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1 Executive Summary

The US Navy is one of the world’s largest users of digital computing equipment having a
procurement cost of at least $50,000, and is the single largest such computer customer in the
Department of Defense. Its projected acquisition plan for embedded computer systems during the
first half of the 80s contemplates the installation of over 10,000 such systems at an estimated cost of
several billions of dollars. This expenditure, though large, is dwarfed by the 85 billion dollars
which DoD is projected to spend during the next half-decade on computer software, the
near-majority of which will be spent by the Navy; the life-cycle costs of the 700,000+ lines of
software for a single large Navy weapons systems application (e.g., AEGIS) have been conservatively
estimated at most of a billion dollars.

The S-1 Project is dedicated to realizing potentially large improvements in the efficiency with which
such very large sums may be spent, so that greater military effectiveness may be secured earlier, and
with smaller expenditures.

The fundamental objectives of the S-1 Project’s work are first to enable the Navy to be able to
quickly, reliably and inexpensively evaluate at any time what is available from the state-of-the-art
in digital processing systems and what the relevance of such systems may be to Navy data processing
applications: and second to provide reference prototype systems to support possible competitive
procurement action leading to deployment of such systems.

The Project’s efforts might seem to be addressed only to the hardware aspects of DoD’s hundred
billion dollar computing-related expenditures through end-FY85, and thus to be of relatively low
leverage. However, many studies have documented the fact that use of efficient software generation
practices, such as the exclusive use of high-level, structured programming languages, can result in
software life-cycle cost savings of a factor of ten or more, relative to generating software in
low-level, unstructured fashions, such as assembly- or microcoding-type languages. Indeed,
extracting the maximum performance from its obsolescent computing plant has forced the Navy to
employ the latter approaches in the large majority of its software generation activities. Computing
hardware which supports the former type of more manpower- and cost-efficient software
engineering practices with minimum penalties in utilization efficiency can therefore favorably impact
the entire Navy computing cost structure. It is to the creation of such hardware, and the basic
software necessary to support its cost-efficient utilization, that the S-1 Project is directly oriented.

During FY 79, the Project’s third full year of effort, its focus remained directed on the development
of maximally cost-effective means for realizing digital data processing systems for use in Navy
applications environments, means which can endure into the indefinite future. The general strategy
which continues to be employed in pursuit of this capability is two-pronged:

® demonstration in fully operational prototypes of the maximally cost-effective hardware
base of such digital processing systems, realized in a fashion which is manifestly repeatable

as the underlying digital technology base continues to advance exponentially with time;

@ timely creation of a suite of system software which is sufficient to completely support a
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representative set of Navy digital computer-using applications employing this hardware
base, and which is readily extensible to support the remainder.

Demonstration of the maximally cost-effective hardware base of such systems and establishing that
the cost-effectiveness of this base may be maintained with the passage of time is at once the more
challenging and the more novel of the Project’s two major strategy components. Attainment of
maximum cost-effectiveness of a digital processor at any given time clearly places an exponential
premium on implementation in components which represent current technology, inasmuch as the
underlying semiconductor technology has advanced exponentially in cost-effectiveness over the past
two decades. ‘

Only slightly less obvious are the stiff premiums placed on efficient use of the best current
components to realize a complete but not excesstvely redundaul ur specialized set of data processing
éapabilities within a rapidly implemented processor' system. Such a system must feature high levels
of innovation in architectural conceprion, discipline in translation of the architecture into a detailed
design, and alacrity in the entire process of moving from conception through initial implementation
and evaluation to mass production of a proven prototype.

The type of digital data processing system on which the S-1 Project has focussed its attention is
essentially unrepresented in commercial computer systems, as it is basically a hybrid of an advanced
programmable signal processor and a general purpose, high-performance scientific (ie,
non-business-oriented) computer system. Moreover, S-1 systems emphasize reliability,
maintainability and security features to extents almost unparalleled in commercial computer
offerings. S-1 systems may therefore bé expected to find many nilitary applications, particularly
where uniquely great challenges are posed to the real-time reactivity, data throughput/performance,
reliability and secure natures of digital data processing systems.

The primary means chosen by the S-1 Project to be able to design and implement its processor
systems in the most current technology has been the creation of the S-1 Structured Computer-Aided
Logic Design (SCALD) System, a powerful aid for the computer system architect/designer which
substitutes for essentially all the junior engineer/draftsman-level effort ordinarily required to
support such work. Use of the SCALD System leaves the systemn architect free to specify the design
on a relatively abstract, highly conceptual level, and requires only a specification of the technologies
in which the design is to be implemented and general directions as to how its major sub-systems are
to be located in three-dimensional space when the design is realized In a systemn patkage.

The SCALD System supported the design and hardware implementation of the first S-1 pracessor
(the Mark I) in less than a year’s time, through a process requiring only two person-years of total
effort. FY79 has seen its major extension to support the design of the much more powerful S-1
Mark IIA processor, an endeavor which has been completed in ils major aspects during this past
year with less than three person-years of design effort, and is expected to culminate in the initial
operation of a pair of fully functional Mark IIA systems in mid-FY80, after the expenditure of
another two person-years of design and implementation endeavor. In contrast, the median time
hitherto required in industry to desigﬁ and implement a state-of-the-art digital processor has been
four to six years, involving the expenditure of 100-300 person-years of effort.
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One year typically elapses between the announcement of ‘a new digital processor-related technology
(eg., a new integrated circuit memory element) and its availability in quantities which can
reasonably support prototyping; another year passes before quantities adequate for mass production
become available at reasonable prices. It therefore seems clear. that both of the first two generations
of the S-1 SCALD System adequately satisfy the timely design-and-implementation criterion noted
above: one year to design and construct a state-of-the-art computer system, followed by a year for
evaluation prior to commitment to large scale production, tracks quite well the composite learning
curve of the underlying technologies. This time schedule was followed for the S-1 Mark I system
development, and has been tracked through most of the development of the substantially more
challenging Mark IIA system, as well. It therefore seems likely to be generally applicable to all
computing system developments which employ the SCALD System. This constitutes early
attainment of one of the Project’s basic goals: providing the Navy and all of its potential computer
system suppliers in the industrial sector with the means for realizing computers on much shorter and
smaller time, effort and cost scales than hitherto attainable.

The first generation SCALD System has been described in two papers presented at the 15th Annual
Design Automation Conference, and in last year’s Annual Report. It has been extensively presented
during FY79 to American industry, as well as to academic and Governmental audiences, including
presentations made at two day-long Project Open House sessions held at LLL, primarily for
American industry. One of these was devoted exclusively to SCALD for benefit of the
then-emerging VHSIC community, by Navy direction.

SCALD I has been transported to a large number of organizations in these communities which are
interested in using it to support large digital design efiorts. The second generation of SCALD
(SCALD 1I) is documented at high level in this Report, and will also be presented at the 17th
Annual Design Automation Conference. As a substantial generalization of SCALD 1, it is expected
to be received even more enthusiastically than SCALD I has been. It will be distributed with
extensive supporting documentation as soon as its correct end-to-end functioning is verified by its
successful use in creating the Project’s Mark IIA systems.

The high level of architectural innovation required to realize a new type of digital computing
system--one which stresses extremely powerful real-time signal processing capabilities
well-integrated into a powerful general-purpose processor--has been insured by the usual practice
of considering all these features which have been found useful in previous digital systems of both
types, supplemented by the rather unique means of formally soliciting detailed comments and
suggestions from a relatively large group of academic, industrial and Government computer
scientists. This process determined the basic architecture of the Project’s Mark I processor, as
reported in the end-FY77 Report. .

The existence and operational status of the Mark I processor stimulated a great deal more, and more
detailed, commentary on the S-1 architecture from the various segments of the American computer
science community during FY78 and FY79, commentary made with the knowledge that criticisms
meeting with widespread peer approval would be reflected in the uniquely plastic S-1 architecture
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literally overnight. As a result, the S-1 architecture has rapidly become one of the most extensively
studied and criticized in existence, and is without doubt the most extensively revised in the history
of computer technology; it has presumably benefitted greatly from this intensive and unusually
broad-based peer review process. :

A éomprehensive effort has been made during FY79 to integrate all such inputs consistent with
basic Project goals and Navy interests into the design of the Project’s second-generation (Mark IIA)
processor. The external peer review portion of this inter-generation enhancement process has been
similar to that employed in developing the architecture of the Project’s Mark I processor, and has
been greatly facilitated by the completely non-proprietary, non-commercial nature of the Pro ject.

The usoally very demanding task of maintaining the integrity of a computer architecture from one
generation to the next, work in which the Project has been substantially engaged during the past
two years, has been very substantially simplified by the Project’s taking the unprecedented step of
carrying all the microcode (firmware) of its processors in writeable memory. A uniquely plastic
processor also results from this basic architectural decision, which has been supported by major
advances in pertinent semiconductor technology during the past few years.

Highly efficient, and thus maximally cost-effective, use of an S-1 processor’s hardware then results
for any reasonable microcode specification by the processor’s user(s). In particular, S-1 processors
may be readily re-configured to quite efficiently emulate other computer architectures (particularly
those with word lengths of <= 36 bits), simply by replacihg the largely microcode-expressed S-1
native architecture with a microcoded expression of the architecture of the target machine.

The first step in this process, the creation of a macrocode-based simulator, was completed during
FY78 for the widely used (eg., by the DARPA community) PDP-10 computer systems and for the
central processing unit (CPU) of the Navy’s top-of-the-line general purpose processor, the
AN/UYK-7. These S-1 Mark I processor-based simulators have been used to flawlessly execute
substantial low-level (e.g., numeric object-time) programs for each of these computer systems. Such
extensive, production-type use of these simulators during this past year included support of the
Project’s design of the Mark IIA via routine execution of the Stanford University Drawing System
(which is written in 30,000 lines of PDP-10 assembly language) which serves as the graphics editor
of the SCALD System, and support of the creation of a true emulator of the AN/JUYK-7 CPU
architecture which, for example, executes a Navy tactical air warfare program significantly faster on
the Mark I processor than does a real UYK-7.

Discipline in realization of a processor architecture in a detailed, implementation-directed design is
facilitated by the nature of the SCALD System itself;, SCALD System usage discourages and
highlights designer-level architectural medifications, while supporting rapid design completion by a
small team of architect-designers who are able to communicate closely throughourt the design period.
SCALD System extensions realized during this past year and tested in supporting the detailed
design of the Mark IIA processor system have further enhanced these aspects of realizing an
architecture in hardware. '

The architecture of the S-1 family of processors and the rationale leading to it are described in
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detail in the S-1 Architecture section of this Report. The S-1 architecture is at once

® powerful, as is indicated by the 15 MIPS instruction-issuing rate of its second generation
expression, the Mark IIA processor, its essentially 3-address instruction format and-its
advanced arithmetic/logic unit, all of which support its ability to execute a typical mix of
Navy technical applications codes written in high level language comparably rapidly as
any general-purpose processor in existence, and far more rapidly than any present Navy
computer system;

® highly plastic, due to its completely writeable and very capacious microcode storage areas

and its sophisticated instruction-decode and operand-fetching unit, so that it can

_efficiently emulate a wide variety of other processors at the hardware level, thus affording

a very high level of protection to the Navy’s investment in architecture-specific software
written for other computers;

® readily extensible in stand-alone capabilities via-addition of specialized arithmetic modules
to its basic instruction-executing unit, and in system capabilities via interconnection to a
number of other such processors to constitute uniquely powerful and reliable
multi-processing systems;

® time-wise durable, by virtue of both its uniquely large address space, which permits
immediate exploitation of exponentially decreasing memory costs and associated Navy
applications demands for ever larger working memory space, and by its very broad
hardware capabilities and extremely readily extended instruction set, which facilitates
adaptation to changing Navy applications requirements; '

® cost-effective, in that it makes very efficient use of its major hardware endowments,
employs the most modern LSI components effectively, and adapts readily and in a
software-invisible fashion to further semiconductor technology base advances (e.g. VLSI
MOS memory elements, LSI ECL and CMOS logic modules).

Continued evaluation of the Project’s Mark I processor, primarily for reliability, maintainability and
performance in exceptional circumstances, was a significant hardware-related activity during FY79.
This work included the completion of microcoding of the processor to express the full instruction set
specifying the S-1 architecture, the examination of the functionality of the Mark I processor to
ascertain that the hardware-microcode combination properly expressed the system architecture under
all circumstances (including extremely rare exception cases and combinations thereot, of which a
sophisticated pipeline implemention such as that of the Mark I has many), and the determination of
the performance of the Mark I processor on various types of applications programs.

In-order to carry out portions of this evaluation process, it was necessary to replace the 256 K word
main memory system of the Mark I processor, which was implemented in 8 K bit MOS RAMs and
had been procured in FY77 from a commercial custom memory systems source, with a
Project-designed and -implemented memory system of 512 K words capacity, implemented in 16 K
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bit RAMs. This was accomplished expeditiously during FY78. Continuing evaluation work and
SCALD II exercise requirements during FY79 impelled the further expansion of the Mark I
memory implementation to 2048 K words, with a Project-designed and -implemented memory unit
which also served to prototype the memory module for Mark IIA uni- and multi-processor systems.
This extension was accomplished at a hardware and implementation manpower cost of 5
K$/megabyte, and involved no alteration of the Mark I uniprocessor. Thus, the S-1 Mark I system
now contains more computing power and more memory capacity than does the entire AEGIS
computing plant.

Extension of the high cost-effectiveness of single S-1 processors to Navy applications requiring
more computing capability than is available from single processors is accomplished by
interconnecting a number of such processors into an S~1 multiprocessor system. Such a system at
once provides a very high bandwidth, completely flexible means by which all member processors
may exchange data (via a relatively very inexpensive full Crossbar Switch which uniformly
interconnects all processors with all memory banks), as well as a variety of means by which
processors may very rapidly signal to each other. In addition to carrying the extraordinary unit
cost-effectiveness of single S-1 processors into almost arbitrarily demanding Navy applications
regimes (which can exploit concurrent processing capabilities), the multiplicity of processors in such
an interconnection also allows the creation in system software of extremely graceful system failure
modalities: unexpected loss of any relatively small number of processors or memory banks need not
degrade system performance at all, if appropriate software constructs are employed to automatically
substitute reserve processors and memory units for ones which fail.

A general description of the S-1 multiprocessor architecture appears within this report, accompanied
by a discussion of the strengths and weaknesses of such an architecture, relative to alternative
approaches to meeting the digital processing requirements of the most demanding Navy applications.

The heart of the multiprocessor system, the Crossbar Switch, has been designed to be readily
partitionable into a number of smaller, electrically isolated crossbar switches, and includes a
diagnostics/maintenance processor which supports such software-controlled re-partitioning to isolate
faulted processors or memory banks. Use of ECL-10K MSI circuits in implementation permits this
switch to sustain 8 billion bit/second data transfer rates between 16 processors and 16 memory
banks, while having an implementation cost somewhat less than that of a single processor.
Interestingly enough, only about 20% of this cost (or less than 1% of the cost of a 16 processor, 16
memory unit multiprocessor system) has a growth rate which is quadratic in the processor or
memory unit population size; the other 807 has a growth rate which is linear in this population size.
A 128 processor, 128 memory bank S-1 multiprocessor system implemented in current technology
would thus require a Crossbar Switch costing less than 10% of the cost of the total system. Since the
advance of semiconductor electronics into the VLSI regime will necessarily produce components that
reduce the size and cost of the Crossbar Switch before it produces components that reduce the size
and cost of processor and memory, the fractional cost of the crossbar switch portion of S-1
multiprocessor systems, already quite small at present, may be expected to decline especially rapidly.

Software for the S-1 prototype processor family must be available in an essentially complete, reliable,
documented, cost-effective and timely fashion to enable high kardware cost-effectiveness to be
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translated into comparably high system cost-effectiveness, and providing for such is the other ma jor
component of the Project’s strategy.

The S-1 Project, after surveying alternatives, elected to commence meeting these requirements by
exploiting recent developments in software technology (e.g., highly transportable compilers and
operating systems) in a selected academic computer science environment, which offered relatively
inexpensive and highly talented (i.e, highly cost-effective). software design and implementation
capabilities. A FY77 sub-contract effort at Stanford University’s Computer Science Department
supporting the S-1 Project produced and documented a PASCAL compiler, a FORTRAN compiler
design, a P-Code translator, a symbolic assembler and a simulator for the first S-1 prototype .
processor; a companion loader was generated by the Project staff in FY77. The productivity of the
Stanford effort was determined to be about an order of magnitude higher than industry
programmer productivity standards, due both to its higher average talent level and the
comprehensive use of recent software technology.

This software development task has been greatly facilitated by several features in the processor’s
architecture which permit high-level-language programs to make unusually efficient use of the
processor's hardware resources. For instance, the Stanford-produced Pascal compiler was
determined during this past year to produce code for a wide range of scientific-type problems which
required an average of only 347 greater execution time than did optimally hand-coded programs for
the same set of problems; the peephole and global optimizers whose development commenced in
FY79 are projected to bring this high-level language average efficiency penalty to less than 10%.
.Even the initial one-third efficiency penalty is unusually small for use of a high-level language on a
hlgh-performance computer system.
The previously commenced software development work at Stanford has been continued during
FY79. These efforts included detailed definition and initial development of the extended Pascal to
be used in future SCALD development, Pascalx; the completion of the development of the common
intermediate stack-oriented language, U-Code; the completion of the scientific function run-time
library implementation; major progress in the development of the common global optimizer for the
Pascal and FORTRAN compilers, and the completion of an enhancement program for the
FORTRAN compiler. These Stanford software projects were complemented by LLIL-centered
software efforts which completed a Pascal-based general-purpose microcode assembler, extended the
single-user, batch-type operating system being used on the S-1 Mark 1 processor, and made notable
progress in the transport of the UNIX operating system to the S-1 processor family (the OS-1
effort) and in the detailed definition and design of the fuli-capability operating system (OS-2, or
Amber). : '

Essentially all of this software will be transported without modification to subsequent generations of
S-1 processors, whose architectures will be upward-compatible with previous generations (in order
to minimize software development expenses associated with Navy evaluation of S-1 systems, and to
serve as a significant scale demonstration of such long-term architecture upgrading capability). -

" The foregoiﬁg summarizes fulfillment of the S-1 Project’s FY79 Work Statement referenced in
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ONR Order N00014-79-F-0021, as re-negotiated with cognizant ONR and NAVELEX officials
during this past year to accommodate to changing Navy programmatic and budgetary guidance.

During FY80, the S-1 Project has proposed to:

implement a pair of prototypes of the second-generation S-1 processor (the Mark IIA),
which will incorporate the advances made in semiconductor technologies since the Mark I
processor was implemented, and which will include a very high performance arithmetic
module to enhance real-time signal processing performance levels to well beyond that of
any other general-purpose processor in existence;

complete the low-level design and the implementation of a 16 processor, 18 memury unit,
high performance Crossbar Switch on which a full-sized S-1 multiprocessor system may be
centered;

implement a multiprocessor system with an aggregate processing capability at least an
order-of-magnitude greater than the most powerful single digital processing system in
existence, centered on the Crossbar Switch and containing 16 processors and 16 memory
units, thereby demonstrating an ability to extend processing capability and greatly augment
system reliability at constant, high cost-effectiveness for all Navy applications allowing
concurrent processing;

implement two uniprocessor systems for installation and on-site evaluarion at two locations
to be designated by the Navy, and to provide reasonably comprehensive, LLL-based
systems support for such evaluation activities;

pursue software development (both at Stanford University, via continuation sub-contract
arrangements, and within the Project at LLL) through the development of a multi-tasking
operating system for an S-1 multiprocessor system, the design of a full-functionality
operating system for an S-1 multiprocessing system, completions of a microcode-augmented
emulator capability for the UYK-7 computer system, system integrarton, check-out and
documentation of S-1 LISP, completion of the Pascalx development, the enhancement of
the SCALD System to support design and implementation of the Project’s third-generation
processor, the Mark 111

support initial Navy evaluation of the S-1 architecture and the suitability of the Mark IIA
uni- and multi-processor systems for various Navy applications, by making them available
for both local and remote (via ARPANET) Navy applications studies.

The material in this Report is divided by topic area into three volumes for easier handling. The
remainder of this first volume is devoted to a detailed characterization of the S-1 architecture,
highlighted with examples. Two articles constitute this Report’s second volume, and describe major
features of the Project’s FY79 work: one reviews the basic features of the design of the Mark IIA
uniprocessor system, and the other represents a highly user-oriented, comprehensive description of
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the Project’s second-generation SCALD syste"r?j, which is intended to have widespread utility in US
computer creating activity following its validation in creating the first Mark IIA systems. Volume
III contains a discussion of the Project’s major FY 79 software developments,.and is supplemented by
a microfiche-based listing of all of the major software modules developed by the Project during the
FY79 period. A summary-by-title of both the articles-in-text and the microfiched software
immediately follows this Executive Summary. ‘
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2 Titles of the Articles of this Report .
Volume I: Architecture
1. Executive Summary.

2. S-1 Multiprocessor Architecture. An overview of a multiprocessor system composed of
multiple S-1 Uniprocessors sharing memory through a crossbar switch.

" 8. Investigation of the Paftitioning of Algorithms Across an MIMD Computing
System. Research on adapting existing algorithms to take advantage of the additional
computing power available in a multiprocessing system.

4. S-1 Uniprocessor Architecture. The native mode instruction set for the S-I
Uniprocessor, and the syntax fur an assernbler which processes that instruction set.

5. UYK-7 Emulation. A novel technique which emulates the existing UYK-7 architecture
by appropriately substituting a sequence of $-1 Native Mode instructions, rather than
microcode, for each UYK-7 instruction.

Volume II: Hardware
1. Highlights of the Design of the Mark IIA Uniprocessor. = Annotated drawings
describing the high level aspects of the Mark IIA uniprocessor hardware, prepared as
input to the SCALD II computer-aided logic design system.
2. SCALD II User’s Manual. A document describing the SCALD II system from a user’s
viewpoint.

Volume III: Software
L Overview of the Amber Operating System. The Amber Base System serves as the
foundation for a family of problem systems capable of fully exploiting the power of both
$-1 Uniprocessors and Multiprocessors.
2. Overview of Interim Operating Systems. Descriptions of an interim operating system

for the Mark 1 Uniprocessor and of the effort to transport UNIX for use with the Mark
IIA Uniprocessor.

3. User’s Guide to S-1 Pascal and Fortran. How to use languages and utilities available on
the interim Mark I system. '

4. Pascal and Pascal+ Compiler Systems; Pascal:: A Pascal Based Systems
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A

Programming Language. An overview of the family of language translators which share
a common intermediate language called U-Code; and a description of an extension to
Pascal for SCALD development support.

5. PASMAC: A Macro Processor for Pascal. A description of the Mark 1 Pascal macro
facility. o :

6. UFORT: A Fortran to U-Code Translator. A description of the FORTRAN facility of
the Mark I system.

7. 8-1 U-Code: A Universal P-Code. The definition of the U-Code intermediate language.

8. S-1 Code Generator and Optimizer. Documentation of a code generator and optimizer
for the S-1 family of language translators.

9. UASMINT: A U-Code. Assembler and Interpreter. An interpreter which executes
U-Code, allowing the testing of a language translator independently of the code generator.

10. Portable Runtimes for a Portable U-Code Systeni._ " Runtime support routines for the
family of language translators.
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2 Titles of the Articles of this Report

2.1 Summary of Microfiche Accompanying this Report

The following files appear, in' order, on the microfiche included with this Report. The

three-character extension following the “.

FAI
SAI

S1

PAS
FASM2.FAI
FSIM2.FAI

RDOPS.FAI

CMDSCN.FAI

- FLINK.S1

. PPIMPL.PAS

“n

in each name indicates the source language:

FAIL (DECSystem-10 assembly language)
Stanford Artificial Intelligence Language (SAIL), -
a variant of ALGOL.

S-1 Native Mode assembly language

Pascal

The source for a macro assembler which processes S-1 Native Mode assembly
language. “S-1 Uniprocessor Architecture” in Volume I of this Report explains
how to use this assembler. '

The source for a simulator for the S-1 Native Mode architecture. “User’s Guide
to S-1 Pascal and Fortran” in Volume III of this Report explains how to use this
simulator.

The source for a program which reads a file defining opcode mnemonics and
produces a table which an assembler or simulator can use to map mnemonics
onto opcode values.

The source for a program used by FASM2FAI to parse a command line
specifying input, output, and indirect files. :

A linker which processes “LDI” files and produces a “RIM” file. The linker is
automatically invoked by various command files described in “User’s Guide to
S-1 Pascal and Fortran” in Volume III of this Report.

A version of a 2D hydrodynamics and heat conduction program used at
Lawrence Livermore National Laboratory, converted to Pascal and organized for
parallel compurarion. “Investigation of the Partitioning of Algorithms Across an
MIMD Computing System” in Volume I of this Report describes this program.

The following files relate to the U-Code language translators. The programs themselves are
preliminary versions.

UFORT2.PAS

UPASO.PAS

UINT.PAS

Documented in “UFORT: A Fortran to U-Code Translator” in Volume III of
this Report.

A Pascal to U-code translator, whose use is described in “User’s Guide to S-1
Pascal and Fortran”, in Volume III of this Report.

A U-code interpreter, documented in “UASMINT: A U-Code Assembler and
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SUPNO05.PAS

PIO.PAS
FIO.PAS
'SI0.S1

SNUM.S1

VERCH.PAS

PAS.SAL PAS2.SAI

Interpreter” in vVoliume III of this Report.
A U-code to S-1 code translator

Pascal I/O runtimes, documented in “Portable Runtimes for a Portable U-Code
System” in Volume III of this Report.

Fortran I/O runtimes, documented in “UFORT: A Fortran to U-Code
Translator” in Volume III of this Report.

Primitive I/O runtimes, documented in “Portable Runtimes for .a Portable
U-Code System” in Volume III of this Report.

Primitive numerical runtimes
A version-changer for Pascal programs, described in “User’s Guide to S-1 Pascal

and Fortran” in Volume III of this Report, which provides a facility similar to
the IF switches available in many assemblers.

