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1 Executive Summary 

The US Navy is one of the world's largest users of digital computing equipment having a 
procurement cost of at least $50,000, and is the single largest such computer customer in the 
Department of Defense. Its projected acquisition plan for embedded computer systems during the 
first half of the 80s contemplates the install'ation of over 10,000 such systems at an estimated cost df 
several billions of dollars. This expenditure, though large, is dwarfed by the 85 billion dollars 
which DoD is projected to spend during the next half-decade on computer software, the 
near-majority of which will be spent by the Navy; the life-cycle costs of the 700,000+ lines of 
software for a single large Navy weapons systems application (e.g., AEGIS) have been conservatively 
estimated at most of a billion dollars. 

The  S-1 Project is dedicated to realizing potentially large improvements in the efficiency with which 
such very large sums may be spent, so that greater military effectiveness may be secured earlier, and 
with smaller expenditures. 

The  fundamental objectives of the S-1 Project's work are first to enable the Navy to be able to 
quickly, reliably and inexpensively evaluate at any time what is available from the state-of-the-art 
in digital processing systems and what the relevance of such systems may be to Navy data processing 
applications: and second to provide reference prototype systems to support possible competitive 
procurement action leading to deployment of such systems. 

The Project's efforts might seem to be addressed only to the hardware aspects of DoD's hundred 
billion dollar computing-related expenditures through end-FY85, and thus to be of relatively low 
leverage. However, many studies have documented the fact that use of efficient software generation 
practices, such as the exclusive use of high-level, structured programming languages, can result in 
software life-cycle cost savings of a factor of ten or more, relative to generating software in 
low-level, unstructured fashions, such as assembly- or microcoding-type languages. Indeed, 
extracting the maximum performance from its obsolescent computing plant has forced the Navy to 
employ the latter approaches in the large. majority of its software generation activities. Computing 
hardware which supports the former type of more manpower- and cost-efficient software 
engineering practices with minimum penalties in utilization efficiency can therefore favorably impact 
the entire Navy computing cost structure. It is to the creation of such hardware, and the basic 
software necessary to support its cost-efficient utilization, that the S- 1 Project is directly oriented. 

During FY'i9, the Project's third full year of effort, its focus remained 'directed on the development 
of maximally cost-effective means' for .realizing digital data processing sjstems for use in Navy 
applications environments, means which can endure into the indefinite future. The  general strategy 
which continues to be employed in pursuit of this capability is two-pronged: 

deinonstration in fully operational prototypes of the maximally cost-effective hardware 
base of such digital processing systems, realized in a fashion which is manifestly repeatable 
as the underiying digxtal technology base continues to advance exponentially with time; 

timely creation of a suite of system software which is sufficient to completely support a 
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representative set of Navy digital computer-using applications employing this hardware 
base, and which is readily extensible to support the remainder. 

Demonstration of the maximally cost-effective hardware base of such systems and establishing that 
the cost-effectiveness of this base may be maintained with the passage of time is at once the more 
challenging and the more novel of the Project's two major strategy components. Attainment of 
maximum cost-effectiveness of a digital processor at any given time clearly places an exponential 
premium on implementation in components which represent current technology, inasmuch as the 
underlying semiconductor technology has advanced exponentially in cost-effectiveness over the past 
two decades. 

Only slightly less obvious are the stiff premiums placed on efficient use of the best current 
components to realize a complete Biit not excessively redundw~l: 01% specialized set of data processing 
capabilities within a rapidly implemented processor system. Such a system must feature high ieveis 
of innovation in architectural conception, discipline i r ~  ~rarislatiun of the architecture into a detailcd 
design, and alacrity in the entire process of moving from conception through initial implementation 
and evaluation to mass production of a proven prototype. 

T h e  type of digital data processing system on which the S-1 Project has focussed its attention is 
essentially unrepresented in corr~mercial computer systems, as it is basically a hybrid of an advanced 
programmable signal processor and a general purpose, high-performance scientific (i.e., 
non-business-oriented) computer system. Moreover, S-1 systems emphasize reliability, 
maintainability and security features to extents almost unparalleled in commercial computer 
offerings. S- 1 systems may therefore Be expected to find rnnrly ~rlilila~ y appli~ations, particularly 
where uniquely great challenges are posed to the real-time reactivity, data throughputlperformance, 
reliability and secure natures of digital data processing systems. 

The  primary means chosen by the S-1 Project to be able to design and implement its processor 
systems in the most current technology has been the creation of the S-1 Structured Computer-Aided 
Logic Design (SCALD) System, a powerful aid for the computer system architectldesigrier which 
substitutes for essentially all the junior engneerldraftsman-level effort ordinarily required to 
support such work. Use of' the SCALD System leaves [he system architect free to specify the design 
on a relatively abstract, highly conceptual level, and requires only a specification of the technologies 
in which the design is to be implemented and general directions as to how its major sub-systems are 
to be located in three-dimensional space when the design is realized la a syslelll package. 

The  SCALD System supported the design and hardware implementation of the first S-1 processor 
(the Mark I) in less than a year's time, through a process requiring only two person-years of total 
effort. FY79 has seen its major extension to support the design of the much more powerful S-l 
'Mark IIA processor, an endeavor which has been completed it1 ils ~i~ajot .  aspects during this past 
year with less than three person-years of design effort, and is expected to culminate in the initial 
operation of a pair of fully functional Mark IIA systems in mid-FYSO, after the expenditure of 
another two person-years of design and implementation endeavor. In contrast, the median time 
hitherto required in industry to desi& and implement a state-of-the-art digital processor has been 
four to six years, involving the expenditure of 100-300 person-years of effort. 
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One year typically elapses between the announcement of 'a new digital processor-related technology 
(e.g., a new integrated circuit memory element) and its availability in quantities which can 
reasonably support prototyping; another year passes before quantities adequate for mass production 
become available at reasonable prices. It therefore seems clear. that both of the first two generations 
of the S-1 SCALD System adequately satisfy the timely design-and-implementation criterion noted 
above: one year to design and construct, a state-of-the-art computer system, followed by a year for 
evaluation prior to commitment to large scale production, tracks quite well the composite learning 
curve of the underlying technologies. This time schedule was followed for the S-1 Mark I system 
development, and has been tracked through most of the development of the substantially more 
challenging Mark IIA system, as well. It therefore seems likely to be generally applicable to all 
computing system developments which employ the SCALD System. This constitutes early 
attainment of one of the Project's basic goals: providing the Navy and all of its potential computer 
system suppliers in the industrial sector with the means for realizing computers on much shorter and 
smaller time, effort and cost scales than hitherto attainable. 

The first generation SCALD System has been described in two papers presented at the 15th A n n ~ a l  
Design ~utomation Conference, and in last year's Annual Report. It has been extensively presented 
during FY79 to American industr.7, as well as to academic and Governmental audiences, including 
presentations made at two day-long Project Open House sessions held at LLL, primarily for 
American industry. One of these was devoted exclusively to SCALD for benefit of the 
then-emerging VHSIC community, by Navy direction. 

SCALD I has been transported to a large number of organizations in these communities which are 
interested in using it to support large digital design efhrts. The  second generation of SCALD 
(SCALD 11) is documented at high level in this Report, and will also be presented at the 17th 
Annual Design Automation Conference. As a substantial generalization of SCALD I, it is expected 
to be received even more enthusiastically than SCALD I has been. It will be distributed with 
extensive supporting documentation as soon as its correct end-to-end functioning is verified by its 
successful use in creating the Project's Mark IIA systems. 

The high level of architectural innovation required to realize a new type of digltal computing 
system--one which stresses extremely powerful real-time signal processing capabilities 
well-integrated into a powerful general-purpose processor--has been insured by the usual practice 
of considering all those features which have been found useful in previous digital systems of both 
types, supplemented by the rather unique means of formally soliciting detailed comments and 
suggestions from a relatively large group of academic, industrial and Government computer 
scientists. This process determined the basic architecture of the Project's Mark I processor, as 
reported in the end-FY 77 Report. 

The  existence and operational status of the Mark I processor stimulated a great deal more, and more 
detailed, commentary on the S-1 architecture from the various segments of the American computer 
science community during FY78 and, FY79, commentary made with the knowledge that criticisms 
meeting with widespread peer approval would be reflected in the uniquely plastic S-1 architecture 
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literally overnight. As a result, the S-1 architecture has rapidly become one of the most extensively 
studied and criticized in existence, and is without doubt the most extensively revised in the history 
of computer technology; it has presumably benefitted greatly from this intensive and unusually 
broad-based peer review process. 

A comprehensive effort has been made during FY.79 to integrate all such inputs consistent with 
basic Project goals and Navy interests into the design of the Project's second-generation (Mark IIA) 
processor. T h e  external peer review portion of this inter-generation enhancement process has been 
similar to that employed in developing the architecture of the Project's Mark I processor, and has 
been' greatly facilitated by the completely non-proprietary, non-commercial nature of the Project. 

Thp usually very demanding task sf maintaining the integrity of a computer architecture from one 
generation to the next, work in which the Project has been substantially engaged during the past 
two years, has been very substantially simplified by the Project's taking the unprecedented step of 
carrying all the microcode wrmware) of its processors in wrieeable memory. A ur~iquely plastic 
processor also results from this basic architectural decision, which has been supported by major 
advances in pertinent semiconductor technology during the past few years. 

Highly efficient, and thus maximally cost-effective, use of an S-1 processor's hardware then results 
for any reasonable microcode specification by the processor's user(s). In particular, S-1 processors 
may be readily re-configured to quite efficiently emulate other computer architectures (particularly 
those with word lengths of <= 36 bits), simply by replac&g the largely microcode-expressed S-1 
native architecture with a microcoded expression of the architecture of the target machine. 

T h e  first step in this process, the creation of a macrocode-based simulator, was completed during 
FY78 for the widely used (e.g., by the DARPA community) PDP-10 computer systems and for the 
central processing unit (CPU) of the Navy's top-of-the-line general purpose processor, the 
ANIUYK-7. These S-1 Mark I processor-based simulators have been used to flawlessly execute 
substantial low-level (e.g., numeric object-time) programs for each of these computer systems. Such 
extensive, production-type use of these simulators during this past year included support of the 
Project's design of the Mark IIA via routine execution of the Stanford University Drawing System 
(which is written in 30,000 lines of PDP-10 assembly language) which serves as the graphics editor 
of the SCALD System, and support of the creation of a true emulator of the ANIUYK-7 CPU 
architecture which, for example, executes a Navy tactical air warfare program significantly faster on 
the Mark I processor than does a real UYK-7. 

Discipline in realization of a processor architecture in a detailed, implementation-directed design is 
facilitated by the nature of the SCALD System itself; SCALD System usage discourages and 
highlights designer-level architectural modifications, while supporting rapid design completion by a 
small team of architect-designers who are able to communicate closely thro~ighsur the design period. 
SCALD System extensions realized during this past year and tested in supporting the detailed 
design of the Mark IIA processor system have further enhanced these aspects of realizing an 
architecture in hardware. 

T h e  architecture of the S-1 family of processors and the rationale leading to it are described in 
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detail in the S-1 Architecture section of this Report. The  S-1 architecture is at once 

powerful, as is indicated by the 15 MIPS instruction-issuing rate of its second generation 
expression, the Mark IIA processor, its essentially 3-address instruction format and- its 
advanced arithmetic/logic unit, all of which support its ability to execute a typical mix of 
Navy technical applications codes written in high level language comparably rapidly as 
any general-purpose processor in existence, and far more rapidly than any present Navy 
computer system; 

highly plastic, due to its completely writeable and very capacious microcode storage areas 
and its sophisticated instruction-decode and operand-fetchi~~g unit, so that , it can 
efficiently emulate a wide variety of other processors at the hardware level, thus affording 
a very high level of protection to the Navy's investment in architecture-specific software 
written for other computers; 

readily extensible in stand-alone capabilities via.addition of specialized arithmetic modules 
to its basic instruction-executing unit, and in system capabilities via interconnection to a 
number of other such processors to constitute uniquely powerful and reliable 
multi-processing systems; 

@ time-wise durable, by virtue of both its uniquely large address space, which permits 
immediate exploitation of exponentially decreasing memory costs and associated Navy 
applications demands for ever larger working memory space, and by its very broad 
hardware capabilities and extremely readily extended instruction set, which facilitates 
adaptation to changing Navy applications requirements; 

9 cost-effective, in that it makes very efficient use of its major hardware endowments, 
employs the most modern LSI components effectively, and adapts readily and in a 
software-invisible fashion to further semiconductor technology base advances (e.g. VLSI 
MOS memory elements, LSI ECL and CMOS logic modules). 

Continued evaluation of the Project's Mark I processor, primarily for reliability, maintainability and 
performance in exceptional circumstances, was a significant hardware-related activity during FY79. 
This work included the completion of microcoding of the processor to express the full instruction set 
specifying the S-1 architecture, the examination of the functionality of the Mark I processor to 
ascertain that the hardware-microcode combination proper!y expressed the system architecture under 
all circumstances (including extremely rare exception cases and comblnat~ons thereof; of' which a 
sophisticated pipeline implemention such as that of the Mark I has many), and the determination of 
the performance of the Mark I processor on various types of applications programs. 

In-order to carry out portions of this evaluation process, it was necessary to replace the 256 K word 
main memory system of the Mark I processor, which was implemented in 8 K bit MOS RA'Ms and 
had been procured in FY77 from a commercial custom memory systems source, with a - 
Project-designed and -implemented memory system of 512 K words capacity, implemented in 16 K 
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bit RAMs..This was accomplished expeditiously during FY78. Continuing evaluation work and 
SCALD I1 exercise requirements during FY79 impelled the further expansion of the Mark I 
memory implementation to 2048 K words, with a Project-designed and -implemented memory unit 
which also served to prototype the memory module for Mark IIA uni- and multi-processor systems. 
This extension was accomplished at a hardware and implementation manpower cost of 5 
K#/megabyte, and involved no alteration of the Mark I uniprocessor. Thus, the S-1 Mark I system 
now contains more computing power and more memory capacity than does the entire AEGIS 
computing plant. 

Extension of the high cost-effectiveness of single S-1 processors to Navy applications requiring 
more computing capability than is available from single processors is accomplished by 
interconnecting a number of such processors into an S-l multiprocessor system. Such a system at 
once provides a very high bandwidth, completely flexible means by which all member processors 
may exchange data (via a relatively very inexpensive full Crossbar Switch which uniformly 
interconnects all processors with all memory banks), as well as a variety of means by which 
processors may very rapidly signal to each other. In addition to carrying the extraordinary unit 
cost-effectiveness of single S-1 processors into almost arbitrarily demanding Navy applications 
regimes (which can exploit concurrent processing capabilities), the multiplicity of processors in such 
an interconnection also allows the creation in system software of extremely graceful system failure 
modalities: unexpected loss of any relatively small number of processors or memory banks need not 
degrade system performance at all, if appropriate software constructs are employed to automatically 
substitute reserve processors and memory units for ones which fail. 

A general description of the S-1 multiprocessor architecture appears within this report, accompanied 
by a discussion of the strengths and weaknesses of such an architecture, relative to alternative 
approaches to meeting the digital processing requirements of the most demanding Navy applications. 

The  heart of the multiprocessor system, the Crossbar Switch, has been designed to be readily 
partitionable into a number of smaller, electrically isolated crossbar switches, and includes a 
diagnostics/maintenance processor which supports such software-controlled re-partitioning to isolate 
faulted prscessors or memory banks. Use of ECL-1OK MSI circuits in implementation permits this 
switch to sustain 8 billion bitlsecond data transfer rates between 16 processors and 16 memory 
banks, while having an implementation cost somewhat less than that of a single processor. 
Interestingly enough, only about 20% of this cost (or less than 1% of the cost of a 16 processor, 16 
memory unit multiprocessor system) has a growth rate which is quadratic in the processor or 
memory unit population size; the other 80% has a growth rate which is linear in this population size. 
A 128 processor, 128 memory bank S-1 multiprocessor system implemented in current technology 
would thus require a Crossbar Switch costing less than 10% of the cost of the total system. Since the 
advance of semiconductor electronics into the VLSI regime will necessarily produce components that 
reduce the size and cost of the Crossbar Switch before it produces components that reduce the size 
and cost of processor and memory, the fractional cost of the crossbar switch portion of S-1 
multiprocessor systems, already quite small at present, may be expected to decline especially rapidly. 

Software for the S-1 prototype processor family must be available in an essentially complete, reliable, 
documented, cost-effective and timely fashion to enable high hardware cost-effectiveness to be 
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translated into compa.rably high system cost-effectiveness, and providing for such is the other major 
component of the Project's strategy. 

The  S-1 Project, after surveying alternatives, elected to commence meeting, these requirements by 
exploiting recent developments in software technology (e.g., highly transportable compilers and 
operating systems) in a selected academic computer science environment, which offered relatively 
inexpensive and highly talented (i.e., highly cost-effective). software design and implementation 
capabilities. A FY77 sub-contract effort at Stanford University's Computer Science Department 
supporting the S-1 Project produced and documented a PASCAL compiler, a FORTRAN compiler 
design, a P-Code translator, a symbolic assembler and a. simulator for the first S-1 prototype . 

processor; a companion loader was generated by the Project staff in FY77. The productivity of the 
Stanford effort was determined to be about an order of magnitude higher than industry 
programmer productivity standards, due both to its higher average talent level and the 
comprehensive use of recent software technology. 

This software development task has been greatly facilitated by several features in the processor's 
architecture which permit high-level-language programs to make unusually efficient use of the 
processor's hardware resources. For instance, the Stanford-produced Pascal compiler was 
determined durivg this past year to produce code for a wide range of scientific-type problems which 
required an average of only 34% greater execution time than did optimally hand-coded programs for 
the same set of problems; the peephole and global optimizers whose development commenced in 
FY79 are projected to bring this high-level language average efficiency penalty to less than 10%. 
,Even the initial one-third efficiency penalty is unusually small for use of a high-level language on a 
high-performance computer system. 

T) 

The previously commenced software development work at Stanford has been continued during 
FY79. These efforts included detailed definition and initial development of the extended Pascal to 
be used in future SCALD development, Pascal*; the completion of the development of the common 
intermediate stack-oriented language, U-Code; the completion of the scientific function run-time 
library implementation; major progress in the development of the common global optimizer for the 
Pascal and E'OK'I'KAN compilers, and the completion of an enhancement program for the 
FORTRAN compiler. These Stanford software projects were complemented by LLL-centered 
software efforts which completed a Pascal-based general-purpose microcode assembler, extended the 
single-user, batch-type operating system being used on the S-1 Mark I processor, and made notable 
progress in the transport of the UNIX operating system to the S-1 processor family (the OS-1 
effort) and in the detailed definition and design of the fu1:-capability operating system (0s-2, or 
Amber). 

Essentially all of this software will be transported without modification to subsequent generations of 
S-1 processors, whose architectures will be upward-compatible with previous generations (in order 
to minimize software development expenses associated with Navy evaluation of S-1 systems, and to 
serve as a significant scale demonstration of such long-term architecture upgrading capability). * 

The foregoing summarizes fulfillment of the S-1 Project's FY79 Work Statement referenced in 
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ONR Order N00014-79-F-0021, as, re-negotiated with cognizant ONR and NAVELEX officials 
during this past year to accommodate to changing Navy programmatic and budgetary guidance. 

During FY80, the S-1 Project has proposed to: 

implement a pair of prototypes of the second-generation S-1 processor (the Mark IIA), 
which will incorporate the advances made in semiconductor technologies since the Mark I 
processor was implemented, and which will include a very high performance arithmetic 
module to enhance real-time signal processing performance levels to well beyond that of 
any other general-purpose processor in existence; 

+ complete the low-level d e s i p  and the implemeneaeion of a 16 processor, 16 rrlelrlury ut~i t ,  
high performance Crossbar Switch on which a full-sized S-1 multiprocessor system may be 
ccn tcrcd; 

implement a multiprocessor system with an aggregate processing capability at least an 
order-of-magnitude greater than the most powerful single digital processing system in 
existence, centered on the Crossbar Switch and containing 16 processors and 16 memory 
units, thereby demonstrating an ability to extend processing capability and greatly augment 
system reliability at constant, high cost-effectiveness for all Navy applications allowing 
concurrent processing; 

e implement two uniprocessor systems for installation and on-sire evaluation at two locations 
to be designated by the Navy, and to provide reasonably comprehensive, LLL-based 
systems support for such evaluation activities; 

pursue software development (both at Stanford University, via continuation sub-contract 
arrangements, and within the Project at LLL) through the development of a multi-tasking 
operating system for an S-1 multiprocessor system, the design of a full-functionality 
operating system for an S-1 multiprocessing system, completions of a microcode-augmented 
emulator capability for 'the UYK-7 computer system, systefn inregrarlori, check-out and 
documentation of S-1 LISP, completion of the Pascal* development, :he enhancement of 
the SCALD System to support design and implementation of the Project's third-generation 
processor, the Mark Ill. 

@ support initial Navy evaluation of the S-1 architecture and the suitability of the Mark IIA 
uni- and multi-processor systems for various Navy applications, by making them available 
for both local and remote (via ARPANET) Navy applications studies. 

The  material in this Report is divided by topic area into three volumes for easier handling. The 
remainder of this first volume is devoted to a detailed characterization of the S-1 architecture, 
highlighted with examples. Two articles constitute this Report's second volume, and describe major 
features of the Project's FY79 work: one reviews the basic features of the design of the Mark 1 1 .  
uniprocessor system, and the other represents a highly user-oriented, comprehensive description of 
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the Project's second-generation SCALD systein, which is intended to have widespread utility in US 
computer creating activity following its validation in creating the first Mark IIA systems. Volume 
111 contains a discussion of the 'Project's major FY 79 software developments,.and is supplemented by 
a microfiche-based listing of all of the major software modules 'developed by the Project during the 
FY79 period. A summary-by-title of both the articles-in-text and the microfiched software 
immediately follows this Executive Summary. 

. , 



2 Titles of the Articles of this Report - . 

Volume I: Architecture 

1. Executive Summary. 
. . 

2. S-1 Multiprocessor Architecture. An overview of a multiprocessor system composed of 
multiple's-1 Uniprocessors sharing memory through a crossbar switch. 

3. Investigation of the Partitioning of Algorithms Across an MIMD Computing 
System. Research on adapting existing algorithms to take advantage of the additional 
computing power available in a multiprocessing system. 

4. S-1 Uniprocessor Architecture. The  native mode instruction set for the S-1 
Uniprocessur, ar~d lht: syr~lax fur a11 assembler which processes that instruction set. 

5. UYK-7 Emulation. A novel technique which emulates the existing UYK-7 architecture 
by ' appropriately substituting a sequence of S-1 Native Mode instructions, rather than 
microcode, for each UYK-'I instruction. 

Volume 11: Hardware 

1. Highlights of the Design of the Mark IIA Uniprocessor. Annotated drawings 
describing the high level aspects of the 'Mark IIA uniprocessor hardware, prepared as 
input to the SCALD I1 computer-aided logic design system. 

2. SCALD I1 User's Manual. A document describing the SCALD I1 system from a user's 
viewpoint. 

Volume 111: Software 

1. Overview of the Amber Operating System. The Amber Base System serves as the 
foundation for a family of problem systems capable of fully exploiting the power of both 
S-1 Uniprocessors and Multiprocessors. 

2. Overview of Interim Operating Systems. Descriptions of an interim operating system 
for the Mark I Uniprocessor and of the effort to transport UNIX for use with the Mark 
IIA Uniprocessor. 

3. User's Guide to S-1 Pascal and Fortran. How to use languages and utilities available on 
the interim Mark I system. 

4. Pascal and Pascal* Compiler Systems; Pascal*: A Pascal Based Systems 
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Programming Language. An overview of the family of language translators which share 
a common intermediate languag= called U-Code; and a description of an extension to 
Pascal for SCALD development support. 

5. PASMAC: A Macro Processor for Pascal. A description of the Mark I Pascal macro 
facility. 

6. UFORT: A Fortran to U-Code Translator. A description of the FORTRAN facility of 
the Mark I system. 

7. S-1 U-Code: A Universal P-Code.' The definition of the U-Code intermediate language. 

8. S-1 Code Generator and Optimizer. Documentation of a code generator and optimizer 
for the S-1 family of language translators. 

9. UASMINT: A U-Code. Assembler and Interpreter. An interpreter which executes 
U-Code, allowing the testing of a language translator independently of the code generator. 

10. Portable Runtimes for a portable U-Code System. Runtime support routines for the 
family of lan'guage translators. 
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2.1 Summary of Microfiche Accompanying this Report 

The following files appear, in-  order, on the microfiche included with this Report. The 
three-character extension following the ".'" in each name indicates the source language: 

FA1 FAIL (DECSystem- 10 assembly language) 
SAI Stanford Artificial Intelligence Language (SAIL), 

a variant of ALGOL. 
.S 1 S-1 Native Mode Bssembly language 
PAS Pascal 

.FA1 The source for a macro assembler which processes S-1 Native Mode assembly 
language. "S-1 Uniprocessor Architecture" in Volume I of this Report explains 
how to use this assembler. 

FSIMP.FA1 The source for a simulator for the S-1 Native  ode architecture. Wser's Guide 
to S-1 Pascal and Fortran" in Volume 111 of this Report explains how to use this 
simulator. 

RDOPS-FA1 The source for a program which reads a file defining opcode mnemonics and 
produces a table which an assembler or simulator can use to map mnemonics - 
onto opcode values. 

CMD$CN.FAI The source for a program used by FASM2.FAI to parse a command line 
specifying input, output, and indirect files. 

FLINR.Sl A linker which processes ".LDP' files and produces a ".RIMn file. The linker is 
automatically invoked by various command files described in "User's ~ u i d e  to 
S-1 Pascal and Fortran" in Volume I11 of this Report. 

PPIMPL.PAS A version of a 2D hydrodynamics and heat conduction program used at 
Lawrence Livermore National Laboratory, converted to Pascal and organized for 
parallel compuradon. "Investigation of the Partitioning sf Algorithms Across an 
MIMD Computing System" in Volume I of this Report describes this program. 

The following files relate to the U-Code language translators. The programs themselves are . 
preliminary versions. 

UFORTZPAS Documented in "UFORT: A Fortran to U-Code Translator" in Volume I11 of 
this Report, 

UPASO.PAS A Pascal to U-code translator, whose use is described in "User's Guide to S-1 
Pascal and Fortran", in Volume 111 of this Report. 

UINT.PAS A U-code interpreter, documented in 'UASMINT: A U-Code Assembler and 



2 1 Summary of Microfiche Accompanying this Report 

Interpreter" in Volume III of this Report. 

SUPNO5.PAS A U-code to S-1 code translator 

PIO.PAS Pascal 40 runtimes, documented in "Portable Runtimes for a Portable U-Code 
System" in Volume IlI of this Report. 

FIO.PAS Fortran I/O runtimes, documented in "UFORT: A Fortran to U-Code 
Translator" in Volume 111 of this Report: 

SIO.Sl Primitive 110 runtimes, documented in “Portable Runtimes for .a Portable 
' U-Code System" in Volume I11 of this Report. 

SNUMSI Primitive numerical runtimes 

VERCH.PAS A version-changer for Pascal programs, described in Vser's Guide to S-1 Pascal 
and Fortran" in Volume I11 of this Report, which provides a facility similar to 
the IF switches available in many assemblers. 

PAS-SAI, PAS2.SAI 
A Pseudo-monitor for the Pascal system at SAIL, described in Wser's Guide to 
S-1 Pascal and Fortran" in Volume 111 of this Report. 
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1 S 1 Multiprocessors 

One of the S-1 Project's main thrusts is the development of a multiprocessor which computes at 
an unprecedented aggregate rate on a wide variety of problems. The S-1 Multiprocessor will be 
implemented first with second-generation S-1 Uniprocessors (S-1 Mark IIAs). For a large class of 
important numerical problems, including signal processing, it will achieve .a computation rate 
roughly an order of magnitude greater than that of the Cray-1 computer. The Cray-1 in turn 
offers performance two to four times greater than that of the CDC 7600, and outperforms all 
other existing computers in general numerical computation work. 

A multiprocessor is a network of computers which concurrentlj execute a number of independent 
instruction streams on separate data streams (i.e., a multiple-instruction-multiple-data machine, 
according to [Flynn19721) and which closely s h e  main memory. A typical S-1 
Multiprocessor consists of sixteen independent, identical S-1 Uniprocessors and provides a 
computation rate for many technical problems more than an order of magnitude greater than the 
rate of a single S-1 Uniprocessor, which alone processes typical scientific mixes of logical and 
numerical operations at approximately the same speed as a Cray-1. 

Along each of several dimensions, a multiprocessor design offers significant advantages over a 
uniprocessor design providing an equivalent computation rate: The advantages result from the 
modularity inherent in a multiprocessor architecture, and can be categorized as advantages of 
relkbility, economy, and size. 

The advantage of reliabilitj has been validated by commercial systems such as the Tandem 
Nonstop (see [Datapro 19791) and the BBN Pluribus (see [Ornstein 1975]), which 
provide ultra-reliable operation in handling banking transactions and ARPA Network traffic, 
respectively. In a well-designed multiprocessor system, failure of a single module (for example, a 
component uniprocessor, a bus, a crossbar switch, or a memory bank) does not entail failure of the 
entire system. Indeed, the S- 1 Multiprocessor Operating System (Amber) is designed to detect such 
module failures and effect graceful replacement in function from the available complement of 
reserve modules of the multiprocessor system. 

Of primary importance among the advantages of economy are the economies during machine 
construction due to replication of a single module type. This economy during the construction 
phase is extremely important with respect to current and projected semiconductor technologies, 
since the unit replication cost of VLSI chips varies nearly inversely with the replication factor, 
except for a small additive base cost 

A second economy of scale relates to the cost of the design work; the design cost per processing 
element is reduced asymptotically to zero as the processing element is replicated. Actually, any real 
multiprocessor must include some design costs per processing element which grow as the number 
of processing elements is increased (for example, the cost of designing the interconnection 
network), but these costs can be made negligible, and in fact are negligible in the case of the S-1 
Multiprocessor. 

A third important economy is the potentially reduced time lag between the freezing of the system 
design and the delivery of the first operational system. By replicating a relatively simple 
processing element many times and using a regular interconnection network, this lag can be made 
very small; it is virtually independent of the processing power of the total system. As a result, the 
semiconductor technology.used in a properly designed multiprocessor can be essentially state-of- 
the-art, whereas the technology used in a more complex processing structure must be considerably 
more out of date. This time lag phenomenon will continue to seriously degrade the cost- 
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effectiveness of delivered complex systems as long as advancing semiconductor technology 
continues to provide exponentially more cost-effective components, but may be greatly ,reduced in 
advanced .multiprocessors. 

One additional economj is the economy which results from the freedom of the multiprocessor 
designer to choose the most cost-effective uniprocessor element structure, independent of the 
processing rate of the element. Cost-effectiveness of uniprocessor structures is not constant over 
all levels of processing power. Because the design of a d@tal processing system must be aimed 
not only toward maximum cost-effectiveness, but also toward some minimum processing power, 
designers of high-performance uniprocessor systems have not been able to utilize structures with 
possibly higher cost-effectiveness but lower processing power. On the other hand, the designer of 
a multiprocessor may be able to achieve a total cost-effectiveness which is nearly the same as the 
cost-effectiveness of the component uniprocessor and, since, that uniprocessor need not be 
constrained to have a large minimum processing power, to achieve substantially higher cost- 
effectiveness of the resulting system. 

Independent of these economic advancages is the advantage uf size. Regardless whether it is 
economical to build arbitrarily powerful uniprocessors, at some point it becomes phy'sically 
impassible (with 'state-of-the-art technology) to build these machines; multiprocessors, however, 
have a higher processing-rate ceiling. This advantage of multiprocessor structures is important 
because maximal computing rates will be necessary for certain applications into the foreseeable 
future; numerical weather prediction with its real-time constraints .is an obvious example. 

Figure 1-1 shows the logical structure of a typical S-1 Multiprocessor. This S-1 
Multiprocessor includes sixteen independent S-1 Mark IIA Uniprocessors, of which two are 
shown. The internal logical structure of the S-1 Mark IIA is indicated at a very high level. All 
sixteen uniprocessors are connected to main memory through the S-1 Crossbar Switch; one 
possible access pattern is shown with dots. Sixteen memory banks are shown, each of which can 
contain up to zaO (one billion) bytes of semiconductor memory. Input and output are done 
through peripheral processors (for example, LSI-11s); as many as eight can be attached to each S- 
1 Mark IIA Uniprocessor. The Synchronization Box is based on a shared bus connected to each 
member uniprocessor providing for specialized medium-bandwidth communication associated 
with the synchronization of tasks performed by individual uniprocessors. Each module in the S-1 
Multiprocessor is connected to a diagnostics-and-maintenance processor (an LSI-1 l), which allows 
convenient remote display-oriented maintenance and control of the multiprocessor. 

All sixteen idenhcal S-1 Uniprocessors can execute independent instruction streams on 
independent data streams. Thus, all sixteen uniprocessors can cooperate in the solution of a single 
large problem. The high-bandwidth, low-latency inter-processor communications provided by the 
Crossbar Switch facilitate problem partitioning with little efficiency loss, but the sixteen 
uniprocessors also have the capability to process completely independent tasks, for example, each 
S-1 Uniprocessor might service different users. Memory requests from the member uniprocessors 
are serviced by sixteen memory banks with an aggregate maximum capacity of 234 (sixteen 
billion) nine-bit bytes. Connectivity between uniprocessors and memory banks affords ehe 
maximum generality; any processor can uniformly access all of main memory through the S-1 
Crossbar Switch. The programmer thus sees a huge, uniform address space, as each memory 
request from each uniprocessor is decoded by hardware in the Crossbar Switch and sent to the 
appropriate memory bank 

The Crossbar Switch processes requests from member uniprocessors to perform read or write 
access to specific (essentially randomly indexed) memory banks. In the first multiprocessor 
implementation, the Switch allows only one request for a given memory bank to be honored at 
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any instant (hence, at most sixteen transactions can be ongoing simultaneously, and as many as 
sixteen only if no two uniprocessor requests are for access to the same memory bank). Conflicting 
requests are queued fairly, that is, in a queue which guarantees service to each requesting 
processor once before service is given to any requesting processor twice. 

The Crossbar Switch has a maximum peak bandwidth of over 10 billion bits per second when all 
of its sixteen channels are transferring data simultaneously. Although the growth rate of such a 
square crossbar is asymptotically o(N~), where N is the number of processors or memories, the S- 
1 Crossbar costs somewhat less than a single S-1 Uniprocessor. Less than 25% of the Switch, or 
0.8% of total system cost (arbitrarily assuming that half of the total system cost is invested in the 
memory), exhibits 0(N2) growth rate; the remainder exhibits O(N) growth rate. Hence, it is 
economically quite feasible to implement crossbar switches for uniprocessor and memory 
populations much greater than sixteen; the generality of full interconnectivity between processors 
and memory may be obtained at very low (although asymptotically o(N?) cost. 

The S-1 Multiprocessor design allows component uniprocessors and memory banks to be 
physically distributed over distances which are limited only by average bandwidth requirements 
(which obviously degrade linearly with increasing length). Because of the relatively large latency 
introduced in main memory transactions due to the lengths of the cables, because of the Switch 
transaction time, and because of the access time of relatively slow but highly cost-effective memory 
chips, each member uniprocessor contains private cache memories. These caches automatically 
(that is, without guidance from the programmer) retain recently referenced data and instructions 
within a relatively small amount of ultra-high-performance memory, in the expectation that those 
data will be referenced again in the near future. Whenever a reference to such a retained datum 
or instruction is made, the information is immediately delivered directly from the cache, thus 
eliminating the latency required for a main-memory transaction. Although a similar efficiency 
can be realized if main memory contains a special high-speed area (such as the SCM of the CDC 
%00), such a design places on every programmer the burden of managing a variety of memory 
systems in order to maximize efficiency of program execution. 

The presence of caches in a multiprocessor necessarily introduces problems of cache coherence (see 
[Censier 19781); without a guarantee of cache coherence, programming of certain problems 
in a cache-based multiprocessor would be inconceivably difficult. A systerri of caches is coherent 
if and only if a read done by any processor P of a memory location M (which may be cached by 
other processors) always delivers the value written to M most recently. Most recently in this 
context has a special meaning in terms of a partial ordering on reads and writes of memory 
throughout the multiprocessor (see [Lamport 19781), but for an intuitive understanding of the 
problem it is sufficient to think of recentness in terms of absolute time. In these terms, whenever 
a write is done by one processor P to a memory location M, completion of the write must 
guarantee that all subsequent reads of location M b~ any processor will deliver the new contents of 
M, until another write to M is completed. 

The caches of the member uniprocessors of S-1, Multiprocessors are private in the sense that there 
are no special communication paths connecting the caches of one uniprocessor with the caches of 
any other uniprocessor; the cache coherence problem is therefore especially challenging. To solve 
it, the S-1 Multiprocessor includes a design .closely related to one independently proposed in 
[Censier 19781: a small tag is associated with each line (a set of sixteen words) in physical 
memory. This tag identifies the (unique) member uniprocessor (if any) which has been granted 
permission to retain (that is, own) the line with write access, and identifies all processors which 
own the line with read access. The memory controller allows multiple processors to own a line with 
read access, but responds with a special error flag when a request is received to grant read or 
write access for any line which is already owned with write access, or when a request is received to 
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grant write access for any line which is already owned with read access. Any uniprocessor 
receiving such an access-denial response is responsible for requesting (through a simple interrupt 
mechanism) that other uniprocessors flush the contested line from their private caches. This 
procedure maintains cache coherence dynamically, hence extremely efficiently, without requiring 
any effort by the programmer. 

T o  support low-latency, semaphore-type communication between member uniprocessors, a 
Synchronization Box attaches to one of the eight 110 porn of each uniprocessor. The 
Synchronization Box is centered on a shared bus; one majar function of this unit is to transmit 
interrupts and small data packets from one uniprocessor to any subset of other uniprocessors in 
order to coordinate processing streams. 

For reliability, all single-bit errors which occur in memory transactions are automatically corrected, 
and all double-bit errors are detected, regardless whether the errors occur in the Switch or in the 
memory system. For single-point failure immunity, the S-1 Multiprocewr allows for the 
permanent connection of multiple Crossbar Switches which are electronically selectable; operation 
of the S-1 Multiprocessor can thus continue in the event of a single Switch failure. Furthermore, 
the Crossbar Switch can be configured to keep a backup copy of every datum in memory, so that 
failure of any memory bank will not entail loss of crucial da ta  Each I/O processor may be 
connected to 110 Ports on at least two uniprocessors, so that failure of a single uniprocessor does 
not isolate any 110 device from the multiprocessor system. T o  enhance maintainability, each 
member uniprocessor, each Crossbar Switch, and each memory bank is connected to a diagnostic 
computer which can probe, report, and change the internal state of all modules which it monitors, 
in great detail and with precise timing. 
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In a typical S-1 Mark IIA Multiprocessor, sixteen Mark IIA Uniprocessors execup independent 
instruction streams and communicate with main memory through a ,high-bandwidth Crossbar 
Switch. Private caches implemented with. extremely fast but quite expensive memory components 
within the member uniprocessors effectively hide the combined.latency of the Switch, and memory 
system, and hence allow the use of relatively slow but extremely cost-effedive memory components 
to store virtually all of the the data and instructions to be processed. 
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Multiprocessors (strictly speaking, Multiple-Instruction-Multiple-Data processor systems 143) 
are potentially extremely attractive systems for realizing greatly enhanced computing capabilities. 
Potential benefits 'include significant improvements over both the Single-Instruction-Single-Data 
and Single-Instruction-Multiple-Data types of uniprocessor systems in the areas of availability, 
configurability, cost-effectiveness, and raw computing power. The primary concem of this paper is 
in the area of raw computing power enhancement available from a ,  multiprocessor. Particular 
reference k made to a classic multiprocessor architecture being explored by the S-1 Project [8,91. 

In order to best realize the computing power increase potentially available from a 
multiprocessor on a single application problem, it must be possible to express the algorithmic 
solution to. the problem in some partitioned fashion in order to make effective use of several 
processors at once. The simplest and most obvious, but still useful, scheme for partitioning is to run 
several different, independent copies of the application algorithm on different sets of data which are 
of interest to the researcher; such an approach is predicated on the different data sets being totally 
lndeperident of each other. 

However, the more interesting case occurs when the algorithm is structured to take advantage 
of parallelism inherent in the problem when processing a single set of data Such an approach 
admits of possibly very large gains in effective processing speed, and thus potentially allows many 
more casei of interest to be studied in ;rerid order per unit of wallclock time; such an approach is 
required if subsequent data sets have features determined from computational study of previous 
ones. It is this particularly useful case to which the present investigation is addressed. 

This report documents aspects of progress made to date in the continuing investigation of 
application partitioning across classic MIMD multiprocessors. The goal of this investigation is to 
demonstrate the practicality of the partitioned application mode of multiprocessor use for large 
classes of realistic problems, particularly in the context of a large-scale multiprocessor such as the 
S-1 project has designed and will be implementing. The investigation so far has included a broad 
spectrum of studies, ranging from general research on multiprocessing issues to specific experiments 
with algorithms for particular application problems. 

This report covers several different topics, roughly following the chronological development of 
the investigation to date. After some definitions and further motivation for application partitioning, 
there is a brief discussion of generally applicable techniques for partitioning. Next is a historical 
perspective of the process of selecting a "representative" application for further detailed study. An 
overview is then given of the algorithm chosen for specific study, followed by a descrlptiur~ of the 
methods used for partitioning that algorithm. After that appears a discussion of some simulation 
results, followed by some analytic results. Finally, there is a discussion of some of the detailed 
implications of this study in terms of synchronization and communication mechanisms found to be 
desirable for support of application algorithm partitioning. The report concludes with a discussion 
of directions which such investigations may profitably take in the future. 
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2 Definitions 

The term "multiprocessor" will be used in this paper to refer to a generalization of the 
structure of the S-1 multiprocessor. A few' important attributes of this generalization are listed here. 
It is assumed that there is a moderate number (say 2 to 200) of extremely fast single processors 
tightly coupled to a relatively large amount (at least 10 million words) of uniformly accessible global 
memory. Each processor may also have a moderate quantity of very high performance:memory (e.g. 
cache) local to it, but it must also have high bandwidth (although not necessarily short latency) 
access to the global memory. Many of the ideas contained herein apply also to other multiprocessor 
structures (e.g. larger numbers of slower processors), but the S-1 structure has been the primary 
focus for optimization of the partitioning approach developed in this study. 

"Problem partitioning" refer6 to the prcxus of caking a particular application problem and 
constructing an algorithmic solution for it which can take advantage of the potential for parallel 
execution avilabl-e in a multiprocessor. The primary motivation assumed for partitioning a 
problem is to substantially decrease the absolute wallclock time taken to sun each instance of the 
application (as opposed to other motivations such as improved reliability and/or recoverability). For 
partitioning to be realistically useful in this way, the partitioned application must run substantially 
faster 'than a uniprocessor version, even when all possible overheads are taken .into account, 
including operating system, multiprocess communication, and synchronization. 

The "speedupn of a multiprocessor algorithm is the ratio of wallclock elapsed time for 
uniprocessor execution to wallclock elapsed time for m~~ltiprwcrsor execution, It is, of esursc, a 
hnction of the number of processors, and possibly other algorithm parameters. The speedup 
provides a measure of the success with which the problem has been partitioned, indicating greater 
success as the speedup approaches the nlltnhcr of procerrors. There are actually conditions in which 
the speedup can theoretically exceed the number of processors; these will be noted in more detail 
later. 



3 Motivation 

Depending on the exact nature of the application, the process of constructing an effectively 
partitioned solution can vary greatly in difficulty. As mentioned earlier, any uniprocessor code can 
be immediately run on a multiprocessor in the mode of multiple independent data files; but this is 
not a partitioned single application 'as defined here. This mode does serve to characterize a class of 
applications whose partitioning is trivial. Any application which consists of several already 
independent computations can be easily partitioned in this way. A simple example (in which each 
of the independent computations has the same structure) might be a Pascal compiler which has the 
ability to process multiple input procedures in a "separate compilation' mode; 

There is another class of applications which is almost as. easy to partition. It is all those 
which have a basiciterative "outer loop" with perhaps a summary data gathering step at the end of 
each iteration, but with several otherwise independent computation blocks occurring in each 
iteration. Exaniples of this structure of computation may be found in Monte Carlo approaches to 
simulation 151. 

. To approach the issue of difficulty of partitioning from another standpoint, it is reasonable to 
ask fo'r what kinds of applications is 'a 'substantial amount of partitioning effort justified. In. 
particular, if an application is hard to partition it could be argued that it is better to run it 
unpartitioned in timesharing mode along with other user problems in order to still gain the 
cost-effectiveness benefits of' the multiprocessor. However, there are several interesting application 
areas in which any gains in absolute wallclock execution time' are valuable. Classic exampl,es 
inchde the weather prediction problem and many types of real-time processing, such as radar signal 
processing. Also, as the number of processors in the multiprocessor increases, the akractiveness of 
the partitioning approach increases for more and more problems. 



4 Techniques for partitioning 

As the number of designed or implemented multiprocessors increases, a few general techniques 
for problem partitioning are beginning to emerge 161. Three such techniques which have been 
considered could be called "synchronous partitioning," "asynchronous partitioning," and "pipelining." 
From the descriptions below it' should become apparent that these techniques are by no means 
mutually exclusive, and hence may be used in combination in a partitioned application. 

The technique of synchronous partitioning is perhaps the most obvious and most widely 
applicable of the three. In this technique, either the data structure or the program (or both) is 
divided up into comparatively independent units, and multiple processes compute in parallel within 
these units. Occasionally, two or mare processes must synchronize with each other in order to 
maintain data consistency or pass summarizing information among processes. 

The technique of asynchronous partitioning [ I ]  is less intuitive and can lead to debugging 
difficulties due to the lack of exact reproducibility of results, but offers advantages by avoiding the 
potentially large overheads of frequent process synchronization. This technique is best understood 
in the context of iterative numerical algorithms. For instance, consider an application containing a 
large two dimensional matrix of real numbers which are being updated by an iterative algorithm 
such that each new point value depends in some simple way on previous values of neighboring 
points. The points may be partitioned into groups among the available processors. If the 
correctness of the algorithm does not depend on the use of a precisely defined previous iteration 
value for neighboring points in the updating procedure, and if instead any reasonably recent value 
will suffice for convergence, then the processes may iterate without synchronization at each iteration. 
The termination test for convergence i s  most easily implemented if the error measure is defined so 
that it can be tested locally in each process, determining process convergence independent of other 
processes. Thus the only form of synchronization is implicit in the shared point values, which are 
continually updated in parallel. Note that a pure implementation of this technique has the 
characteristic that no process is ever in synchronization wait, and so all processes are always actively 
working towards the solution. However, it is possible for convergence to be slower than in a 
synchronized solution due to nonuniform use of previous values. The general ideas of this 
technique have been the subject of research for several years, often appearing under the name 
"chaotic relaxation" 121 

The pipelining techniq~~c is very similar te the pipelined a p p ~ o ~ s h  in laigh=perfot'm;~l~cu 
uniprocessor hardware implementation. In this technique, the computation is divided into several 
parts, called "stages," which have the characteristic that the output from one stage becomes the input" 
to the next stage. So, once the computation is well under way, all of the stages can be computing in 
parallel with the data streaming into the first stage and the results streaming out of the last stage. 
An example of this approach might be the division of a compiler into scanner, parser, global 
optimization, and code generation stages. 

One note about the interaction between implementations and multiprocessor efficiency and 
speedup deserves mention here. Some problem partitionings, especially those using pipelining, lead 
to an implementation which has a fixed maximum speedup, eg. the number of pipeline stages. 
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'Other partitionings which are parameterized by the ,number' .of processors (and possibly some . 

measure of data size) have no obvious fixed maximum. speedup, and thus (at least for large data 
sizes). can continue to'benefit from: additional processors. Thus, the implementor should be aware 
that, by requiring a fixed length pipeline or division into a fixed number of parallel processes, a 
limit on future flexibility' for expansion is being imposed. 



5 Selection of a sample application 

Since the main goal of this investigation is to demonstrate the practicality of partitioned 
execution of real-world problems, the study includes considering several application areas and 
specific codes as possib1e.candidates for partitioning. A number'of possible codes were considered 
from many difTerent application areas, but most of the emphasis to date has been concentrated on 
one particular code, named SIMPLE [3].' SIMPLE may be characterized as a large scale numerical 
physical simulation, using well '.known techniques for the widely important problem of solving 
partial differential equations on a reasonably large two dimensional mesh. 

SIMPLE was chosen for several reasons: (1) it seems to be representative of techniques used 
in many physical modelling codes, in that it contains both explicit and implicit PDE solvers, it uses a . 
two dimensional Lagrangian formulation, and it uses table lookup for the required equations of 
state of the fluids being modelled; (2) it is sufficiently simplified from a full-scale code to be quite 
manageable in size (as it consists of about 1800 lines of Fortran); (3) it has been studied by others in 
the academic sector as a candidate application for a number of novel processor architectures, such as 
data-flow machines. 

Large scale numerical simulations such as these form one significant class of applications for 
which multiprocessor partitioning seems to be appropriate. Several other application areas have 
been suggested and studied by other researchers. One application considered because it is widely 
used but still fairly self-contained is sorting. Internal (main memory) sorting is fairly CPU intensive 
but still difficult to partition effectively, since obvious partitionings are often theoretically limited to 
less than linear speedup [71. Another general area of application is heuristic search of large tree 
structures such as those found in artificial intelligence problems. One other application which has 
been studied In this light is set partitioning integer programming I71 



. . 
6 Overview of SIMPLE 

The intent of the SIMPLE code is. to give a simple, yet realistic, example of computational 
fluid dynamics and heat flow. It solves the differential equations of inviscid 'compressible shock 
hydrodynamics and simple heat conduction using a Lagrangian formulation. It works in two 
dimensions on a region with a regular boundary. It uses simple table lookup' to represent the 
equations of state of an ideal gas. 

The differential equations are reduced to difference equations. The equations for 
hydrodynamics and for heat conduction are solved in separate sections of the code employing 
different techniques. The hydrodynamics equations are solved explicitly, while the heat conduction 
equations are solved implicitly. 

The bisic data structure in SIMPLE is used in the representation of the mesh covering the 
problem domain. This consists of 13 two dimensional arrays of real numbers to store the physical 
quantities involved, plus a few additional arrays for working storage. There are also one 
dimensional arrays to store the 'tabular definition of .the equation of state, and of course several 
scalars to store miscellaneous other quantities. 

The outer loop-structure (after the problem is set up) is a simple iteration as the time value is 
increased: 

repeat 
hydrodynamics pass; 
heat conduction pass; 
compute new delta $ 

advance time by delta t; 
until done 

The hydrodynamics pass has the following structure: 
for each mesh zone, calculate new pressure usir~g E03 Iwkup; 
for each boundary zone, calculate geometry; , 

for each boundary zone, set up boundary physics; 
for each mesh point, calculate new velocities; 
fbr each mesh point, calculate new coordinates; 
for each mesh zone, calculate new density and change in specific volume; 
for the boundary, sum up the work done on the boundary by hydrodynamics; 
for each mesh zone. calculate artificial viscosity and Courant delta t limit; 
for each mesh zone, calculate hydrodynamic work and update energy, using EOS; 
for all zones, sum up the kinetic energy for the entire problem; 
for each mesh zone, calculate new temperature 'via table lookup; 

The heat conduction pass has the following structure: 
for each mesh zone, calculate two material properties; 
for the boundary, set the boundary properties to neighboring values; 
for each mesh zone, calcu!atrz coupling rnnstant-s in the K direction; 
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- for each mcsh zone, calculate &upling constants in the L direction; 
for the boundary, set some appropriate initial values; 
over the entire mesh, perform a forward and backward sweep in L (see text); 
over the entire mesh, p.eiform a forward and backward sweep in K (see text); 
for each mesh zone, calculate new energy using EOS, and new delta t limit; 
for the boundary, sum up the energy flow across boundaries; 
for all zones, sum up a new internal energy for the entire problem; 

Notice that, with one significant exception, all of the steps in both passes have a very similar 
structure. . A  typical step passes over the entire mesh (or maybe just the boundary) making local 
computations at each mesh zone or mesh point. These local computations typically involve updating 
one or more quantities at the given place in the mesh, after examining the previous value and 
perhaps the previous values of a few neighboring elements. Also, of course, computations involving 
only the boundary contribute ,much less to the CPU time used than computations over the whole 
mesh. Below, in figure 1 is a -pictorial representation of a typical SIMPLE mesh processing step, 
showing the obvious left to..right and top to 'bottom ordering .of mesh element computation. This 
will be compared in the next section with the multiprocessor partitioned ordering. 
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Figure 1: Typical mesh processing order 

The one exception to this structure occurs in the steps in the heat conduction pass called 
"forward and backward sweeps." Superficially, even these steps may appear to have a similar 
structure. There is one important difference, arising from the implicit nature of the PDE solution 
technique used. In order to solve a tridiagonal linear system of equations the sweeps evaluate a 
recurrence of the form X[I] := A[IbXII-I] + B[I] for increasing values of I. The key here is that 
each new X quantity depends on the new X quantity which was computed in the immediately 
preceding inner loop iteration. This dependence causes some difficulty in the partitioning of the 
sweeps, which will be discussed in the next section on partitioning of SIMPLE. 

Another algorithmic structure which is used is the table lookup in the EOS and'temperature 
calculations. In both cases this consists basically of locating between which pair of entries in an 
increasing table of values some physical quantity belongs numerically, and then using the 
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torresponding index into other tables to compute an interpolated function value. The lookup search 
is a straightforward sequential ordered table search. The only unusual part of the algorithm is that 
each table index is saved as a starting place for the next search, which reduces the search time 
assuming that successive uses of the function tend to pass arguments of similar magnitude. 
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Given the basic structure of SIMPLE as mostly performing lqcalized operations fairly 
uniformly across a large data structure (the mesh), the most reasonable approach seems to be a 
data-directed synchronous partitioning. Specifically, each of several processes is assigned to operate 
on some subset of the mesh, computing independently of the other processes whenever possible. 
Occasional synchronization is required for keeping one mesh section from advancing too far beyond 
the others, for mesh-wide data summarizing operations, and in the sweep steps (as explained later). 

An important factor to consider in partitioning a program which has a large shared data 
structure like SIMPLE'S mesh is the presence of per-processor cache memory on S-1 multiprocessors. 
Due to the large difference in access time to a word in ,central shared memory and a word already in 
a processor's cache, it seems reasonable to select a programming style which has a high degree of 
per-processor data locality of reference. In a code like SIMPLE, where the computation within the 
large shared data structure is quite evenly distributed, an easy way to do this is to statically partition 
the data structure into fixed equal size pi,eces, with one piece per process. Each process is then 
responsible for updating its piece, and most of the references to that,piece are made by that process, 
thus .assuring locality. Notice that it is also being assumed that there is at least .an approximate 
one-tpone mapping between processes and processors, and, that proce&es do not migrate from one 
processor to another very often. Otherwise, the advantages of -having all recently referenced data in 
cache would be lost. These assumptions are valid on the bare hardware of the S-1 multiprocessors, 
and must be supported by any operating system which is .intended to maximally benefit from this 
type of operation. 

For SIMPLE, the chosen static mesh partitioning is into "column groups." Each process is 
assigned a different fixed subrange of columns of all of the arrays representing the various physical 
quantities in the mesh. Of course, any process can still actess any quantity at any point in the mesh 
since the entire mesh is in global .shared memory. It is just. assumed that most of 'the references 
within a column group will be by the assigned process, and hence that the column group data will 
reside largely in.the corresponding processor's cache. Below in figure 2 the column grouping of the 
mesh is shown, along with the ordering within processes of a typical mesh 'bmputation, 
comesportding to the uniprocessor ' version in figure 1. 
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Figure 2: Partitioned mesh pr&ssing order (independent mesh computations! 

The presence of the caches has another interesting performance implication. on the theoretical 
speedup achievable for a program like SIMPLE. For some reasonable mesh sizes, it is quite 
possible that all of the mesh data will not fit in a single processor's cache, but that it will all fit in all 
of the caches combined. In this case, the uniprocessor execution of the program could continually 
cause cache misses and corresponding lengthy, delays while cache lines are transferred to and from 
main memory. However, the multiprocessor version, with properly partitioned references to the data, 
would be able to retain the entire mesh distributed in all of the caches, thus causing cache missing to 
be insignificant. In this way, if the efficiency of processor utilization is high enough, the speedup 
over the uniprocessor version could actually exceed the number of processors executing the program! 
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than the difficult sweep steps. One simplified typical code fragment might appear as follows (where 
K is the row index and L is the column index): 

for L := LMN to LMX do 
for K := KMN to KMX do . 

begin . . . 
A[K,L] := .(X[K,L]+Y [K,LJ) * (Z[K,L-II-ZK- l,L& 
B[K,L] := B[K,L] + Z[K,LErYIK-1,L+ I]; 
end; 

for L := LMN to LMX do 
for K := KMN to KMX do 

begin 
PKLI := P[K,LI + A[K-IL W[KLI: 
(LCK,LI := q[K,L] + Bn(,L-lkBIK,LI: . . 

end; 

Notice that the computation at each mesh point is in terms of other quantities at the same 
mesh point or at a neighboring mesh point, thus maintaining the desirable locality mentioned above. 
The only references outside of local column groups occur when L is in the first or last column of a 
group and an off-column reference like Z[K,L-11 or Y[K-1,L+11 is made. Also notice that within 
each loop pair the computations at each mesh point are completely independent of each other, and 
so they may be performed in parallel with no interprocess synchronization needed. However, the 
second loop pair is dependent on the results of the first loop pair, so synchronization is needed to 
insure that the second loop pair is not executed by some process before the A and B values needed 
have been stored by perhaps a different process. An easy way to insure this is to insert a "synchall" 
synchronization call between the loop pairs. This call forces each process to wait at that point of 
execution until all processes have arrived there, and then they are all allowed to proceed. Since each 
process is performing essentially the same amount of work on its column group as any other process, 
all processes may be expected to complete the first loop pair at about the same time and not cause 
vefy much overhead w d t  time at the synchall point. 

So, the partitioned version of the code fragment might appear as follows (where PR is the 
index of the process executing the code, and LMN and LMX have been expanded into arrays 
specifying the column boundaries of the column groups): 

for L := LMNIPRI to LMXIPRJ do 
for K := KMN to KMX do 

begin 
AIK,LI := (XIK,LI+Y[K,LI) * (Z[K,L-1I-Z[K-1,LR 
B[K,LI := B[K,LI + Z[K,LhY[K-l,L+ 13; , : 

end; . 

SYNCHALL; , . . . 

for L := LMN[PRI to LMXlPRj do 
for K := KMN to.KMX do . t 

begin . . ,,. . 
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P[K,L] := P[K,LI +.A[K- l,Ll*A[K,LI; 
qCK,L] := QK,LI + B[K,L- lbrBEK,LI; 
end; . . 

Another code fragment worth considering is one which includes a summary data gathering of 
some sort, such as the result of a summation or a maximum over some function of the mesh points. 
Such a computation requires a complete pass over the mesh with a single scalar output, rather than 
updated mesh values A typical step of this sort in SIMPLE might appear as follows: 

TOTAL := 0.0; 
for L := LMN to LMX do 

fb r .  K :e KMN tw KMX do 
begin 
TOTAL := TOTAL + A[K,LkX[K,LI; -. 
end; 

The-obvious approach to partitioning this code fragment is to let each process compute a total 
for its column group, and then to have one process compute a grand total at the end. If the number 
of processes is sufficiently large, the simple grand total computation should perhaps be replaced by a 
rnultiprocess version which could compute pairwise subtotals, eventually reducing the number of 
totals to one grand total. So, a partitioned version of this code fragment could appear as follows 
(where MAXPROC is the number of processes): 

PTOTALIPR] := 0.0; 
for L := LMN[PRI to LMXIPRI do 

for K := KMN to KMX do 
begin 
PTOTALPR]:= PTOTALLPRI + ,A[K,L].X[K,LI; 
end; 

SYNCHALL; 
if PR = 1 then (* processor 1 computes the grand total *) 

begin 
TOTAL := 0.0; . 
for P := 1 to MAXPROC do 

TOTAL := TOTAL + PTOTAL[PI; 
end; 

One more code segment which should be discussed. is the table lmkup in the EOS and 
temperature calculations. As mentioned previously, these code segments are essentially 
straightforward sequential ordered table searches, which can be executed independently by several 
processes in parallel with no synchronization since they are computing function values from 
read-only data. The only exception to this is'.the mechanism for retaining the search index fr6m 
the previous search for use as a starting point the next time. The obvious way of partitioning this 
mechanism is to retain the previous search index on a per process basis, so that pracesses executing 
in unrelated portions of the mesh do not try to use each other's previous search indices. 
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Finally, some consideration must be given to the somewhat more difficult problem of 
partitioningethe forwai-d and Sickward sweeps in the heat conduction pass. It was noted previously 
that the difficulty arises from the recurrence inherent in the loops, in which each inner loop 
iteration is dependent on results computed in the previous iteration. Even this structure would not 
be difficult to partition if such iterations only traveled up and down columns, and hence were 
evaluating each recurrence only within a single process. ~nfor tunate l~ ,  recurrence iterations are 
performed both up and down columns and across rows. So, some of the recurrences must be 
evaluated across process boundaries, requiring some form of synchronization at very frequent 
intervals (once per process boundary crossed,, i.e. several times per row of the mesh in a single 
sweep). All previously discussed partitioning5 of SIMPLE required only about one synchronization 
per computation over the entire mesh. 

A partitioned forward mesh sweep recurrence is diagrammed below in figure 3. In the figure, 
the mesh rows have been grouped into blocks of three rows each; row blocking is not used in the 
code below, but it will be discussed later in ;the section on analytic study. The vertically circled 
column group boundaries show points at which synchronization must occur. The diagonally circled 
column group, portions represent a single time snapshot of how much,computation can proceed in 
parallel, due to the,skew enforced by the left to right recurrence. As time proceeds, more and more 
processes become actively executing in The average degree of parallelism depends on the 
"angle of attackn of the diagonal part, which is determined by the amount of row blocking, the mesh 
dimensions, the number of processors, and. the synchroniiation overhead. These quantities will be 
studied in detail later, in the analytic section. 
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Figure %: Partitioned forward sweep processing (with row blocking) 

For reference, a slightly . . simplified version of the unpartitioned troublesome sweep d e  
fragment appears below: 

for K := KMN to KMX do 

begin 
for L :- LMN to LMX do 

begin 
ACK,Ll := qlKJ-I I'AIKL-11; 
B K L I  :a ( Q K L -  1 kB[KL-13 I AIK,L- 11 
end; 

for L := LMX downto LMN do (nc note stepping by -1 rk) 



7 Partitioning SIMPLE 

begin 
TIK,Ll := A[K,Ll*TCK,L+ lI+B[K,L]; 
end; 

. . end (*for K*); 
. <. 

For partitioning' this code fragment, there must be a somewhat more detailed synchronization 
mechanism than the synchall call used previously. Let A WAIT(n) and SIGNAL(n) correspond 

. roughly to Dijkstra-style semaphore operations P(SEM[nD and V(SEM[nl). .So, AWAIT(n) will be 
used' to await a signal on channel n, and  SIGNAL(^) sends a signal on channel n. Notice that the 
signal channels contain counters, so more than one signal may be outstanding on a channel. In this 
example, AWAIT(n) will be used to wait for a signal from process n that it is finished with the next 
row's worth of column group. Given these definitions, the partitioning discussed above might be 
expressed in this code fragment as follows: 

for K := KMN to KMX do 

besin 
if PR > 1 then AWAIT(PR-1); 
for L := LMN[PRl to' LMXCPRI do 

begin. 
A[K,L] := a K , L I  / ACK,L-I]; 
B[K,L] := (qEK,L- lhB[K,L-11) I A[K,L-11; 
end; 

if PR < MAXPROC then SIGNAL(PR); 
end (*for K*); 

for K := KMN to KMX do 
begin 
if PR < MAXPROC then AWAIT(PR+ I); . 

for L := LMX[PR] downto LMNIPRI do ' (* note stepping by - 1 *) 
begin 
T[K,LI :- A[K,LI*T[K,L.I~II I BCK,L]; 
end; 

if PR' > 1 then SIGNAL(PR); . . 

end (*for K*); 

There exists an alternative to the above frequently synchronizing structure for partitioning 
the sweeps. It would be possible to transpose the mesh quantities needed, perform the sweeps in the 
"easy" direction (up and down columns), and then transpose back. This unwieldy sounding 
approach could actually be quite feasible in practice when compared to the high overhead method 
outlined above, if the problem of efficiently transposing a matrix on the multiprocessor can be 
solved. At the moment this problem appears to be quite complicated, since it must attempt to keep 
all of the processors busy at the same time as avoiding delays from simultaneous access to any single 
central memory unit. Some further analysis of how much time the high overhead method spends in 
waiting will be presented below in the section on analytic speedup computation. Also, a new 
hardware-supported mechanism will be proposed in the section on synchronization and 
communication which should eliminate most of the overhead associated with loops like this one, thus 
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obviating the need for such a transpose mechanism. 

The above examples tend to blur the distinction between variables which are shared by all 
processes and variables which are private to each process. In any actual implementation, of course, 
this distinction must be explicitly specified by the user to the system software. For SIMPLE, shared 
variables include the .mesh quantities, the EOS lookup tables, and miscellaneous globally known 
scalars. Private variables include loop indices and temporaries. 
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As part of this study, a modest simulatiori of the SIMPLE code running on a multiprocessOr 
has been implemented. One of the major goals 'of this simulation was just. to force the process of 
considering the entire code line by line, to be sure there were no major conceptual problems in 
partitioning it for a multiprocessor. ,Another goal was to study in general the effectiveness of the 
previously discussed approaches to partitioning, with particular emphasis on the viability of a static 
mesh partitioning. The simulation is accurate in the sense that it stin actually solves exactly the 
same problem as that solved by the uniprocessor code, but it is incomplete in its consideration of the 
complexities of the multiprocessor environment. The entire source code for the multiprocessor 
SIMPLE simulator is included in the microfiche appendix to this report, in the file named 
"PPIMPL.PASn. 

The basic approach of the simulation was to begin with the code of SIMPLE (translated into 
Pascal from Fortran), and to start by considering how to partition each stage for multiprocessor 
execution. However, each code segment which was intended to run independently in different 
processes is actually enclosed in a loop which executes the code segment successively for,each process, 
varying the process number over all possible values. Variables which were private to each process 
(and had a useful lifetime long enough to justify keeping the values across major processing steps) 
were changed into arrays indexed by the process number. 

To  this structure were added timing, synchronization, and statistics gathering functions. The 
main timing function is assignment of CPU time spent in mesh computation to the simulated process 
which is spending that time. This is done by surrounding each code segment with calls to start and 
stop.charging of CPU time to a specified process. The only synchronization function simulated at 
present is the synchall fbnction described earlier. It is simulated by a procedure call to update 
timing statistics at each synchall point. The most interesting statistic is of course the speedup 
achieved. It. is computed by assuming that wallclock time advances at the same rate as the 
maximum CPU time used by any process at each stage. Again, this assumes essentially that each 
process has its own dedicated processor. Other statistics gathered include per-process CPU usages, 
which may be examined to determine how successfully the workload is being balanced among the 
processes. 

The results of sample runs of the simulation were quite encouraging. The per-process CPU 
usage was very well balanced, indicating that the static mesh partitioning appears to be a reasonable 
choice. The speedup reported for a small mesh on a 16 processor system varies between 9.7 and 
14.5, depending on how it is chosen to account for CPU time which was spent but not attributed by 
the simulation to any particular process. Both the accuracy .of the simulation and the speedup value 
are expected to increase as the size of the mesh increases. 

There are a number of ways in which the simulation to date is incomplete, and so future 
hpprovements could increase the accuracy of the simulation. One minor improvement would be to 
accrlrately model the subtotal accumulation part of each summary data gathering step; at present 
these parts are assumed to be negligible and are not included. Also lacking is a detailed study of 
exactly which synchall points are absolutely necessary; at the moment they are scattered liberally 
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throughout the code wherever there is any possibility that global resynchronization might be needed. 
The influence of the caches was included in some analytical study (discussed later), but the 
simulation assumes uniform access to all of shared memory. The critical points in SIMPLE where 
cache misses will happen due to column group boundary crossing have been isolated but not yet 
included in the simulation. Probably the most important omission in the present simulation is 
accurate accounting for the complicated interactions in the heat conduction forward and backward 
sweeps. At present the simulation assumes that a no cost mesh transpose is done; this is obviously 
unrealistic. 
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The simulation studies of SIMPLE, to date have ignored the implications-on memory access 
times imposed by the per-processor caches of S-1 multiprocessors. The presence of the caches is. 
quite important to consider due to the possibility of a more than tenfold increase in access time for a 
word not in cache over the access time for a word in the proper cache. In particular, accessing a 
word in cache takes only about 50 nanoseconds, whereas accessing a word from the cache of another 
processor will probably take about 300 nanoseconds (averaged assuming all words of a cache line 
will be accessed, corresponding to a cache line access time of 4 to 5 microseconds). 

To  augment the simulation results, some analytic study has been done of potential speedup of 
portions of the SIMPLE code, allowing for the presence of the caches. The portions chosen for 
analytic study are the sweep steps in the heat conduction pass and a time-consuming nested loop 
representative of the hydrodynamics pass. The sweep analysis is simplified by only considering the 
overhead implied by cache misses and cache line transfers, and not considering any overhead 
associated with process synchronization. The next section of this report proposes a mechanism 
which can reduce both types of overhead. 

. I 

, The sweep analysis will be presented for the forward sweep only. The forward sweep part of 
the slightly simplified code fragment which appeared earlier is repeated below for. reference: 

for K ::= KMN to KMX do - ,. 

begin 
for L := LMN to L'MX do 

begin 
A[K,Ll:- QJK,LI / A[K,L-11 
B[K,L] := (q[K,L-lbKBIK,.L-11) I A6KsL-l'J; 
end; 

end (*for K*); 

It 4 assum.ed that the two dimensional arrays are stored by columns, i.e. that element Af 1,lI is 
followed in m&ory by element A[2,11 Thus each S-1 16 word cache line contains 16 elements of a 
column of an Brray. Since cache transfers happen in units of 16 word lines rather than single 
words, it  is reasonable to assume that the overhead would be less if each computes the above 
recurrence on a block of rows within .its column p u p  before letting the next process start on those 
rows, rather than synchronizing on each single row. This blocked approach allows more than one 
word to be used from each ' cache line each 'time it is transferred across from one processor. to 
another at a column group boundary., For 'simplicity, the unit of time used here will be the length of 
time it takes one processor to execute a single loop iteration with no cache misses. 

Define' the following parameters: 

B blocksize = number of rows in a block 
W 6 time to compute the -iecurrence over one block of one column group 
P number of processors 
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. . 

R P number of rows (KMX-KMN+ 1) 
C = number of columns (LMX-LMN+ 1) 
TSP = elapsed time for entire ,forward sweep on single processor 
TMP = elapsed time for entire forward sweep on multiprocessor 

The speedup for this section 'of code is then defined by: 

TSP 
Speedup = - TMP 

By the definition of the unit of time, 

Similarly, notice that since a block is B rows high a d  C/P columns wide, W would hc q l l a l  

to B a / P  in the absence bf cache misses. 

