN 276
RINGALARM-TRAP 9, 59
RINGALARM 9
RING 249
ring alarm 9
ring of execution 8
ring of execution, defined 45
ring tag, defined 45-46
RING, field within gate pointer 249
.rings, role in protection mechanisms 44
rings, use in address translation 37
RIPND 278
RMW 180, 198
RNDMODE 11, 105-106, llS, 121, 126

ROT . {LF,RT) . {QH,S,D) 222
ROT 222
rotate instructions 205
ROTV . {LF,RT) . {QH,s,D) 222
ROTV 222
rounding modes 105-106. 1 19, 126, 344
rounding modes, floating point 106
rounding, inexact 67
routine linkage instructions 243
RPHYS 182
RREG 291
RREGFILE 289
RRFILE 287
RRNDMD 105, 126
RTA, defined 6
RTA 1, defined 6
RTB, defined 6
RTB 1, defined 6
RTN 338

RUS 14,295.
R[xl2
SAIL 313-314.
sao 27, 34
save area for traps and interrupts 52
save area, for gate crossing 249
save area, for JSR instruction 258
save area, using stack frame 244
SECOND() notation 35
segment 5, 10, 26,'37-42, 44, 51, 57-58, 67,

141, 176, 179, 238-242, 247, 249, 256,
,258-261,263,265, '3 12, 327

segment bounds checking, Mark IIA excep-
tion 67

segment size, field in STE 42
segmentation 37, 40-4 1, 343
SEGMENTITOJAULT 41, 57,60
segmentito 37-43,46-47, 57,250, 343
segmentito table entries 41 '

segmentito table entry, used in address trans-
lation 37

segmentito, defined 37
segmentitoi 37,' 40; 42 '

SEGSIZE 179
self-relative 44
self-relative pointer 176 ,
semicolon 312, 3 19, 339-340
SEXCH . {QH,S,D) 172

. .
SEXCH 156, 1%?
SF.CP, within stack frame 244
SF.EP, within stack frame 244
SF.FLAGS, within stack frdme 245
SF.PREVJP, within stack frame 244
SF.RETADDR, within stack frame 245
SHF . {LF,RT) . (QH,s,D) 218
SHF 79, 152-153,2 17-2i8,220-221
SHFA . {LF,RT) . {Q,H,s,D) 21 7
SHFA 12, 56, 81,'156, 205. 217, 220
SHFAV . {LF,RT) . {Q,H,S,D) 217
SHFAV 217
SHFV . {LF,RT) . {Q,H,S,D) 218
SHFV 218

. shift instructions 205

shift, in long operand addressing 29
SHORTDISP 322-323
SHORTSHIFT 322-323
short operand variables 25
short operand, defined 12
SIGNXXTEND 3
SIGNXXTENDO notation 3
SIGN, floating point 102
signed integer arithmetic 70
SIGNED() notation 2
singlequote 34 1
SIZE, field in STE 42
SIZEREG, defined 21
SJMP 18, 190, 197, 325
skip format 19
skip instructions 184
SKP . {GTR,EQL,GEQLSS,NEQLEQ

NON,ALL,ANY,NAL) . {QH,S,D)
185

SKP 19,26, 87, 95, 126, 184-185, 203-204,
925, 932

SKP, in FASM 325
SLR . { RO .. R31) 173
SLR 173, 323
SLRADR . (RO .. R31) 174
SLRADR 174
SNAIL 312.
SO, defined 12
soft traps 50-51, 53-54, 343
soft traps, defined 50
S O P format 19
SOP, in FASM 325
sorting 155, 157
SQRT 133
square brackets, in FASM 316
square root 133, 141
SRO, SR I, SR2, defined 21
stable 106, 119
stable rounding mode 106
STACK-OVERFLOW 58, 238-241, 258-

259
STACK-OVERLOW 242
stack frame convention 244

stack frame, pointers for 7
stack limit, defined 238
stack manipulation instructions 238
stack overflow, during trap or interrupt 6C
stack pointer, defined 238
stack pointerllimit, defined 7
Stanford 31 1, 313, 336
statements, in FASM 313
status register instructions 284
STE 38-39, 41,43, 46-47, 5'1,61, 250
STE, format of 41
STE, used in address translation 37
STEs 37,61
sticky, defined '70
STRCMP . (RTA,RTB) 203
STRCMP 203
structures 49
SUB . {Q,H,s,D) 75
SUB 16, 56, 71, 75-76, 90, 148, 150, 156,