A Pseudo-monitor for the Pascal system at SAIL, described in “User’s Guide to
S-1 Pascal and Fortran” in Volume III of this Report.
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1 S-1 Multiprocessors

One of the S-1 Project’s main thrusts is the development of a multiprocessor which computes at
an unprecedented aggregate rate on a wide variety of problems. The S-1 Multiprocessor will be
implemented first with second-generation S-1 Uniprocessors (S-1 Mark IIAs). For a large class of
important numerical problems, including signal processing, it will achieve a computation rate
roughly an order of magnitude greater than that of the Cray-1 computer. The Cray-1 in turn
offers performance two to four times greater than that of the CDC 7600, and outperforms all
other existing computers in general numerical computation work.

A multiprocessor is a network of computers which concurrently execute a number of independent
instruction streams on separate data streams (ie, a multiple-instruction-multiple-data machine,
according to [Flynn 1972]) and which closely share main memory. A typical S-1
Multiprocessor consists of sixteen independent, identical S-1 Uniprocessors and provides a
computation rate for many technical problems more than an order of magnitude greater than the
rate of a single S-1 Uniprocessor, which alone processes typical scientific mixes of logical and
numerical operations at approximately the same speed as a Cray-1.

Along each of several dimensions, a multiprocessor design offers significant advantages over a
uniprocessor design providing an equivalent computation rate. The advantages result from the
modularity inherent in a multiprocessor architecture, and can be categorized as advantages of
reliability, economy, and size.

The advantage of religbility has been validated by commercial systems such as the Tandem
Nonstop (see [Datapro 1979]) and the BBN Pluribus (see [Ornstein 1975]), which
provide ultra-reliable operation in handling banking transactions and ARPA Network traffic,
respectively. In a well-designed multiprocessor system, failure of a single module (for example, a
component uniprocessor, a bus, a crossbar switch, or a memory bank) does not entail failure of the
entire system. Indeed, the S-1 Multiprocessor Operating System (Amber) is designed to detect such
module failures and effect graceful replacement in function from the available complement of
reserve modules of the multiprocessor system.

Of primary importance among the advantages of economy are the economies during machine
construction due to replication of a single module type. This economy during the construction
phase is extremely important with respect to current and projected semiconductor technologies,
since the unit replication cost of VLSI chips varies nearly inversely with the replication factor,
except for a small additive base cost.

A second economy of scale relates to the cost of the design work; the design cost per processing
element is reduced asymptotically to zero as the processing element is replicated. Actually, any real
multiprocessor must include some design costs per processing element which grow as the number
of processing elements is increased (for example, the cost of designing the interconnection
network), but these costs can be made negligible, and in fact are negligible in the case of the S-1
Multiprocessor.

A third important economy is the potentially reduced time lag between the freezing of the system
design and the delivery of the first operational system. By replicating a relatively simpie
processing element many times and using a regular interconnection network, this lag can be made
very small; it is virtually independent of the processing power of the total system. As a resuit, the
semiconductor technology-used in a properly designed multiprocessor can be essentially state-of-
the-art, whereas the technology used in a more complex processing structure must be considerably
more out of date. This time lag phenomenon will continue to seriously degrade the cost-
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effectiveness of delivered complex systems as long as advancing semiconductor technology
continues to provide exponentially more cost-effective components, but may be greatly reduced in
advanced multiprocessors.

One additional economy is the economy which results from the freedom of the multiprocessor
designer to choose the most cost-effective uniprocessor element structure, independent of the
processing rate of the element. Cost-effectiveness of uniprocessor structures is not constant over
all levels of processing power. Because the design of a digital processing system must be aimed
not only toward maximum cost-effectiveness, but also toward some minimum processing power,
designers of high-performance uniprocessor systems have not been able to utilize structures with
possibly higher cost-effectiveness but lower processing power. On the other hand, the designer of
a multiprocessor may be able to achieve a total cost-effectiveness which is nearly the same as the
cost-effectiveness of the component uniprocessor and, since' that uniprocessor need not be
constrained to have a large minimum processing. power, to achieve substantially higher cost-
effectiveness of the resulting system. '

Independent of these economic advantages is the advantage uf size. Regardless whether it is
economical to build arbitrarily powerful uniprocessors, at some point it becomes physically
impossible (with state-of-the-art technology) to build these machines; multiprocessors, however,
have a higher processing-rate ceiling. This advantage of multiprocessor structures is important
because maximal computing rates will be necessary for certain applications into the foreseeable
future; numerical weather prediction with its real-time constraints is an obvious example.

Figure 1-1 shows the logical structure of a typical S-1 Multiprocessor. This S-1
Multiprocessor includes sixteen independent S-1 Mark IIA Uniprocessors, of -which two are
shown. The internal logical structure of the S-1 Mark IIA is indicated at a very high level. All
sixteen uniprocessors are connected to main memory through the S-1 Crossbar Switch; one
possible access pattern is shown with dots. Sixteen memory banks are shown, each of which can

contain up to 23 (one billion) bytes of semiconductor memory. Input and output are done
through peripheral processors (for example, LSI-11s); as many as eight can be attached to each S-
1 Mark IIA Uniprocessor. The Synchronization Box is based on a shared bus connected to each
member uniprocessor providing for specialized medium-bandwidth communication associated
with the synchronization of tasks performed by individual uniprocessors. Each module in the S-1
Multiprocessor is connected to a diagnostics-and-maintenance processor (an LSI-11), which allows
convenient remote display-oriented maintenance and control of the multiprocessor.

All sixteen identical S-1 Uniprocessors can execute independent instruction streams on
independent data streams. Thus, all sixteen uniprocessors can cooperate in the solution of a single
large problem. The high-bandwidth, low-latency inter-processor communications provided by the
Crossbar Switch facilitate problem partitioning with little efficiency loss, but the sixteen
uniprocessors also have the capability to process completely independent tasks, for example, each
S-1 Uniprocessor might service different users. Memory requests from the member uniprocessors

are serviced by sixteen memory banks with an aggregate maximum capacity of 234 (sixteen
billion) nine-bit bytes. Connectivity between uniprocessors and memory banks affords the
maximum generality; any processor can uniformly access all of main memory through the S-1
Crossbar Switch. The programmer thus sees a huge, uniform address space, as each memory
request from each uniprocessor is decoded by hardware in the Crossbar Switch and sent to the
appropriate memory bank.

The Crossbar Switch processes requests from member uniprocessors to perform read or write
access to specific (essentially randomly indexed) memory banks. In the first multiprocessor
implementation, the Switch allows only one request for a given memory bank to be honored at
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any instant (hence, at most sixteen transactions can be ongoing simultaneously, and as many as
sixteen only if no two uniprocessor requests are for access to the same memory bank). Conflicting
requests are queued fairly, that is, in a queue which guarantees service to each requesting
processor once before service is given to any requesting processor twice.

The Crossbar Switch has a maximum peak bandwidth of over 10 billion bits per second when all
of its sixteen channels are transferring data simultaneously. Although the growth rate of such a

square crossbar is asymptotically O(N 2), where N is the number of processors or memories, the S-
1 Crossbar costs somewhat less than a single S-1 Uniprocessor. Less than 25% of the Switch, or
0.8% of total system cost (arbitrarily assuming that half of the total system cost is invested in the
memory), exhibits O(N?) growth rate; the remainder exhibits O(N) growth rate. Hence, it is
economically quite feasible to implement crossbar switches for uniprocessor and memory
populations much greater than sixteen; the generality of full interconnectivity between processors

and memory may be obtained at very low (although asymptotically O(N?)) cost.

The S-1 Multiprocessor design allows component uniprocessors and memory banks to be
physically distributed over distances which are limited only by average bandwidth requirements
(which obviously degrade linearly with increasing length). Because of the relatively large latency
introduced in main memory transactions due to the lengths of the cables, because of the Switch
transaction time, and because of the access time of relatively slow but highly cost-effective memory
chips, each member uniprocessor contains private cache memories. These caches automatically
(that is, without guidance from the programmer) retain recently referenced data and instructions
within a relatively small amount of ultra-high-performance memory, in the expectation that those
data will be referenced again in the near future. Whenever a reference to such a retained datum
or instruction is made, the information is immediately delivered directly from the cache, thus
eliminating the latency required for a main-memory transaction. Although a similar efficiency
can be realized if main memory contains a special high-speed area (such as the SCM of the CDC
7600), such a design places on every programmer the burden of managing a variety of memory
systems in order to maximize efficiency of program execution.

The presence of caches in a multiprocessor necessarily introduces problems of cacke coherence (see
[Censier 1978]); without a guarantee of cache coherence, programming of certain problems
in a cache-based multiprocessor would be inconceivably difficult. A system of caches is coherent
if and only if a read done by any processor P of a memory location M (which may be cached by
other processors) always delivers the value written to M most recently. Most recently in this
. context has a special meaning in terms of a partial ordering on reads and writes of memory
throughout the multiprocessor (see [Lamport 1978]), but for an intuitive understanding of the
problem it is sufficient to think of recentness in terms of absolute time. In these terms, whenever
a write is done by one processor P to a memory location M, completion of the write must
guarantee that all subsequent reads of location M by any processor will deliver the new contents of
M, until another write to M is completed.

The caches of the member uniprocessors of S-1 Multiprocessors are private in the sense that there
are no special communication paths connecting the caches of one uniprocessor with the caches of
any other uniprocessor; the cache coherence problem is therefore especially challenging. To solve
it, the S-1 Multiprocessor includes a design closely related to one independently proposed in
[Censier 1978} a small tag is associated with each line (a set of sixteen words) in physical
memory. This tag identifies the {(unique) member uniprocessor (if any) which has been granted
permission to retain (that is, own) the line with wrize access, and identifies all processors which
own the line with read access. The memory controller allows multiple processors to own a line with
read access, but responds with a special error flag when a request is received to grant read or
write access for any line which is already owned with write access, or when a request is received to
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grant write access for any line which is already owned with read access. Any uniprocessor
receiving such an access-denial response is responsible for requesting (through a simple interrupt
mechanism) that other uniprocessors flush the contested line from their private caches. This
procedure maintains cache coherence dynamically, hence extremely efficiently, without requiring -
any effort by the programmer.

To support low-latency, semaphore-type communication between member uniprocessors, a
Synchronization Box attaches to one of the eight I/O ports of each uniprocessor. The
Synchronization Box is centered on a shared bus; one major function of this unit is to transmit
interrupts and small data packets from one uniprocessor to any subset of other uniprocessors in
order to coordinate processing streams.

For reliability, all single-bit errors which occur in memory transactions are automatically corrected,
and all double-bit errors are detected, regardless whether the errors occur in the Switch or in the
memory system. For single-point failure immunity, the S-1 Multiprocessor allows for the
permanent connection of multiple Crossbar Switches which are electronically selectable; operation
of the S-1 Multiprocessor can thus continue in the event of a single Switch failure. Furthermore,
the Crossbar Switch can be configured to keep a backup copy of every datum in memory, so that
failure of any memory bank will not entail loss of crucial data. Each I/O processor may be
connected to I/O Ports on at least two uniprocessors, so that failure of a single uniprocessor does
not isolate any I/O device from the multiprocessor system. To enhance maintainability, each
member uniprocessor, each Crossbar Switch, and each memory bank is connected to a diagnostic
computer which can probe, report, and change the internal state of all modules which it monitors,
in great detail and with precise timing.
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In a typical S-1 Mark IIA Multiprocessor, sixteen Mark IIA Uniprocessors execute independent
instruction streams and communicate with main memory through a high-bandwidth Crossbar
Switch. Private caches implemented with extremely fast but quite expensive memory components
within the member uniprocessors effectively hide the combined latency of the Switch and memory
system, and hence allow the use of relatively slow but extremely cost-effective memory components
to store virtually all of the the data and instructions to be processed.
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Logical Structure of the S-1 Mark IIA Multiprocessor
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1 Introduction

Multiprocessors (strictly speaking, Multiple-Instruction-Multiple-Data processor systems [4])
are potentially extremely attractive systems for realizing greatly enhanced computing capabilities.
Potential benefits include significant improvements over both the Single-Instruction-Single-Data
and Single-Instruction-Multiple-Data types of uniprocessor systems in the areas of availability,
configurability, cost-effectiveness, and raw computing power. The primary concern of this paper is
in the area of raw computing power enhancement available from a multiprocessor. Particular
reference is made to a classic multiprocessor architecture being explored by the S-1 Project [8,9].

In order to best realize the computing power increase potentially available from a
'multiprocessor on a single application problem, it must be possible to express the algorithmic
solution to-the problem in some partitioned fashion in order to make effective use of several
processors at once. The simplest and most obvious, but still useful, scheme for partitioning is to run
several different, independent éopies of the application algorithm on different sets of data which are
of interest to the researcher; such an approach is predicated on the different data sets being totally
independent of each other.

However, the more interesting case occurs when the algofithm is structured to take advantage
of parallelism inherent in the problem when processing a single set of data. Such an approach
admits of possibly very large gains in effective processing speed, and thus potentially allows many
more cases of interest to be studied in serial order per unit of wallclock time; such an approach is
required if subsequent data sets have features determined from computational study of previous
ones. It is this particularly useful case to which the present investigation is addressed.

This report documents aspects of progress made to date in the continuing investigation of
application partitioning across classic MIMD multiprocessors. The goal of this investigation is to
demonstrate the practicality of the partitioned application mode of multiprocessor use for large
classes of realistic problems, particularly in the context of a large-scale multiprocessor such as the
S-1 project has designed and will be implementing. The investigation so far has included a broad
spectrum of studies, ranging from general research on multiprocessing issues to specific experiments
with algorithms for particular application problems.

This report covers several different topics, roughly following the chronological development of
the investigation to date. After some definitions and further motivation for application partitioning,
there is a brief discussion of generally applicable techniques for partitioning. Next is a historical
perspective of the process of selecting a "representative” application for further detailed study. An
overview is then given of the algorithm chosen for specific study, followed by a descriptiun of the
methods used for partitioning that algorithm. After that appears a discussion of some simulation
results, followed by some analytic results. Finally, there is a discussion of some of the detailed
implications of this study in terms of synchronization and communication mechanisms found to be
desirable for support of application algorithm partitioning. The report concludes with a discussion
of directions which such investigations may profitably take in the future.



9 Definitions

The term “multiprocessor” will be used in this paper to refer to a generalization of the
structure of the S-1 multiprocessor. A few important attributes of this generalization are listed here.
It is assumed that there is a moderate number (say 2 to 200) of extremely fast single processors
tightly coupled to a relatively large amount (at least 10 million words) of uniformly accessible global
memory. Each processor may also have a moderate quantity of very high performance:memory (e.g.
cache) local to it, but it must also have high bandwidth (although not necessarily short latency)
access to the global memory. Many of the ideas contained herein apply also to other multiprocessor
structures (eg. larger numbers of slower processors), but the S-1 structure has been the primary
focus for optimization of the partitioning approach developed in this study.

"Problem partitioning” refers to the process of taking a particular application problem and
constructing an algorithmic solution for it which can take advantage of the potential for paralicl
execution available in a multiprocessor. The primary motivation assumed for partitioning a
problem is to substantially decrease the absolute wallclock time taken to run each instance of the
application (as opposed to other motivations such as improved reliability and/or recoverability). For
partitioning to be realistically useful in this way, the partitioned application must run substantially
faster ‘than a uniprocessor version, even when all possible overheads are taken into account,
including operating system, multiprocess communication, and synchronization.

The “speedup” of "a multiprocessor algorithm is the ratio of wallclock elapsed time for
uniprocessor execution to wallclock elapsed time for multipracessor execution. It is, of course, a
function of the number of processors, and possibly other algorithm parameters. The speedup
provides a measure of the success with which the problem has been partitioned, indicating greater
success as the speedup approaches the numher of processors. There are actually conditions in which
the speedup can theoretically exceed the number of processors; these wxll be noted in more detail
later. -
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Depending on the exact nature of the application, the process of constructing an effectively
partitioned solution can vary greatly in difficulty. As mentioned earlier, any uniprocessor code can
be immediately run on a multiprocessor in the mode of multiple independent data files; but this is
not a partitioned single application ‘as defined here. This mode does serve to characterize a class of
applications whose- partitioning is trivial. Any application which consists of several already
independent computations can be easily partitioned in this way. A simple example (in which each
of the independent computations has the same structure) might be a Pascal compiler which has the
ability to process multiple input procedures in a "separate compilation™ mode.

There is another class of applications which is almost as- easy to partition. . It is all those
which have a basic iterative “outer loop” with perhaps a summary data gathering step at the end of
each iteration, but with several otherwise independent computation blocks occurring in each
iteration. Examples of this structure of computation may be found in Monte Carlo approaches to
simulation [6). '

. To approach the issue of difficulty of partitioning from another standpoint, it is reasonable to
ask for what kinds of applications is ‘a ‘substantial amount of partitioning effort justified. In
particular, if an application is hard to partition it could be argued that it is better to run it
unpartitioned in timesharing mode along with other user problems in order to still gain the -
cost—effectiveness benefits of the multiprocessor. However, there are several interesting application
areas in which any gains in absolute wallclock execution time are valuable. Classic examples
include the weather prediction problem and many types of real-time processing, such as radar signal
processing. Also, as the number of processors in the multiprocessor increases, the attractiveness of
the partitioning approach increases for more and more problems.
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As the number of designed or implemented multiprocessors increases, a few general techniques
for problem partitioning are beginning to emerge [6]. Three such techniques which have been
considered could be called "synchronous partitioning,” "asynchronous partitioning,” and “pipelining.”
From the descriptions below it should become apparent that these techniques are by no means
mutually exclusive, and hence may be used in combination in a partitioned application.

The technique of synchronous partitioning is perhaps the most obvious and most widely
applicable of the three. In this technique, either the data structure or the program (or both) is
divided up into comparatively independent units, and multiple processes compute in parallel within
these units. Occasionally, two or more processes must synchronize with each other in order to
maintain data consistency or pass summarizing information among processes.

The technique of asynchronous partitioning [1] is less intuitive and can lead to debugging
difficulties due to the lack of exact reproducibility of results, but offers advantages by avoiding the
potentially large overheads of frequent process synchronization. This technique is best understood
in the context of iterative numerical algorithms. For instance, consider an application containing a
large two dimensional matrix of real numbers which are being updated by an iterative algorithm
such that each new point value depends in some simple way on previous values of neighboring
points. The points may be partitioned into groups among the available processors. If the
correctness of the algorithm does not depend on the use of a precisely defined previous iteration
value for neighboring points in the updating procedure, and if instead any reasonably recent valuc
will suffice for convergence, then the processes may iterate without synchronization at each iteration.
The termination test for convergence is most easily implemented if the error measure is defined so
that it can be tested locally in each process, determining process convergence independent of other
processes. Thus the only form of synchronization is implicit in the shared point values, which are
continually updated in parallel. Note that a pure implementation of this technique has the
characteristic that no process is ever in synchronization wait, and so all processes are always actively
working towards the solution. However, it is possible for convergence to be slower than in a
synchronized solution due to nonuniform use of previous values. The general ideas of this
technique have been the subject of research for several years, often appearing under the name
"chaotic relaxation” [2]

The pipelining technique is very similar to the pipelined approach in high=performance
uniprocessor hardware implementation. In this technique, the computation is divided into several
parts, called “stages,” which have the characteristic that the output from one stage becomes the input
to the next stage. So, once the computation is well under way, all of the stages can be computing in
parallel with the data streaming into the first stage and the results streaming out of the last stage.
An example of this approach might be the division of a compiler into scanner, parser, global
optimization, and code generation stages.

One note about the interaction between implementations and multiprocessor efficiency and
speedup deserves mention here. Some problem partitionings, especially those using pipelining, lead
to an implementation which has a fixed maximum speedup, eg. the number of pipeline stages.
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‘Other partitionings which are parameterized by the number of processors (and possibly some
measure of data size) have no obvious fixed maximum speedup, and thus (at least for large data
sizes). can continue to benefit from: additional processors. Thus, the implementor should be aware
that, by requiring a fixed length pipeline or division into a fixed numbér of parallel processes a
limit on future flexibility for expansxon is being imposed.



5 Selection of a sample application

Since the main goal of this investigation is to demonstrate the practicality of partitioned
execution of real-world problems, the study includes considéring several application areas and
specific codes as possible candidates for partitioning. A number of possible codes were considered
from many different application areas, but most of the emphasis to date has been concentrated on
one particular code, named SIMPLE [3]. SIMPLE may be characterized as a large scale numerical
physical simulation, using well ‘known techniques for the widely important problem of solving
partial differential equations on a reasonably large two dimensional mesh.

SIMPLE was chosen for several reasons: (1) it seems to be representative of techniques used

ih many physical modelling codes, in that it contains both explicit and implicit PDE solvers, it uses a
two dimensional Lagrangian formulation, and it uses table lookup for the required equations of
state of the fluids being modelled; (2) it is sufficiently simplified from a full-scale code to be quite
manageable in size (as it consists of about 1800 lines of Fortran); (3) it has been studied by others in
the academic sector as a candidate application for a number of novel processor architectures, such as
data-flow machines.

Large scale numerical simulations such as these form one significant class of applications for
which multiprocessor partitioning seems to be appropriate. Several other application areas have
been suggested and studied by other researchers. One application considered because it is widely
used but still fairly self-contained is sorting. Internal (main memory) sorting is fairly CPU intensive
but still difficult to partition effectively, since obvious partitionings are often theoretically limited to
less than linear speedup [7]. Another general area of application is heuristic search of large tree
structures such as those found in artificial intelligence problems. One other application which has
been studied in this light is set partitioning integer programming [7).
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The intent of the SIMPLE code is to give a simple, yet realistic, example of computational
fluid dynamics and heat flow. It solves the differential equations of inviscid compressible shock
hydrodynamics and simple heat conduction using a Lagrangian formulation. It works in two
dimensions on a region with a regular boundary. It uses slmple table lookup to represent the
equations of state of an ideal gas.

The differential equations are reduced to difference equations. The equations for
hydrodynamics and for heat conduction are solved in separate sections of the code employing
different techniques. The hydrodynamics equatlons are solved explicitly, whlle the heat conduction
- equations are solved impIu:ltly C o

The basic data structure in SIMPLE is used in the representation of the mesh covering the
problem domain. This consists of 13 two dimensional arrays of real numbers to store the physical
quantities “involved, plus a few additional arrays for working storage. There are also one
dimensional arrays to store the ‘tabular definition of ‘the equation of state, and of course several
scalars to store miscellaneous other quantities.

The outer loop-structure (after the problem is set up) is a sxmple iteration as the time value is
increased:
repeat
hydrodynamics pass;
heat conduction pass;
compute new delta t;
advance time by delta t;
until done

The hydrodynamics pass has the following structure:
for each mesh zone, calculate new pressure using EOS luukup,
for each boundary zone, calculate geometry;
for each boundary zone, set up boundary physics;
for each mesh point, calculate new velocities;
for each mesh point, calculate new coordinates;
for each mesh zone, calculate new density and change in specific volume;
for the boundary, sum up the work done on the boundary by hydrodynamics;
for each mesh zone. calculate artificial viscosity and Courant delta t limit;
for each mesh zone, calculate hydrodynamic work and update energy, using EOS;
for all zones, sum up the kinetic energy for the entire problem;
for each mesh zone, calculate new temperature via table lookup;

The heat conduction pass has the following structure:
for each mesh zone, calculate two material properties;
for the boundary, set the boundary properties to neighboring values;
for each mesh zone, calculate conpling ranstants in the K direction;
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for each mesh zone, calculate éoupling constants in the L direction;

for the boundary, set some appropriate initial values;

over the entire mesh, perform a forward and backward sweep in L (see text);
over the entire mesh, pefform a forward and backward sweep in K (see text);
for each mesh zone, calculate new energy lising EOS, and new delta t limit;
for the boundary, sum up the energy flow across boundaries;

for all zones, sum up a new internal energy for the entire problem;

Notice that, with one significant exception, all of the steps in both passes have a very similar
structure. A typical step passes over the entire mesh (or maybe just the boundary) making local
- computations at each mesh zone or mesh point. These local computations typically involve updating
one or more quantities at the given place in the mesh, after examining the previous value and
perhaps the previous values of a few neighboring elements. Also, of course, computations involving
only the boundary contribute much less to the CPU time used than computations over the whole
mesh. Below in figure 1 is a pictorial representation of a typical SIMPLE mesh processing step,
showing the obvious left to. right and top to bottom ordering of mesh element computation. This
will be compared in the next section with the multiprocessor partitioned ordering.
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Figure I: Typical mesh processing order

The one exception to this structure occurs in the steps in the heat conduction pass called
"forward and backward sweeps.”" Superficially, even these steps may appear to have a similar
structure. There is one important difference, arising from the implicit nature of the PDE solution
technique used. In order to solve a tridiagonal linear system of equations, the sweeps evaluate a
recurrence of the form XI[I] := A[I}xX[I-1] + B[I] for increasing values of I. The key here is that
each new X quantity depends on the new X quantity which was épmputed in the immediately
preceding inner loop iteration. This dependence causes some difficulty in the partitioning of the
sweeps, which will be discussed in the next section on partitioning of SIMPLE.

. Another afgorithmic structure which is used is the table lookup in the EOS and temperature
calculations. In both cases this consists basically of locating between which pair of entries in an
increasing table of values some physical quantity belongs numerically, and then using the



10 S & Overview of SIMPLE

corresponding index into other tables to compute an interpolated function value. The lookup search
is a straightforward sequential ordered table search. The only unusual part of the algorithm is that
each table index is saved as a starting place for the next search, which reduces the search time
assuming that successive uses of the function tend to pass arguments of similar magnitude.
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7 Partitioning SIMPLE

Given the basic structure of SIMPLE as mostly performing localized operations fairly
uniformly across a large data structure (the mesh), the most reasonable approach seems to be a
data-directed synchronous partitioning. Specifically, each of several processes is assigned to operate
on some subset of the mesh, computing independently of the other processes whenever possible.
Occasional synchronization is required for keeping one mesh section from advancing too far beyond
the others, for mesh-wide data summarizing operations, and in the sweep steps (as explained later).