T o  formulate the value of TMP, the exact sequence of the multiprocessing sweep execution 
must be obskrvea. Each of the P processors computes the recurrence at each element in all R rows 
in its assigned column group of C/P columns. In other words, each processor computes over RIB 
blockh taking time W*R/B for the whole computation. If all the processors could execute for the 
whole sweep fully in parallel, W*R/B would also be the elapsed time of the entire computation. 
However, no processor can begin its computation until the previous processor has finished 
computing on its first block. So, processor P must wait for P-1 block computations until it can start 
on its first block. From then on all processors can run in parallel, assuming that each block 
computation takes the same amount of time. Thus, accounting for the delayed startup of processor 
P, the total elapsed ti~rie is: 

R TMP 0 W -(P-I + E) 

In formulating W, processor to processor cache line moves must be accounted for, In additinn 

to the basic iteration compute time. The basic iteration time (of the real code in SIMPLE) is 
estimated at about one microsecond, and a cache line move takes 4-5 microseconds, so it seems a 
reasonable estimate 'that a cache line move takes about the same time as 4 basic iterations. 
Assuming that a previous, step computed values for the array Q causing its data to reside in the 
caches of assigned column group processors, the read-only use of QIK,L-I] in each iteration causes 
each processor to participate in two cache line moves (one from the previous processor and one to 
the next processor) every 16 rows. So, the contribution .to each block computation of accessing 
QK,L-11 is twice B/ 16 times the cache line move time, i.e. 2*B/ 16.4. 

Each iteration also uses the values of AIK,L-11 and B[K,L-11, but not in a read-only fashion, 
te. each value used was written on a recent earlier iteration. So, the cache lines containing 'these 
values at column group borders must be moved between processors (twice) for every block which is 
processed, not just every 16 rows In other words, when processor p finishes computation on a block, 
the cache line containing the last column of that block must be moved to processor p+l, and if the 
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'next block to be computed by processor p also contains any part of that cache line it must be moved 
back to processor p. So, where rx) ("ceiling of x")s the smallest integer greater than or equal to x, 
the contribution to each block computation of accessing both A[K,L-11 and B[K,L-11 is twice 
2-rB1161 times the cache line move time, i.e. 2-2-rBI161-4. 

. . 

Therefore, the final formula derived for W is: 

C-B W =  - B B 
P + 2- -4 + 2-2-r 1-4 

From all of the above, the speedup can be expressed: 

Notice that this formula has the expected quality that as the number of rows and columns in 
the mesh approaches infinity, the speedup approaches the number of.processorr 

For determining some numeric. values of the speedup formula, some interesting parameter 
values can be substituted. Specifically, by letting P=16, choosing sample values for R and C, and 
then maximizing over B, the following speedups are obtained: 

R C speedup max occurs a t  B = 

128 128 7.8 4 
128 1824 11.4 2 
1024 1024 14.1 4 

Now, a time-consuming ilested loop representative of the hydrodynamics .pass will be 
analyzed. The loop chosen performs the function listed earlier in the SIMPLE overview as "for 

. each mesh point,.calculate new veldties." This loop forms the majority of a subroutine which uses 
39% of the CPU time used in the hydrodynamics pass, and 26% of the total CPU time in SIMPLE. 
It is also in the class of easily partitioned loops in SIMPLE, since it requires no potentially costly 
synchronization calls within the loop body. Thus, the major factor which . might . limit speedup for 
this section is the overhead of cache misses due to shared array access. For reference, the exact text 
of the loop in question appears below: 

for L := LMN to LMX do 
for K :- KMN to KMX do 

beg"' 
AU := (P[K,L]+QK,LI) * (Z[K,L- 11-Z[K- 1,LI) + 

(P[K+ l,LI+q[K+ l,LI)*(Z[K+ 1,Ll-Z[K,L-lI) + 
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(P[K,L+ ll+QfK,L+ ll)*(Z[K- 1,Ll-Z[K,L+ ll) + 
(P[K+ 1,L+ ll+q[K+ 1,L+ ll)w((Z[K,L+ 11-ZK+ 1,Ll); 

A W := (PCK,LI+q[K,LI) * (RIK,L- 11-R[K- 1,LI) + 
(PK+ l,LI+q[K+ 1,Ln * (R[K+ 1,Ll-R[K,L-lI) + 
(PK,L+ ll+QJK,L+ ll) * (R[K- 1,Ll-R[K,L+ ll) + 
(P[K+ 1,L+ lI+QJK+ 1,L+ 11) * (R[K,L+ l>R[K+ 1,L& 

AUW := RHO[K,LhA J[K.LI+RHO[K+ 1,LEwA J[K+ 1,Ll 
+RHO[K,L+ 1kA J[K,L+ ll+RHO[K+ 1,L+ 1hA J[K+ 1,L+ 11; 

AUW := Z.O/AUW; 
AU :- -AU*AUW; 
AW :=AW+AUW; 
U[K,Ll:= U[K,LI+DTN*AU; 
VR,Ll:= V[K,LkDTNwA W; 
if ABS(U[K,LJ) <= VCUT then U[K,LJ := 0.0; 
d ABS(V[K,LI) <= VCUT then VCK,LY := 0.0; 
end (*for L,K*); 

Define the following parameters: 

P = number of processors' 
R = number. of rows (KMX-KMN+ 1) 
C = number of columns (LMX-LMN+ 1) 
K = number of cross-cache references within one row of a .column group 
S = time,for a single inner loop iteration with no cache misses 
V = time to move one word from .one cache to another 
T = total time spent on all iterations on single processor ' 

2 

First, observe that: 

Now, there .are K cross-cache references within one row. of a column group. There are R rows 
and P column groups. Each cross-cache move takes time V. So, the total time' spent moving cache 
words on the multiprocessor is.K-V-P.R. But, this time is divided evenly among the P processors, 
so the cache word moving overhead contribution to the elapsed time is K-V-R. Assuming this is 
the only overhead and that the normal iteration time is also divided evenly among the processors, 
the speedup can be expressed as: 

Speedup - - T 

+ K-V-R P 
m 
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P 
= K-V-P 

1+ - C-S . 

For the above code fragment, K can be computed by simply counting the number of different 
accesses of adjacent columns, i.e. column L-1 or L+1. In this case, K = 12 (not counting duplicate 
references to the same off-cohmn element). The average value of V was estimated earlier to be 
about 300 nanoseconds. The value of S for this loop could be about 1200 nanoseconds. So, the 
speedup can be estimated: 

Now, again letting P=16, and choosing the same sample values for R and C as for the sweep 
analysis, the following speedup estimates are obtained: 

R C epeedup 

128 128 11.6 
128 1024 15.3 

1824 1024 15.3 

And finally, a speedup estimate for the entire code-can be computed, assuming that the sweep 
speedup is a good estimate of the heat conduction pass speedup and that the sample hydrodynamics 
loop speedup is a good estimate of the hydrodynamics .pass speedup. The. heat conduction pass 
consumes about 30% of' SIMPLE CPU time, and the hydrodynamics pass consumes about 70%. The 
speedups are combined using the equation: 

This yields the following entire code speedup estimates: 

R C speedup 

128 128 9.7 
128 1824 13.9 

1824 1024 14.9 
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The above studies have pointed. out that a variety of process synchronization and 
communication mechanisms may be desirable for use under varying circumstances. The most 
obvious form of communication between processes on a multiprocessor like the S-1 is through the 
use of shared memory, which .is implemented on the S-1 multiprocessor as several shared main 
memory modules and a cache coherence algorithm to keep the state of main memory and local 
caches consistent throughout all read and write accesses. 

Shared memory does not necessarily directly implement the desired synchronization primitives, 
however. The (statically) most ftequent synchronization primitive used in partitioned SIMPLE is 
the synchall call described earlier. Recall that it forces each process to wait at a giv~rr point of 
execution until all processes have arrived, after which all processes may continue. Synchall can be 
easily implemented in terms of classic Dijkstra-style P and V semaphore operations. For exampl~, 
letting MAXPKUC be the number of processes, if SLEEPINGPROCS is of type integer and 
MUTEX and SLEEP[l..MAXPROCJ are semaphores, the following code can be used to implement 
synchall on process number PR: 

(* Initially SLEEPINGPROCS-0, MUTEX-0, SLEEP[l..MAXPROCI=O *) 
P(MUTEX); 
SLEEPINGPROCS := SLEEPINGPROCS + 1; 
if SLEEPINGPROCS = MAXPROC then 

begin 
for I ;= 1 to MAXPROC do V(SLEEP[rI); . 

SLEEPINGPROCS := 0; 
md; 

V(MLJTEX); 
~(SLEEPCPRU; 

The performance of this code in practice would of course depend very greatly on the 
underlying implementation of the P and V primitives. Also, it is impartant to note that in this code 
one process (the last one to execute the synchall) is responsible for issuing the V's that wake up all 
of the other processes. If the CPU time required for executing a V primitive is large enough 
compared to the CPU time between synchalls, and if the number of processes is large enough, this 
can be a severe performance bottleneck. 

For allowing the implementation of synchronization primitives, the S-1 architecture contains 
"conditional move" instructions. One such is the MOVCSF ("move conditionally, skip on failure") 
instruction. This instruction tests to see if the values of its first and second operands are equal. If 
so, the contents of the first operand are replaced by the contents of register R12 (decimal). If not, the 
first operand is left unchanged and a skip is taken to the skip destination. The instruction operates 
indivisibly, so that nothing can change the value of the first operand before it is (conditionally) 
replaced. 

Synchall can also be implemented in terms of the MOVCSF instruction. The following 
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'example implementation is written in S-1 assembler code. It is implemented at a very low level, 
without any operating system calls such as might be desired for a more general implementation - all 
waiting isbusy-wait' looping. Notice that ,the process local index SW is used to toggle between the 
first and second words of SLEEPINGPROCS, on successive synchalls, to avoid race condition 
trouble if one process reaches its next synchall before another process has realized it is time to wake 
up from the previous synchall. 

; ; ; I ni  t i  a l l y (SWI =0, (SLEEPINGPROCSI =0, (SLEEPINGPROCS+4) =0 
I NCSLEEP: MOV A, SLEEP I NGPROCS (SW 1 

INC %12.,A 
ROVCSF SLEEPINGPROCS(SW),A,INCSLEEP ;Increment SLEEPINGPROCS i n d i v i s i b l y  ' 

SKP.NEQ %12.,UAXPROC,SLEEP 
UOV 'SLEEP I NGPROCS (SW I , #0 ; I f  incremented t o  UAXPROC, zero i t  

SLEEP: JflPZ.NEQ SLEEPINGPROCS(SW1,SLEEP ;Wait for SLEEPINGPROCS = 0 
SUBV SW, SW, #4 ;%itch: SW:=4-SW 

For some kinds of synchronization and communication, it appears that a mechanism other 
than simple shared memory is very desirable. The cache line size of 16 words requires a substantial 
amourit of overhead per cache line moved from one processor to another. This overhead can be 
amortized over the 16 words if the memory access pattern causes most of the 16 words to be used 
before the cache line.must.be moved again. This type of amortization is the reason that SIMPLE 
arrays were assumed to be stored by columns, and then the rows were processed in blocks in the heat 
conduction sweep analysis. In a straightforward non-blocked implementation, the sweeps in 
SIMPLE would require that about 4 words per CIP microseconds be transferred between processors: 
Especially for small numbers of columns, the "bulky* 16 word cache moves can be a significant 
bottleneck. 

Also, timing cache line mesh data moves only includes communication overhead, and does not 
account for any synchronization overhead (mentioned in the "partitioning SIMPLEn section as 
AWAIT and SIGNAL primitives). So, it is reasonable to propose a new general purpose 
mechanism which combines the functions of communicating small packets of data at high 
bandwidth and providing synchronization between the processes sending and receiving the data 

The new proposal is a simple inter-processor message sending mechanism; Messages are 
transmitted on one-way "links," which are allocated in 110 memory space much like normal UO 
mechanisms. The 110 memory. allocation is performed by the operating system, so that transparent 
reallmation can be done if it becomes necessary to move a process from one.processor to another. 
Once the link is set up, the user processes can use it at high speed via special instructions without 
substantial operating system intervention. 

The user instructions are called SNDMSG and RCVMSG. They are specified.to operate on 
small messages (doublewords) at very low overhead per message transmission. The hardware 
contains a small amount of buffering for smoothing the message flow, but both instructions have 
failure returns, indicating that either the buffers are momentarily full (for SNDMSG) or empty (for 
RCVMSG). It is expected that both instructions can execute in the 100-200 nanosecond- range, with 
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.a message latency between processors limited largely by physical factors such as interprocessor cable 
lengths. 

As an example, a possible irnplementation.of the forward sweep part of the slightly simplified 
SIMPLE code fragment which appeared earlier using AWAIT and SIGNAL is included below: 

for K := KMN to KMX do 

begin 
if PR > 1 then RCV~WORDS(LINK~PR-~],AKLM~,BKLM~) else ' 

begin 
AKLM ~:=A[K,LMN[ 17- I]; 
BKLM l : = B ~ , L M ~ l I  11; 
end; 

for L := LMN[PR] to LMXIPRI do 
begin 
A[K,L] :Q q l K , ~ 4  / AKLMI; 
B[K,L] :- (QJK,L- l]*BKLM 1) / AKLM 1; 
AKLM 1 := A[K,LI; 
BKLM 1 := B[K,LI; 
end; 

if PR < MAXPROC then SEND2WORDS(LINK[PRl,AKLM 1,BKLM 1); 
end (*for Ka); 



11 Directions for future study 

In a broads ranging study such as this, there 'will .always remain interesting problems to be 
addressed. ' ~ h e r k ~ i s  more woik to be done in. each of the areas discussed in this report, and there 
are also many other related afeas requiring.study. 

The simulation of'partitioned SIMPLE is still incomplete in several ways mentioned earlier, 
especially in simulating the overhead time required for cache line moves and/or synchronization 
primitive execution. Also, a higher-level simulation could be done which does not actually solve the 
physics equations, but still models the multiprocessor behavior of the code for various mesh sizes 
and other parameters. The analytic studies of SIMPLE could be,continued in several directions, 
including detailed analysis of othef code sectioiis, or studying previously analyzed sections under 
different zissumptions, such as the use of SNDMSG and RCVMSG primitives. A more quantitative 
statement about the sensitivity of the speedup of various code segments to variations in the mesh 
size would also be useful. 

Further detailed study of synchronization and communication mechanisms is desirable. Such 
mechanisms should be as easy to use and as general as possible, but must not sacrifice performance. 
It hasalready been observed that a variety of mechanisms with a variety of functional and timing 
characteristics is likely to be needed. In conjunction with these mechanisms, more study should be 
done on general techniques for partitioning of applications. The special issues arising in debugging 
a multiprocess implementation are particularly important. More tools need to be developed for 
evaluating the effectiveness of alternative implementations. 

Another, important dimension of study is the range of applications chosen for partitioned 
implementation. Study of partitioning in detail should be done (as it was for SIMPLE) for several 
other real-world applications, such as those mentioned in the section on "selection of a sample 
application.* Also, several entirely different non-numerical areas of application should be 
considered in more detail for multiprocessing feasibility. 

One final area of investigation needed is the implications of trying to use the S-1 
multiprocessor hardware as cost-effectively as possible. A mapr topic is the interaction of the 
partitioned multiprocessing approach with the powerful vector processing capabilities of the S-1 
Mark IIA. One other topic mentioned earlier is researching the possible implementation of a very 
efficient multiprocessor matrix transposition algorithm, for possible use in situations where matrix 
processing does not efficiently align with the chosen data partitioning of matrices. 



12 Conclusion 

This study to date has added to the, evidence in favor of the partitioned application mode of 
multiprocessor use. It has demonstrated that applications representative of real-world large scale 
problems can reasonably be considered for multiprocessor partitioning. Some simulation and 
analytic estimates of code speedup have been obtained. Some general methodologies for partitioning 
have been suggested, and some specific mechanisms for multiprocess cooperation have been 
proposed. 

It seems certain that general purpose multiprocessors will play a large role in the future 
spectrum of the world's computing needs. Part of this role will be assumed by large scale 
multiprocessors executing some of the most compute-intensive applications, partitioned across 
multiple processors to gain valuable increases in raw computing power per wallclock hour. 
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Introduction 
The  S-1 Mark IIA uniprocessor is the second generation of a pipelined vector and scalar processing 
computer with a virtual address space of 229 thirty-six bit words, addressable in quarterwords, and 
a physical address Space of zS2 singleGords. This manual describes its native mode instruction tet 

. . 
and an assembler for that instruction set. 

While a Mark IIA uniprocessor can operate alone or as part of a multiple-instruction-stream 
multiple-data-stream (MIMD) multiprbcessor, this rnanu a1 deals only with single processor 
operation. It also avoids implementation-dependent details like instruction timing and numerical 
values corresponding to opcode mnemonics. 

Section 1 presents an overview of the architecture. Section 2, which assumes knowledge of the 
material in Section 1, divides the native mode instructions into groups, preceding each group with 
architectural details pertaining to that group. Section 3 describes the FASM assembler, but one can 
understand the assembly language examples in the previous sections without having read this 
description. 



2 1 Introduction 

1.1 Notation 

T h e  remainder of the manual uses the following conventions for the sake of conciseness (the reader 
may want .to skim these now and read them carefully only after encountering them in the text): 

Radices Throughout the text, numbers appear in radix 10 unless otherwise noted. In the 
assembly language examples, numbers appear in radix 8 unless they include 
decimal points, which indicate they are in radix 10. 

. , . . . 
a . . b ,  stands for the integers or elements from a through b inclusive. 

(a,b,c.dl represents some one of a, b, c, or d. 

M[xl represents the contents of memory at quarterword address x. Context should 
make clear whether this is a quarterword, halfword, singleword, or doubleword. 

R[xl represents the contents of the registers at location x.. Again, context should make 
clear whether this is a quarterword, halfword, singleword, or doubleword. . 

RO . . R31 . refer to the 32 singlewords in the register space (see Section 1.2.3). ., , . 

X.Y denotes a field (that is, a series of consecutive bits) named "Y" within a memory 
location or register named "X". 

X<n:m> denotes a field within X beginning at bit n and ending at bit m. X<n> represents 
the nth bit of X. We number the most significant ("lftmost") bit of a singleword 
"0" and the least significant bit "35". Sometimes, when we talk about an 
indlvldual Kield wiL11i11 a wurd, we will number the birr sart!pg at fhe leftmost 
bit within the field itself. 

represent the result of evaluating the operand field of instruction--that is, the 
register, memory location, or constant specified by the operand field rather than 
the operand field itself. Thus, for example, OD2 refers to the second operand 
field within an. XOP instruetian while OP2 refers to the register, rnwavy 
location, or constxnt specified via that field. 

SIGNED&) means that X is a two's complement integer 

UNSIGNED(X) means that X is an unsigned integer, where all bits (including the most 
significant) contribute to the magnitude. 

ZERO,EXTEND(X) 
says to extend the precision of X by attaching zeroes to the left of it. 



1.1 Notation 

SIGN,EXTEND(X) . 

says to extend the precision of X by replicating its sign bit. 

LOW,ORDER(X), HIGH,ORDER(X) . 

designate the least-significant and most-significant portion of X, respectively. 
When context does not make clear how much of X to include, we will state the 
precision explicitly. 

In addition,'the assembly language examples use two constructs which may not immediately be clear. 

First, it uses 'ow instead of "()" brackets to parenthesize expressions, indicatingethe precedence of 
operators. 

Second, when the operand of an instruction consists of one or more values separated by "?" marks 
and enclosed in square brackets, the assembler places those values in consecutive singlewords in 
memory and uses as the instruction operand the address of.the first of those singlewords. Thus, the 
following examples have essentially the same effect: 

DSPACE 
F: 128 . . 

256 
512 
1028 

I SPACE 
PUSHADR SP, F . 

'and: 

I SPACE 
PUSHADR SP,1128 ? 256 ? 612 ? 10281 

Data literals are discussed in section 3.3.4. 
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1.2 Words, Memory, and Registers 

1 Introduction 

1.2.1 Words 

T h e  fundamental "word" in the S-1 native mode architecture is called a singleword, and is 36 bits 
long: Bits within a singleword are. numbered from 0 upward, beginning at the,most significant bit. 

Many instructions access data in any of four different precisions--quarterword. (v), .halfword 
(HW), singleword (SW), or doubleword (DW)--with equal ease. 

Four quarterwords 
. . . .  ' 

0 35 

Which precision a particular instruction deals with is either implicit in the instruction--the D JMPZ 
instruction, for example, always compares singlewords--or indicated by tacking a nodij2er onto the 
instruction name. For example, the notation "ADD.(Q,H,S,D]" means that 

High Order - 
Low Order .: 

ADD. Q 

f l  Lnl 
\ ' 

flln+41 , , . I  

adds quarterwords while 

36 . 71 . . 
- .  

Doubleword 

ADD. D 

adds doublewords. 

Unless otherwise specified, instructions address memory in terms of quarterwords regardless of the 
precision they deal with. For example, the first singleword in memory lies at address 0, the second 
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lies at address 4, the third lies at address 8, and on. Quarterwords within a halfword, singleword. 
or doubleword have increasing addresses from left to right. Thus if a quarterword and a 
singleword have the same address, then the quarterword is the high order (most significant, or 
leftmost) quarterword of the singleword. Similarly, the more significant singleword in a doubreword 
has the lower address. 

Halfwords and singlewords must be aligned: the address of a halfword must be a multiple of 2 or 
y~ ALIGNMENT-ERROR hard trap will occiir. Similarly, the address of z singleword must 
always be a multiple of 4. 

Any two consecutive singlewords can constitute a doubleword (though some implementations of the 
architecture may access a doubleword more efficiently if it is aligned on true doubleword 
boundaries, so that its address is a multiple of 8). 

. From now on, we use the term "word" interchangeably with "singleword" and refer to "anyword" 
when any of the four precisions is acceptable. 

1.2.2 Memory 

The processor has a physical addreis space of zJ2 singlewords (quarterword addressable). At .  any 
time there are four (possibly) different virtual address spaces, one for each level of protection, called 
rings. 

We use the term ADDRESS(X) to mean the virtual address of X and PHYSICALADDRESS(X) 
to mean its physical address. 

More precisely, ADDRESS(X) is a singleword in the form of a pointer, as described in Section 1.8.1: 
a five-bit tag field, one of whose purposes is to specify a ring, followed by a 31-bit address field 
which can address any quarterword in an entire 229-singleword space. Thus, .ADDRESS!X) 
specifies both a tag and a quarterword address. 

The  architecture permits one to regard a virtual address space as a set of segments instead of a 
single vector of quarterwords, and thus an address may specify three coordinates: a ring, a segment 
and a quarterword address within that segment. The  31-bit address field specifies both the segment 
and the address within the segment. 

The rings are numbered 0 . . 3, with ring 0 the topmost in the hierarchy. A ring can be protected 
against improper access on the part of a ring which lies below it in the hierarchy. In addition, the 
processor establishes a level dividing the rings. Those above the level are privileged while those 
below the level 'are not. Another term for unprivileged execution is user mode. Certain instructions 
are called privileged" because attempting to execute them in user mode causes a 
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PRIVILEGE~VIO'LATION hard trap (Section 1.9.4). 

1.2.3 General Purpose Registers 

An unprivileged process can access a single register file, a set of general purpose registers equivalent 
to 32 singlewords of memory. As with memory, instructions can access quarterword, halfword, 
singleword and doubleword entities within the registers, and they always address the registers in 
terms of quarterwords. The  alignment rules that apply to memory also apply to the repsters. 

The architecture actually provides sixteen different repster files numbered 0 through 15. When in 
privileged mode, the p;ocessor can access various register files and can choose which file is to be 
used by a particular unprivileged process. 

Placing a X" in front of an address tells the assembler to access the register space instead of 
memory. For'example, an instruction which refers to 3 4 "  will access the fifth quarterword in the 
register space (if it is dealing in quarterwords) or the third haifword (if it is dealing in half word.^), 
and so on. The  registers act as a circular list, so %O follows %127. Thus, for example, the eight 
quarterwords from %I24 through %3 can constitute one doubleword. 

Because one most often manipulates the registers as singlewords, the remainder of this manual will 
use the notation "RO" to represent the singleword at register address %O, "kl" to represeiif ehe 
singleword at register address %4, and so on up to "R31". Within the assembler, one can easily define 
the symbols "ROW through '231" to have this meaning. 

Certain register addresses have advantages over the rest while others have restrictions. 

Indexing: Registers RO, R1, and R2 cannot be used as base registers for the "pseudoregister" 
addressing mode, which is explained further in Section 1.6.3. 

Program counter: Register R3 has a dual identity. When an instruction uses R3  as the base for an 
address calculation (see Section 1.6.3), it accesses the program counter instead of R3 itself. When an 
instruction uses R3 in any other way, it accesses the true R3. There is no connection between the 
value in KS and the value of the program counter; one particular usage of R3 willrin 111e arlrl~essir~g 
modes is simply defined to give the program counter instead. 

SIZEREG: Register R3 is also used to specify the lengths of vectors, and is then called SIZEREG. 

R T A  and RTB: Registers R4 and R6 are in a sense "easier" to access than the rest, and are named 
RTA and RTB respectively. For example, a three-operand instruction cannot in general access three 
different registers--but it can do so if the destination register is either RTA or RTB (Section 1.5.2). 

When an instruction accesses RTA as a doubleword, it obtains both R4 and R5; we often refer to 
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.R5 as "RTA 1". Similarly, we often refer to R7 as "RTB 1". 

Stack frame and closure pointers: One: of the subroutine calling mechanisms provided by the 
architecture maintains stack frames by using register R28 as a closure pointer and R29 as a frame 
pointer (Section 2.12). 

Stack pointerllimit: Traps, interrupts, ana subroutine calling instructions all use an 
upward-growing stack in memory to store r'eturn addresses and other context information. 
("Upward-growingy' means that pushing an item increases the address of the top of'the stack.) R30 
and R31 serve as the stack pointer and stack liinit registers for this particular stack, and are also 
called SP and SL respectively. SP points to the first free location on the stack. SL points to the first 
location past the end of the area reserved for the stack. (The instruction set makes it easy to use 
other registers or even memory locations as stack pointerllimit pairs to implement additional stacks 
for other purposes, as described in Section .2.11. But when we talk about "the stack" rather than "a 
stack", we mean the stack whose pointer is register SP.) 

The table below summarizes the uses of the registers. 

Register 
RO . . R2 
R3 

S~ecial characteristics . 

Cannot be base for pseudoregister mode 
When used as I?ase gives program counter instead; 
also used to specify vector length 
RTA area 
RTB area 
None 
Closure and frame pointers, CP and FP 
Subroutine stack pointerllimit, SP. and SL 
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1.3 Program Counter 

The  program counter (PC) is an internal processor register (not part of any general purpose register 
file) containing a pointer to the instruction in memory that is currently being executed. Because 
instructions consist of singlewords aligned' on singleword boundaries, the contents of the PC must 
always be a multiple of four. When an instruction contains multiple words, the PC continues to 
point to the first of them throughout the execution of that instruction. 

Some operations refer to P C B E X T J N S T R ,  which is the value the program counter will have for 
the following instruction in memory. A subroutine call, for example, places- P C B E X T J N S T R  on 
the stack as its return address. 

One  can consider the PC to have a tag specifyin6 the ring number used to fetch inslructions,~This 
ring is called the ring of execution. Any attempt to alter the contents of PC--a jump, call, or return 
instruction, for example--is subject to the validation checking described in Sectdon 1.8.2. 
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1.4 Processor and User Status Registers 

PROCESSORSTATUS, the processor status, is an internal register (not part of any general 
purpose register file) which contains a number of fields' affecting the behavior of the processor as a 
whole. Instructions which access this register are privileged. The  following table and paragraphs 
describe briefly the purpose of each field; details generally appear elsewhere in this document. 

Bits - 
0.. 1 
2  
3 . . 4  
5 . . 6  
7 . .  10 
11. .  15 
16 
17 
18 
19 
20 
21 . . 31 
32. :35 

Purpose 
EMULATION 
VMM 
PRIVILEGED 
RINGALARM 
REGISTER-FILE 
PRIORITY 
TRACEXNB 
TRACESEND 
CALL-TRACEJNB 
CALL-TRACESEND 
UNMAPPEDMODE ' 

Reserved 
. . 

FLAGS 

EMULATION Determines which . instruction set the processor currently executes. 
EMULATION=O gives the native mode described in this document. 

VMM Enables virtual machine mode, in which attempting to execute any privileged 
instruction and certain user mode instructions causes a trap. 

PRIVILEGED Any ring whose number is less than or equal to PRIVILEGED is privileged. 

RING-ALARM When the processor fetches an instruction, if the PC specifies a ring whose 
number is greater than RINGALARM, the RINGALARM-TRAP hard trap 
occurs. This permits deferral of an event until a critical inner ring operation 
completes. 

REGISTER-FILE 
Determines which of the sixteen register files is currently available to 
unprivileged processes. See Section 2.15. 

PRIORITY Determines what priority an interrupt must have in order to interrupt the 
processor. See Section 2.18. 

TRACE-ENB If this bit is on at the beginning of .an instruction, TRACESEND,is  set' at the 
end of the instruction--in other words, setting this bit enables trac; traps for 
subsequent instructions, m d  the trap effectively occurs after each of those 
instructions. Clearing this bit permits one final trap after the instruction which 
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does the clearing. See Section 1.1 1. 

TRACE-PEND If this bit is on at the beginning of an instruction, the processor traps before 
executing the initructicin. Ordinarily, instead of manipulating TRACESEND 
directly, one manipulates T R A C E l N B  and allows it to manage 
TRACESEND.  

CALL-TRACE-ENB 
Analogous to TRACEJNB, this bit enables a separate trap for tracing 
instructions which call subroutines and return from them. Section 1.1 1 details the 

. .  , behavior of' the trap and Section 2.12 enumerates the instructions to which it 
applies. - .  

CALL-TRACE-PEND 
Analogous to TRACESEND, this bit applies only to instructions that call a 
subroutine or return from one. 

UNMAPPED-MODE 
Causes the processor to bypass the usual virtual-to-physical mapping scheme 
and instead to use 31-bit addresses to access the first 2" quarterwords of 
physical memory. The  processor ignores tags and does not check segment bounds. 
This mode is useful for starting up a system or for simple diagnostics which run 
without a general purpose operating system. 

Reserved T h e  effect of attempting to set these bits is undefined. 

PLACG This field is available for use by software. 

USERSTATUS, the user status, is an internal register (not part of any general purpose register 
file) containing fields which affect the processor's behavior for a particular user or process. 
Instructions which access this register can execute in user mode. 

T h e  following table shows the position of the fields within register USERSTATUS. 
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Purpose 
CARRY 
FLT-OVFL-MODE 
FLT-UNFLMODE 
F L T A A N M O D E  
INT-OVFLMODE 
I N T Z D I V M O D E  
RND-MODE 
FLT-OVFL 
FLT-UNFL 
F L T A A N  
INT-OVFL 
I N T Z D I V  
F L T B E P  
Reserved 
FLAGS 

The  fields which deal with integer arithmetic (CARRY, INT-OVFL, I N T Z D I V ,  
: INT-OVFLMODE, and I N T Z D I V M O D E )  are described in Section 2.1 and the fields which 

deal with floating point arithmetic (FLT-OVFL, FLT-UNFL, FLTAAN,  FLTBEP,  
FLT-OVFLMODE, FLT-UNFLMODE, FLTBAN-MODE, and RND-MODE) are described 
in Section 2.3. 

The  effect of attempting to set the reserved bits is undefined. 

The  FLAGS field provides software-definable bits whose purpose is not specified by the 
architecture. 
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1.5 Instruction Formats 

T h e  heart of every instruction is a singleword which specifies one opcode' and up to three operands. 

Opcode: An opcode tells the processor what operation to perform--an ADD, a DIV, a MOV, or 
whatever. In addition, the architecture uses the 12-bit opcode field of an instruction word to encode 
modifiers which are represented by a dot followed by one of several possible choices. For example, 
the ADD instruction comes in four different flavors:'  deal deals with quarterwords, ADD.H with 
halfwords, ADD.S with singlewords, and ADD-D with doublewords. In this manual,, 
*ADD.(QH,S,D)" denotes a choice of these four flavors. Similarly, the SHFA instruction actually 
uses two different opcodes to incorporate its modifier: SHFA.LF for a left shift and SHFA.RT for a 
right shift. 

If an insrruaian takes more than one modifier, the order of the modifiers is significant. If one 
modifier refers to the first operand and the other to the second, the modifier for the first npcranrl 

comes first. For example, M0V.S.Q converts a quarterword to a singleword whereas MOV.QS 
converts a singleword to a quarterword. 

T h e  mapping of the "virtual" opcodes shown in this manual onto actual, numerical opcode values is 
implementation dependent. In particular, if two virtual opcodes have the' same.effect--or can be 
made to have the 'same effect by swapping the order ,of their operands--an implementation may 
choose to map them to a single actual opcode. 

' . , 

/' 

Operands: Most instructions specify operands by means of an operand descriptor (OD), a 12-bit field 
that can indicate a constant, a register, a memory location anywhere within the 229 singleword 
address space, or indexed addressing using some combination of constants, registers, and memory. 

Sometimes the OD itself suffices to encode the operand--a small constant or a register, for example. 
Such an operand is called a shod operand or SO. Obviouily, more elaborate operands require more 
than twelve bits, so frequently an operand descriptor will tell the processor to use a word following 
the instruction as an extended word (EW). Such an operand is called ,a long operand or LO. Note 
that "long" and "short" refer to the length of the addressing mode, not to the length--quarterword, 
halfword, and so on--of the opora.nd itself. 

Thus, a two-operand instruction with operand descriptors OD1 and OD2 could require a 
singleword in memory if each descriptor specifies a short operand (that is, the 12-bit field can 
completely describe the operand): 

OPCODE I OD1 I OD2 J 
Both operands fit inside ODs 

or would require two consecutive singlewords in memory if, for- example, the second of the operands 
is an L O  and thus calls for extended addressing: 



1.5 Instruction Formats 
. . 

r 
OPCODE I 001 I OD2 

Extended word for  OD2 

OD2 calls for extended word 

or would require. three consecutive singlewords in memory if both operands called for extended 
- .  i 

addressing: 

002 

Extended word f o r  OD2 

Extended word for. OD1 

Both operands call for extended words 

Note that when both extended words are present, the one used with OD2 occurs first. 

The  processor logically evaluates all operands, hcluding extended addressing if necessary, before 
executing the instruction and before updating the program counter. The  order of operand 
evaluation is undefined. 

The  preceding examples all showed the most common format for the initial singleword of an 
instruction: an opcode and two operand descriptors. In all, however, there are five different formats, 
called XOP, TOP, HOP, SOP, and JOP. We will first explain the formats and then explain how 
an operand descriptor and extended word combine to encode an operand. 
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1.5.1 Two-address Format (XOP) 

I XOP 1 '  OD1 I OD2 I 
- 0 11 12 , 23 24 35 

X O P  Format 

Typically a two-address instruction evaluates operand descriptors OD 1 and OD2 to obtain operands 
O P l  and OP2  respectively, then reads from OP2, performs the specified operation, and writes into 
O P  1. 

Unless otherwise noted, if an XOP instruction uses only one operand then it uses OD1 and requires 
that the field used to encode OD2 be zero, or an OPERAND-NOT-REQUIRED hard trap will 
occur. If an XOP instruction uses no operands, the fields for both OD1 and OD2 must be zero, or 
that trap will occur. The FASM assembler automatically handles these cases. Tf an instruction uses 
neither operand, FASM sets both fields to zero. If you write only one operand and the instruction 
needs only one, FASM sets the unused OD field to zero. If the instruction needs two, FASM uses 
the same operand twice. 

For example, FASM emits the same code for the following two instructions because the INC 
instruction requires two operands: 

INC COUNT,COUNT : COUNT : = COUNT + 1 
INC COUNT : COUNT := COUNT + 1 

The following example uses INC. more flexibly: 
. . 

I 

INC COSTPLUSl, COST ; COSTPLUSl : = COST + 1 - , . 

The RUS instruction requires only one operand, so providing two would be an error: 

RUS RTA ; RTA := USER-STATUS 

When an X O P  instruction stores results in both operands, it stores OP2 first (see the example under 
the EXCH instruction in Section 2.7). 
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1.5.2 Three-address (TOP) F ~ t m a t  

I TOP ' 1  T 1 OD1 1 OD2 I 

T O P  Format 

. . 

A typical three-address instruction operates on data from two op&ands A d  deposits the result in 
the third. 

Because not enough bits are available td provide three operand descriptor fields, a TOP contains 
only two, OD1 and OD2. A two-bit field called "T" describes how the instruction uses those two 
operands and what it uses for the third. 

If we use "TOP" to represent the operation performed by any. particular T O P  instruction, then we 
can use the following equation to represent the effect of the instruction: 

DEST : = S1 TOP S2 

The  "T" field determines which operands to use for DEST, S1, and $2 according to the following 
table: 

r DEST S_L SA 
0 OP1 OP1  OP2 
1 O P 1  RTA OP2 
2 RTA OP1 OP? 
3 RTB OP1 OP2 

FASM automatically sets T". The following are all legal combinations: 

ADD X,X,Y ; X := X + Y (T  f i e l d  = 0 )  
ADD X,RTA,Y ; X := RTA + Y (T f i e l d  = 1) 
ADD RTA,X,Y ; RTA :=. X + Y (T f i e l d  = 2)  
ADD RTB,X, Y ; RTB := X + Y '(T f i e l d  = 3) 

If X, Y, 2, and RTA are all distinct, the following examples are illegal and FASM will give error 
messages: 

ADD X,Y,Z,  ;. I I  legal  
ADD X,Y,Y ; I l l e g a l  
ADD X,Y,X ; I1 legal 

This special ability to specify RTA and RTB via the T field does not preclude specifying RTA or 
RTB as ordinary operands inside the descriptors OD1 and OD2, however. The  following examples 
are therefore perfectly correct: 
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ADD RTB,X,RTA ; RTB := X  + RTA (T  - f i e l d  = 3 
; a n d  OP2 = RTAI  

ADD X,RTA,RTB ; X  :'= RTA + RTB (T  f i e l d  = 1 
; and OP2 = RTBI 

Reverse form: T h e  T.field of a T O P  instruction provides asymmetric features: it can specify that 
the first operand (S1) is either RTA or identical with the destination (DEST), but it cannot do the 
same for the second operand (S2). The  asymmetry would handicap non-commutative instructions 
like those for subtraction and division, so such instructions generally have reverse forms that swap 
S1 and $2. The name of i reverse form instruction is that, of the normal form with a V" appended. 

If we use T O P n  to represent. the operation performed by any particular reverse form, then we can 
use the following equation to represent the effect of the instruction: 

DEST : = S2 TOP S 1  

T h e  instruction SUBV, for example, is the reverse form of the T O P  instruction SUB: 

SUB X,RTA,Y ; X  := RTA - Y  
SUBV X,RTA,Y ; X  := Y  - RTA 
SUB X,Y ; X : = X - Y  
SUBV X, Y  ; X : = Y - X  

Without SUBV, subtracting RTA from Y and storing the result in X would be impossible in a 
single ingtruction: 

SUB X',Y,RTA ; I l l e g a l  

A reverse form swaps the precidonsof the opefands as well as their order in the expression that 
describes the instruction. If, for example, the normal form of an instruction expects $1 to have twice 
the precision of S2, then the reverse form expects ~ 2 '  to have twice the precision of S 1, If the normal 
form uses a single operand from S2 and a pair from S1, the reverse form uses S i  +n'd a pair from 
S2. 

Short form: If only two operands appear, FASM will use the first one as both S1 and DEST. Thus 
the following pairs of instructions g e  equivalent: 

ADD X,X,Y  : X : = X + Y  
ADD X,Y : X : = X + Y  

SUBV X ,X ,Y  ; X : = Y - X  
SUBV X,Y ; X : = Y - X  

When an ordinary T O P  instruction stores more than two results, it stores S2 before S1 and SI  
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before DEST. when a reverse form TOP instruction stores more than two results, it stores S1 
before's2 and 52 before DEST. Any unused .OD field must be set to zero; the assembler does this 
automatically. . . 
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1.5.3 HOP Format 

1 Introduction 

I HOP I J I 
' 8 6 7 35 

HOP Format 

A single instruction, SJMP, uses this format to jump to a location relative to the current program 
counter. The processor uses the "J" field as an unsigned displacement, expressed in singlewords. 
The address calc~lation.~wraps around" if it exceeds the maximum address: 

GOT0 (PC+4*SIGNED . . (J) 1 NOD (2931 1 

Thus the instruction can actually jump to my singleword in a vlrtual adclluss space. To jump 
backward, the instruction merely uses a J field large enough to cause the address calculation to wrap 
around. 

In practice, the assembly language programmer simply provides a label for the branch destination 
and lets the assembler calculate the J field. 
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1.5.4 Skip (SOP) Format 

SOP SKP 001  I OD2 I 
0 7 8 11 12 23 2 4  35 

SOP Format 

Generally a SOP instruction compares two operands and, depending on the result, branches relative 
to the current program counter. The  term "skip" has a broader meaning here than in many 
architectures; the destination of the branch can be any location within -8.. 7 singlewords of the 
program counter (which i~ as defined in Section 1.3. considered to point to the first word of the skip 
instruction itself). 

The  SOP field tells the processor what condition to test for, the SKP field tells it where to branch, 
,md operand descriptors OD1 and OD2 can specify two operands to be compared. The  following 
statement describes a typical SOP instruction: . . 

I F  OP1 SOP OP2 THEN GOT0 PC+4*SI GNED (SKP) 

T o  usti a SOP instruction in FASM. simply provide a label for the skip destination.'The assembler 
will automatically subtract the current location to compute the offset.. 

; I f  X i s  greater than Y, suap them 

SKP.LEQ X,Y,NOSWAP 
EXCH X, Y 

NOSWAP: ... 
Omitting the label is the same as skipping the next instruction. Thus, the following example has the 
same effect as the previous one: 

; I f  X i s  greater than Y, swap them 

SKP,LEQ X,Y 
EXCH X, Y 

NOSWAP: ... 
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1.5.5 Jump (JOP) Format 

JOP 0 OD1 I .  OD2 I 
0 10 11 12 23 24 35 

I JOP 1 OD1 I J I 
JOP Format 

Jump instructions generally perform an operation on a piece of data and then branch. The  JOP 
field is the opcode and OD1 is an operand descriptor that specifies the operand OP1. 

When bit 11 (called the "PR" bit) is 1, the processor. performs a relative jump. The  "J" field is a 
signed offset that permits branching to any singleword location within -2048 . . 2047 singlewords of 
the current location. (By definition, the program counter points to the JOP instruction itself while 
the processor interprets the instruction.) The  processor adds "J" to the PC to obtain a jump 
destination, or JUMPDEST. 

When bit 11 is 0, the processor performs an absolute jump. It evaluates operand descriptor OD2 
and, if necessary, an extended word to obtain the JUMPDEST, allowing direct, indirect, or indexed 
addressing--but sometimes costing an extra word of memory to do so. If OD2 specifies a register or 
constant, an ILLEGAL-OPERANDMODE or ILLEGALMEMORY hard trap occurs. 

T h e  FASM assembler decides automatically whether to use an absolute or relative JOP; simply 
provide it with a branch destination label: 

JHPZ.GTR..S X,AWAY . ; I F  X .GT. 0 THEN GOT0 AWAY 

Specifying a more complicated operand for the JUMPDEST--the contents of a register, for 
example--forces FASM to emit an absolute jump: 

JHPZ.CTR.6 X ,  ( R I G 1 0  t I F  X - 6 T .  0 THEN GOT0 ( tho  
; address found In  R161  

Omitting the jump destination label in FASM has the same effect as jumping past the following 
instruction. Thus the next two examples are equivalent: 
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1.5.6 Vector Instructions 

Vector instructions generally use the same format as X O P  instructions. OD1 and OD2 are operand 
descriptors which may specify either scalars or vectors, depending on the particular instruction. 

A vector is simply a series of consecutive scalars which must lie in memory, not in the registers. 
Unless noted otherwise, vector instructions obtain from register R3--also called SIZEREG--the 
length of the vectors they operate on. SIZEREG expresses lengths in terms of elements, not 
quarterwords. Thus, for example, SIZEREG=100 indicates the vectors are 200 quarterwords long if 
the current instruction operates on halfwords or 800 quarterwords if the current instruction operates 
on doublewords. 

.Wherl an instruction uses O D  1 to specify a vector, it. evaluates O D  1 to obtain O P  1, regards O P  1 as 
the first element of the vector (not a pointer to the vector) and assumes the remaining elements 
follow OP1  in memory. The  same is true of 0D2. Thus, when we refer to "the vector x" we mean 
the vector whore first elementis x. . . 

. . 

When a vector instruction needs more than two operands, it uses registers RO, Rl,  and R2--also 
' called SRO, SR1, and SR2 respectively--as pointers to the additional vectors in memory. 

Unless otherwise noted, the result of a vector operation is undefined if . , a source operand and a 
destination operand overlap (unless they coincide).' 

Many vector instructions permit the user to choose by means of a (SR,OPl) ,modifier whether to put 
the result back into OP1  or into an arbitrary vector pointed to by the appropriate SR register. 

At  the beginning of the description of each vector instruction, to the right of the name of the 
instruction, a symbolic equation describes its operands. For example, the following means that a 
vector operand and a scalar operand produce a vector result: 

V:=VS 

while the following means that two vector operands produce two scalar results: 

ss:=vv 
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1.6 Operand Descriptors 

This section explains the capabilities of the operand descriptors referred to in the preceding 
instruction formats. Note that some operands are specified through operand descriptors and others 
are not. For example, the relative-jump version of the JOP format uses an operand descriptor 
called OD1 to specify operand OP1 while it uses a field called J--which does not obey the rules for 
an operand descriptor--to specify the jump destination. The fields which are not operand 
descriptors have already been described under each of the instruction formats. 

1.6.1 Subfields of an Operand Descriptor 

As mentioned earlier, operands which are specified by aperand descriptors belsng to two classes. If 
an operand fits inside an OD, we call it a short operand (SO); if it requires an extended word (EW), 
we call it a long operand (LO). Note that "long" and "short" refer to the complexity of the 
addrsssing mode, not to the precision of the operand: a short operand may, for example, be a, 
quarterword, halfword, singleword, or doubleword. \ 

A 12-bit operand descriptor field is generally partitioned into three subfields called OD-X, 
OD.MODE, and 0D.F: 

X NODE F I 

The sole exception occurs when the four high-order bits of 0D.MODE are all zeros, in which 'case 
the low-order bit of 0D.MODE joins the 0D.F field to form a field called 0D.REG: 

X I @  I REG I 

When X=l  the OD requires an EW, and that EW can be partitioned in three ways, depending on 
the value encoded in the OD: 
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I 
-- - - -- 

CONSTANT 

0 35 
Constant EW 

[ TAG 1 ADDR I 

I . T A G I . R E G I  'DISP I 

t.6.2 .Constant . . Operands 

Any operand descriptor can specify a constant, though particular instructions may prohibit them. 
For example, operand descriptor OP1  of a M0V.S.S instruction can encode a constant, but the 
instruction will encounter an ILLEGAL-CONSTANT hard trap because storing into a constant is 
illegal. Similarly, it is illegal for an instruction to attempt to obtain ADDRESS(x) if x is a constant. 

The  assembler interprets an expression preceded by "#" as a constant. The  assembler will encode 
the constant as compactly as possible. Constants in the range -32.. 31 will fit in S O  format while 
the L O  format accommodates up to 36-bit signed constants: 

AD0.S A,#-5 . ; -5 would become an SO constant  
A0D.S A,#TABLESIZE ; I l l u s t r a t e s  the use of expressions 
A0D.S A,#<TABLESIZE-l> ; a s  constants 

Bracketing the number or expressionwith "[I" symbols forces FASM to use the L O  format even if 
the constant is small enough to fit in the S O  format. This makes it possible to use a symbolic 
debugger to patch the constnnt to a larger value later on, and guarantees that the size of the code 
emitted will not vary with the size of the constant: 

(Note that because a "#" precedes them, the square brackets here do not denote assembly literals.) 

The  precision of an instruction is inherent in the opcode, not the operands, so a constant in either 
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SO or LO format is ordinarily converted from a 36-bit entity to the desired precision at execution 
time, either reducing precision by discarding high-order bits or increasing precision by extending 
the sign bit. 

. If an instruction calls for doubleword precision, however, it is possible to specify different 
conversions. Putting ?O ?" in front of the constant but within the brackets sets the high-order half 
of the doubleword to zero and the low-order half to the constant. Putting U? !O" after the constant 
but within the biackets sets the high-order half of the doubleword to the constant and the 
low-order half to zero: 

M0V.D.D A,#[-11 ; , A  := 77777777777777777///1777 o c t a l  
MOV.D.0 A , # [ 1 0  ? -11 ; A := 008000000008777777777777 
~ o V . o . n  A , #  r-1 ? !@I A : - 777i777?7777ooooaoo~0800 

Note that these conversions are not available unless the instruction calls for doubleword precision. 
For any other precision, it is possible to encode these conversions in the OD format, but the 
processor will convert the constant in the ordinary manner--by discarding high-order bits or 
extending the sign bit. 

Indexed constants: This operand format specifies a 36-bit signed constant and a 
singleword-aligned register. .It adds the value in the register to the constant, converts the sum to the 
precision of the instruction by either discarding bits or extending the sign, and uses the result as a 
constant operand. Note that the addition ignores integer overflow. and that specifying R J  accesses 
register R3 rather than the program counter: 

; one instruction..  . 
A0D.S RTA,RTA,.#[41 (RTB) ;: RTA := RTA + RTB + - 4  
; versus two.. . 
ADD.S RTA,RTA,RTB ; RTA := RTA + RTB 
A0D.S RTA,#4 ; RTA := RTA + 4 

2 ; (x+ll* (x-11 or  x -1: 
MULT-S R T A , # [ l I  (RTAI.,#[.-11 (RTAI ; RTA := (RTA + 1) * (RTA - 1) 

; o r  RTA := R T A ~ -  1 
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NOTATION 

Symbol Meaning ' 

'SC - 3 2 . .  31 short constant 
lc -zS5..  ~ ~ ~ - 1  long constant 
ar 0 step 4' until 124 aligned register 

SHORTOPERANDCONSTANTS 

(If the constant is too big, the assembler automatically uses the LO form) 

FASM n o t a t i o n  Eva lua t i on  OD Format 

0 1  5 6  11 

LONGOBERANDCONSTANTS 

FASM n o t a t i o n  Eva lua t ion  0 0   orm mat EW Format ' 

0 1  5 6  11 0 35 

#C!0 ? l c l  ZERO-EXTEND ( l c l  

# I l c  ? !O1 l c*2T36 

# I I c l  (%ar l SignExtend( lcl 
+R I a r l  

Figure 1-1 ' 

Constant Operand Formats 

1.6.3 Short Operand Variables 

The SO format can denote two kinds of variable: a register or a location in memory accessed as a 
pseudoregister. 

Registers: The S O  format can access any quarterword address within the register space, subject to 
the usual rules for alignment of entities ,larger- than a quarterword. Specifying register R3 accesses 
register R3, not the program counter. . 
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; Add contents of singleword a t  reg %8 
; ( th i rd  singleword in r e g i s t e r s )  to RTA 
; Add contents of quarterword a t  r eg i s t e r  
; %11 t o  RTA (due t o  misal ignment, AD0.H. 
; ADD.S, or ADD.0 would be i l l e g a l )  

A0D.H RTA,%<COUNTER+Z> ; I l l u s t r a t e s  the use of expressions 

Pseudoregisters: In itself, pseudoregister addressing provides a compact means of specifying a 
memory location. The name Pseudoregister arises because the more elaborate addressing modes 
described in Section 1.6.5 incorporate this pseudoregister mode to give a memory location the same 
capabilities as a register. 

Pseudoregister addressing uses a singleword-aligned register to point to an address in memory and 
provides a quarterword offset to select an anyword in the vicinity of the address pointed to. The 
offset must lie in the range -128 . . 124 and be divisible by 4. 

The register serves as a base pointer--an important concept throughout all the memory addressing 
modes. Its upper 5 bits serve as the tag which, among other things, specifies the desired ring. Its 
lower 31 bits contain an address. The concept of a base pointer is additionally important because it 
determines the meaning of register R3. When one uses R3 as a base pointer, one obtains the 
program counter instead of R3 itself. And last of all, the base pointer determines the segment in 
which an operand lies (Section 1.7.2). The fir& term of every memory addressing calculation is 
considered a base pointer, and a singleword fetched from memory to serve as an indirect address is 
considered' a base pointer also. 

As for pseudoregister addressing in particular, note that. while the register containing the base 
pointer must be singleword-aligned, the alignment of the entity it points to is governed only by the 
precision of the instruction. Thus, for a halfword instruction, the register must point to an aligned 
halfword. Similarly, the actual operand obtained by adding the offset to the pointer must be 
aligned properly for the precision of the instruction. 

As an example of pseudoregister addressing, let VSP be a register used to point to an 
.upward-growing stack of parameters and variables in memory. Pseudoregister mode makes it easy to 
access variables relative to the top of the stack: 

; Add 7 to  top singleword on stack 
; (for  upward-grow i ng stack, pointer 
; indicates next f r ee  location) \ 

EXCH. S (VSPI -8. . (VSP) -4 ; Swap top two singlewords nf stack 

SKP. EQL. S (VSP) -20. , (VSP) -4 : Compare top singleword with f i f t h  

; singleword 

As another example, suppose that register R7 contains a tagged pointer to a Pascal record structure. 
Pseudoregster addressing can access components of that record: 
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\ 

HOV.S.S RTA, (R714 ; move second word of record t o  RTA 
MULT.S RTB, (R71, (I3718 . ; RTB ge ts  product o f  f i r s t  and 

; t h i r d  words 

. . 
As Section L6.4 explains, one of the LO addressing modes has the same syntax as the. 
pseudoregister mode, and permits a larger offset. The assembler. automatically uses the LO format if 
the desired offset is too large. 

I .  
t 

NOTATION 

Symbol Meaning 
r 0 . .  121 register 

Pr 12 step 4 until 124 pseudoregister base 
sao -128 .step 4 until 124 short aligned offset 
R[xl , . Contents of register .location x 
MIXI Contents of memory location x 
B[xl . Evaluate x as a base pointer; if x=R3 use PC instead 

. . SHORT OPERAND VAR'IABLES 

FASfl notation Eva!uation OD Format 

%r R Crl 

(%pr) sao H CB [R [prl I +saol 

Figure 1-2 
Short Operand Formats 

1.6.4 . Long Operand Variables 

Long operand variable formats use the extended word alone to encode various memory address 
computations. 

Fixed-base: This mode uses a 31-bit field to specify a base address in memory. (The tag is implicitly 
that of the ring in which the instruction is executing; no field Is provided to encode a tag explicitly.) 
One may either use the entity at that address as the operand, or treat it as a new base pointer for 
indirect addressing: 
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M0V.S.S RTA,AVAR ; Copy the s ing leuord  a t  
: memory l o c a t i o n  AVAR t o  RTA 

M0VP.P.A APTR,AVAR : Make APTR p o i n t  t o  AVAR 
M0V.S.S RTA,APTRs ; Address AVAR i n d i r e c t l y  through APTR 

Variab1.e-base:'This mode uses a singleword-aligned register as a base pointer (that is, it has a tag 
in its upper 5 bits and an address in its lower 31 bits.) The computation adds a 26-bit signed offset 
to the address field of the pointer. One may use the resulting address either to fetch the operand or 
to fetch a new b&e pointer which in turn specifies the operand: 

NOV.II.I.lRTA,(R7)1000. ; Cupy toRTA the h a l ~ w a r u  
: which i s  1000 quar teruords above the 
: quarterword po in ted  t o  by R7 

MOV. Q. Q RTA, (R7) 1 : The assembler au toma t i ca l l y  uses the 
: LO format here because the SO 
: pseudoregis ter  format r e q u i r e s  the 
; o f f s e t  t o  be a m u l t i p l e  o f  4 

M0VP.P. A (R7) 1800.. AVAR ; Make (R711000. p o i n t  t o  AVAR 
M0V.S.S RTA,(R7)1000.e ; Address AVAR i n d i r e c t l y  through 

: the p o i n t e r  a t  (R711000. 
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NOTATION I . 

Symbol Meaning 
ar 0 step 4 until 124 aligned register 
la 3 1 0..2 -1 long address 
sd -225 . . zZ5- 1 short displacement 
MIXI Contents of memory location x 
Rrxl Contents of register location x 
B[x] Evaluate x as a base pointer; if x=R3 use PC instead 

LONG OPERAND VARIABLES ' A 

FASM n o t a t i o n  E v a l u a t i o n  OD Format ' . EW Format 

0 1  5 6  11 0 4 5  910 35 . 
l a  M [ B [ I a l l  

(Xa r l  sds M  CB [M [B [R [ a r l  I +sdl I I 

Figure 1-3 
Long Operand Variable Formats 

1.6.5 Combined Long and Short Operand Variables 

These addressing modes use both the short operand and the extended word to encode memory 
address calculations. In each case, one may choose to use a pseudoregister in place of one of the 
registers involved in the address calculation, thus nesting one calculation inside another. 

In their most general form, these calculations sum three terms: a base pointer, an offset, and an index 
(though not every term need always appear) aftek shifting the index: 

(BASE POINTER)OFFSET[INDEX]tSHIFT 

Unless otherwise mentioned, the base pointer is a singleword pointer (that is, it has a tag in the 
upper five bits and an address in the lower 31 bits.) The offset and index values are added to the 
31-bit address ufing modulo 2" arithmetic. Thj,s means that the rum cannot overflow into the tag 



SO 1 Introduction 

field, and that when the offset is 31 bits long, one may regard it either as a signed value or as an 
unsigned value that luraps aroundv the virtual address space. 

The  shift moves the index 0, 1, 2, or 3 bits leftward (multiplying it tiy 1, 2, 4, or 8) so that the index 
can effectively represent a number of quarterwords, halfwords, singlewords, or doublewords. (For 
example, because the architecture always addresses memory in terms of quarterwords, singlewords 
are 4 addresses apart rather than 1 address. apart. T o  step through a table of singlewords, one must 
either increment the index by 4 each time--which is usually inconvenient--or use the built-in shift 
feature to multiply by 4.) If omitted, the shift defaults to 0. 

The  modes which provide indexing permit indirect addressing either before the indexing operation: 

(BASE POINTER)OFFEETs[INDEXlf3HIFT 

or afterward: 

(BASE POINTER)OFFSET[INDEXITSHIFTe 

In the first case, the calculation adds the offset to the base pointer, obtains a new base pointer from 
the resulting address, and adds the index to the new base pointer to find the operand. In the second, 
the calculation adds both the offset and the index to the base pointer, obtains a new base pointer 
from the resulting address, and uses that base pointer to find the operand. When indirection 
follows the indexing operation, the shift must be either 0 or 2. 

Based:*This mode uses a base pointer (which can be either a.singleword-aligned register or a 
singleword memory location specified by means of  pseudoregister addressing) and a 31-bit offset. 

fl0VP.P.A (R71-4,F ; Make the singleword a t  (R71-4 
; p o i n t  to  F 

fl0V.S.S R T A ,  ( (R7) -4) 100. ; Move t o  RTA the singleword 

I uh i ch l i ea 18R qr.!ar ter.r.rur.ds above 

; F  
N0VP.P.A ((R7)-41180. ,AVAR : Make F+100 p o i n t  t o  AVAR 
fl0V.S.S RTA,  ((R7)-41100.e : Use tha t  p o i n t e r  t o  address AVAR 

; ind i rec t lb j  

Based-indexed: This mode uses a base pointer (which can be either a singleword-aligned register or 
a singleword memory location specified by means of pseudoregister addressing), a 26-bit signed 
offset, and a singleword-aligned register for indexing. Indirect addressing' is possible either before or 
after the indexing operation: 



1.6.5 Combined Long and Short Operand Variables 

MOV. Q. Q RTA, (R71100. [RTBI i 

i 

, 
I 

i 

i 
M0V.Q.Q RTA, ( (R71 -41100. CRTBI ; 

: 
: 
: 

M0V.H.H RTA, ((R71-41100. CRTBIl'1 '; 

i 

i 

MOV. Q. Q RTA, (R7) 100..@ CRTBI i 

,: 

: 
I 

9 

i 
MOV. H. H RIA, (R71100. CRTBI 92e ; 

: 
: 

Move t o  RTA the  quarterword 

obtained .by us ing  R7 as a base 

p o i n t e r  t o  memory, adding a 

100-quarterword o f f s e t  t o  the 

po in te r ,  and o f f s e t t i i n g  f u r t h e r  

by the va lue found i n  RTB 

S i m i l a r  t o  the prev ious example, 

bu t  use as the base p o i n t e r  the 

singleword s p e c i f i e d  by 

pseudoregi s  t e r  (R71 -4 
S i m i l a r  t o . t h e  prev ious example, 

bu t  m u l t i p l y  the index reg i ' s te r  by 

2 s ince we a re .address ing  ha l fwords 

. In  any o f  the prev ious three 

examples, one may use the o f f s e t  t o  

f i n d  a new base pointer;indirect 

address through i t ,  and then use 

the index r e g i s t e r  as a f u r t h e r  

o f f se - t  ' , 

. . 

A l t e r n a t i v e l y ,  .one may choose t o  

use the s ing leword obta ined by the 

index ing opera t ion  as an i n d i r e c t  

addressing po in te r .  

Fixed-based-indexed: This mode provides a 31-bit base address and an index* (which can be either 
a singleword-aligned register or a singleword in memory specified by a pseudoregister). Because the 
31-bit base address provides no means of encoding a tag, the tag is implicitly that of the ring in 
which the instruction is executing. One may choose .indirection either immediately before or 

immediately after the indexing operation. 

i t .  

MOV. Q. Q RTA, BPTR IRTBI ; Move t.0 RTA'the quarterword found. 

: by us ing  BPTR t o  p o i n t  t o  memory and the 

: value s to red  i n  RTB as an o f f s e t  from 
; .  t h a t  l o c a t i o n  

MOV. D. D RTA, BPTR [RTBI 1'3 ; L i k e  the p rev ious  example, bu t  m,u l t ip l y  

: the index by 8 s ince  we a re  dea l i ng  w i t h  

: doub l ewords 

MOV. Q. Q RTA, BPTR C (R71-41 ; Shows the use o f  pseudoregis ter  

: (R71.-4 as the index 

MOV. Q. Q RTA, BPTRe CRTBI : Use the s ing leword a t  'BPTR as an i n d i r e c t  

: address p o i n t e r  and index from the l o c a t i o n  

: t o  which i t  p o i n t s  

MOV.Q.Q RTA,BPTRCRTBI~ ; S i m i l a r  t o  the  f i r s t  example, b u t  use the 

: singleword located by the index ing oper- 

: a t i o n  as an i n d i r e c t  address p o i n t e r  
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Register-based-indexed: This mode provides a singleword-aligned register .IS the base pointer, a 
26-bit signed offset, and an index (which may be either a singleword-aligned register or a 
singleword' in memory specified by a pseudoregister). One may' choose indirection either preceding 
or following the indexing operation. 

MOV. Q. Q RTA, (R7) 100. I (R8)-41 ; 

; 

i 

; 

i 
MOV. S. S RTA, (R71100 ,  I (R8) -41 92 ; 

: 
* 

M0V.Q.Q RTA, (R7) 100.~3 1 (R81-41 ; 
N0V.Q.Q RTA, (R71100 .  I ( R 8 ) - 4 1 ? 2 ~ 3  ; 

Move t o  RTA the quarterword found 

by us ing  R 7  t o  p o i n t  t o  memory, adding 

an o f f s e t  o f  188. t o  the address g iven  

i n  R7,  and then adding as an a d d i t i o n a l  

o f f s e t  the va lue s to red  i n  the  s ing leword 

spec! f 1 ed ab psf?~.ldnreg i 3 ter (R8) -4 
Like the l n l t l a l  example, but m u l t i p l y  

the index by 4 because we a re  

dea l i ng  w i t h  s inglewords . 

I nd i r e c  t i on preced i ng' i ndex i ng 

I n d i r e c t i o n  f o l l o w i n g  index ing 

T o  illustrate the usefulness of a combined short and long operand variable addressing mode, 
consider the following fragment of a Pascal procedure: 

VAR 

I : I NTEGER; TABLE: ARRAY ' 15. -91 flF I NTEGER, 
BEGIN  
FOR I := 5 TO 9 00 

TABLELII := 1: 

T o  construct the operand for TABLECII, assume first that SF is a register pointing to the beginning 
of the stackframe for the procedure, and that the TABL'th byte in the stackframe points to the 
memory location which would be the 0th element of TABLE if TABLE had a 0th element. The 
following operand would specify that pointer: 

and the following operand would specify that firtional 0th element:. 

If VI is the byte offset from the beginning of the stackframe to variable I, then thc following 
indexes to find the Ith element of TABLE. Note the use of a shift to access singlewords properly: 

The entire loop might look like this: 



1.6.5 Combined Long and Short Operand Variables 

R0V.S. S (SF) VI ,#5 ' 

LOOP: V0V.S.S (SF)TABL@[(SF)VIITZ, (SFIVI  
1SKP.LEQ (SF)VI,#S.,LOOP 

. , 

(We assume VI and TABL are not too large, to fit within this operand format, and that the value of 
.I is not used again following the loop.) 
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NOTATION 
Symbol Meaning Symbol Meaning 
ar , 0 step 4 until 124 M[xl Contents of memory location x 
Pr 12 step 4 until 124 R[xl Contents of register location x 
sao -128 step 4 until 124 BCxl Evaluate x as a base pointer 
la 0 . .  z9'-1 (if x=R3 use PC instead) 
~d -Po . . 230-1 sh o . . ~  
sd -2z5 . . 2z5- 1 ssh o or 2 

COMBINED LONG AND SHORT OPERAND VARIABLES 
Substitute either of these short operands . . . 
FASM N o t a t i o n  Eva lua t i on  OD Format 

0 1 4 5 6  910 11 

%31" R Carl 

(%pr 1 sao fl IB CR Cprl I +saol 

. . . for "SO" in the following: 

FASfl no t a  t i on Eva lua t i on  

(SO) l d fl CB CSOI + I d l  

(SO) l de HCBCMCB [S01+Idl l1 

(SO) sd C%arl Tsh fl CB [SO1 +sd+R Carl u2Tshl 

(SO) sds C%arl Tsh H CB C f l  CB [SO1 +sdl I +R Carl 
rc2Tshl 

(SO) sd [Xarl ' l 'ssh~ fl CB C f l  [B CSOI +sd+R [ar lu2Tsshl  1 I 

EW Format 

0 4 5 9 10 35 

(%ar l  sd  [Sol Tsh fl CB CR Carl I +sd+SOu2Tshl 

(%at- I s d ~  CSOI Tsh fl [B C f l  CB CR Carl I +sdl I 
+SOxcZTshl 

(%at-) sd [SO1 Tsshs H CB C f l  CB CR Carl I +sd 
+SO*2Tsshl I I 

Figure 1-4 
Combined Long and Short Operand Variable Formats 
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1.6.6 NEXT Versus FIRST/SECOND 

Certain instructions are defined to deal not just with an operand but also with elements that follow 
that operand in, memory. 

Vector instructions are an important example. If the first element of a vector is x, we use the 
terminology "NEXT(x)" to describe the element which follows x in memory and has the same 
precision as x. Thus, if the first element of a vector is F, then the second element is NEXT(F), the , 

third element is NEXT(NEXT(F)), and so on.' The  elements are handled independently, so no 
special alignment .rules govern them. 

Certain other instructions deal with pairs of elements: the operand and the single element following 
that operand. For example, the DIV instruction divides two integers, stores the quotient in operand 
DEST, and stores the remainder in the element following DEST. In these cases, we use the 
terminology "FIRST(x)" and "SECOND(x)" to describe the operand x and its successor. If the . 
precision of the instruction is quarterword or halfword, then the two elements must align together to 
form a single entity of twice that precision. 

Operands described in terms .of NEXT also differ from those described in terms of 
FIRSTISECOND with respect to constants. 

When an operand described in terms of NEXT is a constant, the instruction replicates the constant 
to provide the required number of elements, each having the precision specified by the instruction. 
The  VTRANS instruction, for example, copies one vector to another, so the following sets each 
element of vector A to 7: 

When an operand x described in term.s of FIRSTISECOND is a constant and the precision of the 
instruction is quarterword, halfword, or singleword, the instruction expands the constant to twice 
that precision, uses the high order half as FIRST(x), and uses the low order half as SECOND((x). 
(When expanding a singleword constant to a doubleword, it observes the special constapt addressing 
modes for doing so.) For instance, the BNDSF.B instruction is a T O P  which sets its destination true 
or false according to whether S2 lies within the bounds specified by FIRST(S1) and SECOND(Sl), 
so the following example: 

will test to see whether A lies within the range 0 . . 7 and set RTA accordingly. 

When an operapd x described in terms of FIRSTJSECOND is .a  constant and the precision of the 
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instruction is doibleword, the instruction replicates the constant to provide FIRST(%) and 
SECOND(x). Thus, for example, 

will test to see whether A lies between 7 and 7. 

1.6.7 Forbidden Operand Formats 

certain combinations of bits in the OD and EW formats d o  not constitute legal addressing modes. 
The processor interprets these as invalid long operands, causing a RESERVED- ADDR ESS-MODE 
IiruLi hap: 

OD Format EW Format 
0 1  5 6  11 0 4 5 35 

Figure 1-5 
Forbidden Operand Formats 
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1.7 Virtual to Physical Address Translation 

The address translation mechanism maps 31-bit virtual addresses onto 34-bit physical addresses, 
providing. both segmentation and pagng. It provides four different virtual address spaces, one per 
ring, which may overlap. 

1.7.1 Paging 

The  paging mechanism permits a virtual address space to be mapped onto widely scattered pieces of 
physical memory, eliminating problems of memory fragmentation in a multiprogramming system. It 
facilitates demand p q n g  by recording whether a page has been accessed or altered, and by 
trapping on any attempt to access a page that is absent from memory. And it permits one to restrict 
the right to read, write, or execute each individual page. 

A page is 4096 quarterwords long. Because a single virtual address space may contain as many as 
219 pages, it is evident that the page mapping tables may thems~lves need to be paged. 

In fact, the address translation mechanism has four different steps. Instead of a giant page table 2 19 

entries long, it uses many little page tables each 16 entries long, so not every page table need be in 
memory at once. Taken together, the 16 pages pointed to by one page table make up a segmentito. 

A giant table called a Descriptor Segment contains a pointer to each of the (at host) 215 page tables 
for each of the 4 virtual address spaces--or 2" page tables in all. If the Descriptor Segment were 
wired permanently into memory, an address reference would require two translations: one to find the 
proper page table and another to find the proper page. But the Descriptor Segment itself is 
composed of pages grouped into segmentitos, so an address reference first requires two translations 
to find the appropriate point in the Descriptor Segment, and then two more translations to find the 
target address. 

Figure 1-6 traces the entire process. A register called the Descriptor Segment Pointer (DSEGP) holds 
the 34-bit physical address of the first word of. the Descriptor Segmentito Table. Because the 
Descriptor Segment pbints to (at most) four sets of 215 segmentitos and each pointer requires 8 
quarterwords, the ~ e s c r i ~ t o r  Segment never exceeds 220 quarterwords. That translates into a 
ma.ximum of 16 segmentitos, which mealis at most 16 entries (called Segmentito Table Entries, or 
STEs) in the Descriptor Segmentito Table. The 2-bit number of the ring being accessed together 
with ,the first 2 bits of the virtual address select one entry from the 16 in the Descriptor Segmentito 
Table. In turn, tliat entry points to the physical address of the first word of a Descriptor Page 
Table, which has an entry (called a Page Table Entry, or PTE) for each of the 16 pages comprising 
that segmentito. Bits 2 .  . 5 of the virtual address select one entry from the 16 in that particular 
Descriptor Page Table, which points to one page of the Descriptor Segment itself. 

The  Descriptor Segment, of course, contains nothing but pointers to segrnentitos that make up the 4 
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virtual address spaces. In fact, this page of pointers is identical in form to the ~ e s c r i ~ t o k  Segmentito 
Table, except that it has more entries and the entries point to pages inside one of the virtual address 
spaces instead of inside the Descriptor Segment. Thus, we have labeled it a "Target Segmentito 
Table." (Note, however, that the page shown is probably only one of many pages of segmentito 
pointers required to describe the entire ring, and that the Descriptor Segment is a continuous list of 
such pointers, not a separate table for each ring.) Bits 6 . . 14 select one STE from this table, which 
points to the physical address of the first word of a Target Page Table, which has an entry for each 
of the 16 pages comprising that segrnentito. 