208, 324-325
SUBC . (QH,S,D) 76
SUBC 7 1, 76
SUBCV . (QH,S,D) 76
SUBCV 71, 76 .
SUBV . (QH,S,D) 75
SUBV 16, 71, 75,227
SWITCH 58,284-285

h

SWPDC . (V,P) . (U,UK) 282
S W YISC 282
SWPDM 283
s w P I e . {v,P) 281
SWPIC 281
SWPIM 283
SWs 246
symbol, attributes 316
symbol, data value 9 16
symbol, definition of 319
symbol, external value 316
symbol, half-killed 3 16, 3 19
symbol, instruction value 3 16
syn~lrul, rllacru llalile 316
symbol, redefinition of 3 19
symbol, register 3 16

T field, in T O P format 15
TABLE-4 187
TAG field of pointer, meaning of 44
TEMP 1 173- 174
TEMP2 173
term, in FASM 314
TERMIN 334, 336-338, 342
TERMINs 338
test-and-set 180
text constant 3 17
three address format 15
three-operand 6, 324
TMODE, field in trap parameter descriptor

singleword 55
T O P format 15
TOP, in FASM 324
TRACE-ENABLE 265
T R A CEXNB 9- 10, 65-66
TRACE-.ENB bit in PROCESSOR-STATUt

9
TRACESEND 9-10, 58-59, 65-66,265
TRACESEND bit in PROCESSORSTATU!

10
T R A CE-PENDING 67
TRACE-TRAP 58,65
trace pending, trap for illegal case 58
trace traps, role in instruction execution 65
Ll .a~i~~g, Lils ill PROCE330R-STATUS 9
TRANS . {QH,S,D) . (QH,Y,U) Y 1

TRANS 91, 166,200
translation of 110 memory to main memory

62
TRANSP . {H,s,D) 147
TRANSP 146- 148
transpose 146- 148, 153
trap descriptor block pointer 50
Lrap pat arnelur descriptor. singleword, defined

55
trap vector format 51
traps, instructions for 243
traps, role in instruction execution 65
traps, save area for 52
T R P S A R M B E S C S W 51, 55, 262, 264

$6 {~'s'H) ' SBVA
OH 3sasa

OH {a's'~) - {I~O'XS) '3sa~~
IFI sIaGA

If1 {~'s'H) ' {I do't~s) ' SIaEA
-

051 3sau
OH {a's'~) ' {I do'as) 'LeSsat~

151 sIau
I +I {a's'~) ' {I do'as) - sIatA

091 {~'s'H) . {IdO'?IS) - ,,X-A,,A
091 {u's'H) . {ldOe?IS) ' ,,AX,,A

091 {~'s'H) - {I dO'?IS) . ,,A-X,,A
f 91 {~'s'H) ' {I doe?Is) ' ,,ZA+X,,A

091 {~'s'H) ' {I ~O'XS) ' ,,A+X,,A
. 191 {~'s'H) ' {ld0'?I~} ' ,,AS+X,,A

191 {~'s'H) ' {I ~O'XS) ' ,,X-AS,,A
191 {aeS'H) . {I ~O'XS) * ,,A-XS,,A

191 {~'s'H) ' {I d0'tlS) ' ,,AS-XS,,A
191 {~'s'H) ' {I~O"~S) ' ,,A+XS,,A

191 {~'s'H) ' {I ~o'XS)" ,,AS+XS,,A
.69 1 {~'s'H) ' ,,XS,, A

291 {~'s'H) ' (.ld0'?IS) ,,AX-S,,A
69 I {~'s'H) . ,,X-S,,A

191 {CI'S'H) - {I~O'XS) ' ,,AX+S,,A
691 {~'s'H) ' ,,X+S,,A

E9I {CI'S'H) ' ,,Xli+S,,A

. , 211 H3XBSn
21 I {aas'H%) ' H3X3Sn

paurJap '%el rasn
01 SUO!l

-da3xa raSa~u! ur a[or 'ia~sflar snlels rasn .

01 ralsflar snlws rasn
9 apow rasn

OOE-f6Z '982 '592 '~92 '492
'09Z-852 'fEI-EEI '921 'I21 '61 1 'LO1
'sol '01 '69 'ES-19 '51 '01 S~LVLSX~S~

tf 3~d ur PI~Y 'a3sn
862 y3ElS %UIMOJ%-pn~dn

Z~Z-~EZ' '29 'gz '1 %u!mor%-pnmdn
9 16 ase3-raddn

18 punomun
$1 sro~d!r3sap puerado pasnun

ES~ L-I~SXI~~~IIOLSN~

, uo!le~ou O~~N~ISN~
16 3pawql!re na%alu! pau%!sun

€9 '6 '9-9 paSai!a!rdun

OI sn.I.vLs
'?IOSS330Xd u1119'3aOM-CI3ddVMNfl

01-6 3aONa3ddVMNn
f 01 PaulJaP 'dNn

601-101 'q01-$01 dNn
40 1 lulod Burleo~ 'mo~rapun

LSZ-992 '9~2 '++z-E+z TTV~N~
OfE Pa3uelequn

69 1 asaaaar-~fq-tsn

66 -Innwn
66 {s'HB) - TL-I~M~

86 LTnMn
86 {a's',~%} * unmn , .

001 Allran
001 {~'s'H%) - AhIan

I0 I ATAICIn
I 01 {s'HB) - AmIan

IOI m~an
ior {s'HB} uIan

001 AIan
001 {a's'~%) ' AIan

002 dSdM3n
002 {~'s'H%) . m31

%3~'~~1%X3'17)3't1~3) ' dSdM3n
6ZE LXL

29 1 '/+I -gf~ [euotsuaw!p-oml
.f 01 luawa[dwo3s,o~1

. .
OL

3~3awqlr.1~ raSalu! u! pasn 'luahaIdwo, s,oma
lewroj ssarppe om)