An important factor to consider in partitioning a program which has a large shared data
structure like SIMPLE'’s mesh is the presence of per-processor cache memory on S-1 multiprocessors.
" Due to the large difference in access time to a word in central shared memory and a word already in
a processor’s cache, it seems reasonable to select a programming style which has a high degree of
per-processor data locality of reference. In a code like SIMPLE, where the computation within the
large shared data structure is quite evenly distributed, an easy way to do this is to statically partition
the data structure into fixed equal size pieces, with one piece per process. Each process is then
responsible for updating its piece, and most of the references to that piece are made by that process,
thus .assuring locality. Notice that it is also being assumed that thére is at least an approximate
one-to-one mapping between processes and processors, and that procesées do not migrate from one
processor to another very often. Otherwise, the advantages of having all recently referenced data in
cache would be lost. These assumptions are valid on the bare hardware of the S-1 multiprocessors,
and must be supported by any operating system which is intended to maximally benefit from this
type of operation.

For SIMPLE, the chosen static mesh partitioning: is into “column groups." Each process is
assigned a different fixed subrange of columns of all of the arrays representing the various physical
quantities in the mesh. Of course, any process can still actess any quantity at any point in the mesh
since the entire mesh is in global shared memory. It is just assumed that most of the references
within a column group will be by the assigned process, and hence that the column group data will
reside largely in-the corresponding processor’s cache. Below in figure 2 the column grouping of the
mesh is shown, along with the ordering within processes of a typical mesh ‘computation,
correspording to the uniprocessor version in figure 1.
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Figure 2: Partitioned mesh procéssing order (independent mesh compntations)

The presence of the caches has another interesting performance implication, on the theoretical
speedup achievable for a program like SIMPLE. For some reasonable mesh sizes, it is quite
possible that all of the mesh data will not fit in a single processor’s cache, but that it will all fit in all
of the caches combined. In this case, the uniprocessor execution of the program could continually
cause cache misses and corresponding lengthy delays while cache lines are transferred to and from
main memory. However, the multiprocessor version, with properly partitioned references to the data,
would be able to retain the entire mesh distributed in all of the caches, thus causing cache missing to
be insignificant. In this way, if the efficiency of processor utilization is high enough, the speedup
over the uniprocessor version could actually exceed the number of processors executing the program!

" Here are some details of the process of partitioning a mesh-processing part of SIMPLE ather
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‘than the difficult sweep steps. One simplified typical code fragment might appear as follows (where
K is the row index and L is the column index): :

for L := LMN to LMX do

 for K := KMN to KMX do -
begin o
AlK,L] :=. (X[K L}+YIK, L) x (Z[K,L-1}-Z[K - lL])
BIK,L] := BIK,L] + Z[K,LIxY[K-1,L+1};
end;

for L := LMN to LMX do

for K := KMN to KMX do

begin
P{K,L]:= P[K,L] + A[K-1 L}*A[K ,LY
QIK,L]:= QIK,L] + BIK,L-1xB[K,L};
end;

Notice that the computation at each mesh point is in terms of other quantities at the same
mesh_point or at a neighboring mesh point, thus maintaining the desirable locality mentioned above.
The only references outside of local column groups occur when L is in the first or last column of a
group and an off-column reference like Z[K,L-1] or Y[K-1,L+1] is made. -Also notice that within
- each loop pair the computations at each mesh point are corhpletely independent of each other, and
so they may be performed in parallel with no interprocess synchronization needed. However, the
second loop pair is dependent on the results of the first loop pair, so synchronization is needed to
insure that the second loop pair is not executed by some process before the’A and B values needed
have been stored by perhaps a different process. An easy way to insure this is to insert a "synchall”
synchronization call between the loop pairs. This call forces each process to wait at that point of
execution until all processes have arrived there, and then they are all allowed to proceed. Since each
process is performing essentially the same -amount of work on its column group as any other process,
all processes may be expected to complete the first loop pair at about the same time and not cause
very much overhead wait time at the synchall point.

So, the partitioned version of the code fragment might appear as follows (where PR is the
index of the process executing the code, and LMN and LMX have been expanded. into arrays
specifying the column boundaries of the column groups):

for L := LMN[PR] to LMX[PR‘J do
for K := KMN to KMX do
begin
AlK,L) := (XIK,LWYIK,L]) % (Z[K,L l]—Z[K—l L]),
BIK,L]:= BIK,L] + Z[K,LIxY[K-1,L+1]); -
end; -
SYNCHALL; A
for L := LMN[PR] to LMX[PR] do
for K := KMN to- KMX do

begin
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PIK,L):= P[K,.L] +A[K-1L,LA[K,L];
QJK,L]:= QJK,L]+ BIK,L-1xB[K,L},
end; : :

Another code fragment worth considering is one which includes a summary data gathering of
some sort, such as the result of a summation or a maximum over some function of the mesh points.
Such a computation requires a complete pass over the mesh with a single scalar output, rather than
updated mesh values. A typical step of this sort in SIMPLE might appear as follows:

TOTAL := 0.0;
for L := LMN 10 LMX do
fur K == KMN tv KMX do
begin
TOTAL := TOTAL + A[K,LIxX[K,L]
end; i ‘

The obvious approach to partitioning this code fragment is to let each process compute a total
for its column group, and then to have one process compute a grand total at the end. If the number
of processes is sufficiently large, the simple grand total computation shoutld perhaps be replaced by a
multiprocess version which could compute pairwise subtotals, eventually reducing the number of
totals to one grand total. So, a partitioned version of this code fragment could appear as follows
{where MAXPROC is the number of processes):

PTOTALI[PR] := 0.
for L := LMN[PR] to LMX[PR] do
for K := KMN to KMX do
begin : ‘
PTOTALI[PR]:= PTOTAL[PR] + AlK, L]*X[K L
end;
SYNCHALL;
if PR = 1 then (% processor 1 computes the grand total x)
begin _
TOTAL := 0.;
for P := 1 to MAXPROC do
TOTAL := TOTAL + PTOTAL[P]‘
end;

'One more code segment which should be discussed is the table lookup in the EOS and
temperature calculations. As mentioned previously, these code segments are essentially
straightforward sequential ordered table searches, which can be executed independently by several
processes in parallel with no synchronization since they are computing function values from
read-only data. The only exception to this is the mechanism for retaining the search index from
the previous search for use as a starting point the next time. The obvious way of partitioning this
mechanism is to retain the previous search index on a per process basis, so that processes executing
in unrelated portions of the mesh do not try to use each other’s previous search indices.
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Finally, some consideration must be given to the somewhat more difficult problem of
partitioning the forward and backward sweeps in the heat conduction pass. It was noted previously
that the difficulty arises from the recurrence inherent in the loops, in which each inner loop
iteration is dependent on results computed in the previous iteration. Even this structure would not
be difficult to partition if such iterations only traveled up and down columns, and hence were
evaluating each recurrence only within a single process. Unfortunately, recurrence iterations are
performed both up and down columns and across rows. So, some of the recurrences must be
evaluated across process boundaries, requiring some form of synchronization at very frequent
intervals (once per process boundary crossed,.ie. several times per row of the mesh in a single
sweep). All previously discussed partitionings of SIMPLE required only aboiit one synchronization
" per computation over the entire mesh.

A partitioned forward mesh sweep recurrence is diagrammed below in figure 3. In the figure,
the mesh rows have been grouped into blocks of three rows each; row blocking is not used in the
code below, but it will be discussed later in the section on analytic study. The vertically circled
column group boundaries show points at which synchronization must occur. The diagonally circled
column group, portions represent a single time snapshot of how much.computation can proceed in
parallel, due to the skew enforced by the left to right recurrence. As time proceeds, more and more
" processes become actively executing in parallel. The average degree of parallelism depends on the
"angle of attack” of the diagonal part, which is determined by the amount of row blocking, the mesh
dimensions, the number of processors, and. the synchronization overhead. These quantities will be
studied in detail later, in the analytic section.
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Figure 3: Partitioned forward sweep pfocessing (with row blocking)

For reference, a slightly simplified version of the unpartitioned troublesome sweep code
fragment appears below:

for K := KMN to KMX do

begin

for L := LMN to LMX do
begin '
A[K,L]:= QIK,L] /'A[K,L-1];
BIK,L]:= (QJK,L-1xB[K,L-1]) / A[K,L-1}
end; ’

for L := LMX downto LMN do (* note stepping by -1 x)
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begin
T[K,L] := A[K L]*T[K L+11+B{K L],
end;

end (xfor Kx);

For partitioning this code fragment, there must be a somewhat more detailed synichronization
mechamsm than the synchall call used previously. Let AWAIT(n) and SIGNAL(n) correspond
roughly to Dijkstra-style semaphore operations P(SEMIn]) and V(SEMIn]). -So, AWAIT(n) will be
used to await a signal on channel n, and SIGNAL(n) sends a signal on channel n. Naotice that the
signal channels contain counters, so more than one signal may be outstanding on a channel. In this
example, AWAIT(n) will be used to wait for a signal from process n that it is finished with the next

"row's worth of column group. Given these definitions, the partitioning discussed above might be
expressed in this code fragment as follows:

for K := KMN to KMX do
begin
if PR > 1 then AWAIT(PR-1);
for L ;= LMN[PR] to LMX[PR]do
begin
AlK,L]:= QJK,L}/ AIK,L-1};
BIK,L] := (Q[K,L-1]xB[K,L-1]) / A[K,L-1}
end; '
if PR < MAXPROC then SIGNAL(PR);
end {xfor Kx);
for K := KMN to KMX do
begin
if PR < MAXPROC then AWAIT(PR+ l)
for L := LMX[PR] downto LMN[PR] do (x note stepping by -1 *)
‘begin
TIK,L] := A[K,LIxTIK, L1171 B[K,L];
end; . .
if PR > 1 then SIGNAL(PR);
end (xfor Kx);

There exists an alternative to the above frequently synchronizing structure for partitioning
the sweeps It would be possible to transpose the mesh quantities needed, perform the sweeps in the
“easy” direction (up and down columns), and then transpose back. This unwieldy sounding
approach could actually be quite feasible in practice when compared to the high overhead method
outlined above, if the problem of efficiently transposing a matrix on the multiprocessor can be
solved. At the moment this problem appears to be quite complicated, since it must attempt to keep
all of the processors busy at the same time as avoxdmg delays from simultaneous access to any single
central memory unit. Some further analysis of how much time the high overhead method spends in
waiting will be presented below in the section on analytic speedup computation. Also, a new
hardware-supported mechanism will be proposed in the section on synchronization and
communication which should eliminate most of the overhead associated with loops like this one, thus
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obviating the need for such a transpose mechanism.

The above examples tend to blur the distinction between variables which are shared by all
processes and variables which are private to each process. In any actual implementation, of course,
this distinction must be explicitly specified by the user to the system software. For SIMPLE, shared
variables include the -mesh quantities, the EOS lookup tables, and miscellaneous globally known
scalars. Private variables include loop indices and temporaries.
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8 Multiprocessor SIMPLE simulation

As part of this study, a modest simulation of the SIMPLE code running on a multiprocessor
has been implemented. One of the major goals of this simulation was just to force the process of
considering the entire code line by line, to be sure there were no major conceptual problems in
partitioning it for a multiprocessor. Another goal was to study in general the effectiveness of the
previously discussed approaches to partitioning, with particular emphasis on the viability of a static
mesh partitioning. The simulation is accurate in the sense that it still actually solves exactly the
same problem as that solved by the uniprocessor code, but it is incomplete in its consideration of the
complexities of the multiprocessor environment. The entire source code for the multiprocessor
SIMPLE simulator is included in the microfiche appendix to this report, in the file named
"PPIMPL.PAS". .

The basic approach of the simulation was to begin with the code of SIMPLE (translated into
Pascal from Fortran), and to start by considering how to partition each stage for multiprocessor
execution. However, each code segment which was intended to run independently in different
processes is actually enclosed in a loop which executes the code segment successively for each process,
varying the process number over all possible values. Variables which were private to each process
(and had a useful lifetime long enough to justify keeping the values across major processing steps)
were changed into arrays indexed by the process number.

To this structure were added timing, synchronization, and statistics ggthermg functions. The
main timing function is assignment of CPU time spent in mesh computation to the simulated process
which is spending that time. This is done by surrounding each code segment with calls to start and
stop-charging of CPU time to a specified process. The only synchronization function simulated at
present is the synchall function described earlier. It is simulated by a procedure call to update
timing statistics at each synchall point. The most interesting statistic is of course the speedup
achieved. 1It-is computed by assuming that wallclock time advances at the same rate as the
maximum CPU time used by any process at each stage. Again, this assumes essentially that each
process has its own dedicated processor. Other statistics gathered include per-process CPU usages,
which may be examined to determine how successfully the workload is being balanced among the
processes.

The results of sample runs of the simulation were quite encouraging. The per-process CPU
usage was very well balanced, indicating that the static mesh partitioning appears to be a reasonable
choice. The speedup reported for a small mesh on a 16 processor system varies between 9.7 and
14.5, depending on how it is chosen to account for CPU time which was spent but not attributed by
the simuiation to any particular process. Both the accuracy of the simulation and the speedup value
are expected to increase as the size of the mesh increases.

There are a number of ways in which the simulation to date is incomplete, and so future
improvements could increase the accuracy of the simulation. One minor improvement would be to
accurately model the subtotal accumulation part of each summary data gathering step; at present
these parts are assumed to be negligible and are not included. Also lacking is a detailed study of
exactly which synchall points are absolutely necessary; at the moment they are scattered liberally
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throughout the code wherever there is any possibility that global resynchronization might be needed.
The influence of the caches was included in some analytical study (discussed later), but the
simulation assumes uniform access to all of shared memory. The critical points in SIMPLE where
cache misses will happen due to column group boundary crossing have been isolated but not yet
included in the simulation. Probably the most important omission in the present simulation is
accurate accounting for the complicated interactions in the heat conduction forward and backward
sweeps. At present the simulation assumes that a no cost mesh transpose is done; this is obviously
unrealistic.
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9 Analytic speedup computation

The simulation studies of SIMPLE to date have ignored the implications-on memory access
times imposed by the per-processor caches of S-1 multiprocessors. The presence of the caches is.
quite important to consider due to the possibility of a more than tenfold increase in access time for a
word not in cache over the access time for a word in the proper cache. In particular, accessing a
word in cache takes only about 50 nanoseconds, whereas accessing a word from the cache of another
processor will probably take about 300 nanoseconds (averaged assuming all words of a cache line

" will be accessed, corresponding to a cache line access time of ¢ to 5 microseconds).

To augment the simulation results, some analytic study has been done of potential speedup of

' portions of the SIMPLE code, allowing for the presence of the caches. The portions chosen for

analytic study are the sweep steps in the heat conduction pass and a time-consuming nested loop

representative of the hydrodynamics pass. The sweep analysis is simplified by only considering the

overhead implied by cache misses and cache line transfers, and not considering any overhead

associated with process synchronization. The next section of this report proposes a mechanism
which can reduce both types of overhead.

. The sweep ané.lysis will be presentéd for the forward swéep only. The forward sweep part of
_the slightly simplified code fragment which appeared earlier is repeated below for. reference:

.

for K := KMN to KMX do -

begin

for L :== LMN to LMX do
begin
AIK,L]:= Q[K,L]/ AIK,L-1}
BIK,L] := (QJK,L-1B[K,L-1]) / A[K,L-1}
end;

end (xfor Kx);

It is assumed that the two dimensional arrays are stored by columns, i.e. that element AlL1]is
followed in memory by element A[2,11 Thus each S-1 16 word cache line contains 16 elements of a
“column of an ‘array. Since cache transfers happen in units of 16 word lines rather than single
words, it is reasonable to assume that the overhead would be less if each prbcess computes the above
recurrence on a block of rows within ‘its column group before letting the next process start on those
rows, rather than synChronizing on each singié row. This blocked approach allows more than one
word to be used from each cache line each time it is transferred across from one processor. to
another at a column group boundary. For simplicity, the unit of time used here will be the length of
time it takes one processor to execute a single loop iteration with no cache misses.

Define the following parameters:
B = blocksize = number of rows in a. block

W = time to compute the_‘fecurrence over one block of one column group
P = number of processors
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R = number of rows (KMX-KMN+1)

C = number of columns (LMX-LMN+1)

TSP = elapsed time for entire forward sweep on single processor
TMP = elapsed time for entire forward sweep on multiprocessor

The speedup for this section of code is then defined by:

TSP
Speedup = T™MP

By the definition of the unit of time, |
TSP =R + C

Similarly, notice that since a block is B rows high and C/P columns wide, W wauld be equal
to B+C/P in the absence of cache misses. '

To formulate the value of TMP, the exact sequence of the multiprocessing sweep execution
must be observed. Each of the P processors computes the recurrence at each element in all R rows
in its assigned column group of C/P columns. In other words, each processor computes over R/B
blocks, taking time W<R/B for the whole computation. If all the processors could execute for the
whole sweep fully in parallel, W+R/B would also be the elapsed time of the entire computation.
However, no processor can begin its computation until the previous processor has finished
computing on its first block. So, processor P must wait for P-1 block computations until it can start
on its first block. From then on all processors can run in parallel, assuming that each block
computation takes the same amount of time. Thus, accounting for the delayed startup of processor
P, the total elapsed tiine is:

TMP = W « (P-1 + %)

In formulating W, processor to processor cache line moves must be accounted far, in addirian
to the basic iteration compute time. The basic iteration time (of the real code in SIMPLE) is
estimated at about one microsecond, and a cache line move takes 4-5 microseconds, so it seems a
reasonable estimate that a cache line move takes about the same time as 4 basic iterations.
Assuming that a previous step computed values for the array Q, causing its data to reside in the
caches of assigned column group processors, the read-only use of Q[K,L-1] in each iteration causes
each processor to participate in two cache line moves (one from the previous processor and one to
the next processor) every 16 rows. So, the contribution to each block computation of accessing
QIK,L-1] is twice B/16 times the cache line move time, i.e. 2:B/16+4.

Each iteration also uses the values of A[K,L-1] and B[K,L-1], but not in a read-only fashion,
ie. each value used was written on a recent earlier iteration. So, the cache lines containing these
values at column group borders must be moved between processors (twice) for every block which is
processed, not just every 16 rows. In other words, when processor p finishes computation on a block,
the cache line containing the last column of that block must be moved to processor p+1, and if the
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‘next block to be computed by processor p also contains any part of that cache line it must be moved
back to processor p. So, where [x7] ("ceiling of x") is the smallest integer greater than or equal to X,
the contribution to each block computation of “accessing both A[K,L-1] and B[K,L-1]} is twice
2+[B/167 times the cache line move time, i.e. 2:2-[B/167+4. '

" Therefore, the final formula derived for W is:

C

B B B
W= 3 +2'l—6"1+2°2°['ﬁ]°‘!
CB B B
=5 vgrlgl

From all of the above, the speedup can be expressed:

R-C
CB B B R
(—P——+§+ls‘ri§])°0’-l+ E)

P

Speedup =

P 16 B, P B+«(P-1)
U+ 55+ giglg - —x)

Notice that this formula has the expected quality that as the number of rows and columns in
the mesh approaches infinity, the speedup approaches the number of processors.

For determining some nu_mériovalues of the speedup formula, some interesting parameter
values can be substituted. Specifically, by letting P=16, choosing sample values for R and C, and

then maximizing over B, the following speedups are obtained:

R C speedup max occufs at B =

128 128 7.8 4
128 1824 o 11.4 2
1824 1824 14.1 4

Now, a time-consuming nested loop representative of the ‘hydrodynamics pass will be
analyzed. The loop chosen performs the function listed earlier in the SIMPLE overview as "for
" each mesh point,.calculate new velocities." This loop forms the majority of a subroutine which uses
39% of the CPU time used in the hydrodynamics pass, and 26% of the total CPU time in SIMPLE.
It is also in the class of easily partitioned loops in SIMPLE, since it requires no potentially costly
synchronization calls within the loop body. Thus, the major factor which might limit speedup for
this section is the overhead of cache misses due to shared array access. For reference, the exact text
of the loop in question appears below: '

for L := LMN to LMX do
for K := KMN to KMX do
begin Co
AU := (PIK,LWQJK,L]) * (Z[K,L-1}-Z[K-1L]) +
(P[K+LLWQIK+1LYZ[K+1,L1-Z[K,L-1]) +
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(PIK,L+1+QK,L+ Ix(Z[K--1,L}-Z[K,L+1]) +
(P{K+ 1L+ 1+QJK+1,L+ 1)m(Z[K L+ 1]-Z[K+1,L])

AW := (P[K,LIH+QJK,L]) % (R[K,L-1]-R[K-1L]) +
(PIK+1,LHQJK+1L]) * (R[K+1,L]-R[K,L-1]) +
(PIK,L+11+QJK,L+1)) * (R[K-1,L]-R[K,L+1]) +

 (PIK+1,L+11+QJK+1,L+1]) % (R[K,L+1}RIK+1LI);
AUW := RHOIK,L}*A JIK,LHWRHOIK +1,L1xA JIK+1,L]
+RHO[K,L+1}#A JIK,L+11+RHO[K+1,L+ 1A JIK+1,L+1};

AUW := 20/AUW; :

AU = -AUxAUW;

AW = AWXAUW;

U[K,L) := UIK,L+DTNxAU;

VIX,L) = VIK,.LI+DTN*AW;

if ABS(U[K,L]) <= VCUT then U[K,L] := 0.0;

if ABS(VIK,L]) <= VCUT then V[K,L] := 0.0;

end (xfor L Kx);

Define the following parameters:v

P = number of processors
R = number of rows (KMX-KMN+1)
C = number of columns (LMX-LMN+1)
K = number of cross-cache references within one row of a column group
S = time for a single inner loop iteration with no cache misses
V = time to move one word from one cache to another
T = total time spent on all iterations on single processor
. -~

First, observe that:
T=R+C-+S

Now, there are K cross-cache references within one row. of a column group. There are R rows
and P column groups. .Each cross-cache move takes time V. So, the total time spent moving cache
words on the multiprocessor is K-V <P<R. But, this time is divided evenly among the P processors,
so the cache word moving overhead contribution to the elapsed time is K-V+R. Assuming this is
the only overhead and that the normal iteration time is also divided evenly among the processors,
the speedup can be expressed as: '

Speedup =
P K-V-R
—
1o K-V-P-R
T
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— P
. KVP
CS

For the above code fragment, K can be computed by simply counting the number of different
accesses of ad jacent columns, ie. column L-1 or L+1. In this case, K = 12 (not counting duplicate
" references to the same off-column element). The average value of V was estimated earlier to be
about 300 nanoseconds. The value of S for this loop could be about 1200 nanoseconds. So, the
speedup can be estimated:

P
3.p

Speedup =
IR

1+

‘Now, again letting P=16, and choosmg the same sample values for R and C as for the sweep
analysis, the following speedup estimates are obtained:

R C speedup
128 128 11.6
128 1824 15.3
1824 1024 15.3

And finally, a speedup estimate for the entire code can be computed, assuming that the sweep
speedup is a good estimate of the heat conduction pass speedup and that the sample hydrodynamics
loop speedup is a good estimate of the hydrodynamics pass speedup. The heat conduction pass
consumes about 307 of SIMPLE CPU time, and the hydrodynamics pass consumes about 70%. The
speedups are combmed using the equatnon

100
percentl percent?
speedupl speedup?

Speedup =

This yiélds the following entire code speedup estimates:

R~ c speedup
128 - 128 9.7
128 1024 - 13.9

1824 1024 14.9
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10 Synchronization and communication

The above studies have pointed out that a variety of process synchronization and
communication mechanisms may be desirable for use under varying circumstances. The most
obvious form of communication between processes on a multiprocessor like the S-1 is through the
use of shared memory, which is implemented on the S-1 multiprocessor as several shared main
memory modules and a cache coherence algorithm to keep the state of main memory and local
caches consistent throughout all read and write accesses. ‘

Shared memory does not necessarily directly implement the desired synchronization primitives,
however. The (statically) most frequent synchronization primitive used in partitioned SIMPLE is
the synchall call described earlier. Recall that it forces each process to wait at a given point of
execution until all processes have arrived, after which all processes may continue. Synchall can be
ea.éily implemented in terms of classic Dijkstra-style P and V semaphore operations. For example,
letting MAXPROC be the number of processes, if SLEEPINGPROCS is of type integer and
MUTEX and SLEEP[1.MAXPROC] are semaphores, the following code can be used to implement
synchall on process number PR: '

(iz Initially SLEEPINGPROCS=0, MUTEX=0, SLEEP[1.MAXPROC]=0 %)
P(MUTEX);
SLEEPINGPROCS := SLEEPINGPROCS + I;
if SLEEPINGPROCS = MAXPROC then
begin ' :
for I ;= 1 to MAXPROC do V(SLEEPI[I]; -
SLEEPINGPROCS := 0;
end:
V(MUTEX); ]
P(SLEEP[PR]);

The performance of this code in practice would of course depend very greatly on the
underlying implementation of the P and V primitives. . Also, it is important to note that in this code
one process (the last one to execute the synchall) is responsible for issuing the V’s that wake up all
of the other processes. If the CPU time required for executing a V primitive is large enough
compared to the CPU time between synchalls, and if the number of processes is large enough, this
can be a severe performance bottleneck.

For allowing the implementation of synchronization primitives, the S-1 architecture contains
"conditional move” instructions. One such is the MOVCSF ("move conditionally, skip on failure”)
instruction. This instruction tests to see if the values of its first and second operands are equal. If
so, the contents of the first operand are replaced by the contents of register %12 (decimal). If not, the
first operand is left unchanged and a skip is taken to the skip destination. The instruction operates
indivisibly, so that nothing can change the value of the first operand before it is (conditiohally)
replaced.