Bits 15 . . 19 of the virtual address select'one PTE from that page table, which points to the 
physical address of the first word of a page. Lastly, bits 19 . . 30 of the virtual address select a 
quarterword from that page. 

Using less than the full mapping: One need not use the entire mapping; structure provided, Any 
segrnentito or page table entry may be null, either because the corresponding segmentito or page is 
absent from memory or because the virtual address space in question is smaller than the maximum 
allowable size; 

Overlapping virtual address spaces: It is possible to make part or all of different virtual address 
spaces overlap, simply by making some of their STE or PTE entries point to the same physical 
memory. Some operzting systems have customarily placed user and executive together in one address 
space, providing protection by restricting access to particular pages. T o  achieve such operation with 
this architecture, one may simply arrange the entries in the Descriptor Segmentito Table to point to 
the same set of Descriptor Page Tables for each ring, thus mapping all four rings onto the same 
physical memory and reducing the size of the mapping tables by roughly a factor of four. 
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1.7.2 Segmentation 

One can view a virtual address space as a set of segments, so that the address for any particular 
entity consists of a pair of coordinates: the segment number and the offset from the beginning of the 
segment. If an index or offset causes an address calculation to exceed lower or upper segment 
bounds, an OUT-OF-BOUNDS hard trap occurs. 

Segments can vary in size, consisting of one or more segmentitos, b ~ ~ t  a sPgmPnt mllrt obey three 
ttiles: the number of segmentitos in the segment must be a pQwer of two, the segmentitns mnst h~ 

consecutive within the virtual address space (which means simply that the pointers to them must be 
consecutive in the descriptor segment) and the virtual address of the beginning of the segment must 
be an integer multiple of the size of the segment. 

Those three rules make it easy to check segment bounds. Given any virtual address known to be 
within. a segment, plus the size of the segment, the processor can determine whether a second, 
"suspect" address lies within the same segment merely by comparing the upper 19-x bits of the 
31-bit addresses (where x is the base 2 logarithm of the number of pages in the segment). 

As a result, the processor need not maintain an explicit table of segment boundaries. Instead, the 
pointer to each segmentito merely contains a field giving the size of the segment containing that 
segmentito. 

As an example, assume we know some address x lies within a particular segment, and we know the 
S segment contains 8 (2 ) segmentitos. T o  see whether an address y lies in the same segment, first 

discard the 12 low order bits of x and y, which merely represent varying addresses within a page; 
because a segment must start and end on segmentito boundaries a.nd thus page boundaries, we need 
merely check that the suspect address lies on a permissable page, without worrying about where 
within the page it lies. But then we can discard an additional 4 low order bits from each of x and y 
because they merely represent varying addresses within a segmentito; given that a segment must star: 
and end on segmentito boundaries, we need merely check that the suspect address lies on a 
permissable segmentito, without worrying a-bout where within that segmentito it lies. Finally, we c q  
discard an additional 3 bits just because the size of the segment is 23 segmentitos. Those 3 bits must 
be zero for the first of the 8 segmentitos in order for the segment to start on an integer multiple of 
its size, and as a result they must equal 7 for the last of the 8 segmentitos. Since the 3 bits can have 
any value from 0 to 7 and still lie within the segment, we need not worry about them, either. The 
remaining bits should be identicai for every legal address within the segment, so we compare the 
remaining bits of x and y. Only if they match did the two original addresses lie within the same 
segment. 

Segment bounds checking: Every memory address calculation begins with a base pointer, 
establishing which segment is being addressed. T h e  rule for bounds checking is simply that a 
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memory access must lie within the same segment as the previous base pointer. Thus, the base pointer 
plays the role of address x in the previous example, and the actual operand being accessed serves as 

Y- 

When an address calculation involves indirection, the indirect .pointer must lie within the same 
segment established by the base. But the pointer then establishes a new base, possibly in a different 
segment, and subsequent memory accesses must lie within the same segment as the .new base. 

Bounds checkfng occurs only on actual memory accesses, so it is permissable for an offset to reach 
outside the segment bounds provided a subsequent indexing operation brings the calculation back 
within bounds before the access occurs. 

1.7.8 Segmentito and Page Table Entries 

Segmentito table entries: Each STE is a doubleword (shown in Figure 1-7) with the following 
fields: 

VALID If this bit is set, the page table for this segmentito is in memory and the processor 

uses the remainder of the doubleword as described. Otherwise, the segmentito is 
absent, the processor ignores the rest of the doubleword and.software may use it 
as desired. Attempting to access an absent segmentito causes a 
SEGMENTITOIAULT hard trap (or, if the segmentito is part of the 
descriptor segment, a DSEGSEGMENTITOIAULT hard trap). 

PTA Singleword physical' address of the corresponding page table. 
. . 

WB Write bracket. Attempting to write into this segmentito from a ring (or, more 
formally, with . a validation level) greater than WB causes an 
ACCESS-VIOLATION hard trap. 

EB . Execute bracket. Attempting to execute this segmentito from a ring (or,- more 
formally, with a validation level) greater than EB causes an 
ACCESS-VIOLATION hard trap. Note that a cross-ring call via the 
instruction CALLX and the gate mechanism (Section 2.12.2) is not considered an 
attempt to execute the called regmentito, and is thus exempt from EB restriaions. 

RB Read bracket. Attempting to read this segrnentito from a ring (or, more formally, 
with a validation level) greater than RB causes an ACCESS-VIOLATION 
hard trap. 

ACCESS Specifies access modes as defined later in this section for all pages in this 
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segmentito. 

SIZE Specifies the size of the segment that contains this segrnentito, expressed as a 
base 2 logarithm of the number of pages in the segment (for example, SIZE=8 
indicates the segment contains z8 pages, which is 2' segmentitor). SIZE must not 

4 be less than 4 (2 pages, or 1 segmentito) or greater than 19 (2'' pages, or 15 
3 1 segmentitos, or an entire 2 quarterword address space.) 

FLAGS Reserved for use by software. 
. . 

VAL I D PTA I RB  ACCESS^ SIZE I FLAGS 

Figure 1-7 
Segmentito table entry format 

Page table entries: Each PTE is a singleword (shown in Figure 1-8) with the following format: 

VALID If this bit is set, implying that this page is in memory, the processor uses the 
remainder of the singleword as described here. Otherwise, the page is absent 
and the software may use the remainder of the singleword as desired. 
Attempting to access an absent page causes a P A G E J A U L T  hard trap. 

USED If VALID=l, this bit indicates the page has been accessed. (More precisely, the 
processor sets this bit when it brings into the map cache (Section 2.14) llle 
mapping information for this page.) 

MODIFIED If VALIDcl, this bit indicates the page has been modified. (More precisely, the 
processor sets this bit when it ma.rks the corresponding map cache entry to show 
that the page has been written into.) 

FLAGS Reserved for use by software. 

ACCESS Specifies access modes for this page as defined later in this section. 

PAGENO . T h e  22 high order bits of the physical address of this page. 

Figure 1-8 
Page table entry format 
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Access modes: The access permitted for a particular page is the logical AND of the ACCESS fields 
in the STE and the PTE for that page. They permit an operating system to mark a page for 
read-only access, write-only access, execute-only access, or any combination of reading, writing, and 
execution. An instruction which attempts to access a memory location in violation of these markings 
will cause an ACCESS-VIOLATION hard trap. (Of course, the attempted access must pass the 
checking defined by the RB, EB, and WB fields in the STE, too.) Within each ACCESS field, the 
bits have the following meanings: 

WRITE-PERMIT . 
Instructions may alter this segmentitolpage. 

EXECUTE-PERMIT 
A process may execute instructions fetched from this segmentitolpage 

READ-PERMIT Instructions may read from this segrnentitolpage. 

110-PACE 110 instructions may address this page, but ordinary instructions may not. Note 
that the WRITE-PERMIT and READSERMIT bits determine whether the 
110 instructions can write or read this page. . , 

Figure 1-9 
Bits in ACCESS field 
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1.8 Rings and Protection 

T h e  uniprocessor architecture provides three principal kinds of protection. 

T h e  first, specified in the PRIVILEGED field of the PROCESSORSTATUS register as 
mentioned earlier, determines the rings from which privileged instructions may -be fetched for 
execution. 

T h e  second, discussed in the preceding sections, applies to privileged and non-privileged 
instructions alike, and to all four rings: unless otherwise noted, the architecture provides segment 
bounds checking (which prevents a memory address calculation from erroneously exceeding the 
boundaries of a segment) and access mode checking (which controls the ability of any instruction to 
read, write, or execute a particular page). 

A third kind of protection allows "downward" accesses (in which an instruction cxecuting in a given 
ring reaches into a less protected ring to access an operand) but forbids "upward" accesses (in which 
an instruction reaches into a more protected ring). This involves a process called validation, which 
checks the TAG field of a pointer and alters it or, if necessary, invokes a BADA-VALIDATION 
or BADP-VALIDATION hard trap to protect more protected (lower-numbered) rings against 
forbidden accesses from less protected (higher-numbered) rings. There are two kinds of validation: 
address validation occurs when a pointer is used in addressing an operand or specifying a jump 
destination; and pointer validation occurs when a pointer is itself an operand (usually when the 
pointer is being moved from one place to another). The following sections discuss the pointer 
format, address validation. and pointer validation. 

1;B.l Pointer Form at 

As mentioned earlier, the pointers that serve as the base for most memory addrm.9 calculatiunr vr~d 
all indirect references incorporate both a TAG field and an ADDRESS field (Figure 1-10). Pointer 
tags play an important role in dynamic linking, in memory accesses from one ring to another, and in 
calls from one ring to another. 

Though the architecture also features self-relative pointers and byte pointers, the word "pointer" by 
itself in this manual will always mean a tagged pointer with the format shown in Figure 1-10. 

I TAG I ADDRESS I 
0 4 5 35 

Figure 1-10 
Pointer Format 
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Various values of the TAG field have the following meanings: 

T~ Meaning 

Fault. When an instruction ,attempts to access memory through this pointer, or 
when the instructions MOVP or BASEPTR attempt to manipulate this pointer, 
a BADJOINTER-TAG hard trap occurs. 

Gate. As explained in Section 2.12.2, the CALLX instruction can use a pointer 
with a gate tag to implement a procedure call from one ring to another. If any 
instruction' attempts to use such a pointer to reference memory, however, or if the 
BASEPTR instruction attempts to manipulate such a pointer, a 
BADJOINTER-TAG hard trap occurs.' The  MOVP instruction may, 
howev,er, move such a pointer. 

NIL. If an instruction attempts to use this pointer to reference memory, or if the 
BASEPTR instruction attempts to operate on this pointer, a 
BADADDRESS-TAG hard trap occurs. The  MOVP instruction may, however, 
move this pointer. A language translator such as LISP, Pascal, or PL/I may use 
this painter to implement the NIL or NULL construct. 

3 Reserved. Any attempt to reference memory using this pointer, or to manipulate 
it with MOVP or BASEPTR, causes a BAD-POINTER-TAG hard trap. 

4 'Ring 0 tag. An instruction which references memory through this pointer will 

. . attempt to access the specified ADDRESS within the ring 0 address space. 

Ring 1 tag. An instruction which references memory through this pointer will 
attempt to access the specified ADDRESS within the ring 1 address space. 

Ring 2 tag. An instruction which references memory through this pointer will 
&tempt to access the specified ADDRESS within the rink 2 address space. 

Ring 3 tag. An instruction which references memory through this pointer will 
attempt to'access the specified ADDRESS within the ring 3 address space. 

User tag. An instruction which references memory though this pointer will 
attempt to access the specified ADDRESS within the same ring from which it 
obtained the pointer (more precisely, it will access memory using as the initial 
validation level the validation level derived in fetching the pointer; see Section 
1.8.2.) Because these 23 tags are equivalent architecturally, software may use 
them for its own purposes, such as encoding the data type of the entity being 
addressed. 

Fault. This behaves exactly like a tag of zero. Because all but the 
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largest-magnitude positive and negative integers will have either 0 or 31 in the 
tag field, assigning special meanings to tags of 0 and 31 increases the likelihood 
that the erroneous use of a random singleword as a pointer will be detected as an 
error. 

1.8.2 Address Validation 

T h e  address validation that occurs during operand or jump destination evaluation applies to two 
classes of pointers: those with TAG values in the range 4 . . 7, which are called ring pointers; and 
those with TAG values in the range 8 . . 30, which are called user pointers. (One frequently refers 
to ring tags and user tags in a similar fashion.). 

An  instruction or pointer is "trusted" by the ring from which it is fetched, and by higher-numbered 
rings. Address validation enforces two rules. First, an instruction cannot access a ring unless the 
instruction and each pointer used in computing the address are trusted by that ring. Second, an 
instruction cannot access a location unless the instruction and each pointer used in computing the 
address of that location are trusted by the ring specified by the EB, WB, or RB field--whichever is 
appropriate--of the STE (Section 1.7.3) for the segmentito containing that location. 

Because the architecture' allows virtual address spaces to overlap, it is imprecise to say that an 
instruction, pointer, or operand "lies within a ring". The page containing the instruction, pointer, or 
operand may lie within multiple rings. For an instruction, we refer instead to the "ring of execution", 
meaning the ring specified by the PC in fetching the current instruction. For a pnin t~r  or operand, 
we refer to the validation level, an internal value derived by the addressing mechanism which 
specifies which ring number to use in accessing the desired entity. 

Using those terms, here is the algorithm for address validation: 

1. For each operand, the address calculation mechanism initializes the validation level to the number 
of the ring of execution. 

2. Each time the calculation handles a pointer, it uses the validation level and the tag tn rleriv~' a. 
new validation level: 

a If the tag is a ring tag and the ring number is less than the validation level, a 
BADA-VALIDATION hard trap occurs. 

b. If the tag is a ring tag and the ring number is greater than or equal to the validation 
level, the new validation level is the ring number. 

c If the tag is a user tag, the validation level is unchanged. 
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Note that the validation level can never decrease, because that would allow access to a more 
protected ring. 

Of  course, an attempt to access memory is' also subject to checking specified by the ACCESS fields 
' in the STE and PTE entries, and to that specified by the WB, EB, and RB fields in the STE entry: 

the validation level derived'in computing the address must be less than or equal to that specified by 
the WB, EB, or RB field--whichever is appropriate. 

T o  illustrate the rule that an instruction cannot use a pointer to access a ring which is more 
protected than the ring of execution, suppose the following instruction executes in ring 1: 

MOV RTA,(R 7) 100.e 

The  initial validation level is therefore 1. The  address calculation first. uses R7 as its base pointer. 
If R7 contains a pointer with a ring 2 tag and an address F, then the calculation proceeds legally 
because 2>1, and the validation level increases to 2. Next the calculation fetches an indirect pointer 
from address F+100 within the virtual address space of ring 2. Suppose that pointer has a tag of 1 
and an address of B. Because 1 is less than the current validation level, a hard trap occurs--even 
though the instruction itself is executing in ring 1 and could' have accessed location B in ring 1 
directly. In this fashion, the cross-ring access mechanism prevents a pointer which is only trusted to 
the level of ring 2 from exploiting the capabilities of a more trusted instruction executing in ring 1. 

T o  illustrate the additional checking provided by the EB, WB, and RB fields in the STE entry, 
suppose that ring 1 and ring 2 are mapied to the same physical memory. If address F lies in a 
segmentito for which the WB field in the segmentito is 1 and the RB field is 2, then either of the 
following instructions can execute in ring 1: 

(Recall from Section 1.6.4 that the tag for the operand "F" is implicitly that of the ring in which the 
instruction executes.) The  first instruction can execute in ring 2 as well, because RB.2. But the 
second instruction will trap if it executes in ring 2, because WB=l. In this manner, one can give the 
executive readlwrite access to a segmentito while limiting the user to read-only access. 

The  validation mechanism discussed in this section applies to the operands of jump and call 
instructinns as well. The  PC is itself a pointer. When the PC changes due to a jump, call, or return, 
the new tag of the PC is the ring tag corresponding to the final validation level of the jump 
destination or pointer used to change the PC. This prevents an instruction executing in a 
higher-numbered ring from calling a routine located in a lower-numbered ring. Because such calls 
are needed to permit user code to obtain operating system services, the architecture provides two 
mechanisms that circumvent the validation scheme in a controlled fashion: the TRPEXE 
instruction, discussed in section 1.9, and the CALLX instruction with gates, discussed in section 
2.12.2. 
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1.8.3 Pointer Validation 

By itself, the address validation mechanism discussed in the previous section is not sufficient to 
protect lower-numbered rings against mischief from higher-numbered rings. The ring number used 
to fetch a pointer helps determine its validation level, so simply moving the pointer from a 
higher-numbered ring to a lower-numbered one could give it additional capabilities. 

For example, a user executing in ring 3 might construct a pointer tn data. in ring 0 and then pass 
the pointer as the address of a parameter to an operating system routine executing in ring 0, thereby 
deceiving the operating system into accessing, on behalf sf the user, data whirh i.s forbidden to the 
user. 

Therefore, whenever one moves a ring pointer or user pointer, it undergoes a second kind of 
validation, called pointer validation, which alters its tag or, if necessary, traps to avoid giving the 
pointer additional privileges. This validation is built into an instruction called MOVP, which 
should be used in place of MOV whenever one moves a pointer. If a pointer is moved implicitly--if 
it is passed from one ring to another via a register, for example--the recipient must deliberately 
validate it using the VALIDP instruction. 

Pointer validation involves two steps: 

1. If the pointer is in a rpglriter, the initial validation level is thc number of the ring uf 
execution. If the pointer is in memory, set the illltlal valirlaliu~~ level co equal the address 
validation level derived in fetching it from memory. 

2. Use that validation level to derive a new tag: 

a. If the tag is a ring tag and the validation level is'greater than the number of 
the ring specified by the tag, invoke the BADS-VALIDATION hard trap 

(because this pointer wants to access a more protected ring than thc one from 
. 

which it was obtained). 

b. If the tag is a ring tag and the validation level is less than or equal to the 
number of the ring sp,ecified by the tag, preserve the tag (because this pointcr 
wants to access a less protected ring than the one from which it was obtained). 

c. If the tag is a user tag and the validation level equals the number of the ring 
of execution, preserve the tag. (Because the pointer was obtained from the ring 
of execution, it cannot possibly' be moving to a more protected ring. Moving it to 
a less protected ring is harmless; at worst, if the pointer is fetched from that ring 
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and used for indirection, it will appear to point to a less protected entity than it 
did before.) 

d. If the tag is a user tag and the validation level is greater than the number of 
the ring of execution, replace the tag with the ring tag corresponding to the 
validation level.(the pointer may be moving to a more protected ring than the 
one from which it was obtained, so make the latter explicit). 

T o  illustrate these rules, suppose a user routine called USER, executing in ring 3, has called an 
operating system routine called EXEC, executing in ring 0. USER has constructed a ring pointer 
called BAD, located in ring 3 but pointing to ring 0, and h.as passed in register RO a pointer to 
BAD. (For the moment, we .will assume the pointer in RO is correct and trustworthy.) EXEC 
executes the following instruction to move BAD into a location called TRUSTED within ring 0: 

NOVP. P. P TRUSTED, (RBI 

The  processor first calculates the' address of BAD, using the address validation algorithm. The 
address validation level starts at 0, the ring of execution, and becomes 3, the ring number specified 
by the.pointer in RO. . 

Once the instruction has addressed BAD, the pointer validation algorithm starts with 3, the 
validation level derived during the address calculation, and examines the tag field of BAD ,itself, 
which is a ring tag for ring 0. Because 0 is less than 3, the MOVP instruction traps. 

Suppose instead that BAD is a user pointer. This time, when EXEC attempts to move it to 
TRUSTED, the processor first calculates the validation level as 3, and then moves BAD to 
TRUSTED. Because the validation level is greater than the ring of execution, the processor replaces 
the user tag with the ring tag for ring 3. No error (and thus no trap) occurs. 

But suppose instead thal Lhe 'pointer passed in register RO is itself bad--that is, USER has 
constructed it to point to data in ring 0. The validation level of a pointer located in register 0 and 
pointing to ring 0 is in fact 0, so no trap will occur when EXEC addresses memory through RO. 
Even if EXEC is suspicious and attempts to move the pointer from RO to TRUSTED before using 
it, the validation level still matches the ring tag, so no trap occurs: 

T ~ A C  illustrates the importance of using the VALIDP instruction to validate a pointer generated by 
LII untrustworthy process and passed to a trustworthy routine through a register. Provided a called 
routine applies VALIDP properly to every pointer passed in a register, it is protected completely 
because the validation mechanisms will prevent violations by any other pointers inside structures 
passed to it. 
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1.9 Traps and Interrupts 

Traps and interrupts signal the processor to change its context temporarily and deal with an 
exceptional situation. Traps usually result from errors, while interrupts are usually invoked by 
external devices in need of 110 service. 

For each trap and interrupt which may occur, a series of singlewords in memory called a trap vector 
or interrupt vector provides information on handling the trap or interrupt. The processor obtains 
new state information from the vector, pushes its previous state onto a stack, and branches to a trap 
handler address specified by the vector. 

(Conventions vary on whether 'vector" applies to the group of singlewords pertaining to a particular 
trap, or to the group of groups pertaining to all traps. We will always use "vcctor" to refer to Lhe 
series of singlewords for a particular' trap, and will use "set of vectors" to refer to several consecutive 
vectors for several similar traps.) 

Traps which can be handled by a process at its own level of privilege. These include soft 
traps caused by errors as well as traps caused by the TRPSLF instruction. 

0 Traps which must be handled by privileged code. These include hard traps caused by 
errors. 

Q) Interrupts, all of which must be handled by privileged code. 

Traps caused by the TRPEXE instruction, which are in effect calls to the executive. 

@ The trap-like mechanism which uEes gntcs to make cross-ring calls (Sectlon '2. i2.2). 

Each class of traps and interrupts has its own set of vectors. A register called the trap descriptor 
block pointer (TDBP) contains the 34-bit physical address of a series of singlewords containing 
ordinary tagged pointers, each of which points to the first singleword of a set of vectors: 

Points to set of vectors for: 
Ring 0 TRPSI..F traps 
Ring 1 TRPST,E traps 
Ring 2 TRPSLF traps 
Ring 3 TRPSLF traps 
Ring 0 soft traps 
Ring 1 soft traps 
Ring 2 soft traps 
Ring 3 soft traps 
Hard traps 
Interrupts from I/O 
Interrupts from counters 
TRPEXE traps 
Gate descriptor block for entering ring 0 
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Gate descriptor block for entering ring 1 
Gate descriptor block for entering ring 2 

Note that a set of vectors may lie in any desired ring, and the vectors may in turn point to handlers 
in any ring which can be accessed from the ring containing the vectors. The  vectors for ring 3 soft 
traps may, for ejtample, lie in ring 2 even though ring 3 cannot access ring 2; but the handlers must 
lie in ring 2 or ring 3, because r ing2 cannot access rings 0 or 1. 

Each trap or interrupt vector has the following format: " 

TRP-PARfl-DESC-SW 

New USER-STATUS 

New PROCESSOR-STATUS 

ADDRESS (Hand l er  l 

(S i ng l ewordl 

(Sing l eword) 
Increasing 

(S i ng l eword) addyesses 
& 

(S i ng l ewordl 

Gates are a trap-like mechanism for cross-ring procedure calls which will be described in Section 
2.12.2. 

1.9.1 How the Processor Responds to a Trap or Interrupt 

When the processor responds to a trap, it follows these steps (the same steps apply to interrupts): 

1. Locate* the trap vector. 

Within each set of traps, the possible traps are numbered consecutively starting at 0. When 
a particular trap occurs,. the processor finds the appropriate trap vector using the TDBP, 
the pointer to the appropriate set of traps, and the number of that trap within the set. If, 
for example, hard trap number five occurs, the processor fetches (from the eighth 
singleword past the one pointed to by TDBP) a pointer to the set of hard traps, and then 
uses the vector located 5*4 singlewords beyond the start of that set (because each trap 
vector is 4 singlewords long). 

2. Push the current state onto the stack pointed to by the SP in the register file specified 
by -the new PROCESSORSTATUS found in the trap vector. The act of pushing this 
information onto the stack is atomic, and any interrupts will'remain pending until it is 
complete. A hard trap may result, however--if, for example, the SP  crosses a segment 
boundary, exceeds SL, or touches an absent page--and such a hard trap does intercede 
(Section 1.9.6). 
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T h e  information is pushed onto the stack in the following format, known as the save area 
for the trap: 

*I o ld  PROCESSOR-STATUS I 
0 I ~ S E R R _ S T A T U S  

old PC 

o l d  PCJEXT-INSTR 

SIZE 
- 

INSTRUCTIQN-STATE 

PARAMETER-AREA 

SP-, 0 35 ' 
Top o f  stack 

(1 s i ng 1 euord) 

(1 sing l euordl 

(1 singleword) 

(1 s i ng l eword) 

(1 sing l eword) 

(GI ZE 9 i ng l euords) 

( v a ~ ' . ~  i I ~y I I U I I I L J ~ ~ .  u t  sl ng l ewor'ds) 

(32 s i ng l ewordsl 

( 1  singleword) 

(1 singleword) 

If the trap is a soft trap or TRPSLF, it pushes a 'singleword zero in place of the old 
PROCESSORSTATUS, because such traps are not privileged and thus may not access 
PROCESSORSTATUS. 

SIZE is the number of sii-~glewords occupied by the INSTRUCTIONSTATE portion of 
the save area If SIZE=O, then INSTRUCTIONSTATE does not appear at all. 
INSTRUCTIONSTATE itself stores instructinn-dcpcndcnt and 
implementation-dependent information required for restarting the instruction that was in 
process when the trap occurred. Some instructions are said to be interruptable, meaning 
that interrupts can occur during their execution. A vector arithmetic instruction, for 
example, may encounter a trap or interrupt part way through the Processing of the vectnr. 
INSTRUCTIONSTATE would in such a case contain the information needed to 
proceed with the. remainder of the vector ,after handling the trap or interrupt, since it 
would be wasteful or even incorrect to start over at the beginning of tho instruction. 

PARAMETERAREA contains information about the cause of the trap, and varies in 
content and size from one trap to another. The  programmer may infer the size of this area 
in any particular instance by comparing S P  with the old SP  value provided on the stack. 

REGISTERSAVEAREA is not used by the architecture; the trap handler routine may 
save the registers here if it so desires. 

The  "old SP" pointer specifies where the top of the stack was prior to the trap (note that it 
points to the stack used in handling the interrupt, not necessarily the same as the stack that 
was in use when the trap occurred). Because the SP stack grows upward and the pointer 
for upward-growing stacks indicates the free location atop the stack, it turns out that "old 
SP" points to the beginning of the save area itself. 
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3. Load the new USER-STATUS value given by the trap. Provided the trap is not a soft 
trap or TRPSLF, load the new PROCESSORSTATUS value given by the trap vector. 
(Because the' user may be allowed to handle soft traps and TRPSLF traps within an 
unprivileged ring, these traps cannot alter PROCESSORSTATUS.) 

4. Jump to the trap handler specified in the trap vector. The  trap handler address is a 
pointer, so this jump is subject to pointer validation checking, using as the initial 
validation level the number of the ring containing the trap vector. 

1.9.2 Soft Traps 

As mentioned, earlier, soft traps are those which can be handled without increasing the level of 
privilege. 

Soft traps supply the following information within the PARAMETERAREA pushed onto the SP 
stack: 

If the destination operand is a memory location, DESTINATIONADDRESS is a standard pointer 
with tag and address fields. If the destination is a register, then DESTINATIONADDRESS gives 
zero (fault) as its tag and the register address (in terms of quarterwords) as its address. 

DESTINATION-ADDRESS 

UNSTORED-RESULT 

Operand 1 

Operand 2 

UNSTORED-RESULT is the result that would have been stored in the destination address if no 
trap had occurred. If it is an integer, it is sign-extended to be four singlewords long, with the most 
significant portion in the singleword having the lowest address. If it is a floating point value, it 
appears in the following format, where "S" is the one-bit sign and "-S" is the hidden bit (Section 
2.3.1): 

(Sing l eword) 

( 4  S i ng l ewords). 
I nc reas ing  

(Doub l eword) addresses 

(Doub l eword) 
4 
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"Operand 1" and "Operand 2" are the values of the source operands, sign-extended as necessary to 
be doublewords. If the instruction has only one ,operand aside from the destination, then "Operand 
2" is undefined. 

EXP 

RANT (hi gh-order), 

MANT 

NANT ( l ow-order1 

Soft traps include: 

(S  i ng l eword) 

(Sing l ewordl 
Increasing 

(Sing l eword) addresses 

(Sing l eword) 
5. 

0: NO-FAULT No fault has occurred. This trap never occurs; it is defined simply so that 
software can use the value "0" to encode the absence of a trap. 

b FLT-OVFL-TRAP 
Floating point overflow occurred with FLT-OVFLNODE=O. 

% FLT-UNFL-TRAP 
Floating point underflow occurred with FLT-UNFL_MODE=O. 

3: PET-NAN-TRAP 
T h e  floating point result was not a valid number and FLT.-NAN-MOnF,=O 

4: INT-OVFL-TRAP 
Integer overflow occurred and INT-OVFLMODE=O. 

!k INT-Z-DIV. .TRAP 
Integer division by zero occurred and INTZDIVJfODE=O.  

6: BOUNDS-CHECK 
T h e  BNDTRP instruction found its argument out of bounds. 

A FFT-TOO-LONG 
An FFT instruction was required to operate on a vector whose size exceeded the 
maximum for this implementation. 

8: LOST-PRECISION 
An instruction such as FSIN or FCOS would deliver an imprecise result because 
its source operand is much larger than 1. 
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1.9.3 TRPSLF and TRPEXE Traps 

The TRPSLF and TRPEXE instructions effectively let the user add a number of software-defined 
instructions to the instruction set. Simply assign a trap vector number to each new instruction and 
provide a corresponding trap handler routine to implement the instruction. Like XOP instructions 
in general, TRPSLF and TRPEXE instructions can take zero, one, or two operands. And like 
certain X O P  instructions, they can place restrictions on whether each operand can be a constant, a 
quarterword, a singleword, et cetera. 

The  number of operands and the restrictions on operands for a particular trap are specified in-a 
word called T R P S A R M D E S C S W  (trap parameter descriptor singleword) in the trap vector itself, 
which has the following'format: 

When the instruction executes, it evaluates OD1 as specified by TMODEl and places the result in 
the first doubleword of the PARAMETERAREA pushed onto the SP stack. It evaluates OD2 as 
specified by TMODE2 and places the result in the second doubleword of the 
PARAMETERAREA. Those two doublewords constitute the entire PARAMETERAREA for 
TRPSLF and TRPEXE traps. 

A TMODE value outside the range 0 . .  7 causes a BAD-TMODE hard trap to interrupt the 
execution of the TRPSLF or TRPEXE. TMODE values within that range have the following 
meanings: 

0: Unused operand 
The  operand must be unused (that is, the descriptor must be zero) or a hard trap 
interrupts the execution of the TRPSLF or TRPEXE. 

' 

k Undecorled OD Without decoding it, sop9 the operand descriptor into the high order half of the 
doubleword parameter, right-justified in a field of zeroes. Do not fetch any 
extended address word. This is analogous to the treatment of the JUMPDEST 
field 1n the relative form of a JOP instruction. The  low-order half is undefined. ' 

2: Undecoded OD and extended word 
Without altering it, copy the operand descriptor into the high order half of the 
doubleword parameter, right-j~lstified in a field of zeaees, If the descriptor calls 
for an extended word, copy that into the low ,order half; otherwise, the low-order 
half is undefined. 
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3: Virtual address 
Obtain a pointer to the operand and store that, rather than the operand itself, in 
the high order half of the doubleword parameter. The  low order half is 
undefined. This corresponds to the behavior of instructions like MOVP-PA 
and PUSHADR. Note that the address validation mechanism must use the ring 
number of the ring which executes the TRPEXE, not the ring containing the 
vector or the TRPEXE handler. If the operand is a constant or a register, a 
hard trap interrupts the execution of TRPSLF or TRPEXE. 

4: Quarterword Interpret the operand descriptor to obtain a quarterword and store it in the high 
order half of the 'doubleword parameter, left justified in a field of zeroes. The  
low order half' is undefined. 'l'his treats the operand exactly as would a .".qi 
i~SrrUctiOtI  like "AI3D.W thus, for example, it discards the high order bits of' a 
constant if necessary. 

5: Halfword .Interpret the operand descriptor to obtain a halfword and'store it in the high 
order half of the doubleword parameter, left justified in a field of zeroes. The  
low order half is undefined. This treats the operand exactly as would a ".H" 
instruction like "SUB.HW: thus if, for example, the operand specifies a memory 
location, that location must be halfword aligned or a hard trap interrupts the 
execution of TRPSLF or TRPEXE. 

6: Singleword Interpret the operand descriptor to obtain a singleword and store it in the high 
order half of the doubleword parameter. The low order half is undefined. This 
treats the operand exactly as would a ".S" instruction like SHFA.LF.Sn: thus if, 
for example, the operand specifies a memory location, that location must be 
singleword aligned or a hard trap interrupts the execution of TRPSLF or 
TRPEXE. 

7: Doubleword Interpret the operand descriptor to obtain a doubleword and store it in the 
duuLlewurd pararrleler. This iriterprets the operand exactly as would a ".DW 
instruction like "ANDTC.Dn: thus if, for example, the operand specifies a 
memory location, that location must be singleword aligned or a hard trap 
interrupts the execution of TRPSLF or TRPEXE. Similarly, if the operand 
specifies a constant nddrcssing modc using 90 3" or "? !Ow, the constant will be 
extended properly before it is placed in the doubleword. 

Note that the return from a handler routine for TRPSLF or TRPEXE will ordinarily use the 
RETUSA or RETFSA instruction to avoid repeating the trap indefinitely. 
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1.9.4 Hard Traps 

Hard traps are: 

0: NO-FAULT No fault has occurred. This trap never occurs; it is defined simply so that 
software can use the value "0" to encode the absence of a trap. 

1: DSEG-SEGMENTITO-FAULT 
The VALID field in the STE for a segmentito within the descriptor segment is 
zero, implying the required segmentito ismot present in memory. 

2: DSEG-PAGE-FAULT 
The  VALID field in the PTE for a page within the descriptor segment is zero, 
implying the required page is not present in memory. 

S: SEGMENTITO-FAULT 
The VALID field in the STE for a target segmentito is zero, implying the 
required segmentito is not present in memory. 

4: PAGE-FAULT 
The VALID field in the PTE for a target page is zero, implying the required 
page is not present in memory. 

5: ACCESS-VIOLATION 
Accessing an operand would have violated access mode checking (the ACCESS 

. ;field .within'an, STE or PTE) or .segmentit0 ring bracket checking (the WB, EB, 
and. RB fields within &.STE). 

6: GATE-INDEX-TOO-BIG . . 

A cross-ring call used a gate pointer whose index exceeded the maximum index 
for the ring in question, or.whose ring number was 3. 

. . 7: BAD-POINTER-TAG 
An ordinary instruction tried. to.use a. pointer with a fault tag or reserved tag to 
reference memory; or the MOVP or BASEPTR instruction tried to manipulate a 
pointer with a fault tag or reserved tag, 

8: BAD-ADDRESS-TAG 
An instruction tried to reference memory through a pointer with a NIL or gate 
tag, or a BASEPTR instruction tried to manipulate a pointer with a NIL or gate 
tag. . 
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9: OUT-OF-BOUNDS 
Accessing an operand would have violated segment bounds checking. 

10: PRIVILEGE-VIOLATION 
A privileged instruction attempted to execute in user mode. 

11: ILLEGAL-INSTRUCTION 
The  instruction opcode is undefined. 

1% TRACE-TRAP 
The TRACEJENB bic in PROCESSC)R,STA.TTJ i.c 1. 

13: CALL-TRAP T h e  CALL-TRACESEND bit in PROCESSORSTATUS is 1. 

14: STACK-OVERFLOW 
The  instruction would have caused a stack pointer to exceed the corresponding 
stack limit. 

15: RESERVED-ADDRESS-MODE 
An O D  and/or its associated EW has an undefined value. 

16: OPERAND-NOT-REQUIRED 
An unu~ed 'o~e rand  descriptor was not set to zero. 

17: ALICNMENT,ERROR . 1 

An operand was not properly aligned. 

18: ILLEGAL-OPERAND-MODE 
The  instruction attempted to use a register as an operand where forbidden; 
examples are vector instructions and instructions which f'ind ADDRESS(x). 

19: ILLEGAL-CONSTANT 
Thp instrt~rrinn attempted to use a conrtant as a destination or a jump addrcm, 
or attempted to find the address of the constant. 

20: ILLEGAL-BYTE-PTR 
The position or offset field of a byte pointer was invalid. 

21: ILLEGAL-SHIFT-ROTATE 
The bit count for a shift, rotate, or bit reversal instruction was negative or too 
large . 

22: ILLEGAL-TRACE-PEND 
An instruction (such as SWITCH or RETFS) is attempting to resume execution 
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of an interruptable instruction which was left unfinished due to a trap or 
interrupt. The  PROCESSORSTATUS.TRACE_PEND bit is set. Because the 
TRACESEND bit could not have been set at this point in the execution of the 
interruptable instruction, this indicates that privileged code must have 
erroneously set the bit some tiine between the interrupting of the instruction and 
the attempt to resume execution; The  trap occurs on the instruction which 
attempts to transfer control back to the interruptable instruction, not on' the 
interruptable instruction itself., 

211: ILLEGAL-IOMEM 
An instruction attempted to access an 110 memory not attached to this 
uniprocessor. 

24: RING-ALARM-TRAP 
A ring alarm occurred upon changing the.ring of execition. 

25: ILLEGAL-STATUS 
An instruction attempted to place an illegal value in USERSTATUS or 
'PROCESSORSTATUS. 

26: ILLEGAL-REGISTER 
One of the privileged register access instructions specified a register or register 
file number out of range. 

* .  

2% ILLEGAL-PRIORITY 
The WIPND instruction specified a priority level outside the range 0 . . 31. 

28: NONEXISTENT-MEMORY 
The processor attempted to access memory which does not physically exist at this 
installation. 

29: BAD-A-VALIDATION 
A memory access would violate the rules for address validation. ' 

30: BAD-P-VALIDATION 
A memory access would violate the rules for pulr~ter validaliu~~. 

31: VMM-TRAP The processor was in virtual machin? mode and attempted to execute any ' 

privileged instruction, or one of the user mode instructions which are specified to 
trap in virtual machine mode. 

32: BAD-T-MODE 
A TRPSLF or TRPEXE instruction found an invaiid value in the TMODEI or 
TMODE:! field of the trap parameter descriptor singleword. 
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Parameters for hard traps: Only the following hard traps push any PARAMETERAREA within 
the save area: 

1. DSEGSEGMENTITOJAULT, ' DSEGSAGEJAULT,  SEGMENTITOJAULT, 
PAGE-FAULT, and ACCESS-VIOLATION provide one sing!eword giving the virtual address, 
in pointer form, of the operand being referenced. 

2. GATEJNDEX-TOOBIG provides a copy of the gate pointer containing the invalid index. 

3. BADSOINTER-TAG and BADADDRESS-TAG give a copy of the pointer whose tag was 
invalid. 

4. OUT-OFBOUNDS provides a copy of' the last base pointer encountered prior to the efrsr, 
followed by a singleword giving the effective offset from that pointer (which may be the sum of an 
offset and index) which caused the error. 

1.9.5 Interrupts 

There is one interrupt vector for each 110 memory associated with the processor. Interrupts do not ' 

push any PARAMETER information within the save area Interrupts are described further in 
Section 1.10. 

1.9.6 Recursive Traps 

When a trap attempts to push information onto the SP stack, a hard trap may occur due to stack 
overflow, a page fault, an access violation, and so on. 

If the original trap was a soft trap, the SP is left at its original position preceding the soft trap while 
the hard trap occurs. If the handler for the'hard trap solves the stack problem and returns with a 
RETFS.R instruction, the operation which caused the soft trap is restarted and presumably the soft 
trap will recur, this time completing without encountering a hard trap. 

If the original trap was a hard trap, the processor will halt. The front end processor must take 
appropriate action, since this situation indicates a serious system failure. 



An S-1 processor performs 110 by reading and writing one.or more 110 memories, each of which is 
shared between the S-1 processor and an, 110 processor (IOP). The architecture places few 
constraints on the IOP, which might be a commercially available minicomputer or specially designed 
hardware. Similarly, the architecture does not dictate how to use the memory to control devices, or 
how many devices to control through each memory. Instead, these details are determined by the 
IOP  and by the device handler software within the S-1 processor. 

An I10 memory appears to the S-1 processor as one or more pages of 36-bit singlewords. The  IOP 
itself may have a much different memory format, because both the hardware and the 110 
instructions themselves can provide transformations between the S-1 processor memory format and 
that of the IOP. 

For proper operation, the S-1 processor must set the I O P A G E  bit within the ACCESS field of 
each of the STEs and PTEs corresponding to an 110 memory page. This permits 110 instructions to 
access the page and prevents non-110 instructions from accessing it. The S-1 processor must also set 
the READSERMIT and WRITESERMIT bits to grant the access desired. The  RB and WB 
fields in each STE entry will also restrict access to 110 pages. 

16 Each 110 memory has a unique number in the range 0 .  . 2 -1. (In a multiprocessor system, the 
numbers are unique throughout the system, and an attempt by a uniprocessor to refer to an 110 
memory not connected to that uniprocessor causes an ILLEGALJOMEM hard trap.) When an 110 
instruction addresses an operand on an 110 page, the usual virtual-to-physical address translation 
occurs, and the resulting physical address provides the 110 memory number and the address within 
that 110 memory: 

Physical Address 

0 15' 0 17 
I / O  Memory Number Offset  Within I / O  Memory 

A vector 110 transfer performs this translation once for the first element of the vector. It obtains 
succeeding elements from succeeding 110 memory locations, without translating their virtual 
addresses, even if those elements lie on different pages which might specify different I10 memories 
or even main memory. If the length of the vector causes it to overrun the end of the I10 memory, 
the result is undefined. 

Each I10 memory has one interrupt whose number is the same as that of the 110 memory, an 
ENABLE bit which is controlled by the S-1 processor, and a priority ranging from 1 . . 31, which is 
controlled by the associated IOP. The S-1 processor itself can have a priority ranging from 0 . . 31, 
specified by the PRIORITY field in PROCESSORSTATUS. When an interrupt occurs, the S-1 
processor traps through the interrupt vector corresponding to the 110 memory number only if the 
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ENABLE bit is true and the priority of the memory is greater than that of the S-l processor. 
Otherwise, the interrupt remains pending until those conditions become true. 

If multiple interrupts satisfy those conditions at once, the S-1 processor services them in descending 
order of priority. When multiple interrupts have the same priority, the S-l processor services them 
in a consistent order, but the order is implementation-dependent. 

Note that setting the S-1 processor priority to 0 permits..every 110 memory to interrupt, while setting 
it to 31 prevents any I10 memory from interrupting. 

Section 1.9 explains how the processor reacts to an interrupt, obtaining a new context from the 
~nterrupt vector and pushing its old context onto the SP stack. Note that the PRIORITY field in 
the new PROCESSORSTATUS obtained from the interrupt vector is ignored. Instead, the 
processor priority is set to match the priority level of the interrupt and, unless otherwise altered, 
remains at that level until the interrupt handler returns and restores the old 
PROCESSORSTATUS. 

1.10.1 110 Memory Translation 

Mapping the IOP memory format onto the S-1 processor format may involve two separate 
transformations. First, the hardware design of the I/O memory converts the IOP  format to a 36-bit 

- singleword format. Second, certain 110 instructions translate portions of the singleword as they copy 
between 110 memory and non-110 memory. 

T h e  hardware conversion will vary among IOPs, so the architecture does not specify it. But in most 
cases, a reasonable conversion is obvious. The  following diwm shows reasonable cnnversinns for 
8-bit, 16-bit, and 36-bit IOPs: 



1.10.1 110 Memory Translation 

8-bi t IOP I/O Memory 

Increasing 
addresses  

4, 

16-bi t ,  byte-addressed I /O Memory 
I OP 

Increasi ngFl 8 10 17 19 26 28 35 
addresses 

J. 

16-bi t  IOP. I/O Memor-y 

Increasing 
addresses  

4, 
0 7 8 15 

36-bi t IOP I /O Memory 

Some 110 instructions perform no further transformation, but simply copy an anyword between 1 1 0  
memory and non-I/O memory. Others--the 110 instructions which use the modifiers 
(B,QH,S]--provide four different ways to translate singlewords by shifting fields within them: 
bitwise, quarterword, halfword, and singleword translations. In the diagrams that follow, "X" 
indicates that the corresponding field is ignored when an 110 instruction reads it or set to zero when 
an 110 instruction writes it. 

Bitwise translations map the eight low-order bits of each quarterword in 110 memory onto all 36 
bits of each singleword in non-110 memory: 

I /O Memory' Non-I/O flemor 
1 7 9 17 19 27 29 35 0 7 8  18 16 2324  31 32... 

Quarterword translations map each quarterword of 110 memory onto the corresponding 
quxtvrword of non-110 memory: 
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I /O Memory Non-I /O Memory 

A I B I C I I B I C I D I 
0 8 9  1718 2627 35 0 8 9  1718 2627 35 

Halfword translations map the eight low-order bits of two successive qtiarterwords within an 
aligned halfword of 110 memory onto the sixteen low-order bits of a halfword in non-110 memory: 

I /O Memory Non-I [O flemor y 

Singleword translations map the eight low-order bits of four s~lrcessive quarberwordc within an 
aligned singleword of 110 memory onto the 32 low-order bits of a singleword in non-110 memory: 

I / O  Memory Non-I /O Memory 

A B I C D 

1 8 10 17 19 26 28 35 4 11 12 19 20 27 28 35 
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1.11 Instruction. Execution Sequence 

The architecture divides the effect of an instruction into two halves, operand evaluation and 
instruction execution, and requires that the processor behave as if operand evaluation were complete . . 
before instruction execution begins. 

Thus, unless otherwise stated, all operands required for execution are prefetched--that is, all address 
computations (including indirection) are done and all source operands ' are available before the 
operation specified by the instruction is performed and before results ar2 stored. 

The  second half, the instruction execution sequence, consists of the following steps: 

1. Process interrupts: If an interrupt is pending and has sufficient priority, trap through 
the appropriate interrupt vector to the specified interrupt .handler. On returning from the 
interrupt handler, start at the beginning of step 1 'again, sb that- if further interrupts are 
pending, they will also be serviced. 

. .: .. 

2. Process trace traps and clear the TRACE-PEND bit: If the TRACE-PEND bit in 
PROCESSORSTATUS is 1, set TRACE-PEND to 0 so that traps encountered in step 3 
do not cause the instruction to be traced redundantly, and invoke the TRACE-TRAP 
handler. Next, if the CALL-TRACE-PEND bit in PROCESSOR-STATUS is 1, set 
CALL-TRACESEND to 0 so that traps enccuntered in step 3 do not cause the 
instruction to be traced redundantly, and invoke the CALL-TRAP handler. Finally, if 
either handler was invoked, restart the instruction-execution sequence at step 1. 

3. process pre-operation traps: If any other traps (such as page faults or illegal memory 
accesses) that can be detected prior to the operation specified by the,  instruction are 
pending, invoke the appropriate trap handlers. On returning from the l a t  trap handler, 
restart the instruction-execution sequence at step 1. 

4. Save TRACE-ENB and CALL-TRACE-ENB: Save the values of the T R A C E J N B  
and CALL-TRACEXNB bits internally. 

5. Operation: Perform the specific operation defined for this instruction, after first 
examining the instruction state. Some lengthy instructions--vector instructions, for 
example--are said to be interruptable. This means that an interrupt can suspend execution 
during step 5, saving the state of the instruction execution on the SP stack in 
INSTRUCTION-STATE as described in Section 1.9. Thus, if the instruction is known to 
,be interruptable, and INSTRUCTIONSTATE indicates the instruction is in such a state 
of suspended execution, step 5 will pick up where execution left off; otherwise, step 5 will 
start from the beginning. 

When an instruction is interrupted in the fashion just described, the processor proceeds to 
execute the instructions of the trap handler, following this sequence for each one. On 
returning from the trap handler, the processor reencounters the interrupted instruction, 
and begins processing it again from step 1. Only when the processor reaches step 5 and 



0 

1 Introduction 

interrogates INSTRUCTIONSTATE does it become clear that this is the resumption of 
a suspended instruction. 

6. Process post-operation traps:' If any traps (such as arithmetic overflow) resulted from 
step 5, invoke the appropriate trap handlers. 

7. Set TRACE-PEND and CALL-TRACE-PEND: If the value of TRACEXNB saved 
i n  step 4 is 1, set TRACEJEND to 1. Thus, if tracing was enabled when this instruction 
commenced or if this instruction itself sets TRACE-PEND during step 5, a trace trap will 
occur on the following instruction even if this instruction disables tracing. 

Similarly, if the value of CALL-TRACEINB Saved in step 4 is 1, and the instruction 
just executed in step 5 was a call w return (Section 2.12 defines these), then set 
CALL-TRACESEND to 1. 

8. Clear the instruction state. 
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1.12 Mark IIA Implementation 

Individual implementations of the S-1 Native Mode Architecture may vary in some respects from 
the description in this document. The S-1 Mark IIA Uniprocessor embodies the following: 

1. Segment bounds checking does not take place during the evaluation of an operand which is 
fetched as an instruction rather than as data. 

2. Segment bounds checking does occur when an instruction is fetched from address 
PCNEXTJNSTR.  Due to the instruction pipeline, the four singlewords following the first 
singleword of an instruction must lie within the segment and on a page with EXECUTEPERMIT 
access, regardless of the number of singlewords occupied by the instruction and its operands. 

3. The  USED bit in a PTE may, as a result of wrong-branch evaluation in the pipeline, indicate 
that a page was used when in fact it was not. A similar statement applies to the MODIFIED bit. 

4. Attempting to take the FFT of a vector of more than 2'* elements causes an FFT-TOOLONG 
soft trap. 

5. Only the 11 low-order bits of address space IDS are significant. 

6. Instructions for which rounding is inexact guarantee their results are monotonic--that is, if x2y 
then F(x)lF(y)--with an error that is less than or equal to 0.75 of the least significant bit of the 
mantissa. Instructions for which rounding is exact guarantee an error less than or equal to 0.5 of the 
least significant bit. 

The  following instructions exhibit inexact rounding: 

FRECIP 
FCMAG, VFCMAG 
FSQRT, VFSQRT 
FLOG 
FEXP 
FSIN 
FCOS 

, FSINCOS 
FATAN, FATANV 
VF2DIS, VF3DIS 
FCFFT, FCFFTV 

7. RETFS.A will not copy CALL-TRACEJENDING from the value of 
CALL-TRACEXNABLE in the saved PROCESSORSTATUS. If one aborts a call or return 
instruction, one must intervene anyway to patch up the control flow of the program, and one can 
explicitly reinvoke tracing. RETFSA will handle TRACESENDING as specified. 





2 ' Instruction Set 
This section describes the S-1 native mode instruction set. For conciseness, it assumes familiarity 
with the architecture as described in Section 1; for example, instead df explicitly stating the number 
and types of operands for each instruction, it simply, classifies each instruction as an XOP, TOP, 
HOP, SOP, or JOP; Similarly, it avoids restating again and again the rules given in Section I for 
vector operands. 



2 Instruction Set 

2.1 Signed Integer Arithmetic 

Signed integer arithmetic instructions interpret their operands--whether quarterwords, halfwords, 
singlewords, or doublewords--as two's complement da ta  For any given precision, we call the largest 
positive integer M A X N U M  and the negative integer with the largest magnitude M I N N U M .  

Precision MINNUM MAXNUM 
Quarterword -256 255 
Halfword -131 072 131 071 
Singleword -34 '359 738 368 - 34 359 738 367 
Doubleword -2 361 183 241 434 822 606 848 2 36 1 183 241 434 822.606 84'1 

U . 1  Integer Arithmetic Exceptions ' . . 

. . . . :. . 

Inside ,the USERSTATUS register, three bits called CARRY,INT-OVFL (integer overflow), and 
I N T Z D I V  (integer division by zero) record the ride effects o r  exceptions that occur during integer . . 

arithmetic. INT-OVFL and I N T Z D I V  are sticky--that is, integer arithmetic operations may set 
them but never clear them, so once one of these bits is set it remains set until explicitly cleared by 
manipulating USERSTATUS. CARRY is not sticky; instructions which affect CARRY will slcar 
it if they do not set it. 

CARRY cury-ou't or borrow-in from integer arithmetic. 

INT-OVFE Integer overflow (that is, the result is greater than or equal to.MAXNUM or the 
result is less than or equal to MINNUM). 

INT-2-DIV Integer division by zero. 

For example, the following three instructions set CARRY, INT-OVFL, and I N T Z D I V :  

I NC RTA, #-I ; -1+1 invnkes CARRY 
INC RTA,#C377777,,7777771 ; NAXNUfl+l invokes  INT-OVFL 
REV RTA, #0 ; Rema i nder  (RTA/0) i nvokes INT-Z-DI V 

Two additional fields called INT-OVFLMODE and INT. Z ,DTV-.MODE t ~ 1 1  the processor how 
to respond to the INT-OVFL and I N T Z D I V  exceptions respectively--whether to trap or what to 
use as the result of the arithmetic operation which encountered the exception. (Note that setting one 
of the exception bits by manipulating USERSTATUS will not produce the specified response; the 
bit must be set by integer arithmetic): 



2.1.1 Integer Arithmetic Exceptions 7 1 

_ : .  . '  . . . . .. . . .. 

INT-OVFL-MODE 
0 Invoke INT-OVFL-TRAP soft trap without storing a result. 
1 Retain as many low-order bits of the result as possible for the precision 

in question, overwriting the sign bit. 

INT-Z-DIV-MODE 
0 Invoke INTZDIV-TRAP soft trap without storing a result. 
1 Use 0 as the result. 

2.1.2 CARRY Algorithm 

To determine whether a particular instruction sets CARRY, evaluate the following formula XI, 
X2, and X3 are the values shown for that instruction in the following table, and C J N  is the state of 
CARRY at the beginning of the instruction: 

CARRY = ( X I  <0 A X2<01 v ( X I  <0 v X2<0)  A (X l+X2+X3 L 0 )  1 

In the following table, "1" mearis one's-complement; and "-1" is the two's-complement of 1. 

Instruction 
ADD 
ADDC 
SUB 
SUBV 
SUBC 
SUBCV 
INC 

DEC 

NEG 

ABS 

X8 
0 
C J N  
1 
1 
C J N  
C J N  
0 
(i-e., CARRY:=I if O P 2  = -1) 
0 
(i.e., CARRY:= 1 if O P 2  * 0) 
1 
(i-e., CARRY:= 1 if OP2  = 0) 
1 
(i-e., CARRY:=I if O P 2  - 0) 
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2.1.3 Signed Integer Arithmetic 

2 Instruction Set 



2.13, Signed Integer Arithmetic 7 3. 

:..- f '  .:.. Integer add 

ADD . (QH,S,D) TOP, 

. . .  Purpose: DEST:=S l+SZ. The integer sum of S A  and S2 is stored in DEST. . . .  . . :.., 

Restrictions: None , . . . ... 

Exceptions: CARRY, INT-OVFL . . . . .  . . , .  . . .  . . 

Precision: S 1, S2, and DEST all have the . precision. . specified. by .the modifier. , : . . .  . . .  . . . . 

is set . . . .  by; the;following in>truction. .,Note . . .  that 777 . . .  has the signed..interpretation -1 and th.e r 
unsigned interpretation 2'- 1: 

/ - 

1. 
. . .  . . .  

I I . ' ..; . . . . .  
t . . . .  . . .  . . 

A0D.Q. RTA,#333,#777.. . ,, . -. .:RTA: -332 (QW) . . 

L .  ,. . ,, . .  
. . . . . . .  % . . . . . . . . . . . . .  . .  .. ' : .. . . .  , . .... . . . .  .... . . .  . . . . .  

_I 
. . . . . .  . . .  h . : >  

, . . . I .  . '. . . . ..: 
. . . .  . . .  . . . .  . . . . . .  . . . . :  

'a . . .  3 ,  . . . .  : . ' <  . . . . .  . . . . . . . .  . . . , . " .  : . .  .; . .-< ' 

. . .! i . ., , . . . .  ' . 7  . . :  . . . . . . . . . .  . , : . . .  , " ' ? ; . .  , . < . ,  .,,,; , . . . .  . _ . .  . . . . .  . ! \ .  . . . . .  3 ; .  : . .  . . 
. I . . . r . .  , . . ,  . . 

, , . . I  . . . : .  . . 
.: :,.. ' *  . .  ._ .. .. : . .  . . :  . ,  . : . - :  ... . . . . .  . . 

. . . . . .  . .  ; . . . . . . . . :  . , . . , .  . . . . . . . 
. . . . . .  . . >a,*. ! .  , . : . . ', . , ' .  . , 



2 Instruction Set 

ADDC Integer add with carry 

ADDC . (QH,S,D) TOP 

Purpose: DEST:=S l+SZ+CARRY 

Restrictions: None 

Exceptions: CARRY, INT-OVFL 

Precision: S 1, 52, and DEST all have the precision specified by the modifier. 

Fry is set after the execution of the first instruction;arid cleared after the second: , 1 
AD0.Q RTA,#666,#777 ; RTA r -665 (QW 1 
ADDC.Q RTA,RTA,#l ' .; RTA: =667 (QW 1 

The'following adds two "quadruple-word" integers at X, a ~ d  Y represented, as a pair of DWs 
with the low-order DW having the higher address. The result is stored in X and X+8: 

Similarly, suppose that NUM 1 and NUMZ aretwo blocks of singlewords, each of length N (N22) 
and representing an N-word integer, with. lower-order words having higher addresses. These 
can 'be added and the resuit stored in an (N+l)-word block NUM3 in this manner: . 

. . 

NOV.S.S RTB,#<N-I> ;RTB counts words 

ADD. S RTA, NUV1 IRTBI 9 2 ,  NUN? [RTBI t 2  ; add l ow-,order words 

NOV. S NUfl3+4*1 ilH I t l l t Z ,  H I'A ; s tore  low-order r e s u l t  
LOOP: AD0C.S R T A , N U M ~ - ~ * ~ C R T B I ~ ~ , N U M ~ - ~ ~ C ~ [ R T B I ~ ~  ;add next  uords p lus  c a r r y .  

NOV. S. S NUN3 [RTBl t 2 ,  RTA ;s tore  nex't word 
DJMPZ.GTR RTB,LOOP ;DJMPZ.does not a l t e r  c a r r y !  

. . CPlPSF.LSS.S RTA,NUM1,#0 ;produ~b sign-extension o f  

, CMPSF, LSS RTB, NUM2, #0 ; NUMl and NUM2 
A0DC.S NUfl3,RTA,RTB 

L 
;produce high-order r e s u l t  ' 



2.1.3 Signed Integer Arithmetic 

SUB . : .  Integer subtract 
, . 

. . .  
. . .  . . . . . . . . 

SUB . {Q,H,s,D} TOP 
. . . .  suav . {Q,H,S,D} a TOP 

I 

Purpose:,,SUB computes. . . .  DEST:=S 1-$2; SUBV computes DEST:=S2-S I . .  . . . : .  

Restrictions: None 

. . .  Exceptions: CARRY, INT-OVFL . . . . -  . . 

Precision: S 1, S2, and DEST . . .  all have the ., precision, , specified . . .  b,y the. modicier. . , ., - . . . I 

This example subtracts .I from . . .  -.l to obtain -2. After execution, CARRY . . .  1s set, r . . 
clear, A d  RTA contains -2: .: . . , . ' , . . . ?  . >.. , .  . . . . . . . . .  . .  , 

L .  
SUB. S RTA, #-I, #1 ; RTA: =-2 

, 7 . '  
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SUBC Integer subtract with carry 

' . 
SUBC . (Q,H,S,D) TOP 
SUBCV . (Q,H,S,D) TOP 

Purpose: SUBC computes DEST:=S 1-S2-l+CARRY; SUBCV computes DEST:=S2-$1-l+CARRY. 

Restrictions: None 

Exceptions: CARRY, INT-OVFL 

Precision: S1, S2, and DEST all have the precisinn specified by the modifier. 

Ft X and Y be two pairs o f  DWs representing a long integer with the low-order DW having 
the lower address. The following sets X to the difference of X and Y: 1 

SUB.D X,Y 

L '  
SUBC.0 X+8.,Y+8. 

J 
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MULT Integer multiply 

.. - - , . ,  . 

MULT . IQ,WS,Dl , TOP 

Purpose: DEsT:=LoW-ORDER(S 1*S2) . . 

Restrictions: None 

Exceptions: INT-OVFL . . 

Precision: S1, S2, . and . DEST all have the precision specified ,by the,.modifier. ., + , . 
;.. . . . . . .  . 

PT-OVFL is set by the following instruction which multiplier 333 octal by 3, giving a 

result-- 122 I .  octal--which . . is larger t h e , .  can :fit in ,nine !?its: .. , . . 

NULT. Q RTA, # 13331 , #3 ; RTA: =221 . (QW) . . . ?., .- 

L 
. 3 . . 



78 2 Instruction Set 

MULTL Integer multiply long, long result 

MULTL . (Q,H,S) TOP 

Purpose: DEST:=S 1*S2 

Restrictions: Next 

Exceptions: None 

Precision: S 1 and S2 have the same precision as the modifier. DEST has a precision twice that of 
the modifier and must be aligned accordingly. 

p e  following instruction does not set INT-OVPL since the result fits in a halfword: 1 
I MULTL. Q RTA, # 13331 , #3 ; RTA: =001221 ( H W )  



2.1.3 Signed Integer Arithmetic 

QUO 

79 

Integer quotient 

QUO . (QH,S,Dl 
QUOV . ( Q H S D )  

TOP 
TOP 

Purpose: QUO computes DEST:=sldS2; QUOV .co,mputes DEST:=SZ/Sl.. . . QUO (or QUOV) 
rounds its result toward zero. 

Restrictions: None 

Exceptions: INT-OVFL, I N T Z D I V  / . 2 . . .  . . . 

Precision: S 1, S2, and DEST all have the precision specified by the modifier. 
. . . .  .,. . . .  

p e  following illustrates a simple quotient calculation: 

QUO. Q RTA, # 13451 , #3 ;RTA: =115 (QWI 

. . # ,  . . . 

Given a positive singleword NUM, this code stores in RTA the next-higher number with the 
same number of one-bits. .This can be useful in combinatorial algorithms. For example, starting 
with 178 and repeatedly applying this algorithm until the result exceeds 100008, will produce bit 

masks indicating all possible ways of choosing feur bits out.of twelve: 

XOR. S RTB, NUN, TEMP 

;RTA ge ts  j u s t  the  lowest b i ' t  o f  NUM 

;TEMP ge ts  NUM w i t h  t he  louest  s t r i n g  o f  "1" 
; b i ' t s  c  1 eared, and a new "1" b i  t above where 

; they were 

;RTD ge t  just the d i f f e r e n c e s  between 

; TEMP and NUI, i.e. a  copy o f  t h e '  lowest 

; s t r i n g  o f  "1" b i t s  i n  NUN p l u s  one more 

; "1" b i t  t o  the l e f t  

; r e c a l l  t h a t  RTA has one b i t  set ,  and 

; so i s  a  power o f  two; the e f f e c t  i s  t o  
; r i g h t - j u s t i f y  th'e s t r i n g  i n  RTB, which i s  

; one b i t  longer than the  lowest s t r i n g  o f  

; "1" b i t s  i n  NUM 

; s h i f t  t h i s  two b i t s  t o  the r i g h t ;  now the  

1 s t r i n g  i s  one b i t  SHORTER 

;merge RTB and TEMP t o  form' t he  . f i n a l  r esu  l t 



2' Instruction Set 

QUOL Integer quotient, long dividend 

QUOL . (Q,H,SI 
QUOLV . (QH,S) 

TOP 
TOP 

Purpose: QUOL complites DEST:=SI/S2; QUOLV corr.putes DEST:=S2/S 1. QUOL (or QUOLV) 
rounds its result toward zero. 

Restrictions: None 

Exception*: INT-OVFL, I N T Z D I V  

Precision: DEST has the same precision as the modifier. For QUOL, S2 has the precision of the 
modifier and Sl has twice the precision of the modifier. For QUOLV, S1 has the precision i f  the 
modifier and S2 has twice the precision of the modifier. The  double precision operand must be 
aligned accordingly. 

p h e  following example takes a quotient with a long dividend: 
. . 
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QUO2 Integer quotient by power of 2 

QUO!?. {QHJs,D> TOP 
QUOW . IQH,S,DI TOP 

Purpose: QUO2 computes DEST:JI/(~'~); QUOZV computes D E S T : - S ~ / ( ~ ~ ' ~ .  QUO2 (or 
QUOPV) rounds its result toward zero. - (Alternatively, the SHFA.RT instruction may be used tr, 
divide by a power of two, rounding toward negative infinity.) ... , . .  

The operand serving as the exponent may be negative, in which case a multiplication by a positive 
power of two is performed. 

.. , . . . . . . . .  . . 

Restrictions: None . . -  . . .. , . . 

Exceptions: INT-OVFL (INT-OVFL is not set during the 2s2 portion of the operation. This 
exponentiation is done with unlimited precision.) i s .  . . . 

. . . . .  
/ 

Precision: S 1, S2, and DEST all have the precision specified by' the modifier. 

F e  following divides -3 by +2, giving a different result than does SHFA.RT with the same 
operands: 

. . 
1 

L 
QU02. S RTA , #-3, #1 ; RTA: =-I 
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QU02L a , '  , Integer quotient by power of 2, lotig dividend 

TOP 
TOP 

$2 . , Purpose: Q U 0 2 L  computes DEST:=S II(2 ); QUOPLV computes DEST:=SY(~~'). QUOZL (or 
QUOZLV) rounds its result toward zero. The,operand serving as the exponent may be negative, in 
which case a multiplication by a positive power of two is performed. 

Restrictions: None 

Exceptions: INT-OVFL (INT-OVFL is not set during the 2% portion of the operation.   his 
exponentiation is done with unlimited. precision.) 

Precision: .DEST has the same precision as the-modifier. For QUOZL, S 1 has twice the precision of 
the modifier and SZ has the precision of the modifier; for QUOZLV, S2 has twice the precision and 
S1 has the same precision as the modifier. The double precision operand must be aligned 
accordingly. 

p h e  following divides the ,long operand by: .I6 (decimal): 
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REM Integer remainder 

REM . (Q,H,S,D) 
REMV . (Q,H,S,D) 

TOP 
TOP 

Purpose: REM, stores in DEST. the remainder from S1 / S2. The.result is the remainder produced 
by a division that rounds toward zer.0. ( w i n  the QUO instruction). The  result (DEST) has the 
same sign as the dividend (S I), or is zero. 

REMV, the reverse form, stores in DEST the remainder from SP I- S 1. .: - 

Restrictions: None 

Exceptions: I N T Z D I V  

Precision: S 1, .S2, and DEST all ,have the precision specified by the modifier. ' . ' 

. . ... . , . .  .. . . . 

F h e  following illustrate the. results of various combinations of signr 
. '. . . . . . 

. . 
REM.Q R T A , # 5 , # 3  ;RTA: =2 (QW) ! .  

REM.Q RTA,#5 ,# -3  ;RTA:=2 (QW) 
REM. Q RTA,.#-5, #3' . ,  . .. ;RTA:,=-2 (QW) ; .. , , . 

REM. Q RTA, #-5, #-3 ; RTA: =-2 (QW) 
. . . . . . J 



2' Instruction Set 

REML. . Integer remainder, long dividend 

REML . (QH,S) 
REMLV . (QH,S) 

TOP 
TOP 

Purpose: REML stores in DEST the remainder from $1 / S2. The result is the remainder produced 
by a division that rounds towards zero (as in the QUOL instruction). The result (DEST) has the 
same sign as the dividend (Sl), or is zero. 

REMLV, the reverse form, stores in DEST the remainder from S2 1 S 1. 

Restrictions: None 

Exceptions: I N T Z D I V  

Precision: For REML, S2. and .DEST have the same precision as the modifier. S 1 has a precision 
twice that of the modifier and must be aligned accordingly. 

For REMLV, S1 and DEST have the precision of the modifier; S2 has twice that precision and 
must be aligned accordingly. 

p h e  following illustrates the remainder using a long dividend: 

L 
RENL. P RTA, # 1123451 , # [3001 ; RTA: =245 (QW 1 
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MOD Integer modulus 

MOD . (Q,H,S,D) 
MODV . (Q,H,S,D) 

TOP 
TOP 

Purpose: The  MOD instruction produces the remainder from a division S1/S2 that rounds toward 
negative infinity (in contrast with the REM instruction, which produces the remainder from a 
division that rounds toward zero) and stores that remainder in DEST. That remainder has the same 
sign a's the divisor, or is 0. 

,: . . 

MODV, the reverse form; computes the rem.ainder from- S21S . . 

Note that the MOD function provided in many high-level languages such as Pascal actually 
corresponds to the assembly language REM instruction, not the MOD instruction. 

Restrictions: None . . 
. . t 

. . . - Exceptions: I N T Z D I V  . . 
. , .  . .  . ... . . .  . . . . . .  

. , . . , . . 

Precision: S 1, S2, and ,DEST..all have the precision specified by the modifier. 
.. . . .  ,. . . . . . . . . , . I . < .  

F h e  following examples illustrate the operation of MOD and REM for various combinations 
signs. In each case, the instruction discards the quotient and ,places the remainder in RTA: 

M0D.Q RTA,#5,#3 
REfl.Q RTA,#5,#3 
M0D.Q RTA,#S,#-3 
REM.Q RTA,#5,#-3 
V0D.Q RTA,#-5,#3 
REN.Q RTA,#-5,#3 
MOD..Q RTA, #-5, #-3 L REfl.QRTA,#-5.1-3 

= 1 remainder: 2 . . 

= 1 remai nder 2 
= -2 remainder -1 
= -1 remainder 2 - -2 remainder 1 
= -1 remainder -2 
= 1 remainder -2 
= 1 remainder. -2 
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MODL Integer modulus, long dividend 

MODE . (QH,S) 
MODLV . (QH,S) 

TOP 
TOP 

Purpose: MODL computes the remainder from a division Sl/S2 that rounds toward negative 
infinity rather than toward zero as the REML instruction does, and stores it in DEST. That 
remainder has the same sign as the divisor (SZ), or is zero. 

MOISLV, the reverse form, computes the remainder from S2/S1. Note that the MOD function 
provided in many high-level languages such as Pascal actually performs the assembly language 
REM instruction, not the MOD instruction. 

Restrictions: None 

Exceptions: INTZDIV 

Precision: For MODL, S2 and DEST have the same precision' as the modifier. S1 has a precision 
twice that of the modifier and must be aligned accordingly. 

For MODLV, S1 and DEST have the precision of the modifier and S2 has twice that precision. 
. ' .  .. . * 

b e  following illustrates the modulo operation using a long dividend. 

L 
MODL. Q RTA, #12345, #300 : RTA: ~ 2 4 5  (QWI 



2.1.3 Signed Integer Arithmetic 

Dl\/ Integer divide 

DIV . (QH,S,D) 
DIVV . (QH,S,D) 

TOP 
TOP ' 

Purpose: DIV computes FIRST(DEST):=SI/S~ and SECOND(DEST):=Sl ren SP. DIV is like 
doing both a QUO instruction and a REM instruction. 

DIVV, the reverse form, divides S2 by S 1 instead. 

Restrictions: None 

Exceptions: INT-OVFL, I N T Z D I V  . .  . 

Precision: S1, S2, FIRST(DEST), and SECOND(DE.ST) have the same precision as the ,modifier. 
FIRST(DEST) and SECOND(DEST) must align together tb form a single entity with twice .the 
precision of the multiplier. 