6g olr~uaw%ag~
99 UJsl~q3aw dell dTSdXL

' EfE
'592-292 'Sf2 '69 '99-99 'E9-ZS '09 d1SdX.L

292 { E9 " 0) ' d1SdXL
9s wsyueq3aw 'dell BXX~)IJ,

E fE '9 97,
-592 'GfZ '18 '69 '99-99 '09 'Lf '3~3dXJ,

f92 { $9 " 0) ' 3X3dXL
99 P~~!J~P"MS-~S~~ZIVEIV~~XL

VABS 93
VALID, field in PTE 42
VALID, field in STE 41
validation level of pointer 48
valida.tion level, in addressing 46
validation of addressing 46
validation of pointers 48
VALIDP 48-49, 178
VALIDP, use of 48
value-returning 314, 3 18, 345
VAND . {SR,OP 1) . {H,S,D) 207
VAND 207
VANDCT . {SR,OP~) . {H,s,D) 209
VANlXT ZO9
VANDTC . {SR,OP 1) . {H,S,D) 208
VANDTC 208
variable-Lac 20
variable-base addressing mode 28
variables, combines long and short operand

29
variables, long operand 27
variables, short operand 25
VBITCNT . {H,S,D) 225
VBITCNT 225
VC"S+RXW . (H,s) 163
VCt'XY" . {SR,OPI) . {H,S) 160
VCMAG . {H,S) 128
VCMAG 128
VDOT . (H,s,D) 145
VDOT 143
VDSHF . {LF,RT) 221
VDSHF 2 19-22 1
vector instructions 2 1
vector, defined 21
vector, for traps and interrupts 50
vector, size register for 2 1
vectors, using constants as 35
VEQV . {SR,OPI). (H,S,D) 216
VEQV 216
VEXCH . {QH,S,D) 171
VEXCH 171
VFWS+RX" . (H,S,D) 163
V F " S + X " . { H , S , D) ~ ~ ~ -

VF"S+XY" . {SR,OP I) . {H,s,D) 16 1
VF'IS-X" . {H,s,D) 159
VFWS-XY" . {sR,OP 1) . {H,S,D) 162 .
VFllSX" . {H,S,D) 159
VFVSX+SY" . {sR,OP 1) . {H,s,D) 161
VF"SX+YW . {SR,OPI) . {H,s,D) 161
VFWSX-SY" . {sR,OP I) . {H,S,D) 16 1
VFWSX-Y" . {SR,OP I) . (H,S,D) 16 1
VF8'SY-Xu' . {SR,OP 1) . {H,s,D) 16 1
VFWX+SY" . {SR,OPI) . {H,s,D) 161
VF"X+YW . {sR,oPI). {H,S,D) 160
VF"X+YZ" . {sR,oPI) . (H,S,D) 164
VF1'X-Y" . {SR,OP 1) . {H,S,I)) I60
VFWXY" , {SR,OPI] . (I-I,C,D) 160
VF1'Y-X" . {SR,OP 1) . {H,s,D) 160
VFPDIS . {SR,OP 1) . {H,s,D) 141
VFZDIS 67, 141
VF2DSQ. (SR,OP 1) . {H,s,D) 140
VF2DSQ 140, 142
VFSDIS . {sR,oPI). {H,s,D) 141
VF3DIS 67, 141
VF3DSQ. (SR,OP 1) . {H,S,D) 140
VF3DSQ 140
VFABS . {H,S,D) 123
VFABS 123
VFATAN 139
VFATANV . {sR,OPI). {H,S,D) 139
VFATANV 139
VFCWS i RX" . {H,s) 163
VFC9'XY" . {SR,OP 1) . {H,S) 160
VFCMAG . {H,S) 128
VFCMAG 67, 128
VFCOS , (H,S,D) 137
VFCOS 13'7
VFDIV . {SR,OP 1) . {H,s,D) 1 15

VFDIV 1 15
VFnOT {H,s,D) 143
VFDOT 143, 149
VFEXP . {H,s,D) 135
VFEXP 135
VFIX , {H,s,D) . (H,s ,~) 119
VFIX 119
VFLOAT . {H,s,D) . (QH,S,D) 120