Synchall can also be implemented in terms of the MOVCSF instruction. The following
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‘example implementation is written in S-1 assembler code. It is implemented at a very low level,
without any operating system calls such as might be desired for a more general implementation - all
waiting is-busy-wait looping. Notice that the process local index SW is used to toggle between the

“first and second words of SLEEPINGPROCS on successive synchalls, to avoid race condition
trouble if one process reaches its next synchall before another process has realized it is time to wake
up from the previous synchall. ' '

333 Initially (SW)=8, (SLEEPINGPROCS)=8, (SLEEPINGPROCS+4)=0

INCSLEEP: MOV A, SLEEPINGPROCS (SW) '
INC %12.,A
MOVCSF SLEEPINGPROCS (SW),A, INCSLEEP  ;Increment SLEEPINGPROCS indivisibly
S5KP.NEQ %12.,MAXPROC, SLEEP

MOV SLEEPINGPROCS (SW) , #8 B s1f incremented to MAXPROC, zero it
SLEEP: JMPZ.NEQ SLEEPINGPROCS (SW) , SLEEP sWait for SLEEPINGPROCS = @

SuBvV SW,SW,#4 3Switch: SW:=4-SUW

For some kinds of synchronization and communication, it appears that a mechanism other
than simple shared memory is very desirable. The cache line size of 16 words requires a substantial
amourit of overhead per cache line moved from one processoi' to another. This overhead can be
amortized over the 16 words if the memory access pattern causes most of the 16 words to be used
before the cache line must-be moved again. This type of amortization is the reason that SIMPLE
arrays were assumed to be stored by columns, and then the rows were processed in blocks in the heat
conduction sweep analysis. In a straightforward non-blocked implementation, the sweeps in
SIMPLE would require that about 4 words per C/P microseconds be transferred between processors.
Especially for small numbers of columns, the "bulky” 16 word cache moves can be a significant
bottleneck.

Also, timing cache line mesh data moves only includes communication overhead, and does not
account for any synchronization overhead (mentioned in the “partitioning SIMPLE" section as
AWAIT and SIGNAL primitives). So, it is reasonable to propose a new general purpose
mechanism which combines the functions of communicating small packets of data at high
bandwidth and providing synchronization between the processes sending and receiving the data.

The new proposal is a simple inter-processor message sending mechanism. Messages are
transmitted on one-way “links,” which are allocated in I/O memory space much like normal I/O
mechanisms. The I/O memory. allocation is performed by the operating system, so that transparent
reallocation can be done if it becomes necessary to move a process from one-processor to another.
Once the link is set up, the user processes can use it at higﬁ speed via special instructions without
substantial operating system intervention.

The user instructions are callld SNDMSG and RCVMSG. They are specified to operate on
small messages (doublewords) at very low overhead per message transmission. The hardware
contains a small amount of buffering for smoothing the message flow, but both instructions have
failure returns, indicating that either the buffers are momentarily full (for SNDMSG) or empty (for
RCVMSG). It is expected that both instructions can execute in the 100-200 nanosecond. range, with



28 10 Synchronization and communication

'a message latency between processors limited largely by physical factors such as interprocessor cable
lengths. '

As an example, a possible implemenfation-of the forward sweep part of the slightly simplified
SIMPLE code fragment which appeared earlier using AWAIT and SIGNAL is included below:

for K := KMN to KMX do

begin

if PR > 1 then RCV2WORDS(LINK[PR-1JAKLM1,BKLM]1) else '
begin -
AKLMI:=A [K,LMNI[1]-1);
BKLM1:=B[K,LMNI1] 1};

~ end;

for L := LMN[PR] to LMX[PR] do
begin
A[K,L]:= QK, L1/ AKLMJ;
BIK,L]:= (QIK,L-1]JxBKLM1)/ AKLMI;
AKLMI1 := A[K,L],
BKLMI := B[K,L}
end; ’

if PR < MAXPROC then SEND2WORDS(LINK[PRJAKLM1,BKLM]1);

end (xfor Kx);
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11 Directions for future study

In a broad ranging study such as this, there ‘will .always remain interesting problems to be
addressed. There'is more work to be done in. each of the areas discussed in this report, and there
are also many other related areas requmng study.

The simulation of partitioned SIMPLE is still incomplete in several ways mentioned earlier,
especially in simulating the overhead time required for cache line moves and/or synchronization
primitive execution. Also, a higher-level simulation could be done which does not actually solve the
physics equations, but still models the multiprocessor behavior of the code for various mesh sizes
and other parameters. The analytic studies of SIMPLE could be continued in several directions,
including detailed analysis of other code sections, or studying previously analyzed' sections under
different assumptions, such as the use of SNDMSG and RCVMSG primitives. A more quantitative
statement about the sensitivity of the speedup of various code segments to variations in the mesh
size would also be useful. '

Further detailed study of synchronization and communication mechanisms is desirable. Such
mechanisms should be as easy to use and as general as possible, but must not sacrifice performance.
It has already been observed that a variety of mechanisms with a variety of functional and timing
characteristics is likely to be needed. In conjunction with these mechanisms, more study should be
done on general techniques for partitioning of applications. The special issues arising in debugging
a multiprocess implementation are particularly important. More tools need to be developed for
- evaluating the effectiveness of alternative implementations.

Another important dimension of study is the range of applications chosen for partitioned
implementation. Study of partitioning in detail should be done (as it was for SIMPLE) for several
other real-world applications, such as those mentioned in the section on “selection of a sample
application.” Also, several entirely different non-numerical areas of application should be
considered in more detail for muiltiprocessing feasibility.

One final area of investigation needed is the implications of trying to use the S-1
multiprocessor hardware as cost-effectively as possible. A major topic is the interaction of the
partitioned multiprocessing approach with the powerful vector processing c-apabilities of the S-1
Mark ITA. One other topic mentioned earlier is researching the possible implementation of a very
efficient multiprocessor matrix transposition algorithm, for possible use in situations where matrix
processing does not efficiently align with the chosen data partitioning of matrices.
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12 Conclusion

This study to date has added to the evidence in favor of the partitioned application mode of
multiprocessor use. It has demonstrated that applications representative of real-world large scale
problems can reasonably be considered for multiprocessor partitioning. Some simulation and
analytic estimates of code speedup have been obtained. Some general methddologies for partitioning
have been suggested, and some specific mechanisms for multiprocess cooperation have been
proposed.

It seems certain that general purpose multiprocessors will play a large role in the future
spectrum of the world’s computing needs. Part of this role will be assumed by iarge scale
A'multiprocessors executing some of the most compute-intensive applications, partitioned across
multiple processors to gain valuable increases in raw computing power per wallclock hour.
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1 Introduction

The S-1 Mark IIA uniprocessor is the second generatioh of a pipelined vector and scalar processing
computer with a virtual address space of 229 thirty-six bit words, addressable in quarterwords, and
a physical address $pace of 2%2 singlewords. This manual describes its native mode instruction set
and an assembler for that instruction set. ’ o '

While a- Mark IIA uniprocessor can operate alone or as part of a multiple-instruction-stream
multiple-data-stream (MIMD) multiprbcessor, this manual deals only with single processor
operation. It also avoids implementation-dependent details like instruction timing and numerical
values corresponding to opcode mnemonics.

Section 1 presents an overview of the architecture. Section 2, which assumes knowledge of the
material in Section 1, divides the native mode instructions into groups, preceding each group with
architectural details pertaining to that group. Section 3 describes the FASM assembler, but one can
understand the assembly language examples in the previous sections without having read this
description. : ' o
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1.1 Notation

1 Introduction

The remainder of the manual uses the following conventions for the sake of conciseness (the reader
may want to skim these now and read them carefully only after encountering them in the text):

Radices

a..b
{ab.c.d}

M[x]
R[x]

RO..R31.

X.Y

X<n:m>

OP1, OP?, §1, S2, DEST

SIGNED(X)

UNSIGNED(X)

ZERO_EXTEND(X)

Throughout the text, numbers appear in radix 10 unless otherwise noted. In the
assembly language examples, numbers appear in radix 8 unless they include
decimal points, which indicate they are in radix 10.

stands for the integers or elements from a throﬁgh b inclusive.

represents some one of a, b, ¢, or d.

represents the contents of memory at quarterword address x. Context should
ma_.ke clear whether this is a quarterword, halfword, singleword, or doubleword.

represents the contents of the registers at location x.. Again, context should make
clear whether this is a quarterword, halfword, singleword, or doubleword.

~ refer to the 32 singlewords in the register space (see Section 123). .,

denotes a field (that is, a series of consecutive bits) named “Y” within a memory
location or register named “X”.

denotes a field within X beginning at bit n and ending at bit . X<n> represents
the nth bit of X. We number the most significant (“leftmost”) bit of a singleword
%" and the least significant bit “35”". Sometimes, when we talk about an
individual lield wilthin a word, we will number the bits starting at the leftmost
bit within the field itself.

1

represent the result of evaluating the operand field of an instruction--that is, the
register, memory location, or constant specified by the operand field rather than
the operand field itself. Thus, for example, OD2 refers to the second operand
field within an XOP instruction while OP2 refers to the register, memory
lacation, or constant specified via that field. :

means that X is a two’s complement integer.
means that X is an unsigned integer, where all bits (including the most

significant) contribute to the magnitude.

says to extend the precision of X by attaching zeroes to the left of it.
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. SIGN_EXTEND(X)
says to extend the precision of X by replicating its sign bit.

LOW_ORDER(X), HIGH_ORDER(X)
designate the least-significant and most-significant portion of X, respectively.
When context does not make clear how much of X to include, we will state the

precision explicitly.
In addition, the assembly language examples use two constructs which may not immediately be clear.

First, it uses “<>” instead of “()” brackets to parenthesize expressions, indicating the precedence of
operators. ' ‘

Second, when the operand of an instruction consists of one or more values separated by “?” marks
and enclosed in square brackets, the assembler places those values in consecutive singlewords in
. memory and uses as the instruction operand the address of the first of those singlewords. Thus, the
following examples have essentially the same effect: '

DSPACE

F: 128
256
512
1028
ISPACE
PUSHADR SP,F -
‘and:
1SPACE

PUSHADR S, [128 ? 25C ? 612 ? 1828]

Data literals are discussed in section 3.3.4.
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1.2 Words, Memory, and Registers

1.2.1 Words

The fundamental “word” in the S-1 native fhode architecture is called a singleword, and is 36 bits-
long. Bits within a singleword are numbered from 0 upward, beginning at the most significant bit.

Many instructions access data in any of four different precisions-—quarterword- (QW), halfword
(HW), singleword (SW), or doubleword (DW)--with equal ease.

e ] 35
High Order o ' Min]
Low Order : . | Min+4]

36 : 71
Boub leword

Singleword

8 17 18 35 .

Tun hal funrds

8 . 83 17 18 28 27 35
Four quarterwuords

Which precision a particular instruction deals with is either implicit in the instruction--the D JMPZ
instruction, for example, always compares singlewords--or indicated by tacking a modifier onto the
instruction name. For example, the notation “ADD.{Q,H,S,D}” means that

ADD.Q
adds quarterwords while -

ADD.D

adds doublewords.

Unless otherwise specified, instructions address memory in terms of quarterwords regardless of the
precision they deal with. For example, the first singleword in memory lies at address 0, the second
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Hes at address 4, the third lies at address 8, and 5o on. Quarterwords within a halfword, singleword,
or doubleword have increasing addresses from left to right. Thus if a quarterword and a
singleword have the same address, then the quarterword is the high order {most significant, or
leftmost) quarterwdrd of the singleword. Similarly, the more significant singleword in a doubleword
has the lower address.

Halfwords and singlewords must be aligned: the address of a halfword must be a multiple of 2 er
an ALIGNMENT_ERROR hard trap will occir. Similarly, the address of 2 singleword must
always be a multiple of 4. : :

Any two consecutive singlewords can constitute a doubleword (though some .impleme'ntations of the
architecture may access a doubleword more efficiently if it is aligned on true doubleword
boundaries, so that its address is a multiple of 8).

From now on, we use the term “word” interchangeably with “singleword” and refer to “anyword”
when any of the four precisions is acceptable.

122 Mem ory

The processor has a physical address space of %2 smglewords (quarterword addressable). At any
time there are four (possibly) different virtual address spaces, one for each level of protection, called
rings.

We use the term ADDRESS(X’A) to mean the virtual address of X and PHYSICAL_ADDRESS(X)
to mean its physical address.

More precisely, ADDRESS(X) is a singleword in the form of a pointer, as described in Section 1.8.1: '
a five-bit tag field, one of whose purposes is to specify a ring, followed by a 31-bit address field
which can address any quarterword in an entire 229-singleword space. Thus, ADDRESS(X)
specifies both a tag and a quarterword address.

The architecture permits one to regard a virtual address space as a set of segments instead of a
single vector of quarterwords, and thus an address may specify three coordinates: a ring, a segrrient
and a quarterword address within that segment. The 31-bit address field specifies both the segment
and the address within the segment. .

The rings are numbered 0 .. 3, with ring O the topmost in the hierarchy. A ring can be protected
against improper access on the part of a ring which lies below it in the hierarchy. In addition, the
processor establishes a level dividing the rings. Those above the level are privileged while those
below the level are not. Another term for unprivileged execution is user mode. Certain instructions
are called “privileged” because attempting to execute them in user mode causes a
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PRIVILEGE_VIOLATION hard trap (Section 1.9.4).

123 General Purpose Registers

An unprivileged process can access a single register file, a set of general purpose registers equivalent
to 32 singlewords of memory. As with mémory, instructions can access quarterword, halfword,
singleword and doubleword entities within the registers, and they always address the registers in
terms of quarterwords. The alignment rules that apply to memory also apply to the registers.

The architecture actually provides sixteen difterent register files numbered O through 15. When In
privileged mode, the processor can access various register files and can choose which file is to be
used by a particular unprivileged process.

Placing a “%Z” in front of an address tells the assembler to access the register spa{ce instead of
memory. For example, an instruction which refers to “%4” will access the fifth quarterword in the
register space (if it is dealing in quarterwords) or the third haifword (if it is dealing in halfwords),
and so on. The registers act as a circular list, so %0 follows %127. Thus, for example, the eight
quarterwords from %124 through %3 can constitute one doubleword.

Because one most often manipulates the registers as singlewords, the rémainder of this manual will
use the notation “R0” to represent the singleword at register address %U, “R1" to represent the
singleword at register address %4, and so on up to “R31”. Within the assembler, one can easily define
the symbols “R0” through “R31” to have this meaning.

Certain register addresses have advantages over the rest while others have restrictions.

Indexing: Registers RO, R1, and R2 cannot be used as base registers for the “pseudoregister”
addressing mode, which is explained further in Section 1.6.3.

Program counter: Register R3 has a dual identity. When an instruction uses R3 as the base for an
address calculation (see Section 1.6.3), it accesses the program counter instead of R3 itself. When an
instruction uses R3 in any other way, it accesses the true R3. There is no connection between the
value in R3 and the value of the program counter; one particular usage of R3 within the addressing
modes is simply defined to give the program counter instead.

SIZEREG: Register R3 is also used to specify the lengths of vectors, and is then called SIZEREG.
RTA and RTB: Registers R4 and R6 are in a sense “easier” to access than the rest, and are named
RTA and RTB respectively. For example, a three-operand instruction cannot in general access three

different registers—-but it can do so if the destination register is either RTA or RTB (Section 1.5.2).

When an instruction accesses RTA as a doubleword, it obtains both R4 and R5; we often refer to
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‘Rb as “RTAI”. Sirﬁilarly, we often refer to R7 as “RTBI".

Stack frame and closure pointers: One: of the subroutine calling mechanisms provided by the
architecture. maintains stack frames by using register R28 as a closure pointer and R29 as a frame
pointer (Section 2.12). : '

Stack pointer/limit: Traps, interrupts, and subroutine calling instructions all use an
upward-growing stack in memory to store return addresses and other context information.
(“Upward-growing” means that pushing an item increases the address of the top of the stack.) R30
and R3! serve as the stack pointer and stack limit registers for this particular stack, and are also
called SP and SL respectively. SP points to the first free location on the stack. SL points to the first
" location past the end of the area reserved for the stack. (The instruction set makes it easy to use
other registers or even memory locations as stack pointer/limit pairs to implement additional stacks
for other purposes, as described in Section 2.11. But when we talk about “the stack” rather than “a
stack”, we mean the stack whose pointer is register SP.) ‘

The table below summarizes the uses of the registers.

Register Special characteristics

RO..R2 . Cannot be base for pseudoregister mode

R3 When used as base gives program counter instead;
also used to specify vector length

R4, R5 RTA area

R6, R7 RTB area

R8..R27 None A

R28, R29 Closure and frame pointers, CP and FP

R30, R31 - Subroutine stack pointer/limit, SP-and SL
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1.3 Program Counter

The program counter (PC) is an internal processor register (not part of any general purpose register
file) containing a pointer to the instruction in memory that is currently being executed. Because
instructions consist of singlewords aligned' on singleword boundaries, the contents of the PC must
always be a multiple of four. When an instruction contains multiple words, the PC continues to
point to the first of them throughout the execution of that instruction.

Some operations refer to PC_NEXT_INSTR, which is the value the program counter will have for
the following instruction in memory. A subroutine call, for example, places: PC_NEXT_INSTR on

the stack as its return address.

One can consider the PC to have a tag specifying the ring number used to fetch instructions. This
ring is called the ring of execution. Any attempt to alter the contents of PC--a jump, call, or return
instruction, for example--is sub ject to the validation checking described in Section 1.8.2.



1.4 Processor and User Status Registers 4 9

1.4 Processor and User Status Registers

PROCESSOR_STATUS, the processor status, is an internal register (not part of any general
purpose register file) which contains a number of fields affecting the behavior of the processor as a
whole. Instructions which access this register are privileged. The following table and paragraphs
describe briefly the purpose of each field; details generally appear elsewhere in this document.

Bits 4 Purpose

0..1 ~ EMULATION

2 VMM

3..4 ' PRIVILEGED

5..6 RING_ALARM
7..10 REGISTER_FILE
11..15 PRIORITY

16 TRACE_ENB

17 TRACE_PEND

18 CALL_TRACE_ENB
19 CALL_TRACE_PEND
20 UNMAPPED_MODE
21..31 " Reserved :

82..85 FLAGS

EMULATION Determines which . instruction set the processor currently executes.
EMULATION=0 gives the native mode described in this document.

VMM Enables virtual machine mode, in which attempting to execute any privileged
instruction and certain user mode instructions causes a trap.

PRIVILEGED  Any ring whose number is less than or equal to PRIVILEGED is privileged.

RING_ALARM When the processor fetches an instruction, if the PC specifies a ring whose
number is greater than RING_ALARM, the RING_ALARM_TRAP hard trap
occurs. This permits deferral of an event until a critical inner ring operation
completes. ‘

REGISTER_FILE '
Determines which of the sixteen register files is currently available to
unprivileged pracesses. See Section 2.15.

PRIORITY Determines what priority an interrupt must have in order to inl;errupt the
processor. See Section 2.13. '

TRACE_ENB If this bit is on at the beginning of an instruction, TRACE_PEND,if set’ at the
end of the instruction--in other words, setting this bit enables trace traps for
subsequent instructions, and the trap effectively occurs after each of those
instructions. Clearing this bit permits one final trap after the instruction which
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does the clearing. See Section 1.11.

TRACE_PEND If this bit is on at the beginning of an instruction, the processor traps before
= executing the instruction. Ordinarily, instead of manipulating TRACE_PEND
directly, one manipulatess TRACE_ENB and allows it " to manage

TRACE_PEND.

CALL_TRACE_ENB
Analogous to TRACE_ENB, this bit enables a separate trap for tracing
instructions which call subroutines and return from them. Section 1.11 details the
behavior of the trap and Section 2.12 enumerates the instructions to which it
applies. '

CALL_TRACE_PEND
Analogous to TRACE_PEND, this bit applies only to instructions that call a
subroutine or return from one.

UNMAPPED_MODE
Causes the processor to bypass the usual virtual-to-physical mapping scheme
and instead to use 31-bit addresses to access the first 2°! quarterwords of
physical memory. The processor ignores tags and does not check segment bounds.
This mode is useful for starting up a system or for simple diagnostics which run
without a general purpose operlating system.

Reserved The effect of attempting to set these bits is undefined.

FLACS This field is available for use by software.

USER_STATUS, the user status, is an internal register (not part of any general purpose register
file) containing fields which affect the processor's behavior for a particular user or process.

Instructions which access this register can execute in user mode.

The following table shows the pdsition of the fields within register USER_STATUS.
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Bits ' Purpose

0 CARRY

1..2 FLT_OVFL_MODE
3..4 FLT_UNFL_MODE
5..6 FLT_NAN_MODE
7 INT_OVFL_MODE
8 | INT_Z_DIV_MODE
9..13 , RND_MODE

14 FLT_OVFL

15 FLT_UNFL

16 FLT_NAN

17 INT_OVFL

18 INT_Z DIV

19 , FLT_REP

20..31 Reserved

82..3%5 FLAGS

The fields which deal with. integer arithmetic (CARRY, INT_OVFL, INT_Z_DIV,
INT_OVFL_MODE, and INT_Z_DIV_MODE) are described in Section 2.1 and the fields which
deal with floating point arithmetic (FLT_OVFL, FLT_UNFL, FLT_NAN, FLT_REP,
FLT_OVFL_MODE, FLT_UNFL_MODE, FLT_NAN_MODE, and RND_MODE) are described
in Section 2.3. '

The effect of attempting to set the reserved bits is undefined.

The FLAGS field provides software-definable bits whose . purpose is not spécified by the
architecture. o :
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1.5 Instruction Formats
The heart of every instruction is a singleword which specifies one opcode and up to three operands.

Opcode: An opcode tells the processor what operation to perform--an ADD, a DIV, a MOV, or
whatever. In addition, the architecture uses the 12-bit opcode field of an instruction word to encode
modifiers which are represented by a dot followed by one of several possible choices. For example,
the ADD instruction comes in four different flavors: ADD.Q deals with quarterwords, ADD.H with
halfwords, ADD.S with singlewords, and ADDD with doublewords. In this manual,
“ADD.{QH,S,D}’ denotes a choice of these four flavors. Similarly, the SHFA instruction actually
uses two different opcodes to incorporate its modifier: SHFA.LF for a left shift and SHFA.RT for a
right shift.

If an instruction takes more than one medifier, the order of the modifiers is significant. If one
modifier refers to the first operand and the other to the second, the madifier for the first nperand
comes first. For example, MOV.S.Q converts a quarterword to a singleword whereas MOV.Q.S
converts a singleword to a quarterword.

The mapping of the “virtuai” opcodes shown in this-manual onto actual, numerical opcode values is
implementation dependent. In particular, if two virtual opcodes have the sameeffect--or can be
made to have the same effect by swapping the order of their operands--an implementation may
choose to map them to a single actual opcode. ‘ '

Operands: Most instructions specify operands by means of an operand descriptor (OD), a 12-bit field
that can indicate a constant, a register, a memory location anywhere within the 229 singleword
address space, or indexed addressing using some combination of constants, registers, and memory.

Sometimes the OD itself suffices to encode the operand--a small constant or a register, for exa:hple.
Such an operand is called a short operand or SO. Obviously, more elaborate operands require more
than twelve bits, so frequently an operand descriptor will tell the processor to use a word following
the instruction as an extended word (EW). Such an operand is called a long operand or LO. Note
~ that “long” and “short” refer to the length of the addressing mode, not to the length--quarterword,
halfword, and so on--of the operand itself.

Thus, a two-operand instruction with operand descriptors ODl and OD2 could require a
singleword in memory if each descriptor specifies a short operand (that is, the 12-bit field can
completely describe the operand):

%] 11 12 23 24 35
OPCODE D1 : 0Dz

Both operands fit inside ODs

~or would require two consecutive singlewords in memory if, for-example, the second of the operands
is an LO and thus calls for extended addressing:
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e 1112 2324 35
OPCODE - on 002
Extended word for 0D2

OD2 calls for extended word

. or would require three consecutive singlewords in memory if both operands called for extended
addressing: o ' ‘ i

%] 11.12 23 24 ‘ 35
OPCODE oo - an2 -
'  Extended word for 0D2
Extended word for OD1

Both operands call for extended words

\

Note that when both extended words are present, the one used with OD2 occurs first.

The processor logically evaluates all operands, i'ncludihg extended addressing if necessary, before
executing the instruction and before updating the program counter. The order of operand
evaluation is undefined. -

The - preceding examples all showed the most common format for the initial singleword of an
instruction: an opcode and two operand descriptors. In all, however, there are five different formats,
called XOP, TOP, HOP, SOP, and JOP. We will first explain the formats and then explain how
an operand descriptor and extended word combine to encode an operand.
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1.5.1 Two-address Format (XOP)

XOP ' 0D1 0D2
‘9 11 12 . 23 24 35

XOP Format

Typically a two-address instruction evaluates operand descriptors OD1 and OD? to obtain operands
OP1 and OP? respectively, then reads from OP2, performs the specified operation, and writes into
OoPl. ’

Unless otherwise noted, if an XOP instruction uses only one operand then it uses OD1 and requires
that the field used to encode OD2 be zero, or an OPERAND_NOT_REQUIRED hard trap will
occur. If an XOP instruction uses no operands, the fields for both OD1 and OD2 must be zero, or
that trap will occur. The FASM assembler automatically handles these cases. If an instruction uses
neither operand, FASM sets both fields to zero. If you write only one operand and the instruction
needs only one, FASM sets the unused OD field to zero. If the instruction needs two, FASM uses
the same operand twice.

For example, FASM emits the same code for the following two instructions because the INC
instruction requires two operands:

INC COUNT,COUNT s COUNT := COUNT + 1
INC COUNT s COUNT := COUNT + 1

The followiAng.exampvle uses INC. more flexibly‘:
INC CéSTPLUSl,COST ; CbSTPLUSl 1= COST + 1

The RUS instruction requires only one oéerand, sO providing two would be an error:
RUS RTA ; RTA := USER_STATUS

When an XOP instruction stores results in both operands, it stores OP? first (see the example under
the EXCH instruction in Section 2.7).
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1.5.2 Three-address (TOP) Formét

TOP T 001 002
8 918 11 12 . 23 24 35

TOP Format

A typicai three—adc{resé inétruction operates on data from two opei';ands and deposits the result in
the third. o

Because not enough bits are available to prdvide three operand descriptor fields, a TOP contains
only two, OD1 and OD2. A two-bit field called “T” describes how the instruction uses those two
operands and what it uses for the third.

If we use “TOP” to represent the operation performed by any,' particular TOP instruction, then we
can use the following equation to represent the effect of the instruction:

DEST := S1 TOP S2

The “T” field determines which operands to use for DEST, S1, and $2 according to the following
table: '

DEST SI  $2
OPI  OPl OP?
OP1 RTA OP2
RTA OPl OP?