. .  . 

F e  following produces a quotient-remainder resulk 1 
D1V.Q RTA,#C3451,#3 a ;RTA: ='114001 (two QWS) 

The following subroutine accepts a positive singleword in location X (which is destroyed) and 
prints it in a radix in the range 2 . .  35 specified by RADIX, using the digits 0-9 and A-Z 
(A-10, B= 1 I, etc.). The subroutine should be called by JSR X+4, PRINUM. Location X+4 (the 
singleword after X) is used, but its original contents are saved and restored. The  subroutine 
prints a character by using TRPEXE.13, which is assumed to trap to an executive character 
print routine. The  remainder method of generating digits produces them "backwards", and so a 
recursive call using JSR saves each digit on the stack as it is generated, and then the digits are 
printed as the stack is unwound. 

PRINUM: D1V.S X,RADIX ;X+4 ge ts  nex t  d i g i t ,  X ge ts  quo t i en t  
SKP.EQL.S X,#0 ; s k i p  i f  r e s u l t i n g  quo t i en t  i s  zero 
JSR X+4,PRINUM ;otherwise save t h a t  d i g i t  and do more 
CMPSF.LEQ.S RTA,X+4,#9. ; d i g i t  now i n  X+4; i s  i t  19? 
A0D.S X+4,<CnB" ? "A"-18.1+4>CRTAI t 2  ; i f  so, use 0-9; i f  not ,  use A-Z 
TRPEXE.13 X+4 ; p r i n t  charac te r  
RETSR X+4, (SP) ; re tu rn ,  r e s t o r i n g  X+4 t o  p rev ious  va lue  
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DIVL , Integer divide, long dividend 

, DIVL . (QH,S} 
DIVLV . (QH,S) 

TOP 
TOP 

Purpose: DIVL computes FIRST(DEST):=Sl/S2 and SECOND(DEST):=Sl rem S2. DIVL is like 
doing both a QUOL instruction and a REML instruction. 

DIVLV, the reverse form, divides S2 by S1 instead. 

rest riot ion^^ None 

Exceptions: INT-OVFL, I N T Z D I V  

Precision:   or DIVL, operands S2, FIRST(DEST), and SECOND(DEST) have the same precision 
as the modifier. S1 has a precision twice that of the modifier 'and must be aligned accordingly. 
FIRST(DEST) and SECOND(DEST) must align together to form a single entity having twice the 
precjsion of the modifier. 

F h e  following produces a quotient-remainder for a long operand: 

D1VL.Q RTA,#1123461,#[3l301 ;RTA: a33245 (two UWs) 
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I 

IMC Integer' increment 

INC . !(LH,S,D) XOP 

Purpose: OP 1:=OP2+ 1 

Restrictions: None . . 

Exceptions: CARRY, INT-OVFL ; .  . .  

Precision: OP 1 and OP2 have the same precision as: the modifier,. { . .  . . , .. . . 

p h e  following adds ope to RTB ,md stores the result in, RTA. '1 

If the source and destination are. identical, ADD is. .preferable from , a  performance standpoint: 

ADD. S RTA, #1 ; RTA: =RTA+l 

L. 
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DEC Integer decrement 

DEC . (QH,S,D} XOP 

Purpose: O P  1:=OP2- 1 

Restrictions: None 

Exceptions: CARRY, INT-OVFL 

Precision: OP1 and OP2 have the same precision as the modifier. 

p e  following subtracts one from A and puts the result in B: 

0EC.S B,A . :8: =A-1 

If the source and destination are identical, SUB is preferable from a performance standpoint: 
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TRANS Signed integer translate 

TRANS . (QH,S,D) . (Q,H,S.D) 
VTRANS . (QH,S,D) . (Q,H,S,D) 

XOP 
v:=v 

Purpose: TRANS copies a signed integer from OP? to OP1, converting its precision if necessary by.: . 
sign-extending or by discarding high order bits. 

\ 
I . -  

VTRANS performs TRANS on individual elements of vector OP2  and stores the result in vector 
OPl .  If the source and destination vectors have the same precision, the vector; may overlap; the 
instruction guarantees not to alter any element of the source until it has copied that element to the 
destination. 

. . 

If the source vector's precision exceeds that of the destination vector, the two vectors may be 
identical, but must not otherwise overlap. : . ,. . 

If the source vector's precision is less than that of the destination * 
, .  

. vector,. the two vectors may. not 
overlap at all. 

Restrictions: None 
. "  . " '  . - .  . : .. . . .. . . .  . . . . ., .. 

Exceptions: INT-OVFL . . " 
. , . , 

Precision: OP1 has the precision of the first modifier and OP2 has the precision of the second 
modifier. ,: . 

. .  . . . . . . , . . 

Fe second instruction illustrates the signixtension of TRANS: 
. . . , _ ( .  . . . ., .., ,.. . ' . . ,  . , . - .  

fl0ViH.Q RTA,W 1 : RTA: -000777 (HWI 

L 
TRANS.H.Q RTA,#-1 ; RTA 3 -777777 (HW) 
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NEG . . . Integer negate 

NEG . (Q,H,S,D) 
VNEG . (H,S,D) 

XOP 
v:=v 

Purpose: For NEG, O P  l:=two's-complement(OP2). 

VNEG performs NEG on each element of the vector beginning with OP2 and stores the results in 
the vector beginning with OP1; ' '  

R ~ . ~ t r i ~ t l ~ n , s :  N ~ n a  

Exceptions: CARRY, INT-OVFL 

Precision: OP1 and OP2 have the same precision as the modifier. 

p e  following negates the value in RTA: 1 
NEG. S RTA ;RTA:=-RTA 

This piece of code jumps to TWOPOWER if the non-negative singleword integer in HUNOZ 
is an exact power of two (where zero is considered to be such a power): 

NEG . S' RTA , HUNOZ ; RTA: =-HUNOZ 
ANDC'I' . s H I A ,  HUNOZ ; ~ T A :  = (YRTA) AHUNOZ 
JNPZ.EQL.S RTA,TWOPOWER ;jump If RTA now i s  zero 

The BITCNT instruction can be used to do the same thing if zero is not to be considered a 
power of two. L 
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ABS - Integer absolute value 

ABS . {QH,S,D} XOP 
VABS . {H,S,D} Vr=V 

Purpose: For ABS, O P  l:=abs(OP2). . 

VABS performs ABS on each element. of the vector beginning- at OP2 and stores the results. iq the 
vector beginning at OP 1. . , 

' 1 .  . 

, .: . . . 
. . 

Restrictions: None 

Exceptions: CARRY, INT-OVFL 

Precision: OP1 and OP2 have the same precision as the modifier. 

p e ,  following takes the absolute value of RTB and -puts i f  in RTA: . -  . 
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MlN Integer minimum 

MIN . (Q,H,S,D) 
VMIN . (SR,OPl) . (H,S,D) 

TOP 
v:=vv 

Purpose: MIN stores in DEST the smaller of the signed Integers S1 and S2. . 

VMIN performs MIN on a series of pairs: one element from the vector beginning with OP1 and the 
corresponding element of the vector beginning with OP2. If the first modifier is OP1, results go 
back into the vector beginning with OP1; if it is SR, they go into the vector pointed to by SRO. 

Exceplluas: None 

Precision: For MIN, operands S1, 52, and DEST all have the precision specified by the (QH,S,D) 
modifier. For VMIN, the elements of, each . vector have -the precision specified by the (H,S,D} 
modifier, 

p e  folywing sets RTA to 0 if RTA is positive: 
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MAX Integer maxinium 

. . .  
. . .  . .. 

MAX . {QH,S,D) TOP 
VMAX . {SR,OPl) . {H,S,D) V:ivV 

: ?  . 

Purpose: MAX places in DEST..the larger of the signed integers S1 and S2. . . 

VMAX performs MAX on a serier of pairs an element from the vector beginning with O P l  and 
the corresponding element of the vector beginning with OP2. If the first modifier is O P l ,  the 
instruction stores the results back into the elements of vector OP1; if the modifier is SR,.it :stores the 
results into the vector pointed' to by SRO. 

. . 
Restrictions: None . . .. . . < . . 

Exceptions: None 

Precision: For MAX, S1, S2, and DEST all have the precision specified by the (QH,S,D). modifier. 
For VMAX, the elements of each vector have the precision specified by the (H$,D) modifier. 

p e  following sets RTA to 100 if RTA is less thin LOO: . ' .  1 
. . 

MAX. S RTA, RTA, # C1003 

Suppose that .A and B are two byte pointers. Then the following.instruction puts in RTA the 
byte pointer which indicates the byte starting higher in memory than the other;or, if they start 
at the same bit, whichever points to the longer byte. .(This is a consequence of the representation 
of byte pointers--see Section 2.10). Similarly, all D-precision integer comparison. 
instructions--such as MIN.D, CMPSF.D, SKP.D, etc.--can be used to compare byte pointers in 
this fashion: 

;RTA := p o i n t e r  t o  higher by te  

J 
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LWllNMAX Lengthwise integer minimum and maximum 

LMINMAX . (H,S,D) SS:=V 

Purpose: Select the minimum and maximum elements of a vector of signed integers whose first 
element is OP2. Put the minimum in FIRST(0P 1) and the maximum in SECOND(OP1). 

Restrictions: None 

Exceptions! None . 

Prection: FIRST(OPl), SECOND(OPl), and each element of vector OP2 have the precision of the 
modifier. FIRST(OP1) and SECOND(OP1) must align to form m entity with twice the precision of 
ehc iiioditier. 

I  he 'folldwing sets RTA to -4 and RTA 1 to 16: . . 

M0V.S.S %SIZEREG,#7 

L 
Lfl1NRAX.S RTA, C7 ? 12. ? -2 ? . - 4  ? 8. '? 16. ? '31 
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2.2 Unsigned Integer Arithmetic 
' - *  'c.;. '  . ' . .. 

The unsigned integer data type uses no sign bit, making all bits of the word. available for 
8 .  8 representing magnitude. Thus, whereas a signed quarterword ranges from -2 to 2 -1, an unsigned 

9 quarterword ranges from 0 to 2 . 

The architecture provides instructions rpecific~lly for unsigned ,multiplication and division. These 
instructions were designed to be used for arithmetic on numbers of arbitrarily great precision (as 
exemplified by "bignums" in Maclisp). The. instructions for signed addition and subtraction work 
properly on unsigned data provided the program ignores the INT-OVFL side effect and uses the 
CARRY to signal overflow or to propagate bits from one word of a bignum to another. 

' >: , 
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UMULT Unsigned integer multiply 

UMULT . (Q,H,S,D) TOP 

Purpose: DEST:=LOW-ORDER(S laS2) 

Restrictions: None 

Exceptions: INT-OVFL; UMULT sets INT-OVFL whenever MULT does. In addition, UMULT 
sets INT-OVFL whenever one operand has its high order bit set and the other operand exceeds 1. 

Precision: S1, $2, and DEST all have the precision specified by the modifier. 

p h e  following instruction puts the low order QW of the unsigned square of 2'-1 in RTA. This 1 
value is the low-order nine bits of 218-210+1, that is, 001. Since the full result is greater than 
2'-I, INT-OVFL is ~ I S O  set: 

T 

UMULT. Q RTA, #777, #777 (QW 1 

L J 
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UMULTL . . Unsigned integer multiply, long,result 

UMUETL . (QH,S) , TOP 

Purpose: DEST:=S 1*S2 

Restrictions: None 

Exceptions: None 

Precision: S1 and S2 have the same precision as the modifier. DEST has a precision twice 'that of 
the modifier and must align accordingly. 

. . 

F h e  following instruction puts the unsigned square of . '29-1 , in RTA. This v a l u e 7  
18 10 . , - .  2 -2 + 1--that is, 776001: ' ' ' 

. . . , I' 

I UNULTL . P RTA, #777, #777 ; RTA: =776001 (HGI) 
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UDI\/ Unsigned integer divide 

UDIV . {Q,H,S,D) 
UDIVV . {Q,H,S,D) 

TOP 
TOP 

Purpose: UDIV places the quotient of the unsigned integer division Sl/S2 in FIRST(DEST) and 
the unsigned integer remainder S1 rem S2 in SECOND(DEST). 

UDIVV produces the quotient and remainder from integer division S2/S 1. 

Exceptions: INT-OVFL. INT-Z .DIV 

Precision: For UDIV, Sl,  S2. FIRST(DEST), and SECOND(DEST) all have the same precision as 
the modifier. FIRST(DEST). and SECOND(DEST) must align together to form an entity having 
twice that precision. 

F h e  following sets RTA to the unsigned quotient-remainder of ?'-9 divided by twenty-two: 1 
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UDlVL Unsigned integer divide, long dividend 

UDIVL . (QH,S) TOP 
UDIVLV . (QH,S) TOP 

Purpose: UDIVL places the result of the unsigned integer division Sl/S2 in FIRST(DEST) and the 
unsigned integer. remainder S 1 rem S2 in SECOND(DEST). 

. I 

Restrictions: None 

Exceptions: INT-OVFL, I N T Z B I V  

Precision: For UDIVL, S2, FIRST(DEST), and SECOND(DEST) all have the same precision as 
the modifier. S l  'has a precision twice that of -the modifier and must align accordingly. 
FIRST(DEST) and SECOND(DEST) must align together to form a single entity with twice that 
precision. 

p e f o l l o w i n g  sets RTA to the unsigned q,uotient-remaindt?r of .. 377377 . (octal) divided by 777 
(octal): 

.. . 

1 

L 
UD1VL.Q RTA,#377377,#777 UDIVL:=377776 ( two QWs) 
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2.3 Floating Point Arithmetic 

2.3.1 Floating Point Data Format 

2 Instruction Set 

Floating point data can occur in three of the four standard precisions: halfword, singleword, or 
doubleword. The floating point representation is made up of three fields: SIGN, EXP, and MANT. 

S 1 5 6  17 
Halfword floating point format 

I MANT I 
0 1 9 10 35 

Singleword floating point format 

 SIGN I EXP I MANT I 
0 1 15 16 

Doubleword floating point format 

SIGN is 1 if the floating point number is negative. 

EXP Is the exponent, expressed in excess-16 format in halfword precision, excess-256 format for 
singleword precision, or excess-1638% format .for doubleword precision. 1f SIGN is 1 (that is, the 
number is negative, EXP is one's complemented. 

MANT represents only part of the true mantissa of the number; to obtain the entire mantissa, 
concatenate the sign bit, a hidden bit, a binary point, and the MANT field: 

The complete mantissa consists of the concatenation of <hidden bit> and the MANT field. The 
entire mantissa is normalized to obey the following: 

1 S mantissa < 2 
or 

-2 5 mantissa < -1 

As a result, chidden bit> and SIGN are always opposites, and it is possible to omit <hidden bit> 
from the floating point representation and infer its value from that of SIGN. 
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Converting to floating point format: While the FLOAT instruction automatically converts an 
integer to floating point format, the following description of an algorithm for doing so may help 
make the format clear: 

1. Set the SIGN field of the floating point version to 0. 

2. Multiply a copy of the number by 2', where you ~hoose x so the result is greater than or 
equal to 1 but less than 2. Set the EXP field to (-x+16) for a quarterword, (-x+256) for a 
singleword, or (-x+ 16384) for a doubleword. 

3. Starting with the most significant bit of the original number, discard bits until you 
encounter the first 1-bit. Discard it, too. Place the remaining. bits into the MANT field, 
left- justified. 

. . 

T o  convert zero to floating point format, set the entire word to 0 (zero is an exceptional case). 
. " - .  

T o  convert a negative integer t'o floating point format, take iti absolute value and represent that 
according to the steps just given for positive integers. Then take the two's complement negation of 
the entire floating point representation, without regard to format. 

(For the skeptical, here is an outline for a proof that two's-complement negation works correctly on 
floating point numbers. If MANT * 0 then no carry from the two's-complement operation can 
reach the EXP field, since it will be absorbed by the right-most, non-zero MANT bit. Therefore, 
the EXP field will be one's-complemented. If MANT = 0 then there are three cases. Case 1: The 
floating point number was originally negative. The  mantissa was, therefore, -2.0 and the floating 
point number was -2 exponent+ l Wh . en this number is two's-complemented, the MANT field is still 
zero but the EXP field is two's-complemented. The  mantissa becomes 1 and the carry from the 
fraction has increased the exponent by one. This gives 1*2 exponent+ 1 or 2exponent+ 1 , the negative 

of the original number. Case 2: The floating point number was originally zero. The 
two's-complement of zero is zero. Case 3: The  floating point number was originally positive. The 
mantissa was, therefore. 1 and the floating point number was 1*2exP0nent. When this number is 
two's-complemented, the MANT field is still zero but the EXP field is two's complemented. The 
mantissa becomes -2.0 and the carry from the fraction has decreased the exponent by one. (It 
increased the EXP but decreased the one's-complement of the EXP). This gives -(2.0)*2exp0nent-1 
or -2 exponent, the negative of the original number.) 

Here are a few examples of the floating point format for halfwords: 

I 

Halfword 10.0 
SIGN=O 
EXP=-(-3)+ 16= 19=238 

MANT=(hidden 1)O 10 000 000 0002=20008 

Result: 232 0008 
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Halfword - 10.0 
Two'sComplement(232 0008)=546 0008 

Halfword 3.1415 
SIGN=O 
EXP=-(- I)+ 16= 1'732 l8 

MANT=(hidden 1)100 100 LOO 0 l 0 ~ = 4 4 4 2 ~  

Result: 2 14 44z8 

2.3.2 Integrity of Floating Point Arithmetic 

The  architecture specifies that floating point arithmetic will be performed so that the following 
equalities hold for all floating point' values A and B: 

. 

. . 

2.3.3 Floating Point Exception Values 

Besides zero, five floating point numbers have special meanings. The  positive floating point 
number with the greatest magnitude (in a given precision) is called OIJF (nv~rflow). Tlltl 
two's-complement of OVF is called MOVF (minus overflow). The  smallest positive floating point 
number is called UNF (underflow). The largest negative floating point number is called MUNF 
(minus underflow). The  floating point number with the sign bit set to 1 and a11 n t h ~ r  hits set to 0 is 
called NAN (not a number); all floating point instructions consider it ill~gal. 

OVF, MOVF, UNF, MUNF, and NAN correspond to side effects or exceptions that occur during 
floating point arithmetic. One happy consequence of the floating point format is that each of the 
special floating point values has the same bit reiresentation as an easily recognizable integer, as the 
following table shows: 
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Name Meaninrg Integer with identical . . .  

bit remesentation . . . . 

OVF Positive overflow MAXNUM 
MOVF Negative overflow MINNUM + l (i.e., -MAXNUM) 
UNF Positive infinitesimal + 1 
MUNF Negative infinitesimal - 1 
NAN Indeterminate ("not MINNUM 

a numbern) 

The range of values representable in the three floating point precisions is approximately the 
following: 

Precision Underflow Overflow Digits 
Halfword 1.53 * lo-' 6 . 5 5 ~ ~ 1 0 ~  -3.91 
Singleword 8.63 * 1.16 * lo7' 8.13 
Doubleword 8.41 * 10- 4959 1.19 * 10 4932 17.16 

2.3.4 Comparing Floating Point Values 

Another happy consequence of the floating point format is the ability to compare floating point. 
numbers as if they were signed integers, without decoding the format: Thus, the architecture does 
not provide a separate set of test and branch instructions for floating point numbers. ~nstead,  a 
single set serves for both signed integers and floating point numbers. 

. .  . 
Integer comp'arisons will treat the floating point exception values in an intuitivel'y reasonable 
fashion, too. For example, they will treat MUNF as greater than my other negative value but less 
than zero. The  only exception is NAN, which will be treated not as an illegal value but as a value. 
that is less than any other floating point value. 

2.3.5 Floating Point Rounding Modes 

During floating point operations, rounding of the result may be necessary. The  FIX instruction 
includes a modifier that specifies how it rounds; all other floating point instructions which round 
their results do so according to the field R N D A I O D E  in the U S E R S T A T U S  register. Instructions 
RRNDMD and WRNDMD (Section 2.3) 'read and write that field. 

Let F be the magnitude of the difference between a true floating point result, R, and the greatest 
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representable floating point number N which is less than or equal to R, expressed as a fraction of 
the least-significant representable bit of R. The  bits of R N D M O D E  have the following functions 
(reversals of rounding direction accumulate): 

Bit Value Effect . . - 
0 0 Round as specified by 2ND-MODE< 1:4> 

1 Reserved. 

1 0 If F ;t 0, round as specified by RND_MODE<2:4> 
else deliver R exactly. 

1 If F 112 then round as specified by RNU_MODE<P:4> 
CISP mlmd to tho floating point number ne;llesL lo R. 

0 '  Round toward negative infinity. , 

1 Round tuwa~d puslcive infinity. 

0 No effect. 
1 If the least significant bit of the mantissa of N is one, 

reverse the rounding direction. 

4 0 No effect. 
1 If and only if R is negative, reverse the rounding direction. 

Various combinations of the above'bits provide a variety of rounding modes. Some of the more 
common modes are; 

R N D M O D E  (octal) 
0 .. . 
1 
4 
5 

12 
14 

Function Modifier for FIX 
Floor FL 
Diminished magnitude DM 
Ceiling CL 
Augmented magnitude 
Stable ST 
Half rounds toward positive HP 
infinity (PDP-10 FIXR) 
Approximate PDP-10 
FLTR rounding 

Inexact rounding: Certain instructions exhibit inexact rounding--that is, the ~rncertainty in their 
founding behavior slightly exceeds the uncertainty specified for floating point computations in 
general. The  list of i~structions which exhibit this characteristic is implementation dependent. 
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2.3.6 Floating Point Exception Handling 

In the USERSTATUS register, four bits record "side effects" or exceptions by floating point 
arithmetic operations: 

FLT-OVFL Floating-point overflow (that is, the result of the instruction is.greater than or' 

equal to OVF or less than or equal to MOVF). .. . . . 

FLT-UNFL Floating-point underflow (that is, the result of the instruction is less than or 
equal to UNF and greater than or equal to MUNF, but not equal to zero). 

, 
FLT-NAN Floating-point result is "not a number" (NAN). 

FLT-REP Floating-paint result cannot be represented exactly within the allowed .mantissa 
(and must therefore be rounded). This bit signals a condition that may happen 
most of the time in ordinary floating point arithmetic. .' , . r ' " , ' ' -  , " 

These bits are "stickym--that is, floating point instructions may set them but not cleai- them, so once a 
bit is set it will remain set until explicitly cleared via manipulation of USERSTATUS. 

In the following example, the first instruction sets FLT-OVFL, the second sets ,FLTdJNFL;, :and the 
third sets. FLTDAN: . . 

. . . . .  . . .  

FSUBV . H RTA , #0, # C400001 I . :  OP2 is MOVF t o  begin u i t h  
.FSC . H RTA , # C0100001, #-I ; Result  too small t o . r e p r e s e n t  . 

FD1V.H RTA,#0 : Division b y ' 0  i s . u n d e f i n e d S  : 

In addition to these exception bits, USERSTATUS contains fields called FLT,oVFEMODE, . 

FLT-UNFLMODE, and F L T J J A N N O D E  which tell the processor how to react to FLT-OVFL, 
FLT-UNFL, and FLTJJAN exceptions respectively. (Note that setting an exception bit by 
manipulating USERSTATUS will not invoke the specified behavior; the bit must be set during 
floating point arithmetic): 

FLT,OVFL,MODEtO:l> 
0 Invoke FLT-OVFL-TRAP soft trap without storing a result. 
1 If the result was positive, use OVF as the result; if it was negative, use 

MOVF as the result. 
2 Retain the sign and mantissa but replace the EXP .field with a 

wrapped-wound exponent, 
f) Undefined. Attempting to set this value in the user status register 

causes an ILLEGALSTATUS hard trap. 
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FLT-UNFL,MODE<O:l> 
0 Invoke FLT-UNFL-TRAP soft trap without storing a result. 
1 If the result was positive, use UNF as the result; if it was negative, use 

MUNF as the result. 
2 Retain the mantissa and sign of the result, but replace the EXP field 

with a wrapped-around exponent. 
3 Use floating point 0.0 as the result. 

FLT-NAN-MODE 
0 Invoke FLTNAN-TRAP soft trap without storing a result. 
1 IJsc NAN as the recult, 

2, 3 Undefined. Attempting to set these values in the user status re@sret 
causes an ILLEGALSTATUS hard trap. 

2.3.7 Propagating Floating Point Exceptions . 

If either operand of a floating point instruction is one of the exception values, the instruction 
propagates the exceptional condition according to .a precisely defined algorithm. 

The  tables in this section describe the standard propagation algorithm for all operations. (The 
algorithm is implemented in tables in RAM within the S-1 processor, so a front end procerror could, 
dictate adifferent algorithm if desired.) 

In the tables, X and Y are assumed to be "ordinary" positive floating point numbers--that is, greater 
than UNF and less than OVF--which do not in themselves invoke exceptions. 

U~lary operations 

A FNEG (A)  FABS (A)  FIX(AI FTRANS (A)  
J. 
MOVF 
MUNF 
UNF 
OVF 
NAN 

OVF OVF f NT-OVFL MOVF 
l.lNF UNF B PIUNF 
MUNF UNF 0 UNF 
MOVF OVF INT OVFL OVF 
NAN NAN I NTIOVFL NAN 
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. . . .. 

, Addition '(A+B) 

Multiplication (A+B) 

MUNF 0 UNF Y OVF NAN A B+ MOVF -Y 

AOVF MOVF MOVF MOVF HOVF MOVF NOVF NAN NAN 

A B- MOVF -Y  MUNF 0 UNF Y OVF NAN 

-X 
MUNF 
0 
UNF 
X 
OVF 
NAN 

-X 
NUNF 
0 
UNF NAN MUNF 
X MOVF -X*Y 

NAN' NAN 

MOVF -X-Y -X -X -X -X+Y OVF NAN 
MOVF -Y  MUNF MUNF 0 Y OVF NAN 
MOVF -Y MUNF 0 UNF Y OVF NAN 
MOVF -Y 0 UNF UNF Y OVF NAN 
MOVF X-Y X X X X+Y OVF NAN 
NAN OVF OVF OVF OVF OVF OVF NAN 
NAN NAN NAN NAN NAN NAN NAN NAN 

Division (A/B) 

A B--, 

AOVF 
-X 
MUNF 
0. 
UNF 
X . 
OVF 
NAN 

NAN . 0 NAN MOVF MOVF NAN 
UNF 0 MUNF -X*Y MOVF NAN 
UNF 0 MUNF MUNF NAN NAN 
0 0 0 0 0 NAN 
MUNF 0 UNF UNF NAN NAN 
MUNF 0 UNF X*Y OVF NAN 
NAN 0 NAN OVF OVF NAN 
NAN NAN NAN NAN NAN NAN 

MOVF -Y NUNF 0 

NAN OVF OVF ' NAN 
UNF X/Y  OVF - NAN 
UNF UNF NAN NAN 
0 0 0 NAN 
MUNF MUNF NAN NAN 
MUNF -X/Y MOVF NAN 
NAN MOVF MOVF NAN 
NAN NAN NAN NAN 

UNF - 
MOVF 
MOVF 
NAN 
0 
NAN 
OVF 
OVF 
NAN 

Y OVF NAN 

MOVF NAN NAN 
- X / Y .  MUNF NAN 
MUNF MUNF NAN 

- 0 0 NAN 
UNF UNF NAN 
X / Y  UNF NAN 
OVF NAN NAN 
NAN NAN NAN 

The  rules for the remaining instructions are simple enough to state without using additional tables: 

F S U B   he algorithm. behaves as if' the processor applied FNEG to the second argument 
and then performed FADD. 

FMAX, FMIN If either argument is NAN, the result is NAN: Otherwise, the algorithm 
considers MOVF<-X<MUNF<O<UNF<X<OVF for any unexceptional positive 
number X. 

FSC The exponentiation portion of the instruction FSC or FSCV is effectively done 
in infinite precision and will not produce an exception; the subsequent 
multiplication follows the rules given in the tables. 
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2.3.8 Floating Point Arithmetic 
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FADD . . Floating point, add 
. . .  

. . 

FADD . (H,S,D} - .  . . .. :TOP 
, .  . 

Purpose: DEST:=S 1+S2. 
. .  . P . . , . ? < s  .. , 

Restrictions: None. 
. . ,, c -  .., 

Exceptions: FLT-OVFL, FLT-UNFL, FLTNAN 
. . I . /'.. . 

,:: 1 .  

Precision: S1, S2, and DEST all have the precision specified by the modifier. 
.'% . .. 

F h e  first instruction adds 1.0 to RTA. The second instruction doubles RTA; alternatively, 
. .  . . . . . 

. * 
. . .  - 

FMULT, FSC, or FDIV might. be used:. ., . . " .  
1 , , :. 

. .  . . . . . .  .. 
.. . FAD0.S RTA,#[1 .01. ,  t :  . . .  . , , .: . ... . , : . : , ! ,  , _ .  . 

FADD. s RTA, RTA ;RTA:=2.0*RTA; FSC RTA,#l  i s  preferable 
1- . :. :. . 
. 3  . . . . .  A: 

' - -.... 
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FSUB; Floating point subtract 

FSUB . (H,S.D) 
FSUBV . (H,S,D) 

TOP 
TOP 

Purpose: FSUB calculates DEST:=S 1-S2. 

FSUBV, the reverse form, calculates S2-S I.  
> .  

Restrictions: None 
. .. : I 

Exceptions: FLT-OVFL, FLT-UNFL, F L T J A N  

Precision: S 1, S2, and DEST all have the precision specified by the modifier. 

p e  following subtracts a floating point value of one from RTA: . . 
# 1 

L 
FSUB. S RTA , # C1.O1 ; RTA: =RTA-1.0 

I 
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FMlULT Floating point multiply 

FMULT . (H,S,D} . . TOP 

Purpose: DEST:=S I*SS. 

Restrictions: None 

Exceptions: FLT-OVFL, FLT-UNFL, FLTDAN 
. - .  

Precision: S1, S2, and DEST all have the precision specified. by the modifier. . 

, . .. 3 

p h e  following instruction doubles the value in R T A .  Alternatively, FSC, FADD! or FDIV 
. .  . . . . might be used: " ' - ' 

. . . . 
L . . .  . .  . . , . . 

1 
_ -  . 

L .  
FMULT. S. RTA, # C2.01 ;RTA:=RTA*2.0 

. . 
8 .  . . I . .. * 
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FMULTL Floating point multiply, long result 

FMULTL . (H,S) TOP 

Purpose: DIEST:=Sl*SZ. Note that the long result format will have more than twice as many 
mantissa bits as either operand. 

Restrictions: None 

Exceptions: FLT-OVFL, FLT-UNFL, FLTNAN. (These can occur only if one of the operands 
was a floating - - point exception value to begin with. The operation of m~iltiplication itself cannot 
overflow or underflow because DEST has such a large exponent field.) 

Precision: S1 and SZ havethe same precision as the modifier. DEST has precision twice that of thk . 
modifier and must align accordingly. 

p e  following instruction will place in RTA all significant, bits of the square of X: 1 
L 

FflULTL.S RTA,X,X ; RTA: =X?2 
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FDIV Floating point divide 

FDIV ;. (H,S,D) TOP 
FDIVV . (H,S,D). TOP . 

VFDIV . (SR,OPl) . (H,S,D) V:=VV 
. . 

Purpose: FDIV computes the floating point quotient, S1 divided by S2, and stores it in DEST. 

FDIVV swaps the roles of S l  and S2. 

VFDIV divides each element of the vector beginning with OP1  by the corresponding element of the 
vector beginning with OP2 and stores the results .either in the vector pointed ,to by SRO (if the 
modifier is SR) or back into the vector beginning with OP1  (if the modifier is OP1). 

, .  . . . . . .. . . . . .  . . 
Restrictions: None , . .  . . .. . 

Precision: For FDIV and FDIVV, S lDaS2,  and DEST . .  . all have the precision specified .by the. 
modifier. For VFDIV, the e~ernekts of all three vect6hhave . . the pre~ision ... specified . . b i  the modifier. 

p h e  following instruction doubles the value in RTA. Alternatively, FADD, FMULT or FSC 
might be used: 

1 
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FDWL Floating point divide, long dividend 

FDIVL . {Has) 
FDIVLV . {H,S) 

TOP 
TOP 

Purpose: FDIVL divides S 1 by S2 in floating point and stores the result in DEST. 

FDIVLV, the reverse form, divides S2 by S 1 instead. 

Restrictions: Norie 

Exceptions: FLT-OVFL, FLT-UNFL, FLTBAN 

Precision: For FUIVL, S2 and DEST have the precision of the modifier. S1 has precision twice 
that of the modifier and must align accordingly, 

For FDIVLV, Sl and DEST have the precision of the modifier and S2 has twice that precision 

p e  following uses a doubleword 1.0 to reciprocate a singleword in RTA. Note that this is 
NOT the same constant that would be used for .FDIV: 

1 

L 
FD1VL.S RTA,#E200000 , ,0  3 !Bl ,RTA ; RTA:=1.0  (OW) / RTA 
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FRECIP Floating point reciprocal 

FRECIP . (H,S,D) . . XOP 
. , . . 

Purpose: OP1 := 1.0 / OP2. In most implementations, FRECIP offers higher performance than 
FDIV but inexact rounding. . . 

. . , .  . . 

Restrictions: None . . . . .  ! .  I . .  ' . 

Exceptions: FLT-OVFL, FLT-UNFL, FLTNAN 
' . . . , .  

Precision: OP1 and OP2 have the same precision as the modifier. 
. . . .. . . .  . , . . . , : '  ; a, j . _  

. . instruction reciprocates 2.0: - ' . . . . . 



118 2 Instruction Set 

FSC Floating point scale 

FSC . (H,S,D) 
FSCV . (H,S,D) 

TOP 
TOP 

Purpose: DEST := S l  * zS2. S 1 is a floating point number and S2 is a signed integer. 

FSCV computes the floating p ~ i n t  number S2 * 2", where 52 is a floating point number and S l  is 
a signed integer. 

Restrictions: None' 

Exceptions: FLT-OVFL, FLT-UNFL, F L T J A N .  (FLT-OVFL and FLT IJNFL are not cet 

during the exponentiation, which is done with unlimited precision:) . 

Precision: For FSC, S1 and DEST have the same precision as the modifier and S2 is a singleword. 
For FSCV, Sq and DEST have the precision of the modifier and S 1 is a singleword. 

F h e  following instruction may be used to double the value in RTA. Alternatively, FADD, 
FMULT, or FDIV might be used: 

1 
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FIX Convert floating point to fixed (integer) 

FIX . (FL,CL,DM,HP,ST,US) . (Q,H,S,D) . (H,S,D) 
VFIX . (H,S,D) . (H,S,D) 

XOP 
v:=v 

Purpose: FIX converts the floating point number ,specified by OP2 into an integer and stores it in 
OP1. The first modifier specifies which of the rounding modes (explained in Section 2.3.5) to use 
in the conversion: 

CL Ceiling 
DM Diminished magnitude t . d  .. , ~ 

H P  Half rounds toward positive infinity . . . . .  . . 

S T .  Stable . . , . . 

US Whichever mode USERSTATUS-RND-MODE specifies , . . . %. . . 

VFIX converts each element of the vector beginning with OP2 to an integer and stores the result in 
the corresponding element of the vector beginning with OP1. Instead of specifying rounding modes 
via a modifier, it ,always uses the, rounding mode. .specified in USER-STATUS; the additional cost 
of executing a VIRND.MD instruction .to -change the roun.ding mode is negligible for vectors of 
reasonable length. . . . . . .: . .. 

If the two vectors have equal precision, they may overlap. If the.precision of the source vector 
exceeds that of the destination, tke two vectors may be identical but must not otherwise overlap; If. 
the precision of the destination vector exceeds that of the source, the two vectors must not overlap at 
all. Violating these rules produces undefined results. 

Restrictions: None 

Exceptions: INT-OVFL 

Precision: For FIX, OP1  has the precision of the second modifier and OP2 has the precision of the 
third modifier. For VFIX, the elements of OP1  have the precision of the first modifier and the 
elements of OP2 have the precision of the second. 

F h e  following converts a floating point value in RTA into an integer. The  exact result 
on the value and the rounding mode specified in USER-STATUS.RND_MODE: 
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FLOAT Convert to floating point 

FLOAT . (H,S,D) . (QH,S,D) 
VFLOAT . (H,S,D) . (Q,H,S,D) 

XOP 
v:=v 

Purpose: FLOAT converts the integer specified by OP2  into a floating poilit number and stores it 
in OP1. 

VFLOAT converts each element of the vector beginning with OP2  to a floating point number and 
stores the result in the corresponding elemefit of the vector beginning with O P  1. 

If t h i  two vectors have the same precision, they may overlap. If the precision of the source vector 
exceeds that of the destination vector, the two vectors may be identical but may not otherwise 
overlap. If the precision of th2 destination vector exceeds that of the source, the vectors must not 
overlap. Violating these rules produces undefined results. 

Restrictions: None 

Exceptions: FLT-OVFL. (This can occur only in the cases of FL0AT.H.S and FL0AT.H.D. For 
all other conversions, the floating point format can express the corresponding integer with--at 
worst--only the loss of the least significant bits.) 

Precision: OP1  has the precision of the first modifier. OP2 has the precision of the second 
modifier. 

Fe following loads RTA with the floating point value 1.0: 
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FTRANS Floating point translate 

FTRANS'. {H,s,D) . (H,s.D) 
VFTRANS . {H,S,D) .{H,S,D) 

XOP 
v:=v 

Purpose: FTRANS c0pies.a floating point number from OP2 .to OP1, converting-its precision if 
necessary. .. . 

VFTRANS performs FTRANS on individual elements of vector OP1  and stores the result in vector 
OP2. If the source and'destination vectors have the same precision, the vectors may overlap; the 
instruction guarantees not to alter any element of the source until it has copied that element to the 
destination. 

If the source vector's precision exceeds that of .the destination vector, the two vectors. may. be 
identical, but must not otherwise overlap. 

. . . . i 

If the source vector's precision is less than that of the destination vector, the two vectors may not 
overlap at all. .. , , , . . .  

. , 

In some implementations FTRANS.S.S will offer better performance than M0V.S.S when operating 
on floating point data because a seriu of floating point instructions permits the processor to 
maintain the data in an internal format that is easier to handle. 

Restrictions: None 

Exceptions: FLT-OVFL, FLT-UNFL, FLTAAN.  If OP2 has no greater precision than OP1, 
then these can occur only if OP2 is one of the floating point exception values. 

Precisinn: OF:! has the precision of the second modifier. OP1  has the precision of the first 
modifier. 

p h e  following illustrate; the precision alteration possible with FTRANS. The exact values 
produced wil l , .  in general, .depend on the rounding mode defined in 
USERSTATUS.RNDXODE: 

L 
FTRANS.S.0 RTA,#[200000,,0 ? !O1 ; Funny constant is 1 . 0  OW 
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FNEG. Floating point negate 

FNEG . (H,S,D) 
VFNEG . (H,S,D) 

XOP 
v:=v 

Purpose: FNEG negates the floating point number in OP2 and stores the result in OP1. VFNEG 
performs NEG on each element of the vector beginning at OP2 and stores the results in the vector 
beginning at O P  1. 

The difference between NEG and FNEG is that FNEG handles floating point exceptions. 
.. 

Rcstrictionsl Nonc 

Exceptions: FLT-OVFL, FLT-UNFL, FLTAAN , 

Precision: OP1 and OP2 have the same precision as the modifier. 

F h e r e  examples show how floating point exceptions are propagated by FNEG. 1 
FNEG. H RTA, #-1 ;RTA:=NUNF, signal FLT-UNFL 
FNEG. H RTA , #677777 : RTA: =OVF, s i gna 1 FLT-OVFL 
FNEG. H RTA , #'I 00000 1 RTA: =NAN, s i gna 1 TLT-NAN 



2.3.8 Floating Point Arithmetic 123 

FABS Floating point absolute value 
t 

FABS . {HISID) 
VFABS . {H,S,D) 

XOP 
v:=v 

Purpose: FABS takes the floating point absolute value of OP2 and, stores it in OP1. In Comparison 
with ABS, FABS handles floating point exceptions. . .. , . , ... 

VFABS performs FABS on each element of the vector OP2 arid stores the results in the vector 
. . . . 

O P  1,. . . . . . < , 8 , , , ,  , 

. '  . . . . , .  

Restrictions: None , . , .  , . 

Exceptions: FLT-OVFL, FLT-UNFL, F L T J A N  

Precision: O P  1 and OF2 have the same precision. as the modifier. . . . ,  . 

. , , .  

p e i e  examples show how the user of FABS ~ ~ A B S .  6" floating point .numbers differ. 
. .. \ . i: {' ! , 1 . -. 

ABS.H RTA,#C-11 ( . *. . . ;RTA:=-1, no s ide  - e f f e c t s '  ' . 

FABS.H RTA,#1-11 ;RTA:=NUNF; s ignal  FLT-UNFL 
ABS. H RTA, # 13777771 ;RTA:=MAXNUM, no side. eff 'ects .. . . 

FABS. H RTA, # 13777771 ; RTA: =OVF, s i  gna l FLT-OVFL 
ABS. H RTA, # 1-4000001 ;RTA:=NAN, s ignal  INT-OVFL .: 

L 
FABS. H RTA, # 1-4000001 ; RTA: =NAN, s i gna l FLT-NAN 

. J 
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FMlN Floating point minimum 

FMIN . (H,S,D) TOP 
VFMIN . (SR,OPl) . (H,S,D) V:=VV 

Purpose: FMIN places in DEST the smaller of the floating point numbers S1 and S2. The primary 
difference between MIN and FMIN is that FMIN properly propagates the floating point exception 
values. 

VFMIN performs FMIN on a series of pairs: an element of the vector beginning with OP1 and the 
corresponding element of the vector beginning with OP2. If the first modifier is OP1, the results go 
back into the vector OP1; if it is SR, they go into the elements of' the vector pointed to by SRO. 

Exceptions: FLT-OVFL, FLT-UNFL, FLTBAN-  

Precision: For FMIN, S1, .S2, and DEST all have. the- precision specified by the (H,S,D) modifier. 
For VFMIN, the elements of vector OP1, vector OP2, and the vector pointed to by SRO all have the 
precision specified by the (H,S,D) modifier. . 

p i s  instruction sets RTA to the smaller of X and 43.0: 1 
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FMAX Floating point maxiniuin 

FMAX . {HISID) TOP 
VFMAX . {SR,OPl) . {HISID) V ~ = V V  

Purpose: FMA.X places. in DEST thelarger of the floating point numbers S1 and S2. The  primary 
difference between MAX and FMAX, is that FMAX properly propagates the floating point 
exception values. : . . . . 

VFMAX peieforms FMAX on a series of pairs: an element of the.vector beginning with OP1 and 
. the corresponding element of the vector beginning with QP2. If the first modifier, is OP.1, the results 

' 

go back into the elements of vector OP1; if it is SR, they go into the elements of the vector pointed 
to. by SRO. . :  .. . . 

Restrictions: None . , .  . . . . 

. , 

Exceptions: FLT-OVFL, FLT-UNFL, ( .  , .. F L T 3 A N  ( .  . .  . . . . :.: . , 

. . ' . I .  : 
. . 

. . 
Precision: For FMAX, SI, S2, and DEST all have the precision iikcified by the (H,S,D} modifier. 
  or VFMAX, the elements of vector OP1, vector OP2, and the vector pointed t o  by S,RO all have 
the precision specified by the (HISID) m'odifier. 

. . . . . . 
F h i s  sequence of :instructions taker the number F and %lips9' i t  to be within the 

10.0,1.01: . . 

FNAX.S RTA,F,#0.0 ; l a rger  o f  F and 0.0 t o  RTA 

L 
, Ffl1N.S F , R T A , # ~ . ~  ;smal ler  o f  t h a t  and 1.0 t o  F 

J 
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RRNDMD, WRMDMD Readlwrite rou~lding mode 

RRNDMD XOP 
WRNDMD XOP 

Purpose: RRNDMD sets O P 1  to USERSTATUS.RNDM0DE. WRNDMD sets 
USERSTATUS.RNDMODE to OP1. In both instructions, OP2  is unused. For WRNDMD, if 
O P 1  contains bits outside the field that specifies rounding modes, the. result is undefined. See 
Section 2.3.5 for a description of rounding modes. 

Exceptions: None 

Precision: O P  1 is a singleword. OP2  is unused. 

F e  following Jumps to ISFLOOR if floor rounding ir specified b y  U S E R S T A T U ~  
Otherwise, it selects ceiling rounding: 

FLOOR=0 
. , *  

CEILING04 
RRNDMD RTA 

. - - . . SKP.EQL,S RTA,#FLOOR,ISFLOOR 
WRNDMD #CE I L I NG 



2.4 Complex Arithmetic 127 

2.4 Complex ~ r i t h m e t i e  . ' 

Certain instructions operate on halfword or singleword complex .numbers in either signed integer or 
floating paint format. A complex number acttially c o n k s  of two conseiutive integers or floating 
point numbers; the one at the lower memory or register address is the real part and the one at the 
higher address is the imaginary part. Thus, a halfword complex number occupies two halfwords or 
one singleword (and must align as a singleword) while a singleword complex number occupies two 
singlewords. 

REAL PART 

IMAGINARY PART . . 

fl Cnl 

N Cn+41 ... . 
. . 

35 3 ,  

Figure .?- 1 . . 
A singleword complex number 

. . . . I  : .  
. . . I '  

. . 
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CMAG Complex magnitude 

CMAG . (HIS) 
FCMAG . (H,S) 
VCMAG . (HIS) 
VFCMAG . (H,S) 

XOP 
XOP 
v:=v 
v:=v 

Purpose: Compute the scalar magnitude of a complex number. 

CMAG regards the complex number as a pair of signed integers, while FCMAG regards it as a pair 
of flnating pni.nt numbers.: 

VCMAG and VFCMAG are vector versions of CMAG and FCMAG. Assuming that "in 
increments by the precision of the modifier, they compute: 

FOR i := 0 TO SIZEREG-1 D O  
OP l[il:= SquareRoot(FIRST(OP2I2'~cil)t2 + 

SECOND(OP2[2*il)t2) 

Restrictions: None 

Exceptions: INT-OVFL (for' CMAG and VCMAG); FLTDAN,  FLT-OVFL, and FLT-UNFL 
(for FCMAG and VFCMAG) 

Precision: For CMAG and FCMAG, OP1, FIRST(OP2), and SECOND(OP2) have the precision 
specified by the modifier. FIRST(OP2) and SECOND(OP2) must align together to form an entity 
having twice that precision. 

For VCMAG and VFCMAG, the elements of all three vectors have the precision specified by thrt 
modifier. 

F h e  following finds the length of the hypoten~lw of a right triangle who~e Alder have lnlplhs of 
3 and 4: 1 

L 
CHAG.S RTA, [3 ? 41 ; RTA : = 5 
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CADD complex add 

CADD . (H,S) . . TOP 
FCADD . (H,S) . . TOP 

Purpose: Add complex n u m b e r ~ ~ w h e r e  FIRST(S1) and FIRST(S2) hold the real parts of the 
numbers and SECOND(S 1) and SECOND(S~) hold the imaginary parts. . : . 

FIRST(DEST):=FIRST(S 1) + FIRST(SZ);,(* Real  part^ *) 
SECOND(DEST):=SECOND(Sl) + SECOND(S~); (* Imaginary part *) , 3 

. 

CADD deals with signed integers while FCADD deals with floating point numbers. 

Restrictions: None . . 

Exceptions: CARRY and INT-OVFL (for CADD); FLT-OVFL. FLTJJNFL and, fLTNAN.(for  
FCADD) < .  . 

: 
Precision: FIRST(DEST), SECOND(DEST), FIRST(S l), SECOND(S I), FIRST(SZ), and 
SECON?(S2) have the *precision specified by the modifier. Each FIRST must align with the 
corresponding SECOND to form an entity with twice that precision. . . r ,  

F h e  following leaves in RTA and RTAl the sum of the complex numbers 4+i5 and 3 + 4  

L 
CAD0.S RTA.14 ? 51.13 ? 12.1. ; RTA := 7; R T A l  := 17 
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CSUB Complex subtract 

CSUB . (H,S) 
FCSUB . (H,S) 

TOP 
TOP 

Purpose: Subtract complex numbers, where FIRST(S1) and FIRST(S2) hold the real parts of the 
numbers and SECOND(S I) and SECOND(S2) hold the imaginary parts. 

FIRST(DEST):=FIRST(S 1) - FIRST(S2); (* Real part *) 
SECOND(DEST):=SECOND(S 1) - SECOND(S2); (* Imaginary part *) 

CSUB deals with signed integers while FCSUB deals with floating point numbers. 

Restrictions: None 

Exceptions: CARRY and INT-OVFL (for CSUB); FLT-OVFL; FLT-UNFL and FLTxAN (for 
FCSUB) 

Precision: FIRST(DEST), SECOND(DEST), FIRST(Sl), SECOND(Sl), FIRST(S2), and 
SECOND(S2) have the precision specified by the modifier. Each FIRST must align with the 
corresponding SECOND to form an entity with twice that precision. 

F h e  following leaves in RTA and RTAl  ihe difference of the two complex numbers 4+i5 and 
S+i 12: 

1 

L 
CSU0.S RTA, C4 ? 51, C3 3 12.1 . RTA : = 1; R T A l  : = -7 
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CMULT Complex multiply 

CMULT . (H,S) 
FCMULT . (H,S) 

TOP 
TOP 

Purpose: Multiply complex numbers, where FIRST(S1) and FIRST(S2) hold the real parts of the 
numbers and SECOND@ 1) and SECOND(S2) hold the imaginary parts. 

FIRST(DEST):=FIRST(S 1) * FIRST(S2) - 
SECOND(S1) * SECOND(S2); (* Real part a) 

SECOND(DEST):=FIRST(S I) * SECOND(S2) + 
SECOND(S I) rn FIRST(S2); (* Imaginary part *) 

The .instruction actually finishes the computation before altering DEST or NEXT(DEST), so 
operands bay  overlap without harm. 

CMULT deals with signed integers while FCMULT deals with floating point numbers. 

. Restrictions: None 

Exceptions: INT-OVFL (for CMULT); FLTJAN, FLT-OVFL, and FLT-UNFL (for 
FCMULT) 

Precision: FIRST(DEST), SECOND(DEST), FIRST@ l), SECOND@ l), FIRST(S2), and 
SECOND(S2) have the precision specified by the modifier. Each FIRST must align with the 
corresponding SECOND to form an entity having twice that precision. 

F h e  following leaves in RTA and RTAl  the result of multiplying the-complex numbers 4+i5 
and 3+il?; 

1 

L 
CMULT.S RTA, 14 ? 51, [3 ? 12.1 ; RTA := -48; RTB := 63 
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SQRT Square root 

FSQRT . (H,S,D) 
VFSQRT . (R,S,D) 

.: , XOP 
v:=v 

Purpose: Compute the principal square root in floating point: OPl:=SquareRoot(OP2). , 

I .  

VFSQRT performs FSQRT on each element of vector OP2 and places the results in vector O P  1. 
. . 

The implementation is guaranteed to be monotonic--that is, if xly then SQRT(x)lSQRT(y). 
Attempting to take the square root of a negative number invokes FLTDAN,  which will result in 
either a FLTDAN-TRAP hard trap or NAN, depending on the setting of USERSTATUS. . 

Restrictions: None, - ; . . .  . . 
, .  . r  . . , . . . 

. , * f'< 

Exceptions: F L T B A N  . .  . .  . . .. . . . . . . . 

Precision: Both O P  1 and OP2 .have the precision specified by 'the modifier. * , . 

p h e  following leaves the square root pf 25 in RTA: , I . .  . . 

L 
FSQRT.S RTA.kf25.0 ; RTA := 5.0 

. . 
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FLOG Floating point logarithm (base 2) 

FLOG . (H,S,D) 
VFLOG '. (H,S,D) 

XOP 
v:=v 

Purpose: FLOG computes the base 2 logarithm of OP2 and stores the result in OP1. The  results 
are guaranteed to be monotonic--that is, if xzy then FLOG(x)zFLOG(y). 

VFLOG performs FLOG on each element of OP2  and places the result in the corresponding 
element of OP1. 

Restrictions: None 

Exceptions: FLT-OVFL, FLT-UNFL, F L T J A N .  Taking the logarithm of a non-positive 
number invokes FLTJJAN,  resulting in either NAN or a FLTJJAN-TRAP hard trap, depending 
on the setting of USERSTATUS. 

Precision: OP1  and OP2  have the precision specified by the modifier. 

F e  following leaves RTA set to the base 2 logarithm of 32: 

FL0G.S RTA,#32 .0  ; RTA := 5.0 

Using the rule that logbz = log2z I log2b, the following instructions compute the base 10 
logarichrn of 1000.0: 

FL0G.S RTB,#lB.B ; RTB := .base 2 l o g  o f  10.0 
FLOG. S RTA , #I000.0 ; RTA := base 2 log o f  1000.0 
FD1V.S RESULT,RTA,RTB ; RESULT := 3.8 
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FEXP . Floating point exponential (base 2) 

FEXP . {H,S,D) . .  . . XOP. 
VFEXP . {H,S,D) . . -V:=V. 

Purpose: Raise 2.0 to a power: .FEXP computes O P  1:=2,0?0P?,. VFE.XP performs, FEXP on each : 
element of OP2 and places the result in the corresponding element of OP'I: The  results, are 
guaranteed to be monotonic--that is, if x ~ y  then FEXP(x)lFEXP(y). 

C . . 
. . . . . . 

Restrictions: None , . 

Exceptions: FLTJJAN,  FLT-OVFL, FLT-UNFL 

Precision: OP1 and OP2 have the precision specified by the modifier. 

prig the rule that xty = 2t(y * log2x), the following raises 81.0 to the power 0.25 1 
FL0G.S RTA,#81.0 ; .. . .. . . . . .,. . . . 

FHULT.S RTA,#0.25 ; RTA ': = 8.25 * FLOG (81.01 
FEXP. s RTB, RTA . ; RTB,-:= 3.0 

. . .  
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FSlN Floating point sine 

FSIN . (H,S,D) 
VFSIN . (H,S,D) 

XOP 
v:=v 

Purpose: FSIN computes OPl:=Sine(OPZ). OP2 specifies the angle in cycles--that is, a "1.0" 
corresponds to 360 degrees or 2*PI radians. 

VFSIN performs FSIN on each element of OP2 and places the result in .the corresponding element 
of OP1. 

Exceptions: FL'I'A A N  

Precision: Both operands have the precision specified by the modifier. 

F h e  following ~ o & ~ u t e s  the sine of an angle expressed in degrees: 

fl0V.S.S ANGLES#3B.0 ; 3 0  degrees 
F0IV.S RTA,ANGLE,#360.0 ; convert  t o  cycles 
FS1N.S RTA ; RTA := 0.5 
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FCOS Floating point cosine 

FCOS . {H,S,D) . . . . XOP 
VFCOS . {H,S,D) V:=V 

Purpose: FCOS computes 0~1 :=~os ine (0~2) .  OP2 'specifies the ' angle in cycles--that is, a ul.O''. 
corresponds to 360 degrees or 2*PI radians. 

VFCOS performs FCOS on each element of OP2 and places, the result in the corresponding element 
of OP1. 

Restrictions: None 
. . 

Exceptions: F L T N A N  
, . . . . :  

Precision: Both operands have the precision specified .by the modifier. 

p e  following computes the cosine of an angle expressed in degrees 1 
R0V.S.S ANGLE,#60.0 ; 60 degrees 
FD1V.S R T A , A N G L E , # ~ ~ ~ . ~ '  . ... ; convert  to  cyc les  . , 

FC0S.S RTA ; RTA := 0.5 
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FS l MCOS Floating point sine and cosine 

FSINCOS . {H,S,D) XOP 

Purpose: Computes FIRST(0P l):=Cosine(OP2) and SECOND(0P l):=Sine(OP2). OP2 specifies the 
angle in cycles--that is, a "1.0" corresponds to 360 degrees or  PI radians. 

Note that because the cosine appears in the first anyword of the pair and the sine in the second, the 
result can be used as a complex number. 

Restrlctions: None 

Exceptions: FLT. NAN 

Precision: FIRST(OPl), SECOND(OPl), and OP2  have the precision specified by the 'modifier. 
FIRST(OP1) and SECOND(OP1) must align together to form an entity having twice that precision. 

F h e  following computes both the sine and the cosine of an angle expressed in degree$ 1 
N0V.S.S ANGLE,'#60.0 ; 60 degrees 
FD1V.S RTA,ANGLE,#360.,0 ; convert t o  cyc les  

L 
FSINC0S.S RTA 



FATAN 
. . 

Floating point arctangent 

FATAN . {H,S.D) 
FATANV . {H,S,D) 
VFATANV . {SR,OPl] . (M,S,D) 

TOP 
TOP 

v:=vv 

Purpose: FATAN computes DEST:=Arctangent(Sl/SZ). Expressing the tangent as a quotient 
instead of a single value -allows the instruction to determine the'correct quadrant for the result, 
which is expressed in cycles--that is, "1.0" corresponds to 360 degrees or 2vPI radians. 

, . 

FATANV, the reverse form, swaps the roles of S1 and S2: . . .  

VFATAN performs FATAN on each pair of elements, one from vector O P l  and the other from 
vector OP2, and places the result in the corresponding element of either vector OP1 or the vector 
pointed to by SRO, depending on the first modifier: 

I S ' :  . . . . . 

. . 
FOR i:=O TO SIZEREG-1 DO 

IF (modifier is O P  1) 'THEN 
O P  l [ i & ~ i c t a n ~ e n t ( ~ P  l[i1/0~2'[i1)' ' I '  ' 

) , '  ELSE 
. .  I 

~ ~ ~ @ [ i l : = ~ k t a n g e n t ( O P  . . 1 [il/OPZ[i]) , 

.. . 

Restrictions: None 

Exceptions: F L T Y A N  
. . . . 

Precision: All three operands have the precision specified by the (H,S,D) modifier. 

Fe following computes a11 actangent in degrees 

FATAN.S RTA,#1.0,#1.0 
FMULT . S RTA , #360.0 ; RTA := 45.0 degress 
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W2DSQ, W3DSQ Vector 2- or 3-dimensional.distance squared 

Purpose: Compute the sum of squares of a series of coordinate pairs or triples. 

V2DSQ and VFZDSQdeal wit1.1 coordinate pairs, where the vector beginning with OP1 holds the 
first coordinate of each pair and the vector beginning with OP2 holds the second, Depending on 
the first modifier, these instructions put the result back in vector OP1 or in the vector pointed to by 
SRO. V2DSQdeals with integers, while VFZDSQdeals with floating point numbers: 

FOR i:=O T O  SIZEREG-1 DO 
'IF (modifier is OP) THEN O P  I[i]:=OP l[ilt2 + OP2[ilt2 
ELSE SROe[il:=OP lliIt2 + OPZCiIt2 

VSDSQ and VFSDSQdeal with coordinate triples, where the vector beginning with O P  1 holds the 
first coordinate of each triple, the vector beginning with OP2 holds the second, and the vector 
pointed to by SRO holds the third. Depending on 'the first modifier, these instructions put the result 
back in vector OP1 or In the vector pointed to by SR1. V3DSQ deals with integers, while 
VF3DSQ deals with floating point numbers: 

FOR i:-0 TO 8fZEREC-1 DO 
IF (modifier is OP1) THEN OPl[il:~OBl[ilt2 + OP2[i312 + SRO@[il'l'2 
ELSE SR l@[i]:=OP l[ilT2 +.OP2[ilt2 + SROe[ilT2 

Restrictions: None 

Exceptions: For the integer instructions, INT-OVFL; for the floating p in t  instructions, 
FLT-OVFL, FLT-UNFL, and FLTJAN 

Precision: Each element of each vector has the precision specified by the second modifier. 

p h e  following example illustrates the use of VPDSQ: 

MOV.9.9 912EREG,.#3 : Specl fy  length of vectors .  

M0VP.P.A SR0,RESULT ; Set  up SR0 t o  p o i n t  t o  r e s u l t  

V2DSQ.SR.S 11 ? 2 7 3 1 , [ 4  ? 5 ? 61 

L 
; RESULT now holds [17. ? 29. ? 45.1 

J 
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V2DIS, V3DlS Vector 2- or 3-dimensional distance . 

VZDIS . {SR,OPl). (H,S,DJ V:=VV 
VFPDIS . (SR,OPl) . (H,S,D) V:=VV 

V3DIS . (SR,OPl) . (H,S,D) . . V:=VVV 
VF3DIS . {SR,OPl) . {H,S,D) ' . V:=VVV 

Purpose: Comp.ute the square root of the sum of squares for a series of coordinate pairs or triples. 

V2DIS and VFZDIS operate on coordinate pairs, where the vector beginning with OP1 contains the 
first coordinate of each pair and the vector beginning with OP2 contains the second. Depending on ' 

the first modifier, the resulting vector goes back into O P l  or into.the vector pointed to by SRO. 
V2DIS deals with integers while VF2DIS deals with floating point numbers: 

FOR i:= 1 T O  ,SIZEREG- 1 DO 
IF (modifier is O P  1) THEN 

O P  l[il:=SquareRoot(OP l[i]tZ + OP2[il72) 
ELSE 

SRO~[il:=SquareRoot(OP l[il72 + OPZ[ilt2) 

. VSDIS and VFSDIS operate on triples, with the vector beginning at OP1  containing the first 
coordinate of each triple, the vector begnning at OP2  containing the second, and the vector pointed 
to by SRO containing the third. Depending on the first modifier, the result goes back into the vector 
starting at O P  1 or into the vector pointed to by SR 1: 

FOR i:=O T O  SIZEREG-1 DO 
IF [modifier is O P  1) THEN 

O P  l[il:=SquareRoot(OP 1CiIt2 + OP2[ilt2 + SROdilt2) 
ELSE 

SR le[il :=Square~oot(O~ l[i]T2 + OP21il~2 + SRO~OI 'T~)  

Restrictions: None 

Exceptions: For the integer instructions, INT-OWL; for the floating point instructions, 
FLT-OVFL, FLT-UNFL, and F L T J A N  

Precision: Each element of each vector ha3 the precision spccifi~d by the second modifier 

p p p o s e  X D I S P  and YDISP  represent a drawing as a series of line segments, describing each 1 
segment as a pair of displacements in the X and Y directions from the endpoint of the preceding 
segment. The  following program fragment converts this data to represent each segment as an 
angle and magnitude: 

; Obtain a vector  o f  angles 
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M0V.S.S SIZEREG,#@ 
M0VP.P.A RTA,X-DISP 
M0VP.P.A RTB,Y-DISP 

NEXT: FATAN.SANGLE~SIZEREGlf2,RTA[SIZEREGIf2,RTB~SIZEREGI~2 
ISKP.LSS SIZEREG,LENGTH,NEXT 

; Now SIZEREG = length of vector 
VF2DSQ.OPl.S XJ1SP.Y-DISP ; X-DISP becomes a vector 

L 
; o f  magni tudes 

J 
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VDOT Dot product 

VDOT . {H,S,D) 
VFDOT . (H,S,D) 

Purpose: Compute the dot product of two vectors: 

RTA:=O; 
FOR i:=O TO SIZEREG-1 DO 

RTA:=RTA + O P  1CiI * OP2[il 

T o  avoid overflow and underflow problems, the processor accumulates the sum with as much 
precision as it can, regardless of the (H3.D) modifier. If that modifier is 'H", the result' goes into 
RTA as a singleword, and if the modifier is "S", RTA .is a doubleword. If the modifier is "D", 
however, the result is still a doubleword. 

Restrictions: None 

Exceptions: INT-OVFL (for VDOT); FLT-OVF.L, .FLT-UNFL, and FLT_NAN (for VFDOT). 

Precision: The elements of each vector have the precision specified by the modifier. RTA has twice 
that precision unless the modifier is D, in which case RTA is a doubleword. 

F p p o s e  that. singleword vector V contains the results from sampling a voltage. waveform at 100 
Hz for one second. The following computes the RMS voltage: 

1 
fl0V.S.S SIZEREG,#100. ; Put length i n  SIZEREG 
VFD0T.S V,V ; Sum o f  squares 

FDIV .0  RTA, W100.0 ; Mean 

L 
FSQRT. D RTA, RTA ; Root 
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CONV Convolution 

CONV . (H,S,D) 
FCONV . (H,S,D) 

Purpose: Compute the convolution of two vectors. OP1 and OP2 are the initial elements of the 
vectors, SIZEREG defines the length of vector OP1, and SRl defines the range of integration (and 
therefore the length of vector OP2). The result appears in the vector pointed to by SRO: 

. , 

FOR i:=O TO SIZEREG-1 DO 
BEGIN 
3RO@Cil:=O; 
FOR j:=O TO SR 1-1 DO 

$Ro@[~]:=sRoQ[~] + OP2Cjl m OP 1CSR 1-1 + i - jl 
END 

Restrictions: None 

Exceptions: INT-OVFL (for CONV); FLT-OVFL, FLT-NAN (for FCONV) 

Precision: SRl  and the elements of each of the vectors have the precision specified by the second 
modifier. 

~ n v n v o l v e  A with B and store the result i n  C: 

H0VP.P.A RB,C ; SR0 po in ts  t o  d e s t i n a t i o n  
M0V.S.S SIZEREG,#100.  ; A i s  100 elements long 
ROV. S. S R1 ,  #10. ; B ' i s  10 elements long 

C0NV.S A , B  
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RFLT2 Second order recursive filter 

RFLTZ . (H,S,D) V:=V 
FRFLTZ . (H,S,D). V:=V 

Purpose: Apply a second order recursive, filter to the vector whose first element is OP2 and leave 
the results in the vector whose first element .is OP1. T h e  instruction obtains the coefficients of the 
filter from the five element vector pointed to'by SRO. The  result is actually two elements shorter 
than SIZEREG indicates, since it begins at OP1[21 instead of OPl[Ol. The  user must initialize the 
first, two elements of the.OP 1 vector to start the recursion properly. 

FOR i:=O TO SIZE RE^ - 3 D O  , . 

O P  l[i+21:=SRO~[OI * O P  1CiI 
+ SRO@[l] * OPl[i+ll  
+ $Rod21 * OP2Cil 
+ SROd31 * OP2[i+ll 
+ $Rod41 * OP2[i+21 

. ,, . . 

Restrictions: None 

Exceptions: INT-OVFL (for RFLT2); FLT-OVFL, FLT-UNFL, ,and F L T . 3 A N  (for FRFLT2) 

Precision: The coefficients and the elements of each vector have the precision specified by the 
modifier. 

F h e  following example filters the signal in vector SENSEJN: 

M0VP.P.A SRB,COEFFICIENTS ; P o i n t e r  t o  f i v e  c o e f f i c i e n t s  . 

MOV.S.6 RESULT, H.73476 ? 1,734761 
; I n i t i a l i z e  the recursion . 

M0V.S.S SIZEREG,#1000. ; Spec i f y l eng th of SENSE-I N 
FRFLT2.S RESULT,SENSE-IN 

L 
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INTRAM In-place square matrix transpose 

INTRAN' . (H,S,D) V:=V 

Purpose: Transpose a square two-dimensional matrix without moving the matrix to a different area 
of memory. (The TRANSP instruction can operate on a matrix which is not square, but must move 
the matrix to a new, non-overlapping area of memory as it does so.) 

OP1 is the first element of the matrix, which must be stored in row major order (second subscript 
varying more rapidly than the first). OP2 gives the ~~urnber of rows (which is, of course, the same 
as the number of columns) in the matrix, and must be a multiple d 8 hr. halfwnvd precision (or a 
multiple of 4 fur singlewords, or a multiple of 2 fnr doublewords). 

Exceptions: None 
* 

Precisioli: Every element of the matrix has the precision specified by the modifier. OP2 is a 
singleword. 

transpose the following matrix: 

one could use the INTRAN instruction like this: 

DSPACE 
; Expressions separated b~ 'I?" assemh l e 

; successive singlewords i n  memory 
FOURBY: 0 ? 1 ? 2 ? 3 ? b ? 5 ? 6 ? 7 ? 8  

9 ? 10? I1 ? 12 7 13 ? 14 ? 15 

I SPACE 
I NTRAN. S FOURBY, #4. 

; Now FOURBY = 0 ? 4 ? 8 ? 12  ? 1 ? 5 ? 9 ? 13 
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TRANSP . .Matrix transpose 

TRANSP . (H,S,D) V:=V 

Purpose: Transpose a two-dimensional matrix, moving it to a different, non-overlapping area of 
memory in the process. (The INTRAN instruction transposes a matrix without moving it, but 
requires that the matrix be square.) 

The  instruction expects the matrix to be stored in row major order with its first element at OP2. 
The  result of the transposition appears in row major order with its first element at OP1. 

Registers RO and R1 respectively specify the number, of rows and columns in the source matrix. 
Registers R2 and R3 specify the number of columns to ignore between each row in the source and 
destination matrices respectively. T o  transpose an entire matrix, one sets R2 and R3 to zero; to 
transpose a submatrix, one sets R2 and R3 to skip over the columns that lie outside the submatrix. 

The  number of rows (and the number of columns) in the source matrix must be a multiple o f 8  for 
halfword precision (or 4 for singlewords, or 2 for doublewords.) 

% .  

Restrictions: None 

Exceptions: None 

Precision: All elements of the source and destination matrices have the precision specified by the 
modifier. ROD R 1, R2, and R3 are singlewords. 

transpose the following matrix: 

use the TRANSP instruction like this: 

; Assume the mat r ix  i s  stored as a s e r i e s  o f  doublewords 
; i n  the fo l lowing  order: 8.1 2 3 4 5 6 7 
I SPACE 

M0V.S.S %R0,#2 ; Number o f  rows 
M0V.S.S %R1,#4 ; ~umbek o f  columns 
fl0V.S.S %R2,#0 : Do not skip anything 
fl0V.S.S %R3,#0 
TRANSP,S NEWPLACE.TWOBY4 

; The r e s u l t  i s  a s e r i e s  o f  doubleuords in the f o l  louing 
: order: 0 4 1 5  2 6 3 7 
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As an example of how to use R2 and R3  to transpose a submatrix, suppose we have the 
following matrices (in Pascal notation): 

VAR A: ARRAY [0..ARows, 0..ACols-11 OF INTEGER; 
B: ARRAY [0. . BRous, 0. . BCo l s-11 OF I'NTEGER; 

and we want to transpose the submatrix of A whose origin is A[Ax,Ayl and whose size is SRows 
by SCols, storing the result in the submatrix of B whose origin is B[Bx,Byl. Assuming the 
submatrices are proper (that is, they truly fit within A and B) we can use the following 
instructions: 

MOV. S. S XR.0, SRorto ; Number a f  rows i n  siibl~~e 11. i  x 

MQV.S,S XR1,SColo 1 Number o f  oolumns i n  submat i - ix  
M0V.S.S XR2,ACols 
SUB.S %R2,SCols ; S k i p  (ACols-SCols) columns.betueen source r o u s  
fl0V.S.S %R3,BCols 
SUB.S %R3,SCols ; Skip (BCols-SCols) columns between d e s t  rows 

MOVP. P. A RTB, B [By1 T 2  
ARR I NO. RTB 4*BCo l s, Bx ; RTB: =ADDRESS (€j [Bx, Bgl ? 
TRANSP. S (RTB) , (RTAI 
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MATMUL Matrix multiply 

MATMUL . (H,S,D) 
FMATMUL . (H,S,D) 

Purpose: Multiply two 2-dimensional matrices stored in memory in row major order. OP1 is the 
first singleword of a 9-singleword vector which describes the two source matrices and the destination 
matrix. 

. Word 
0 
1 

Meaning 
Number of rows in source matrix 1 
Number of columns in source matrix 1 
Number of columns in source matrix 2 
Number of columns to skip between rows of source matrix 1 
Number of columns to skip between rows of source matrix 2 
Number of columns to skip between rows of destination matrix 
Poirrter to origin of source matrix 1 
Pointer to'origin of source matrix 2 
Pointer to origin of destination matrix 

OP1[3lt2, OP1[4lT2, and OPlC51t2 are used when multiplying submatrices. To multiply entire 
. . 

matrices, one ordinarily sets these to zero. 