VFLOAT 120
VFLOG . {H,s,D) 134
VFLOG 134
VFMAX . {SR,oPl) . {H,S,D) 125
VFMAX 125
VFMIN . {SR,OP I) . {H,S,D) 124
VFMIN 124
VFNEG . {H,S,D) 122
VFNEG 122
VFSIN . {H,s,D) 136
VFSIN 136
'VFSQRT ; {H,s,D) 133
VFSQRT 67, 133
VFTRANS . {H,s,D) .{H,S,D) 121
VFTRANS 121
VINI . (QH,S,D) 169
VINI 169
VIOR . (B,QH,S) 270
VIOR 270
VIOW . {B,QH,s) 27 1
VIOW 271
virtual address space 5
virtual address translation 3'7
virtual machine mode 9
virtual-to-physical 10, 39, 61, 280, 284
VMAX . {SR,OP 1) . {H,s,D) 95
VMAX 95
VMIN . {SR,OP 1) . {H,S,D) 94
VMIN 94
VMM-TRAP 59
VMM 9
VNA Nn . {sR,OP 1) . {H.S,R) 2 13
VNAND 213
VNEG . {H,SD) 92
VNEG 92
VNOR . {SR,OPl) . {H,S,D) 214
VNOR 214
VNOT . {H,S,D) 206
VNOT 206
VOR . (SR,OP 1) . {H,s,D) 210
VOR 210

. VORCT . {SR,OP 1) . {H,s.D~ 212
VORCT 212

VORTC . (SR,OP 1) ., {H,s,D],s . .. 1 1
VORTC 2 1 1 . .

VPIOR . {B,QH,S) 273
$

VPIOR 273
VPIOW . {B,QH,S) 273.
VPIOW 273
VREV . {H,s,D) 1'10 ,

VREV 170
VS 21, 159,217-218,221 .

VSHF . (LF,RT) . {H,S,D): 218 . : .
VSHF 218
VSHFA . {LF,RT) . { H , s , ~ 21 7 . . t -

VSHFA 2 17 . . , . , . . ? , .

VSP 26
VSS 163
VTRANS . {QH,S,D) . {QH,s,D) 91
VTRANS 35,9 1, 170,221
vxon . .[SR,QP 1). , (w , s , ~) 21 e
VXOR 215
WAIT 275, 324
WAITS 3 1 1.
WASJMP 286
WB, field in STE 41
WCTR 304
WECTR 306
WFS JMP 294
WIEN 277
WIPND 59,279
WORD 208,2 1 1,235 .

WPHYS 182
WREG 292
WREGFILE 290
WRFILE 288
WRITESERMIT 43,61,274,280, 313
WRITESERMIT access mode 43
write bracket 4 1
write bracket, in STE 41
write.-.only 43
WRNDMD 105, 119, 126
wrong-branch 6'1
WTBP 301
WTDBP 243, 301
WUS JMP 298

X field, in operand descriptor 22
XLIST 333, 335 .

XMLIST 333, 335
XOP format 14
XOP, in FASM 324
XOR . { Q H ~ D) 2 15
XOR 79, 215,225, 314
XRTN 338
XSPACE 313, 327, 335
XSPACE, in FASM 327
ZDIV 297
ZEROXXTEND 2,25
ZERO_EXTEND() notation 2

Table of Contents

. 1 A new approach to emulation

. 2 Implementation of the compiler

. 2.1 Details of implementation
. 2.2 Problems posed by the UYK-7 architecture

2.5 Preparing input for the post-compiler

. S Improving performance

9.1 Improvements to the post-compiler
3.2 Additions to the Mark IIA instruction set

. 4 Status of the emulation project 1 1

1 A new approa,ch to emulation
Given the .task -of emulating an existing machine such as the ANIUYK-7 on a microprogrammable
processor such as the S-1 Mark IIA, the conventional approach is to write microcode to perform
each instruction in the UYK-7 repertoire. Though possible, this approach presents significant
drawbacks: .

The underlying microarchitecture used to implement the S-1 native mode instruction set
may change from one implementation to the next, even though the native mode instruction
set remains exactly the same. Such a change would render a microcoded UYK-'I emulation
obsolete;

Writing and debugging microcode is widely appreciated to be more difficult,
Hme-consuming and unreliable than programming in a high-level language or assembly
language, and the result is harder to read, understand or modify.

To avoid these drawbacks, the S-1 Mark IIA emulation of the UYK-7 instruction set uses S-1
native mode binary machine.code instead of microcode. A "post-compiler"--a novel type of software
construct written in . a high level. language with some assembly language subroutines-transforms
UYK-'I binary machine code into S-1 binary machine code, typically while also expressing a loader
hnction. This transubstantiated UYK-'7 code then executes in a special runtime environment
which provides a high-level emulation of UYK-7 inputloutput and protection hardware.