RTB OPl OP2

FASM automatically sets “T". The fdllowing are all legal combinations:

AOD X,X,Y 3 X=X+ Y (T field = 8)
ADD X,RTA,Y " 3 X :=RTA + Y (T field = 1)
ADD RTA,X,Y ;s RTA := X + Y (T field = 2)

ADD RTB,X,Y ; RTB := X + Y (T field = 3)

If X, Y, Z, and RTA are all distinct, the following examples are illeg"al and FASM will give error
messages:

ADD X,Y,Z s [llegal
ADD X,VY,Y ;: Iliegal
ADD X,Y,X s Illegal

This special ability to specify RTA and RTB via the T field does not preclude specifying RTA or
RTB as ordinary operands inside the descriptors OD1 and OD2, however. The following examples
are therefore perfectly correct: ‘
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ADD RTB, X,RTA : RTB := X + RTA (T -field = 3

' 3 and 0P2 = RTA)

ADD X,RTA,RTB + X #= RTA + RTB (T field = 1
' ; and OP2 = RTB)

Reverse form: The T field of a TOP instruction provides asymmetric features: it can specify that
the first operand (S1) is either RTA or identical with the destination (DEST), but it cannot do the
same for the second operand (S2). The asymmetry would handicap non-commutative instructions
like those for subtraction and division, so such instructions generally have reverse forms that swap
S1 and $2. The name of a reverse form instruction is that of the normal form with a “V” appended.

If we use “TOP” to represent the operation performed by any particular reverse form, then we can
use the following equation to represent the effect of the instruction:

DEST := S2 TOP S1

The instruction SUBYV, for example, is the reverse form of the TOP instruction SUB:

SuB X,RTA,Y s X :=RTA - Y
sSuBvY X,RTA,Y ; X :=Y - RTA
SuB X,Y s X = X-Y
suBv X,Y t X= ¥ - X

Without SUBYV, subtracting RTA from Y and storing the result in X would be impossible in a
single instru;tion:

SUB X,Y,RTA ’ s Illegal

A reverse form swaps the precisions of thé operands as well as their order in the expression that
describes the instruction. If, for example, the normal form of an instruction expects S1 to have twice
the precision of S2, then the reverse form expects S2 to have twice the precision of S1. If the normal
form uses a single operand from S2 and a pair from S1, the reverse form uses S1 and a pair from
S2.

Short form: If only two operands appear, FASM will use the first one as both S1 and DEST. Thus.
the following pairs of instructions are equivalent: ' ' '

ADD X,X,Y i X=X+ Y
ADD X,Y . s X=X+ Y
SUBV X,X,Y s Xi=Y =X
SUBV X,Y s X =Y - X

When an ordinary TOP instruction stores more than two results, it stores S2 before S1 and Sl
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.before DEST. When a reverse form TOP ins;ruction stores more than two results, it4 sfores S1
before $2 and S2 before DEST. Any unused OD field must be set to zero; the assembler does this

automatically.



18 1 Introduction

1.5.3 HOP Format

HOoP J oo
R 67 » 35

HOP Format

A single instruction, SJMP, uses this format to jump to a location relative to the current program
counter. The processor uses the “J” field as an unsigned displacement, expressed in singlewords.
The address calculation. “wraps around” if it exceeds the maximum address:

GOTO (PC+4xSIGNED(J)) MOD (2131)
Thus the instruction can actually jump to ahy singleword in a virtual address space. To jump
backward, the instruction merely uses a ] field large enough to cause the address calculation to wrap

around.

In practice, the assembly language programmer simply provides a label for the branch destination
and lets the assembler calculate the ] field.
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1.5.4 Skip (SOP) Format

SOP SKP 001 ,_ 002 |
‘8 78 1112 - 23 2% 35

SOP Format

Generally a SOP instruction compares two operands and, depending on the result, branches relative
to the current program counter. The term “skip” has a broader meaning here than in many
architectures; the destination of the branch can be any location within -8 .. 7 singlewords of the
_program counter (which is, as defined in Section 1.3, considered to point to the first word of the skip
instruction itself). ' : -

The SOP field tells the processor what condition to test for, the SKP field tells it where to branch,
and operand descriptors OD1 and OD2 can specify two operands to be compared. The following
statement describes a typlcal SOP instruction:

IF OP1 SOP OP2 THEN GOTO PC+4xSIGNED (SKP)

To use a SOP instruction in FASM, simply provide a label for the skip destination. The assembler
~ will automatically subtract the current location to compute the offset..

s If X is greater than Y, swap them
SKP.LEQ X, Y,NOSWAP
EXCH X,Y

NOSWAP: ...

Omitting the label is the same as skipping the next instruction. Thus, the following example has the
same effect as the previous one:

s 1f X is greater than Y, swuap thenm
SKP.LEQ X,Y
EXCH X,Y-

NOSWAP: ...
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155 Jump (JOP) Format

JopP 8 oDl 002
2 18 11 12 - 23 24 ' 35 -

JOP 1 001 J
2 18 11 12 23 24 35
JOP Format )

Jump instructions generally perform an operation on a piece of data and then branch. The JOP
field is the opcode and ODI1 is an operand descriptor that specifies the operand OP1.

When bit 11 (called the “PR” bit) is 1, the processor performs a relative jump. The “J” field is a
signed offset that permits branching to any singleword location within -2048 . . 2047 singlewords of
the current location. (By definition, the program counter points to the JOP instruction itself while
the processor interprets the instruction.) The processor adds “J” to the PC to obtain a jump
destination, or JUMPDEST.

When bit 11 is 0, the processor performs an absolute jump. It evaluates operand descriptor OD2
and, if necessary, an extended word to obtain the JUMPDEST, allowing direct, indirect, or indexed
addressing--but sometimes costing an extra word of memory to do so. If OD2 specifies a register or
constant, an ILLEGAL_OPERAND_MODE or ILLEGAL_MEMORY hard trap occurs.

The FASM assembler decides automatically whether to use an absolute or relative JOP; sxmply
provide it with a branch destination label:

JMPZ.GTR.S X, AWAY . ; IF X .GT. 8 THEN GOTO AWAY

Specifying a more complicated operand for the JUMPDEST--the contents of a reglster for
example--forces FASM to emit an absolute jump:

JMPZ,CTR.B X, (R1€)8 s IF X .GT. @ THEN GOTO (tho
' $ address found 1n R16)

Onmitting the jump destination label in FASM has the same effect as jumping past the following
instruction. Thus the next two examples are equivalent:

JMPZ.EQL.S A,F
EXCH.S A,B
F: cee

JMPZ.EQL.S A
. EXCH.S A,B
F:
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1.5.6 Vector Instructions

Vector instructions generally use the same format as XOP instructions. OD1 and OD2 are operand
descriptors which may specify either scalars or vectors, depending on the particular instruction.

A vector is simply a series of consecutive scalars which must lie in memory, not in the registers.
Unless noted otherwise, vector instructions obtain from register R3--also called SIZEREG--the
length of the vectors they operate on. SIZEREG expresses lengths in terms of elements, not
quarterwords. Thus, for example, SIZEREG=100 indicates the vectors are 200 quarterwords long if
the current instruction operates on halfwords or 800 quarterwords if the current instruction operates
on doublewords.

‘Wheri an instruction uses OD1 to specify a vector, it evaluates OD1 to obtain OP1, regards OP1 as
the first element of the vector (not a pointer to the vector) and assumes the remaining elements
follow OP1 in memory. The same is true of OD2. Thus, when we refer to “the vector x” we mean
the vector whose first element is x.

When a veeter instruction needs rnore than two 1operands, it uses registers R0, R1, and R2--also
"called SRO, SR1, and SR respectively--~as pointers to the additional vectors in memory.

Unless otherwise noted, the result of a vector operation is undefined 1f ‘a source operand and a
destination operand overlap (unless they coincide).

Many vector instructions permit the user to choose by means of a {SR,OP1} modifier whether to put
the result back into OP1 or into an arbitrary vector pointed to by the appropriate SR register.

At the beginning of the description of each vector instruction, to the right of the name of the
instruction, a symbolic equation: describes its operands. For example, the following means that a
vector operand and a scalar operand produce a vector result:

V:=Vs

while the following means that two vector operands produce two scalar results:

§S:=VV
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1.6 Operand Descriptors

This section explains the capabilities of the operand descriptors referred to in the preceding
instruction formats. Note that some operands are specified through operand descriptors and others
are not. For example, the relative-jump version of the JOP format uses an operand descriptor
called ODI1 to specify operand OP1 while it uses a field called J--which does not obey the rules for
an operand descriptor--to specify the jump destination. The fields which are not operand
descriptors have already been described under each of the instruction formats.

1.6.1 Subfields of an Operand Descriptor

As mentioned earlier, operands which are specified by Bperand descriptors belong to two classes. If
an operand fits inside an OD, we call it a skort operand (SO); if it requires an extended word (EW),
we call it a long operand (LO). Note that “long” and “short” refer to the complexity of the
addressing mode, not to the precision of the operand: a short operand may, for example, be a
quarterword, halfword, singleword, or doubleword.

A 12-bit operand descriptor field is generally partitioned into three subfields called OD.X,
OD.MODE, and OD.F: :

X | MODE F
g 1 56 11

- The sole exception occurs when the four high-order bits of OD.MODE are all zeros, in which case
the low-order bit of OD.MODE joins the OD.F field to form a field called OD.REG:

X| @ REG
B 1 465 11

When X=1 the OD requires an EW, and that EW can be partitioned in three ways, depending on
the value encaded in the OD:
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CONSTANT
K ' 35
Constant EW
TAG ADDR
P 45 .35

Simple-base EW

TAG | REG DISP

8 45 9129 35
Complex-base EW

1.6.2 Constant Operands

23

Any operand descriptor can specify a constant, though particular instructions may prohibit them.
For example, operand .descriptor OP1 of a MOV.S.S instruction can encode a constant, but the
instruction will encounter an ILLEGAL_CONSTANT hard trap because storing into a constant is
illegal. Similarly, it is illegal for an instruction to attempt to obtain ADDRESS(x) if x is a constant.

The assembler interprets an expression preceded by “#” as a constant. The assembler will encode
the constant as compactly as possible. Constants in the range -32 . . 31 will fit in SO format while
the LO format accommodates up to 36-bit signed constants: ‘

ADD.S A,#-5 s -5 would become an SO constant
ADD.S A,#TABLESIZE ;s Illustrates the use of expressions
ADD.S A, #<TABLESIZE-1> ; as constants

Bracketing the number or expression with “[I” symbols forces FASM to use the LO format even if
the constant is small enough to fit in the SO format. This makes it possible to use a symbolic
debugger to patch the constant to a larger value later on, and guarantees that the size of the code
emitted will not vary with the size of the constant:

ADD.S A,#[-5] ,
ADD.S A,H#[TABLESIZE-11l
ADD.S A,#[106125183113])

(Note that because a “#” precedes them, the square brackets here do not denote assembly literals.)

The precision of an instruction is inherent in the opcode, not the operands, so a constant in either
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SO or LO format is ordinarily converted from a 36-bit entity to the desired precision at execution
time, either reducing precision by discarding high-order bits or increasing precision by extending
the sign bit.

If an instruction calls for doubleword precision, however, it is possible to specify different
conversions. Putting “0 ?” in front of the constant but within the brackets sets the high-order half
of the doubleword to zero and the low-order half to the constant. Putting “? '0” after the constant
but within the brackets sets the high-order half of the doubleword to the constant and the
low-order half to zero:

MOV.D.D A,#[-11 s A 1= 777777777777777777/77777 octal
MOV.D.D A,#(18 ? -1] ; A := B0BOBBPBOBLB777777777777
MOV.D.D A,#1-1 ? !@] y A= 777777777777888888888888

Note that these conversions are not available unless the instruction calls for doubleword precision.
For any other precision, it is possible to encode these conversions in the OD format, but the
processor will convert the constant in the ordinary manner——by discarding high-order bits or
extending the sign bit. ‘

Indexed constants: This operand format specifies a 36-bit signed constant and a
singleword-aligned register. It adds the value in the register to the constant, converts the sum to the
precision of the instruction by either discarding bits or extending the sign, and uses the result as a
constant operand. Note that the addition ignores integer overflow and that specifying R3 accesses

register R3 rather than the program counter: A

3 one instruction... ,
ADD.S RTA,RTA,#[4) (RTB) 3 RTA := RTA + RTB + .4
: versus tuwo... S
ADD.S RTA,RTA,RTB
ADD.S RTA, #4

s (x+1)x(x-1) aor x2-1:
MULT.S RTA,#[11 (RTA),#[-1] (RTA)

RTA := RTA + RTB
RTA := RTA + 4

-s we

s RTA := (RTA + 1) % (RTA - 1) -
: or RTA := RTAZ - 1
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NOTATION
Symbol  Meaning
'S¢ -32..31 short constant
Ic 235 2%%) long constant
ar 0 step 4 until 124 aligned register

SHORT OPERAND CONSTANTS

(If the constant is too big, the assembler automatically uses the LO form)

FEASM notation Evaluation 0D Format .
g1 6§58 11
#sc sc 8] 2 sc

LONG OPERAND CONSTANTS .
FASM notation Evaluation 0D Format - ' EW Format

| @81 56 o1 0 35
#licl _ SIGNED(ic) 1l 2 1 le
#018 2 Ic) ZERO_EXTEND(1c) [1] 2 2 - e
#llc ? 1@ | c%2136 1l 2 3 le
#iic) (%ar) SignExtend(lc) |1| 2 [ 32+ar/s . Ic
+R[arl" S
Figure 1-1

Constant Operand Formats

1.6.3 Short Operand Variables

The SO format can denote two kinds of variable: a register or a location in memory accessed as a
pseudoregister.

Registers: The SO format can access any quarterword address within the register space, sub ject to
the usual rules for alignment of entities larger-than a quarterword. Specifying register R3 accesses
register R3, not the program counter.
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ADD.S RTA, %8. : Add contents of singleword at reg %8
3 (third singleword in registers) to RTA
ADD.Q RTA, %11. s Add contents of quarterword at register
' s %11 to RTA (due to misal ignment, ADD.H,
s+ ADD.S, or ADD.D would be illegal)
ADD.H RTA,%<COUNTER+2> ; Illustrates the use of expressions
Pseudoregisters: In itself, pseudoregister addressing provides a compact means of specifying a
memory location. The name pseudoregister arises because the more elaborate addressing modes
described in Section 16.5 incorporate this pseudoregister mode to give a memory location the same

capabilities as a register.

Pseudoregister addressing uses a singleword-aligned register to point to an address in memory and
provides a quarterword offset to select an anyword in the vicinity of the address pointed to. The
offset must lie in the range -128 . . 124 and be divisible by 4.

The register serves as a base pointer--an important concept throughout all the memory addressing
modes. Its upper 5 bits serve as the tag which, among other things, specifies the desired ring. Its
lower 31 bits contain an address. The concept of a base pointer is additionally important because it
determines the meaning of register R3. When one uses R3 as a base pointer, one obtains the
program counter instead of R3 itself. And last of all, the base pointer determines the segment in
which an operand lies (Section 1.7.2). The first term of every memory addressing calculation is
considered a base pointer, and a singleword fetched from memory to serve as an indirect address is
~ considered a base pointer also.

As for pseudoregister addressing in particular, note that- while the register'containing the base
pointer must be singleword-aligned, the alignment of the entity it points to is governed only by the
precision of the instruction. Thus, for a halfword instruction, the register must point to an aligned
halfword. Similarly, the actual operand obtained by adding the offset to the pointer must be
aligned properly for the pr;ecision of the instruction.

As an example of pseudoregister addressing, let VSP be a register used to point to an
upward-growing stack of parameters and variables in memory. Pseudoregister mode makes it easy to
access variables relative to the top of the stack:

Add 7 to top singleword on stack
(for upward-growing stack, pointer
indicates next free location)

ADD.S (VSP)-4,#7

- we ws

EXCH.S (VSP)-8., (VSP)-4
SKP.EQL.S (VSP)-20., (VSP) -4

Suap top two singleuwards of stack
Compare top singleword with fifth
singleword

-e we we

As another example, suppose that register R7 contains a tagged pointer to a Pascal record structure.
Pseudoregister addressing can access components of that record:
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movelsecond word of record to RTA

MOV.S.S RTA, (R7)4 ;
MULT.S RTB, (R7), (R7)8 : s+ RTB gets product of first and
s third words

As Section 1:6.4 explains, one of the LO addressing modes has the same syntax as the.
pseudoregister mode, and permits a larger offset. The assembler- automatically uses the LO format if
the desired offset is too large.

NOTATION

Symbol- Meaning _ B

r 0..127 o . register

pr 12 step 4 until 124 ’ pseudoregister base
$ao -128 step 4 until 124 short aligned offset
R[x] . Contents of register location x :

MI(x] Contents of memory location x

Blx] . Evaluate x as a base pointer; if x=R3 use PC instead

- SHORT OPERAND VARIABLES

FASM notatioﬁ Evaluation 0D Format :
' 14586 11
%r RIrl 4 el 8 r
(%pr) sao MIBIR[prl]l+saol 8l pr/4 sao /4
Figure 1-2

~ Short Operand Formats

1.6.4 . Long Operand Variables

Long operand variable formats use the extended word alone to encode various memory address
computations.

Fixed-base: This mode uses a 31-bit field to specify a base address in memory. (The tag is implicitly
that of the ring in which the instruction is executing; no field is provided to encode a tag explicitly.)
One may either use the entity at that address as the operand, or treat it as a new base pointer for
indirect addressing:
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MOV.S.S RTA,AVAR Copy the singleword at

. : memory location AYAR to RTA
MOVP.P.A APTR,AVAR - s+ Make APTR point to AVAR
MOV.S.S RTA,APTRe ; Address AVAR indirectly through APTR

Variable-base: This mode uses a singleword-aligned register as a base pointer (that is, it has a tag
in its upper 5 bits and an address in its lower 31 bits.) The computation adds a 26-bit signed offset
to the address field of the pointer. One may use the resulting address either to fetch the operand or
to fetch a new base pointer which in turn specifies the operand:

Cupy to RTA the halfuord

which is 1088 quarterwords above the
quar terword pointed to by R7

The assembler automatically uses the
LO format here because the SO
pseudoregister format requires the
offset to be a multiple of 4

Make (R7)1888. point to AVAR

Address AYAR indirectly through

the pointer at (R7)10609.

MOY.H.H RTA, (R7)1008.

MOV.Q.Q RTA, (R7)1

we we we we we we we

MOVP.P.A (R7)1808.,AVAR
MOV.S.S RTA, (R7)1080.e
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NOTATION
Symbol Meaning
ar 0 step 4 until 124 -~ aligned register
la 0..2%1 long address
sd 925 925 short displacement
MIx] Contents of memory location x :
R([x] Contents of register location x
Blx] Evaluate x as a base pointer; if x=R3 use PC instead

LONG OPERAND VARIABLES
FASM notation Evaluation 0D Format " . EW Format
g1 56 11 8 45 9108 35

la MiB[lall 1] 2 %] b..7 la
lae - MIBMMIBL1allll 1| 2 8 | [2,3,8..11 la
(%ar) sd MIBIR[arl]+sd] 1] 2 ' %] 28..23 |ar/4| sd
(%ar) sde MIBMMBIR[arll+sdll] 1] 2 [ 24..27 |ar/4] sd

Figure 1-3 ‘

Long Operand Variable Formats

1.6.5 Combined Long and Short Operand Variables

These addressing modes use both the short operand and the extended word to encode memory
address calculations. In each case, one may choose to use a pseudoregister in place of one of the
registers involved in the address calculation, thus nesting one calculation inside ancther.

In their most general form, these calculations sum three terms: a base pointer, an offset, and an index
(though not every term need always appear) after shifting the index:

(BASE POINTER)OFFSET[INDEXJTSHIFT

Unless otherwise mentioned, the base pointer is a singleword pointer (that is, it has a tag in the
upper five bits and an address in the lower 31 bits.) The offset and index values are added to the
31-bit address using modulo 2% arithmetic. This means that the sum cannot overflow into the tag
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field, and that when the offset is 31 bits long, one may regard it either as a 51gned value or as an
unsigned value that “wraps around” the virtual address space.

The shift moves the index 0, 1, 2, or 3 bits leftward (multiplying it by 1, 2, 4, or 8) so that the index
can effectively represent a number of quarterwords, halfwords, singlewords, or doublewords. (For
example, because the architecture always addresses memory in terms of quarterwords, singlewords
are 4 addresses apart rather than 1 address apart. To step through a table of singlewords, one must
either increment the index by 4 each time--which is usually inconvenient--or use the built-in shift
feature to multiply by 4.) If omitted, the shift defaults to 0.

The modes which provide indexing permit indirect addressing either before the indexing operation:
(BASE POINTER)OFFSETe[INDEX]*SHIFT

or afterward:
(BASE POINTER)OFFéET[INDEX]TSHIFT@

In the first case, the calculation adds the offset to the base pointer, obtains a new base pointer from
the resulting address, and adds the index to the new base pointer to find the operand. In the second,
the calculation adds. both the offset and the index to the base pointer, obtains a new base pointer
from the resulting address,:and uses that base pointer to find the operand. When indirection
follows the indexing operation, the shift must be either 0 or 2.

Based:- This mode uses a base pointer (which can be either a.singleword-aligned register or a
singleword memory location specified by means of pseudoregister addressing) and a 31-bit offset.
MOVP.P.A (R7)-4,F Make the singleword at (R7)-4
s point to F
; Move to RTA the singleuword
t Hhich lies 188 quarterwords above
: s F
MOVP.P.A ((R7)-4)188.,AVAR s Make F+188 point to AVAR
MOV.S.S RTA, ({R7)-4)108.e : Use that pointer to address AVAR

s indirectly

-e

MOV.S.S RTA, ((R7)-4)188.

Based-indexed: This mode uses a base pointer (which can be either a singleword-aligned register or
a singleword memory location specified by means of pseudoregister addressing), a 26-bit signed
offset, and a singleword-aligned register for indexing. Indirect addressing is possible either before or
after the indexing operation:
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Move to RTA the quarterword
obtained by using R7 as a base
pointer to memory, adding a
108-quarterword offset to the
pointer, and offsetting further

by the value found in RTB

Similar to the previous example,
but use as the base pointer the
singleword specified by
pseudoregister (R7)-4

Similar to .the previous example,
but multiply the index register by
2 since We are addressing halfuords
In any of the previous three
examples, one may use the offset to
find a new base pointer, ‘indirect
address through it, and then use
the index register as a further

; offset

Alternatively, one may choose to
use the singleword obtained by the
indexing operation as an indirect
addressing pointer. .

-e

MOV.Q.Q RTA, (R7)188. [RTB]

ws we we ws we

MOV.Q.Q RTA, ((R7)-4)108. [RTBI]

ws we we we

MOV.H.H RTA, ((R7)-4)188. [RTBIM

we we we

MOV.Q.Q RTA, (R7)129.e[RTB]

- we we we we

MOV.H.H RTA, (R7)100. [RTBl112e

we we we we

Fixed-based-indexed: This mode provides a 31-bit base address and an index (which can be either
a singleword-aligned register or a sirigleword in memory specified by a pseudoregister). Because the
31-bit base address provides no means of encoding a tag, the tag is implicitly that of the ring in
which the instruction is executing. One may choose indirection either immediately before or
immediately after the indexing operation. ‘ '

Y A ' .

MOV.Q.Q RTA,BPTRIRTBI Move to RTA the quarterword found.
: : by using BPTR to paint to memory and the

value stored in RTB as an offset from
. that location
Like the previous example, but multiply
the index by 8 since we are dealing with
doublewords
Shouws the use of pseudoregister
(R7)-4 as the index
Use the singleword at BPTR as an indirect
address pointer and index from the location
to which it points
Similar to the first example, but use the
singleword located by the indexing oper-
ation as an indirect address pointer

- we we we

MOV.D.D RTA,BPTRIRTBI*3 :

MOV.Q.Q RTA,BPTRI(R7)-4]

MOV.Q.Q RTA,BPTRe [RTBI]

MOV.Q.Q RTA,BPTRIRTBle

We we wWe we we wWe ws we we we wa
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Register-based-indexed: This mode provides a singleword-aligned register as the base pointer, a

26-bit signed offset, and an index (which may be either a singleword-aligned register or a

singleword in memory specified by a pseudoregister). One may choose indirection either preceding

or following the indexing operation.
MOV.Q.Q RTA, (R7)1009. [(R8)-4] Move to RTA the quarteruword found

by using R7 to point to memory, adding

an offset of 188. to the address given

in R7, and then adding as an additional

offset the value stored in the singleword

speclfied ny pseudoregister (R8)-4

Like Lthe Inltlal example, but multiply

the index by 4 because we are

, dealing with singlewords

MOY.Q.Q RTA, (R7)1P8.e((R8)-4] ; Indirection preceding indexing

MOY.Q.Q RTA, (R7)108. [(R8)-4]112e ; Indirection following indexing

MOV.S.S RTA, (R7)108. [(R8)-4]112

we we we we

To illustrate the usefulness of a combined short and long operand variable addressmg mode,
consider the following fragment of a Pascal procedure:

YAR

I: INTEGER; TABLE: ARRAY [5..91 OF INTEGER;
BEGIN
FOR I :=5 T0 S DO

TABLE[I] := T:

To construct the operand for TABLE[I], assume first that SF is a register pointing to the beginning
of the stackframe for the procedure, and that the TABL’th byte in the stackframe points to the
memory location which would be the Oth element of TABLE if TABLE had a Oth element. The
following operand would specify that pointer: - ‘

- (SF)TABL
and the following operand would specify that firtional Oth element:-

(SF)TABLe

If VI is the byte offset from the beginning of the stackframe to variable I, then the following
indexes to find the Ith element of TABLE. Note the use of a shift to access singlewords properly:

(SF)TABLel(SF)VIIT2

The entire loop might look like this:
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MOV.S5.S (SF)VI,#5
LOOP: MOV.S.S (SF)TABLel(SF)VI112, (SF)VI
ISKP.LEQ (SF)VI,#3.,L00P

(We assume VI and TABL are not tco large td fit within this operand format, and that the value of
I is not used again following the loop.) :
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sao

id
sd

Meanin

. 0 step 4 until 124

12 step 4 until 124
-128 step 4 until 124

0..2%14
2% 2%
226 925

NOTATION
Symbol
MI(x]
Rx]
B[x]

. sh
ssh

1 Introduction

Meaning
Contents of memory location x

Contents of register location x
Evaluate X as a base pointer
(if x<R3 use PC instead)
0..8

Oor?2

COMBINED LONG AND SHORT OPERAND VARIABLES

Substitute either of these short operands .