Like VFDOT, FMATMUL and MATMUL accumulate results internally in the greatest feasible 
precision regardless of the precision of the result. , 

Restrictions: ,None 
. . 

Exceptions: INT-OVFL (for MATMUL); F L T J A N ,  FLT-OVFL, and .  F L T N N F L  (for 
FMATMUL) 

Precision: Every element of each matrix has the precision specified by the modifier. O P  1 is the first 
element of a, vector of 9 singlewords. 

Fe following example multiplies the two matrices shown and stores the result in matrix D: 1 

; Rows i n  source m a t r i x ' l  
; Columns i n  source mat r ix  1 
; Columns i n  source mat r ix  2 
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M0V.S.S %R4,#0 
M0V.S.S %R5,#0 
R0VP.P.A %R6,A ; P o i n t e r  t o  source m a t r i x  1 
M0VP.P.A XR7,B ; P o i n t e r  t o  source m a t r i x  2 
M0VP.P.A XR8,D ; ? o i n t e r  t o  d e s t i n a t i o n  m a t r i x  
MATMUL. S %R0 

A s  an example o f  how to mult iply submatrices, assume we have the following matrices (in Pascal 
I 

notation): 

VAR A: ARRAY [B..ARows-1, 0..ACols-11 OF REAL; 
0: ARRAY C0. . BROWS-1, D. . QCo Is-11 OF REAL; 
01 ARRAY EB. e DRo~a. - l ,  Qi i DCO I 9-11 OF REAL; 

and that we want to mult iply the submatrix whose origin is at A k x , A y l  w i th  the submatrix 
whose origin is at BEBx,ByI, storing the -result in D[Dx,Dyl. T h e  submatrix o f  A has R rows by 
S columns and the submatrix o f  B has S rows b y  .T columns. Assuming further that the 
submatrices are proper (that is, they fit. inside the corresponding matrices), we can use the 
following code: 

M0V.S.S DESC,R ; Number o f  rows i n  source m a t r i x  1 
M0V.S.S DESC+4*1,S ; Number o f  columns i n  source m a t r i x  1 
MOV . S . S DESC+4*2, T : Number s f  columns.. i n  source m a t r i x  2 
M0V.S.S DESC+4*3,ACols 
SUB. S D E S C + ~ * ~ ,  S ; S k i p  (ACol s-S) columns . b e t ~ e e n  rows i n  m a t r i x  1 
MBV.5.S nF5C+4m4,RCnl~ 
SI IR . S OFSC+brrl,  T ; S k i p  (0Co l o-TI c o l  umna between rot lo i n  m a t r i x  2 
M0V.S.S DESC+4*5,DCole 
SUB.S DESC+4*5,T ; S k i p  (OCol s-TI columns betueen rows i n  

; d e s t i n a t i o n  

M0VP.P.A RTA,A[Ayl'i'2 
ARRIND.RTAACols,Ax . 

M0VP.P.P DESC+4*6,RTA ; P o i n t e r  t o  ACAx,AyI 

M0VP.P.A RTA,B[Byl'i'2 
ARRIND.RTA BCols,Bx 
M0VP.P.P DESC+4*7,RTA ; P o i n t e r  t o  B[Bx,ByI 

M0VP.P.A RTA,DCDylT2 
ARRINO.RTA DCols,Dx 
R0VP.P.P DESC+4*8,RTA ; P o i n t e r  t o  D[Dx,DyI 
FMATMUL.S DESC 
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FFT In-place complex FFT and inverse FFT - 

CFFT . (H,S) V:=V 
FCFFT . (H,'S) V:=V 
CFFTV . (H,S) : V:=V 
FCFFTV . (M,S) V:=V 

Purpose: Compute the fast Fourier transform (FFT) or inverse fast Fourier transform of a vector of . 

complex numbers.. . 

CFFT and FCFFT compute the FFT, with CFFT .operating on complex signed integers and FCFFT 
on complex floating point numbers. 

CFFTV i d  FCFFTV compute the inverse FFT, with CFFTV operating on complex signed 
integers and FCFFTV on complex floating point numbers. 

For all four instructions,, O P  1 .designates the first element of the vector to be transformed. In each 
case, the instruction puts its results back into the original source vector. The  number of elements in 
the vector must be a power of 2; OP2 contains that power (i. e., the base 2 logarithm of the number 
of elements). If OP2 is not positive, the instruction leaves the vector untouched. 

. . 

If the source vector exceeds the maximum allowable length, an FFT-TOOLONG soft trap occurs. 
(This limit is implementation-dependent; see Section 1.12.) If desired, one can provide a software 
trap handler that operates transparently to the user on vectors of arbitrary size, transforming a 
lengthy vector by repeatedly applying the instruction to subvectors. 

The  last step of the FFT algorithm is a "scrambling" operation which swaps elements of the vector 
whose indices within the vector are bit reversals of each other. (For example, in a 16-element vector 
where i,nrlic~s range from 0 to 15, this scrambling would swap element 12 with element 3 because 
reversing the bits of the four-bit binary representation of 12 yields 3. Similarly, the scrambling 
would swap element 1 with element 8, and so on.) Because this step represents a considerable 
fraction of the time required for the total FFT, the architecture does not incorporate it in the FFT 
instructions themselves, but provides a ieparate instruction called BADREV to perform it. 

Similarly, "scrambling" is the first step of the complete inverse FFT algorithm, but it is omitted from 
the inverse FFT instructions, which expect their source arrays to be scrambled. 

Thus, a complete FFT would require the CFFT instruction (for example) followed by the BADREV 
instruction. A complete inverse FFT would require the BADREV instruction followed by (for 
example) the CFFTV instruction. 

Providing a separate instruction for swapping elements saves time in many applications where one 
wants to transform a signal, operate on it, and transform it back. Because the FFT instiuctions 
produce a scrambled result and the inverse FFT instructions expect a scrambled input, one can 
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simply omit to unscramble and rescramble between them--provided the operations that take place 
between the FFT and inverse FFT instructions preserve the scrambled order. 

~estr ic t ions:  None 

Exceptions: INT-OVFL, (for CFFT and CFFTV); FLT-OVFL, FLT-UNFL, and FLTJAN (for 
FCFFT and FCFFTV) 

Precision: Every element of the vector has the precision specified by the modifier. OP2 is a 
singleword. 

F n s i d e r  a simple filtering operation where one transforms the input signal, multiplies it by a 
vector of selected filter coefficients, and transforms it back. One could write: 

1 
HOVP.P.ARTA,COEFtTC ; P o i n t  t o  f i l t e r  c o e f f i c i e n t s  
CFFT.S INPUT,LOGSIZE ; FFT 
BADREV.0 INPUT 
VUSX".S OUTPUT,INPUT ; F i l t e r  s i g n a l  u s i n g  c o e f f i c i e n t s  
BA0REV.D OUTPUT,LOGSIZE 
CFFTV.S OUTPUT,LOGSIZE ; I n v e r s e  FFT 

But by scrambling the coefficient vector itself (an operation which need be performed only once 
no matter how many signals are to be passed through the same filter), 

BADREV.0 COEFFIC 

one can remove both BADREV np~rations from the prcccding Bequence: 

NOVP.P.ARTA,COEFFIC ; P o i n t  t o  s c r a m b l e d c o e f f i c i e n t s  
CFFT.S INPUT,LOGSIZE ; FFT 
V"SX".S OUTPUT,INPUT : F i l t e r  u s i n g  scrambled coefficients 
CFFTV.S OUTPUT,LOGSIZE ; I n v e r s e  FFT 

T h e  following example uses the FCFFT, RAT)REV, and INTRAN inst~uetions toge~l~er to 
perform a two-dimensional FFT; 

;2DFFT - Two d imens iona l  complex FFT 
; h a l f - w o r d  f l o a t i n g - p o i n t  
;Transform complex 2D a r r a y  whose o r i g i n  i s  i n  ORG 
;S ize  o f  a r r a y  i s  2TLOGSIZE by 2tLOGSIZE 

; 
; C a l l e d  v i a  JSR PC,2DFFT 

* 
ZDFFT: SHF.LF.S RTA,#l,LOGSIZE ;Get number o f  rows (and columns) 

fl0V.S.S ESIZE,RTA ;Save number o f  e lements i n  rows and columns 
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SHF.LF.S SIZE,RTA,#2 
MOVP.P.P .T,ORG 
fl0V.S.S RTA,ESIZE 

2 d f f t l :  FCFFT.H (T1,LOGSIZE 
BADREV.S (T1,LOGSIZE 
A0D.S T,SIZE 
DJNPZ.GTR R T A , Z d f f t l  
1NTRAN.S (ORG1,ESIZE 

' fl0VP.P.P T,ORG 
, fl0V.S.S RTA,ESIZE , 

2 d f f t 2 :  FCFFT.H (T1,LOGSIZE 
BADREV. S (T 1 , LOGS I ZE 
ADD.S T,SIZE 
DJflPZ.GTR RTA,Zdfft2. 
1NTRAN.S (ORG1,ESIZE 
RETSR PC, (SF) 

L . :  

;Convert  t o  ha l f -word  complex s i z e  and save 
; I n i t i a l i z e  row p o i n t e r ' t o  f i r s t  row 

.: 
;Loop coun te r  
;Transform. a row '  
;Un-bi t 7 r e v e r s e  t h i s  row 
;Ste@ t o  n e x t  row 
;Last  row? 
. . 
;Transpose a r r a y  

; Transform a ,co l umn 

; ~ n - b i  t - reve rse '  th  i s c o  1,umn 

; s t e p  t o  next '  column 
;Last  column? 
;Transpose a r r a y  back 
;Re turn 
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,~ 

BADREV In-place bit address reversal 

BADREV . {H,S,D) V:=V 

Purpose: Within a vector, swap each pair of elements whose addresses represent bit-reversals of 
each other. The instruction is primarily useful in conjunction with the FFT and inverse FFT 
instructions. 

T h e  last step of the FFT algorithm is a "scrambling" operation which swaps elements of the vector 
whose indices within the vector are bit reversals of each other. (For example, in a 16-element vector 
where indices range from 0 to 15, this scrambling would swap element 12 with element 9 hecause 
reversing the bits of the four-bit binary representation of 12 yields 3. Similarly, the scrambling 
would swap element 1 with element 8, and so on,) 

O P 1  is the first element of the vector to be scrambled; the instruction puts the results back into the 
same vector. The number of elements in the vector must be a power of 2. OP2 specifies that power 
(or, in other words, the base 2 logarithm of the number of elements). If OP2 is not positive, the 
instruction leaves the vector .untouched. 

Restrictions: None 

Exceptions: None 

Precision: The  elements of the vector all have the precision specified by the modifier. CP2 is a 
singleword. 

p t e  that when one uses BADREV to complete an FFT operation, the precision must be iwice 

each data point comprises two values: 

1 
that of the FFT instruction because the vector in question contains complex numbers and ti;r.:~s 

CFFT. S SIGNAL : Fourier transform leaves the vector 
; scranibled 

BADREV. D S I GNAL ; Undo the  scrambling 
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QPART Quicksort partition inner loop 

QPART 
. . v:=v 

Purpose: Pipelined processors must predict with considerable accuracy whether conditional branch 
instructions will alter the flow of control, or execution speed suffers. Because sorting algorithms 
usually contain unpredictable conditional branches, the architecture provides an instruction to 
perform the inner loop of the Quicksort algorithm, eliminating branches. 

OP1 is a pointer to the first element of a vector of records and OP2 is a pointer to the last record in 
the vector. Each record consists of a singleword key followed by a singleword of data (typically a 
pointer to a larger amount of data). 

RTA contains a partitioning value. . 1 

The instruction rearranges the elements of the vector, segregating them into two groups so that all 
the records in one group have keys exceeding RTA and all the records in the other have keys less 
than or equal to RTA. Within each group, the records may still be disordered (though in moving 
records about to achieve the segregation, the instruction does attempt to order them locally); the 
instruction guarantees merely to partition the vector into two groups relative to the value in RTA. 

T 

When the instruction finishes, the first part of the vector contain; the group of records with keys 
less than or equal to RTA, and OP2 points to the last record in that group. OP1 points to the next 
record, which is the first record in the group whose keys exceed RTA. RTA contains a code that 
reports the status of the two partitions: t 

, 0 , The lower partition is sorted, but the upper one is not. 
1 The upper .partition is sorted, but the lower one is not. 
2 Both partitions need sorting. The  upper has fewer,records. . ! 

3 Both partitions need sorting. The  lower has fewer records. : 
. . 4 Both partitions are sorted. 

In simplified form, the instruction does the following: 

Before 

I Not sor ted  by key I 

After  
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Restrictions: None 

Exceptions: None 

Precision: Each element o f  the vector is a pa i r  o f  singlewords, the first serving as a key and the 
second as data which the instruction moves along wi th  the key. RTA is a singleword. 

F h e  fol lowing exarnpie illustrates how to use QPART to implement the complete quicksort 
algorithm: 

1 
; Q u i c k s o r t  
: C a l l e d  v i a :  .ISR #-l.,QUICKSORT 
; On e n t r g  : 
; LOW - p o i n t e r  t o  f i r s t  r e c o r d  o f  a r r a y  t o  be s o r t e d  
; HIGH - p o i n t e r  t o  l a s t  r e c o r d  o f  a r r a y  t o  be s o r t e d  

i (HIGH must immedia te ly  f o l l o w  LOW) 
; On e x i t  : 
: A r r a y  between LOW and HIGH i s  c o m p l e t e l y  s o r t e d  
QU I CKSORT : 

ADJSP.UP SP,#10 ;Reserve space t o  save HIGH and LOW 
; l a t e r  on 

QUICK1: SUB.S RTB,HIGH,LOW ; C a l c u l a t e  s i z e  o f  a r r a y  - 8 
SHFA.RT.S RTB,#4 ;Get h a l f  t h e  s i z e  

; ( i n  double-words) 
SEXCH. D (LOW) , (HIGH) ;Swap t h e  f i r s t ,  l a s t .  and m i d d l e  
SEXCH. D (LOW) 0 [RTBI t3 ,  (HIGH) ; words nf the a r r a y  as necoooary 
SEXCH. D (LOW 1 , (LOW 0 bRTB103 ; sn f i r s t c m i d d I ~ ~ . I o r c  
M0V.S.S RTA, (LOW)0[RTBlf3 ; P a r t i t i o n  a r r a y  around m i d d l e ' s  v a l u e  
M0V.D.D (SP)-lB,LOW ;Save h i g h  and low p o i n t e r s  
OPART LOW,HIGH ;Do t h e  p a r l i t i o n l n g  
JNPA QU I CK2 CRTAI 03 :D i spa tch  t o  c o r r c c t  r n u t i n c  

QUICk'f: ; W  i ' spatch  t a b l e .  
; I t  i s  impor tan t  t h a t  a l l  s e c t i o n s  (except  t h e  l a s t )  
; be t u o  words long 

; S o r t  upper h a l f  o n l y  => t a i l  r e c u r s i o n  
M0V.S.S HIGH, (SPI-4 
JNPA QUICKl 

; S o r t  lower h a l f  o n l y  => t a i l  r e c u r s i o n  
M0V.S.S LOW, (SPI-10 
JNPA QUICKl 

; S o r t  upper f i r s t  then lower => f u l l  r e c u r s i o n  
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EXCH.S HIGH, (SPI-4 
JMPA QUICKSORT 

. . 
;Sor t I'ower then upper => f u  l l . recurs i b n  

EXCH. S LOW, (SP) -10 
. . 

JMPA QUICKSORT 

; A l l  s o r t e d  
M0VP.P.A SP, (SPI-10 ;D isca rd  t h e  HIGH and LOW j u s t  saved 
R0V.D.D LOW, (SP) -10 ;Restore p r e v i o u s  HIGH and LOW 
: I f  LOW i s  t h e  -1 v a l u e  pushed by t h e  JSR t h a t  invoked t h e  q u i c k s o r t ,  
; we're f i n i s h e d ,  so r e t u r n  t o  t h e  c a l l e r .  Otherwise,  t a i l  r e c u r s i o n  
; c o n t i n u e s  s o r t i n g .  
JMPZ. GEQ. S LOW, QUICK1 ; Ta i l r e c u r s  i on 

L 
RET (SPI-4, (SP) ;D isca rd  -1 and r e t u r n  t o  o r i g i n a l  c a l l a r  

J 
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2.6 Chained Vectors 

. These instructions perform arithmetic on vectors, often combining two or more operations. This 
results in faster execution not only because it reduces the number of instructions the processor must 
fetch--a single multiply-and-add instruction can take the place of a multiplication followed by an 
addition, for example--but also because the processor can use its adder and multiplier in parallel. 

Because the mnemonics for chained vector instructions explain themselves, and because the 
arithmetic operations are logical extensions of those for scalars, this section will not describe each 
instruction in detail. 

Each mnemoni'c consists of a V followed by up to two letters definlng the data type and then an 
equation within quotation marks: 

For <data type>, a "CF" indicates complex floating point, a "C" alone indicates complex signed 
integer, and "F" alone indicates floating point. If <data type> is missing, the instruction deals with 
signed integers. 

Within the equation, "X", "Y", and '2'' are the first, second, and third source vectors whiie "S" and 
"R" are the first and second source scalars. As in algebrz, concatenating variables indicates 
multiplication. 

Thus, for exai-nple, the instructiorc: 

performs the operation: 

FOR i:=0 TO SIZEREG-I DO 
QPl [ i l  :=OF1 [ i l  + RTA x Q P Z [ i l  
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Two Vector Operands and One Scalar 

S+X, S-X, SX 

V"S+X" . {H,S,0) W:=VS 
VFmS+X" . {H,S,B) Vi=VS 
FOR i:=O TO SIZEREG-1 D O  OPl[il:=RTA + OP2[il 

V1'S-X" . {H,S,DQ V:=VS 
VF1'S-X" . {H,S,D) V: =VS 
FOR i:=O TO SIZEREG-1 D O  OPlCil:=RTA - OP2[il 

V"SXm' . {H,S,D) V:=VS 
VF"SXII . {H,S,D) W:=VS , .  

FOR i:=O TO SIZEREG-1 D O  OPl[i]:=RTA u 032[i l  
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Three Vector Operands 

X+Y, X-Y, Y-X. XY 

VmX+Y" . {SR,QP'l). (H,S,D) V: =VV 
VFWX+Y" . (SR,8%91} . (H,S,D] V:=VV 
FOR i:=O T O  SIZEREG-1 D O  

IF (modifier O?) THEN O P  l[i]:=OP l[il + OP2[il 
ELSE SRO@[il:=OP 1CiI + OP2[il 

wl'x-yl' . (SR,OBI 2 . (H,s,D) v.: =vv 
VPB'X-Y1' . {SW,OB.%) I gCJ,s,ed> V:=VV 
FOR i:=O T O  SIZEREG-1 D O  

IF {modifier O P )  THEN O P  l[il=OP l[i] - OP2[i1 
~ L S E  S;RO@[ll=OP l h j  - O?,XiI 

". - .. 

V"Y-X" . (SR,OPl] . {H9S,D) V:=VV 
VF2'Y-X'l . {SR,OP'I) . {H,S,D) V:=VV 
FOR i:=O T O  SIZEREG- 1 DO 

IF (nodifier O P )  THEN O P  l[il:=OP2iil - O P  l[il 
ELSE SROe[iI:=OPZ[il - GP liil 

V1'XY" . {SR,BPI) . {B.O,S,D) V:=VV 
WFs'Xa/" . {SR,OPI}. {W,S,D] V:=VY 
VCalXYs' . {SR,CP1) . CH,S) V:=VV 
VFCI~XYI~ . {SR,OPII) . {H~S) V:=WV 
FOR i:=O TO SIZEREG-I DO 

IF (modifier OP] THEN O P  l[il:=OP l[il u OP2[iI 
ELSE SRO@[il:=OP 1[il * OP2CiI 
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Three Vector Operands and One Scalar 
. . . . ,  . . 

X+SY. SX+Y, SY-X, SX-Y, SX+SY. SX-SY, S+XY, s-XI? 

VmX+SY" . {SFi,OP'I). {H,S,,D> V:=VVS 
VF"X+SY1\ {SR,QP4) . {#,S,D) V:=VVS. . . 

FOR i:=O T O  SIZEREG-1 DO . 

IF (modifier OP) THEN O P  l[il:=OP l[il + RTA * OP2[il 
ELSE SRO@[il:=OP 1CiI + RTA #( OP2iil 

V-SX+Y" '. {SW,OPI 1 . {H,s,D) v:=wvs. 
VFW%X+Y" . {SW,OPI>. {W,S,D> V:=V&*S 
FOR i:=O T O  SIZEREG-1 DO . . 

IF .(modifier OP] THEN O P  l[il:=RTA 'a O P  1EiI + OP2[il 
ELSE SRO@[il:=RTA * OPl[il + OP2[il 

~ ~ ~ s v - x ~ ~  . {SW,OPI~ . {H,S,D) v: =vvs  
VFnlSY-X1l . {SW,09)4) . (H,%,D} V:=VVS 
FOR i:=O T O  SIZEREG-1 DO 

IF (modifier OP) THEN O P  l[i]:=RTA * OP2iil - G P  l[il 
ELSE SRO@[il:=RTA a OP2[i! - OPl[il 

V'lSX-Y1l . {SR,OPI> . (H,S,D} V:=VVS 
VF~SX-Y" . <GSR,OPI~ . {w,s,D] V:=\IVS 
FOR i:=O T O  SIZEREG-1 DO 

IF (modifier OP)  THEN OPl[i]:=RTA * OPl[il - OP2[il 
ELSE SRO@[il:=RTA a OPl[il - OP2[il 

V"SX+SY" . {SW,OQI} . {H,S,D} W:=WVS 
VF"S)(+SY1' . {SR.OPl) . {HISID) V:=W,VS 
FOR i:=O T O  SIZEREG-1 DO 

IF (modifier OP) THEN O P  l[iI:=RTA * (OP l[i] + OPZ[il) 
ELSE SRO@[il:=RTA * (OP l[ij + OPZ[il) 

V1'SX-SY1l . {SW,OPl} . {H,S,D) W:=VVS 
VF~~SX-SY" . {CSR,OQI] . {H,s,D) V:=VVS 
FOR i:=O T O  SIZEREG-1 DO 

IF (modifier OP} THEN OPlCiJ:=RTA * (OPlLiI - c)PZ[~I) 
ELSE SRO@[il:=RTA a (OPl[il - OP2[il) 

V ~ S + X Y ~  . {SR,OPI 1 . CH,S,D) v:=wvs 
VF"S+XY'\ {SR,OP1} . {H,S,D} V:=VVS 
FOR 1:=0 TO SIZEREG-1 DO 

IF (modifier OP) THEN OPl[iI:=RTA + (OPl[il * OP2[i1) 
ELSE SRO@Lil:=RTA + (OPl[il * OPZCi]) 
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vmms-xvan . {SR,OPI . {H,s,D) V:=VVS 
VF'IS-XY" . (SR,8P1] . {H,S,D) W:=VVS 
FOR i:=O 'TO SIZEREG- I DO 

IF (modifier OP) THEN OPl[i]:=RTA - (OP1CiI u OPZ[il) 
ELSE SROe[il:=RTA - (OP l[i] rk OPZ[iI) 



2.6 Chained Vectors 

TWQ Vector Operands and Two Scalars 

V"S+RXm . {H,S,D} V:=VSS . , .  . . . ., 

VF"'S+RX" . {H,S,D} ' V:=VSS ' , .. . . . . . O  ) . ' :  . 
I ,  : . : . .  .. 

VC"S+RX" . {H,S} V:=VSS . . . . .  . . ,  

WFC"S+RX" . {H,S} . .' . . , V:=VSS . . . 
. , .  

FOR i:=O TO SIZEREG-1 DO OPl[il:=RTA + RTB :* OP2CiI . . . 
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Four Vector Operands 

V-X+YZ" . {SR,OPI}. CH,S,D} v:=wvv 
VFWX+YZ" {sR~OPI}.  {HyS,D} V:=VVV 
FOR i:=O T O  SIZEREG-1 DO 

IF (modifier OP) THEN OP l[i]:=OP l[il + OP2CiI * SROdil 
ELSE SR le[i]:=OP 1[il + OP2[il * SROdil 
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MOW Logical move 

XOP 

Purpose: OPl:=OP2. If OP2  has greater precision than OP1, the low-order bits ,of OP2 are used. 
If O P 2  has smaller precision than OP1, it is zero-extended to the left. This is best thought of as a 
logical" or "unsigned" move operation. No conditioil bits (e.g., carry or integer overflow) are 
affected. Note that the TRANS instruction can be used to perform sign-extended or truncated 
integer moves. 

It is preferable to use FTRANS rather than M ~ V  an floating point numbers, because the former 
will execute faster on most implementations. 

Exceptions: None 

Precision: T h e  two modifiers specify the precisions of OP1  and OP2 respectively. 

p e  following copies the low-order QW of RTA into the high-order QW: 

T h e  next example shows how MOV extends an integer with zeroes rather than sign bits: 

; HIH := 800777 oc ta l  
; RTB := 777777 octa l  
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NIO\/MQ Move many quarterwords 

MOVMQ. ( 2 .. %2,64) XOP 

Purpose: Moves a series of quarterwords beginning with OP2 into the series of quarterwords 
beginning with O P  1, so that O P  1:=OP2, NEXT(0P I):=NEXT(OP2), and so on. The  modifier 
specifies how many quarterwords to move. If the source and destination regions overlap, .the result 
is undefined. Unlike vector instructions, M0,VMQcan access the registers. 

Restrictions: None . . 

Exceptions: None ' 

Precisi~n: This instruction deals with quarterwords for both source and destination precisions.. : , 

F h e  following copies the three high-order QWs from RTA into RTB: . . . . .  . 
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MOVIWIS Move many singlewo;ds 

MOVMS . ( 2 .. 32 1 XOP 

Purpose: Moves a series of singlewords beginning with OP2 into the series of singlewords beginning 
with OP1, so that OPl:=OPZ, NEXT(0P I):=NEXT(OP2), and so on. The  modifier specifies how 
many singlewords to move. If the source and destination regions overlap, the result is undefined. 
Unlike vector instructions, MOVMQcan access the registers. 

. . 

Restrictions: None 

Exceptions: None , 

Precision: This instruction deals with singlewords for both sourCe and destination precisians. 

F h e  following saves all the registers from RTA on in a block strrting at SAVEBK: 

NOVNS.28 SAVEBK,RTA 

1 

The  following clears the registers: 

L 
flOVR9.32 XRB, #0 
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VlNl Vector initialize 

. .,.. , . 

VINI ; (QH,S,D) V:=S 

Purpose: Initialize each element.of a vector OP 1 to match the scalar OP2. 

Restrictions: None 

6 

Exceptions: None 
# -. 

Precision: The elements of the vector OP1, like the scalar OP2, have the precision specified by the 
modifier. . . 

F h e  following stores in each element o f  A the value, in RO:. ; . . ,  :. ! . _ _.. . . 
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VREV Vector reverse 

VREV . (HsSsD) V:=V 

Purpose: Reverse a vector end-for-end by swapping the first element with the last, the second 
element with the next-to-last, and so on. O P 2  is the first element of the source vector and OP1 is 
the first element of the destination. Either O P 1  and OP2 must be identical or the two vectors must 
not overlap at all; otherwise, the result of the instruction is undefined. 

Restrictions: None 

Exceptions: None 

Precision: The  elements of the two vectors have the precision specified by the modifier. 

Fe following stores in DOWN the reverse of the vector in UP: . . l  
R0V.S.S SIZEREG,#5 
VTRANS.S.S UP, C1 ? 1 ? 3 ? 4 ? 51 
VREV.S DOWN,UP ; DOWN := 5 ,  4 ,  3 ,  2, 1 
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EXCH Exchaiige 

EXCH . (QH,S,D) XOP 
VEXCH . (QH,S,D) . . . .V:=V 

Purpose: EXCH exchanges OPl,  with ,OP2; VEXCH exchanges vector..OP 1 with vector.OP2,. ,.. 
L +  

. . 

Restrictions: None . . . .  , 

Exceptions: None . . . .  .. . . . .  

Precision: O P  1 and OP2 each have the precision specified by the modifier. . , .  , . .  .. . j . .. 

. . ::: F h e  following swaps RTA and RTB: . . . , ,,. , . .l 

One' can contrive a situation where the result depends on two rules: the processor;.prefetches 
operands, e d  X O P  inskuctioos store OPl after storing OP2: 

.. .. 

fl0V.S.S RTA,#5 
fl0V.S.S RTA1,#6 
fl0V.S.S RTB,#7 
EXCH.0 RTA,RTAl ; RTA:=6; RTA1:=7; RTB:=6 

; ( f i r s t  RTA1:=5 a n d  RTB:=~;  then 

L 
; RTA: =6 a n d  RTA1: =7) 
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SEXCH, USEXCH Signed and unsigned sorted exchange 

SEXCH . (Q,H,S,D) 
USEXCH . (Q,H,S,D) 

XOP 
XOP 

Purpose: If OP1 > OP2 then exchange OP1  with OPZ. The  instruction requires read and write 
access to both O P 1  and OP2  even if the'inequality is false and no exchange takes place. SEXCH 
treats the operands as signed integers, whereas USEXCH treats them as unsigned integers. 

'Restrictions: None 

Excey tioas: Noise 

Precision: OP1 and OP2 each have the precision specified by the modifier. 

Fe following rwzps RTA and RTB only if RTA > RTB: 
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SLR Save and load register 

SLR, . ,( RO .. RI1 ) . XOP 

Purpose. Loosely speaking, the instruction saves the contents of the register specified by the modifier 
in OP1  and then loads that register with OP2. ., r : 

More precisely, note that..the processor prefetches operands and that X O P  instructions store into 
O P l  last. ThusSLR effectively does the following: . .  . 

TEMP l:=Rn . . .  . . .  

TEMPP:=OPZ . . 

R~:=TEMPz . . 

0,P l:=TEMP 1 
$ .  . . . .  . .  

, :. 1 

As illustrated belo&, one can contrive'situations where this behavior makes a difference. 

~estrictions: None 

~ x & ~ t i o n s :  None 
, 

Precision: A11 operands involved are singlewords. The  modifier must be a multiple of 4 wittiin the 
range 0 .  . 124. 

" . . 3 

F h e  first instruction moves RTA into RTB and zerk RTA; The  second a n d  third instructions 1 
, show what happens when one of the operands is the register specified in the instruction. The  

fourth shows what happens when the operands are the same. 
. , 

SLR. nTA RTD, #8 ; RTB: =RTA, RTA: -0 
SLR.RTA R T A , F  ;essentially a NOP ' 

; .(TMPR: =REG; TMP2: =OPZ; REG: tTVP2;  OP1 :.=TflPR) 
. , 

; (TMPR: =RTA; . TVP2: =F; RTA: =TMPZ; RTA: =TflPRI 

SLR.RTA F,RTA ; e f f e c t i v e l y  VOV F,RTA 
; (TMPR:=RTA; TVP2:sRTA; RTA:=TVP2; F:=TEflPR) 

SLR.RTA F,F ; e f f e c t i v e l y  EXCH RTA,F - 

; (TMPR: =RTA; TflP2: =F; RTA: =TflP2; F: =TflPR) 
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SLRADR Save and load register with address 

SLRADR . ( RO .. R31) ' XOP 

Purpose: Loosely speaking, the instruction saves in O P 1  the register specified by the modifier and 
then loads the register with ADDRESS(OP2). 

Because the processor prefetches operands, and because XOP instructions store into OP1 last, it is 
more precise to say that: 

TEMP l:=Rn 
Rn:=ABDRESS(OP2) 
OP l:=TEMP 1 

As illustrated below, one can concoct examples where this behavior makes a difference. 

Restrictions: None 

Exceptions: None 

Precision: All operands involved are singlewords. The modifier must be a multiple of 4 in the range 
0 . .  124 

F h e  first instruction moves RTA into RTB and puts ADDRESS(F) in R T A .  The  second shows 

shows what happens when the operands are the same. 

1 
w h a  happens when the first operand is the register specified in the instruction. The  third 

SLRADR.RTA RTB,F ;RTB: =RTA, RTA: =ADDRESS (F) 
SLRADR.RTA RTA.F ; e f f e c t i v e l y  a NOP 

; (TflP: =REG: REG: =ADDRESS (OP2) ; OF1 : =TtlP) 
r (TIPI -RTA! RTAr -ADDRESS ( F I B  RTA e -Tf lPl  
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ARRIND 

175 

Array index 

XOP 

Purpose: RTA:= (RTA + OPl  MC OP2) Modulo 2" or RTB := (RTB + OP1 * OP2) Modulo 2". 
The instruction uses RTA (or RTB) to accumulate an array index. 

Restrictions: None 

Exceptions: None 

Precision: All operands are singlewords. 

p v e n  the following fragment of a Pascal program: 

TYPE DECADE = 0 .. 9; 
V AR 

I, J: DECADE; 
TABLE: ARRAY [DECADE, DECADE1 OF INTEGER; 

BEG I N  
... 
TABLE [ I ,  J l  : 525; 

. . .one might implement the assignment statement with the following code: 

N0V.S.S RTA, J 
ARRIND.RTA # l o . ,  I ; index i s  10 * I + J 

L 
MOV. S. S TABLE CRTAI 92, #25. ; TABLEC1,JI := 25 
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NIOVP Move pointer 

MOVP . (P,R) . (P,R,A) XOP 

Purpose: Move pointer, optionally transforming it. 

This instruction deals with three kinds of "pointers", as the modifiers "P", "R", and "A" indicate. "P" 
specifies true pointer format, with tag and address. "R" specifies an untagged relative address, simply 
a signed displacement (in quarterwords) from the address of the pointer itself. "A" specifies the 
virtual address of the operand instead of the operand itself. 

Thus there are ~ i x  cmes! 

M0VP.P.P Treat Or2 as a tagged pointer, validate a copy of it according to the rules of 
Section 1.8.3 (possibly altering the tag or invoking the BAD-P-VALIDATION 
hard trap) and store the resulting tagged pointer in OP1. A pointer with a fault 
or reserved tag will cause a BADSOINTER-TAG hard trap, but a pointer 
with a NIL or gate tag will not. 

M0VP.R.P Treat OP2  as a tagged pointer and validate a copy of it according to the rules of 
Section 1.8.3 (possibly altering the tag or invoking the BADS-VALIDATION 
hard trap). If the resulting tag i s  NIL, store the validated pointer in OP1. 
Otherwise, if the result is a tag for the current ring, subtract ADDRESS(OP1) 
from the address field within OP2, and store the result in OP1. Otherwise, a 
BAD.,-P VAL.IDATIC)N hard trap nccurs. 

This instruction need not check bounds because checking will occur whenever 
the pointer is converted back to "P" form. 

M0VP.P.R If O P 2  has a NIL tag, move it to OP1 without change. Otherwise, add OP2 to 
ADDRESS(OP2) and perform segment bounds checking. Store the address in 
O P 1  along with the tag appropriate to the ring containing OP2. 

M0VP.R.R OP2:=OP2+ADDRESS(OP2)-A DDR ESS(0P 1) 

M0VP.P.A Store into O P l  the ADDRESS(OP2) along with the tag appropriate to the ring 
contdning OP2. 

M0VP.R.A Store ADDRESS(OP2) - ADDRESS(0P 1) into O P  1. 

In every case, the operand corresponding to the "R" modifier must not be a register, or an 
ILLEGAL-OPERAND-MODE hard trap will occur. Neither operand may be a constant, or an 
ILLEGAL-CONSTANT hard trap will occur. 
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Restrictions: None 

Exceptions: None 

Precision: Both operands are singlewords. 

p e  following makes register RO point to location DATA: 

L 
NOVP. P. A R0, DATA 
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VALlDB Validate pointer 

VALIDP XOP 

Purpose: Validate the pointer OP1  with respect to the ring containing OP2. The  address for OP2 
is computed following the usual address validation rules, but OP2  itself is not actually fetched. 
(Thus this operation might cause an OUT-OF-BOUNDS trap, but not a P A G E J A U L T  trap.) 
Then, O P 1  is validated and moved to itself using the address validation level of 0 8 2  instead of 
that of O P 1  to derive the new tag. If the tag of OP1  is a ring tag and the number of the ring is 
less than the validation level of OP2, trap; if the tag of OP1  is a fault or reserved tag, a trap also 
occurc; 

If the tag of OP1  is a user tag and the validation level of OP1 is equal to the validation level of 
O P 2  then preserve the tag. 

If the tag of OP1  is a user tag and the validation level of O P I  is greater than the validation level 
of OP2 then change it to a ring tag corresponding to the validation level of OP1. 

Sections 1.8.2 and 1.8.3 describe the address and pointer validation mechanisms. 

Restrictions: None 

Exceptions: None 

Precision: Both operands are singlewords. 

p p p o s e  a process executing in ring 9 has called a routine executing in ring 1, passing it a 1 
parameter in register R27. The  routine in ring 1 could use the return address saved on the 
stack--which by definition specifies the caller's ring of execution--to assure that the pointer in 
R27 is tru;tworthy. That return address is within the save area pushed by CALLX during the 
gate crossing (Section 2.12.2) at' (SP)-12: 

VALIOP R27, (SP) -12 

J 
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BASEPTR Base pointer 

BASEPTR XOP 

Purpose: Store in OP1 a pointer to the beginning of the segment containing OP2. (The instruction 
stores ADDRESS(OP2) in OR1 and then sets to zero the low order SEGSIZE+PGSIZE bits of OP1, 
where SEGSIZE is the base 2 logarithm of the number of pages in the segment and PGSIZE is the 
base 2 logarithm of the number of quarterwords in a page.) 

Restrictions: None 

Exceptions: None 

, Precision: Both operands are singlewords. 

p & e  BP point to the beginning of the segment containing the followihg instruction: 1 
L'  

BASEPTR BP; . . . 
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RMW TOP 

Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a 
multiprocessor system) DEST:=S2 and then S2:=S 1. (More precisely, because the processor prefetches 
operands and because TOP instructions store DEST last, this instruction makes a temporary copy of 
SZ, stores S 1 in S2, and then stores the copy into DEST.) 

Other atomic instructions are MOVCSF and MOVCSS. 

Restrictions: None 

Exceptions: None 

Precision: S 1, S2, and DEST are all singlewords. 

F h e  following illustrates the use of RMW to implement a test-and-set lock for interprocessor 

and 0 if the lock is free: 

1 
communication. T h e  lock is a singleword flag which is -1 if some processor has seized the lock 

SEIZE: RflW RTA,#-1,LOCK ;attempt t o  s e i z e  lock 
JNPZ.NEQ.SRTA,SEIZE ;busy-wait i f  so t feonee lsehas  i t  
... ':do . . . 1 f lock was zero (nsw I have i t l  

. F E :  PlOV.5.SLOCK,#@ : re lease  the lock 
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MQWPHY Move physical address 

'. 
MOVPHY XOP 

Purpose: OPl:=PHYSICALADDRESS(OPZ). If OP2 is an immediate constant or a register, an 
ILLEGAL-OPERANDMODE or ILLEGAL-CONSTANT hard trap will occur. 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: OP 1 is a singleword. . . 

Fe following loads RTA with the physical address of F: , ,  . : .  1 
NOVPHY R T A , F  ;RTA:=PHYSICAL-ADDRESS(F1 

.. . . 

. . 
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RPHYS, WPHYS Readlwrite physically addressed location 

RPHYS XOP 
WPHYS XOP 

Purpose: RPHYS reads into O P 1  the contents of a memory location whose physical address is 
specified by the 34 low order bits of R3. WPHYS writes OP1 into a memory location whose 
address is specified by the 34 low order bits of R3. . 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: OP1 is a singleword. R3 is a singleword whose 34 low order bits are a physical address. 
OP2 is unused. 

p h e  following moves SOURCE to DESTINATION even if the mapping tables are changed 
following the first two instructions: 

1 
HOVPHY R3,SOURCE 
MOVPHY R2,DESTINATION 
... 
RPHYS RTA 
EXCH.5 R3,R2 
WPHYS RPA 
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Move hardware representation 

MOVHWR . (N,C) . (1,16} XOP 

Purpose: This implementation-dependent instructiofi exists for use by memory diagnostics. It reads 
words from a block beginning with OPZ and writer them to a block beginning with O P l ,  bypassing 
the cache. Depending on the second modifier, it copies either 1 or 16 singlewords. 

If the first modifier is N (for "no correction"), the instruction copies each singleword along with its 
associated error-correction bits into a doubleword, right-justified. with .leading zeros, instead .of 
applying the error correction algorithm. If the first modifier is C (.correction1'), the instruction copies 
source singlewords into destination singlewords, applying the correction algorithm and then 
discarding the error-correction bits. 

Restrictions: None. 

Exceptions: None . .. 

Precision: OP2 is the first .element of a vector of (1,161 singlewords. For MOVHWR.N, OP1  is the 
first element of a vector of {1,16] doublewordq for M0VHWR.C. OPI is the first of a vector of 
(1,161 singlewords. 

pe following example copies a vector o f  16 singlewords into a vecior of 16 doublewords, 
revealing the error-correction bits: 

1 
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2.8 Skip, Jump, and Comparison 

Skip and jump instructions branch to locations other than that of the next sequential instruction. 
Skip instructions branch within a short range while jumps branch anywhere in the z2' singleword 
address space. 

Many skips or jumps occur only if a condition specified by a modifier to the instruction is true. An 
arithmetic condition (ACOND) can be any of the following : 

ACOND = {GTR,EQL,GEQLSS,NEQLEQ 

These correspond to the conditions >, =, 1, c, ;t , r respectively. 

T h e  SKP instruction may use a logical condition (LCOND) as well. The  LCONDs are: 

LCOND = {NON,ALL,ANY,NAL) 

These correspond to the logical conditions that relate two operands (say OP1 and OP2) as shown in 
the table below. Here OP2 is considered to be a mask whose "1" bits select bits of OP1 to be tested. 

Modifier Condition Meaning 
NON (OP1 A OP2) = 0 If no masked bits are 1 
ALL (one's-complement(0P 1) A OP2) = 0 If all masked bits are 1 
ANY (OP1 A OP2) t 0 If any masked bit is 1 
NAL (one's-complement(0P 1) A OP2) ;t 0 If not all masked bits are 1 

Combining the ACONDs and the LCONDs gives the arithmetic and logical conditions 
(ALCONDs): 

ALCOND = (GTR,EQL,GEQ,LSS,NEQLEQ,NON,ALL,ANY,NAL] 
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SKP Skip on condition 

SKP . (GTR,EQLsGEQLSSsNEQLEQJ'lON,ALLsANYJ'JAL} (QHBSBD} . SOP 

Purpose:-If OP1 ALCOND OP2 is true (where ALCONDc(GTR, EQL, G E Q  LSS, N E Q  LEQ, 
NON, ALL, ANY, NAL~), control' is transferred to the specified, location that is within -8 . . 7 
singlewords of the current PC. If the comparison is false, control is ,  tranrferred to the next 
instruction. 

Restrictions: None : . r  . , 

~xceptions: None . .  . . . . , . .. . . : >. 

Precision: The precision of O P  1 and OP2 is specified by the second . modifier. . 

F h e  following instructions compute the functio?, 1 F .  RTA is O d d  THEN . .  BEG^ 
. RTA:=3nRTA+ 1 END; RTA:=RTA/S;" repeatedly while RTA>l. Note that FASM 'determines 

the SW offset automatically from the JUMPDEST operand: 

THREEN : 
SKP.LEQ.S RTA,,#l,DONE 
SKP.NON.S RTA,#l,RTAEVN ; s k i p  i f  RTA has an even ., integer 

NULT.S RTA,#3 . ; m u l t i p l y  by th ree  

' ADD.S RTA,#l ;add one - r e s u l t  must be even, 

RTAEVN: ; so f a l l  i n t o  even case. 

QU02. S RTA, #1 ; t h i s  i s  b e t t e r  than QUO RTA,#2 
JUPA THREEN 
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ISKP Increment, then skip on condition 

ISKP . (GTR,EQL,GEQ,LSS,NEQLEa) SOP 

Purpose: OPl:=OP I +  1. CARRY is not . affected. Then if OP1 ACOND OP2 (where 
ACONDE{GTR,EQL,GEQLSS,NEQLEQ), control is transferred to a location that is within 
-8 . . 7 singlewords of the current PC. If the comparison is false, control is transferred to the next 
instruction. 

Restrictions: None 

Exceptions: INT-OVFL may be set by the incrementing operation. 

Precision: OP1 and OP2  are both singlewords. 

F h e  following is a typical loop of the form, "FOR I:=M TO N D O  ...". The inner part of the 
loop must not exceed 8 singlewords when assembled: 

. . 

1 
M0V.S.S 1,M 

LOOP : 
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DSKB Decrement, then skip on condition 

DSKP . (GTR,EQL,GEQLSS,NEQLEa) . . 
., , 

SOP 

Purpose: OPI:=OP 1-1,. CARRY is not affected. . Then .if O P  1 ACOND OP2 is true (where 
ACONDE~TR,EQL,CEQL~~S,NEQLEQ)). contrql is transferred to a location that is within 
-8 .  . 7 singlewords of the current PC. If the comgarison,is false, control is transferred to the next 
instruction. 

Restrictions: None 

Exceptions: INT-OVFL may be set by the decrementing operation. 
. . 

Precision: OP1 and OP2 are both singlewords. 

p h e  following instructions search an array of N singlewords starting at TABLE for the largest 1 
index I such that TABLE[Tl=T. Assume that TABLECOI contains 0 to ensure loop termination, 
and that N singlewords follow this entry. In the following, i must be a register. Note. that since 
the loop is one instruction long the singleword skip offset is zero. The  "-4" added to the base 
address TABLE compensates for the fact that the address calculation occurs before the 
decrementation operation, but the skip condition is tested after the decrementation operation. In 
turn, "N+l" is used instead of "N" in the initialization to compensate for this compensation: 

N0V.S.S I,#<N+ls 
DSKP.NEQ I,<TABLE-4>[137'2,LOOP 

J 
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JMP Jump on condition 

JMP . (GTR,EQL,GEQ,LSS,NEQ,LEQ 
Purpose: If FIRST(OP1) ACOND SECOND(OP1) is true (where ACONDE~GTR, EQL, GEQ 
LSS, N E Q  LEQ),,control is transferred to' the location specified by JUMPDEST. If the condition 
is false, control is transferred to the next instruction. 

Restrictions: None - 
Exceptions: None 

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords which are together treated as a 
doubleword. 

Fe following loop searches down a chain of pointers for a specified tail painter FPTR. Let P 

impli'citly used by this routine to hold the comparison operand: 

1 
be a register and HEAD the address of the first link in the chain. Note that NEXT(P) is 

VOV. D. D P, #< [HEAD ? FPTRI > ; i n i t i a l  ize P and NEXT(P1 
; ( t h i s  i s  an assembler l i t e r a l  
; wh69e address becomes a  constant) 

LOOP: V0V.S.S P , ( P l  
JVP.NEQ P,LOOP 
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JMPZ Jump on condition relative to zero 

Purpose: If OP1  AC'OND 0 is true (where ACONDc(GTR, .EQL, GEQ LSS, N E Q  LEQ)), control 
is transferred to the location specified by JUMPDEST. If the condition is false, control is 
transferred to the next instruction. . . 

Restrictions: None 

Exceptions: None 

Precision: O P  1 has the precision specified by the second modifier. 

using the indexed constant addressing mode (Section 1.6.2), a programmer can use the J ~ ~ q  
instruction to compare the contents of a register against any integer constant, not just against 
zero. For example, the following jumps to AWAY iff R T A I l :  

L 
JMPZ. LEQ,S # [-I1 (RTA) ,AWAY 
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JMPA Jump always 

JMPA J" =' 

Purpose: Jump unconditionally to JUMPDEST. For a simple jump to a label, the SJMP 
instruction is often more compact, but JMPA allows indexing and indirect addressing, usually at the 
expense of an extra singleword. 

Restrictions: None 

Precision: None 

F h e  following instruction jumps to the RTA-th address stored in a list of indirect pointers that 
begins at JVECTS: 

1 

L 
JMPA JVECTS [RTAI f 2~3 
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Increment, then jump on condition 

I JMP . (GTR,EQL,GEQLSS,NEQLEQI ... :. JOP 

Purpose: FIRST(0P l):=FIRST(OP I)+ 1. CARRY is not affected. Then if FIRST(OR1). ACOND 
SECOND(0P 1) is true (where ACONDE{GTR,EQL,GEQLSS,NEQ,LEQ), control. is transferred to 
the location specified by JUMPDEST. If the.'condition is false, control is transferred to the next 
instruction. 

. .  . , 

Restrictions: None 
, . .  . . . 

Exceptions: INT-OVFL may be set by the incrementing operation. 

Precision: FIRST(0P I) and SECOND(0P I) are both singlewords which together are treated as a 
doubleword. . :  

F h e  following is a typical loop of theform, TOR I:=M T O  N DO . . .?. The inner-part of the 
loop .may be any length when assembled: 

1 
M0V.D.D I, [H ? N1 

LOOP: 
;M,N are assembly literals 
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l JMPZ Increment, then jump on condition relative to zero 

I JMPZ . (GTR,EQL,GEQLSS,NEQLEQ) J" P 

Purpose: OPl:=OPl+l.  CARRY is not affected. Then if OP1 ACOND 0 is true (where 
ACONDE(GTR,EQL,GEQLSS,NEQLE~), control is transferred to the location specified by 
JUMPDEST. If the condition is false, control is transferred to the next instruction. 

Restrictions: None 

Exceptions: INT-OVFL may be set by the incrementing operation. 

Precision: OP 1 is a singleword. 

Fe following increments N and jumps to AWAY if N=O: 
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IJMPA Increment and jump always 

IJMPA 

Purpose: O P  l:=OP 1+ 1. CARRY is not affected. Jump unconditionaIly to JUMPDEST. 

4 . . . .  : 

Restrictions: None 

Exceptions: INT-OVFL may be set by the incrementing operation. 

Precision: O P  1 is a singleword. 
. . 

Fe following is an extremely inefficient way to add RTA into RTB, assuming that integer 
. . 

overflow traps are disabled. However, it shows off the IJMPA instruction: ' 

LOOP: DSKP.EQL RTA,#-1 ;decrement RTA; s k i p  n e x t  i n s t r u c t i o n  i f  -1 

I IJMPA RTB,LQOP ;o the rw ise  . increment RTB and loop I 
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DJMP Decrement, then jump on condition 

D JMP . {GTR,EQL,GEQLSS,NEQLE@ - JOP 

Purpose: FIRST(0P l):=FIRST(OP 1)-1. CARRY is - not affected. Then if FIRST(0P I) ACOND 
SECOND(0P 1) is true (where ACONT)E{GTR,EQL,GEQLSS,NEQLEQ), control is transferred to 
the location specified by JUMPDEST. If the condition is false, control is transferred to the next 
instruction. 

Exceptions: INT-OVFL may be set by the decrementing operation. 

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords which together are treated as a 
doubleword. 

p h e  following is a typical loop of the form, "FOR I:=M DOWNTO N D O  ...". The inner part of 
the b o p  may be any length when assembled: 

1 
M0V.D.D I, [M ? N l  

LOOP : 
... 

L 
DJHP.GEQ 1,LOOP 

;M,N are assembly literals 
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Decrement, then jump on condition relative to zero 

. :. . . .  . . .  

D JMPZ . (GTR,EQL,GEQLSS,NEQLEa) .lo =' 

Purpo'se: OPl:=OPl-1. CARRY is not affected.. Then if OP1 ACOND 0 is true (where 
ACONDE(GTR,EQL,GEQ,LS$NE'QLEQ), control is tiansferied to 'the location specified by 
JUMPDEST. If the condition is false, control is transferred to the next instruction. 

Restrictions: None 

Exceptions: INT-OVFL may be set by the decrementing operation. 
. . 

? .  . 

Precision: O P  1 is a singleword. 

Fe following decrements N and jumps to AWAY if N-0: '1 
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DJMPA Decrement and jump always 

D JMPA J o P  

Purpose: OPl:=OPl-1. CARRY is not affected. Jump unconditionally to JUMPDEST. 

Restrictions: None 

Exceptions: INT-OVFL may be set by the decrementing operation. 

Precision: OP 1 is a singleword. 

Fe following dwementr N and jumps to AWAY: 

L 
DJMPA N,AWAY 
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SJMP .. . 

197 

Simple jump . 

S JMP HOP 

Purpose: Unconditionally jump anywhere in the address space. 

The HOP format performs a PC-relative jump using a 29 bit unsigned displacement field. Because 
the address calculation ."wraps aroundn..if it exceeds the maximum virtual address, it can :reach any. 
singleword in the virtual address space. 

. .. . . 

While SJMP never occupies .more than 1 singleword, it allows only a direct memory address 
reference. One must use JMPA for any other addressing mode, such as indexing or indirect 
addressing. . . . . 

Restrictions: None 

Exceptions: None . 

. .  . 
Precision: None . . . .  . . . ,  

.>. . , .  . . 

to CRUNCH: ' :  "1 

L 
SJNP CRUNCH 
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MOVCSF, MOVCSS Move conditionally, skip on failure/success 

MOVCSF . (QH,S,D) 
MOVCSS . (QM,S,D) 

SOP 
SOP 

Purpose: For MOVCSF, IF O P  1=OP2 THEN OPl:=%R3 ELSE G O T 0  DEST. 

For MOVCSS, IF O P  1=OP2 THEN BEGIN O P  l:=%R3; G O T 0  DEST END. 

In a multiprocessor system, these instructions are atomic (that is, they finish work on OP1  before 
any other processor can alter that operand). Another atomic instruction is RMW. 

Restrictions: None 

Exceptions: None 

Precision: O P  1, OP2, and %R3 have the precision specified by the modifier. 

F n g l e w o r d  LOCK represents a lock, which holds -1 if unlocked and 0 if locked. The  f~llowing 
sequence seizes the lock, using busy-waiting if the lock is not free: 

1 
;;; Seize the lock  s t o red  i n  l o c a t i o n  LOCK. 

M0V.S.S %R3,#-1 ;Prepare the  va lue  -1 t o  he s tored.  
LOOP: M0VCSF.S LOCK,#B,LOOP ;Store -1 when LOCK ho lds  0. 

T h e  following code sequence atomically turns on bit 35 of word F01. 

;;; Turn on b i t  35 o f  word FBI. 
LOOP: NOV. 5. S RTA, FBI  ;Pick up a copy o f  the  former va lue o f  F01. 

OR.5 XR3,RTA,#2 ;Turn on b l t  35, c r e a t i n g  the  new va lue i n  XW3. 
M0VCSF.S FBl,RTA,LOOP ;Store the  new va lue  i f  the  va lue has no t  

;changed s i nce  we began. 

T h e  following code sequence leaves in %Rt3 a 11ni.que number; no two callers will ever be 
returned the same number even if they run this routine simultaneously from different processors. 
T h e  location UNIQUE holds a number, whose value is increased by one atomically to get the 
new unique value. 

::; Retu rn  a un ique va lue  i n  XR3. 
LOOP: M0V.S.S RTA,UNI'QUE ;Get the o l d  va lue o f  UNIQUE. 

AD0.S.S %R3,RTA,#l ;The new va lue should be one g rea te r .  
M0VCSF.S UNIQUE,RTA,LOOP ;Store the new va lue i f  the va lue 

;of  UNIQUE has no t  changed in  the meantime. 
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The following code sequence atomically adds a new element to a singly linked list.. The  pointer 
to the first list element is stored in location HEAD; the first,,word of each element contains a 
pointer to the next element. Register %R3 contains a pointer to a new element to be added to the 
head of' the list. 

;;; Add the element inXR3 t o  the 1is.t. . 

LOOP: , fl0V.S.S RTA,HEAD ;Pick u p , t h e  poin ter  t o  the former, f i r s t  
;element of the l i s t .  

fl0V.S.S ( X R 3 )  ,RTA ;Make the new element point  t o  i t .  
fl0VCSF.S HEAD,RTA,LOOP ;Store  the new poin ter  i f  the old one 

;has  not changed. 
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CMPSF, UCMPSF Signedlunsigned compare and set flag 

CMPSF . (GTR,EQL,GEQLSS,NEQLEQ) . (QH,S,D) 
UCMPSF . {GTR,EQL,GEQ,LSS,NEQ,LEa) . (QH,S,D) 

TOP 
TOP 

Purpose: If S1 condition S2 then DEST := -1 else DEST := 0, where condition is the first modifier. 
CMPSF performs a two's complement signed comparison whereas UCMPSF performs an unsigned 
comparison. 

Kestrictions: None 

Precision: S1 and $2 have the sanie precision as the modifier. DEST is a singleword. 

F t  X, Y, and Z be singlewords, with Y=NEXT(X). The following code implements setting 1 
RTA to X if Z10 and to Y otherwise. It uses indexing rather than a conditional jump or skip. 
Such use of indexing can often make more effective use of instruction ,pipelining than jumping 
or skipping: 

CRPSF.GEQ.S RTA,Z,#0 
HOV,S.S.RTA,Y[RTAl'T'2 ; indexing w i t h  f l a g r e s u l t  

CMPSF.LSS can be used to produce an extended-sign word for a number. TRANS or 
FTRANS can be used to sign-extend a number to one of the four standard precisions, but this 
trick is useful in dealing with numbers of very large precision: 

CMPSF.LSS.S RTA,NUV,#0 ; a l l  b i t s  o f  RTA get  the sign b i t  o f  NUN 

Though instructions CMPSF.(NOM,ALL,ANY,NAL) do not exist, their effect can be obtained 
by an AND or ANDCT followed by a CMPSF.EQL or CMPSF-NEQ 

AN0CT.S RTA,ARGl,ARG2 ; t h i s  behaves as would the f i c t i o n a l  
CflPSF.EQL.S RTA,Q0 ; I n s t r u c t i o n  CHPSF.ALL RTA,AHGl,ARG2 
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BMDSF Bounds-check and set flag 

BNDSF . {B,MIN,MI,O,I) . (QH,S,DJ TOP 

Purpose: Check S2. against the bounds specified by- the first .modifier and by S1. If .S2 is within 
bounds then DEST := -1 else DEST :='o. The  following table explains the first modifier: 

Modifier Meaning 
B ("bothn) FIRST(S 1) 5 s 2  5 SECOND(S i j 
MIN MINNUM, I S2 5 S 1 
'M 1 -1 5 S2 5 S1 
0 O S S 2 5 S l  
1 1 5 S 2 I S 1  . . 

Restrictions: None 

Exceptions: None 

Precision: DEST is a singleword. S2 has the precision specified by the second modifier. If the first 
modifier is B, then, FIRST(S 1) and SECOND(S 1) have .the same precision as S2 and must align 
together to form a single entity with twice that precision; otherwise, S1 has the same precision as S2. 

. . 

p i s  first example shows a standard way to use BNDSF: 

This second example shows how to use a constant addressing mode to obtain a different kind of 
check. This makes use of the rule that a singleword instruction which expects a 
FIRSTISECOND operand pair will expand a constant to twice the specified precision and use 
half for the FIRST part and half for the SECOND part: 
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BNDTRP Bounds check and trap on failure 

BNDTRP . (B,MIN,M1,0,1) . (QH,S,D) XOP 

Purpose: Check OPi against the bounds specified by the first modifier and by OP1. If OP2 is out 
of bounds then a BOUNDS-CHECK soft trap will occur. The  following table explains the first 
modifier: 

Modifier Meaning 
B ("both") FIRST(0P I) r OP2 r SECOND(OP 1) 
M'lN . 'MlNNUM 1 0P2 r OP 1 
MI -1 I OP2 I OP1 
o 0 5  O P Z ~  O P ~  
1 1 1 O P 2 r O P 1  

Restrictions: None 

Exceptions: None 
\ 

Precision: OP2, the upper bound, and the lower bound all have the precision specified by the 
second modifier. If the first modifier is B, then the instruction uses FIRST(OP1) and 
.SECOND(OP 1); thus, each has the precision specified by the second modifier, but both must align 
to form an entity with twice that precision. 

Fe following instruction traps if IRTAPP.O: 
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STRCMP String conipare 

. . 

STRCMP . (RTA,RTB) XOP 

Purpose: Consider OP1 and OP2 to be vectors.of quarterwords--in other words, strings of 
characters--whose quarterword length is specified by SIZEREG. Signed comparison is used, and 
each quarterword character is compared-separately. The  result of the comparison is computed as 
shown in the following table and is stored into (RTA,RTB). The  result values are designed to have 
two useful properties. First, the result (as a signed integer) bears the same relation .to zero that 
STRING1 does to STRINGZ. Second, the value can be used as an index into the string no matter 
what the result, because indexing arithmetic "wraps around" the address space. 

Condition Result 
STRING 1 = STRING2 0 
STRING 1 > STRING2 n 
STRING1 < STRING2 , - ~ ~ ~ + n  (i.e. MINNUM+n) 
(n is the position of the first character to differ), 

Restrictions: None 

Exceptions: None 

Precision: OP1  and OP2 are quarterword vectors, and thus may designate registers. RTA and 
RTB are single words. 

p e  following sets R T A  to the result of comparing the eighty-character blocks a t  X and 1 Y. 

MOV. S. S %SIZEREG, #80. 
STRCMP. RTA X, Y 

The following illustrates a more general sort of comparison. Assume that XLENG'TH contains 
the length of a string beginning at X and YLENGTH that of string at Y. For the purposes of 
this comparison we will imagine that appended to the two strings are infinitely many imaginary 
characters defined to be "less than" all real characters. We will then define the result of the 
comparison as the result of a STRCMP performed on these extended strings. (This definition is 
similar to that used in some high-level languages): 

M1N.S RTA,XLENGTH,YLENGTH ;set  RTA t o  minimum r e a l  l eng th  

M0V.S.S %SIZEREG,RTA 
1NC.S RTB,RTA ;save one g rea te r  i n  RTB f o r  unequal case 

STRCMP. RTA X, Y ; do compar i son 

JMPZ.NEQ.S RTA,DONE ;d i f f e rence  found 

SKP . NEQ. s XLENGTH , YLENGTH ;done i f  s t r i n g s  a re  equal l eng th  

JNPA DONE 
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N0V.S.S RTA,RTB ;RTB i s  index o f  "imaginary" character 
SKP.LEl3.S XLENGTH,.YLENGTH,OONE ;se t  high-order b i t  i f  necessary 
0R.S RTA,#<400000,,0> ;or DIBYT RTA,#l ,#l  t o  save a word! 
... ;RTA contains r e s u l t  
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2.9 Shift, Rotate, and Bit Manipulation 

These instructions all manipulate bits withiri a word, either by shifting, by rotating, or by 
performing bitwise logical functions. Note that a left shift (or rotate) by N is equivalent to the 
corresponding right shift (or rotate) by -N. The SHFA instruction, which shifts signed.integers, 
appears in Section 2.1 with the other signed integer arithmetic instructions. 
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MOT Logical bit-wise NOT 

NOT . (QHySsD) 
VNOT . {H,S,D) 

XOP 
v:=v 

Purpose: NOT computes OP I:=(-OP2), where "-" signifies one's complement 

VNOT performs NOT on each element of the vector beginning with OP2 and stores the result in 
the corresponding element of the vector beginning with OP 1. 

Exceptions: None 

Precision: OP1 and OP2 (or the elements of vectors OP1 and OP2) have the same precision as the 
modifier. 

p h e  following is an alternate to NEG RTA: 
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AND Logical bit-wise AND 

AND . {QH,S,D) 
VAND {SRIOP1) . (HIS,D) 

Purpose: AND computes DEST:=S 1 ~ S 2 .  . 

VAND performs AND on each element of vector OP1  and the corresponding element of OP2. It 
puts the results either back into vector OP1 or into the vector pointed to by SRO, depending on the 

. . first modifier: , I .  

. . 

FOR i:=O TO SIZEREG-I DO 
IF (modifier OP)  THEN O P  lli]:=OP 1Cil A OP2Cil 
ELSE SRO@[il:=OP 1CiI A OP2[il 

Restrictions: None 

Exceptions: None 

Precision: For AND, S1, S2, and DEST all have the precision specified by the (QH,S,D) modifier. 
For VAND, the elements of the vectors all have the precision specified by the (HISID) modifier. 

. . 

F h e  following instruction illustrates the effect of AND: 1 
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ANDTC Logical bit-wise AND truefcomplement 

ANDTC . (Q,H,S,D) 
VANDTC . (SR,OPl) . (H,S,D) 

TOP 
v:=vv 

Purpose: DEST:=SIA(-S2). Note that the T C "  in ANDTC means True-Complement" and refers 
to the fact that S1 and one's-complement(S2) respectively are operands to the AND function. The  
revery form of ANDTC is ANDCT, not ANDTCV. 

VANDTC performs ANDTC on pairs of corresponding elements in the vectors beginning at OP1 
and OP2. It puts the results back into the vector OP1  or into the vector pointed to by SRO, 
depending on the first modifier. 

FOR 1:-0 TO ETZEREC .. 1 DO 
IF (modifier O P  1) THEN O P  l[il:=OP l[il A (-OP2CiI) 
ELSE SROdiI:=OP l[il A (-OP2Cil) 

Restrictions: None 

Exceptions: None 

Precision: For ANDTC, S1, S2, and DEST all have the precision specified by the (QII,S,D} 
modifier. For VANDTC, the elements of the vectors all have the precision specified by the (H,S,D) 
modifier. 

F h e  following instruction illustrates the effect of ANDTC: 

Suppose that MASK is a mask whose "1" bits select certain (possibly non-contiguous!) bits of 
WORD. These bits are to be regarded as a "field", and the contents of that field decremented as 
an integer "in place" in WORD, without affecting non-selected bits of WORD. This can be 
done as follows: 

AN0.S RTA,WORD,flASK ;RTA:=WORD with non-selected b i t s  zeroed 
SU0.S RTA,#l ;zeroed b i t s  propagate the borrow 
AND.S RTA,flASK ;mask out non-selected b i t s  
AN0TC.S WOR0,flASK ;mask out SELECTED b i t s  in WORD 
0R.S WOR0,RTA ;merge the two r e s u l t s  
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AMDCT Logical bit-wise AND complementltrue 

ANDCT . (QH,S,D) 
VANDCT . (SR,OPl) . (H,S,D) 

TOP 
v:=vv 

Purpose: ANDCT computes DEST:=(-S 1 ) ~ S 2  Note that the "CT" in' ANDCT means 
"Complement-True" and refers to the fact that one's-complement(S1) and S2 respectively are 
o i e r s -~ds  to the AND function. ./ . . ~he ' reverse  form of ANDCT is ANDTC,not ANDCTV. 

, . 
a .  

VANDCT performs ANDCT on pairs of elements from the vectors beginning at O P  1 and OP2. It 
puts the results back into the vector OP1 or into the vector pointed to by SRO, depending on the 
first modifier. 

FOR I:=O T O  SIZEREG-1 DO 
IF (modifier O P  1) THEN O P  l[il:=(-OP l[il) A OP2[il 
ELSE SROdi]:=(-OP l[il) A OP2[il 

Restrictions: None ..:., . 
: ., 

. , a  

Exceptions: None 

Precision: For ANDCT, S1, S2, and DEST all have the precision specified by the (QH,S,D) 
modifier. For VANDCT, the elements of the vectors all have the precision specified by the (H,S,D) 
modifier. 

p h e  following instruction illustrates the effect of ANDCT: 
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OR Logical bit-wise OR 

OR . (QH,S,D) 
VOR . (SR,OPl) . (H,S,D) 

TOP 
v:=vv 

Purpose: OR computes DEST:=S 1vS2. 

VOR performs OR op pairs of elements from the.vectors OP1 and OP2, putting the results into 
vector OP1 or the vector pointed to by SRO, depending on the first modifier: 

FOR i:=O T O  SIZEREG-1 DO 
TF {mndifi~r OF) THEN OP l[il=OP llil v OP2[il 
ELSE SROe[i]:=OP l[il v OP2[il 

Restrictions: None 

Exceptions: None 

Precision: For OR, $1, $2, and DEST all have the precision specified by the modifier {QH,S,D). 
For VOR, the elements of the vectors all have the precision specified by the modifier {M,S,D). 

F h e  following instruction illustrates the effect of OR: 
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ORTC Logical bit-wise OR true/complement 

ORTC . (Q,H,S,D) 
VORTC . (SR,OPl) . (H,S,D) 

TOP 
v:=vv 

Purpose: ORTC computes DEST:=Slv(-S2). Note that the "TC" in ORTC means 
'True-Complement" and refers to the fact that S1 and one's-complement(S2) respectively are 
operands to the OR function. The  reverse form of ORTC is ORCT, not ORTCV. 

VORTC performs ORTC .on pairs. of elements of the vectors O P  1 and OP2,  putting the results in 
'either vector O P 1  or the vector pointed to by SRO, depending on the first-modifier: . 

FOR i:=O T O  SIZEREG-1 DO 
IF (modifier OP)  THEN OP l[i]:=OP 1[il v (-OP2[il) 
ELSE SRO@[~I:Z-OP l[il v (-OPZ[iI) 

Restrictions: None i .  

Exceptions: None , 

Precision: .For ORTC, S1, S2, and DEST all have the precision specified by the second modifier. 
For VORTC, the elements of the vectors all have the precision specified by the second modifier. 

pe following instruction. illustrates the effect of ORTC: . . 

0RTC.Q RTA,#3,#5 ; RTA: =773 (QW) 

Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) bits of 
WORD. These bits are to be regarded as a "field", and the contents of that field incremented as 
an integer "in place" in WORD, without affecting non-selectedbits of WORD. This can be 
done as follows: 

0RTC.S RTA,WORD,flASK ;RTA:=WORD with non-selected b i t s  s e t  t o  "1" 
A0D.S RTA,#l ;"ll' b i t s  propagate the ca r ry  
AN0.S RTA,flASK ;mask out non-selected b i t s  
AN0TC.S WORD,flASK ;mask out SELECTED b i t s  in WCRO 
0R.S WORD,RTA ;merge the two r e s u l t s  
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ORCT Logical bit-wise OR complement/true 

ORCT . {QH,S,D) 
VORCT . {SR,OPl). (H,S,D) 

TOP 
v:=vv 

Purpose: ORCT computes DEST:=(-Sl)vS2. Note that the "CT" in ORCT means 
"Complement-True" and refers to the fact that one's-complement(S1) and S2 respectively are 
operands to the O R  function. The  reverse form of ORCT is ORTC, not ORCTV. 

VORCT performs ORCT on pairs of elements of vectors OP1 and OP2, putting the results either 
in vector O P  1 or in the vector pointed to by SRO, depending on the first modifier: 

FOR i:=O T O  SIZEREG-1 D O  
IF {~r~udifiel O F )  THEN O F  l[il:-(-.OFl[ll) v OP2111 
ELSE SROe[il:=(-OP 1CiI) v OP21il 

Restrictions: None 

Exceptions: None 

Precision: For ORCT, S1, S2, and DEST all have the precision specified by the (Q,H,S,D) modifier. 
For VORCT, the elements of the vectors all have the precision specified by the .{H,S,Dj modifier. 

p e  following instruction illustrates the effect of ORCT: 

L 
ORCT'Q RTA,#3,#5 ; RTA: -775 (QW 1 
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NAND 

213 

Logical bit-wise NAND 

NAND . '(QH,s,D) 
VNAND . (SR,OPl) . (H,S,D) 

TOP 
v:=vv 

Purpose.: NAND computes DEST:=-(S l~S2) .  