Though the post-compiler typically emits several S-1 instructions while transubstantiating each
UYK-7 instruction, the resulting emulation will execute a factor .of two to four faster than the
standard UYK-7 implementation, because it does make optimum use of the pipelined hardware in
the S-1 processor.

Upon first encountering the post-compiler concept, one might protest that a machine-coded "objectn
emulation would necessarily execute more slowly than i b microcoded counterpart, and .probably
much more so. In the case of a pipelined processor such as the S-1 system, this belief is largely
falIaciout The relevant measure of the throughput of an emulator is the number of cycles needed

1 A new approach to emulation

for it to execute a given block of emulated code, not the number of instructions to be fetched in the
process.

An S-1 processor such as the Mark IIA must execute various sequences of operations for some
number of microcycles in order to emulate scalar instructions such as those of the UYK-7; S-1
native mode almost always specifies such sequences as efficiently as possible. Furthermore, as long
as an S-1 processor's "parsing" of the emulation specification generated by the post-compiler does
not require more than this former number of cycles, there will be no penalty for using S-1 native
mode as the input language, as the parsing and execution pmcesses proceed simultaneously in
different portions of the processor. S-1 processors are so designed that this is generally true;
operand calculation and operation execution are more cycle-intensive than are the
instruction-fetching and -decoding processes. . .

.Of' course, it is not always true that gains cannot be made through use' of microcode. For slightly
enhanced post-compiler performance, one may, for instance, 'fine-tune' b y very selectively
microcoding certain frequently-used processes corresponding to executing particular UYK-7
instructions or calculating certain UYK-7 operands. The frequent use of an extensive sequence of
S-1 native mode instructions might also tempt one to substitute for convenience and enhanced
readability of the resulting code a single new S-1 instruction, whose microcoded expression might
execute slightly faster than the instruction sequence it replaced. 3
The magnitude of the principal drawback of the post-compiler approach to the emulation problem I

depends on how similar the emulated and emulating architectures are. The biggest single
complication occurs if the machine to be emulated permits code to modify itself, as the UYK-7
indeed does. In such cases, the emulation process must be able to detect and 'repair' the
ttansubstantbated UYK-7 code as each code-modifying instruction is executed; the S-1 Mark IIA
post-compiler for the UYK-7 therefore does so.

Other problems arise from the use of one's complement arithmetic in the UYK-7, rather than the
two's complement arithmetic used in the S-1, in executing a UYK-7 instruction which causes the
next instruction to repeat, and from a UYK-'7 instruction which executes a single instruction located
at a remote address. The S-1 Mark 'IIA post-compiling emulator package for the UYK-7
successfully addresses each of these complications.

2 Implementation of the compiler

2.1 Details of implementation

The Mark 'IIA post-compiler for the UYK-7 is written in Pascal,.supplemented with small S-1
assembly language routines for bit manipulation and for running the S-1 code generated by the
post-compiler. The basic functions of its major modules are discussed below.

A series of tables is used to correlate UYK-7 code with S-1 code. One table contains the starting
address of the S-1 code corresponding to every UYK-7 half-word. If a UYK-7 half-word does not
constitute an instruction because the preceding instruction occupies a full word, then a meaningless
starting address is stored. Another table contains the length of the S-1 code sequence corresponding
to each UYK-7 half-word. Again, if a UYK-7 half-word does not constitute an instruction, then a
meaningless length is stored.

To satisfactorily address the problem of self-modifying code, the post-compiler stores in memory a
amarked" copy of the original UYK-7 program, where each 32 bit UYK-7 word appears in the 32
low order bits of a 36 bit S-1 singleword whose high order ("pure") bit is set. When the UYK-7
program tries to modify itself, it will store a 32 bit value which is zero-extended to 36 bits, thus
clearing the "pure" bit. The next time that instruction is to be executed, the sequence of S-1 code
which emulates that instruction discovers the pure bit is not set, and calls the post-compiler to
dynamically recompile the instruction and replace that code sequence with an updated one before
the emulation proceeds.

If, when the post-compiler is called to recompile a UYK-7 instruction which has been modified, the
new S-1 code sequence does not fit in the area occupied by the outmoded one, a patch is generated.
This is done by placing the new code sequence in a special patch area of the S-1 processor's
memory, followed by a jump back to the start of the S-1 code sequence representing the next

4 2 Implementation of the compiler

UYK-7 instruction. A jump to the start of the patch is inserted in place of the outmoded code
sequence, and the two tables mentioned above modified to contain the new starting address and
length of the S-1 code sequence. This appkach vigorously exploits the fact that evenminimal S-1
memory units have several dozen times the storage capacity of the maximum memory complement of
a UYK-7.