FASM Notation

%ar

(%pr) sao

Evaluation

00 Format

81456 818 11

. for “SO” in the following:

FASM notation

(S0) Id

(S0) tde

(S0) sd [%ar]fsh
(S0) sde [%ar] tsh
(50) sd [%ar] Tsshe
1alS0] Psshe
a[S011sh

la@[S01 1sh

(%ar) sd [S011sh
(%ar) sde [SA1 1sh

(%ar) sd [S0] *sshe

Combined Long and Short Operand Variable Formats

R{ar] ) 11 8 | ar/4 ]
MIBIR[prll+saol 1] pr/b sao/4
Evaluation EW Format
] 45 918 35
MIB (S0 +id] %) ld
MIBIMIB[SOl+1d11] 1 ld
MIB [S0] +sd+R [ar]l x21sh] 12+sh |ar/4}] sd
M[BIM[B{SO] +sd]l]+R [ar] 16+sh |ar /4 sd
%2%shl] ,
M(B MBSOl +sd+R [arlx2fsshl]] 28+sshf2jar /4] sd
MIBIMIB[1al+S0x2%sshl]] 2+ssh f2 la
" MIB[lal+S0x2%shl b+sh la
MIBMIBLIalll+S0x24sh] 8+sh la
MIB IR [ar]]+sd+S0%2%sh] 28+sh |ar /4| sd
MBMIBIRIarll+sdl] 24+sh |ar/4} sd
+S0%21sh]
MIBIMIBIR[arl]+sd 38+ssh/2]ar /4] sd
+50%21ssh] 1]
Figure 1-4
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1.6.6 NEXT Versus FIRST/SECOND

Certain instructions are defined to deal not just w1th an operand but also with elements that follow
that operand in memory.

Vector instructions are an important example. If the first element of a vector is x, we use the
terminology “NEXT(x)” to describe the element which follows x in memory and has the same
precision as x. Thus, if the first element of a vector is F, then the second element is NEXT(F), the
third element is NEXT(NEXT(F)), and so on. The elements are handled independently, so no
special alignment rules govern them.

Certain other instructions deal with pairs of elements: the operand and the single element following
that operand. For example, the DIV instruction divides two integers, stores the quotient in operand
DEST, and stores the remainder in the element following DEST. In these cases, we use the
terminology “FIRST(x)” and “SECOND(x)” to describe the operand x and its successor. If the
precision of the instruction is quarterword or halfword, then the two elements must align together to
form a single entity of twice that precision. ' 4

Operands described in terms .of NEXT also differ from those descnbed in terms of
FIRST/SECOND with respect to constants.

When an operand described in terms of NEXT is a constant, the instruction replicates the constant
to provide the required number of elements, each having the precision specified by the instruction.
The VTRANS instruction, for example copiés one vector to another, so the following sets each
element of vector A to 7:

* VTRANS.S5.S ARRAY,#7

. When an operand x described in terms of FIRST/SECOND is a constant and the precision of the
instruction is quarterword, halfword, or singleword, the instruction expands the constant to twice
that precision, uses the high order half as FIRST(x), and uses the low order half as SECOND((x).
(When expandihg a singleword constant to a doubleword, it observes the special constant addressing
modes for doing so.) For instance, the BNDSF.B instruction is a TOP which sets its destination true
or false according to whether S2 lies within the bounds specified by FIRST(SI) and SECOND(S1),
so the following example:

BNDSF.B.S RTA,#[!8 ? 7],A
will test to see whether A lies within the range 0 .. 7 and set RTA accurdingly.

When an operand x described in terms of FIRST/SECOND is a constant and the precision of the
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instruction is doubleword, the instruction replicates the constant to provide FIRST(x) and

SECOND(x). Thus, for example,
BNDSF.B.D RTA,#0!8 ? 71,A

will test to see whether A lies between 7 and 7.

1.6.7 Forbidden Operand Formats

Cértain combinations of bits in the OD and EW formats do- not constitute legal addressing modes.
The processor interprets these as invalid long operands, causing a RESERVED. ADDRFESS_MODE

hard Ut ap:
0D Format ' EW Format
g1 56 11 8 4 5
11 2 4 .. 31 any
1] 2 ‘ - B g..1 any
1y 2 2 12..19 any
1] 2 2 28..31 | any
Figure 1-5

Forbidden Operand Formats
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1.7 Virtual to Physical Address Translation

The address translation mechanism maps 31-bit virtual addresses onto 3¢-bit phjsical addresses,
providing both segmentation and paging. It provides four different virtual address spaces, one per
ring, which may overlap.

1.7.1 Paging

The paging mechanism permits a virtual address space to be mapped onto widely scattered pieces of
physical memory, eliminating problems of memory fragmentation in a multiprogramming system. It
facilitates demand paging by recording whether a page has been accessed or altered, and by
trapping on any attempt to access a page that is absent from memory. And it permits one to restrict
the right to read, write, or execute each individual page.

A page is 4096 quarterwords long. Because a single virtual address space may contain as many as
219 pages, it is evident that the page mapping tables may themselves need to be paged.

In fact, the address translation mechanism has four different steps. Instead of a giant page table 219
entries long, it uses many little page tables each 16 entries long, so not every page table need be in
memory at once. Taken together, the 16 pages pointed to by one page table make up a segmentito.

A giant table called a Descriptor Segment contains a pointer to each of the (at most) 2'° page tables
for each of the 4 virtual address spaces—-or ol7 page tables in all. If the Descriptor Segment were
wired permanently into memory, an address reference would require two translations: one to find the
proper page table and another to find the proper page. But the Descriptor Segment itself is
composed of pages grouped into segmentitos, so an address reference first requires two translations
to find the appropriate point in the Descriptor Segment, and then two more translations to find the
- target address.

Figure 1-6 traces the entire process. A register called the Descriptor Segment Pointer (DSEGP) holds
the 34-bit physical address of the first word of the Descriptor Segmentito Table. Because the
Descriptor Segment points to (at most) four sets of o segmentitos and each pointer requires 8
quarterwords, the Descriptor Segment never exceeds 220 quarterwords. That translates into a
maximum of 16 segmentitos, which means at most 16 entries (called Segmentito Table Entries, or
STEs) in the Descriptor Segmentito Table. The 2-bit number of the ring being accessed together
with the first 2 bits of the virtual address select one entry from the 16 in the Descriptor Segmentito
Table. In turn, that entry points to the physical address of the first word of a Descriptor Page
Table, which has an entry (called a Page T'able Entry, or PTE) for each of the 16 pages comprising
that segmentito. Bits 2.. 5 of the virtual address select one entry from the 16 in that particular
Descriptor Page Table, which points to one page of the Descriptor Segment itself.

The Descriptor Segment, of course, contains nothing but pointers to segmentitos that make up the 4



38 ‘ 1 Introduction

virtual address spaces. In fact, this page of pointers is identical in form to the Descriptdr Segmentito
Table, except that it has more entries and the entries point to pages inside one of the virtual address
spaces instead of inside the Descriptor Segment. Thus, we have labeled it a “Target Segmentito
Table.” (Note, however, that the page shown is probably only one of many pages of segmentito
pointers required to describe the entire ring, and that the Descriptor Segment is a continuous list of
such pointers, not a separate table for each ring.) Bits 6 .. 14 select one STE from this table, which
points to the physical address of the first word of a Target Page Table, which has an entry for each
of the 16 pages comprising that segmentito.

Bits 15.. 19 of the virtual address select one PTE from that page table, which points to the
physical address of the first word of a page. Lastly, bits 19.. 30 of the virtual address select a
quarterword from that page. ‘

Using less than the full mapping: One need not use the entire mapping structure provided. Any
segmentito or page table entry may be null, either because the corresponding segmentito or page is
absent from memory or because the virtual address space in question is smaller than the maximum
allowable size.

Overlapping virtual address spaces: It is possible to make part or all of different virtual address
spaces overlap, simply by making some of their STE or PTE entries point to the same physical
memory. Some operating systems have customarily placed user and executive together in one address
space, providing protection by restricting access to particular pages. To achieve such operation with
this architecture, one may simply arrange the entries in the Descriptor Segmentito Table to point to
the same set of Descriptor Page Tables for each ring, thus mapping all four rings onto the same
physical memory and reducing the size of the mapping tables by roughly a factor of four.
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Virtual Address
Ring#|- Descriptor address \Target address
g 1 8 l 56 38
DSegmentito# | DPage# |
9 12 5
Descriptor
Segmentito Table
DSEGP
B 33 (4*RTng#+
-DSegment i to#) x80UW )
J Descriptor
Page Table
DPage#x4QUW -
I}
PTE
Translated ‘TSegmentito# | TPage# | Offset
Descriptor
Address ‘ 14 15 18 139 30
) Target
Segmentito Table
(1 page of the
descriptor segment)’
TSegmenIitb#*SQN_ . :
¥ - . _ Target
Page Table
STE - n
! TPage#x4QW -
2
- PTE
v
8 21 22 33

Physical address

Figure 1-6

Virtual-to-physical address translation

t
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1.7.2 Segmentation

One can view a virtual address space as a set of segments, so that the address for any particular
entity consists of a pair of coordinates: the segment number and the offset from the beginning of the
segment. If an index or offset causes an address calculation to exceed lower or upper segment
bounds, an OUT_OF_BOUNDS hard trap occurs.

Segments can vary in size, consisting of one or more segmentitos, hut a segment mnst ohey three
tules: the number of segmentitos in the segment must be a power of two, the segmentitns mnst he
consecutive within the virtual address space (which means simply that the pointers to them must be .
consecutive in the descriptor segment) and the virtual address of the beginning of the segment must
be an integer multiple of the size of the segment.

Those three rules make it easy to check segment bounds. Given any virtual address known to be
within a segment, plus the size of the segment, the processor can determine whether a second,
“suspect” address lies within the same segment merely by comparing the upper 19-x bits of the
31-bit addresses (where x is the base 2 logarithm of the number of pages in the segment).

As a result, the processor need not maintain an explicit table of segment boundaries. Instead, the
pointer to each segmentito merely contains a field giving the size of the segment containing that
segmentito.

As an example, assume we know some address x lies within a particular segment, and we know the
segment contains 8 2% segmentitos. To see whether an address y lies in the same segment, first
discard the 12 low order bits of x and y, which merely represent varying addresses within a page;
because a segment must start and end on segmentito boundaries and thus page boundaries, we need
merely check that the suspect address lies on a permissable page, without worrying about where
within the page it lies. But then we can discard an additional 4 low order bits from each of x and y
because they merely represent varying addresses within a segmentito; given that a segment must star:
and end on segmentito boundaries, we need merely check that the suspect address lies on a
permissable segmentito, without worrying about where within that segmentito it lies. Finally, we can
discard an additional 3 bits just because the size of the segment is 25 segmentitos. Those 3 bits must
be zero for the first of the 8 segmentitos in order for the segment to start on an integer multiple of
its size, and as a result they must equal 7 for the last of the 8 segmentitos. Since the 3 bits can have
any value from 0 to 7 and still lie within the segment, we need not Worry about them, either. The
remaining bits should be identical for every legal address within the segment, so we compare the
remaining bits of x and y. Only if they match did the two original addresses lie within the same
segment.

Segment bounds checking: Every memory address calculation begins with a base pointer,
establishing which segment is being addressed. The rule for bounds checking is simply that a
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memory access must lie within the same segment as the previous base pointer. Thus, the base pointer
plays the role of address x in the previous example, and the actual operand being accessed serves as

-

When an address calculation involves indirection, the indirect pointer must lie within the same
segment established by the base. But the pointer then establishes a new base, possibly in a different
segment, and subsequent memory accesses must lie within the same segment as the new base.

Bounds checking occurs only on actual memory accesses, so it is permissable for an offset to reach
outside the segment bounds provided a subsequent indexing operation brings the calculation back
within bounds before the access occurs.

l.7.3 Segmentito and Page Table Entries

Segmentlto table entries Each STE is a doubleword (shown in Figure 1-7) with the followmg
fields:

VALID If this bit is set, the page table for this segmentito is in memory and the processor
uses the remainder of the doubleword as described. Otherwise, the segmentito is
absent, the processor ignores the rest of the doubleword and software may use it
as desired. Attempting to access an absent  segmentito causes a
SEGMENTITO_FAULT hard trap (or, if the segmentito is part of the
descriptor segment, a DSEG_SEGMENTITO_FAULT hard trap).

PTA " Singleword physical address of the corresponding page table.

WB Write bracket. Attempting to write into this segmentito from a ring (or, more
formally, with a validation level) greater than WB causes an
ACCESS_VIOLATION hard trap. ‘ ‘

EB . Execute bracket. Attempting to execute this segmentito from a ring (or, more
formally, with a validation level) greater - than EB causes an
ACCESS_VIOLATION hard trap. Note that a cross-ring call via the
instruction CALLX and the gate mechanism (Section 2.12.2) is not considered an
attempt to execute the called ségmentito, and is thus exempt from EB restrictions.

RB : Read bracket. Attempting to read this segmentito from a ring (or, more formally,
with a validation level) greater than RB causes an ACCESS_VIOLATION
hard trap. '

ACCESS Specifies access modes as defined later in this section for all pages in this
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segmentito. .

Specifies the size of the segment that contains this segmentito, expressed as a
base 2 logarithm of the number of pages in the segment (for example, SIZE=8
indicates the segment contains 28 pages, which is 2” segmentitos). SIZE must not
be less than 4 (2% pages, or 1 segmentito) or greater than 19 (217 pages, or 15
segmentitos, or an entire 2?’l quarterword address space.)

Reserved for use by software.

PTA WB | EB RB |ACCESS| SIZE FLAGS

42
SIZE
FLAGS
VALID
8

134 3536 3738 39 40 41 42 46 47 &1 52 63 64 71

Figure 1-7
Segmentito table entry format

Page table entries: Each PTE is a singleword (shown in Figure 1-8) with the following format:

If this bit is set, implying that this page is in memory, the processor uses the

VALID
remainder of the singleword as described here. Otherwise, the page is absent
and the software may use the remainder of the singleword as desired.
Attempting to access an absent page causes a PAGE_FAULT hard trap.

USED If VALID=1, this bit indicates the page has been accessed. (More precisely, the
processor sets this bit when it brings into the map cache (Section 2.14) the
mapping information for this page.)

MODIFIED If VALID=1, this bit indicates the page has been modified. (More precisely, the
processor sets this bit when it marks the corresponding map cache entry to show
that the page has been written into.)

FLAGS Reserved for use by software.

ACCESS Specifies access modes for this page as defined later in this section.

PAGENO . The 22 high order bits of the physical address of this page.

VALID| USED IMODIFIEDFLAGS |ACCESS PAGENN
% 1 2 3 56 18111213 35
Figure 1-8

Page table entry format
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Access modes: The access permitted for a particular page is the logical AND of the ACCESS fields
in the STE and the PTE for that page. They permit an operating system to mark a page for
read-only access, write-only access, execute-only access, or any combination of reading, writing, and
execution. An instruction which attempts to access a memory location in violation of these markings
will cause an ACCESS_VIOLATION hard trap. (Of course, the attempted access must pass the
checking defined by the RB, EB, and WB fields in the STE, too.) Within each ACCESS field, the
bits have the following meanings:

WRITE_PERMIT
Instructions may alter this segmentito/page.

EXECUTE_PERMIT
A process may execute instructions fetched from this segrrientito/page

READ_PERMIT Instructions may read from this segmentito/page.
1/0_PAGE I/O instructions may address this page, but ordinary instructions may not. Note

that the WRITE_PERMIT and READ_PERMIT bits determine whether the
1/O instructions can write or read this page. -

WRITE_PERMIT |EXECUTE_PERMIT |READ_PERMIT|I /O_PAGE [SHARED
P 1 2 3 4

Figure 1-9
Bits in ACCESS field
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1.8 Rings and Protection
The uniprocessor architecture provides three principal kinds of protection.

The first, specified in the PRIVILEGED field of the PROCESSOR_STATUS register as
mentioned earlier, determines the rings from which privileged instructions may be fetched for
execution. '

The second, discussed in the preceding sections, épplies to privileged and non-privileged
instructions alike,.and to all four rings: unless otherwise noted, the architecture provides segment
bounds checking (which prevents a memory address calculation from erroneously exceeding the
buundaries of a segment) and access mode checking (which controls the ability of any instruction to
tead, write, or execute a particular page).

A third kind of protection allows “downward” accesses (in which an instruction executing in a given
ring teaches into a less protected ring to access an operand) but forbids “upward” accesses (in which
an instruction reaches into a more protected ring). This involves a process called walidation, which
checks the TAG field of a pointer and alters it or, if necessary, invokes a BAD_A_VALIDATION
or BAD_P_VALIDATION hard trap to protect more protected (lower-numbered) rings against
forbidden accesses from less protected (higher—nhmbered) rings. There are two kinds of validation:
address validation occurs when a pointer is used in addressing an operand or specifying a jump
destination; and pointer validation occurs when a pointer is itself an operand (usually when the
pointer is being moved from one place to another). The following sections discuss the pointer
format, address validation, and pointer validation.

1.8.1 Pointer Format

As mentioned earlier, the pointers that serve as rhe hase for most memory address calculations and
all indirect references incorporate both a TAG field and an ADDRESS field (Figure 1-10). Pointer
tags play an important role in dynamic linking, in memory accesses from one ring to another, and in
calls from one ring to another.

Though the architecture also features self-relative pointers and byte pointers, the word “pointer” by
itself in this manual will always mean a tagged pointer with the format shown in Figure 1-10.

TAG _ ADDRESS

Figure 1-10
Pointer Format
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Various values of the TAG field have the following meanings:

Tag
0

81

. 30

Meaning

Fault. When an instruction -attempts to access memory through this pointer, or
when the instructions MOVP or BASEPTR attempt-to manipulate this pointer,
a BAD_POINTER_TAG hard trap occurs. ' :

Gate. As explained in Section 2.12.2, the CALLX instruction can use a pointer
with a gate tag to implement a procedure call from one ring to another. If any
instruction attempts to use such a pointer to reference memory, however, or if the
BASEPTR instruction attempts to manipulate such a pointer, a
BAD _POINTER_TAG hard trap occurs. The MOVP instruction may,
however, move such a pointer. : :

NIL. If an instruction attempts to use this pointer to reference memory, or if the
BASEPTR instruction attempts to operate on this pointer, a
BAD_ADDRESS_TAG hard trap occurs. The MOVP instruction may, however,
move this pointer. A language translator such as LISP, Pascal, or PL/I may use
this pointer to implement the NIL or NULL construct.

Reserved. Any attempt to reference memory using this pointer, or to manipulate
it with MOVP or BASEPTR, causes a BAD_POINTER_TAG hard trap.

‘Ring 0 tag. An instruction which references memory through this pointer will

attempt to access the specified ADDRESS within the ring 0 address space.

Ring 1 tag. An instruction which references memory through this pointer will
attempt to access the specified ADDRESS within the ring 1 address space.

Ring 2 tag. An instruction which references memory through this pointer will
attempt to access the specified ADDRESS within the ring 2 address space.

Ring 3 tag. An instruction which references memory through this pointer will
attempt to access the specified ADDRESS within the ring 3 address space.

User tag. An instruction which references memory though this pointer will
attempt to access the specified ADDRESS within the same ring from which it
obtained the pointer (more precisely, it will access memory using as the initial
validation level the validation level derived in fetching the pointer; see Section
1.8.2) Because these 23 tags are equivalent architecturally, software may use
them for its own purposes, such as encoding the data type of the entity being
addressed.

Fault. This behaves exactly like a tag of zero. Because all but the
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largest-magnitude positive and negative integers will have either 0 or 31 in the
tag field, assigning special meanings to tags of 0 and 31 increases the likelihood
that the erroneous use of a random singleword as a pointer will be detected as an
error. ‘

1.8.2 Address Validation

The address validation that occurs during operand or jump destination evaluation applies to two
classes of pointers: those with TAG values in the range 4 .. 7, which are called ring pointers; and
those with TAG values in the range 8 .. 30, which are called user pointers. (One frequently refers
to ring tags and user tags in a similar fashion.).

An instruction or pointer is “trusted” by the ring from which it is fetched, and by higher-numbered
rings. Address validation enforces two rules. First, an instruction cannot access a ring unless the
instruction and each pointer used in computing the address are trusted by that ring. Second, an
instruction cannot access a location unless the instruction and. each pointer used in computing the
address of that location are trusted by the ring specified by the EB, WB, or RB field--whichever is
appropriate--of the STE (Section 1.7.3) for the segmentito containing that location.

Because the architecture allows virtual address spaces to overlap, it is imprecise to say that an
instruction, pointer, or operand “lies within a ring”. The page containing the instruction, pointer, or
operand may lie within multiple rings. For an instruction, we refer instead to the “ring of execution”,
meaning the ring specified by the PC in fetching the current instruction. For a painter ar aperand,
we refer to the wvalidation level, an internal value derived by the addressing mechanism which
specifies which ring number to use in accessing the desired entity.

Using those terms, here is the algorithm for address validation:

1. For each operand, the address calculation mechanism initializes the validation level to the number
of the ring of execution.

2. Each time the calculation handles a pointer, it uses the validation level and the tag tn derive a
new validation level:

a. If the tag is a ring tag and the ring number is less than the validation level, a
BAD_A_VALIDATION hard trap occurs.

b. If the tag is a ring tag and the ring number is greater than or equal to the validation
level, the new validation level is the ring number.

c. If the tag is a user tag, the validation level is ﬁnchanged.
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Note that the validation level can never decrease, because that would allow access to a more
protected ring.

Of course, an attempt to access memory is also subject to checking specified by the ACCESS fields
" in the STE and PTE entries, and to that specified by the WB, EB, and RB fields in the STE entry:
the validation level derived in computing the address must be less than or equal to that specified by
the WB, EB, or RB field--whichever is appropriate.

To illustrate the rule that an instruction cannot use a pointer to access a ring which is more
protected than the ring of execution, suppose the following instruction executes in ring 1:

MOV RTA(R7N100.e

The initial validation level is therefore 1. The address calculation first. uses R7 as its base pointer.
If R7 contains a pointer with a ring 2 tag and an address F, then the calculation proceeds legally
because 2>1, and the validation level increases to 2. Next the calculation fetches an indirect pointer
from address F+100 within the virtual address space of ring 2. Suppose that pointer has a tag of 1
and an address of B. Because 1 is less than the current validation level, a hard trap occurs--even
though the instruction itself is executingﬂ in ring 1 and could have accessed location B in ring 1
directly. In this fashion, the cross-ring access mechanism prevents a pointer which is only trusted to
the level of ring 2 from exploiting the capabilities of a more trusted instruction executing in ring 1.

To illustrate the additional checking provided by the EB, WB, and RB fields in the STE entry,
suppose that ring 1 and ring 2 are mapped to the same physical memory. If address F lies in a
segmentito for which the WB field in the segmentito is 1 and the RB field is 2, then either of the
following instructions can execute in ring 1:

MOV.SS RTAF
MOVSS FRTA

(Recall from Section 1.6.4 that the tag for the operand “F” is implicitly that of the ring in which the
instruction executes) The first instruction can execute in rii_'lg 2 as well, because RB=2. But the
second instruction will trap if it executes in ring 2, because WB=1. In this manner, one can give the
executive read/write access to a segmentito while limiting the user to read-only access.

The validation mechanism discussed in this section applies to the operands of jump and call
instructions as well. The PC is itself a pointer. When the PC changes due to a jump, call, or return,
the new tag of the PC is the ring tag corresponding to the final validation level of the jump
destination or pointer used to change the PC. This prevents an instruction executing in a
higher-numbered ring from calling a routine located in a lower-numbered ring. Because such calls
are needed to permit user code to obtain operating system services, the architecture provides two
mechanisms that circumvent the validation scheme in a controlled fashion: the TRPEXE
instruction, discussed in section 1.9, and the CALLX instruction with gates, discussed in section
2.12.2.
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1.8.3 Pointer Validation

By itself, the address validation mechanism discussed in the previous section is not sufficient to
protect lower-numbered rings against mischief from higher-numbered rings. The ring number used
to fetch a pointer helps determine its validation level, so simply moving the pointer from a
higher-numbered ring to a lower-numbered one could give it additional capabilities.

For example, a user executing in ring 3 might construct a pointer ta data in ring 0 and then pass
the pointer as the address of a parameter to an operating system routine executing in ring 0, thereby
deceiving the operating system into accessing, on behalf of the user, data which is forbidden to the
user.

Therefore, whenever one moves a ring pointer or user poirter, it undergoes a second kind of
validation, called pointer validation, which alters its tag or, if necessary, traps to avoid giving the
pointer additional privileges. This validation is built into an instruction called MOVP, which
should be used in place of MOV whenever one moves a pointer. If a pointer is moved implicitly—-if
it is passed from one ring to another via a register, for example--the recipient must deliberately
validate it using the VALIDP instruction.

Pointer validation involves two steps:

1, If the pointer is in a register, the initial validation level is the number of the ring of
execution. If the pointer is in memory, set the initial validatiun level to equal the address
validation level derived in fetching it from memory.