VNAND performs NAND on pairs of elements of the vectors OP1 and OP2, putting the results 
either in vector 0 P l . o r  in the vector pointed to by SRO, according to the first modifier: 

FOR i:=O T O  SIZEREG-1 D O  
IF (modifier OP} THEN O P  l[il:=-(OPl[il) A OP2CiI 
ELSE SROe[il:=-(OP l[il A OP2[il) 

Restrictions: None 

Exceptions: None 
, 

Precision: For. NAND, S1, S2, and .DEST all have the precision specified by the (QH,S,D) 
modifier.. For VNAND, the elements of.the vectors all have the precision specified by the (H,S,D} 
modifier. 

pL following instruction illustrates the effect ofSNAND: 1 
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NOR Logical bit-wise NOR 

NOR - .(QH,SID) 
VNOR . (SR,OPl) . (H,S,D) 

TOP 
v:=vv 

Purpose: NOR computes DEST:=-(S IvS~) ,  where "-" signifies one's complement. 

VNOR performs NOR on pairs of elements of the vectors OP1  and OP2, putting the results either 
in vector OP 1 or in the vector pointed to by SRO, according to the first modifier: 

FOR i:=O T O  EIZEREC-1 D O  
IF (modifier OP) THEN O P  l[il:--(OP l[il v OP2LiI) 
ELSE SROe[i]:=-(OP ICil v OPSCi]) 

~estrictions: None 

Exceptions: None 

Precision: For NOR, S1, S2, and DEST all have the precision specified by the (QH,S,D) modifier. 
For VNOR, the elements of the vectors all have the precision specified by the (H,S,D) modifier. 

p e  following instruction illustrates the effect of NOR: 

L 
N0R.Q RTA,#3,#5 ; RTA: =770 (QW 1 
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XOR Logical bit-wise XOR 

XOR . (QH,S,D) 
VXOR . (SR,OPl) . (H,S,D) 

TOP 
v:=vv 

Purpose: XOR computes DEST~=(SLA-(S~)) v (-(S ~)Asz), where ."-" represents the one's complement 
operation. 

VXOR performs XOR on pairs of elements of the vectors OP1 and OP2, putting the results either 
in vector O P  1 or in the vector pointed to by SRO, depending on the first modifier: , 

FOR i:=O T O  SIZEREG-1 DO 
IF (modifier OP) THEN OF! l[il:=ExclusiveOR(OP l[il,OP2[il) 
ELSE SRO~[il:=ExclusiveOR(OP l[iI,OP'L[il) . . 

Restrictions: None 

Exceptions: None 

Precision: For XOR, S1, S2, and DEST all have the precision specified by the (QH,S,D) modifier. 
For VXOR, the elements of the vectors all have the precision specified by the (HISID] modifier. 

Fe following instruction illustrates the effect ' of XOR: 7 

The following code exchanges the two words QUUX and ZTESCH. .(A better way to do this is 
with the EXCH instruction; but this example demonstrates an interesting information-preserving 
property of XOR.) 
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EQW Logical bit-wise equivalence 

EQV . (Q,H,S,D> TOP 
VEQV . {SR,OPl) . (H,S,D) V:=VV 

Purpose: EQV computes DEST:=(S 1~S2)  v (-(S I)/\(-SZ)), where "1" represents'the one's complement 
operation. 

VEQV performs EQV on pairs of elements of the vectors O P  1 and OP2, putting the results either 
in vector O P  1 or in the vector pointed to by SRO, according to the first modifier: 

FOR i:=O TO SIZEREG 1 DO 
IF (modifier OP] THEN O P  l[il:=EQV(OP l[i].OP2Cil) 
ELSE SRO@1iI=EcjLv (UP I[iJ,C)PZLiJ) 

Restrictions: None 

Exceptions: None 

Precision: For EQV, S1, S2, and DEST all have the precision specified by the (QH,S,D} modifier. 
For VEQV, the elements of the vectors all have the precision specified by the (H,S,D) modifier. 

Fe following instruction illustrates the effect of EQV: 

EW.U RTh,ft3,#5 ; RTA: =771 (QW) 

The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is 
with the EXCH instruction, but this example demonstrates an interesting information-preserving 
property of EQV.) 

EQV.S QUUX,ZTESCH 
EQV.S ZTESCH,QUUX 
FnV. S Q111 I!!, ZTESCH 
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SHFA Shift arithmetically 

SHFA . {LF,RT) . {Q,H,S,D) TOP 

SHFAV . {LF,RT) . (Q,H,S,D) TOP 

VSHFA . {LF,RT) . (H,s,D) v:=VS 

Purpose: SHFA computes DEST:=Sl arithmetically shifted (left,right) by S2. Shifts to the (true) left 
introduce "0" bits; shifts to the (true) right ;eplicate the sign bit and discard bits shifted out the low 
end. This is equivalent to a multiplication. or division by a power of two, where it is understood 
that such a division rounds towards negative infinity. For division. by a power of two, rounding 
towards zero, the QUO2 instruction should be used instead. Note that a left shift by S1 is 
equivalent to a right. shift by -S 1. If the absolute value of S2 exceeds the width of the, anyword 
being shifted, an ILLEGAL-SHIFTBOTATE hard trap occurs. 

SHFAV swaps the roles of S1 and S2. 
. . 

VSHFA performs SHFA on each element of the vector beginning at OP2 and stores the results in 
the corresponding elements of OP1. RTA specifies how far to shift each element. 

Restrictions: None 

Exceptions: INT-OVFL (the instruction behaves exactly as would a multiplication by a power of 2) 

Precision: For SHFA, S2 1s a singleword, and DEST and S1 have the precision specified by the 
second modifier. 

For SHFAV, S1 is a singleword, and DEST and S2 have the precision specified by the second 
modifier. 

For VSHFA, the elements of vectors OPl and O P 2  have the precision of the modifier and RTA ,is 
a scalar singleword. 

p h e  following'rwo instructions illustrate the difference between SHF,RT and SHFA.RT: 1 
SHF.RT.Q RTA,#-1,#1 ; RTA: =377 

I 
SHFA. RT. Q RTA, #-I, #I ; RTA: =777 
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SHF Logical shift 

SHF . (LF,RT) . (Q,H,S,D) 
SHFV . (LF,RT) . (QM,S,D) 
VSHF . (EF,RT) . (H,S,D) 

TOP 
TOP 

v:=vs 

Purpose: SHF computes DEST:=Sl logically shifted (left,right) by S2. Bits shifted in are "0" bits; 
bits shifted out are lost. Note that a left shift by S2 is identical to a right shift by -S2. If the 
absolute value of S2 exceeds the width of the anyword being shifted, an 
ILLEGAL-SHIFT-ROTATE hard trap occurs. 

SHFV, the reverse form, behaves identically except that it swaps the roles and precisions of S1 and 

S2. 

VSHF performs SHF on each element of the vector beginning with OP2 and stores the results in 
the corresponding elements of the vector beginning with OP1. RTA specifies the number of bit 
positions by which to shift. 

Restrictions: None 

Exceptions: None 

Precision: For SHF, S2 is a singleword; DEST and S1 have the precision specified by the second 
modifier. For SHFV, S1 is a singleword; DEST and S2 have the precision of the second modifier. 
For VSHF, RTA is a singleword; the elements of OP1  and OP2  have the precision specified by the 
modifier. 

Fe following shows the effect of a positive left-shift argument: 

L 
SHF. LF. Q RTA, #-I, #1 ' ; RTA: =-2 (QW)  
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DSHF Extended logical shift 

- 
DSHF . (LF,RT} . ((LH,s} TOP 
DSHFV . (LF,RT) . (Q,H,S) TOP 

Purpose: Just as a programmer can use the ADDC instruction repeatedly to add numbers of 
arbitrarily great precision, the programmer can use the DSHF instruction repeatedly to shift an 
arbitrarily long .string of bits. Ordinary logical shift instructions are difficult to chain in this 
fashion because they shift zeros into the word. DSHF solves the problem by shifting in bits from the 
adjacent word in memory instead. 

More precisely, DSHF.LF concatenates S 1 and NEXT(S l), logically shifts the resulting double 
precision entity left by S2 bitsandstores in DEST the high order 9, 18, 01- 36 bits (corresponding to 
Q H, or S preclsions). DSHF.RT logically shifts the entire entity right by S2 bits and stores in 
NEX'l'(UES'1') the iow order 5, 18, or 36 bits. 

I S 1 NEXT (S1) 

DSHF.LF DEST,Sl,S2 . . 

Careful use of DSHF even permits in-place shifting--that is, leaving the result of the shifting in the 
original memory locations: right shifts must itart at the right end of the series of words, and long 
left shifts must start at the left end. 

An ILLEGALSHIFT-ROTATE hard trap occurs if the absolute value of S2 exceeds the width of 
ehe anyword being stiifltrd. 

DSHFV, the reverse form, swaps the roles of S l  and S2. 

See also the vector instruction VDSHF. 

Restrictions: None 

-Exceptions: None 

Precision: For DSHF, operands S1, NEXT(Sl), and DEST (or NEXT(DEST)) all have the 
precision specified by the modifier. S2 is a singleword. S1 and NEXT(S1) need not be aligned 
specially: using DSHF.H, for example, S l  must be a properly aligned halfword, but $1 and 
NEXT(S1) together need not be a properly aligned singleword. 
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For DSHFV, the same is true except that the roles of S1 and S2 are swapped. 

Fe following illustrates the result of shifting, a long operand: 

Suppose that a 30-word block of bits MARKERS is to be logically shifted in place three bits to 
the left. While using VDSHF provides better performance, the following example illustrates the 
use of DSHF within an explicit loop: 

Mnv.S.S HIH,#M if?TB indowes MARKERS from l e f t  t o  r . i y I 1 1  

LOOP: 0SHF.LF.S RARKERSCRTBlf2,#3 ;produce one r e s u l t  word 
ISKP.LSS RTB,#29.,LOOP ;increment RTB and l ~ o p  i f  23. 
SHF.LF.S flARKERS+29.*4,#3 ;do the l a s t  word in s i n g l e  prec is ion  

T h e  same block of bits can be logically shifted three bits to the right as follows. Note that the 
operation must proceed in the other direction within the block, i.e. from right to lefk 

M0V.S.S RTB,#29. ;RTB indexes MARKERS from r i g h t  t o  l e f t  
LOOP: DSHF. RT. S MARKERS IRTBI T2, #3 ; produce one resu l t word 

DSKP.GTR RTB,#@,LOOP ;decrement RTB and loop i f  > 0 
SHF,RT.S MAR#ERS,#3 ;do the l a s t  uor-d i n  s i n g l e  precision 

T h e  same block of bits can be arithmetically shifted three bits to the right by using the same bp but changing the last SHF.RT instruction to SHFA.RT. 
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VQSHF Lengthwise vector logical shift 

Purpose: Logically shift .an arbitrarily long series of bits. OP2 is the first word of the source vector, 
OP 1 is the, first word o f .  the destination vector, SIZEREG gives the length of the vector in 
singlewords, and RTA specifies how far  to shift the bits. 

If the source and destination vectors overlap at all, they must coincide completely, or the result is 
undefined. An ILLEGALSHIFT-ROTATE, hard -trap .occurs if the absolute value of RTA, is 
greater than 36. 

VDSHF.RT does not alter the first word of the vector, and VDSHF.LF does not alter the last word. 
This allows the programmer to use a scalar shift or rotate instruction to finish the operation, and. 
thereby obtain a logical shift, arithmetic shift, or rotation. This also permits chaining of VDSHF 
instructions. , . .  . _ . , ,  

This instruction accomplishes the same task as a loop that applies the scalar DSHF instruction to a 
series of words; one at . a  . time . (see. the. example.. under the discussion of DS,HF).For .all but the.  
shortest series of bits, the vector version will execute more rapidly, but the scalar version gives a 
choice of precisions. 

, . :. i ,  . . .. 

Restrictions: None 

Exceptions: None .* . , 

Precision: The  elements of both vectors are singlewords in terms of alignment (though the 
instruction can operate on larger sections of the vector to achieve greater speed). RTA and 
SIZEREG are singlewords. 

p h i s  is a simple illustration of VDSHF and SHF combined to perform a logical shift: 1 
M0V.S.S SIZEREG,#3 ; Length  o f  vec to r  i s  3 s ing lewords 

M0V.S.S RTA,#19. ; S h i f t  by 1 9  b i t  p o s i t i o n s  
VTRAN5.S.S SOURCE, 11, ,2 ? 3, ,4 ? 5, ,61 

; "a , ,bU t e l l s  FASN t o  p u t  a i n  
; t h e  l e f t  ha l fword ,  b I n  t h t : ~ ' . i g h t  

VDSHF.LF DEST,SOURCE ; R e s u l t  i s  

SHF.LF.S <SOURCE-4*1>[SIZEREGl'l'2,RTA . ; [ 4 , , 6  ? 8 . , , 1 0 .  ? 1 2 . , , 0 1  
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ROT Logical rotate 

ROT . (LF,RT} . (Q,H,S,D) 
ROTV.. (LF,RT) . (Q,H,S,D) 

TOP 
TOP 

Purpose: R O T  computes DEST:=Sl rotated (left,right) by S2. Rotation introduces bits shifted out 
of one end into the other end, so that no bits are lost. An ILLEGALSHIFTXOTATE hard trap 
occurs if the absolute value of S2 exceeds the width of the anyword being shifted. 

ROTV,  the reverse form, rotates S2 left or .right by S 1 bits. 

Restrictions: Nope 

Exteptionsr Nonc ' 

Precision: For ROT, S2 is a singleword. DEST and S1 have the precision specified by the second 
modifier. 

For ROTV, S1 is a singleword; DEST and S2 have the precision of the second modifier. 

F h e  following illustrates a right. rotation by a positive amount: 

R0T.RT.Q RTA,#l,#l ; RTA: -408 (QW 1 
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BITRW Bit reverse 

BITRV . {QH,S,D) TOP 
BITRVV . (QH,S,D) TOP 

Purpose: BITRV reverses the order of the S2 low-order bits of S 1, and zero-extends.the result into 
DEST. An ILLEGAL-SHIFTBOTATE hard triip occurs if ,S2 .is negative or .exceeds the word 
width. 

BITRVV reverses the order of the S 1 low-order' bits of S2 instead. 
. . 

Restrictions: None 
. .  . ' . 

Exceptions: None 

Precision: For BITRV, S1 and DEST have the same precisior. as the modifier. S2 is a singleword. 
, . 

. . . . . .  , 

For BI.TRVV, S2 and DEST have the precision of the modifier; S 1 is a singleword. 
. . ,  . , . . . . . .  . -  \' . 

p h e  following reverses ail nine, bits of i;i operand: " 1 
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Bit ex tract 

BITEX . (QH,S,D) 
BITEXV . (QH,S,D) 

TOP 
TOP 

Purpose: BITEX extracts the bits of S1 selected by the "1" bits of S2. It squeezes these selected bits 
to the right, zero-extends them, and stores them into DEST. 

BITEXV, the reverse form, swaps the roles of S 1 and S2. 

Restrictions: None 

Exceptions: None 

Precision: S 1, S2, and DEST all have the precision specified by the modifier. 

p e  following extracts alternate bits from. the operand: . 

L 
B1TEX.Q R T A , # C ~ ~ S I  ,#[5251 ; RTA: -37 ( Q W )  
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BlTCNT . . . . . . . . . I. Bit count 
. . 

BITCNT . (Q,H,S,D) XOP 
VBITCNT . (H,S,D) . . 

. . v:=v 
LBITCNT . (H,S,D) S:=V 

. , _ ,  . . , . . . 

Purpose: BITCNT computes OPl:=number of "I" bits in OP2. This instruction is useful' for 
counting the number of elements in a Pascal set. 

VBITCNT performs BITCNT on each element of the vector beginning a t 'OP2  and stores the 
results in the corresponding elements of the vector beginning at OP1. 

LBITCNT counts all the "1" bits in all elements of the vector OP2 and stores the resulting totai in 
singleword O P  1. 

Restrictions: None 

Exceptions: None 

Precision: For BITCNT, O P  1 is a singleword and OP2 has the same precision as the modifier. For 
VBITCNT, the elements of vector OP1 are singlewords and those of OP2 have the same ?recision 
as the modifier. For LBITCNT, O P 1  is a singleword and the elements of vector OP2 have the 
precision specified by the modifier. 

F h e  following sets RTA to -1 if RTA has odd parity, 0 otherwise: 

B1TCNT.S RTA,RTA 
AN0.S RTA,#l 
NEG. S RTA 

The parity of an arbitrarily long block of bits can be obtained by using the XOR instruction to 
condense the block. (The XOR operation essentially causes pairs of one-bits to cancel.) If 
TABLE is a block of N singlewords (N>2), this code sets RTA (flag-style) if TABLE has odd 
parity: 

XOR. S RTA, cTABLE+4* ( N - 1 )  >, cTABLE+4* (N-21> ;RTA gets  XOR of  two words 

UOV. S. S RTB, # IN-4*31 ;HTB counts a l l  other  words 

LOOP: XOR. S RTA, TABLE [RTBl f 2 ;XOR i n  next  word 
DSKP.GEQ RTB,#B,LOOP ; loop - u n t i l  a l l  words done 

B1TCNT.S RTA,RTB ;count r e s u l t  as be fore  

AN0.S RTA,#l 
NEG.S RTA 

A non-zero integral power of two always has a two's-complement representation with exactly one 
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bit set. Assuming that HUNOZ contains a positive singleword integer, this code jumps to 
TWOPOWER if HUNOZ is an exact power of two: 

B1TCNT.S RTA,HUNOZ ; RTAtl i f HUNOZ i s a power o f  two 

DJHPZ.EQL RTA,TWOPOWER ;jump t o  TWOPOWER i f  RTA-1 i s  zero 

Lfffero is to be considered a power of two, D JMPZ.EQL can be changed to DJMPZ.LEQ _1 
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BITFST Bit number of first "1" bit 

BITFST . .(QH,S,D) . 

LBITFST . (H,S,D) 
XOP 
S:=V 

Purpose: For BITFST, if OP2=0 then OP~:=-1 else OP l:=bit number of the leftmost "1" bit in OP2. 
This instruction is useful for finding the index of the first element of a Pascal set. 

LBITFST finds the first "1" bit m-ttector OP2 and puts its number--or, if there are no,"l" bits in 
the vector, a zero--into scalar singleword OP1. 

Restrictions: None 

Exceptions: None . . 

precision: O P l ' i s  a singlewdr'd. For BITFST, 0 P 2  has the same precision as the modifiir. FO; 

LBITFST, each element of OP2 has the same precision as the modifier. 

p h i  following sets RTA to floor(log2(RTA)) with RTA assumed to be a ;on-zero unsigned 
singleword integer: 

1 

This piece of code constructs a byte pointer in (doubleword) RTA to the sm~llest byte, containing 
all the one-bits in HUN0,Z: 

B1TFST.S RTA,HUNOZ ;number of leading "8" b i t s  
B1TRV.S RTAf,HUNOZ,#36. ; reverse  IlUNOZ in to  RTA1 
B1TFST.S RTAl ;number of t r a i  l ing "8" b i  t s  
A0D.S RTA1,RTA ;number of surrounding "0" b i t s  
SUBV. S RTA1, #36. ; l ength  of smal l e s t  containing byte 
M0V.H.S RTA1,RTA ;put  pos i t i on  in high halfword of RTAl 

I 
MOVP. P. A RTA , HUNOZ ;make poin ter  t o  HUNOZ in RTA 



228 2 Instruction Set 

2.10 Byte Manipulation 
I 

Bytes, byte pointers, and byte selectors: A -byte is simply a field of zero or more bits within a 
singleword 'or doubleword. The  native mode architecture does not tie,the concept of a byte to the 
representation of a character. Instead, it lets the programmer specify the position and width of a byte 
by constructing a byte pointer: 

- 
TAG I ADDR 

POSITION I LENGTH 

The TAG and AUUK fields comprise a pointer (as described in Sectinn 18,1), and are subject to 
the validation checking described in Section 1.8.2. They must point to an aligned singleword in 
memory--that is, ADDK must be a multiple of 4. The POSITION field gives the bit number 
within the singleword or doubleword at which the byte begins, and must lie within the range 0 . .  35 
for singlewords or 0 . .  71 for doublewords. The  LENGTH field gives the number of bits within 
the byte, and must lie within the range 0 .  . 36 for singlewords or 0 .  . 72 for doublewords. A 
singleword byte instruction requires each byte operand to lie within an aligned singleword. A 
doubleword byte instruction requires each byte operand to lie within the doubleword specified by 
T A G  and ADDR. 

If the POSITION and OFFSET fields of a byte pointer violate any of those rules, an 
ILLEGALBYTEJTR hard trap occurs. 

Immediate byte instructions use an operand to specify the singleword or doubleword containing a 
byte, b d  thus can access a byte within a constant or register as well at in memory. They use a 
simplified version of the byte pointer, called a byte selector, eliminating the TAG and ADDRESS 
fields: 

I POSIT ION I LENGTH 1 

One useful consequence of the format for byte pointers is the ability to compare them as if they 
were ordinary doublewords (provided that one knows the tag fields of the pointers match). The 
comparison will reveal which byte is higher in memory or, if the two bytes begin at the same 
position of the same word, which byte is longer. 
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LBYT 

229 

Load unsigned byte 

XOP 

Purpose: The instruction copies the byte specified by byte pointer OP2 and stores it, right justified 
in a field of zeros, in OP1. . . . . . . . . 

Restrictions: None 

Exceptions: None 

Precision: OP1  has the precision specified by the modifier. O P 2  is a byte pointer. The  b~te~which  
OP2 points to must obey the length and alignment rules for the precision specified by the modifier. 

. .. . ! I ,  

p e  following sets RTA to the  exponent field' of the singleword floating point n u h b e r . . ~  (the 

. exponent field is 9 bits wide and starts at bit 1 of the word): 
'1 
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LlBYT Load immediate unsigned byte 

LIBYT . (S,D) TOP 

Purpose: T h e  instruction copies from S 1  the byte specified by byte selector S2 and stores it, right 
justified in a field of zeros, in DEST. 

Restrictions: None 

Exceptions: None 

Precision: S1 and DEST have the same precision as the modifier. S2 is a byte selector. . 

F h e  folloking sets RTA to the exponent field of the singleword floating point number X 
exponent field is 9 bits long and starts at bit 1 of the5.word): . . 
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LSBYT Load signed. by-te 

~ u r ~ o s e : T h e  instruction copier the byte specified by byte pointer OP2, sign-extends it, and stores it 
in OP1. . . 

. . Restrictions: None , . -  

Exceptions: None . .  , 

Precision: OP1 .-has the .precision specified by. the modifier. OP2 is- a byre 'pointer. The..byte 
specified by OP2 must obey the length and alignment rules for the precision specified by . the . 

modifier. , . , . . .  , . .  . .  , . . : . .  . .:.. . . . . .  1 _ )  

. . . . ,  . . . . , , 6 .  ' . , < ,  . ;  . 

following uses RTB as a b p  pointer, setting RTA to the ligned "due of t he  sign and 
exponent fields 'of the singleword floating point number X: 

. ., 

1 
' . 

M0VP.P.A RTB,X ; Set address p a r t  o f  po in ter  
. .. 

M0V.S.S RTB1,#[0,,10.1 ; Set p o s i t i o n ,  length p a r t s  

L 
L9BYT.S RTA,RTB 
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LISBYT Load immediate signed byte 

LISBYT . (S,D) TOP 

Purpose: T h e  instruction copies from S1 the byte specified by byte selector S2, sign-extends it, and 
stores it in DEST. 

Restrictions: None ., .. 

Exceptions: None 

Precision: $1 and DEST have the same precision specified by the modifier. S2 is a byte selector. 

Fe fallbvmg sets X I ' A  to the signed value of the sign and exponent fields of the singleword 

the byte selector is zero: 

1 
floating point number X. Notice that a short constant can be used, because the position field of 

L 
LIS0YT.S RTA,X,#10. ; Same as #c0,,10.> 
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DBYT Deposit byte 

DBYT . (S,D) XOP 

Purpose: The  instruction copies the appropride number. of low-order, bits :from O P 2  and stores 
them in the byte specified by byte pointer OP1. . .  . . - .  . . .  . , . . 

Restrictions: -None :>  ' , .. ;;. . . . . . .  s . . 

' . Exceptions: None / . ' :  

Precision: OP1  is a byte pointer.. The  byte specified by OP1 must obey the length and alignment 
rules of the precision specified by the modifier. O P 2  has the precision specified by the modifier. 

, " .  . . , . .  . :: :. ' . . . .  . ., . .  (( 

F h e  following setsthe mdtissii of the singleword floating point number 7 to the .. ;wenty-six . low. 
order bits of RTA (the mantissa is .26 bits long and 'begins at bit 10: 

. . , .  . . 
. . 

DBYT. S [TAG+X 7 10.. ,26. I , RTA 
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DlBYT Deposit immediate byte 

DIBYT , (S,D) ' TOP 

Purpose: T h e  instruction copies the appropriate number. of low-order -bits from S 1 and stores them 
in the byte within DEST specified by byte selector S2. 

Restrictions: None 

Exceptions: None 

Precision: S 1 .and DEST have the precision specified by the modifier.' S2 is a byte selector: 
, , 

p e  following set; the exponent field of the singleword flbating point number in RTA to zero. 
- .  . .  . 

(The exponent field is 9 bits long and begins at bit 1): ' " .  
, 

" I '  

1 
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ADJBP Adjust byte pointer 

ADJBP . ~c,A,z) TOP 
. , 

Purpose: This instruction assumes S 1 is a byte pointer which points to one byte in a series of packed 
bytes. It copies that byte pointer from S1, adjusts it to point to an earlier or later byte in the series, 
and stores the new pointer in DEST. S2 specifies how many bytes forward (or, if S2 is negative, how 
many bytes backward) to move the pointer. 

The modifier specifies one o f '  three different ways, to pack bytes with respect to singleword 
boundaries. 

If the modifier is UC", the instruction positions bytes continuously, one after another, splitting a byte 
across a singleword boundary when necessary. The  pointer S1 must specify LENGTH s 7% and 
(LENGTH + POSITION) 5 72. 

If tlie modifier is U ~ " ,  the iristruction positions bytes contin~ously, except that it will leave biti ., .'. 

"unused" if'necessGy to prevent a byte 'froin being split across a singleword . boundary. . It m'ainta*tis - . 

the same alignment of 6ytes (that:is, the s h e  pattern of bytes and unused bits) in each sitiglew&rd. 
The pointer S1 must specify a byte which does not cross a singleword boundary, and whose le,ngth . < ,  ; 

does not exceed 36 bits. ' i 

. . .  

If the modifier is Z", the instruction positions bytes beginning at the bit-zero (high-order) end of 
each singleword. ~ o ' b ~ t e  ever crosses a singleword boundary, and if 36 is not evenly divisible by the 
b e  length, then the lefiover" bits all appear at the low-order end of the word. It is 'illegal for the 
byte pointer S1 to point to a byte which crosses a word boundary or whose length exceeds 36 bits. It 
may point to abyte whose pdsition within the word suggests that the bytes are not bit-zero aligned; 
if so, the instruction will impose bit-zero alignment if S2 causes it to point to a different singleword. 

Given that ADDRESS, POSITION, and LENGTHare  fields of the byte pointer, &d DIV and 
MOD indicate integer division and modulo in the Pascal language sense rather than the S-1 native 
mode assembly language sense, the algorithms for this instruction are: 

AD JBP.C 

ADDR := ADDR + ((POSITION + SZ*LENGTH) D IV  36)  * 4; 
POSITION := (POSITION + SZ*LENGTH) MOD 36; 

BP :a POSITION D IV  LENGTH; (m BYTE NUMBER *I 
BPW := BP + ((36-POSITION) OIV LENGTH); (* BYTES PER WORD XI 
ADDR := ADDR + ((SZ+BP) DIV BPW). * 4; 
POSITION := POSITION + ((SZ+BP) MOD.BPW) * LENGTH; 
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.BPW := 36 DIV LENGTH; (* Bytes per word *) 
B P  := POSITION DIV LENGTH; (* Byte number *) 
IF S2 > 0 THEN 

BF := (36-POSITION-LENGTH) DIV LENGTH (* Bytes after m) 
ELSE BF := BP; (* Bytes before *) 
IF ABS(S2) > BF 

THEN BEGIN ( x  New byte pointer points to different word *) 
ADDRESS := ADDRESS + ( (S2+BPW-BF-1) DIV BPW ) * 4; 
POSITION := ((S2+BPW-BF-1) MOD BPW) * LENGTH; 
END 

ELSE (* New byte pointer stil1,points to same word *) 
POSITION := PO.SITION + S~*LENGTH; 

T o  show the effect of the three different modifiers, assume that RTA is a byte pointer to an 8-bit 
byte beginning at bit 2 of singleword Mlnl. - Executing the instruction ."ADJBP.(C,A,Z) RTA,aln 
eight times will cause it to point to eight successive bytes in memory, as shown in the drawings: 

Restrictions1 None 

Exceptions: None 

Precision: S 1 and DEST are byte pointers. S2 is a singleword. 

F h e  following advances the byte pointer at BP by one byte: 
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suppose that TABLE'is  a vector of NBYTES four-bit bytes, packed nine per dngleword. 
Suppose that a purported index into this table is in RTB. This code checks the purported 
index for validity and then produces the ddsired byte in RTA, or zero if the index was invalid. 
It produces a.flag indicating whether the index is valid, and then selects one of two byte pointers 
to adjust. If the index is valid, a'byte pointer to the beginning of the table is adjusted to point 
to the desired byte; if not, a byte pointer to a zero-length byte is produced. Loading a byte using 
a zero-length byte pointer always produces a zero. Note the "t3' in the ADJBP instruction: it 
causee . . the indexing by RTA to be doubleword indexing, because byte pointers are two words 
long: 

BNDSF.O.S RTA,#[NBYTES-11,RTB ;RTA:=-1 i f  index okay, e l s e  0 
ADJBP.A RTA,<BPTRS+10>[RTAlf3,RTB ;get p t r  t o  desired byte ,  or  nut l p t r  
LBYT.S RTA,RTA ; load byte  i n t o  RTA 

BPTRS: TABLE ? 0, ,4 

I 
TABLE ? 0 ,  , 0  

;byte  po in ter  to  beginning o f  TABLE 
;zero-length by te  po in ter  
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2.11 Stack Manipulation 

A stack is specified' by any two consecutive singlewords. The  architecture interprets these 
singlewords as a stack-pointer and a stack-limit. While this pointerllimit pair may reside in 
memory or in registers, the stack itself always resides in memory. The  architecture supports both 
stacks which grow upward in memory toward higher addresses and stacks which grow downward in 
memory toward lower addresses. Instructions which manipulate stacks generally specify either "UP" 
or 'DOWN" as a modifier, indicating the direction in which they consider the stack to grow. 

For upward-growing stacks, the first of the two consecutive singlewords of the poiriterllimit pair is 
the stack-pointer and the second is the stack-limit. For downward-growing stacks, the first is the 
limit and the second is the pointer. When an upward-growing stack and a downward-growing stack 
share the same segment of memory, this allows the same pointerllimit pair to serve both stacks: the 
pointer of. the upward-growing stack is the limit of the downward-growing stack, and vice versa. 

. . 

For upward-growing stacks, the stack-pointer specifies the next free sing!eword on the stack, so that 
a push operation first stores the item and then increments the pointer. For downward-growing 
stacks, the pointer specifies the top item of the stack, so that a push operation first decrements the 
pointer and then stores the new item. 

for upward-growing stacks, the stack-limit points to thefirst singleword beyond the end of the stack. 
For downward-growing stacks, the stack-limit points to the last singleword into which one may- 
legally store an item. 

The processor compares SP with SL using signed 36-bit arithmetic and invokes the 
STACK-OVERFLOW hard trap on any instruction that would cause the stack to overflow. 

Registers %R30 (called SP) and %R31 (called SL) specify a particular upward-growing stack for 
implicit use by interrupts, traps, and linkage instructions such as JSR and ALLOC. The 
instructions in this section can operate on that stack, but usually they operate on additional stacks 
specified by other st'ack pointerllimit pairs. 

Note that both the stack pointer and the stack limit are truly painters, and t h ~ s  ~ ~ n d ~ r g n  t h ~  p n i n t ~ r  
validation described in section 1.8.2. 
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ADJSP . . Adjust designated stack pointer 

XOP 

Purpose: Adjust the size of an (upward-growing, downward-growing) stack. The instruction 
assumes that FIRST(OPI) and SECOND(OPI) a r e a  stack pointkr/limit pair, and adjusts the stack 
pointer to point to operand OP2. 

* . -  
The pointer itself is subject to segment bounds checking during ADJSP. If the instruction would 
make the stack pointer exceed thestackfirnit, a STACK-OVERFLOW hard trap will occur. 

Restrictions: None 

Exceptions: None 

Precision: FIRST(0P I), SECOND(0P I) and OP2 are singlewords. 

. . 
F e  fo,1owing thmwi awai 'the t o p  4 singlbwoid stick elements of the upward-growing stack 

designated by the stack pointer/limlt pair SPL: 
1 

I 
ADJSP. UP SPL, (SPL) -4*4 
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PUSH Push onto designated stack 

PUSH . (UP,DN) . (QH,S,D) XOP 

Purpose: Push O P 2  onto the upward-growing or downward-growing stack designated by stack 
pointer/limit pair FIRST(0P 1) and SECOND(0P 1). 

If the instruction would cause the stack pointer to pass the stack limit (that is, 
OP 1+(1,2,4,8)>NEXT(OP 1) for PUSH.UP or NEXT(0P 1)-{1,2,4,8)<OP 1 for PUSH.DN) a 
STACK-OVERFLOW hard trap will occur. Similarly, causing the stack pointer to cross a segment 
boundary results in an OUT-OF3OUNDS hard trap. 

Rcstrictinns: Nnnc 

Exceptions: None 

Precision: FIRST(OP1) and SECOND(OP1) are singlewords. OP2 has the precision of the 
modifier. 

F h e  following pushes RTA on the stack designated by stack pointerllirnit pair SPL: 1 



POP , Pop from designatedstack 

POP . (UP.DN} . {(LH,S,D) . XOP 

Purpose: From the upward-growing or downward-growing stack designated by pointer/limit pair 
FIRST(OP2) and SECOND(OPP), pop the top value (whose precision is specified by the second 
modifier) and store that value in OP1. 

A STACK-OVERFLOW hard trap occurs if the instruction would make the stack pointer pass the 
stack limit, and an OUT-OF-BOUNDS hard trap occurs if it would make the stack pointer cross a 
segment boundary. 

Restrictions: None . ' 
. .  . 

c m 

Exceptions: None . . . . 

Precision: FIRST(OP2) and SECOND(OP2) are singlewords; OP1: .has the :precis.ion :of: the 
modifier. 

. . . . . . 
' I  . : .  

p h e  following pops the top halfword on an upward-grnwing stack into RTA. i e t  SPL b e t 4  
pointerllimit doubleword designating the stack: 

:. 8 . ;  

L 
P0P.UP.H RTA,SPL 

J 
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PUSHAQR Push address onto designated stack 

PUSHADR . (UP,DN) XOP 

Purpose: Compute a tagged pointer to O P 2  and push that pointer onto an upward-growing or 
downward-growing stack specified by stack pointerllimit pair FIRST(OP 1) and SECOND(0P I). 

If the instruction would cause the stack pointer to pass the stack limit (that is, OP1+4>NEXT(OPl) 
for PUSH.UP or NEXT(OP1)-4<0P1 for PUSH.DN) a STACK-OVERLOW hard trap will 
occur. Similarly, causing the stack pointer to cross a segment boundary results in an 
OUT-OF-BOUNDS hard trap. 

Rastrictin,ns: Nnno 

Exceptions: None 

Precision: FIRST(0P 1) and SECOND(0P 1) are singlewords. 

pe following pusher a pointer to WHIRR onto the stack specified by a pointer at ZR25 and a 
I .  . 

limit at %R26: 
i 

. l  
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2.12 Routine Linkage and Traps 

These instructions 'provide call and return 'mechanisms for subroutines, coroutines, trap handlers, 
and interrupt handlers. (Additional instructions WTDBP and RTDBP, used to specify the 
locations for trap and interrupt vectors, appear in Section 2.15.) 

The architecture provides several complete sets of call and return instructions with varying degrees 
of sophistication. They include: 

JSR, ALLOC, RETSR, RET 
Jump to and return from simple subroutines. JSR calls the subroutine, pushing 
a single parameter on the stack; ALLOC may be used to save. registers and 
allocate space upon the stack; and RETSR returns from the subroutine, restoring 
the parameter. Alternatively, RET returns but discards the parameter pushed by 
JSR and, if desired, a number of words preceding it on the stack. 

CALL, JSP, ENTRY, UNCALL 
Call and return from an internal procedure, using a stack frame. C ~ ~ ~ . c a l l s  the' 
procedure, ENTRY builds the stack frame, and UNCALL returns from the 

. . procedure, dropping back to the preceding stack frame. SSP. is usefu.1 whenzttie' 
'chain of procedure calls permits calls to share a stack frame; . . . . . . 

. . . . . . 

- g .  
- .  

CALLX, ENTRY, RETGATE,:UNCALL '. 

Call and return from an external procedure,. using a stack frame.. CALLX talls, 
the procedure and ENTRY builds the stack frame. If the call crossed a ring 
boundary, the procedure returns with RETGATE rather than with UNCALL. . 

1 , ... . . 

TRPSLF, RETUS . I 
. r 

Cause a trap to one of the vectors for the current address space, and return from 
the corresponding trap handler. See Section 1.9.3 for details. RETUS is also 
used to return from the handler of a soft trap. 

TRPEXE, RETFS 
Cause a trap to the executive and return from the corresponding trap handler. 
See Section 1.9.3 for details. RETFS is also used to return from the handler of a 
hard trap or interrupt. 

JC R Jump between coroutines without using the stack. 

JMPCALL, JMPRET 
These are simple jump instructions which are considered to be call and return 
instructions for purposes of call tracing. 

The followir~g irrsLr,u~tiuiis will invoke the CALL-TRAP hard trap when the call tracing 
mechanism in PROCESSORSTATUS is enabled: 
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CALL 
CALLX 

JCR 
JMPCALL 
JMPRET 

JSP 
JS R 
RET 
RETGATE 
RETSR 
UNCALL 

2.12.1 The Stack Frame Convention 

All of ,the linkage instructions 'use registers R30 and R31 as stack pointer (SP) and stack limit (SL). 
T h e  CALL1 JSPIENTRYIUNCALL family of instructions establish a stack frame convention which 
fhrther defines R28 to be a closure pointer (CP), defines R29 to be a frame pointer (FP), and defines 
a stack frame consisting of three singlewords called SF.EP, SF.FLAGS, and SF.R.ETADDR. F.P 
points to SF.EP for, the current procedure. 

,- 

CP The  closure pointer points to the stack frame for the procedure which is 
immediately global to the one which is currently executing. In Pascal, this is the 
procedure (or main program) inside which the currently executing procedure. was. 
declared. This pointer establishes the static scope of a language. 

FP T h e  frame pointer points to the stack frame for the currently executing 
procedure. 

Though the stack frame need contain only three singlewords, we'll present a more elaborate example 
that contains the following; 

SF.CP The  closure pointer that points to the stack frame of the procedure which 
statically encloses the current one. 

SF.PREV-FP T h e  frame pointer which points to the stack frame of the procedure which called 
the current one. 

An entry pointer, which points to the first singleword of code for the current 
procedure. This permits the placing of debugging and runtime information 
between the physical beginning of the procedure and the first instr1.1cti.on. 



2.12.1 The  Stack Frame convention 

SF.FLAGS A word,of flags which is zeroed on entry to the routine. 
. .. - 

SF.RET-ADDR The  return address, a pointer to an instruction within the current procedure. 
When the current procedure calls another. one, this pointer.specifies where to 
resume execution when the other procedure returns. 

. . 

To illustrate the stack frame convention, consider the following 'fra&nent'.of a P,ascal ,program: 
, -+. . 

. . .  PROCEDURE .A; ' ' ., 

VAR Al,:A2, A3; 
PROCEDURE C; 

VAR C1, C2, C3; 
BEGIN 
. . . 
END . (m C *I ; 

PROCEDURE B; 
VAR B1, 82, 83; 
BEG I N  

c: 
... 
END (m B *I ; 

BEGIN. 

B; ' . . . 
END (m 'A *I ; . 

Suppose that someone calls procedure A, which calls procedure B, which in turn calls procedure C. 
'We stop the processor some time after C begins to execute, but before it has called any further 
procedure. Following the stack frame convention, Figure 2-2 shows the appearance of the stack and 
tho code frame. 

The CALL and CALLX instructions save SF.RETADDR within the stackframe, and the ENTRY 
instruction saves SF..EP and clears SF.FLAGS. The  remaining portions of the stack frame must be 
handled by a sequence of individual instructions. In Figure 2-2, for example, the instructions 
required for procedure B to call procedure C might look like: 

Within procedure B: 
CALL CP, C ; C a l l  C, g i v i n g  i t  the  same 

NI :  ... ; CP as  B because b o t h  a re  

; nested i n  A. The address N I  
; is saved as SF.RET-ADDR 
; ' w i t h i n  the  s tack frame o f  B 

At the beginning of procedure C: 
< in fo rma t i on  f o r  run t ime debugging> 

C:ALLOC.2 CP,(SPl4*<3+SizeOfLocals> ; Push the CP and FP, a l l o c a t e  



ENTRY (SPI-4*<3+SizeOfLocaIs,C 

<Code o f  procedure C> 
U N C A ~  (FPI 4 ~ - 1 ,  (FP) 4u-2 

2 '  Instruction Set 

; 3 SWs f o r  the r e s t  o f  the 
; stack frame, a l l o c a t e  more for  

; the local  var !ab les  
; Hake SF.EP p o i n t  t o  C, 
; c l e a r  SF.FLAGS, make FP 
; p o i n t  t o  SF.EP 

; Return, r e t r i e v i n g  B 's  FP 

; from our frame and popping 
; our frame from the stack 



2.12.1 The Stack Frame Convention 

Stack Code Segment 

Debug Hooks u 
L SF.PREV-FP - 

r . -  

SF.EP . a 

SF. FLAGS 
CALL FP, B 

SF. RET-ADDR -: 
I LOCALS I l ~ e b u ~  Hooks I 

SF. EP 

- .  . 

SF. RET-ADDR 

LOCALS rl 
Top o f  Stack 7 

Figure 2-2 
Stack Frame Illustration 

If procedure C expected parameters, the sequence could easily be changed to use the modifier and 
OP1 of the ALLOC instruction to push additional registers onto the stack preceding SF.CP and 
.SF.FP: 
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2.12.2 Cross-ring Calls 

T o  simplify the user interface to the operating system, it is desirable to make the mechanism for 
calling operating system procedures appear identical with the mechanism for calling external 
procedures in general. 

T o  achieve this, the architecture provides an instructinn c a l l ~ d  CALLX, a special kind of pointer 
called a gate pointer,'and a vector of entry points called gates. When the CALLX instruction 
employs a ring or user pointer to specify the called procedure, it cannot--due to the validation 
mechanism described in Section 1.8.2--call a procedure in a lower-numbered ring. When the 
CALLX instruction employs a gate pointer, however, it invokes a trap-like mechanism which 
permits calling a routine in a lower-numbered ring, but subjects the call to some protective 
mechanisms. 

Thus, the only difference between calling an ordinary external procedure and calling an operating 
system procedure is in the TAG field of the pointer used to link to the procedure. 

the ring in question: . 

New FP 

New SP' 
h 

New SL 

New USER-STATUS 

New PROCESSOR-STATUS 

T h e  "set of gates" pointed to by the gate descriptor corresponds to a set of trap vectors. The gates 
are numbered consecutively beginning at 0, and each has the following format: 

M [nl  

M Cn+41 

fl [n+81 

M [n+121 

fl Cn+163 

Maximum Vector Index 

ADDRESS(Set o f  Gates) 

I ADDRESS (Gate Rout i ne) I M  [nl  

M [n+201 

l l  [n+24J 

I New CP I f l  Cn+41 



2.12.2 Cross-ring Calls 

A gate routine is actually the routine to be called by the CALLX instruction, but here it roughly 
corresponds to a trap handler. When the CALLX instruction executes using a gate pointer, the 
following Sequence occurs: 

. . 

1. Use the gate pointer to determine the desired ring and gate index. The  usual pointer 
ADDRESS field is redefined, so the format of a gate pointer is the following: 

[ TAG=1 Il(.s&vedI RING I INDEX I 

If RING=S, a GATEJNDEX-TOO-BIG hard trap occurs (there are no gates into ring 3 
because the address validation mechanism does not prevent any ring from making 
ordinary calls into ring 3). Otherwise, the processor consults the gate descriptor for the 
specified ring. If INDEX is greater than the maximum vector index specified by that gate 
descriptor, a GATEJNDEX-TOOiBIG hard trap occurs. Otherwise, the processor uses 
INDEX to select the specified gate from the set of gates pointed to by the gate descriptor. 
Note that the pointer-and-index mechanism for finding the proper gate is subject to 
address validation. 

2. Save,FP, SP, SL, PROCESSORSTATUS, and USERSTATUS internally. Load FP, 
SP, SL and USERSTATUS with the new values specified in the gate descriptor. If the 
ring specified by RING is privileged, load PROCESSORSTATUS with the value 
specified in the gate descriptor. 

3. Push the current state onto the SP stack specified by the new PROCESSOR-STATUS 
and SP found in the gate descriptor. The  act of pushing this information onto the stack is 
atomic, and any interrupts will remain pending until it 'is complete. A hard trap can result, 
however--if, for example, the SP would cross a segment boundary, exceed SL, or touch an 
absent page--and such a hard trap does intercede (Seceion 1.9.6). 

The  information is pushed onto the stack in the following format, known as the save area 
for the gate crossing (if the ring specified by, RING is not privileged, push zero in place of 
PROCESSORSTATUS): 
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old FP 

old SP . S. 

old SL 

I o ld  PROCESSOR-STATUS I 
I o ld  USER-STATUS I 
I PC-NEXT-INSTR o f  t h e  CALLX I 
I PC o f  t h e  CALLX I 
I Gate Poin ter  I 

Top o f  stack 

4. LuaJ CP with Lhe value specified in cPle gate fnelf. Load PC with the address of' the 
gate routine specified in the gate itself and resume execution. By thus changing the ring of 
execution before executing the first instruction of the called routine, the processor 
effectively bypasses the usual address validation mechanism and the ,checking of the 
execute bracket (STE.EB field) of the.corresponding segrnentito. 

r /  

A typical operating system would rely on address validation checking to prevent higher-numbered ' 
' 

rings from calling or jumping into lower-numbered rings arbitrarily; a user wishing to call into a 
privileged ring would have to use the gate mechanism. (If the operating system mapped itself into 
the same address space as the user, it would additionally use the STE.EB execute bracket 
mechanism to prevent the user from calling operating system routines except via gates.) 



2.12.3 Routine Linkage Instructions 

2.12.3 Routine Linkage Instructions 
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CALL Call an internal procedure 

CALL J" F' 

Purpose: Call an internal procedure, assum'ing the use of the standard stack frame. First CP:=OPl, 
then SF.RETADDR:=PC_NEXTJNSTR (SF.RETADDR is the singleword at (FP)4*2). Then 
G O T 0  JUMPDEST, which must lie within the ring of execution. 

Restrictions: None 

Exceptions: None 

Precision: OP1 is a memory address; OP2 is a jump destination. . 

F p p o s e  a procedure named C is declared within a procedure named B. The following sequence 
would call C from B: 

1 
V0VP.P.A XR27,Parmlist 
CALL F P , F i r s t C  

; P o i n t e r  t o  parameters 
; C a l l  C. Use 6 ' s  FP as C's 
; CP.because C i s  nested 
; wlthin B 
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CALLX Call an external procedure 

CALLX XOP 

Purpose: Call an external procedure, assuming the use of t he  standard, stack frame. First CP:=OP 1, 
then SF.RETADDR:=PCNEXTJNSTR (SF.RETADDR i r t h e  singleword at (FP)4*2). Then 
fetch OP2 and treat the resulting value as a pointer. If the pointer has' a gate tag, perform a 
cross-ring call through a gate (see Section 2.12.2); otherwise, simply go to the instruction it points to 
and resume execution there. 

If OP2 is a register or constant, an ILLEGALcOPERANDcMODE or ILLEGALcCONSTANT 
hard trap occurs. 

. . ;  . . . 

Restrictions: None 

, . Exceptions: None 

Precision: OP1 and OP2  are singlewords. The  contents of OP2 must point to a singleword. 

p s u m e  that a procedure has been parred as a parameter to the current routine, and that the two 

To invoke the procedure, the current routine would execute: 

1 
singlewords at (AP)O are a pointer to the code for that procedure, followed by its closure pointer. 

L 
CALLX (AP) l u 4 ,  (AP) 0u4 
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JSP Jump and save PC 

JS P JO p 

Purpose: First OP l:=PCJJEXT JNSTR, then go to .JUMPDEST. 

Restrictions: None 

Exceptions: None 

Precision: OP 1 is a singleword. 

F e  following saver the return address in RO and calls PRSTR: 

I JSP R0,PRSTR 
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ENTRY ~nitiaiize a stack frame 

ENTRY XOP 

Purpose: Initialize the stlck frame assumed ,by the  Q i L L  and . C A L L X  instructions. 
OPl:=ADDRESS(OPZ), typically ,ulsed to make SF.EP point to the first instruction of, the called 
routine. NEXT(OPl):=O, typically used to clear SF-FLAGS. FP:=ADDRESS(OP l), typically used to 
make FP point to SF.EP, marking the location of the stack frame. 

, , . . . . . . . . , 

Note that ENTRY does not alter SP. It assumes that an instruction such as ALLOC has allocated 
space for the stack frame. ; 

Restrictions: None 

Exceptions: None , c *  

~rec is id i :  O P  1 and OP2 are singlewords. . . ,.,I . . 

1 F e  following sequence raves the entire register file, with thee~ceptian of SP and SL, preceding .I 
the portion of the .stack frame initialized. by ENTRY: . . ' '. . . . 

ALLOC.30 R0,4*<3+SizeOfLocals> ; Save r e g i s t e r s . a n d  a l l o c a t e  space 
; fo r  stackframe and l o c a l s  

ENTRY (SPI-4*<3+SizeOfLocaIs>,C ; flake SF.EP p o i n t  t o  C, c l e a r  
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UNCALL Return from a call 

UNCALL. XOP 

Purpose: Return from a procedure called by the CALL or CALLX instruction. FP:=OPl; 
SP:=ADDRESS(OP2). Go to the instruction pointed to by SF.RETADDR. (SF.RETADDR is 
(FP)4*2 after OP 1 has been moved to FP.) 

If the instruction causes SP to cross a segment boundary, an OUT-OF-BOUNDS hard trap occurs. 

Use RETGATE, not UNCALL, to return from cross-ring calls. 

Restrictions: None 

Exceptions: None 

Precision: OP 1 and OP2 are singlewords. 

F e  following sequence restores the entire register file; with the exception of SP and SL, from 
the area of the stack preceding SF.EP, pops t'he stack frame, and returns to the caller: 

MOVNS. 3B RB, (FPI - 4 ~ 3 0 .  ; Restore reg  i s terms 

L 
UNCALL (FPI -4*1, (FP) -4*30. ; Restore o l d  FP, pop a1 l 
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RETGATE , , , Return from a cross-ring call 

RETCATE XOP 

Purpose: Return from a cross-ring call initiated by the CALLX instruction. O P 1  is the first of six 
singlewords specifying new values for FP, SP, SL, USERSTATUS, PROCESSORASTATUS, and 
P C  respectively. If the new value of PC  specifies a ring whose number is less than that of the ring 
of execution, a BADA-VALIDATION hard trap occurs. Otherwise, the instruction loads the new 
values into the FP, SP, SL,*and ,USERSTATUS registers. If the ring of execution is privileged, it 
also loads the new value specified for PROCESSORSTATUS. In any case, it loads the new value 
into P C  and resumes execution. 

Use UNCALL, not RETGATE, to return from ordinary calls. . , 

Restrictions: None .. , . 

Exceptions: .None . 
' * 

Precision: O P  1 is a singleword. OP2 is unused. 

Fcross-ga te  call will present the called routine with a stack like the one shown in Section 2.12.2. 
The  callee might use the following instruction to return: 

1 
RETGATE (SPI -4u8. ; Restore the c a l l e r ' s  s t a t e  from the 

; f i r s t  6 .s ing lewords  o f  the 8 s ing lewords 

; pushed by the CALLX i n s t r u c t i o n .  ".. 

J 
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JSR Jump to subroutine 

Purpose: Push first O P 1  and then the return address onto the stack whose pointer is4SP. Then 
transfer to JUMPDEST. 

If this instruction would cause SP  to pass SL, a STACK-OVERFLOW hard trap occurs; if it 
would cause SP to crdss a segment boundary; an OUT-OFBOUNDS hard trap occurs. 

Restrictions: None 

Exceptions: None 

Precision: All operands are singlewords. 

p e  following pushes RTA and ADDRESS(FO1) on the stack before jumping to BAZ: 1 
JSR RTA,BAZ 

I 
. . . : re turn  address 

OP1 

PC-NEXT-I NSTR 

0 35 
Top o f  stack 

Figure 2-3 
JSk Save Area Format 
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ALLOC Allocate space atop stack 

Purpose: This instruction pushes a specified group' of singlewords onto the SP  stack (the one ~ised 
by the subroutine, calling mechanism) and then adjusts the stack pointer, possibly allocating 
additional space atop the stack. Typically it is used to save registers and make room for a stack 
frame. 

More specifically, the instruction first moves a vector of 1 . . 32 singlewords starting with OP1  to the 
vector pointed to by SP  (if the two vectors 'overlap, the result is undefined). Then 
SP:=ADDRESS(OPP). Thus, OP2 is typically a memory location beyond the last of the words 
moved, though this is not required. If this instruction would cause SP to pass SL, a 
STACK-OVERFLOW hard trap occurs; if it would cause SP to cross a segment boundary, an 
OUT-OF3OUlJD3 Isud trap occurs. 

Restrictions: None 

Exceptions: None 

Precision: OP1 and OP2 must be singlewords. 

F h e  following saves all the registers and reserves an additional DW on the stack as well: 1 
ALLOC. 32 XR0, (SP) <4* (40+2)  > 

Note that the modifier is a decimal number, but the numbers in the operands are octal. The  
same instruction could be written: 

L 
ALLOC. 32 %R0, (SP1<4* (32. +2) > 
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RETSW Return f roll1 subroutine 

RETSR XOP 

Purpose: Return from a subroutine that was invoked by the JSR instruction. First the instruction 
copies ADDRESS(OP2) into SP. Then it pops the first singleword (return address) from the stack 
pointed to by SP and stores it in the PC. Then it pops the second singleword (typically the value of 
O P 1  placed there by the JSR instruction) and stores it in OP1. 

T o  be sure that RETSR is the exact reverse of JSR, the programmer must use the same OP1 in 
both JSR and RETSR, and assure that OP2 in the RETSR instruction is the same memory location 
that SP pointed to immediately after the JSR. If the subroutine does not alter SP, then OP2 should 
be "(SP)"; otherwise, the subroutine should save a stack marker and use it as OP2. 

If the instruction would cause SP  to cross a segment boundary, an OUT-OFBOUNDS hard trap 
OCcUrS. 

Restrictions: None 

Exceptions: None 

Precision: All operands involved are singlewords. 

F h e  following code call; BAZ,' which returns to FOl, saving and restoring RTA on the stack. 
Assume SP is the stack .pointer: 

1 
JSR RTA, BAZ ' 

FBI: ... ; r e t u r n  here  

BAZ: . . . ;t ial l ~ d  r o u t i n e  

RETSR RTA, (SP) 

Suppose that BAZ needs N words of temporary stack space while it is running. These words 
can be allocated using the AD JSP instruction (or A T..T.OC if registers must also be saved), and 
the RETSR instruction can automatically discard these words and pop the JSR save area as well: 

BAZ: ALLOC.2 %R8,(SPI<N+27*4 ;save %R8 and %R9, and a l l o c a t e  N words 

. . . ; c a l l e d  r o u t i n e  

MOVNS. 2 %R8, (SPI -<N+2>*4 ; r es to re  r e g i s t e r s  %R8 and %R9 

L 
RETSR RTA,(SP)-<N+2>*4 ;pop s tack  and r e t u r n  from subrou t ine  
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il RET Return and pop parameters 

RET XOP 

Purpose: Return *without restoring parameters., F i r i t  the instruction makes SP point to OPZ. Then 
it pops one singleword (the return address) from'the stack pointed to by SP and stores it in the PC. 
Then it makes SP point to OP1, thereby optionally popping and discarding parameters (such as the 
one pushed onto the stack by the' JSR instruction). 

If the instruction would cause SP to cross a segment boundary, an OUT-OF-BOUNDS hard trap 
occurs. 

Restrictions: None 

Exceptions: None 

Precision: All operands involved are singlewords. 

p h e  following returns from a previous JSR call, throwing away the operand previously pushed 
on the stack by the JSR: , . J , 

7 

L 
RET (SP) -4, (SP) 
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TRPSLF Trap to self li 

TRPSLF . ( 0 .. 63 ) XOP 

Purpose: Trap to a routine in the current address space. The  operation of TRPSLF is explained in 
detail in Section 1.9.3; briefly, the modifier selects one of 64 trap vectors. The selected vector itself 
specifies a handler address ,and - a  word called TRP-PARMDESC-SW: Within 
T R P S A R M D E S C S W  are two fields called TMODEl and TMODE2 which can be set to tell the 
processor to evaluate the operands of the TRPSLF instruction as it would the operands of an 
ordinary instruction. .The processor pushes the evaluated operands onto the SP stack so that the trap 
handler can access them and operate upon them, prnviding software emulation of whatever 
instruction i& desired. 

Restrfctiaurs: None 

Exceptions: None 

Precision: Determined by T R P S A R M D E S C S W  for each operand 

p h e  following causes a trap to the 'number 0'' trap routine in the current address space, passing 
to it the operands X and Y: 

1 
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RETUS Return, restoring. user status ' 

RETUS . ~ R , A ]  

Purpose: Return from a soft trap or TRPSLF trap-This instruction uses the save area beginning at 
OP1  to recover the pre-trap state of the processor, and. pops the stack by making SP  point to OP2. 
(Thus, OP2 should ordinarily be the value of SP preceding the trap, and OP1 should be the first 
word of the save area pushed by the trap.) 

The  instruction loads USERSTATUS with the old USERSTATUS found in the save area. 
(Section 1.9 illustrates the save area format.) 

Ordinarily, RETUS.R repeats the instruction that was in progress when the trap or interrupt 
occurred (that is, the instruction at the PC stored in the save area) whereas RETUS-A skips to the 
following instruction. 

However, if the instruction that was in progress is interruptable--a vector arithmetic instruction, for 
example--and the instruction state within the save area is non-zero, RETUS-R reprocesses the 
unfinished element of the vector whereas RETUS.A skips that element and proceeds with-the next. 

Note that the instruction does not copy REGISTERSAVEAREA back into the registers. 

If the instruction would cause SP to cross a segment boundary, an OUT-OFJ3OUNDS hard trap 
occurs. 

Restrictions: None 

Exceptions: None 

Precision: Both operands are singlewords. 

F h e  following example shows how to use the RETUSA instruction as a one-word trap handler 1 
that ignores the trap and resumes execution at the instruction following the one that caused the 
trap. The  pseudoregister (SP)-4 obtains the old SP from the last singleword of the save area. 
The  operand ((SP)-4)O thus indicates the singleword pointed to by the old SP. Because the SP  
sta.ck. grnws upward, SP always points to the free location atop the stack, and thus in this case it 
also designates the first word of the save ,area: 

RETUS. A ( (SP) -4) 0, ( (SP) -4) 0 
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TRBEXE Trap to executive 

TRPEXE . { 0 .. 63 ) XOP 

Purpose: Trap to an executive routine. The  operation of TRPEXE is explained in detail in Section 
1.9.3; briefly, the modifier selects one of 64 trap vectors. The  selected vector itself specifies a handler 
address and a word called T R P S A R M D E S C S W .  Within TRPJARMDESC-SW are two 
fields called TMODEl and TMODE2 which can be set to tell the processor to evaluate the 
operands of the TRPSLF instruction as it would the operands of an ordinary instruction. The 
processor pushes the evaluated operands onto the SP stack so that the trap handler can access them 
and operate upon them, providing software emulation nf whatever instruction is desired. 

Restrictions: None 

Exceptions: None 

Precision: Determined by TRPSARMDESC-SW for each operand 

F h e  following causes a trap to the "number Oyy trap routine in the executive's address space with 
operands X and Y: 

1 



2.12.3 Routine Linkage Instructions 

RETFS Return, restoring full status 

purpose: Return from a hard trap, interrupt, or TRPEXE trap. This instruction first pops the stack 
used by the trap handler by making SP  point to OP2 and then recovers the pre-trap context of the 
processor from the save area pointed to by OPl .  (Thus, OP2 should ordinarily be the value of SP 
for the trap handler's stack preceding the trap, and OP1 should be the first word of the save area 
pushed by the trap. .The value of SP for the task interrupted by the trap is assumed to exist 
unaltered in the register file used by that task.) 

T o  recover the pre-trap context, the instruction loads USERSTATUS and 
PROCESSORSTATUS with the old USER-STATUS and the old PROCESSORSTATUS 
found in the save area.. (Section 1.9 illustrates the save area format.) 

Ordinarily, RETFS.R repeats the instruction that was in progress when the trap or interrupt 
occurred (that is, the instruction at the PC stored in the save area) whereas RETFS.A skips to the 
following instruction. 

. However, if the instruction that was in progress is interruptable--a vector arithmetic instructio,n, for 
example--and the' instruction state within the save area is nonlzero, RETFS.R reprocesses the 
unfinished element of the vector whereas RETFS-A skips that element and proceeds with the next. 

When the instruction state is non-zero, RETFS-A sets the TRACE-PEND bit to match the 
TRACE-ENABLE bit in the saved PROCESSORSTATUS and the CALL-TRACESEND bit 
to match the saved CALL-TRACETEND bit, just as the instruction would if it were allowed to 
finish; thus, aborting an instruction does not erroneously disable tracing. 

Note that the instruction does not copy REGISTER.,_SAVEAREA back into the registers. 

If the instruction would cause SP to cross a segment boundary, an OUT-OF-BOUNDS hard trap 
occurs. 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: Both operands are singlewords. 

p h e  following shows a trap handler for a hard trap. The pseudoregister ((s;)-4)0 specifies the 1 
last word of the save area, which contains the old SP for the trap handler's stack: Because the 
SP stack grows upward, SP points to the free location atop the stack, so the old SP also points to 
the first word of the save Lea  pushed onto the stack by the trap: 
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(code t o  handle t he  t r a p  w i t hou t  a l t e r i n g  SP) 
RETFS. R ( (SP) -4) 0 ,  ( (SP) -4) 0 
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JCR Jump to coroutine 

JC R XOP 
' 4  . . ., ' '. 

Purpose: The  instruction first exchanges OP1 (usually register SP) with OP2  (usually a memory 
location holding a saved copy of the value of SP used by the. other coroutine). Then it copies..the 
saved "return iddress" from NEXT(OP2), stores P C N E X T  J N S T R  in  NEXT(O'P~), and branches 
to the return address. . . 

Restrictions: None 

Exceptions: None 

Precision: A11 operands involved are singlewords. 

p h e n  each oP two coroutines has its own distinct stack, the JCR instruction transfers between 1 
them without using either stack. Instead, it stores the stack pointer and program counter for the 
currently inactive coroutine in two consecutive singlewords pointed to by OP2. In the following 
example, let SAVEAREA be the first of those two singlewords. Then the following instruction 
saves the stack pointer and PC for the current routine, sets up the stack pointer and PC for the 
other routine, and branches to it. 

JCR SP,SAVE.AREA 

L 
; c a l l  o t h e r  c o r o u t i n e  
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JMPCALL, JMPRET Jump to calllreturn 

JMPCALL 
JMPRET 

Purpose: These instructions are identical with the JMPA instruction, except that JMPCALL is 
considered to be a call instruction and JMPRET is considered to be a return instruction when call 
tracing is enabled. 



2.13 Interrupts and 110 

2.13 Interrupts and 1/0 

See Sections 1.9 and 1.10 for explanations of the interrupt and inputloutput mechanisms. 

The (B,(LH$) modifiers that appear on certain inrtructions refer to bitwise, quarterword, halfword, 
and singleword translations, which are likewise explained in Section 1.10. 
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110 read 

IOR . (QH,S,D). 
VIOR . (B,QH,S) 

XOP 
' v:=v 

Purpose: Transfer from an I10 memory to main memory. 

IOR transfers a scalar from O P 2  (which must lie on an 110 page) to OP1  (which must lie on a 
non-110 page) without translation. 

V l U K  transfers the vector OP2  (which must lie within' an TI0 page) to vector OP1 (which must lie 
within a non-110 page), translating each singleword according to the modifier. 

Restrictions: None 

Exceptions: None 

Precision: For IOR, OP1  and OP2  have the precision of the modifier. For VIOR, OP1  and OP2 
are vectors of aligned singlewords regardless of the modifier, and SIZEREG specifies the number of 
singlewords in the destination (main memory) vector. 

F s u m e  BUFFER is a legitimate IOBUF address. T o  read eighty characters from the 110 

instruction sequence could be used: 

1 
memory (starting at BUFFER) to a block in memory starting at IMAGE, the following 

P1OV.S.S XSIZEREG,#<~VI. /~> ;se t  XSIZEREG t o  e ighty  BWs 
V I0R .Q  IRAGE,BUFFER ;do read 
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110 write 

IOW . (Q,H,S,D) 
VIOW . (B,Q,H,S) 

XOP 
v:=v 

Purpose: Transfer from main memory to, an 110 memory. 

IOW transfers a scalar from OP2 (which must lie i n  a non-U0 page) to O P l  (which must lie on 
an 110 page) without translation. 

. . . . .  
VIOW transfers the vector OP2 (which must lie within a non-110 &e) to vector O P l  (which must 
lie within an 110 page), translating each singleword according to the modifier. 

Restrictions: None 

~ x c e ~ t i o n s :  None . . . I .. - 

Precision: For IOW, O P I  and O P 2  have the precision ofJhe modifier. For VIOW, . . O P l  ,and OP2 '  
are vectors of alig-ned'singlewords regardless of the modifier, and SIZEREG sp;cifies the number of 
singlewords in the source (main memory) vector. 

1 p s u m e  BUFFER lies within an 110 page. T o  transfer the four characters "S-I!" into the 
I  

IOBUF starting at BUFFER the following instructions could be used: 

fl0V.S.S %SIZEREG,#c4/4> ;make vector  4 charac te rs  long 

VI0W.Q BUFFER,#iUS-1 !'!I ;do w r i t e  

Because no translation is required, however, the following instruction would work just as well: 

L 
1OW.S BUFFER, ["S-I! "I  ;copy a singleward 

J 
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IORMW 110 readlmodifylwrite 

IORMW TOP 

Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a 
multiprocessor system) DEST:=S:! and then S2=S 1.. (More precisely, because the processor prefetches 
operands and because T O P  instructions store DEST last, this,instruction makes a temporary copy of 
S2, stores S1 in S2, and then stores the copy into DEST.) 

DEST and S1 must lie in main memory. S2 must lie on an 110 page. 

Restrictions: None 

Exceptions: None 

Precision: S 1, S2, and DEST are all singlewords. 

Fe following illustrates the use of IORMW: 
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VPIOR, WPIOW Vector 110 readlwrite by physical address 

VPIOR . (B,Q,H,S) .V:=V 
VPIOW . (B,Q,H,S) V:=V 

. . . . . . . . . .  . . . . .  
Purpose: VPIOR copies a vector from O P l ,  which must lie on an.II.0 page, to the vector in main 
memory whose physical address is specified by the 34 low order bits of RTA. 

VPIOW copies a vector from main memory, beginning at the location whose physical address is 
specified by the 34 low order bits of RTA, to O P l ,  which must lie on an 110 page. . . 

Both instructions perform the translation *specified by the modifier. 

Restrictions: Illegal in user mode. 

. . . : I  . . . .  - .  . . . . .  . . 
Exceptions: None . . . . . . 

Precision: Regardless of the modifier, OP1 is a singleword and the ,Sow order .34 bits of RTA are 
the physical address of a singleword. SIZEREG specifies the number of'singlewords in the vector in 
main memory. 

ppy 4000 singlewords, treated as packed &bit characters, from TTYMEM to BUT in main 
memory: 

1 
NOVPHY RTA,BUF 
M0V.S.S SIZEREG,#4000. 
VPIOR TTYMEM 
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INTIOP Interrupt 110 processor 

INTIOP XOP 

Purpose: Interrupt the I10 processor connected to the I10 memory containing OP1, and pass OP2 
to the I10 processor as a parameter whose purpose,is not specified by the architecture. 

Restrictions: None 

Exceptions: None 

PI@CiSiOII! OP1 Wd OPZ are singlewords. OPI must. lie within an 110 page having 
WR TTESF.RMLT access. 

p s u m e  BUFFER lies within an '110 page. The  following instruction will interrupt the 110 
processor connected to the 110 memory containing BUFFER: 1 

L' 
INTIOP BUFFER,#B 
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WAIT . . , Wait for interrupt 
.. . . . .  . . . - .. . . . . . 

WAIT XOP 

Purpose: Cause the ,processor to wait for,,an interrupt: ; '. ,. :, . , . .  . . . ..  

. . ., 
< t .  . 

Restrictions: Illegal in user mode. 
. . . . 

, . 

.Exceptions: None 
.. . 

Precision: OP 1 and OP2 are unused. 
8 .  

, . . . .  : 1" : ' ' ' ' ' 

Fe following instruction w i t s  for an interrupt: 
. I '  . . . . . . . , . .  . ' > ' . .  . , .  

. . , .  ! * : t i .  '. ! '. 2 . ,I 
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RlEN Read interrupt enable 

RIEN XOP 

Purpose: If interrupts are enabled for the I10 memory containing singleword OP2,' then OP1 := -1 
else OP 1 := 0. 

I '  

Restrictions: Illegal in user mode. 
)." 

Exceptions: None 
. ~ 

, :. 

Precision: OP1 and OP2 are, both singlewords; OP2 must lie on an 110 page. 
. I . , 

p e  following jumps to DISABLED if interrupts are not enabled for the 110 memory which 
contains TTYMUX: 

-1 1. 

R I  EN RTA, TTYIUX 
JflPZ.EQL.S RTA,DISABLED 
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. . 
WlEN Write interrupt enable 

W IEN XOP 

Purpose: If the low order bit of OPZ is .I", enableinterrupts for . . the 110 memory . . containingOPl; 
otherwise, disable interrupts for that 110 memory. 

Restrictions: Illegal' in user mode. 

- .  
Exceptions: None 

. . . . Precision: O P  1 and OP2 are both singlewords. O P  1 must lie on an 110 page. ' *'  - - 

pe following enables all interrupts for the '110 memory i6ntainingtTTYMUX: . , , . ,l 
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RlPMQ - Read interrupt pending 

RIPND XOP 

Purpose: O P  1 gets the priority level of the pending interrupt for the 110 memory containing OP2. 
(OP 1=0 indicates no interrupt is pending.) 

Restrictions: Traps if the processQr is in virtual machine mode. 

Exceptions: None . . I  

precision: O P  1 and OP2 are both singlewords. OP2 must lie on an 110 page. 

F T h e  following sets RTA to ihe level of interrupt for the ,110 memory containing 
TTYMUX: 

L.  
RIPND RTA,TTYNUX 
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WlPND Write interrupts pending 

WIPND . . XOP 

Purpose: If an interrupt is pending for the 110 memory containing O P  1, change the priority of the 
interrupt to the level specified by OP2. If not, cause an interrupt with priority specified by OP2  on 
behalf of the 110 memory containing OP1 (whether the interrupt occurs immediately or remains 
pending depends, as always, on the relative priority of the uniprocessor). If OP2=0, the instruction 
effectively clears any pending interrupt for the 110 memory in question. If OP2 is not a valid level, 
an ILLEGALSRIORITY hard trap occurs. 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: O P  1 and OP2 are both singlewords. O P  1 must lie on an 110 page. 