The UYK-7 has three register sets of eight registers each: accumulators, index registers, and base
registers. UYK-7 index register zero always contains zero. Because the UYK-'7 uses a 16 bit one's
complement end-around carry adder for indexing, the S-1 indexing modes cannot be used to do
UYK-7 indexing. In the UYK-7 architecture, the high order half of a doubleword is contained in
the higher numbered word. (e.g., if accumulators 1 and 2 form a doubleword, accumulator 2 has the
high order half.) This is backwards relative to the S-1 convention, so to make doubleword
manipulation easier, the UYK-7 accumulators are stored in descending order in S-1 processors.
Since the top bits of the UYK-7 base registers are very seldom used, only the bottom 16 bits of them
are stored in S-1 registers, with the top bits being stored in main memory. Rased on all these
cdnarainrs, the 32 S-1 r w t e r s are allodated as follows:

Purpose
UYK-'I registers S5 through S'7
UYK-7 PC
S-1 RTA
S- 1 RTA 1
S-1 RTB
S-1 RTBl
Temporary
UYK-7 registers A7 through A0
Temporary'
1.JYK-7 registers B 1 through 337
UYK-7 registers SO through S t
S-1 stack pointer
S-1 stack limit

The post-compiler does not presently attempt to compile all UYK-'7 instructions into S-1 native
mode sequences. h general, it currently handles only CPU emulation, leaving other areas of the
architecture (e.g., interrupt handling. inputloutput, anrl prnt~rtion) for higher level emulation, to bc
implemented as determined by Navy interest in s~lch. This is consonant with Navy pnlicy rrgarding
the NECS version of the UYK-7, which current specifications .state is to emulate only the UYK-7
CPU and is to have a different I/O architecture.

2.2 Problems posed by the UYK-7 architecture

2.2 Problems posed by the UYK-'I architecture

Unfortunately, the UYK-7 architecture is not a simple one. Several features of it require special
attention to ensure theemulation preserves the meaning of theoriginal UYK-7 program.

As mentioned earlier, perhaps the biggest problem faced by the post-compiler is that of
self-madif)4ng UYK-7 code. Should the UYK-7 program try to modify itself once it has been
compiled into an S-1 program, it will modify the UYK-7 copy and not the~s-1 copy. The emulation
must propagate this change into the S-1 copy. The approach that has been implemented to handle
this is the following. As stated previously, UYK-7 words are stored right justified and zero
extended in S-1 memo;y. When a UYK-7 instruction is compiled into S-1 code, the high order bit
of the S-1 memory word holding that UYK-7 instruction is .turned on. The S-1 code generated
tests this bit (by-trapping if the word is negative) before actuallyexecuting the code for the UYK-7
instruction. If the bit is no longer set, the trap reinvokes the post-compiler to recompile the code that
has been modified.

Two additional problems are posed by the UYK-'7 repeat instruction (RP), which executes the
instruction following it a certain number of times (specified .by index .register 7) or until a certain
condition is met (specified by the 'a" field in the instruction word). Some instructions are specified
in the architecture as not being repeatable. The first problem is that it is not. clearly specified
anywhere what happens when a repeat instruction attempts to repeat an "unrepeatable" instruction.
The ANIUYK-7 Technical Description states on page 31. "If an attempt 'is made to repeat such an
instruction [one which cannot be repeated], the repeat mode may clear with the repeated instruction
executed once, or the repeat .mode may go to completion with unreliable results. from the repeated . .
instruction." This is too vague for the post-compiler to implement. Instead, whenever the
post-compiler finds a repeat instruction followed by an instruction which should not be repeated, the
post-compiler prints a warning and generates code as if the repeat instruction were not present.

The second problem with the.repeat instruction is that it is possible to jump to or execute remotely
the instruction immediately following a repeat instruction. This means that the code generated for a
repeat instruction must consist of the code to repeat the following instruction (in case the flow of
control proceeds normally through the code), followed by a jump instruction, followed by the code to
execute the following instruction by itself (in case a jump is made to it or it is executed remotely). In
the normal case, a jump will be made around this second sequence of code.

Yet another problem is posed by the execute remote instructions ("XR" and "XRL"). These are
handled by use of the two tables mentioned earlier. Once the execute remote instruction has
determined the address of the instruction it is to execute, it looks up the address in S-1 memory of
the start of the S-1 code to execute the instruction using the first table and the length of the S-1
eade using the second table. It then copies the S-1 code into a temporary area, places a jump back
to the start of the next instruction to be executed after the copied code, and jumps to the copied

6 2 Implementation of the compiler

code. This works well even when the object of an execute instruction is another execute instruction,
but not, unfortunately, when the object is a repeat instruction. When the object is a repeat
instruction, the UYK-7 repeats the instruction following the XR or XRL, not the instruction
following the RP. In this case the UYK-'I post-compiler must be reinvoked at run time to compile
code for the repeat instruction.