2. Use that validation level to derive a new tag:

a. If the tag is a ring tag and the validation level is greater than the number of
the ring specified by the tag, invoke the BAD_P_VALIDATION hard trap
(because this pointer wants to access a more protected ring than the one from
which it was obtained). :

b. If the tag is a ring tag and the validation level is less than or equal to the
number of the ring specified by the tag, preserve the tag (because this pointcr
wants to access a less protected ring than the one from which it was obtained).

c. If the tag is a user tag and the validation level equals the number of the ring
of execution, preserve the tag. (Because the pointer was obtained from the ring
of execution, it cannot possibly be moving to a more protected ring. Moving it to
a less protected ring is harmless; at worst, if the pointer is fetched from that ring
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and used for indirection, it will appear to point to a less protected entity than it
did before.) '

d. If the tag is a user tag and the validation level is greater than the number of
the ring of execution, replace the tag with the ring tag corresponding to the
validation level (the pointer may be moving to a more protected ring than the
one from which it was obtained, so make the latter explicit).

To illustrate these rules, suppose a user routine called USER, executing in ring 3, has called an
operating system routine called EXEC, executing in ring 0. USER has constructed a ring pointer
called BAD, located in ring 3 but pointing to ring 0, and has passed in register RO a pointer to
BAD. (For the moment, we will assume the pointer in RO is correct and trustworthy.) EXEC
executes the following instruction to move BAD into a location called TRUSTED within ring O:

MOVP.P.P TRUSTED, (R9)

The processor first calculates the address of BAD, using the address validation algorithm. The
address validation level starts at 0, the ring of execution, and becomes 3, the ring number specified
by the.pointer in RO. - :

Once the instruction has addressed BAD, the pointer validation algorithm starts with 3, the
validation level derived during the address calculation, and examines the tag field of BAD itself,
which is a ring tag for ring 0. Because 0 is less than 3, the MOVP instruction traps.

Suppose instead that BAD is a user pointer. This time, when EXEC attempts to move it to
TRUSTED, the processor first calculates the validation level as 3, and then moves BAD to
TRUSTED. Because the validation level is greater than the ring of execution, the processor replaces
the user tag with the ring tag for ring 3. No error (and thus no trap) occurs.

But suppose instead thal the pointer passed in register RO is itself bad--that is, USER has
constructed it to point to data in ring 0. The validation level of a pointer located in register 0 and
pointing to ring 0 is in fact 0, so no trap will occur when EXEC addresses memory through RO.
Even if EXEC is suspicious and attempts to move the pointer from R0 to TRUSTED before using
it, the validation level still matches the ring tag, so no trap occurs:

MOVP.P.P TRUSTED,R®
MOVP.P.P TRUSTED, TRUSTEDe

Theac illustrates the importance of using the VALIDP instruction to validate a pointer generated by
20 untrustworthy process and passed to a trustworthy routine through a register. Provided a called
routine applies VALIDP properly to every pointer passed in a register, it is protected completely
because the validation mechanisms will prevent violations by any other poirters inside structures
passed to it.
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1.9 Traps and Interrupts

Traps and interrupts signal the processor to change its context temporarily and deal with an
exceptional situation. Traps usually result from errors, while interrupts are usually invoked by
external devices in need of I/O service.

For each trap and interrupt which may occur, a series of singlewords in memory called a trap vector
or interrupt vector provides information on handling the trap or interrupt. The processor obtains
new state information from the vector, pushes its previous state onto a stack, and branches to a trap
handler address specified by the vector.

(Conventions vary on whether “vector” applies to the group of singlewords pertaining to a particular
trap, or to the group of groups pertaining to all traps. We will always use “vector” to refer to Lhe
series of singlewords for a particular trap, and will use “set of vectors” to refer to several consecutive
vectors for several similar traps.) '

@ Traps which can be handled by a process at its own level of privilege. These include sof?
traps caused by errors as well as traps caused by the TRPSLF instruction.

©® Traps which must be handled by privileged code. These include kard traps caused by
errors.

® Interrupts, all of which must be handled by privileged code.
@ Traps caused by the TRPEXE instruction, which are in effect calls to the executive.
® The trap-like mechanism which uses gatcs to make cross-ring calls (Section 2.12.2).

Each class of traps and interfupts has its own set of vectors. A register called the trap descriptor
block pointer (TDBP) contains the 34-bit physical address of a series of singlewords containing
ordinary tagged pointers, each of which points to the first singleword of a set of vectors:

Singleword Points to set of vec'tors for:
Ring 0 TRPSLF traps
Ring 1 TRPSLF traps
Ring 2 TRPSLF traps
Ring 3 TRPSLF traps
Ring O soft traps

Ring 1 soft traps

Ring 2 soft traps

Ring 3 soft traps

Hard traps

Interrupts from 1/O
Interrupts from counters
TRPEXE traps

Gate descriptor block for entering ring 0

WO 00 ~J O Ot i O N = O

bt et
- O

-
N
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13 ' Gate descriptor block for entering ring 1
14 Gate descriptor block for entering ring 2

Note that a set of vectors may lie in any desired ring, and the vectors may in turn point to handlers
in any ring which can be accessed from the ring containing the vectors. The vectors for ring 3 soft

jtraps may, for example, lie in ring 2 even though ring 3 cannot access ring 2; but the handlers must
/ lie in ring 2 or ring 3, because ring 2 cannot access rings 0 or 1. :

Each trap or interrupt vector has the folloiéing format:

4

TRP_PARM_DESC_SW (Singleword)
New USER_STATUS (Singleword)
Increasing
New PROCESSOR_STATUS (Singleuord) addiesses
ADDRESS (Handler) {Singleuword)
%] ; 35

Gates are a trap-like mechanism for cross-ring procedure calls which will be described in Section

2.12.2.°

1.9.1 How the Processor Responds to a Trap or Interrupt

When the processor responds to a trap, it follows these steps (the same steps apply to interrupts):

1. Locate the trap vector.

Within each set of traps, the possible traps are numbered consecutively starting at 0. When
a particular trap occurs, the processor finds the appropriate trap vector using the TDBP,
the pointer to the appropriate set of traps, and the number of that trap within the set. If,
for example, hard trap number five occurs, the processor fetches (from the eighth
singleword past the one pointed to by TDBP) a pointer to the set of hard traps, and then
uses the vector located 5%4 singlewords beyond the start of that set (because each trap
vector is 4 singlewords long).

2. Push the current state onto the stack pointed to by the SP in the register file specified

by the new PROCESSOR_STATUS found in the trap vector. The act of pushing this

information onto the stack is atomic, and any interrupts will remain pending until it is
complete. A hard trap may result, however—if, for example, the SP crosses a segment
boundary, exceeds SL, or touches an absent page--and such a hard trap does intercede
(Section 1.9.6).
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The information is pushed onto the stack in the following format, known as the save area
for the trap:

—~ old PROCESSOR_STATUS (1 singleword)
' old USER_STATUS _ (1 singleword)

old PC (1 singleword)
old PC_NEXT_INSTR (1 singleword)

SIZE (1 singleword)
INSTRUCTION_STATE (BIZE singleuords)
PARAMETER_AREA . {(varying nunber uf singledords)

REGISTER_SAVE_AREA 132 singlewords) »
Trap or Interrupt number 1 (1 singleward)
. old’'SP (1 singleuord)
SP» @ 35

Top of stack

If the trap is a soft trap or TRPSLF, it pushes a‘singleword' zero in place of the old
PROCESSOR_STATUS, because such traps are not privileged and thus may not access
PROCESSOR_STATUS.

SIZE 1s the number of singlewords occupied by the INSTRUCTION_STATE portion of
the save area. If SIZE=0, then INSTRUCTION_STATE does not appear at all
INSTRUCTION_STATE itself stores instruction-dependent and
imp]ementation—dependent information required for restarting the instruction that was in
process when the trap occurred. Some instructions are said to be interruptable, meaning
that interrupts can occur during their execution. A vector arithmetic instruction, for
example, may encounter a trap or interrupt part way through the processing of the vectar.
INSTRUCTION_STATE would in such a case contain the information needed to
proceed with the remainder of the vector ‘after handling the trap or interrupt, since it
would be wasteful or even incorrect to start over at the beginning of the instruction.

PARAMETER_AREA contains information about the cause of the trap, and varies in
content and size from one trap to another. The programmer may infer the size of this area
in any particular instance by comparing SP with the old SP value provided on the stack.

REGISTER_SAVE_AREA is not used by the architecture; the trap handler routine may
save the registers here if it so desires.

The “old SP” pointer specifies where the top of the stack was prior to the trap (note that it
points to the stack used in handling the interrupt, not necessarily the same as the stack that
was in use when the trap occurred). Because the SP stack grows upward and the pointer
for upward-growing stacks indicates the free location atop the stack, it turns out that “old
SP” points to the beginning of the save area itself.
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3. Load the new USER_STATUS value given by the trap. Provided the trap is not a soft
trap or TRPSLF, load the new PROCESSOR_STATUS value given by the trap vector.
(Because the user may be allowed to handle soft traps and TRPSLF traps within an
unprivileged ring, these traps cannot alter PROCESSOR_STATUS.)

4. Jump to the trap handler specified in the trap vector. The trap handler address is a
pointer, so this jump is subject to pointer validation checking, using as the initial
validation level the number of the ring containing the trap vector.

1.9.2 Soft Traps

As mentioned earlier, soft traps are those which can be handled without increasing the level of
privilege.

~ Soft traps supply the following information within the PARAMETER_AREA pushed onto the SP
stack:

DESTINATION_ADDRESS (Singleword)
UNSTORED_RESULT (4 Singlewords)
- - Increasing
Operand 1 {Doub | eword) addresses
Operand 2 (Doub | eword)
g | 35

If the destination operand is a memory location, DESTINATION_ADDRESS is a standard pointer
with tag and address fields. If the destination is a register, then DESTINATION_ADDRESS gives
zero (fault) as its tag and the register address (in terms of quarterwords) as its address.

UNSTORED_RESULT is the result that would have been stored in the destination address if no
trap had occurred. If it is an integer, it is sign-extended to be four singlewords long, with the most
significant portion in the singleword having the lowest address. If it is a floating point value, it
appears in the following format, where “S” is the one-bit sign and “-S” is the hidden bit (Section

2.3.1):
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EXP
S|S|-S MANT (high-order)
MANT
MANT (| ou~-order)
.8 35

(Singleuord)
(Singleword)
{Singleuord)
(Singleword)

Increasing
addresses

1. Introduction

“Operand 1” and “Operand 2” are the values of the source operands, sign-extended as necessary to
be doublewords. If the instruction has only one operand aside from the destination, then “Operand

2” is undefined.

Soft traps include:

0: NO_FAULT No fault has occurred. This trap never occurs; it is defined simply so that
software can use the value “0” to encode the absence of a trap.

1: FLT_OVFL_TRAP
Floating point overflow occurred with FLT_OVFL_MODE-=0.-

2: FLT_UNFL_TRAP ‘
Floating point underflow occurred with FLT_UNFL_MODE-=0.

3: FLT_NAN_TRAP
The floating point result was not a valid number and FLT_NAN_MQONE=0.

4: INT_OVFL_TRAP
Integer overflow occurred and INT_OVFL_MODE-=0.

5 INT_Z_DIV.TRAP
Integer division by zero occurred and INT_Z_DIV,_MODE =0.

6: BOUNDS_CHECK _
The BNDTRP instruction found its argument out of bounds.

7: FFT_TOO_LONG
An FFT instruction was required to operate on a vector whose size exceeded the

maximum for this 1mplementation

8: LOST_PRECISIOCN
An instruction such as FSIN or FCOS would deliver an imprecise result because
its source operand is much ]arger than 1.
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1.9.3 TRPSLF and TRPEXE Traps

The TRPSLF and TRPEXE instructions effectively let the user add a number of software-defined
instructions to the instruction set. Simply assign a trap vector number to each new instruction and
provide a corresponding trap handler routine to implement the instruction. Like XOP instructions
in general,'TRPSLF and TRPEXE instructions can take zero, one, or two operands. And like
certain XOP instructions, they can place restrictions on whether each operand can be a constant, a
quarterword, a singleword, et cetera.

The number of operands and the restrictions on operands for a particular trap are specified in-a
word called TRP_PARM_DESC_SW (trap parameter descriptor singleword) in the trap vector itself,
which has the following format:

g ' TMODE2 TMODE1
2 ’ 17 18 26 27 35

When the instruction executes, it evaluates OD1 as specified by TMODEI and places the result in
the first doubleword of the PARAMETER_AREA pushed onto the SP stack. It evaluates OD2 as-
specified by TMODE2 and places the result in the second doubleword of the
PARAMETER_AREA. Those twao doublewords constitute the entire PARAMETER_AREA for
TRPSLF and TRPEXE traps.

A TMODE value outside the range 0..7 causes a BAD_T_MODE hard trap to interrupt the
execution of the TRPSLF or TRPEXE. TMODE values within that range have the following
meanings:

0: Unused operand . _
The operand must be unused (that is, the descriptor must be zero) or a hard trap
interrupts the execution of the TRPSLF or TRPEXE. '

1: Undecaded OD Without decoding it, copy the operand descriptor into the high order half of the
doubleword parameter, right-justified in a field of zerces. Do not fetch any
extended address word. This is analogous to the treatment of the JUMPDEST
field in the relative form of a JOP instruction. The low-order half is undefined. '

2: Undecoded OD and extended word
Without altering it, copy the operand descriptor into the high order half of the
doubleword parameter, right-justified in a field of zeroes. If the descriptor calls
for an extended word, copy that into the low order half; otherwise, the low-order
half is undefined.
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3: Virtual address

4: Quarterword

5: Halfword

6: Singleword

7: Doubleword

1 Introduction

Obtain a pointer to the operand and store that, rather than the operand itself, in
the high order half of the doubleword parameter. The low order half is
undefined. This corresponds to the behavior of instructions like MOVP.P.A
and PUSHADR. Note that the address validation mechanism must use the ring
number of the ring which executes the TRPEXE, not the ring containing the
vector or the TRPEXE handler. If the operand is a constant or a register, a
hard trap interrupts the execution of TRPSLF or TRPEXE.

Interpret the operand descriptor to obtain a quarterword and store it in the high
order half of the doubleword parameter, left justified in a field of zeroes. The
low order halt' is undetined. I'his treats the operand exactly as would a “.{)”
instruction like “ADD.Q'™: thus, for éxample, it discards the high order bits of a
constant if necessary.

Interpret the operand descriptor to obtain a halfword and store it in the high

order half of the doubleword parameter, left justified in a field of zeroes. The
low order half is undefined. This treats the operand exactly as would a “H"
instruction like “SUB.H™: thus if, for example, the operand specifies a memory
location, that location must be halfword aligned or a hard trap interrupts the
execution of TRPSLF or TRPEXE.

Interpret the operand descriptor to obtain a singleword and store it in the high
order half of the doubleword parameter. The low order half is undefined. This
treats the operand exactly as would a “S” instruction like “SHFA.LF.S”: thus if,
for example, the operand specifies a memory location, that location must be
singleword aligned or a hard trap interrupts the execution of TRPSLF or
TRPEXE. '

Interpret the operand descriptor to obtain a doubleword and store it in the
duublewurd parameler. This interprets the operand exactly as would a “D"
instruction like “ANDTC.D”: thus if, for example, the operand specifies a
memory location, that location must be singleword aligned or a hard trap
interrupts the execution of TRPSLF or TRPEXE. Similarly, if the operand
specifies a constant nddrcssih‘g modc using “0 ?” or “?!0”, the constant will be
extended properly before it is placed in the doubleword.

Note that the return from a handler routine for TRPSLF or TRPEXE will ordinarily use the
RETUS.A or RETFS.A instruction to avoid repeating the trap indefinitely.
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19.4 Hard Traps

Hard traps are:

0: NO_FAULT No fault has occurred. This trap never occurs; it is defined simply so that
" software can use the value “0” to encode the absence of a trap.

I: DSEG_SEGMENTITO_FAULT
The VALID field in the STE for a segmentito w1thm the descriptor segment is
zero, implying the required segmentito is-not present in memory.

2: DSEG_PAGE_FAULT
The VALID field in the PTE for a page within the descriptor segment is zero,
implying the required page is not present in memory.

3: SEGMENTITO FAULT :
The VALID field in the STE for a target segmentito is zero, 1mplymg the
requxred segmentito is not present in memory.

4: PAGE_FAULT
The VALID field in the PTE for a target page is zero, 1mp|ymg the requ1red
page is not present in memory.

5: ACCESS_VIOLATION
Accessing an operand would have violated access mode checking (the ACCESS
field within'an STE or PTE) or segmentito ring bracket checkmg (the WB, EB,
‘and. RB fields within an STE). ~ :

6: GATE_INDEX_TOO_BIG :
- A cross-ring call used a gate pointer whose index exceeded the maximum index
for the ring in question, or whose ring number was 3.

7: BAD_POINTER_ TAG
An ordinary instruction tried to use a pomter with a fault tag or reserved tag to
" reference memory; or the MOVP or BASEPTR instruction tried to manipulate a
pointer with a fault tag or reserved tag.

8: BAD_ADDRESS_TAG
An instruction tried to reference memory through a pointer with a NIL or gate
tag, or a BASEPTR instruction tried to manipulate a pointer with a.NIL or gate

tag.
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9: OUT_OF_BOUNDS :
Accessing an operand would have violated segment bounds checking.

10: PRIVILEGE_VIOLATION A
A privileged instruction attempted to execute in user mode.

11: ILLEGAL_INSTRUCTION
The instruction opcode is undefined.

12: TRACE_TRAP
The TRACE_PEND bit in PROCESSOR. STATUS is 1.

13: CALL_TRAP The CALL_TRACE_PEND bit in PROCESSOR_STATUS is 1.

14: STACK_OVERFLOW _
The instruction would have caused a stack pointer to exceed the corresponding
stack limit.

15: RESERVED_ADDRESS_MODE
An OD and/or its associated EW has an undefined value.

16: OPERAND_NOT_REQUIRED
An unused operand descriptor was not set to zero.

17: ALIGNMENT_ ERROR
An operand was not properly ahgned

18: ILLEGAL_OPERAND _MODE .
The instruction attempted to use a register as-an operand where forbidden;
examples are vector instructions and instructions which find ADDRESS(x).

19: ILLEGAL_CONSTANT
The -instriction arrnmpted to use a constant as a destination or a jump address,

20: ILLEGAL_BYTE_PTR
The position or offset field of a byte pointer was invalid.

21: ILLEGAL_SHIFT_ROTATE :
The bit count for a shift, rotate, or bit reversal instruction was negative or too
large .

22: ILLEGAL_TRACE_PEND
An instruction (such as SWITCH or RETFS) is attempting to resume execution
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of an interruptable instruction which was left unfinished due to a trap or
interrupt. The PROCESSOR_STATUS.TRACE_PEND bit is set. Because the
TRACE_PEND bit could not have been set at this point in the execution of the
interruptable instruction, this indicates that privileged code must have
erroneously set the bit some time between the interrupting of the instruction and
the attempt to resume execution. The trap occurs on the instruction which
attempts to transfer control back to the interruptable instruction, not on the
interruptable instruction itself.

28: ILLEGAL_IOMEM
An instruction attempted to access an I/O memory not attached to “this

uniprocessor.

24: RING_ALARM_TRAP «
A ring alarm occurred upon changmg the ring of execution.

25: ILLEGAL_STATUS
An instruction attempted to place an 1llega1 value in USER_STATUS or

PROCESSOR_STATUS.

26: ILLEGAL_REGISTER
One of the privileged register access instructions specified a register or register
file number out of range. :

27: ILLEGAL_PRIORITY
The WIPND instruction specified a priority level outside the range 0 .. 31.

28: NONEXISTENT_MEMORY
The processor attempted to access memory which does not physically exist at this
installation.

29: BAD_A_VALIDATION
A memory access would violate the rules for address validation. -

30: BAD_P_VALIDATION
A memory access would violate the rules for puinter validation.

31: VMM_TRAP The processor was in virtual machine’ mode and attempted to execute any
privileged instruction, or one of the user mode instructions which are specified to

trap in virtual machine mode.

'82: BAD_T_MODE _
A TRPSLF or TRPEXE instruction found an invalid value in the TMODE | or
TMODEZ field of the trap parameter descriptor singleword.
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Parameters for hard traps: Only the following hard traps push any PARAMETER_AREA within
the save area:

L DSEG_SEGMENTITO_FAULT, °~ DSEG_PAGE_FAULT, SEGMENTITO_FAULT,
PAGE_FAULT, and ACCESS_VIOLATION provide one singleword giving the vxrtual address,
in pointer form, of the operand being referenced.

2. GATE_INDEX_TOO_BIG provides a copy of the gate pointer containing the invalid index.

3. BAD_POINTER_TAG and BAD_ADDRESS_TAG give a copy of the pomter whose tag was
invalid.

4. OUT_OF_BOUNDS provides a copy of the last base pointer encountered p'ridi‘ to the errot,
followed by a singleword giving the effective offset from that pointer (which may be the sum of an
offset and index) which caused the error.

1.9.5 Interrupts

There is one interrupt vector for each I/O memory associated with the processor. Interrupts do not
push any PARAMETER information within the save area. Interrupts are described further in
Section 1.10.

1.9.6 Recursive Traps

When a trap attempts to push information onto the SP stack, a hard trap may occur due to stack
overflow, a page fault, an access violation, and so on.

If the original trap was a soft trap, the SP is left at its original position preceding the soft trap while
the hard trap occurs. If the handler for the hard trap solves the stack problem and returns with a
RETFSR instruction, the operation which caused the soft trap is restarted and presumably the soft
trap will recur, this time completing without encountering a hard trap.

If the original trap was a hard trap, the processor will halt. The front end processor must take
appropriate action, since this situation indicates a serious system failure.



1.10 Input/output _ 61

1.10 Inp'ut/output

An S-1 processor performs I/O by reading and writing one-or more I/O memories, each of which is
shared between the S-1 processor and an 1/O processor (IOP). The architecture places few
constraints on the IOP, which might be a commercially available minicomputer or specially designed
hardware. Similarly, the architecture does not dictate how to use the memory to control devices, or
how many devices to control through each memory. Instead, these details are determined by the
IOP and by the device handler software within the S-1 processor.

An I/O memory appears to the S-1 processor as one or more pages of 36-bit singlewords. The IOP
itself may have a much different memory format, because both the hardware and the I/O
instructions themselves can provide transformations between the S-1 processor memory format and
that of the IOP. '

For proper operation, the S-1 processor must set the IO_PAGE bit within the ACCESS field of
each of the STEs and PTEs corresponding to an I/O memory page. This permits I/O instructions to
access the page and prevents non-I/O instructions from accessing it. The S-1 processor must also set
the READ_PERMIT and WRITE_PERMIT bits to grant the access desired. The RB and WB
fields in each STE entry will also restrict access to I/O pages.

Each I/O memory has a unique number in the range 0. . 211, (In a multiprocessor system, the
numbers are unique throughout the system, and an attempt by a uniprocessor to refer to an 1/O
memory not connected to that uniprocessor causes an ILLEGAL_IOMEM hard trap.) When an I/O
instruction addresses an operand on an I/O page, the usual virtual-to-physical address translation
occurs, and the resulting physical address prdvides the I/O fnemory number and the address within
that I/O memory:

" Physical Address

2 l 15 16 l "33

8 15 8 17
1 /0 Memory Number Offset Within 1/0 Memory

A vector I/O transfer performs this translation once for the first element of the vector. It obtains
succeeding elements from succeeding I/O memory locations, without translating their virtual
addresses, even if those elements lie on different pages which might specify different I/O memories
or even main memory. If the length of the vector causes it to overrun the end of the I/O memory,
the result is undefined.

Each I/O memory has one interrupt whose number is the same as that of the I/O memory, an
ENABLE bit which is controlled by the S-1 processor, and a priority ranging from 1.. 31, which is
controlled by the associated IOP. The S-1 processor itself can have a priority ranging from 0. . 31,
specified by the PRIORITY field in PROCESSOR_STATUS. When an interrupt occurs, the S-1
processor traps through the interrupt vector corresponding to the 1/O memory number only if the
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ENABLE bit is true and the priority of the memory is greater than that of the S-1 processor.
Otherwise, the interrupt remains pending until those conditions become true.

If multiple interrupts satisfy those conditions at once, the S-1 processor services them in descending
order of priority. When multiple interrupts have the same priority, the S-1 processor services them
in a consistent order, but the order is implementation-dependent.

Note that setting the S-1 processor priority to 0 permits every I/O memory to interrupt, while setting
it to 31 prevents any I/O memory from interrupting.

Section 1.9 explains how the processor reacts to an interrupt, obtaining a new context from the
interrupt vector and pushing its old context onto the SP stack. Note that the PRIORITY field in
the new PROCESSOR_STATUS obtained from the interrupt vector is ignored. Instead, the
processor priority is set to match the priority level of the interrupt and, unless otherwise altered,
remains at that level wuntil the interrupt handler returns and restores the old
PROCESSOR_STATUS.

110.1 I/O Memory Translation

Mapping the IOP memory format onto the S-1 processor format may involve two separate
transformations. First, the hardware design of the I/O memory converts the IOP format to a 36-bit
singleword format. Second, certain I/O instructions translate pornons of the singleword as they copy
between I/O memory and non-I/O memory.

The hardware conversion will vary among IOPs, so the architecture does not specify it. But in most
cases, a reasonable conversion is obvious. The following dlagram shows reasonable conversinns for
8-bit, 16 bit, and 36-bit JOPs:
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~ 8-bit I0P 1/0 Memory
1 a e] A [e] 8 o] c lef ©
Increasing] B ) 1 8 18 17 -19 26 28 35
addresses '
C €
D ’
-0 7
16-bit, bgtefsgdressed 1/0 Memory
B B8] A -|B8] B %] cC |o ‘ D
Increasing] A 1 8 18 17 19 26 28 35
addresses '
D -
C
%) 7
16-bit 10P. 1/0 Memory
A B —|8] A g B %] C |p D
Increasing
addrisses C D 1 8 18 17 19 26 28 35
[’} 7 8 15
36-bit I0P 1/0 Memory
A —> A
%) 35 2 . 35

Some I/O instructions perform no further transformation, but simply copy an anyword between 1/O
memory and non-1/O memory. Others—-the I/Q instructions which use the modifiers
{B,QH,S}--provide four different ways to translate singlewords by shifting fields within them:
bitwise, quarterword, halfword, and singleword translations. In the diagrams that follow, “X”
indicates that the corresponding field is ignored when an I/O instruction reads it or set to zero when
an 1/O instruction writes it.