PO following clears any pending interrupt for the. 110 rnemorj. containing TTYMUX: 1 
WIPND TTYVUX,#0 
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2.14 Cache Handling 

T h e  S-1 uniprocessor has four caches: an instruction cache, a data cache, an instruction map cache, 
and a data map cache. T h e  first two hold recently used words from address spaces, and the latter 
two hold recently used entries from the virtual-to-physical address mapping tables (described in 
Section 1.7). 

If the uniprocessor accesses memory to fetch an instruction, then that access involves the instruction 
cache and the instruction map cache. If the access reads or writes a piece of data, then it involves 
the data cache and the data map cache. If the ACCESS bits for a particular page specify 
EXECUTE-PERMIT as well as READ-PERMIT or WRITE-PERMIT, then conceivably one 
could, by alternately reading (or writing) a location and executing it, cause that location to appear in 
both the instruction cache and the data cache; no problems need result. (In the more likely situation 
where the AC;C;ESS bits are used to enforce separation of instructions and data, such a situation 
wn11lr-l not occrir) 

In general, the caches employ a least recently used (LRU) algorithm to decide which cache residents 
to evict to make room for new residents. Not every instruction causes its operands to be regarded as 
used, however. 110 instructions do not update the LRU status bits for their operands, for example, 
since the data involved in an I10 operation is unlikely to be accessed repeatedly. 

While the caches are usually invisible to software, instructions are provided to sweep them--that is, 
deliberately update main memory to reflect any changes in cache contents--if this is felt to improve 
performance. T h e  cache sweeping instructions take ordinary operands which specify memory 
location on the pages to be swept; the instructions implicitly examine the addresses of those operands 
rather than the operands themselves to determine which pages to sweep. 
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SWPlC Sweep instruction cache 

SWPIC . ~V,P)  XOP 

Purpose: Sweep the instruction cache by removing a vector of consecutive singleword residents 
without writing them back to main memory. (Since access to an instruction page prevents writing, 
the contents of the cache cannot differ from the corresponding portions of main memory.) OP1  is 
the vector. 

The (V,P) modifier tells the processor how to determine which locations are Uconsecutive". In either 
case, it first evaluates O P l  & it would for any ordinary memory reference. If the modifier is V, it 
then sweeps the vector of words whose virtual addresses follow 'that of OP1. If the modifier is P, it 
sweeps the vector of words whose physical addresses follow that of OP1. 

Restrictions: Physical sweeps are legal only in privileged mode. 

Exceptions: None 

Precision: OP1 is a vector of singlewords. OP2 is unused. 

F h e  following sweeps all instructions from START up to but not including the following 
instructions: 

1 
fl0V.S.S %SIZEREG,<.-START> ;spec i fy  the length o f  the vector 

L 
SWP1C.V START ;sweep cache 
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SWPD6 Sweep data cache 

SWPDC . (V,P) . (UIUK) XOP 

Purpose: Sweep the data cache by.writing a vector of consecutive singleword residents back to main 
memory. If the second modifier is U, merely update main memory; if it is UK, update main memory 
and then remove the specified residents from the cache ('kill" them). OP1 is the vector. 

T h e  (VIP] modifier tells the processor how to determine which locations are "consecutive". In either 
case, it first evaluates O P l  as it would for any ordinary memory reference. If the modifier is V, it 
then sweeps the vector of words whose virtual addresses foilow that of OP1. If the modifier is PI it 
sweeps the vector of words whose physical addresses follow that of OP1. 

Restrictions: Physical sweeps are legal only in privileged mode. 

Exceptions: None 

Precision: OP1 is a vector of singlewords. OP2  is unused. 

F e  following updates the first 128 quarterwords in the address space, without removing them 
from the data cache (i.e., not killing them): 

1 
N0V.S.S %SIZEREG,#128. ;specify the vector length 

I 
SWPDC. V .  U a . 0  ;sweep cache 
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SWPIM, SWPDM, FLSHIM, FLSHDM Sweep/flush instructionldata map cache . 

SWPIM 
SWPDM 
FLSHIM 
FLSHDM 

XOP 
XOP 
XOP 
XOP 

Purpose: Sweep a map cache, removing one resident, or flush a map cache, removing all-residents. 

SWPIM removes from. the instruction map cache the entry for the page 'containing OP1. SWPDM 
removes from the data map cache the entry for the. page containing OP1. 

FLSHIM removes all entries from the instruction inap cache. FLSHDM removes all entries from the 
data map cache. 

None of these instructions update main memory. 

~estrictions: Illegal in user mode. 

Exceptions: None + 

Precision: For SWPIM and S.WPDM, OP1  is a singleword and OP2 is unused. For FLSHIM and 
FLSHDM, O P  1 and OP2 are unused. 

F h e  following kills the instruction map entry for the first page in the user's address space: 7 
SWPIM 0 

The  follbwing kills the data map entry for the page containing the memory location pointed to 
by RTA: 

L 
SWPDM (RTA) 
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2.15 Context (Map. Register Piles, and Status Registers) 

This section describes a number of instructions which an operating system can use to set up the 
proper environment for a task. They manipulate the user and processor status registers, the multiple 
sets of user registers, the mapping system, and the origin of trap, interrupt, and gate vectors. Sections 
1.2.3, 1.4, 1.7, and 1.9 explain details of these features of the architecture. 

T h e  logical conditions (LCONDs) mentioned in this section are described at the beginning of 
Section 2.8. 

Address Space IDS: In a multiprogramming environment, it is likely that various tasks will 
alternately use the same virtual address space but different portions of the physical address 
space--in other words. that the operating system 'could k ~ ~ p  multiple tasks in various regions of 
physical memory and switch between them by changing the virtual-to-physical address mapping 
tables. The  operating system would have to sweep the map caches before switching from one task to 
the next to prevent the new task from being affected by mapping information left in the caches by 
the old one. T o  obviate this time-consuming process, the operating system can specify via the 
SWITCH instruction a different code, called an address space ID, for each task. The  caching 
mechanism combines this code with virtual address references made by that task, rendering them 
unique from virtual address references made by other tasks. Thus, for example, a reference to 
virtual address 1000 in ring 3 with address space ID 5 is distinct from a reference to virtual address 
1000 in ring 3 with address space ID 20; the mapping information for both of these may reside in 
cache simultaneously and can provide two different address transformations. It is the responsibility 
of the operating system never to specify the same ID for two .different tasks which use the same 
address space unless it sweeps the map caches between instances of the two tasks. 
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SWITCH Switch context 

SWITCH XOP 

Purpose: OP1  is a vector describing .the st$e of' a task to be run. The  instruction loads the 
appropriate internal registers, with.the information from this vector and resumes execution 
(restarting an interrupted instruction .if INSTRUCTIONSTATE so demands.) 

,- . . . . . 

The vector contains the following information: 

Singleword Information 
0 DSEGP 
1 Address space ID for ring 0 
2 Address space ID for ring 1 
3 Address space IU for riiig 2 
4 Address space ID for ring.3 
5 PROCESSORSTATUS 
6 USERSTATUS 
7 PC 
8 SIZE of INSTRUCTIONSTATE 
9 . . .  INSTRUCTIONSTATE 

Address space IDS are explained in Section 2.15. The  DSEGP is explained in Section 1.7. 

Restrictions: Illegal in user mode. . . 

Exceptions: None . . . :.,... . 

Precision: QPl  is the first element of a vector of singlcworrls OP:! is nnased. ' 

Ft executing the task described in the vector beginning at NextTask: 

L 
SWITCH NextTask 
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WASJMB Write address space and jump 

Purpose: O P 1  is a vector describing a particular rtiapping of four virtual address spaces onto the 
physical address space. ' The instruction loads the DSEGP and address space IDS from this vector, 
thereby causing the address translation mechanism to adopt this mapping, and resumes executicn at 
JUMPDEST (where JUMPDEST is translated according to the newly established mapping). 

T h e  vector contains the following information: 

Sinpleword Infarmarion 
0 DSEGP 
1 ~ d d r e u  space ID for ring 0 
2 Address space TD for ring 1 
3 Address space ID for ring :! 
4 Address space ID for ring 3 

Address space IDS are explained in Section 2.15. 

Restrictions: Illegal in user mode. 

Exceptions: None 

t 

Precision: OP1 is the first element of a vector of singlewords. 

Fll the address translation mechanism to use the mapping specified by NewMap, and resume 
execution at Newprocess: 

L 
WASJMP NewMap,NewProcess 
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RWFILE . ..! ., . Read register file identity .. . . . 

RRFILE XOP 

Purpose: OP l:=PROCESSORSTATUS.REGISTER:2ILE;.right justified 'and padded, with zeros. 
This instruction tells which register file iscin .use. . . . .. .. . e P'! . 

, I  . . .  , 

Restrictions: Illegal in user mode. . . .  

Exceptions: None 

Precision: OP1 is a singleword. OP2 is unused. .- .I,,> :. . . 

I Set RTA to the number (in the range 0 .. 15) of the current register .%file: 

L 
RRFILE RTA 
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WRFILE 

2 Instruction Set 

Write register file identity 

WRFILE XOP 

Purpose: PROCESSOR-STATUS.REGISTER_FILE:=OP 1. This instruction chooses which register 
file to use. If OP 1 is not within the range 0 .  . 15 the consequences are undefined. 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: OP 1 is a singleword. OP2 is unused. 

p e c t  register file number 2 

L 
WRFILE 172 
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RREGFILE . , !  . . ' Read register file. ' 

RREGFILE XOP 

Purpose: OP2, is a singleword specifying ,a-aegister.flle. Th,e instruction . . copies the entire register file 
into vector O P  1, which is 32 singlewords long. . . I '  . . . 

If OP2 is ouside the range.0 + .  15, an IEEEGAL_REGISTER hard. trap occurs. . : .  

Restrictions: Illegal in user mode. . .. .. . .. , . . . . . ,  . . 

Exceptions: None . .  . 

Precision: O P  1 is a vector of 32 singlewords..OP? is a singleword. , .,.. , . . ,  . . 

F s h  register file 7 onto the stack pointed. t p  by A ~ S P :  _: i .. 

ADJSP. UP ANSP, (ANSPI <32. *4> 

L 
RREGFI LE (ANSP) -4, #7. 
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WREGFILE Write register file 

WREGFILE XOP 

Purpose: OP1 is a singleword specifying a register file. The instruction copies vector OP2, which is 
32 singlewords long, into that register file. 

If OP 1 is ouside the range 0.. . 15, an ILLEGALXEGISTER hard trap occurs. 

'Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: OP2 i; a vector of 32 si~&lewords. O P  1 i i  B singleword. I ,  

p t i a l i z e  register file 7 using 32 singlewords popped' from, the stack pointed to by ANSP: 1 
WREGFILE #7, (ANSP?<-32.*4> 
AD JSP ; UP ANSP , (ANSP 1 <-32. *4> I 
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RREG ..' Read register 

RREG XOP 

Purpose: OP2 is a singleword specifying a register 'within a particular register file. The  instruction 
copies that register into OP1. The format of OP2 is: I : . . , . 

I e I FI.LE I REGISTER. I. . ." , .. 

where FILE is in the range 0 . . 15 and REGISTER is in the range 0 . . 31'. If OP2 is invalid, an 
ILLEGAL-REGISTER hard trap occurs. , . . . 

+ .  . . 

Restrictions: Illegal in I.mr mode. 

Exceptions: None 

Precision: Both operands are singlewords. 
. . . .  . . . . . . .  , : ..: 

I Copy the version of %R4 in register file 7 into the cuirent RTA: 
. . .  . . . . . .  . . . . . . . .  . . . . 

L 
RREG RTA, #<32. *7+4> 
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Write register 

WREG XOP 

Purpose: OP1 is a singleword specifying a register within a particular register file. The instruction 
copies OP2 into that register. OP 1 has the following format: 

where FILE is in the range 0 . . 15 and REGISTER is in the range 0 . . 31. If OP 1 is invalid, an 
ILLEGAL-REGISTER hard trap occurs. 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: Both operands are singlewords. 

Fpy the current register ZR3 into the version of register %R3 in register file 7 (note that this 
involves register 3, not the PC): 1 

L 
WREG #<32. *7+3>, XR3 
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RPS , Read processor status 

. . 

RPS . ,XOP ' 

Purpose: OP l:=PROCESSORSTATUS 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: OP1 is a singleword. OP2 is unused. 

Fe following copies PROCESSORSTATUS into RTA: 
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WFSJMP Write full status and jump 

WFS JMP JoP 

Purpose: USERSTATUS:=FIRST(OP 1); PROCESSORSTATUS:=SECOND(OP 1). Note that 
an ILLEGALSTATUS hard trap will occur if an illegal value of USER-STATUS or 
PROCESSORSTATUS is specified. 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: FIRST(0P 1) and SECOND(0P 1) are singlewords. 

Fe following sets USERSTATUS to FIRST(NEWPST), sets PROCESSORSTATUS to 
SECOND(NEWPST) and,  jumps to BRAZIL: 

1 

L 
WFSJMP NEWPST,BRAZIL 



. . 
. / ... . . . 
( '  I ' 

., ...: 

2.15 Context (Map, Register Files, and Status Registers) 

RUS Read user statu? 

RUS ; XOP 

Purpose: O P  l:=USERSTATUS. ,OP2 is unused. .. . .. .. . . . .# . . 
. . . . 

I... 

Restrictions: None 

Exceptions: None 

Precision: OP 1 is a singleword. 

. " .  ' 
. . 

p e  following loads RTA from USERSTATUS: 

RUS RTA 

I . .  
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JUS Jump on selected user status bits 

JUS . (NON,ALL,ANY,NAL) Jo p 

Precision: If USERSTATUS LCOND O P  1 (where LCONDe(NON,ALL,ANY,NAL)) is true, 
control is transferred to the location specified by JUMPDEST. 

Restrictions: None 

Exceptions: None 

' 
Precision: A I1 operands concerned are singlewords. 

Ft ERRORS be a mask for several bits in USERSTATUS. The following jumps to 
any of these bits are set: 

L 
JUS ERRORS,ZIP 
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JUSCLR ,., Jump on selected user status bits andxlear 

. .  . . .  .#. . 

JUSCLR . {NON,ALL,ANY,NAL) . .  JOP 

Purpose: O P 1  ,is a mask for selecting bits from USERSTATUS; The instruction . . first tests those 
bits using the.condition specified. by the modifier..Then it clears those bits.,Finally, if the test . yielded . .  

true, the processor jumps to JUMPDEST. 

Formally: . . l i 

TEMP:=USER-STATUS; . '.!. 
(* - represents one's complement *) 
USERSTATUS:=USERSTATUSA(-OP 1);. . , .. . . . .. ., -. % 

If TEMP (FN,ALL,ANY,NAL) OP1 THEN G O T 0  JUMPDEST; 
. . . . . . 

Note that an ILLEGALSTATUS hard'trap will occur if clearing the specified bits would produce 
an illegal value for USERSTATUS. . . . . .  

< .  

Restrictions: None , . .  . 

Exceptions: None 

Precision: All operands are singlewords. 

p t  ZDIV be the mask for the I N T Z D I V  bit in USERSTATUS. The  following jumps to 
YOW and clears this bit if it is set: 

1 
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WUSJIWIP Write user status and jump 

Purpose: USERSTATUS:=OPl. Control is then transferred to the location specified by 
JUMPDEST. Note that an ILLEGALSTATUS hard trap will 'occur if an illegal value of 
USERSTATUS is specified. 

Restrictions: None 

Exceptions: None 

Precision: All operands concerned are singlewords. 

Fe following sets the USERSTATUS to N E W U ~  and jumps to AWAY: 

L 
WUSJMP NEWUS,AWAY 
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SETUS Set specified user statusbits 

SETUS XOP 

Purpose: USERSTATUS:=USERSTATUSvOPl.: OP2: is. whused. .':-Note that an 
. ILLEGALSTATUS hard trap will occur if an illegal 'va1u.e. of USERSTATUScis' specified. 

: * . . 

Restrictions: None 
. . . .  . . '. . > {  

Exceptions: None 
. .' '* .. . ., 

Precision: OP1 is a singleword. OP2 is unused. ' 

. . .  . . . .  . . .  - .  . . 

.. . . : .  .. 7 ; .  . >  - . . 

L .  
SETUS #1 

. . .  . . 
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CLRUS Clear specified user status bits 

CLRUS XOP 

Purpose: USERSTATUS:=USERSTATUSAO~~'S-~O~~~~~~~~(OP 1). Note that an 
ILLEGAL-STATUS hard trap will occur if an illegal value of USERSTATUS is specified. The 
JUSCLR instruction can clear specified user status bits and simultaneously test them. 

Restrictions: None 

Exceptloas: N U I I ~  

Precision: OP 1 is a singleword. OP2 is unused (OD:! must equal kro). 

b e  following clears the low order bit in USERSTATUS: 

CLRUS #1 

1 
L J 
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RTDBP, WTDBP 
* .  , . ., 5 , .  . 

Read and write $DBP 

RTDBP . . , XOP 
WTDBP XOP 

Purpose: These instructions read and write the trap descriptor base pointer, the .register which 
specifies the origin of a table which in turn specifies the origins of each set of trap, interrupt, and 
gate vectors. 

RTDBP loads into OP1 the 34-bit physical address stored in TDBP. WTDBP loads into TDBP 
the rightmost 34 bits of OP1. 

The effect of altering the trap descriptor table without executing a WTBP instruction is undefined. 

Restrictions: Illegal in user mode 

Exceptions: None 

Precision: OP1  is a singleword. OP2 is unused. 
I 

F e  
following specifies that the table of trap vector origins begins at the first singleword 

memory: 

WTDBP #0 

L ' J 
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2.16 Perf orm ance Evaluation 

T h e  processor has several doubleword counters which can be configured to count different events. A 
user mode program can read these counters, but only a privileged mode program can write them or 
alter the bits that enable them. Counter zero is always enabled, by convention, to count real-time 
cycles. 
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RCTR Read counter 

... . . 

RCTR xop 

Purpose: OP2 is a counter number. OP1  gets the contents of the counter specified by OP2. 

Restrictions: Traps if the processor is in virtual machine mode. . . 

Exceptions:. None 

Precision: OP1 is a doubleword. OP2 is a singleword. 

I The following sets RTA (DW) to the current real-time cycle .count: . 

L 
RCTR RTA, #0 , 
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Write counter 

WCTR 

Purpose: OP1 is a counter number. Write OP2 into the counter specified by OP1. 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: O P  1 is a singleword. OP2 is a doubleword. 

The following zeros the real-time cycle counter: r 
L 

WCTR #0, #0 

XOP 
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RECTR Read enable bits for counter 

. . 

RECTR XOP 

Purpose: OPZ is a counter .number. O P l  gets the contents of the enabling register for the counter 
specified by OP2. 

Restrictions: Traps if the processor is in virtual .machine mode. - ; C 

Exceptions: None 

Precision: O P  1 is a doubleword; OP2  is a singleword. , . . , , . . . .. . 

F h e  following reads the enabling bits for. counter .COUNT into,.RTA: . . .. . . 

RECTR RTA,COUNT . >  . . 

L . . .  

J 
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WECTR Write enable bits for cou~lter 

WECTR XOP 

Purpose: OP1 is a counter number. Write OP2 into the enabling register for the counter specified 
by OP1. 

Restrictions: Illegal in user mode. 

Exceptions: None 

Precision: OP 1 is a singleword. OP2 is a doubleword. 

F e  following writer ENABLE into the enabling 'register for cointer COUNT: ' 1 
L 

WECTR COUNTPENABLE 
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2.17 Miscelllaneous 
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NOP No operation 

NOP XOP 

Purpose: NOP may have operands, but it performs no operation and stores no result. It always 
transfers control to the next instruction. The  operand addressing calculations are carried through; 
while the operands themselves are not referenced, an invalid addressing mode will cause a 
RESERVEDADDRESSNODE hard trap. 

Restrictions: Noiie 

Exccptionsr None 

Precision: O P 1  and OP2 may be any precision since they are not fetched. 

F h e  following three instructions are, respectively, one, two and three word NOPs: 1 
NOP #0, #0 
NOP #0,# [01 

I 
NOP # 101 , # 101 
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HALT Halt this processor 

. . . .  . . . . . . . .  . ,. . 

HALT 

Purpose: Halt  the processor. ~xecution continues a t  JUMPDEST when, t h e  halted processor 
continues. HALT affects only the processor that executes it. OP1 is unused. 

. . . . 

Restrictions: Illegal in user mode. 
. . 

Exceptions: None 
. . . . 

Precision: O P  1 is unused 
. . .  

. . . . i ' 3  

Fe first instruction continues at CONT; the recond halts immediately upon continuation: 

HALT CONT 

L 
HALT . 
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RPlD Read processor identification number 

RPID 

Purpose: O P  l:=PROCID 

Restrictions: Traps if the processor is in virtual machine mode. 

Exceptions: None 

Precision: OP 1 is a singleword. OP2 is unused 

Fe following sets RTA to the processor ID number. 

L 
RPID RTA 

XOP 
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3.1 Commands to invoke FASM 

FASM is a cross-assembler which executes on the PDP-10 and emits code for the S-1 native mode 
instruction set. T o  use it with the WAITS operating system at Stanford University, type: 

<input> is the name of the file containing assembly source language. The  file extension defaults to 
". S 1" if omitted. 

<output> is the file FASM puts relocatable code into. The  file extension defaults to ".LDI" if 
omitted. . ,  . . 

* .  ' . , 

<listing> is the file FASM puts its listing into. If you omit the file extension, FASM assumes 
". LST". 

hltcrnatively, type the following and FASM will suppress the listing 

O r  type the following and FASM will suppress the listing, putting relocatable code in a file whose 
name matches that of <input> but whose extension is ". LDI": 

O r  type the following and the program will prompt with b" and wait for the rest of the command 
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line. 

R FASM 

It .is possible to segment the input into severa! files. T o  assemble files INl, IN2 and IN3, for 
-0 

example, type: 

or: 

or create a file called IN containing the line "IN 1+IN2+IN3" and then type: 

A file which, like IN, contains part of the command line is an indirect file. Within an indirect file a 
semicolon tells the program to ignore the rest of the line, including the carriage return and line feed. 
This allows the command to extend over more than dne physical line, as the following example 
shows: 

The  first linefeed that is not ignored will cause the indirect file to be closed and command line 
processing to continue from where the indirect file was called. An indirect file may also call another 
indirect file (up to 10 levels). 

Use the SNAIL commands LOAD and COMPILE to automatically run FASM and then optionally 
call FSIM. The  /L switch may be used with SNAIL to force FASM to make a listing. 
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3.2 Preliminaries 

FASM makes three passes over the input file to do a good (but not perfect) job of substitutfi.lg 
relative-JOP instructions for generally bulkier absolute-JOP instructions. During the first pass, 
FASM uses only absolute jumps, setting each label to the maximum possible value it will attain. 
During the second pass, FASM replaces absolute jumps with relative ones where possible, provided 
the jump destination is in instruction space only and not external. During the third. pass, FASM 
generates the code. 

FASM accepts the superset of the ASCII character- set used at the Stanford Artificial Intelligence 
Lab (SAIL), but wherever its syntax uses special, characters. from the'SAIL set, it also accepts 
substitutes from the standard ASCII set. This section will present both choices. 

Because each page of S-1 memory can be marked EXECUTESERMIT, READSERMIT, and/or 
WRITESERMIT, FASM maintains separate location counters controlled by the ISPACE, 
DSPACE, XSPACE, IPAGE, and DPAGE pseudo-ops explained later. 

Like any assembler, FASM processes statements, each of which may define a symbol, emit an S-1 
instruction, or emit a dataword. 

But unlike many assemblers, which simplemindedly parse lines 'looking for label, opcode, and 
operand fields, FASM starts by scanning the text character by character, expanding macros. The 
resulting strings go to the portion of the assembler that .recognizes assembly language constructs. 
Many of those constructs themselves (symbol definitions, literals, pseudo-ops, and so on) return 
values just as functions in a high-level language, do, so the programmer may einbed them in 
expressions with considerable flexibility. 
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3.3 Expressions 

T h e  primary building block of a FASM statement is the expression. An expression is made up of 
terms separated by operators with no embedded blanks. The simplest legal expression is a single 
term with no operators. 

Attributes: An expression may have one or more attributes. The  possible attributes are: register, 
instruction value (IVAL), data value (DVAL), and external value (XVAL). These attributes are 
derived from the terms and operators that make up the expression. 

A term in an expression may be a number, a symbol, a literal, a text constant or a value-returning 
pseudo-op. 

When it encounters expression, FASM attempts to perform the indicated operations on the 
specified terms. Sometimes, the value of a term is not available (for example, is undefined or is 
external) at the time the expression is evaluated. Sometimes this is permissible and sometimes it will 
cause an error. In the descriptions that follow it will sometimes be said that an expression must be 
defined at the time it is evaluated. 

3.3.1 'Operators 

The  following are the valid operators along with their precedences. Each is binary unless marked 
"(una.ry)". 

Purpose ASCII symbol SAIL symbol Precedence 

Addition 
Subtraction 
Multiplication 
Division 
Bitwise OR 

. Bitwise AND 
Bitwise XOR' 
Power of 2 
Bitwise N O T  
Plus 
Minus 
Register 

attribute 

1 
1 

2 
2 
3 
9 
3 
4 

5 (unary) 
5 (~~na ry )  

5 (unary) 
5 (unary) 

(Though FASM recognizes no ASCII equivalent for "-", the programmer can achieve the effect of 
"-X" by writing "c-l#X>".) 
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ATB has the value of A shifted left (if B is positive) or right (if B is negative) by B bits. 

The % symbol gives the term following it the register attribute (though context may override that 
attribute; for example, a 9 5 "  in an expression inside a constant operand merely contributes an 
integer "5" to the expression which then becomes a constant.) 

Each operator has a precedence which is used to determine order of association. For operations 
with the same precedence, association is to the left. Angle brackets o (also known as brokets and 
pointy brackets) may be used to parenthesize arithmetic and logical expressions. (Parentheses ,"()" 
themselves may not be used for this purpose because they are significant for expressing various 
addressing modes.) A parenthesized (or rather, broketed) expression may take more than one line, in 
which case the value of the last line is used as the value of the expression. However, a11 the lines 
are evaluated and then all the values are thrown out except for the last one. These evaluations may 
have side effects like defining symbols, or executing macros, etc. 

A string of digits is interpreted as a number. If it contains ".", FASM assumes it is decimal. 
Otherwise, FASM assumes the current radix, which defaults to base 8 (octal) but mag be changed 
with the RADIX pseudo-op. A singleword floating point number has digits on both sides of a 
decimal point and may be followed by an El an optional + or -, and a one or two digit exponent, 
which is assumed to be a decimal number and should not have an explicit decimal point. 

3.3.3 Symbols 

A symbol is a one- to sixteen-character name made up from letters, numbers, and the characters ". ", 
" - " a and "$. (A -symbol may actually contain more than sixteen characters, but all characters after 
the twelfth are ignored.) Lower-case letters are permitted, but are considered to' be the same as the 
equivalent upper-case characters. A symbol must n ~ t  look like a number; for example, 43. is an 
integer and 0.1 is a floating point number, whereas O..1, 1.E5, and 2.3E.5 are symbols (because they 
do not quite qualify as floating poisrt r~umbers). 

Following the initial character of a symbol, one may enclose in quotation marks any characters 
which would otherwise be forbidden. The  quotation marks and the otherwise forbidden characters 
all become part of the symbol. For example, the first of the following two lines is an arithmetic 
expression involving symbols "CAT", "A", and "DOG", whereas the second is a single symbol 
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Symbols have values and attributes. The  values are.36-bit numbers which are used in place of the 
symbol when it appears in an expression. The attributes are: register, instruction value (IVAL), 
data value (DVAL), hay-killed, external value, and macro name. 

If a symbol is a macro name, then instead of having a value, the symbol has a macro definition 
associated with it. This macro definition is expanded when the symbol is seen under certain 
circumstances and the expansion is used in place of the symbol in the expression. (See the section 
on macros for more details on macro definition and expansion.) 

Pfedef ined symbois: PASM recognizes certain symbois without requiring the programmer to define 
them. 

A lone dot represents the cui-rent location coutiter. It is either an IVAL or a 
DVAL, depending upon whether ISPACE, DSPACE, IPAGE, or DPAGE is in 
force. Its value is the quarterword address at which the next instruction or data 
will be assembled. Its default attribute is IVAL and its initial value is 0 for a 
relocatable assembly or 10000 octal for an absolute assembly. 

RTA,RTB - RTA and RTB represent %16 and %24 respectively, so their attribute is register. 

3.3.4 Literals 

A literal is any set of assembler statements enclosed in [ I (called square brackets) and separated by 
U 89 #I- 91 
w , ? , or linefeeds. A literal directs the assembler to assemble the statements appearing inside the 

square brackets and store them at some location other thzn the current location counter. Tf 
embedded in an expression, the entire literal returns a value: the address a.t whirh the first 
singleword of the literal is assembled. There are certain restrictions on just what may appear inside 
a literal. Certain pseudo-ops are illegal inside of literals (see the section on pseudo-ops). Currently, 
labels are not permitted inside a literal, although this may change in the future. The  symbol "." is 
not affected by the fact that it 1s referenced from inside a literal. It will have the value it had at the 
point where the literal was begun even though the literal may already have assembled some 
statements. 

Just where the literal is assembled is determined by several factors. First it is determined whether 
the literal is an instruction-space or a data-space literal. This is determined in .the following 
manner. If the next characters immediately after the that beg-ins the literal are ! I or 10, then the 
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literal is an instruction-space or data-space literal, respectively. If not, then the literal will be an 
instruction-space literal if it contains any opcodes. Otherwise it will be a data-space literal. All 
instruction-space literals..will be assembled starting.:at the current rlocation counter when a LIT 
pseudo-op is encountered ,while in instruction-space. A similar statement is true of the data-space 
literals. Certain*other pseudo-ops cause an implicit LIT .to be d.one first. . .  

. a  

One typical use of a literal is to move a doubleword from data memory into register space. The  
following initializes %40 to the largest doubleword integer: 

',, ' 

M0V.D.D %40,BIGNUM 
OSPACE 

B I GNUM: 377777, , -1 
-1 
I SPACE 

. . . . . . .  .... ,. < ~. . . .  ... 
but a more elegant way, using a' literal, would be: : 

. . . . 
,. . .* ;; . . , 

M0V.D.D %40, C377777,,-1. ? -11 

Similarly, the following example uses %40 to index into a table of indirect ~ointers, perhaps to 
implement a CASE statement in Pascal: 

. . 
. c . . , ..; . L; , >  '.. b :  

JMPA CTABL [%40l T2e '." " ' . . . 

DSPACE . . . . . . , a :  .: . . . "  : . . -., . . . . .  . . 
CTABL: CA,SEB+T/~G" 

* 
. . . .  

. . . . . . .  . . . . .  
CASEl+TAG 
CASE2+TAG 

% . .  . . . . . . 
. < .  .. \ 

I SPACE . . 

. .  . . .  .. . . /_ : . . but a fiterdt expresies'th sah'i;structuii'more ~ o i h ~ i i c t ~ ~ : . '  
. . . . .  . . . . , .." , ; 3 : .  . ;  :':.. - :-, , . . . . .  , , 

. . 

3.3.5 Text Constants 

An ASCII text constant is enclosed in double-quotes and has the value of the right-adjusted ASCII 
characters packed one to a quarterword. For example: 

.... . . . . , . ,  :' 
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Is the same as the number 14114Z8. If more than four characters are specified, then only. the value 

of the last four will be used. If the trailing double-quote is missing, the assembler will stop 
accumulating characters when it sees the end of line. The  last four characters will b,e used in the 
constant and no error message will be given. 

A delimiter such as a space must irecede a text constant so FASM does not consider it to be a 
quoted portion within a symbol. 

Some pseudo-ops generate values and may be used as terms in an expression. See the descriptions 
of the individual pseudo-ops to learn what values they return. 

3.3.7 Combining terms to make expressions 

FASM determines the value of an expression simply by combining the values of the individual 
terms according to the operators between them. 

Determining the attribute of the expression is a bit more complicated, however. 

When a symbol with the register attribute appears in an expression, then the entire expression has 
the register attribute. At most one external symbol may appear in an expression. It does not matter 
how it appears in the expression; it is assumed to be added in. This causes the expression to be an 
XVAL. If an IVAL (DVAL) ever appears in an expression then the whole expression is an IVAL 
(DVAE) with one exception. An IVAL (DVAE) minus an IVAL (DVAL) is no longer an IVAL 
(DVAL). Note: in a relocatable assembly all relocation is done by addition of the I space or D space 
relocation or of an external symbol's value. Therefore using the negative of an IVAL, DVAL or 
external value will not have the right effect. 

3.4 Statements 

A statement can accomplish three things: define a symbol, emit an S-1 instruction, or emit a data 
word. 
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How a statement is terminated will depend upon the exact type of statement. In general, a statement 
is terminated with a linefeed, a ct, a ?, or a semicolon that begins a comment. (The comment itself 
terminates' at the next linefeed. Some statements, like symbol definitions, can also be terminated 
with a space or a tab. 

3.4.1 Symbol Definition 

A symbol may be defined to have a specific value either with the assignment statement or by 
declaring the symbol to be a label. The assignment statement has two forms: 

An = may be used in place of a t. These statements define or redefine the symbol to have the 
value of the expression. The expression must be defined at the time the assignment statement is 
processed. Any attributes of the expression are passed on to the symbol (except for the half-killed 
attribute). For example, if the expression has a register value, then the symbol is given the register 
attribute. In addition if the second form is used (with two left-arrows) then the symbol will 
additionally be given the half-killed attribute. This attribute is not used by the assembler but is 
.passed on to the debugger, where it means that the symbol should not be used in symbolic typeout. 
It does not affect the ability to use the symbol for type-in. 

A symbol may be declared to be a label by saying either of: 

SYMBOL: o r  SYMBOL:: 

These both define the symbol to be equal to the location counter. T h e  attributes of the location 
counter are passed on to the symbol. The double colon (: :) causes the symbol to be half-killed. 

It is legal to redefine a symbol's value with an assignment statement but it is not possible to redefine 
a label's value or to define as a label any symbol that has previously had a value assigned. 

An assignment statement can itself be an expression and has the value of the expression to the right 
of the arrows. Therefore it is possible to assign the same value to multiple symbols as follows: 

which will define all of A, B and C to have the register value 1. An assignment statement is 
terminated by almost any separator, including space and tab. Therefore it is possible to put more 
than one assignment statement on one line, or to put an assignment statement on the same line with 
other statements. 
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3.4.2 S-1 Instructions 

An instruction is a statement that can cause the assembly of me,  two or three singlewords. It is 
made up of an opcode with modifiers followed by a list of operands. 

8.4.2.1 Operands 

(Throughout the following discussion, either "#" or "?" indicates a constant, and "1 ..... )", "c ..... 9, 
and "[ ..... l" are all equivalent pairs of brackets.) 

In general, an operand may be any of the following: 

Register or memory reference: 

expressi  on If the attribute of the expression is "register", FASM interprets it as a 
quarterword address in the registers; otherwise, FASM interprets it as a 
quarterword memory reference. If an instruction requires a singleword 
address, FASM derives it by dividing the value of the specified label 
or expression by four. If an instruction requires a relative address, 
FASM derives it by subtracting the current location counter from 
whatever label or expression the programmer provides. 

General constant: 

#expression If the expression is in the range -32 . . 31 (decimal) the assembler will 
generate a short constant. If' not, it will generate a long, sign-extended 

. cur~sLariL. (It is Jarlgeruus LU use an as yet undefined symbol in this 
expression, because the assembler might decide to switch from one 
length to the other, confusing the rest of the assembly.) 

Pseudoregister: 

( r e g i s t e r  expression)expression 
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Long constants: 

#cexpression> 
# [express i on1 
#c!S w expression3 
# [!S ? expressi on1 

Any of these produces an L O  constant (even if the number is small 
enough to fit inside an SO) right justified with sign extended or 
compressed as necessary. 

#cexpression * !03 
# [expressi on ? !O1 

Either of these produces an LO constant which, if the instruction using 
it calls for a doubleword, is left justified and extended with zeroes. The 
spaces around the "tt" or "?" are optional. 

# [ !0  ? expressi on1 
#c!0 H expression3 

Either of these operands produces an L O  constant which, if the 
instruction. using it calls for a doubleword, is right justified and 
extended with zeroes. The spaces around the "tt" or "?" are optional. 

Indexed constant: 

#cexpress i on> (reg i s t e r  expression) 
#cexpression>[regis ter  expression1 
# [expressi on1 (regi  s t e r  expression) 
# [express i on], [reg i s t e r  express  i on1 

An indexed constant adds a constant to the contents of a singleword 
register. The  register expression must lie in the range 0 . . 124 and be 
divisible by 4. 

Operand descriptor: 

! express  i on Intended primarily for patching, this generates an operand descriptor 
(OD) that matches the low 12 bits of the result of the expression. 
FASM does not check to be,sure such an O D  is legal, and does not 
generate an extended word even if the O D  calls for one. 
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Long operand variable: 

(base) o f f  se t  [ i ndexl Tsh i f t 
cbase>offset(index)fshift 

base [ i ndexl Tsh i f t 
base( index)?shi  f t  

This is the general syntax for a long operand (LO) variable. The 
processor computes the address as if by scanning the expression from 
left to right. It starts with the contents of the memory location or 
register specified by "base". Then it adds "offset", if any. Finally it 
takes the conterlcs sf  the memory location or reglster specified by 
Ui~.rdex", sl~ifts i t  IefL by Llle ~~ul~iber .  of bils specified by "shift", arld 
adds it to the base-offset combination to obtain the address of the 
operand. - 

If "@" appears after. the entire phrase, indicating indirect addressing, the 
processor interprets the operand as a pointer and uses i t ,  to fetch the 
ultimate operand. If, on the other hand, the "@" appears after the offset, 
the processor uses the base+offset address to fetch a pointer from' 
memory, and indexes from it. 

T h e  T . 0  variahl~ addr~ssing rnndps h a v ~  c p a ~ ~  1.1s~ the fob a Sort 
of "nested" short operand (SO) variable, and they fall into three 
categories based on how they use this SO va.riable: a.s the base, as the 
index, or not at all. 

DEFINITION OF TERMS: 

SW-REG 
~nwc-cl I sr 
LONG-ADDR 
SHORT-0 I SP 

SHIFT 
SHORT SHIFT 
I NOEX-REG 
SF 

<%R0 . . %R31> 
31-11 i i: s i ynkd d i sp I aceaie1-1 t: 

31-bit  unsigned address 

2 6 - b i t  signed d isp lacement  
0 .. 3 b i t  l e f t  s h i f t  

8 Qr 2 b i t  l e f t  s h i f t  
<%R3 .. %R31> 
-32 . . 31 

I lSTNG THF Sfl AS THE BASE: 
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((INDEX-REG1SF)LONG-DISP 
((INDEX-REGISFILONG-DISPe 
( (I NOEX-REG) SF) SHORT-01 SP [SW-REG1 %HI FT 
( (I NOEX-REG) SF) SHORT-DI SPe [SW-REG1 %HI FT 
((INDEX-REG)SF)SHORT-DISP[SW-REGITSHORT-SHIFT@ 

'USING THE SO AS THE INDEX: 

LONG-ADDR [SW-REG1 ?SHI FT 
LONG-ADDRe [SW-REG1 f SH I FT 
LONG-ADDR CSW~REGl.?SHORT~SH I FT@ 
(SW-REG) SHORT-DISP [SW-REG1 ?SHI FT 
(SW-REG) SHORT-DI SP@ [SW-REG1 ?SHIFT 

. (SW-REG) SHORT-DI SP CSW-REG1 ?SHORT-SHI FT@ 

LONG-ADDR [ ( I NDEX-REG) SF1 ?SH I FT 
LONG-ADOR@ [ ( I NDEX-REG) SF1 TSH I FT 
LONG-ADDR[(INDEX-REG)SFl?SHORTTSHIFT@ 
(SW-REG) SHORT-DI SP 1. (INDEX-REG) SF1 tSH I  FT 
(SW-REG) SHORT-DI SPe 1 [ J NDEX-REG1 SF1.TSHI FT 
(SW-REG) SHORT-DI SP C (I NDEX-REG) SF1 ?SHORT-SH I FTm 

NOT USING THE SO:"' 

'LONG-ADDR . ' 

LONG-ADORIS 
(SW-REG1 SHORT-D I SP 
(SW-REG) SHORT-DI SPe 

3.4.2.2 Opcodes sand Modifiers 

An opcode is built out of a base opcode name followed optionally by a "." and an opcode .modifier 
and another "." and another modifier, etc. The modifiers are standard as defined in .the opcode 
files. Numeric n~odificrs are in decimal ir~ithout a decimal point. 

It is also possible to use an already defined symbol as a modifier. For example, if A h'as been 
defined by At%4 then SLR.A assembles the same way as SLR.4 does. Note. that an expression may 
not be used in place of a modifier. For example, SLR.4+4 is not permitted in place of SLR.8 . Also 
note that if there is a conflict between a legal modifier name and a symbolic value, the legal 
modifier name will win. For example: 
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will N O T  be the same as: 

because M1 is a legal modifier for BNDTRP and takes precedence over the lookup of the symbol 
M 1. 

Modifiers should not be omitted from instrllrtion opcodes, with one cxccptiur~: a precision modifier 
(Q H, S, D) which is omitted will be assumed to be S. Mnrlifi~rs should be written in t l ~  ulder 
defined by the instructiurr descriptions. 

The,opcode must be separated frnm thp operand list by spe.ccs or tabs, 

3.4.2.3 Instruction Types 

There .are several basic instruction types: XOPs, TOPS, SOPS JOPs, and HOPS. For the assembler, 
they differ as to the number and interpretation of operands. 

An X O P  is (in general) a two-operand instructidn. If no operands are given, than the instructiol-I 
must be one (e.g. WAIT) which requires no operands, and the operand descriptors are set to zero. 
If exactly one operand is given then, depending upon the specific instruction, either it is used for 
both operands or the second operand is defaulted to be register zero (%RO). For example, 

INU COUNT 

is equivalent to 

I NC COUNT j COUMT. 

A T O P  is a three-operand instruction, where one of the operands is restricted. Operands may be 
written only in certain combinations indicated by a two-bit field called T within the instruction. 
FASM automatically sets this field based on the operands specified by the programmer. If X and Y 
represent two operands which are distinct from each other and ftom RTA and RTB, then there are 
four possible combinations for the operands, as the following shows: 

SUB X,X,Y 
SUB RTA,X,Y 
SUB X,RTA,Y 
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SUB RTB,X,Y 

Other combinations, such as the following, are illegal: 

ADD X,Y,RTA 

If the programmer writes only two operands for a TOP, FASM repeats the first: 

An SOP is a two-operand instruction with a skip destination. Both of the operands must be 
present. The  skip destination is written as if it were a third operand, and should be an expression 
which evaluates to the quarterword address of the instruction that is to be skipped to. If the skip 
destination is missing, then the instruction is assembled so as to skip over the next instruction, 
however long it is. For example, 

ISKP. GTR %1, #100,  EX1 T 

assembles a conditional skip to the label EXIT. During the last pass of the assembly, the assembler 
checks to see that the skip is within range. This means that the value of the skip destination 
operand must be within -8. . 7 singlewords of the location of the SOP. The difference in this 
range is assembled into the SKP field of the instruction. 

A JOP is a two-operand instruction, the second of, which is the jump destination. If only one 
operand is specified, then which operand .it is assumed to be depends upon the exact opcode. Some 
opcodes expect only one argument, in which case that argument is the jump destination (JMPA, for 
example). The  opcodes JSR and JCR expect one or two operands. If only one is supplied it is 
assumed to be the ~ u m p  destination. For other JOPs, if there is only one argumeht, it is assumed to 
be O P 1  and the jump is assembled to skip over the next instruction (just as for an SOP with an 
omitted skip destination). The assembler will try its best to assemble the jump with the PR-bit 011 

(using relative addressing). It even takes a whole extra pass through the source file' just for this. 
For example, 

assembles a jump to location LOOP. 

The  only HOP instruction is SJMP, which expects a single operand, which should be a simple label 
or expression that evaluates to the quarterword address of the jump destination. FASM subtracts 
the current location counter from the operand value and divides by 4 to obtain the necessary 
singleword relative address. While compact and useful for patching, this instruction lacks the 
flexibility of the unconditional branch JMPA, which can use indexing or indirect addressing. 
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3.4.2.4 Data Words 

An expression standing alone on a line (or, more precisely, an expression which by itself constitutes 
a statement) causes FASM to emit a singleword containing the value of the expression. 

- 1 ; A s ing leword w i t h  a l l  b i t s  se t  

%7+347. ; A s ing leword c o n t a i n i n g  354 decimal 

NANE*2 ; A s ing leuo rd  c o n t a i n i n j  tw i ce  the  va lue  
; ,  nf  t h ~  sumhnl NAMF 

If two expressions appear on either side of ",,", FASM emits a singleword with the left halfword set 
to the first expression and the right halfword set to the second. 

30 , , 7  ; A  singlewo'rd w i t h  30 i n  i t s  l e f t  . 

; ha l fwo rd  and 7 i n  i t s  r i g h t  ha l fwo rd  

T h e  following example illustrates a simple use of a literal. Because the literal 'itself returns the 
address of the first word it emits, FASM generates four singlewords in all. At the next "LIT" 
pseudo.-op in data space it generates three singlewords containing 1, 2, and 4 respectively. At the 
current location counter, it generates a singleword containing the value returned by the literal. 
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5.5 Absolute and Relocatable Assemblies 

An assembly is either absolute or relocatable. Initially it is assumed that the assembly is relocatable. 
Certain things in the input file may cause the assembler to try to change its mind if it is not too .late. 
The  pseudo-ops ABSOLUTE and RELOCA will force absolute and relocatable respectively. A 
LOC will force absolute. 

In a relocatable assembly, there is one instruction space and one data space. These spaces may be 
. interleaved in the input file (by use of the ISPACE, DSPACE and XSPACE pseudo-ops) but will 

be separated into two disjoint spaces in the output. The  data space will be output~immedia.tely after 
the instruction space and it is up to the linker to further relocate it to begin on a page boundary (or 

' whatever). 

Whenever a word is assembled, the attributes of the expressions involved in the assembly of that 
word are passed on to the word itself. The  assembler outputs i,nstructions'to the linker to relocate 
every IVAL by adding to it the starting address of the instruction segment, and similarly for every 
DVAL and the starting address of the data segment. Notice that this does not do the right thing for 
the difference between an IVAL and a DVAL. This is because the assernbier does not keep track 
of whether the relocation should be positive or negative. 

In an absolute assembly, no' relocation is done. There may be multiple instruction and data spaces. 
The  pseudo-ops IPAGE and DPAGE cause the assembler to move the location counter to a new 
page boundary and switch to the indicated space. The  assembler output will contain multiple spaces 
which occur in the same order as the 1PAGE.and DPAGE statements. The  LOC pseudo-op may 

, be used to set the value of the location counter to any desired absolute address (with some 
restrictions). It cannot be used to change spaces. . 

An IPAGE, DPAGE, or .LOC pseudo-op may not be used in a relocatable assembly, and an 
ISPACE, DSPACE, or'XSPACE pseudo-op,may not be used in an absolute assembly. 
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T h e  following lists all the pseudo-ops in alphabetical order. 

If a "." appears in front of the pseudo-op here, then the "." is mandatory; otherwise it is optional. 

Certain pseudo-ops require a string of characters, denoted by e t e x t  a. This indicates that FASM 
regards the first character (other than a blank or tab) following the pseudo-op as the delimiter for 
the beginning of the string, and looks for a matching character to delimit the end of the string. 
Thus, for example, the following produce identical strings: 

ASCII  "Now i s  the time" 
ASCI-I 'No11 i a  tho time' 
ASCII bNow i s  the timeb 

ABSOLUTE 
Forces the assembly to be absolute. 

. ALSO, < condi t i ona l I y assemb l ed t e x t  > r e s t  of program 

. ELSE, < condi t i  ona l l y assemb l ed t e x t  > r e s t  of program 
These pseudo-ops conditionally assemble the text in brokets depending upon the success or failure 
of the immediately preceding conditional. There is an assembler in:?rnal symbol called .SUCC 
which is set when a conditional succeeds and is cleared when one fails. .ALSO will succeed if 
.SUCC is set and .ELSE will succeed if it is clear. If a conditional succeeds, .SUCC is set both at the 
beginning and at the end of the conditionally assembled text. This enables the inclusion of 
conditionals within ,conditionals while using .ALSO or .ELSE following any outer conditional. For 
example, 

IFN A-B,<IFIDN <X>,<Y>,<  ... >> 

. ELSE < . . . > 

Here, the .ELSE tests the success of the IFN A-B independent of whether the IFIDN succeeded or 
failed. 

ASCII e t e x t  a 
Assembles text as ASCII characters into consecutive quarterwords, padding the last used singleword 
with zeros. This pseudo-op may cause more than one word to be assembled as long as it is not 
enclosed in any level of brokets. However, the "value" of this pseudo-op is the value of the last 
word it would assemble. So if it is used in an expression, the arithmetic applies only to the last 
word. If it is enclosed in brokets, then all but the last word are thrown away. For example, 



~ + A S C I  I /ABCDEFG/ 

is the sam'e as 

ASCII /ABCD/ 
<ASCII /EFG/>+l 

but not the same as 

l+<ASCI I /ABCDEFG/> 

which is the same as 
, , 

ASCBlV e t e x t  e 

Is the same as ASCII except that macro expansion and expression,evaluation are enabled from the 
beginning of text as in PRINTV. "\", "'", and "'" may be used as in PRINTV. 

ASClZ e t e x t  e 

Same as ASCII except that it guarantees that at least one null character appears at the end of the 
string. 

ASClZV e t e x t  e 

Is the same k ASCIIV except it does ASCIZ. 

. AUXO c f  i I mama> . . 
Prepares the file <filename> to receive auxiliary output. Auxiliary output can be generated with the 
AUXPRX and AUXPRV pseudo-ops. The  auxiliary output file remains open until the next 
A U X O  or the end of the assembly is encountered. It is probably most appropriate' to do the 
A U X O  during just one pass of the assembly. This can be done, for example by. 

\ 

AUXPRX a t e x t  e 

The text is output to the auxiliary file. An error message is generated if no auxiliary file is open. 

/ 

AUXPRW e t e x t  e 
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Is the same as AUXPRX except that macro expansion and expression evaluation'are enabled from 
the beginning of t ex t  as. in P R I N T V .  "\", "'", and "' may be used as in PRINTV. 

BLOCK express  i on 
Adds expression*4 to the location counter. That is, the expression is the number of singlewords to 
reserve. The  expression must be defined when the BLOCK pseudo-op is encountered. 

BYTE (sl)bl l ,b12,b13 ,... (s2)b21.b22.b23 ,... 
T h e  BYTE pseudo-op is used to enter bytes of da ta  The s-arguments indicate the byte size to be 
used until the next s-argument. The b-arguments are the bytp vellles. An argument may be any 
defined expression. The  BYTE pseudo-op may not evaluate to more than one word. The  s-values 
are interpreted in decimal radix. Scanning is terminated by either 3 or >, so a BYTE pseudo-op 
may be used in an operand or in an expression. For example, 

MOV A,#cBYTE (7)15,12> 
MOV B, Cl+<BYTE (7115,12>1 

COMMENT e t e x t  e 
T h e  t ex t  is totally ignored by the assembler 

DEFINE name argument- I i s t  
This pseudo-op is used to define a macro. See the section on macros for a description. 

DPAGE 
If the current space is instruction space, it does an implicit LTT, advanc~s  the location counter to the 
next page boundary, and sets the space to data. If the current space is data, it merely advances to 
the next page boundary. This pseudo-op may not appear inside of a literal or in a relocatable 
assembly. 

DSPACE 
This is a no-op if the current space is already data  Otherwise it switches to data space and restores 
the location counter from the last value it had in data space. This pseudo-op may not appear inside 
of a literal or in an absolute assembly. 



END exljress' i  on 

Indicates the end of the program. The  expression, which may be omitted, is taken to be the starting 
address. This pseudo-op may not appear inside of a. literal. END forces an implicit LIT to be done 
first for both instruction and data space. The expression must be defined when the END 
pseudo-op is encountered. 

EXTERNAL syml, sym2, sym3,. :. 
This pseudo-op defines the symbols in the list to be "external" symbols. The  symbols in the list 
must not be defined anywhere in the program. Only one external reference may be made per 
expression. The value of the external will be ADDED by the linker to the word containing the 
expression regardless of the operation the expression says to perform on the external symbol. 

IFl, <condi t i ona l l y assembled t e x t >  r e s t  o f  program 

I F M l  ,<condi t i  onal l y assembled t e x t >  r e s t  o f  program 

IF2, ccondi t i ona 1 1 y agsembl ed t ex t>  r e s t  o f  program 

I F M 2 , ~ c o n d i  t i  ona 1 l y assembled t e x t >  r e s t  o f  program 

IF3, <condi t i ona l I assemb l ed t e x t >  r e s t  o f  program ' 

lFM3, <condi t iona 1 1 y assembled t e x t >  r e s t  o f  program 

Assembles conditionally assembled text'if the assembler is in pass 1, 2 or 3 for IFl, IF2 and IF3 or if 
the assembler is not in pass 1, 2 or 3 for IFN 1, IFN2 IFN3. 

lFDEF symbol ,<condi t iona l  l y  assembled t e x t >  r e s t  o f  program ' 

IFNDEF symbo I, ccondi t 1 ona l l y assemb 1 ed t e x t >  r e s t  o f  program 

Assembles condition all^ assembled text if the symbol is defined or not for IFEEF and IFNDEF 
respectively. 

IFE expr, <condi t i  ona 1 l y assemb I ed t e x t >  r e s t  of program 

lFM expr,<condi t i  onal 1 y assemb 1 ed t e x t >  r e s t  o f  program 

IFL expr, <cond i t i ona 1 1 y assemb 1 ed t e x t >  r e s t  o f  program 

IFG expr, <condi t i  ona l l y assemb 1 ed t e x t >  r e s t  o f  program 

lFLE expr, <condi t iona l 1 y assembled t e x t >  r e s t  o f  program 

IFGE expi-, ecorwli t iona l l y asaemb 1 sd t e x t >  r e s t  o f  program 

Assembles conditionally assembled text if the condition is met. If the condition is not met, then the 
program is assembled as if the text from the beginning of the pseudo op to the matching > were not 
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present. For IFE the condition is "the expression has value zero," for IFN it is "the expression has 
non-zero value," etc. In any case the expression must not use any undefined or external symbols. 
T h e  comma, < and > must be present but are "eaten" by the conditional assembly statement. In 
deciding which is the matching right broket, all brokets are counted, including those in comments, 
text and those used for parentheses in arithmetic expressions. Therefore one must be very careful 
about the use of brokets when also using conditional assembly. For example, the following example 
avoids a potential broket problem: 

I FN SCANLSS, < 

SKP.NEQ A , # " < "  ;> MATCHING BROKET 

JtlPA FOUNDLESS 

>#END OF IFM SCANLSS 

T h e  broket in the comment is used to match the one in double quotes so that the conditional 
assembly broken will match. 

lFlDM < s t r  i n g l > ,  < s t r i n g h , < c o n d i  t i o n a l  I y assembled t e x t >  r e s t  o f  program 

IFB)!F < s t r  i ng l> ,  < s t r  i ng2>, <condi  t i o n a l  l y assembled t e x t >  r e s t  of program 

These are text comparing conditionals. The  strings that are compared are separa:ed by commas and 
optionally enclosed in brokets. If the strings are identical (different for IFDIF) then the text' inside 
the last set of brokets is assembled as for arithmetic conditionals. 

IFB < s t r i n g > ,  <cond i t i  ona I l y assemb l ed t e x t >  r e s t  of program . . 

lFMB < s t r i n g > ,  <condi  t i  ona l  I y assembled t e x t >  r e s t  o f  program 

These text testing conditionals compare the one string against the null string. They are equivalent 
to 

. INSERT <f  i I ename> 

Starts assembling text from the new file <filename>. When the end of file is reached in the new file, 
input is resumed from the previous file. .INSERTS may be nested up to a level of 10. 

INTERNAL syml, s y m ~ ,  sym3,. . . 
Defines each symbol in the list as an "internal" symbol. This makes the value of the symbol 
available to other programs loaded separately from the one in which this statement appears. 



IPAGE 
If the current space is data space, i: does an implicit LIT, advances the. location counter to the next 
page boundary and sets the space to instructions. If the current space is instructions, it merely 
advances to the next page boundary. This pseudo-op may not appear inside of a literal or in a 
relocatable assembly. 

Is a no-op if the current space is already instructions. Otherwise it switches to instruction space and' 
restores the location counter from the last value it had in instruction space. This pseudo-op may 
not appear .inside of a literal or in an absolute assembly. 

. . 

.LENGTH a t e x t  GZJ 

Has the value of the length of the string text. A CRLF counts as one character. 

LIST 
Increments listilig counter. Listing is enabled when the count is positive. The count is set to one at 
the-beginning of each pass. XLIST is used to decrement the count. 

LIT 
Forces all literals in the current space (instruction or. data) that have not yet been emitted to be 
assembled starting at the7cur;ent, location counter. It has no effect on the literals in the "other" 
space. This pseudo-op may not appear inside of a literal. 

LOC express i on 
Sets the location counter to the.specified quarterword address. May not appear inside of a literal or 
in a relocatable assembly. 

MLlST 

Increments macro listing counter. Macro expansion listing is enabled when the count is positive. 
The  count is set to one at the beginning of each pass. XMLIST is used to decrement the count. 
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PWINTV e t e x t  B 

Prints tex t  on the console. It is identical to PRINTX except that macro expansion may occur within 
the text. I \ ,  ', and ' may be used within the text as in macro arguments and expression evaluation. 
See the section on special processing in macro arguments for an explanation of \ and " processing. 
Macro expansion is intially enabled at the beginning of text and may be disabled with \. 

Prints text on the esrssele. . 

.QUOTE e t e x t  e 

Legal only inside a macro definition. It allows the assembler to see text without scanning it for a 
DEFINE or a TERMIN. 

RADIX express  i on 

Sets the current radix to expression. The radix may not be set less than two. 

Forces the assembly to be relocatable. 

REPEAT express  i on, <body> . . 

Assembles bod9 concatenated with a carriage return expression many times. The  expression must be 
defined at the time the REPEAT pseudo op is encountered. The  expression must be non-negative. 
If it is zero, the body will not be assembled. 

TERMBN 
This pseudo-op is legal only during a macro definition. It is used to terminate a macro definit-'m. 
See the section on macros for a description. 



TITLE name o t he r - tex t  

Sets the title of the program to name. Everything else on the line is ignored. 

XLlST 
Decrements listing counter. Listing is enabled when the count is positive. The  count is set to one at 
the beginning of each pass. LIST is used to increment the count. 

XMLIST . . 
Decrements macro listing counter. Macro expansion. listing is enabled when the count is positive. 
The  count is set to one at the beginning of each pass. MLIST is used to increment the count. 

XSPACE 
Has the effect of ISPACE if the current space is data and DSPACE if the current space is 
instructions. This pseudo-op may not appear inside or a literal or in an absolute assembly. 
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3.7 Macros 

The  FASM macro facility shows a strong resemblance to those of FAIL (the macro assembler for the 
PDP-10 developed and used at the Stanford Artificial Intelligence Laboratory) and MIDAS (the 
macro assembler for .the PDP-10 developed and used at the M.I.T. Artificial Intelligence 
Laboratory), which are hereby acknowledged. 

Macros are essentially procedures that can be invoked by name at almost any point in the assembly. 
They can be used for abbreviating repetitive tasks or for moving quantities of information from one 
part of the assembly to another (in fact even from one pass to another). Macro operation is divided 
into two parts: definition and expansion. 

The  macro facility does differ in an important way from those of other assemblers, however. Macro 
expansion in FASM is performed at the "read-next-character" level, whereas in most other 
assemblers it is done at symbol lookup time during expression evaluation. Due to this difference, 
macro expansion in FASM inherently produces "string" output rather than evaluated expressions as 
is sometimes the case in other assemblers. Wherever a macro call is seen, the effect can be predicted 
by substituting the body of the called macro in place of the call. 

3.7.1 Macro Definition 

Macros are defined using the DEFINE pseudo-op. which has the following format: 

OEFI NE niacrclnamc argc~mon t l i R t 

body o f  macro d e f i n i t i o n  

TERM I N 

This will define the symbol macroname to be a macro whose body consists of all the characters 
starting after the CRLF that ends argumentlist and ending with the character immediately 
preceding the TERMIN. 

3.7.1.1 The Parameter List 

Basically, the parameter list is a list of formal parameters for the macro. This is similar to the list of 
formal parameters for a procedure in a "high" level language. The  parameters are symbol names 
and are separated by commas. The number of macro parameters must be in the range 0 . . 64. The  
macro parameter list is terminated by either a ; (which begins a comment, as usual) or a CRLF. 
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Each macro parameter has certain attributes associated with it. In FASM these attributes are 
balancedness, gensymmedness, and parentherizedness. From now on, it shall be said that a parameter 
is or is not balanced, is or is not gensymmed, and that certain pairs of parentheses can or cannot 
Parenthesize a parameter. If a parameter is not balanced or gensymmed then it is said to be normal. 

Parameter attributes are specified by enclosing a string of characters in double quotes preceding a 
parameter in the parameter list. The  attributes specified by that string are "sticky"; that is, they 
apply to all following parameters until the next such string is specified. The  characters B and G 
. . 
may appear in the string to indicate that the parameter is to be balanced or gensymmed respectively. 

. There are four parenthesis pairs: ( and ), [: and I, < and >, and ( and ). Any of these characters may 
appear in the string to indicate that that set of parentheses may be used to parenthesize thai: 
parameter. One final thing thzt may appear in the string is a statement about the concatenation 
character for the macro body. If the string !=IS appears, where -a is any character other than CRLF, 
then -a will be the concatenation character. If the string O! appears, then there will be no 
concatenation character. Only the last statement made in the parameter list about the concatenation 
character will apply to the macro body. 

At the bzginning of the parameter list, the attributes have the following defaults: ! is the 
concatenation character, parameters are neither balanced nor gensymmed, and any pair of 
parentheses may be used to parenthesize a parameter. Whenever an attribute string is encountered, 
the previous set of attributes are forgotten and the new on'e applies to future parameters .until the 
next string is specified. 

Here are some examples of valid macro definition lines: 

DEFINE MAC 
DEFINE MACl -A,B,C 
DEFINE MAC2 " ! = ' "  A,B, "G"  C 
DEFINE MAC3 " ( [ B I ) "  A, " [ 0 ! "  B 

With these definitions, MAC has no parameters and has ! for the concatenation character. MACl 
has three normal parameters A, B and C with ! for the concatenation character. MAC2 has two 
normal parameters A and B and a gensymmed parameter C, and uses ' as the concatenation 
character. MAC3 has a balanced parameter A, for w.hich () and [I can be used as parentheses, and 
a normal parameter B, for which [I can be used as parentheses. MAC3 has no concatenation 
character. 

3.7.1.2 The Macro Body 

The macro body begins at the character following the CRLF at the end of the DEFINE line and 
ends with the last character before the matching TERMIN. Within the macro body, FASM replaces 
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all delimited occurrences of formal parameters with a mark that indicates where the actual argument 
should be substituted. Any character that is not a symbol constituent is considered a delimiter for 
this purpose. T h e  concatenation character is also considered a delimiter. However, the 
concatena~on character is deleted wherever it occurs and will not appear in the macro body 
definition. The  concatenation character is useful to delimit 2 formal parameter where, without the 
concatenation character, the formal parameter would not have been recognized as such. For 
example, 

DEFINE MAC A , B , C  
PUSH.UP.S SP,B 
PUSH.UP.S SP,C 
JSR A!RT[u 
TERMIN . 

If the arguments X, Y, and Z were substituted 'for the formal parameters A, B, and C, then the third 
line would assemble as JSR XRTN. Without the concatenation character, it would always assemble 
as JSR ARTN regardless of the actual value of the parameter A. 

In addition to scanning for formal parameters in the macro body, FASM also scans for occurrences 
of the names DEFINE and TERMIN. It keeps a count of how many it has seen so that it can find 
the TERMIN that matches the DEFINE that began the macro definition. This allows a macro 
body to contain a macro definition entirely within it. For example, 

DEFINE MAC1 A 
nFF J NF, MAC 1 A 
b... 

TERM I N  
TERN I N  

defines a macro called MAC l which contains a complete macro definition sequence within itself. 

Note that FASM does not recognize either comments or text constants as special cases in its search 
for DEFINES, TERMINs and formal parameters. Therefore, the user must be careful when using 
the words DEFINE and TERMIN in those places. They will be counted in order to find the 
TERMIN that marks the end of the current definition. There is a pseudo-op called .QUOTE that 
can be used if it is desired to inhibit FASM from seeing a DEFINE, TERMIN, or macro parameter 
name. .QUOTE is like an ASCIZ statement in syntax, taking the first nonblank character after the 
.QUOTE as a delimiter and passing all characters up to the matching delimiter through to the 
rnacrn rl~finition. For. example, 

DEFINE MAC 
. . . . ;how t o  put a .aUOTE /DEFINE/ i n  a comment 

TERM I N  
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will define MAC'S body to be 

- ,  . . . . ;how t o  p u t  a DEFINE i n  a comment 

3.7.2 Macao Calls 

A macro call occurs whenever a macro name is recognized in a context where macro calls are 
permitted. When this happens, the macro call is processed in two distinct phases. The first is 
argument scanning and, the second is macro body expansion. 

s .  

Argument scanning is the, process, of assigning. text strings to the formal parameters of a macro. 
These text strings come from the input stream. If a formal parameter is not assigned a string by the 
call, then it is assigned the null string as its value, unless the argument is defined to be gensymmed. 
In that case, the argument is assigned a six character string beginning with G and follbwed by 5 
decimal digits which represent the value of an internal counter which is incremented before being 
converted to a text string. 

Argument scanning is performed for those macros that have formal parameters. If a macro does not 
have any formal parameters, then the character that terminates the macro name is left to be 
reprocessed after the macro expansion is complete, even if it is a comma. 

If the macro has formal parameters, then how the argument scan is done depends on the character 
immediately following the macro name. If it is a CRLF, then the argument scan is terminated and 
all of the formal parameters are assigned the null string or are gensymmed as appropriate. The 
CRLF is left to be reprocessed after the macro expansion is complete. 

If the character following the macro name is a space or a tab, then all immediately following spaces 
and tabs are thrown out. The entire sequence of spaces and tabs can be considered to be the macro 
name delimiter. 

If the character following the macro narne is a (, then the macro call is said to be a parenthesized 
call; otherwise it is a normal call. A parenthesized call differs from a normal call in the way 
argument scanning is terminated. In a normal call, argument scanning is terminated by either 
CRLF (or its surrogates, ? and e), semicolon, or the argument terrr~itlator for the last argument 
(which may be a comma). If terminated by a CRLF or semicolon, the terminator is left to be 
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reprocessed after macro expansion is complete. In a parenthesized call, only the matching ) can 
terminate the call. T h e  ) is not reprocessed after the macro expansion is complete. The following 
paragraphs will describe the syntax of macro arguments and explain how they are terminated. The  
phrase "... macro call terminator" refers to the character that terminated either the normal or 
parenthesized call, as described in this paragraph. 

3.7.2.2 Macro Argument Syntax 

T h e  first macro argument begins with the first character following either the ( that de~narks a 
parenthesized call or the macro name delimiter in a normal call. This chzracter i s  looked a.t by 
FASM to determine how to scaii the argument. 

If' the first character is a left parenthesizing character that belongs to the set of characters that may 
be used to parenthesize the argument that is being scanned (as determined by the character string in 
force at the time this formal parameter was seen in the macro define line), ti-:en the argument is 
taken to be all characters following that open parenthesis until, but not including, the matching 
closed parenthesis. Any characters may appear between the parentheses. Only the particular type of 
parentheses that enclose the argument are counted in finding the matching closed parenthesis. This 
type of argument is called a parenthesized argument. 

If the first character is a comma, then the argument is the null string; the ccimma is taken to be an 
argument separator. 

If the first character is a macro call terminator, then this argument and all further arguments are 
not assigned strings. That is, if the arguments are gensyrnmed, they will be assigned u ~ i q u e  
gensymmed strings, and if they are not gensymmed they will be assigned the null string. 

If the first character is not one of the above, then argument scanning depends on whether the 
argument is to be balanced or not. If tne argument is not to be balanced, then the argument is 
taken to be all characters from the first character until, but not including, a cumma, CCRLF (or w or 
?), semicolon, or the macro call terminator. If the argument terminator is a comma, it is thrown out; 
a macro call terminator, however, will be kept to terminate the macro call. If the argument 
terminator is not a comma, then it is usually a macro cdll Lermlnator. However, if the call is 
parenthesized, a CRLF or semicolon will terminate the argument but not the macro call. In this case 
the remainder of the line (if the terminator was a semicolon) is ignored and the CRLF is thrown 
out. Argument scanning continues on the next line. This allows the arguments of a parenthesized 
call to take multiple lines; each CRLF acts as if it were a comma (with comments thrown out) 
allowing the next line to continue supplying arguments. 

If the argument is to be balanced, then all types of parentheses are treated the same. A count is 
kept of the parenthesis level. If there are no unbalanced parentheses, then a comma or macro call 
terminator will terminate the argument as if it were a normal argument. Also, if the parentheses are 
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balanced, any close parenthesis will terminate the argument and the call. If it is a parenthesized call, 
the close parenthesis must be a ) or an error is .reported. If .it is not a ,parenthesized call, the 
parenthesis will be left to be reprocessed after the macro call is complete. In either case, the 
remaining formal parameters are assigned the null string or gensymmed as appropriate. 

3.7.2.3 Special Processing in Macro Arguments 

Ordinarily, macro arguments are the quoted forms of the strings that appear between delimiters 
within the macro call. However, it is possible to call a macro or even evaluate an expression within 
a macro argument during the macro argument scan. 

If a macro argument is not parenthesized, then the appearance of the character \ (backslash) in the 
argument will enable macro calls to be recognized during the scanning of the macro argument. The 
appearance of a second \ will again disable this feature. If a macro call is detected during this time, 
then that new macro is expanded and its expansion appears as if it .were written in line in the 
macro 'argument that is currently being read. Every time a new macro. call is seen and macro 
argument scanning is started, the macro-in-argument recognition feature is disabled until re-enabled 
by a \., The \ character,dtself is discarded. . . 

Perhaps this will be clearer if explained in terms of the actual implementation. FASM maintains a 
flag, called the \ flag, which when set enables macro expansion. This flag is pushed when a macro 

. . .  ; .. . .  
name is recognized and initialized to be off at the beginning of the argument scan. It is 
complemented every time a \ is seen in the input. When the entire macro call has been scanned (but 
expansion has not yet started) the \ flag is popped. 

.- 

In fact, the \ flag has wider application than just in macro calls. It is also applicable at expression 
evaluation time. Normally it is set during expression evaluation, thereby allowing macros to be 
expanded. It is perfectly legal to use \ during expression evaluation to inhibit macro expansion. 

There is a second feature, analogous to the \ feature, which allows the expression evaluator to'be 
called during a macro argument, or in fact even at expression evaluation time. If an expression is 
enclnscd within "'" and "'" charasters, the expression evaluator is called upon to produce a value, 

. . 
which may possibly be null, which is then converted into a character string of digit's representing 
that value in the current radix. The  conversion always treats the value as a 36-bit unsigned integer. 
A null value is converted to the null string. The surrounding singlequotes act in a similar way to 
parentheses in arithmetic expressions, in that multiple lines may be used, but only the expression on 
the last line is converted. This converted string js used in place of the singlequoted expression. As 
in the case of \ this can occur in non-parenthesized macro arguments or in expression evaluation. 
The  ~inglequote characters therns~lv~s are thrown out. 