Finally, special sequences of instructions are generated to perform one's complement end-around
carry arithmetic on the two's complement architecture of the S-1.

2.3 Preparing input for the post-compiler

The post-compiler operates on files with the extension ".BOSH. These files contain UYK-7 core
images in octal represented as strings' of ASCII digits. ASCII files are used because the current S-1
implementation of Pascal cannot read binary files. These files have one octal number per line. Any
line may have a comment consisting of non-numeric ASCII characters before or after the number.
The files consist of eight numbers followed by up to 8 blocks of data The first eight numbers
specify into which UYK-7 S register to load the starting address of the corresponding block If not
all eight blocks are present, the corresponding S register numbers at the beginning are ignored. The
format of a block is:

Starting address (1 word)
N-1, where N is the number of data words in the block (1 word)
Data (N words)
Checksum (1 word)

These *.BOSn files can be generated in one of two ways. On the SAIL computer system at Stanford
University, programs called TD.FAI[UYK,SlI and TDS.FAf[UYK,Sll read 556 and 800 bpi, 7
track UYK-7 boot tapes respectively, creating a binary file called UUYK.BO0". (".BOO" is the
suffix for standard U,YK-7 boot files.) These files can be converted to ".BO8" files by a program
called BOOB08.PAS[UYK,S11B which leaves eight commented but otherwise blank lines at the
beginning of each file on which the S register numbers should be inserted.

The second way to create ".B0Sn files is to use the macro facility of the FASM assembler .to
translate UYK-7 assembly language into the corresponding octal numbers represented as strings of
ASCII digits. The file UYKMAC.SlIUYK,SlI provides suitable macros, documentation, and
ex arnples.

3 Improving performance . . ., . , , ! . -(.

If desired, the performance of the emulation could be improved further without abandoning the
basic approach or the work done so far.

., ,.

., :.-
. 3.1 ~m~rovements to the post-com piler

. .

There are several areas in which the post-compiler itself could be irn$r&&d.
. .

If the post-compiler were to optimize out the .addition of'the. base registers at post-compile time
assuming they stayed constant, the speed of the tbde generatd would 'increase because fewer S-1
operations would be needed for each UYK-7 instruction.

If self-modification occurs often in the program being compiled and each new code sequence
requires more space than the previous sequence, then much $-1 memory will be wasted because the
post-compiler places the new sequence in a patch area. It would be useful to have some way of
reclaiming the S-1 memory used for the sequences that have been replaced.

Since S-1 Pascal does not currently pack records, a full word is necessary for every piece of data
mentioned above. This means that there is an overhead of four S-1 words per UYK-7 word, not
counting the S-1 code generated. It is hoped that in the future, this can be improved through the
use of packing.

Finally, additional research can be done to make the code generated for the.repeat instruction fail in
the same way that the repeat instruction fails on the real UYK-7 given various illegal instructions.

S Improving performance

3.2 Additions to the Mark IIA instruction set

This is a proposed list of modifications to the S-1 Mark IIA architecture which would be especially
useful for the post-compiler. In almost all cases, these changes would increase the code density; in
some cases, the speed of the code generated would also increase because the microcode
implementation of some of the new instructions would.require fewer cycles than the macrocode that
the post-compiler would have generated.

Add ~ l l e hrlluw111g histi'mctions.

{UYKADD, UYKSUB, UYKSUBV) . {S, D}
%lass: TOP One's cornplantrl~t arilh~~~etic
side ~ffei ts : CARRY ,"XNT-OVFL

Perform one's complement 32 or 64 bit end-around borrow arithmetic (addition, subtraction, and
T O P reverse form subtraction. This is the type of arithmetic that the UYK-7 uses. These
instructions would be needed in both single and double word precisions. The single word precision
version would operate on 32 bit quantities stored right justified in S-1 singlewords. The high order
four bits of the inputs need not be zero but the high order four bits of the result will be zero.
CARRY and INT-OVFL would be computed assuming 32 bit precision. The doubleword precision
version would operate on 64 bit qu-antities stored right justified in S-1 doublewords. The high order
eight bits of the first word in the double word pair comprising each input need not be zero but the
high order eight bits of the first word of the doubleword pair comprising the result will be zero.
CARRY and INT-OVFL are computed assuming 64 bit precision.

UYKPACK, UYKPACKV
Class: XOP Pack a UYK-7 word

Form into the double word .OP1 a quantity consisting of eight high order zero bits, followed by the
low order 32 bits from {OP?, next(0F!2)), followed by the low order 32 bits from {next(C)P'L), UP'L).
Note that the high order four bits of OP2 and next(OP2) need not be zero. Note that in this case
the Y" does not indicate a T O P reverse form and is not quite consistent, but it is not clear what
else to call this instruction. These instructions are useful to convert UYK-7 doubleword data into a
form that the S-1 can handle better. UYKPACKV is provided because the two singlewords may be
stored in either order.

3.2 Additions to the Mark IIA instruction set

UYKUNPACK, UYKUNPACKV
Class: XOP Unpack UYK-7 words

Place bits 8-39 of OP2 in bits 4-31 of (OP1, next(OP1)) and bits 40-71 of OP2 in bits 4-31 of
(next(0P l), O P 1). Note that bits 0-7 of OP2 need not be zero but ,bits 0-3 of O P 1 and next(OP1)
will be zero. Once again, in this case the "V" does not indicate a T O P reverse' form. These
instructions are useful as the inverse of the UYKPACK and UYKPACKV instructions.

{UYKSHF, UYKSHFV} . {LF, RT} . {S, D} ,

'

Class: T O P Logically shift a UYK-7 word

Read the (!32,64} low order bits from the (singleword, doubleword) S1, logically shift them (left,
right) by the amount specified by singleword S2, and deposit the result in the low order bits of
DEST. UYKSHFV is the reverse form. Note that bits (0-3, 0-7) need not be zero in S 1 but will be
zero in DEST.

{UYKSHFA, UYKSHFAV . {s, D} . {LF, RT)
Class: TOP ., Arithmetically shift a UYK-7 word

Read the (32,641 low order bits of the (singleword, doubleword) S1, arithmetically shift them (left,
right) by the amount specified by the singleword S2, and deposit the result in the low order bits of
DEST. UYKSHFAV is the reverse form. Note that bits (0-3, 0-7) need not be zero in S 1 but will
be zero in DEST.

{UYKROT, UYKROTV) . {s, D} . {LF, RT)
Class: T O P Rotate a UYK-7 word

Read the (32, 64) low, order bits from the (singleword, doubleword} S 1, rotate them (left, right) by
the amount' specified by the singleword S2, and deposit the result in the low order bits of DEST.
UYKROTV is the reverse form. Note that bits (0-3, 0-7) n d n o t be zero in S l but will be zero in
DEST.

UYKINDEX . .

Class: T O P Perform UYK-7 indexing arithmetic

Store in DEST the sum of S1 and S2 using 16 bit one's complement end-around carry addition. No
overflow detection is done. Note that bits 0-19 of S1 and S2 need not be zero but bits 0-19 of
DEST will be zero.

3 Improving performance

UYKBASE
Class: T O P Perform UYK-7 base register arithmetic

Store in DEST the sum of S1 and S2 using 18 bit addition without carry or overflow. Note that
bits 0-17 of $1 and S:! need not be zero but bits 0-17 of DEST will be zero. This instruction is
roughly equivalent to

AD0.H reeult+2,opl,op2
N0V.H.H resul t , #8 . ; ~ l e a r the ' top half ' .

PIYKMOV
Class: . XOP 32 BiL Muve

Store in OP1 bits 4-31 from OP2, right justified and zero extended. This operation can be
accomplished with the AND instruction but the UYKMOV instruction can be faster--since it is not

.necessary to fetch the extended word consisting of the mask--and allows1 greater choice over the
destination than AND (a T O P format instruction) would. Notice that 'UYKMOV A,An clears just
bits 0-3 of A. This is useful when a UYK-7 half-word or quarter-word is stored with a DIBYT,
but it is necessary to clear the sign bit modification flag.

4 Status of the emulation project
The post-compiler has been written and is in the final stages of testing.

a Runtime support for the post-compiler, which will provide interrupt handling, input/output, and
protection, will be written later,

This w o r t was prepared as an account of work sponsored by fhc United St~tesGovmment. Neither thc
United States nor the United States Department of Energy, nor any of their employces, nor any of their
contracton, sulxontractors, or their employees, makes any warrmty, cxprcss or implied, or essumcs any
legal liability or responsibility for the-accuracy, compktenessor ustfulnessofany inl'ormadbn, apparatus,
product ar praess disclosed. or represents thut its uw would not infringe privately owned rights.

Reference to B. comptiny or product name does not imply approval or ncommcndirtion of the product by
the University of California or the US. Depmment of Energy to the sxdusion of others that may be
suitable.

h i n t 4 in :he Unbtcd iStntm of Amuiw
Awilubt: bon

Nari~nnl TcchnieuI lntitrrnvlbn borvkc
US. ~ n m e s c of CW~MIW
SH F~t t Rayd RCU~
SpringfmlcL VA 221#

Pdw Rimed Copy L :Mlaol& US0

Domestic
Prtce -

5 5.00
6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
16.00
17.00

Dan&c
Price -

518.00
19.00
20.00
21.00
22.00
23.00
24.00
25.00
26.00
27.00
28.00

Work prrfarrncd undw the ausp ia bf the U.S Departmat of Energy by the L a w m e Liwrrnore
Laboratoq under Cantract W-7405-Eng-48.