Following are some examples of the use of these features: 
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X c t l  F00  'X' : JMPA F 0 0 l  

wilt assemble as 

F001: JMPA F001 

If FOO was a macro name, it would have been expanded in the previous example. This could be 
inhibited with: 

\F00\ ' X '  : JHPA I-UU1 

Next consider: 

X c e l  
DEFINE MAC 
XccX+l 
X !  TERMIN 

,. F00  'MAC' : 

will define the label F002 while incrementing X to be 2 The next time FOO'MAC': appears, the 
label F003: will be generated. 

It is sometimes useful to extract the value of a symbol in a macro argument before the macro call 
changes that value? 

DEFINE MAC A 
BRRe+BRR+l 
A*BRR 
TERM I N 

MAC 'ERR' 

will call MAC with the current value of B R R . .  Withopt the singlequ~tes, the string BRR wn~ild he 
passed to the macro and used where "A" appears, which is after BRR is incremented. 



Index 

!D 316 
!I 316 

% 6 
2-dimensional 149 
PDFFT 152 
3-dimensional 140- 14 1 
ABS . (QH;s,D) 93 

' absolute assembly 327 
absolute jump 20 . 

ABSOLUTE, in FASM 327-328 
absolute-JOP 31 3 
ACCESS-VIOLATION 41,43, 57,60 
ACCESS 41-43,47, 57,61,280 
access modes, defined 43 
access modes, field in PTE 42 
access modes, fields in STE 41 
access modes, role in 1/U 61 

ACOND 184, 186-189, 191-192, 194-195 
ACOND, defined 184. 
ADD . ,{QH,s,D) 73 
ADDC . (QH,s,D) 74 
address calculation 6, 18, 29, 40-41, 44, 46- 

4'7,49, 187, 197 
ADDRESS fleld of pointer 44 
address space 5 
address space IDS 284 
address space IDS, Mark IIA restriction 67 
address translation 37 
address translation, for 110 memory 61 
address validation 46-49, 56, 59, 178, 249- 

250, 543 
ADDRESS0 notation 5 
addressing modes 22 . 

ADJBP . (C,A,Z) 235 
AD JBP 235-237 
ADJSP . (UP,DN) 239 
ADJSP 158,239, 280,289-290 
alarm 59 
ALCOND 184-185 
ALCOND, defined 184 
ALIGNMENT-ERROR 5,58 

alignment of anywords 5 
alignment of bytes 228 
ALL (logical condition), defined 184 
ALL 184-185, 200,296-297 
ALLOC . (1 .. 32) 259 
ALSO, in FASM 328 
AND.  {QH,S,D) 207 
AND 34,43,79,200,20'7-209,2 1 1,225, 3 14 
ANDCT . {QH,s,D) 209 . . 

ANDCT 92, 200,208-209 
; , . 

ANDCTV 209 
ANDTC . (QH,S,D) 208 
ANDTC 56,208-269.2 i i 
ANDTCV 208 
ANY (logical condition), defined 184 
ar 25, 29, 34 
argument-list 330, 336 
arithmetic condition, defined 184 
ARRImPdD . {RTA,RTIZ) 175 
ASCII '3  13-3 14, 3 17, 328-329 
ASCIIV 329 
ASCIZ 329, 338 
ASCIZV 329 
assignment statement 3 19 
attributes, expression 3 14 
attributes, macro parameter 337. ,. 
attributes, symbol 3 16 
augmented magnitude rounding mode 106 
AUXO 329 
AUXPRV 329 
AUXPRX 329-330' 
backslash 341 
backslash flag 341 
BADA-VALIDATION 44, 46, 59, 257 
BADADDRESS-TAG 45,57,60 
BAD-P-VALIDATION 44,48, 59, 176 
BADSOINTER-TAG 45, 57,60, 176 
BAD-TMODE 55, 59 
BADREV . (H,s,D) 154 
BADREV 151- 154 
balanced macro argument, semantics 340 
balanced macro parameter, syntax 337 
base pointer, defined 26 



base pointer, in long operand addressing 29 
base pointer, role in segment bounds check- 

ing 40 
base-offset 322 
based addressing mode 30 
based-indexed addressing mode 30 
BASEPTR 45, 57, 179 
bignums (extended precision arithmetic) 97, 

3 17 
bit manipulation instructions 205 
bit-reversals 154 
BITCNT . {QH,S,D) 225 
BITCIqT 92, 225-226 
BITEX . {QFl,S,D) 224 
BITEX 224 
BITEXV . {QH,S,D) 224 
BITEXV 224 
BITFST . {QH,S,D) 227 
BITFST 22'7 
BITRV . {QH,S,D) 223 
BITRV 223,227 
BITRVV . {QH,s,D) 223 
BITRVV 223 
bitwise translation for 110 memory 63 
BNDSF . {B,MIN,M l,O, 1) . {QH,S,D) 

20 1 
BNDSF 35-36. 201,237 
BNDTRP . {B,M1~,~ '1,0,1) .  {QH,S,D) 

20'2 
BNDTRP 54, 202, 324 
BOUNDS-CHECK 54,202 
bounds checking (for segmentation), Mark 

IIA exception 67 
bounds checking, on segment 40 
brokcts, in FAEM 3 15 

' 

hu,sy-wait 180, 198 
BYTE 235, 330 
byte manipulation instructions 228 
byte pointer, format of 228 
byte sclcctor, format of 228 
byte, defined 228 
byte-addressed 63 
BYTES 235 

C I N  '71 
cache handling instructions 280 
CADD . {H,S) 129 
CADD 129 
CALL-TRACEXNABLE 6'7 
CALL-TRACEXNB 9- 10,65-66 
CALL-TRACEXNB, bit in PROCESSORSTATUS 

10 
CALL-TRACE-PEND 9- 10,58,65-66,265 
CALL-TRACESEND, bit in PROCESSORSTATUS 

10 
CALL-TRACESENDING 67 
CALL-TRAP 58,65,243 
CALL 243-249, 247, 252, 255-258 
call tracing, in PROCESSORSTATUS 10 
call tracing, instructions affected 243 
call tracing, Mark TIA implementation limit 

6 7 
call tracing, role in instruction execution 65 
calls across ring boundaries 248 
CALLX 41,45,97, 178,243-245,248-250, 

253,255-257 
CALLX, use of 248 
CARRY 11'70-71,73-'76,89-90,92-93,97, 

129-130, 186-18'7, 191-196, 344 
CARRY, algorithm for computing 71 
CARRY, defined 70 
ceiling rounding mode 106 
CFFT . {H,s) 15 1 
CFFT 151-152, 154 
CFFTV . {H,S) 151 
CFFTV 15 1- 152 
chained vector instructions 158 
chaining 158-159, 16 1, 163, 221, 344 
characteristic 10G 
cluoiire 7, 2-44 253 
closure pointer 7 
closure pointer, role in stack frame 244 
CLRUS 300 
CMAG . (I-1,~) 128 
CMAG 128 
CMPSF . {GTR,EQL,GEQLSS,NEQLE@ 

- {QH,S,D) 200 



CMPSF 74, 87, 95,200 
CMULT . {H,s) 131 
CMULT ,131 

' ' colon 31 9 
column 153 
COMMENT 330 
comparison instructions 184 
comparisons, on floating,point 105 
complex arithmetic 127, 129, 131, 344 
complex-base 23 
concatenation. character, syntax 337 
constant operands 23 
constants, extending with FIRST() 35 
constants, vectors of 35 
context-switching instructions 284 
CQNV . {H,s,D) 144 , 

coroutines 243, 267 
coroutines, instructions for 243 
cosine 137- 138 
CP, within stack frame 244 
cross-assembler 3 1 1 
cross-gate 257 
cross-ring 4 1, 47, 50-5 1, 57, 248-249, 253, 

256-25'1, 344 
cross-ring calls 248 
CSUB . {H,s) 130 
CSUB 130 
data cache 280 
data map cache 280 
data moving instructions ,165 
data type encoding, defined 45 
DBYT . {S,D) 233 
DBYT 233 
debugger 23, 319 
debugging 244-245 
DEC . {QH,S,D) 90 
DEC '71, 90 
DEFIP4E 990, 931, 336-339, 342 
DEFINES 338 
DEFINITION 322 
descriptor segment pointer, defined 37 
descriptor segment, defined 37 
DESTINATIONADDRESS 53 

DIBYT . {s,D) 234 
DIBYT 204,234 
dimensional 152 
diminished magnitude rounding mode 106 
displacement 18,29, 176, 197, 322 
displacements 14 1 
DIV . (QH,s,D) 87 
DIV 12, 35,87,235-236 
DIVL . {QH,s) 88 
DIVL 88 
DIVLV . {QH,S) 88 
DIVLV 88 
DIVV . {QH,S,D) 87 
DIVV 87 
D JMP . {GTR,EQL,GEQLss,NEQLE~ 

194 
DJMP 194 
DJMPA 196 
D JMPZ . {GTR,EQL,GEQLSS,NEQLEQ 

195 
D JMPZ 4, '74, 153, 195, 226 
dot product 143 
double-quote 3 18 
double-quotes 3 17 
doubleword constants 24 
downward-growing 238-242 
downward-growing stack 238 
DPAGE 313, 916, 327, 330 
DPAGE, in FASM 327 
DSEGSAGEJAULT 5'7,60 
DSEGSEGMENTITOJAULT 4 1,57,BO 
DSegmen tito 39 
DSEGP 37, 39,285-286 
DSEGP, defined 3'7 
DSHF . {LF,RT) . {QH,S) 219 
DSHF 2 19-221 
DSHFV . {LF,RT) . {QH,S) 2 19 
DSHFV 2 19-220 
DSKP . {GTR,EQL,GEQLss,NEQ,LE~$ 

187 
DSKP 187, 193,220, 225 
DSPACE 3, 146, 313, 316-31'7, 32'7, 330, 

335 



DSPACE, in FASM 327 
DVAL 314, 316, 318, 327 
DVAL, in FASM 327 
EB, field in STE 41 
ELSE, in FASM 328 
ENABLE bit, role in interrupts 61 
END 144, 185, 198,236, 245, 331-332 
entry pointer, within stack frame 244 
EP, within stack frame 244 
EQL (arithmetic condition), defined 184 
EQL 20,26,87, 92, 126, 184-189, 191-195, 

200,226,276 
EQV (Q,H.s,n) 21 6 
EQV 216 
error-correction 183 
E3IZE 152-153 
EW, defined 12 
exception handling, floating point 107 
exception values, floating point 104 
exceptions, integer arithmetic 70 
exceptions, propagating floating point 108 
EXCH . (QH,S,D) 171 
EXCH 14, 19-20, 26, 157, 171, 173, 182, 

215-216 
exclusiveOR 2 15 
EXEC 49 
EXECUTE-PERMIT 43,67,280, 313 
EXECUTESERMIT access mode 43 
execute bracket 4 1, 250 
execute bracket, field in STE 41 
execution sequence of an instruction 65 
EXIT 325 
EXP, floating point 102 
exponent 8 1-82,102- 103,107- 108,114,229- 

232,234, 315 
exponential 135 
exponentiation 8 1-82, 109, 1 18 
expression, attributes 3 14 
expression, broketed 3 15 
expression, data value 314, 318 
expression, external value 3 14, 318 
expression, in FASM 314 
expression, instruction value 3 14, 3 18 

expression, register 3 14 
extended word, defined 12 
extended word, fields of 22 
EXTERNAL 331 
external procedures, with CALLX 248 
F field, in operand descriptor 22 
FABS . {H,s,D) 123 
FABS 108, 123 
FADD . {H,s,D) 11 1 
FADD 109, 111, 113, 115, 118 
FAIL 336 
FASM asse~nbler, invoking 3 1 1 
fast fourier transform 161 
FATAN . (H,s,D) 188 
FATAN 67, 139, 142 
PATANV . {H,S,U) I Y Y  

FATANV 67, 139 
fault tag, defined 45 
FCADD . (H,s) 129 
FCADD 129 
FCFFT . (H,s) 151 
FCFFT 67, 151-153 
FCFFTV . (H,s) 151 
FCFFTV 67, 151-152 
FCMAG . (H,S) 128 
FCMAG 67, 128 
FCMULT . (H,s) 13 1 
FCMULT 131 
FCONV . (H,S,D) 144 
FCONV 144 
FCOS . {H,s,D) 137 
FCOS Li4,67, 137 
FCSUB . (H,s) 130 
FCSUB 130 
FDIV . (H,s,D) I 15 
FnTV 1n7, I l l ,  117, 115=118, 134, 136-138. 

143 
FDIVL . (H,s) 116 
FDIVL 116 
FDIVLV . (H,s) 1 16 
FDIVLV 116 
FDIVV . {H,s,D) 1 15 
FDIVV 1 15 



fetching 45-46, 48 
FEXP . {H,s,D) 135 
FEXP 67, 135 
FFT 54,67, 151- 152, 154 
FFT, Mark IIA restriction on vector length 

67 
filter 145, 152 
filtering 1 52 
filters 145 
finished 157 
FIRST() notation 35 
FIX . {FL,CL,DM,HP,ST,US) . {Q,H,s, 

D) . (H,S,D) 1 19 
FIX105-106;108,119 . 

fixed-base 27 
fix&-ba.sk addressing mode 2'7 
fixed-based-indexed 3 1 
fixed-based-indexed addressing mode 3 1 
FIXR 106 
FLAGS, field in PROCESSORSTATUS 

10 
FLAGS, field in PTE 42 
FLAGS, field in STE 42 
FLAGS, in USER-STATUS 11 
FLAGS, within stack frame 245 
FLOAT . (H,s,D) . {QH,s,D) 120 
FLOAT 103, 120 
floating point 11, 53-54, 102-125, 127-131, 

133-141, 151, 158, 166,'229-234, 315, 
344 

floating point arithmetic 102, 104, 10'7, 110- 
111, 113, 115, 117, 119, 121, 123. 125, 
344 

floating point comparisons 105 
floating point data format 102- 103, 344 
floating point exception handling 107, 344 
floating point exception values 104- 105.12 1, 

124-125, 344 
floating point exceptions, propagating 108 
floating point overflow, defined 104. 
floating point rounding modes 105 
floating point underflow, defined 104 
FLOG . {H,S,D) 154 . , 

FLOG 67, 134-135 
floor rounding mode 106 
FLSHDM 283 
FLSHIM 283 
FLTJJANMODE 11, 54, 107-108 
FLTJJAN-MODE, defined 107 
FLTJJAN-TRAP 54, 108, 133-134 
FLTJJAN 11,107, 11 1-1 18, 121-125, 128- 

131, 133-141, 143-145, 149, 152 
FLT-OVFLMODE 11, 54, 107 
FLT-OVFLMODE, defined 107 
FLT-OVFL-TRAP 54, 107 
FLT-OVFL 11,10'7,111-118,120-125,128- 

131, 134-135, 140-141, 143-145, 149, 
152 

F L T X E P  11, 107 
FLT-UNFLMODE 1 1, 54, 1.07- 10:8 
FLT-UNFLMODE, defined 107, ' . 

FLT-UNFL-TRAP 54, ,108 
FLT-UNFL 11,10'7,111- 1 18,. 121- 125,128- 

131, 134-135, 140-141, . . 143, 145, 149, 
152 

FLTR 106 . . . . . .  

flush 283. . 

FMATMUL . {HSD) 149 
FMATMUL 199-150 . ,  . , 

FMAX . {H,s,D} 125 
FMAX 109, 125 
FMIN : .{H,s,D) 124 
FMIN 109, 124-125 
E'M U LT . {H,s,D) 1 13 
FMULT.l1IL,113,115,118,135,139 . 

FMULTL . {H,s) 114 , 

FMULTL 114 
FNEG . {H,s,D) 122 . 

FNEG 108-109, 122 
ids 44 

fourier transform 151, 154 
FP, within stack frame 244 
FPTR 188 
fraction 103, 106, 151 
fragmentation 37 
frame pointer 7, 244 



frame pointer, role in stack frame 244 
FRECIP . {H,s,D) 1 17 
FRECIP 67, 1 1'7 
FRFLT2. (H,S,D) 145 
FRFLT2 145 
FSC . {H,s,D) 118 
FSC 107, 109, 11 1, 113, 115, 118 
FSCV . {H,s,D) 118 
FSCV 109, 1 18 
FSIM 312 
FSIN . {H,s,D) 136 
FSIN 54,67, 136 
FSINCOS . {H,s,D) 138 
FSINCOS 67, 138 
FSQRT . (H,S,D) 133 
FSQRT 67, 133, 143 
FSUB . (H,S,D) 1 12 
FSUB 109, 112 
FSUBV . {H,S,D) 112 
FSUBV 107, 112 
FTRANS . {H,s,D) . {H,s,D) 121 
FTRANS 108, 121, 166,200 
GATE JNDEX-TOOBIG 57,60,249 
gate descriptor block, location of 50 
gate descriptor, format of 248 
gate pointer, fields within 249 
gate tag, defined 45 

gate, format of 248 
gates, role in cross-ring procedure calls 248 
general purpose registers 6 
gensymmed 337, 339-341 
gensymmed macro parameter, semantics 339 
gensymmed macro parameter, syntax 997 
gensymmedness 337 
GEQ(arithmetic condition), defined 184 
global 244 
GTR (arithmetic condition), defined 184 
half rounds toward positive 106 
half-killed 3 16, 3 19 
half-killed symbol 3 19 
half-word 152- 153 
hard traps 50-51, 57, 59-60, 343 
hard traps, defined 50 

hidden bit 53, 102 
hidden bit, floating point 102 
hidden bit, in floating point format 102 
HIGH-ORDER() notation 3 
H O P  13, 18, 69, 197, 325, 343 
H O P  format 18 
HOPS 324 . 
110-PAGE access mode 43 
I10 61 
I10 instructions 269 
I /O memory translation 62 
I10 memory, addressing 6 1 
110 memot y, defined $1 
I10 processor, defined 61 
IF 19-20, 139-111, 160-162, 164, 185, 198, 

20'7-216, 236 
IF1 331 
IF2 331 
IF3 329, 331 
IFB 332 
IFDEF 331 
IFDIF 332 
IFE 331-332 
IFG 331 
IFGE 331 
IFIDN 328, 332 
IFL 331 
IFLE 331 
IFN 328, 331-332 
IFN1 331 
IFN2 331 
IFN3 331 
IFNB 332 
IFNDEF 331 
IJMP . (GTR,EQL,GEQLSS,NEQLE@ 

191 
IJMP 191 
IJMPA 193 
I JMPZ . {GTR,EQL,GEQLsS,NEQLEQ~ 

192 
IJMPZ 192, 325 
ILLEGALJBYTESTR 58, 228 
ILLEGAL-CONSTANT 23, 58, 176, 181 



ILLEGALJNSTRUCTION 58 
ILLEGALJOMEM 59,61 
ILLEGALMEMORY 20 
ILLEGAL-OPERAND-MODE 20,58,176, 

18 1 
ILLEGALSRIORITY 59,279 
ILLEGAL-REGISTER 59,289-?92 
ILLEGALSHIFT-ROTATE 58,2 17-2 19, 

221-223 
ILLEGALSTATUS 59,107-108,294,297- 

300 
ILLEGAL-TRACEJ'END 58 
illegal value, floating point 107 
illegal value, in floating point format 104 
implementation-dependent 1, 52, 62, 15 1, 

188 
implementation-dependent features 67 
imprecise 46, 54 
INC . (QH,S,D) 89 
INDEXXEG 322-323 
INDEX, field within gate pointer 249 
index, in long operand addressing 29 
index, role in segment bounds checking 40 
indexed constants 24 
indexing, restrictions on registers 6 
indirect 20, 26-27, 30-31, 41, 44, 47, 190, 

197, 312, 317, 322, 325 
indirect addressing 30 
indirection 30-32, 4 1, 49, 65 
inexact rounding 67, 106, 1 17 
inexact rounding, Mark IIA spec 67 
information-preserving 2 15-2 16 
inputloutput 6 1 
inputloutput instructions 269 
INSTRUCTIONSTATE 52,65-66, 285 
instruction cache 280 
instruction execution sequence 65 
instruction formats 12 
instruction map cache 280 
instruction set 69 
instruction state, used in traps and'inter- 

rupts 52 

instruction tracing, bits in PROCESSOR-- 
STATUS 9 

instruction tracing, role in instruction ex- 
ecution 65 

instruction, in FASM 320 
instruction-dependent 52 , 

instruction-space 3 16-3 17 
INT-OVFLMODE ,11, 54, 70-7 1 
INT-OVFLMODE, defined 70 
INT-OVFL-TRAP 54, '71. ; 
INT-OVFL 1.1, 70,. '73-82, 87-93, 97-98, 

100-101, 108, 119, 123, 128-131, 140- 
. 141, 143-145, 149, 152,.186-187, 191- 

196,217 
INT-OVFL, defined 70 
I N T Z D I V M O D E  11, 54, 70-71 
I N T Z D I V M O D E ,  defined '15 
INTZDIV-TRAP 54, 71 
INT_.ZDIV 1 1, 70, 79-80,83-88, 100- 10 1, 

297 . . 

I N T Z D I V ,  defined 70 . . 

integer' arithmetic .exceptions 70 . , . 

integer division by zero, defined, 70: 
integer overflow, defined:70 . . 
integrity 104, 344 . . 

interface 248 
INTERNAL 332. . . 
interprocessor 180 . . , 

interrupt vector 50-51, 60-62, 65 
interrupt vector format 51 
interrupt-related instructions 269 
interruptable instruction, defined 52 
interruptable instruction, execution sequence 

of 65 
interrupts, role in instruction execution 65 
interrupts, save area for 52 
INTIOP 274 
INTRAN . {H,S,D) 146 
INTRAN 146-147, 152-153 
I O S A G E  61 
IOBUF 270-27 1 
IOP 61-63 
IOPs 62 



IOR . {Q,H,s,D) 270 
IOR 270 
IORMW 272 
IOW . {QH,s,D) 27 1 
IOW 271 
IPAGE 313, 316, 327, 333 
IPAGE, in FASM 327 
ISKP . {GTR,EQL,GEQLSS,NEQLEQ 

186 
ISKP 33, 142, 186, 220, 325 
ISPACE 3,146-147,3i3,316-317,327.333, 

335 
ISPACE; in FASM 327 
WAL, in FASM 327 
J field, in format 18 
JCR 243-244,267, 325 
JMP . {GTR,EQL,GEQLSS,NEQLEQ~ 

188 
JMP 188, 317 
JMPA 156-157,185, 190,19'7,203,268,317, 

325, 332, 342 
JMPCALL 243-244, 268 
JMPRET 243-244,268 
JMPZ . {GTR,EQL,GEQ,Lss,NEQLEQ~ 

. {QH,S,D) 189 
JMPZ 20,92, 157, 180, 189,203,276 
JOP  13, 20, 22, 55, 69, 188-196, 252, 254, 

258, 268, 286, 294, 296-298, 309, 325, 
343 , 

JOP format 20 
JOP, in FASM 325 
JOPS 324-325 
JSP 248 244,264 
JSR 87, 152, 156- 157, 238, 243-244, 258, 

260-261, 325, 338 
jump format 20 
jump instructions 184 
JUMPDEST field in JOP format 20 
JUS . {NON,ALL,ANY,NAL) 296 
JUS 296 
JUSCLR . {NON,ALL,ANY,NAL) 297 
JUSCLR 297, 300 
largest-magnitude 46 

LBITCNT . {H,S,D) 225 
LBITCNT 225 
LBITFST . {H,S,D) 227 
LBITFST 227 
LBYT . {S,D) 229 
LBYT 229,237 
LCOND 184,296 
LCOND, defined 184 
LCONDs 184,284 
least-recently-used algorithm in caches 280 
LENGTH, field in byte pointer 228 
lengthwise 96, 221 
L E Q  (arithmetic conditiop), defined 184 
LIBYT . {s,D) 230 
LIBYT Xsn 
linefeed 3 12, 319 
linefeeds 3 16 
linkage instructions 243 
LISBYT . {s,D) 232 
LISBYT 232 
LISP 45 
literal, in FASM 316 
LMINMAX . {H,s,D) 96 
LMINMAX 96 
LO, defined 12 
T.OC 527, 333 
LOC, in FASM 327 
locals 255 
location counter 3 16 
log 134- 1 55 
log2 227 
logarithm 40, 42, 134, 151, 154, 179 
luglcal condition, defined 184 
LONGADDR 322-323 
LONGDISP  322-323 
long operand variables 27 
long operand, defined 12 
LOST-PRECISION 54 
LOW-ORDER() notation 3 
LRU 280 
LSBYT . {S,D) 23 1 
LSBYT 231 
LSS (arithmetic condition), defined 184 



maclisp 97 
macro 316, 329-330, 333-342, 345 
macro-in-argument 34 1 
macroname 336 
macros 313,315-316,330,334,336,339,341, 

345 
macros, argument scanning 339 
macros, argument syntax 340 
macros, body 337 
macros, calls 339 
macros, defining 336 
macros, parameter list format 336 
MANT, floating point ,102 
mantissa 67, 102-103, 106-108, 114,233 
map cache 280 
mapping-related - .  instructions 284 
mathematical instructions 132 
MATMUL ,. {H,S,D) 149 
MATMUL 149- 150 
matrices '14'7- 150 
MAX . {Q,H,S,D) 95 
MAX 95, 125 
maximum integer- value 70 
MAXNUM 70, 105, 123 
MAXNUM, defined 70 
MIDAS 336 
MIMD 1 
MIN . {QH,S,D) 91 
MIN 94-95, 124,201-203 
minicomputer 6 1. 
minimum integer value '70 
MINNUM 70, 105,201-203 
MINNUM, defined 70 
misalignment 26 . 

miscellaneous instructions 307 
MOD . {QH,s,D) 85 
MOD 18, 85-86, 235-236 
MODE field, in operand dt?scriptor 22 
modifer, in opcode 12 
modified 42 
MODIFIED, field in PTE 42 
modifier, in opcode 4 
MODL . {Q,H$) 86 

MODL 86 
MODLV . {QH,s) 86 
MODLV 86 
MODV . {QH.s,D) 85 
MODV 85 
monotonic 67, 133- 135 
MOV . {QH,S,D) . {QH,S,D) 166 
MOVCSF . {QH,S,D) 198 
MOVCSF 180, 198-199 
MOVCSS . {QH,S,D) 198 
MOVCSS 180, 198 
move instructions 165 
MOVF 104-105, 107-109 
MOVF, defined 104 
MOVHWR . {N,c) . (1,) 183 
MOVHWR 183 
M O V M Q  . ( 2 .. 32.) 167 
MOVMQ 167-168 
MOVMS . { 2 .. 32 ) 168 
MOVMS 168, 256, 260 
MOVP . {P,R) . (P,R,A) 176 
MOVP 28, 30, 45, 48-49, 56-57, 140, 142, 

144-145, 148, 150, 152-153, 157, 174, 
176-177, 227,231,252 

MOVPHY 181-182,273 
MSG 329 
MULT . (QH,S,D) 77 
MULT 24,27, 7'7, 98, 185 
multiprocessor 1, 61, 180, 198, 272 
multiprocessor, 110 memories in 6 1 
rnultiprugral~l~~~ir~g 97, 294 
MULTL . {QH,S) 78 
MULTL 78 
MUNF 104-105, 107-109, 122-123 
M[x12 
NAL (logical condition), defined 184 
NAN 104-105, 107-109, 122-123, 133-134 
NAN, defined 104 
NAND . {QH,S,D) 2 13 
NAND 213 
NEG . {QH,S,D) 92 
NEG 71, 79, 92, 122,206, 225 
NEQ(arithmetic condition), defined 184 



NEWPST 294 
NEWUS 298 
NEXT 35, 131, 142, 167-168, 188,200,219, 

240,242,255,267, 343 
NEXT() notation 35 
nextTask 285 
NI 245 
NIL tag, defined 45 
NO-FAULT 54, 57 
NON (logical condition), defined 184 
NONEXISTENT-MEMORY 59 
NOP 173-174, 308 
NOPs 308 
NOR . {QH,S,D) 214 
NOR 214 
N O T  . (Q,H,S,D) 206 
N O T  116,206, 314, 323-324 
not a number, floating point 104, 107 
NULL 45 
OD, defined 12 
offset, in long operand addressing 29 
offset, role in segment bounds checking 40 
opcode, format of 12 
opcode, in FASM 323 
OPERANDBOTBEQUIRED 14,58 
operand descriptor, defined 12 
operand descriptor, fields of 22 
operand descriptors 22 
operand descriptors, unused 14 
operands, illegal formats of 36 
operands, order of storing into 14, 16 
operands, prefetching of 65 
OR . (QI I,S,D) 2 1 o 
O R  79, 198,204,208, 2 10-2 12, 3 14 
ORCT . (QH,s,D) 212 
ORCT 211-212 ' 

ORCTV 212 
ORG 152-153 
ORTC . {QH,s,D) 2 1 1 
ORTC 211-212 
ORTCV 2 1 1 
OUT-OFBOUNDS 40, 58, 60, 178, 240- 

242,256,258-26 1,263,265 

overflow, floating point 107 
overflow, in integer arithmetic 70 
overlap 21,37-38,46,91, 119-121,131,167- 

168, 170,22 1,259 
overrun 61 
OVF, defined 104 
PAGE-FAULT 42, 57,60, 178 
page table entries 41-43, 343 
page table entry, format of 42 
page table entry, used in address translation 

3 7 
paged 37 
PAGENO, field in PTE 42 
PARAMETERAREA 52-53, 55,60 
parainel.er area, fflr trap nr Interr1.1pt 52 
parenthesized macro argument 340 
parenthesized macro call arguments, con- 

tinuation 340 
parenthesized macro parameter, semantics 

340 
parenthesized macro parameter, syntax 337 
parity 225 
P C J E X T  J N S T R  8,52,6'7,250,252-254, 

258,267 
P C B E X T  JNSTR,  defined 8 
PC, defined 8 
PC-relative 19'1 
PDP-10 106, 311, 336 
PDP-10 rounding modes 106 
performance evaluation instructions 302 
PHYSICALADDRESS 5, 18 1 
YHY SICALADDRESSO notation 5 
physical address spait 5 
pipeline 67 
pipelined 1, 155 
pipelining 200 
POINTER 29-30 
pointer validation 44, 48-49, 53, 59, 178, 

238, 343 
pointer, byte, format of 228 
pointer, format of 44 
pointer, meaning of tags 44 
pointer, self-relative 176 



pointer-and-index 249 
pointy brackets, in FASM 315 
POP . {UP,DN) . {QH,S,D) 241 
P O P  241 
POSITION, field in byte pointer 228 
PR bit in JOP format 20 
PR bit, in FASM 325 
precedences 3 14 
prefetched 65 
prefetches 171, 173-174, 180, 272 
P R E V J P  244,247 
PREVJP, within stack frame 244 
PRINTV 329-330, 334 
PRINTX 334 
PRIORITY 9,61-62 
prlurity, in PROCESSOR-ETATUS 9 
priority, role in interrupts 61 
PRIVILEGE-VIOLATION 6, 58 
privilege 50, 53 
privileged 5-6, 9,44, 50, 52, 58-59,249-250, 

257,281-282, 302 
PRIVILEGED 9,44 
PRIVILEGED bit in PROCESSORSTATUS 

9 
privileged mode 5 
privileges 48 
PROCJD 310 
procedures, calling with CALLX 248 
PROCESSORSTATUS 9,44, 51-53, 58- 

59, 81-62, 65, 67, 213, 218-250, 257, 
265,285,287-288, 293-294 

processor priority, in PROCESSOR-STATUS 
9 

processor status 9, 284, 293 
processor status register 9 
program counter 6-8, 13, 18-20,24-26,267, 

343 
program counter, defined 8 
program counter, dual identity of R3  6 
propagating floating point exceptions 108 
pseudo-op 3 14-3 15, 3 17, 326-328, 330-33 1, 

333-336, 338 

pseudo-ops 313,316-318,327-329,331,333, 
335, 345 

pseudoregister 6-7, 25-32, 263, 265, 320 
pseudoregister addressing mode 26 
pseudoregister mode, restriction on registers 

for 6 
pseudoregisters 26 
PTA, field in STE 41 
PTE 37-39,42-43,4'7, 57,67 
PTE, format of 42 
PTE, used in address translation 37 
PTEs 61 
PUSH . {UP,DN) . {QH,s,D) 240 
PUSH 240,242, 338 
PUSHADR . {uP,DN) 242 
PUSHADR 3, 56,242 
QPART 155-156 
quicksort 155-1 57 
QUICKSORT 156- 157 
QUO . (QH,S,D) 79 
QUO 79,83,87, 185 
QUO2 . {QH,S,D) 81 
QUO2 81, 185,217 
QUO2L . {QH,S) 82 
QUO2L 82 
QU02LV. {QH,S) 82 
QUOZLV 82 
QUO2V . {QH,S,D) 81 
QUO2V 81 
QUOL . {Q,H,s) 80 
QUOL 80,84,88 
QUOLV . {QH,S) 80 
QUOLV 80 
QUOTE 334, 338 , 
QUOTE, in FASM 338 
quotient-remainder 87-88, 100- 10 1 
QUOV . (QH,S,D} 79 
QUOV 79 
QUUX 215-216 
R16 20 
R3 6-7,2 1,24-27,29,34, 147- 149,182,198- 

199,292, 322 
R3, dual identity with program counter 6 



radians 136- 139 
RADIX 87, 315, 334 
RB, field in STE 41 
RCTR 303 
READ-PERMIT 43, 61,280, 31 3 
READSERMIT access mode 43 
read bracket 4 1 
read bracket, field in STE 41 
real-time counters 302 
reciprocal 1 16- 1 1 7 
RECTR 305 
recursive traps 60, 343 
KEG field, in operand descriptor 22 
REGISTERXILE 9,287-288 
REGISTERSAVEAREA 52,263, 265 
register file 6, 8-10, 51, 59, 255-256, 265, 

287-292 
register file manipulating instructions 284 
register file, in PROCESSOR-STATUS 9 
register files 6 
register save area, for trap or interrupt 52 
register-based-indexed 32 
register-based-indexed addressing 32 
registers, addressing mode for '25 
relative jump 20 
relative polnter 176 
relative- JOP 3 13 
relative-jump 22 
RELOCA, in FASM 327 
relocatable assembly 327 
REM . {Q,H,S,D} 83. 
REM '70,83,85-8'7 
REML . {(LH,s) 84 
REML 84,86, 88 
REMLV . {QH,s) 84 
REMLV 84 
REMV . {Q,H,s,D} 83 
REMV 83 
REPEAT 334 
RESERVEDADDRESS-MODE 36,58,308 
reserved tag, defined 45 
R E T A D D R  244-245,247,252-253,256 
RETADDR,  within stack frame 245 

RET 157,243-244, 26 1 
RETFS . {RA) 265 
RETFS 56, 58,60,67,243,. 265-266 , 

RETFS, Mark 11. implementation limit 67 
RETGATE 243-244, 256-257 
RETSR 87, 153,243-244,260 
RETUS . {RA) 263 
RETUS 56,243,263 
RFLT2 . (H,s,D) 145 
RFLT2 145 
RIEN 276 
RINGALARM-TRAP 9, 59 
RINGALARM 9 
RING 249 
ring alarm 9 
ring of execution 8 
ring of execution, defined 45 
ring tag, defined 45-46 
RING, field within gate pointer 249 
.rings, role in protection mechanisms 44 
rings, use in address translation 37 
RIPND 278 
RMW 180, 198 
RNDMODE 11, 105-106, llS, 121, 126 

ROT . {LF,RT) . {QH,S,D) 222 
ROT 222 
rotate instructions 205 
ROTV . {LF,RT) . {QH,s,D) 222 
ROTV 222 
rounding modes 105-106. 1 19, 126, 344 
rounding modes, floating point 106 
rounding, inexact 67 
routine linkage instructions 243 
RPHYS 182 
RREG 291 
RREGFILE 289 
RRFILE 287 
RRNDMD 105, 126 
RTA, defined 6 
RTA 1, defined 6 
RTB, defined 6 
RTB 1, defined 6 
RTN 338 



RUS 14,295. 
R[xl2 
SAIL 313-314. 
sao 27, 34 
save area for traps and interrupts 52 
save area, for gate crossing 249 
save area, for JSR instruction 258 
save area, using stack frame 244 
SECOND() notation 35 
segment 5, 10, 26,'37-42, 44, 51, 57-58, 67, 

141, 176, 179, 238-242, 247, 249, 256, 
,258-261,263,265, '3 12, 327 

segment bounds checking, Mark IIA excep- 
tion 67 

segment size, field in STE 42 
segmentation 37, 40-4 1, 343 
SEGMENTITOJAULT 41, 57,60 
segmentito 37-43,46-47, 57,250, 343 
segmentito table entries 41 ' 

segmentito table entry, used in address trans- 
lation 37 

segmentito, defined 37 
segmentitoi 37,' 40; 42 ' 

SEGSIZE 179 
self-relative 44 
self-relative pointer 176 , 
semicolon 312, 3 19, 339-340 
SEXCH . {QH,S,D) 172 

. . 
SEXCH 156, 1%? 
SF.CP, within stack frame 244 
SF.EP, within stack frame 244 
SF.FLAGS, within stack frdme 245 
SF.PREVJP,  within stack frame 244 
SF.RETADDR, within stack frame 245 
SHF . {LF,RT) . (QH,s,D) 218 
SHF 79, 152-153,2 17-2i8,220-221 
SHFA . {LF,RT) . {Q,H,s,D) 21 7 
SHFA 12, 56, 81,'156, 205. 217, 220 
SHFAV . {LF,RT) . {Q,H,S,D) 217 
SHFAV 217 
SHFV . {LF,RT) . {Q,H,S,D) 218 
SHFV 218 

. shift instructions 205 

shift, in long operand addressing 29 
SHORTDISP  322-323 
SHORTSHIFT 322-323 
short operand variables 25 
short operand, defined 12 
SIGNXXTEND 3 
SIGNXXTENDO notation 3 
SIGN, floating point 102 
signed integer arithmetic 70 
SIGNED() notation 2 
singlequote 34 1 
SIZE, field in STE 42 
SIZEREG, defined 21 
SJMP 18, 190, 197, 325 
skip format 19 
skip instructions 184 
SKP . {GTR,EQL,GEQLSS,NEQLEQ 

NON,ALL,ANY,NAL) . {QH,S,D) 
185 

SKP 19,26, 87, 95, 126, 184-185, 203-204, 
925, 932 

SKP, in FASM 325 
SLR . { RO .. R31 ) 173 
SLR 173, 323 
SLRADR . ( RO .. R31 ) 174 
SLRADR 174 
SNAIL 312. 
SO, defined 12 
soft traps 50-51, 53-54, 343 
soft traps, defined 50 
S O P  format 19 
SOP, in FASM 325 
sorting 155, 157 
SQRT 133 
square brackets, in FASM 316 
square root 133, 141 
SRO, SR I, SR2, defined 21 
stable 106, 119 
stable rounding mode 106 
STACK-OVERFLOW 58, 238-241, 258- 

259 
STACK-OVERLOW 242 
stack frame convention 244 



stack frame, pointers for 7 
stack limit, defined 238 
stack manipulation instructions 238 
stack overflow, during trap or interrupt 6C 
stack pointer, defined 238 
stack pointerllimit, defined 7 
Stanford 31 1, 313, 336 
statements, in FASM 313 
status register instructions 284 
STE 38-39, 41,43, 46-47, 5'1,61, 250 
STE, format of 41 
STE, used in address translation 37 
STEs 37,61 
sticky, defined '70 
STRCMP . (RTA,RTB) 203 
STRCMP 203 
structures 49 
SUB . {Q,H,s,D) 75 
SUB 16, 56, 71, 75-76, 90, 148, 150, 156, 

208, 324-325 
SUBC . (QH,S,D) 76 
SUBC 7 1, 76 
SUBCV . (QH,S,D) 76 
SUBCV 71, 76 . 
SUBV . (QH,S,D) 75 
SUBV 16, 71, 75,227 
SWITCH 58,284-285 

h 

SWPDC . (V,P) . (U,UK) 282 
S W YISC 282 
SWPDM 283 
s w P I e  . {v,P) 281 
SWPIC 281 
SWPIM 283 
SWs 246 
symbol, attributes 316 
symbol, data value 9 16 
symbol, definition of 319 
symbol, external value 316 
symbol, half-killed 3 16, 3 19 
symbol, instruction value 3 16 
syn~lrul, rllacru llalile 316 
symbol, redefinition of 3 19 
symbol, register 3 16 

T field, in T O P  format 15 
TABLE-4 187 
TAG field of pointer, meaning of 44 
TEMP 1 173- 174 
TEMP2 173 
term, in FASM 314 
TERMIN 334, 336-338, 342 
TERMINs 338 
test-and-set 180 
text constant 3 17 
three address format 15 
three-operand 6, 324 
TMODE, field in trap parameter descriptor 

singleword 55 
T O P  format 15 
TOP, in FASM 324 
TRACE-ENABLE 265 
T R A  CEXNB 9- 10, 65-66 
TRACE-.ENB bit in PROCESSOR-STATUt 

9 
TRACESEND 9-10, 58-59, 65-66,265 
TRACESEND bit in PROCESSORSTATU! 

10 
T R A  CE-PENDING 67 
TRACE-TRAP 58,65 
trace pending, trap for illegal case 58 
trace traps, role in instruction execution 65 
Ll .a~i~~g,  Lils ill PROCE330R-STATUS 9 
TRANS . {QH,S,D) . (QH,Y,U) Y 1 

TRANS 91, 166,200 
translation of 110 memory to main memory 

62 
TRANSP . {H,s,D) 147 
TRANSP 146- 148 
transpose 146- 148, 153 
trap descriptor block pointer 50 
Lrap pat arnelur descriptor. singleword, defined 

55 
trap vector format 51 
traps, instructions for 243 
traps, role in instruction execution 65 
traps, save area for 52 
T R P S A R M B E S C S W  51, 55, 262, 264 



$6 {~'s'H) ' SBVA 
OH 3sasa 

OH {a's'~) - {I~O'XS) '3sa~~ 
IFI sIaGA 

If1 {~'s'H) ' {I do't~s) ' SIaEA 
- 

051 3sau 
OH {a's'~) ' {I do'as) 'LeSsat~ 

151 sIau 
I +I {a's'~) ' {I do'as) - sIatA 

091 {~'s'H) . {IdO'?IS) - ,,X-A,,A 
091 {u's'H) . {ldOe?IS) ' ,,AX,,A 

091 {~'s'H) - {I dO'?IS) . ,,A-X,,A 
f 91 {~'s'H) ' {I doe?Is) ' ,,ZA+X,,A 

091 {~'s'H) ' {I ~O'XS) ' ,,A+X,,A 
. 191 {~'s'H) ' {ld0'?I~} ' ,,AS+X,,A 

191 {~'s'H) ' {I ~O'XS) ' ,,X-AS,,A 
191 {aeS'H) . {I ~O'XS) * ,,A-XS,,A 

191 {~'s'H) ' {I d0'tlS) ' ,,AS-XS,,A 
191 {~'s'H) ' {I~O"~S) ' ,,A+XS,,A 

191 {~'s'H) ' {I ~o'XS)" ,,AS+XS,,A 
.69 1 {~'s'H) ' ,,XS,, A 

291 {~'s'H) ' (.ld0'?IS) ,,AX-S,,A 
69 I {~'s'H) . ,,X-S,,A 

191 {CI'S'H) - {I~O'XS) ' ,,AX+S,,A 
691 {~'s'H) ' ,,X+S,,A 

E9I {CI'S'H) ' ,,Xli+S,,A 

. , 211 H3XBSn 
21 I {aas'H%) ' H3X3Sn 

paurJap '%el rasn 
01 SUO!l 

-da3xa raSa~u! ur a[or 'ia~sflar snlels rasn . 

01 ralsflar snlws rasn 
9 apow rasn 

OOE-f6Z '982 '592 '~92 '492 
'09Z-852 'fEI-EEI '921 'I21 '61 1 'LO1 
'sol '01 '69 'ES-19 '51 '01 S~LVLSX~S~ 

tf 3~d ur PI~Y 'a3sn 
862 y3ElS %UIMOJ%-pn~dn 

Z~Z-~EZ' '29 'gz '1 %u!mor%-pnmdn 
9 16 ase3-raddn 

18 punomun 
$1 sro~d!r3sap puerado pasnun 

ES~ L-I~SXI~~~IIOLSN~ 

, uo!le~ou O~~N~ISN~ 
16 3pawql!re na%alu! pau%!sun 

€9 '6 '9-9 paSai!a!rdun 

OI sn.I.vLs 
'?IOSS330Xd u1119'3aOM-CI3ddVMNfl 

01-6 3aONa3ddVMNn 
f 01 PaulJaP 'dNn 

601-101 'q01-$01 dNn 
40 1 lulod Burleo~ 'mo~rapun 

LSZ-992 '9~2 '++z-E+z TTV~N~ 
OfE Pa3uelequn 

69 1 asaaaar-~fq-tsn 

66 -Innwn 
66 {s'HB) - TL-I~M~ 

86 LTnMn 
86 {a's',~%} * unmn , . 

001 Allran 
001 {~'s'H%) - AhIan 

I0 I ATAICIn 
I 01 {s'HB) - AmIan 

IOI m~an 
ior {s'HB} uIan 

001 AIan 
001 {a's'~%) ' AIan 

002 dSdM3n 
002 {~'s'H%) . m31 

%3~'~~1%X3'17)3't1~3) ' dSdM3n 
6ZE LXL 

29 1 '/+I -gf~ [euotsuaw!p-oml 
.f 01 luawa[dwo3s,o~1 

. . 
OL 

3~3awqlr.1~ raSalu! u! pasn 'luahaIdwo, s,oma 
lewroj ssarppe om) 

6g olr~uaw%ag~ 
99 UJsl~q3aw dell dTSdXL 

' EfE 
'592-292 'Sf2 '69 '99-99 'E9-ZS '09 d1SdX.L 

292 { E9 " 0 ) ' d1SdXL 
9s wsyueq3aw 'dell BXX~)IJ, 

E fE '9 97, 
-592 'GfZ '18 '69 '99-99 '09 'Lf '3~3dXJ, 

f92 { $9 " 0 ) ' 3X3dXL 
99 P~~!J~P"MS-~S~~ZIVEIV~~XL 



VABS 93 
VALID, field in PTE 42 
VALID, field in STE 41 
validation level of pointer 48 
valida.tion level, in addressing 46 
validation of addressing 46 
validation of pointers 48 
VALIDP 48-49, 178 
VALIDP, use of 48 
value-returning 314, 3 18, 345 
VAND . {SR,OP 1) . {H,S,D) 207 
VAND 207 
VANDCT . {SR,OP~) . {H,s,D) 209 
VANlXT ZO9 
VANDTC . {SR,OP 1) . {H,S,D) 208 
VANDTC 208 
variable-Lac 20 
variable-base addressing mode 28 
variables, combines long and short operand 

29 
variables, long operand 27 
variables, short operand 25 
VBITCNT . {H,S,D) 225 
VBITCNT 225 
VC"S+RXW . (H,s) 163 
VCt'XY" . {SR,OPI) . {H,S) 160 
VCMAG . {H,S) 128 
VCMAG 128 
VDOT . (H,s,D) 145 
VDOT 143 
VDSHF . {LF,RT) 221 
VDSHF 2 19-22 1 
vector instructions 2 1 
vector, defined 21 
vector, for traps and interrupts 50 
vector, size register for 2 1 
vectors, using constants as 35 
VEQV . {SR,OPI). (H,S,D) 216 
VEQV 216 
VEXCH . {QH,S,D) 171 
VEXCH 171 
VFWS+RX" . (H,S,D) 163 
V F " S + X " . { H , S , D ) ~ ~ ~  - 

VF"S+XY" . {SR,OP I )  . {H,s,D) 16 1 
VF'IS-X" . {H,s,D) 159 
VFWS-XY" . {sR,OP 1) . {H,S,D) 162 . 
VFllSX" . {H,S,D) 159 
VFVSX+SY" . {sR,OP 1) . {H,s,D) 161 
VF"SX+YW . {SR,OPI) . {H,s,D) 161 
VFWSX-SY" . {sR,OP I )  . {H,S,D) 16 1 
VFWSX-Y" . {SR,OP I )  . (H,S,D) 16 1 
VF8'SY-Xu' . {SR,OP 1) . {H,s,D) 16 1 
VFWX+SY" . {SR,OPI) . {H,s,D) 161 
VF"X+YW . {sR,oPI). {H,S,D) 160 
VF"X+YZ" . {sR,oPI) . (H,S,D) 164 
VF1'X-Y" . {SR,OP 1) . {H,S,I)) I60 
VFWXY" , {SR,OPI] . (I-I,C,D) 160 
VF1'Y-X" . {SR,OP 1) . {H,s,D) 160 
VFPDIS . {SR,OP 1) . {H,s,D) 141 
VFZDIS 67, 141 
VF2DSQ. (SR,OP 1) . {H,s,D) 140 
VF2DSQ 140, 142 
VFSDIS . {sR,oPI). {H,s,D) 141 
VF3DIS 67, 141 
VF3DSQ. (SR,OP 1) . {H,S,D) 140 
VF3DSQ 140 
VFABS . {H,S,D) 123 
VFABS 123 
VFATAN 139 
VFATANV . {sR,OPI). {H,S,D) 139 
VFATANV 139 
VFCWS i RX" . {H,s) 163 
VFC9'XY" . {SR,OP 1) . {H,S) 160 
VFCMAG . {H,S) 128 
VFCMAG 67, 128 
VFCOS , (H,S,D) 137 
VFCOS 13'7 
VFDIV . {SR,OP 1) . {H,s,D) 1 15 

VFDIV 1 15 
VFnOT {H,s,D) 143 
VFDOT 143, 149 
VFEXP . {H,s,D) 135 
VFEXP 135 
VFIX , {H,s,D) . (H,s ,~)  119 
VFIX 119 
VFLOAT . {H,s,D) . (QH,S,D) 120 



VFLOAT 120 
VFLOG . {H,s,D) 134 
VFLOG 134 
VFMAX . {SR,oPl) . {H,S,D) 125 
VFMAX 125 
VFMIN . {SR,OP I )  . {H,S,D) 124 
VFMIN 124 
VFNEG . {H,S,D) 122 
VFNEG 122 
VFSIN . {H,s,D) 136 
VFSIN 136 
'VFSQRT ; {H,s,D) 133 
VFSQRT 67, 133 
VFTRANS . {H,s,D) .{H,S,D) 121 
VFTRANS 121 
VINI . (QH,S,D) 169 
VINI 169 
VIOR . (B,QH,S) 270 
VIOR 270 
VIOW . {B,QH,s) 27 1 
VIOW 271 
virtual address space 5 
virtual address translation 3'7 
virtual machine mode 9 
virtual-to-physical 10, 39, 61, 280, 284 
VMAX . {SR,OP 1) . {H,s,D) 95 
VMAX 95 
VMIN . {SR,OP 1) . {H,S,D) 94 
VMIN 94 
VMM-TRAP 59 
VMM 9 
VNA Nn . {sR,OP 1) . {H.S,R) 2 13 
VNAND 213 
VNEG . {H,SD) 92 
VNEG 92 
VNOR . {SR,OPl) . {H,S,D) 214 
VNOR 214 
VNOT . {H,S,D) 206 
VNOT 206 
VOR . (SR,OP 1) . {H,s,D) 210 
VOR 210 

. VORCT . {SR,OP 1) . {H,s.D~ 212 
VORCT 212 

VORTC . (SR,OP 1) ., {H,s,D],s . .. 1 1 
VORTC 2 1 1 . . 

VPIOR . {B,QH,S) 273 
$ .  . . . . 

VPIOR 273 
VPIOW . {B,QH,S) 273. 
VPIOW 273 
VREV . {H,s,D) 1'10 , 

VREV 170 
VS 21, 159,217-218,221 . 

VSHF . (LF,RT) . {H,S,D): 218 . : . 
VSHF 218 
VSHFA . {LF,RT) . { H , s , ~  21 7 . . t  - 

VSHFA 2 17 . . , .  , . . ?  . . . . ,  . 

VSP 26 
VSS 163 
VTRANS . {QH,S,D) . {QH,s,D) 91 
VTRANS 35,9 1, 170,221 
vxon . .[SR,QP 1). , ( w , s , ~ )  21 e 
VXOR 215 
WAIT 275, 324 
WAITS 3 1 1. 
WASJMP 286 
WB, field in STE 41 
WCTR 304 
WECTR 306 
WFS JMP 294 
WIEN 277 
WIPND 59,279 
WORD 208,2 1 1,235 . 

WPHYS 182 
WREG 292 
WREGFILE 290 
WRFILE 288 
WRITESERMIT 43,61,274,280, 313 
WRITESERMIT access mode 43 
write bracket 4 1 
write bracket, in STE 41 
write.-.only 43 
WRNDMD 105, 119, 126 
wrong-branch 6'1 
WTBP 301 
WTDBP 243, 301 
WUS JMP 298 



X field, in operand descriptor 22 
XLIST 333, 335 . 

XMLIST 333, 335 
XOP format 14 
XOP, in FASM 324 
XOR . { Q H ~ D )  2 15 
XOR 79, 215,225, 314 
XRTN 338 
XSPACE 313, 327, 335 
XSPACE, in FASM 327 
ZDIV 297 
ZEROXXTEND 2,25 
ZERO_EXTEND() notation 2 
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1 A new approa,ch to emulation 
Given the .task -of emulating an existing machine such as the ANIUYK-7 on a microprogrammable 
processor such as the S-1 Mark IIA, the conventional approach is to write microcode to perform 
each instruction in the UYK-7 repertoire. Though possible, this approach presents significant 
drawbacks: . 

The underlying microarchitecture used to implement the S-1 native mode instruction set 
may change from one implementation to the next, even though the native mode instruction 
set remains exactly the same. Such a change would render a microcoded UYK-'I emulation 
obsolete; 

Writing and debugging microcode is widely appreciated to be more difficult, 
Hme-consuming and unreliable than programming in a high-level language or assembly 
language, and the result is harder to read, understand or modify. 

To  avoid these drawbacks, the S-1 Mark IIA emulation of the UYK-7 instruction set uses S-1 
native mode binary machine.code instead of microcode. A "post-compiler"--a novel type of software 
construct written in . a high level. language with some assembly language subroutines-transforms 
UYK-'I binary machine code into S-1 binary machine code, typically while also expressing a loader 
hnction. This transubstantiated UYK-'7 code then executes in a special runtime environment 
which provides a high-level emulation of UYK-7 inputloutput and protection hardware. 

Though the post-compiler typically emits several S-1 instructions while transubstantiating each 
UYK-7 instruction, the resulting emulation will execute a factor .of two to four faster than the 
standard UYK-7 implementation, because it does make optimum use of the pipelined hardware in 
the S-1 processor. 

Upon first encountering the post-compiler concept, one might protest that a machine-coded "objectn 
emulation would necessarily execute more slowly than i b  microcoded counterpart, and .probably 
much more so. In the case of a pipelined processor such as the S-1 system, this belief is largely 
falIaciout The relevant measure of the throughput of an emulator is the number of cycles needed 
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for it to execute a given block of emulated code, not the number of instructions to be fetched in the 
process. 

An S-1 processor such as the Mark IIA must execute various sequences of operations for some 
number of microcycles in order to emulate scalar instructions such as those of the UYK-7; S-1 
native mode almost always specifies such sequences as efficiently as possible. Furthermore, as long 
as an S-1 processor's "parsing" of the emulation specification generated by the post-compiler does 
not require more than this former number of cycles, there will be no penalty for using S-1 native 
mode as the input language, as the parsing and execution pmcesses proceed simultaneously in 
different portions of the processor. S-1 processors are so designed that this is generally true; 
operand calculation and operation execution are more cycle-intensive than are the 
instruction-fetching and -decoding processes. . . 

.Of' course, it is not always true that gains cannot be made through use' of microcode. For slightly 
enhanced post-compiler performance, one may, for instance, 'fine-tune' b y  very selectively 
microcoding certain frequently-used processes corresponding to executing particular UYK-7 
instructions or calculating certain UYK-7 operands. The frequent use of an extensive sequence of 
S-1 native mode instructions might also tempt one to substitute for convenience and enhanced 
readability of the resulting code a single new S-1 instruction, whose microcoded expression might 
execute slightly faster than the instruction sequence it replaced. 3 
The magnitude of the principal drawback of the post-compiler approach to the emulation problem I 

depends on how similar the emulated and emulating architectures are. The biggest single 
complication occurs if the machine to be emulated permits code to modify itself, as the UYK-7 
indeed does. In such cases, the emulation process must be able to detect and 'repair' the 
ttansubstantbated UYK-7 code as each code-modifying instruction is executed; the S-1 Mark IIA 
post-compiler for the UYK-7 therefore does so. 

Other problems arise from the use of one's complement arithmetic in the UYK-7, rather than the 
two's complement arithmetic used in the S-1, in executing a UYK-7 instruction which causes the 
next instruction to repeat, and from a UYK-'7 instruction which executes a single instruction located 
at a remote address. The S-1 Mark 'IIA post-compiling emulator package for the UYK-7 
successfully addresses each of these complications. 



2 Implementation of the compiler 

2.1 Details of implementation 

The Mark 'IIA post-compiler for the UYK-7 is written in Pascal,.supplemented with small S-1 
assembly language routines for bit manipulation and for running the S-1 code generated by the 
post-compiler. The basic functions of its major modules are discussed below. 

A series of tables is used to correlate UYK-7 code with S-1 code. One table contains the starting 
address of the S-1 code corresponding to every UYK-7 half-word. If a UYK-7 half-word does not 
constitute an instruction because the preceding instruction occupies a full word, then a meaningless 
starting address is stored. Another table contains the length of the S-1 code sequence corresponding 
to each UYK-7 half-word. Again, if a UYK-7 half-word does not constitute an instruction, then a 
meaningless length is stored. 

To  satisfactorily address the problem of self-modifying code, the post-compiler stores in memory a 
amarked" copy of the original UYK-7 program, where each 32 bit UYK-7 word appears in the 32 
low order bits of a 36 bit S-1 singleword whose high order ("pure") bit is set. When the UYK-7 
program tries to modify itself, it will store a 32 bit value which is zero-extended to 36 bits, thus 
clearing the "pure" bit. The next time that instruction is to be executed, the sequence of S-1 code 
which emulates that instruction discovers the pure bit is not set, and calls the post-compiler to 
dynamically recompile the instruction and replace that code sequence with an updated one before 
the emulation proceeds. 

If, when the post-compiler is called to recompile a UYK-7 instruction which has been modified, the 
new S-1 code sequence does not fit in the area occupied by the outmoded one, a patch is generated. 
This is done by placing the new code sequence in a special patch area of the S-1 processor's 
memory, followed by a jump back to the start of the S-1 code sequence representing the next 
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UYK-7 instruction. A jump to the start of the patch is inserted in place of the outmoded code 
sequence, and the two tables mentioned above modified to contain the new starting address and 
length of the S-1 code sequence. This appkach vigorously exploits the fact that evenminimal S-1 
memory units have several dozen times the storage capacity of the maximum memory complement of 
a UYK-7. 

The UYK-7 has three register sets of eight registers each: accumulators, index registers, and base 
registers. UYK-7 index register zero always contains zero. Because the UYK-'7 uses a 16 bit one's 
complement end-around carry adder for indexing, the S-1 indexing modes cannot be used to do 
UYK-7 indexing. In the UYK-7 architecture, the high order half of a doubleword is contained in 
the higher numbered word. (e.g., if accumulators 1 and 2 form a doubleword, accumulator 2 has the 
high order half.) This is backwards relative to the S-1 convention, so to make doubleword 
manipulation easier, the UYK-7 accumulators are stored in descending order in S-1 processors. 
Since the top bits of the UYK-7 base registers are very seldom used, only the bottom 16 bits of them 
are stored in S-1 registers, with the top bits being stored in main memory. Rased on all these 
cdnarainrs, the 32 S-1 r w t e r s  are allodated as follows: 

Purpose 
UYK-'I registers S5 through S'7 
UYK-7 PC 
S-1 RTA 
S- 1 RTA 1 
S-1 RTB 
S-1 RTBl 
Temporary 
UYK-7 registers A7 through A0 
Temporary' 
1.JYK-7 registers B 1 through 337 
UYK-7 registers SO through S t  
S-1 stack pointer 
S-1 stack limit 

The post-compiler does not presently attempt to compile all UYK-'7 instructions into S-1 native 
mode sequences. h general, it currently handles only CPU emulation, leaving other areas of the 
architecture (e.g., interrupt handling. inputloutput, anrl prnt~rtion) for higher level emulation, to bc 
implemented as determined by Navy interest in s~lch. This is consonant with Navy pnlicy rrgarding 
the NECS version of the UYK-7, which current specifications .state is to emulate only the UYK-7 
CPU and is to have a different I/O architecture. 



2.2 Problems posed by the UYK-7 architecture 

2.2 Problems posed by the UYK-'I architecture 

Unfortunately, the UYK-7 architecture is not a simple one. Several features of it require special 
attention to ensure theemulation preserves the meaning of theoriginal UYK-7 program. 

As mentioned earlier, perhaps the biggest problem faced by the post-compiler is that of 
self-madif)4ng UYK-7 code. Should the UYK-7 program try to modify itself once it has been 
compiled into an S-1 program, it will modify the UYK-7 copy and not the~s-1 copy. The emulation 
must propagate this change into the S-1 copy. The approach that has been implemented to handle 
this is the following. As stated previously, UYK-7 words are stored right justified and zero 
extended in S-1 memo;y. When a UYK-7 instruction is compiled into S-1 code, the high order bit 
of the S-1 memory word holding that UYK-7 instruction is .turned on. The S-1 code generated 
tests this bit (by-trapping if the word is negative) before actuallyexecuting the code for the UYK-7 
instruction. If the bit is no longer set, the trap reinvokes the post-compiler to recompile the code that 
has been modified. 

Two additional problems are posed by the UYK-'7 repeat instruction (RP), which executes the 
instruction following it a certain number of times (specified .by index .register 7) or until a certain 
condition is met (specified by the 'a" field in the instruction word). Some instructions are specified 
in the architecture as not being repeatable. The first problem is that it is not. clearly specified 
anywhere what happens when a repeat instruction attempts to repeat an "unrepeatable" instruction. 
The ANIUYK-7 Technical Description states on page 31. "If an attempt 'is made to repeat such an 
instruction [one which cannot be repeated], the repeat mode may clear with the repeated instruction 
executed once, or the repeat .mode may go to completion with unreliable results. from the repeated . . 
instruction." This is too vague for the post-compiler to implement. Instead, whenever the 
post-compiler finds a repeat instruction followed by an instruction which should not be repeated, the 
post-compiler prints a warning and generates code as if the repeat instruction were not present. 

The second problem with the.repeat instruction is that it is possible to jump to or execute remotely 
the instruction immediately following a repeat instruction. This means that the code generated for a 
repeat instruction must consist of the code to repeat the following instruction (in case the flow of 
control proceeds normally through the code), followed by a jump instruction, followed by the code to 
execute the following instruction by itself (in case a jump is made to it or it is executed remotely). In 
the normal case, a jump will be made around this second sequence of code. 

Yet another problem is posed by the execute remote instructions ("XR" and "XRL"). These are 
handled by use of the two tables mentioned earlier. Once the execute remote instruction has 
determined the address of the instruction it is to execute, it looks up the address in S-1 memory of 
the start of the S-1 code to execute the instruction using the first table and the length of the S-1 
eade using the second table. It then copies the S-1 code into a temporary area, places a jump back 
to the start of the next instruction to be executed after the copied code, and jumps to the copied 
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code. This works well even when the object of an execute instruction is another execute instruction, 
but not, unfortunately, when the object is a repeat instruction. When the object is a repeat 
instruction, the UYK-7 repeats the instruction following the XR or XRL, not the instruction 
following the RP. In this case the UYK-'I post-compiler must be reinvoked at run time to compile 
code for the repeat instruction. 

Finally, special sequences of instructions are generated to perform one's complement end-around 
carry arithmetic on the two's complement architecture of the S-1. 

2.3 Preparing input for the post-compiler 

The post-compiler operates on files with the extension ".BOSH. These files contain UYK-7 core 
images in octal represented as strings' of ASCII digits. ASCII files are used because the current S-1 
implementation of Pascal cannot read binary files. These files have one octal number per line. Any 
line may have a comment consisting of non-numeric ASCII characters before or after the number. 
The files consist of eight numbers followed by up to 8 blocks of data The first eight numbers 
specify into which UYK-7 S register to load the starting address of the corresponding block If not 
all eight blocks are present, the corresponding S register numbers at the beginning are ignored. The 
format of a block is: 

Starting address (1  word) 
N-1, where N is the number of data words in the block (1 word) 
Data (N words) 
Checksum (1 word) 

These *.BOSn files can be generated in one of two ways. On the SAIL computer system at Stanford 
University, programs called TD.FAI[UYK,SlI and TDS.FAf[UYK,Sll read 556 and 800 bpi, 7 
track UYK-7 boot tapes respectively, creating a binary file called UUYK.BO0". (".BOO" is the 
suffix for standard U,YK-7 boot files.) These files can be converted to ".BO8" files by a program 
called BOOB08.PAS[UYK,S11B which leaves eight commented but otherwise blank lines at the 
beginning of each file on which the S register numbers should be inserted. 

The second way to create ".B0Sn files is to use the macro facility of the FASM assembler .to 
translate UYK-7 assembly language into the corresponding octal numbers represented as strings of 
ASCII digits. The  file UYKMAC.SlIUYK,SlI provides suitable macros, documentation, and 
ex arnples. 
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If desired, the performance of the emulation could be improved further without abandoning the 
basic approach or the work done so far. 

., ,. 

. . .. ., :.- 
. . . . . .  3.1 ~m~rovements  to the post-com piler 

. . 

There are several areas in which the post-compiler itself could be irn$r&&d. 
. . 

If the post-compiler were to optimize out the .addition of'the. base registers at post-compile time 
assuming they stayed constant, the speed of the tbde generatd would 'increase because fewer S-1 
operations would be needed for each UYK-7 instruction. 

If self-modification occurs often in the program being compiled and each new code sequence 
requires more space than the previous sequence, then much $-1 memory will be wasted because the 
post-compiler places the new sequence in a patch area. It would be useful to have some way of 
reclaiming the S-1 memory used for the sequences that have been replaced. 

Since S-1 Pascal does not currently pack records, a full word is necessary for every piece of data 
mentioned above. This means that there is an overhead of four S-1 words per UYK-7 word, not 
counting the S-1 code generated. It is hoped that in the future, this can be improved through the 
use of packing. 

Finally, additional research can be done to make the code generated for the.repeat instruction fail in 
the same way that the repeat instruction fails on the real UYK-7 given various illegal instructions. 
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3.2 Additions to the Mark IIA instruction set 

This is a proposed list of modifications to the S-1 Mark IIA architecture which would be especially 
useful for the post-compiler. In almost all cases, these changes would increase the code density; in 
some cases, the speed of the code generated would also increase because the microcode 
implementation of some of the new instructions would.require fewer cycles than the macrocode that 
the post-compiler would have generated. 

Add ~ l l e  hrlluw111g histi'mctions. 

{UYKADD, UYKSUB, UYKSUBV) . {S, D} 
%lass: TOP One's cornplantrl~t arilh~~~etic 
side ~ffei ts :  CARRY ,"XNT-OVFL 

Perform one's complement 32 or 64 bit end-around borrow arithmetic (addition, subtraction, and 
T O P  reverse form subtraction. This is the type of arithmetic that the UYK-7 uses. These 
instructions would be needed in both single and double word precisions. The single word precision 
version would operate on 32 bit quantities stored right justified in S-1 singlewords. The high order 
four bits of the inputs need not be zero but the high order four bits of the result will be zero. 
CARRY and INT-OVFL would be computed assuming 32 bit precision. The doubleword precision 
version would operate on 64 bit qu-antities stored right justified in S-1 doublewords. The high order 
eight bits of the first word in the double word pair comprising each input need not be zero but the 
high order eight bits of the first word of the doubleword pair comprising the result will be zero. 
CARRY and INT-OVFL are computed assuming 64 bit precision. 

UYKPACK, UYKPACKV 
Class: XOP . . . . Pack a UYK-7 word 

Form into the double word .OP1 a quantity consisting of eight high order zero bits, followed by the 
low order 32 bits from {OP?, next(0F!2)), followed by the low order 32 bits from {next(C)P'L), UP'L). 
Note that the high order four bits of OP2 and next(OP2) need not be zero. Note that in this case 
the Y" does not indicate a T O P  reverse form and is not quite consistent, but it is not clear what 
else to call this instruction. These instructions are useful to convert UYK-7 doubleword data into a 
form that the S-1 can handle better. UYKPACKV is provided because the two singlewords may be 
stored in either order. 
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UYKUNPACK, UYKUNPACKV 
Class: XOP Unpack UYK-7 words 

Place bits 8-39 of OP2 in bits 4-31 of (OP1, next(OP1)) and bits 40-71 of OP2 in bits 4-31 of 
(next(0P l), O P  1). Note that bits 0-7 of OP2 need not be zero but ,bits 0-3 of O P  1 and next(OP1) 
will be zero. Once again, in this case the "V" does not indicate a T O P  reverse' form. These 
instructions are useful as the inverse of the UYKPACK and UYKPACKV instructions. 

{UYKSHF, UYKSHFV} . {LF, RT} . {S, D} , 

' 

Class: T O P  Logically shift a UYK-7 word 

Read the (!32,64} low order bits from the (singleword, doubleword) S1, logically shift them (left, 
right) by the amount specified by singleword S2, and deposit the result in the low order bits of 
DEST. UYKSHFV is the reverse form. Note that bits (0-3, 0-7) need not be zero in S 1 but will be 
zero in DEST. 

{UYKSHFA, UYKSHFAV . {s, D} . {LF, RT) 
Class: TOP ., Arithmetically shift a UYK-7 word 

Read the (32,641 low order bits of the (singleword, doubleword) S1, arithmetically shift them (left, 
right) by the amount specified by the singleword S2, and deposit the result in the low order bits of 
DEST. UYKSHFAV is the reverse form. Note that bits (0-3, 0-7) need not be zero in S 1 but will 
be zero in DEST. 

{UYKROT, UYKROTV) . {s, D} . {LF, RT) 
Class: T O P  Rotate a UYK-7 word 

Read the (32, 64) low, order bits from the (singleword, doubleword} S 1, rotate them (left, right) by 
the amount' specified by the singleword S2, and deposit the result in the low order bits of DEST. 
UYKROTV is the reverse form. Note that bits (0-3, 0-7) n d n o t  be zero in S l  but will be zero in 
DEST. 

UYKINDEX . . 

Class: T O P  Perform UYK-7 indexing arithmetic 

Store in DEST the sum of S1 and S2 using 16 bit one's complement end-around carry addition. No 
overflow detection is done. Note that bits 0-19 of S1 and S2 need not be zero but bits 0-19 of 
DEST will be zero. 
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UYKBASE 
Class: T O P  Perform UYK-7 base register arithmetic 

Store in DEST the sum of S1 and S2 using 18 bit addition without carry or overflow. Note that 
bits 0-17 of $1 and S:! need not be zero but bits 0-17 of DEST will be zero. This instruction is 
roughly equivalent to 

AD0.H reeult+2,opl,op2 
N0V.H.H resul  t , #8  . ; ~ l e a r  the '  top half ' . 

PIYKMOV 
Class: . XOP 32 BiL Muve 

Store in OP1 bits 4-31 from OP2, right justified and zero extended. This operation can be 
accomplished with the AND instruction but the UYKMOV instruction can be faster--since it is not 

.necessary to fetch the extended word consisting of the mask--and allows1 greater choice over the 
destination than AND (a T O P  format instruction) would. Notice that 'UYKMOV A,An clears just 
bits 0-3 of A. This is useful when a UYK-7 half-word or quarter-word is stored with a DIBYT, 
but it is necessary to clear the sign bit modification flag. 



4 Status of the emulation project 
The post-compiler has been written and is in the final stages of testing. 

a Runtime support for the post-compiler, which will provide interrupt handling, input/output, and 
protection, will be written later, 
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