Bitwise translations map the eight low-order bits of each quarterword in I/O memory onto all 36
bits of each singleword in non-1/O memory:

I Memory Non-1 Memory
/01 7 9 17 19 27 29 35 ] /98 1§ 16 23 24 31 32...

D A B C D E

[ e 4 —

. E| F G H I
1 8 18 17 19 26 28 35 ...34 1112 1928 27 28 35

P

Quarterword translations map each quarterword of I/O memory onto the corresponding
quarterword of non-I/O memory:
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I1/0 Memory A Non-1/0 Memory
A B C D — A B C D
B 883 17 18 2627 35 L] 839 17 18 26 27 35

Halfword translations map the eight low-order bits of two successive quarterwords within an
aligned haifword of I/O memory onto the sixteen low-order bits of a halfword in non-I/O memory:

1/0 Memory ' Non-1/0 Memory
X| A |X| B IX] C |X| D |e= X A B X c D
1 8 1817 1926 28 35 2 81917 28 27 28 35

Singleword translations map the eight low-order bits of faur snrcressive quarterwords within an
aligned singleword of I/O memory onto the 32 low-order bits of a singleword in non-I/O memory:

1/0 Memory Non-1/0 Memory
X] A [X] B IX] ¢ |X|] D |e— X A B C D
1 8 1817 1926 28 35 4 11 12 19 28 27 28 35
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1.11 Instruction Execution Sequence

The architecture divides the effect of an instruction into two halves, operand evaluation and
instruction execution, and requires that the processor behave as if operand eva]uatlon were complete
before instruction execution begins. '

Thus, unless otherwise stated, all operands required for execution are prefetc}led——that is, all address
computations (including indirection): are done and all source operands are ‘available before the
operation specified by the instruction is performed and before results ara stored.

The second half, the instruction execution sequence, consists of the following steps:

1. Process interrupts: If an interrupt is pending and has sufficient priority, trap through
the appropriate interrupt vector to the specified interrupt handler. On returning from the
interrupt handler, start at the beginning of step 1 again, so that if further interrupts are
pending, they will also be serviced.

2. Process trace traps and clear the TRACE_PEND bit: If the TRACE_PEND bit in
PROCESSOR_STATUS is 1, set TRACE_PEND to 0 so that traps encountered in step 3
do not cause the instruction to be traced redundantly, and invoke the TRACE_TRAP
handler. Next, if the CALL_TRACE_PEND bit in PROCESSOR_STATUS is |, set
CALL_TRACE_PEND to 0 so that traps enccuntered in step 3 do not cause the
instruction to be traced redundantly, and invoke the CALL_TRAP handler. Finally, if
either handler was invoked, restart the instruction-execution sequence at step 1.

3. Process pre-operation traps: If any other traps (such as page faults or illegal memory
accesses) that can be detected prior to the operation specified by the instruction are
pending, invoke the appropriate trap handlers. On returning from the last trap handler,
restart the instruction-execution sequence at step 1.

4. Save TRACE_ENB and CALL_TRACE_ENB: Save the values of the TRACE_ENB
and CALL_TRACE_ENB bits internally.

5. Operation: Perform the specific operation defined for this instruction, after first
examining the instruction state. Some lengthy instructions--vector instructions, for
example--are said to be interruptable. This means that an interrupt can suspend execution
during step 5, saving the state of the instruction execution on the SP stack in
INSTRUCTION_STATE as described in Section 1.9. Thus, if the instruction is known to
be interruptable, and INSTRUCTION_STATE indicates the instruction is in such a state
of suspended execution, step 5 will pick up where execution left off; otherwise, step 5 will
start from the beginning.

When an instruction is interrupted in the fashion juét described, the processor proceeds to
execute the instructions of the trap handler, following this sequence for each one. On
returning from the trap handler, the processor reencounters the interrupted instruction,
and begins processing it again from step 1. Only when the processor reaches step 5 and
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interrogafes INSTRUCTION_STATE does it become clear that this is the resumption of
a suspended instruction.

6. Process post-operation traps: If any traps (such as arithmetic overflow) resulted from
step 5, invoke the appropriate trap handlers.

7. Set TRACE_PEND and CALL_TRACE_PEND: If the value of TRACE_ENB saved
in step 4 is 1, set TRACE_PEND to 1. Thus, if tracing was enabled when this instruction
commenced or if this instruction itself sets TRACE_PEND during step 5, a trace trap will
occur on the following instruction even if this instruction disables tracing.

Similarly, if the value of CALL_TRACE_ENB saved in step 4 is 1, and the instruction
just executed in step 5 was a call ur return (Section 2.12 detfines these), then set

CALL_TRACE_PEND to 1.

8. Clear the instruction state.
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1.12 Mark ITA Implementation

Individual implementations of the S-1 Native Mode Architecture may vary in some respects from
the description in this document. The S-1 Mark IIA Uniprocessor embodies the following:

1. Segment bounds checking does not take place during the evaluation of an operand which is
fetched as an instruction rather than as data.

2. Segment bounds checking does occur when an instruction is fetched from address
PC_NEXT_INSTR. Due to the instruction pipeline, the four singlewords following the first
singleword of an instruction must lie within the segment and on a page with EXECUTE_PERMIT
access, regardless of the number of singlewords occupied by the instruction and its operands.

3. The USED bit in a PTE may, as a result of wrong-branch evaluation in the pipeline, indicate
. that a page was used when in fact it was not. A similar statement applies to the MODIFIED bit.

4. Attempting to take the FFT of a vector of more than 214 elements causes an FFT_TOO_LONG
soft trap.

5. Only the 11 low-order bits of address space IDs are significant.

6. Instructions for which rounding is inexact guarantee their results are monotonic--that is, if x2y
then F(x)2F(y)--with an error that is less than or equal to 0.75 of the least significant bit of the
mantissa. Instructions for which rounding is exact guarantee an error less than or equal to 0.5 of the
least significant bit.

The following instructions exhibit inexact rounding:

FRECIP
FCMAG, VFCMAG
FSQRT, VFSQRT
FLOG
FEXP
FSIN
FCOS

., FSINCOS
FATAN, FATANV
VF2DIS, VF3DIS
FCFFT, FCFFTV

7. RETFS.A will not copy CALL TRACE PENDING from the value of
CALL_TRACE_ENABLE in the saved PROCESSOR_STATUS. If one aborts a call or return
instruction, one must intervene anyway to patch up the control flow of the program, and one can
explicitly reinvoke tracing. RETFS.A will handle TRACE_PENDING as specified.



68

1 Introduction



69

2 Instruction Set

This section describes the S-1 native mode instruction set. For conciseness, it assumes familiarity
with the architecture as described in Section I; for example, instead of explicitly stating the' number
and types of operands for each instruction, it simply classifies each instruction as an XOP, TOP,
HOP, SOP, or JOP: Similarly, it avoids festating again and again the rules given in Section 1 for
vector operands. o N o X ‘
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2.1 Signed Integer Arithmetic

Signed integer arithmetic instructions interpret their operands--whether quarterwords, halfwords,
singlewords, or doublewords—-as two’s complement data. For any given precision, we call the largest
positive integer MAXNUM and the negative integer with the largest magnitude MINNUM.

J/
Precision MINNUM ' MAXNUM
Quarterword  -258 255
Halfword -131 072 _ 181 071
Singleword -34 359 738 368 ~ 84 359 738 367
Doubleword -2 361 183 241 434 822 606 848 2 361 183 241 434 822 606 847

2.1.1 integé_r Arithmetic Exceptiohs

Inside the USER_STATUS register, three bits called CARRY, INT_OVFL (integer overflov(t), and
INT_Z_DIV (integér division by zero) record the side effects or exceptions that occur during integer
arithmeticc. INT_OVFL and INT_Z_DIV are sticky--that is, integer arithmetic operations may set
them but never clear them, so once one of these bits is set it remains set until explicitly cleared by
manipulating USER_STATUS. CARRY is not sticky; instructions which affect CARRY will clear
it if they do not set it. ' :

CARRY Carry-odt or borrow-in from integer arithmetic.

INT_OVFL Integer overflow (that is, the result is greater than or equal to MAXNUM or the
result is less than or equal to MINNUM).

INT_Z_DIV Integer division by zero.

For example, the following three instructions set CARRY, INT_OVFL, and INT_Z_DIV:

INC RTA, #-1 s -1+1 invnkes CARRY
INC RTA,#1[377777,,7777771 ; MAXNUM+1 invokes INT_OVFL
. REM RTA,#9 s+ Remainder (RTA/8) invokes INT_Z_DIV

Two additional fields called INT_OVFL_MODE and INT. Z DIV_MODF tell the processor how
to respond to the INT_OVFL and INT_Z_DIV exceptions respectively--whether to trap or what to
use as the result of the arithmetic operation which encountered the exception. (Note that setting one
of the exception bits by manipulating USER_STATUS will not produce the specified response the
bit must be set by integer arithmetic):
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INT_OVFL_MODE :
0 Invoke INT_OVFL_TRAP soft trap without storing a result.
1 Retain as many low-order bits of the result as possible for the precision
4 in question, overwriting the sign bit.

INT_Z_DIV_MODE

0 Invoke INT_Z_DIV_TRAP soft trap without storing a result.
1 Use 0 as the result. '

2.1.2 CARRY Algorithm

To determine whether a particular instruction sets CARRY, evaluate the following formula. Xl,‘
X2, and X3 are the values shown for that instruction in the following table, and C_IN is the state of
CARRY at the beginning of the instruction:

CARRY = (X1<@ A X2<8) v [(X1<8 v X2<B) A (X14X2+X3 2 @)1

In the following table, “~” means one’s-complement; and “-1” is the two’s-complement of 1.

Instruction X1 X2 X3
ADD S1 82 0
ADDC sl $2 C_IN
SUB Sl -S2 1
SUBV -S1 S2 1
SUBC S1 ~82 C_IN
SUBCV ~S1 S2 C_IN
INC 1 OP2 0
_ ‘ S (Le, CARRY:=1 if OP2 = -1)
DEC -1 OP?2 0 : :

' (ie, CARRY:=1 if OP2 = 0)
NEG 0 -OP2 1 ‘

" (iLe, CARRY:=1 if OP2 = 0)

ABS 0 -OP2 1

(e, CARRY:=1 if OP2 = 0}
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2.1.3 Signed Integer Arithmetic
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ADD ..., Integer add

ADD {Q,H.S,D} - ‘ o o TOP_
Purpose: DEST:=$1+5S2. The integer sum of S1 and s2 is storeq in DEST.

Restrictions: None |

Exceptions: CARRY, INT_OV‘FL

Precision: S1, S2, and DEST all have ;phe.,precision.specifi_éd by the modifier.

e ——

Carry is set by, the following instruction. . Note that 777 has the signed. interpretation -1 and the
unsigned interpretation 2%-1;

ADD.Q.RTA,#333,#777. ., - sRTA:=332 (@) . .
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ADDC ’ ' Integer add with carry

| ADDC . {QH,S.D} ’ | | - TOP
Purpose: DEST:=S1+52+CARRY

Restrictions: None

Exceptions: CARRY, INT_OVFL

Precision: S1, 52, and DEST all have the precision specified by the modifier.

I Carry is set after the execution of the first instruction, and cleared -after the second: - |

ADD.Q RTA, #666, #777 ~ 3RTA:1=665 (QW)
ADDC.Q RTA,RTA, #1 ~ 3RTA:=667 (QW)

The following adds two “quadruple-word” integers at X and Y represented as a pair of DWs
with the low-order DW having the higher address. The result is stored in X and X+8 .

ADD.D X+8.,Y+8.
ADDC.D X,Y

Similarly, suppose that NUM | and NUM2 are'two blocks of singlewords, each of Iengfh N (N22)
and representing an N-word integer, with. lower-order words having higher addresses. These -

can be added and the resuit stored in an (N+1)-word block NUM3 in this manner: -

MOV.S.S RTB, #<N-1> : +RTB counts words

ADD.S RTA,NUM1 [RTB]12,NUMZ [RTB] 12 ;add low-order words
MOV.S NUM3+4x1 [RIBI T2, RTA sstore lou-order result

LOOP:  ADDC.S RTA,NUM1-4x1 [RTB]112,NUM2-4x1 [RTB142 ;add next words plus carry
MOY.S.S NUM3IRTBI12,RTA ;store next word
DJMPZ.GTR RTB,LOOP - sDJMPZ -does not alter carry!
CMPSF.L.8S.S RTA,NUM1, #@ sproduce sign-extension of
CMPSF.LSS RTB,NUMZ, #8 ‘ ; NUM1 and NUM2

| ADDC.S NUM3,RTA,RTB sproduce high-order result I
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SUB ' L : Integer subtract
SUB . {QH:S,D} : | ~ TOP

4

Purpose:; SUB computes DEST:=S1-S2; SUBV computes DEST:=S?-—SI.;
Restrictions: None
Exceptions: CARRY, INT_OVFL

Precision: S1, S2, and DEST all have th}e precisi_on., specified by the r_nqdifgier. .

This example subtracts 1 from -1 to obtain -2. After execution, CARRY is set, INT_OVFL is
clear, and RTA contains =2 o A o o

| SUB.S RTA,#-1,#1 ;RTA:=-2 _ : : |
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SUBC Integer subtract with carry
SUBC . {QH.5.D} . TOP
SUBCV . {QH,S.D} TOP

Purpose: SUBC computes DEST:=S1-52-1+CARRY; SUBCYV computes DEST:=S2-S1-1+CARRY.
Restrictions: None ' : .
Exceptions: CARRY, INT_OVFL

Precision: S1, S2, and DEST all have the ~precisinn specified by the medifier.

Let X and Y be two pairs of DWs representing a long integer with the low-order DW having
the lower address. The following sets X to the difference of X and Y:

suB.D X,Y

I " SUBC.D X+8.,Y+8. ' l

i
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MULT L ' Integer multiply

MULT . {QH,S,D} | . TOP
Purpose: DEST:=LOW_ORDER(S1%S2)

Restrictions: None

Exceptions: INT_OVFL

Precision: S1, S2, and DEST all h_ave the precision specified ~by the,modifier.

INT_OVFL is set by the following instruction which multlphes 333 octal by 3, giving a
result--1221. octal--which is larger than can fit in nine bits: .

MULT.Q RTA,#[3331,#3 ;RTA:=22_1 S@Qu). T,
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MULTL Integer multiply long, long result

MULTL .‘{AQ,H,S} ' _ TOP
Purpose: DEST:=S 1%S2

Restrictions: Next

Exceptions: None

Precision: S1 and S$2 have the same precision as the modifier. DEST has a precision twice that of
the modifier and must be aligned accordingly.

The following instruction does not set INT_OVFL since the result fits in a halfword:

MULTL.Q RTA,#([333]1,#3 ;RTA:=801221 (HW)
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Quo

79

Integer quotient

QUO . {Q,H.S,D}
QUOV . {QHS.D}

TOP
TOP

Purpose: QUO computes DEST:=S1/82; QUOV -computes DEST:=82/S1. .-QUO (or QUOV)

rounds its result toward zero.

Restrictions: None

Exceptions: INT_OVFL, INT_Z_DIV

Precision: S1, S2, and DEST all haye the pfecision specified by the modifier.

|.The following illustrates a simple-quotient calculation: - : I

| QUO.Q RTA, #[3451, 43

sRTA: =115 (QW)

Given a positive singleword NUM, this code stores in RTA the next-higher number with the
same number of one-bits. “This can be useful in combinatorial algorithms. For example, starting
with 17 and repeatedly app]ymg this algorithm until the result exceeds 10000g, will produce bit

masks 1nd1cat1ng all possible ways of choosing four bits out of twelve:

NEG.S TEMP,NUM
AND.S RTA,NUM, TEMP
ADD.S TEMP,RTA,NUM

XOR.5 RTB,NUM, TEMP

Quo.S RTB,RTA

SHF.RT.S RTB, #2

OR.S RTA,RTB, TEMP

;RTA gets just the lowest bit quNUM

s TEMP gets NUM with the lowest string of "1"
; bits cleaned; and a new "1" bit above where
3 they uere

"sRTD get just the differences betueen

s+ TEMP and NUM, i.e. a copy of the‘loueét
: string of "1" bits in NUM plus one more
s "1" bit to the left
srecall that RTA has one bit set, and
; s0 is a power of two; the effect is to

; right-justify the string in RTB, which is

one bit longer than the louest string of

"1" bits in NUM
sshift this two bits to the rlght, nou the
s string is one bit SHORTER
;merge RTB and TEMP to form the final result —-_J
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QuUOL Integer quotient, long dividend
QUOL . {Q,H.S} | TOP
QUOLV . {QH,S} TOP

Purpose: QUOL computes DEST:=S1/S2; QUOLYV computes DEST:=52/S1. QUOL (or QUOLYV)
rounds its result toward zero.

Restrictions: None
Exceptions: INT_OVFL, INT_Z_DIV

Precision: DEST has the same precision as the modifier. For QUOL, S2 has the precision of the
modifier and S1 has twice the precision of the modifier. For QUOLYV, S1 has the precision of the
modifier and S2 has twice the precision of the modifier. The double precision operand must be
aligned accordingly.

p—— S ——

The following example takes a quotient with a long dividend:

QUOL.Q RTA,#112211,#3  ;RTA:=333 (QW)




2.1.3 Signed Integer Arithmetic . ' 81

Quo2 B : S Integer quotient by power of 2
Quo2. {QH,S.D} ' .- TOP
QUO2V . {Q,H,S,D} . TOP

Purpose: QUO2 computes DEST:=51/(25%);, QUO2V computes DEST:=52/(25!). "QUO2 (or
QUOZ2V) rounds its result toward zero. - (Alternatively, the SHFART instruction may be used to
divide by a power of two, rounding toward negative infinity.) Co :

The operand serving as the exponent may be negative, in which case a multiplication. by a positive
power of two is performed.

Restrictions: None ! o Lo

Exceptions: INT_OVFL (INT_OVFL is not set dunng the 252 portlon of the operatlon This
exponentlatlon is done with unlimited precision.) .- . -

Precision: S1, 82, and DEST all havé the precision specified by the modifier.

I The following divides -3 by +2, giving a different result than does SHFA.RT with the same |
operands:

I QUOG2.S RTA,#-3,#1 1RTA:=-1 ' |
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Quoz2L . o Integer quotient by power of 2, long dividend
QUO2L . {QH.S} | TOP
QUO2LV . {Q,H,S} TOP

Purpose: QUO2L computes DEST:=S1/(25%); ‘QUO2LV computes DEST:=52/(25!). QUO2L (or
QUOZ2LYV) rounds its result toward zero.  The operand serving as the exponent may be negative, in
which case a multiplication by a positive power of two is performed.

Restriction;: None

Exceptions: INT_OVFL (INT_OVFL is not set during the 954 portion of the operation. This
exponentiation is done with unlimited. precision.)

Precision: DEST has the same precision as the modifier. For QUOZ2L, S1 has twice the precision of
the modifier and S2 has the precision of the modifier; for QUO2LYV, S2 has twice the precision and
S1 has the same precision as the modifier. The double precision operand must be aligned
accordingly. '

p—

The following divides the -long operand by 16 (decimal):

QUOZL.Q RTA,#1221,#4  3RTA:<S1 (QW)
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REM - Integer remainder
REM . {Q,H,5,D} o TOP
REMV . {Q,H,S,D} : TOP

Purpose: REM  stores in DEST the remainder from.- S1/ S2. The result is the remainder produced
by a division that rounds toward zero (as:in the QUO instruction). The result (DEST) has the

same sign as the dividend (S1), or is zero.

REMYV, the reverse form, stores in DEST the remainder from S2 /' S1. -
Restrictions: None

Exceptions: INT_Z_DIV

Precision: S1, $2, and DEST all.have the precision specified by the madifier.

| The following illustrate the results of various combinations of signs: ‘ I
REM.Q RTA,#5,#3 " ;RTA:=2 (QUW)
REM.Q RTA,#5,#-3 sRTA: =2 (QW)
REM.Q RTA,#-5,#3 - - . ;RTA:==2 (QW):

I REM.Q RTA,#-5,#-3 ;RTA:=-2 (QW) ' I
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REML. . . Integer remainder, long dividend
REML . {QH,S} ' ' TOP

REMLV . {QHS} - TOP
Purpose: REML stores in DEST the remainder from S$1/ S2. The result is the remainder produced
by a division that rounds towards zero (as in the QUOL instruction). The result (DEST) has the
same sign as the dividend (S1), or is zero.

REMLYV, the reverse form, stores in DEST the remainder from S2 / S1.

Restrictions: None

Exceptions: INT_Z_DIV

Precision: For REML, S2 . and DEST have the same precision as the modifier. S1 has a precision
twice that of the modifier and must be aligned accordingly.

For REMLYV, S1 and DEST have the precision of the madifier; S2 has twice that precision and
must be aligned accordingly.

—
The following illustrates the remainder using a long dividend:

REML.Q RTA, #[123451,#(300] ;RTA: =245 (QU)
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MOD - ' | | Integer modulus
MOD . {QH.S,D} | - . TOP
MODV . {Q,H,S,D} ‘ TOP

Purpose: The MOD instruction produces the remainder from a division S1/S2 that rounds toward
negative infinity (in contrast with the REM instruction, which produces the remainder from a
division that rounds toward zero) and stores that remainder in DEST. That remainder has the same
sign as the divisor, or is 0.

MODYV, the reverse form, computes the remainder from S2/Sl.

Note that the MOD function prov1ded in many hlgh-—level languages such as Pascal actually
corresponds to the assembly language REM instruction, not the MOD instruction. :

Restrictions: None
Exceptions:' INT_Z_DIV
Precision: S1, S2, and DEST -all have the precision specified by the modifier.

The fo]lowing' examples illustrate the operation of MOD and REM for various combinations of
~signs. In each case, the instruction discards the quotient and places the remainder in RTA:

MOD.Q RTA, #5,#3 s 5/3 ' = 1 remainder: 2
REM.Q RTA,#5,#3 ; 5/3 = 1 remainder 2
MOD.Q RTA, #5,#-3 ; 5/(=3) = -2 remainder -1
REM.Q RTA,#5,#-3 s 5/7(-3) = -1 remainder 2
MOD.Q RTA,#-5,#3  ; (-5)/3 = =2 remainder 1
REM.Q RTA,#-5,#3 s (-5)/3 = -1 remainder -2

MOD.Q RTA,#-5,#-3 ; (-5)/(-3) =1 remainder -2 : : '
| REM.Q RTA,#-5,#-3 ;3 (-5)/(-3) =1 remainder -2 I
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MODL Integer modulus, long dividend
MODL . {Q,H.S} | TOP
MODLYV . {Q,H,S} TOP

'Purpose: MODL computes the remainder from a division S1/S2 that rounds toward negative
infinity rather than toward zero as the REML instruction does, and stores it in DEST. That
remainder has the same sign as the divisor (S2), or is zero. ‘

MODLYV, the reverse fofm, computes the remainder from $2/S1. Note that the MOD function
provided in many high-level languages such as Pascal actually performs the assembly language
REM instruction, not the MOD instruction.

Kestrictions: None
Exceptions: INT_Z_DIV

Precision: For MODL, S2 and DEST have the same precision as the modifier. S1 has a precision
twice that of the modifier and must be aligned accordingly.

For MODLYV, S1 and DEST have the precision of the modifier and S2 has twice that precision.

. . H G S—
N 8 .

‘The following illustrates the modulo operation using a long dividend.

MODL.Q RTA,#12345,#3808 ;RTA:=245 (QW)
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DIV ‘ ' Integer divide
DIV . {Q,H.S,D} ‘ . TOP
DIVV . {QHS,D} ¥ TOP

Purpose: DIV computes FIRST(DEST): Sl/S2 and SECOND(DEST):=S1 rem S2. DIV is like
doing both a QUO instruction and a REM 1nstruct10n. _

DIV, the reverse form, divides S2 by S1 instead.

Restrictions: None
Exceptions: INT_OVFL, INT_Z_DIV

Precision: S1, S2, FIRST(DEST), and SECOND(DEST) have the same precision as the modifier.
FIRST(DEST) and SECOND(DEST) must align together to form a single entity with twice .the
precision of the multiplier. S

I The following produces a quotient-remainder result: ' I

DIV.Q RTA,#[3451,#3  ;RTA:=1148081 (two QWs)

The following subroutine accepts a positi\}e singleword in location X (which is déstroyed) and
prints it in a radix in the range 2 .. 35 specified by RADIX, using the digits 0-9 and A-Z
(A=10, B=11, etc.). The subroutine should be called by JSR X+4,PRINUM. Location X+4 (the
singleword after X) is used, but its original contents are saved and restored. The subroutine
prints a character by using TRPEXE.13, which is assumed to trap to an executive character
print routine. The remainder method of generating digits produces them "backwards", and so a
recursive call using JSR saves each digit on the stack as it is generated, and then the digits are
printed as the stack is unwound. '

PRINUM: DIV.S X,RADIX ;1 X+4 gets next digit, X gets quotient
SKP.EQL.S X, #0 ;skip if resulting quotient is zero
JSR X+4,PRINUM jotheruise save that digit and do more

CMPSF.LEQ.S RTA,X+4,#9. ;digit now in X+4; is it <92

ADD.S X+4,<["B" ? "A"-18.1+4>I[RTAI®2 ;if so, use B-9; if not, use A-Z
TRPEXE.13 X+4 sprint character

RETSR X+4, (SP) : sreturn, restoring X+4 to previous value __I

L
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DIivL . ' Integer divide, long dividend
DIVL. {QHS} - | TOP
DIVLYV . {QH,S} TOP

Purpose: DIVL computes FIRST(DEST):=$1/S2 and SECOND(DEST):=S1 rem S2. DIVL is like
doing both a QUOL instruction and a REML instruction.

DIVLYV, the reverse form, divides S2 by S1 instead.
Rsstriotionst None
Exceptions: INT_OVFL, INT_Z_DIV

Precision: For DIVL, operands S2, FIRST(DEST), and SECOND(DEST) have the same precision
as the modifier. S1 has a precision twice that of the modifier and must be aligned accordingly.
FIRST(DEST) and SECOND(DEST) must align together to form a single entity having twice the
precision of the modifier.

The following produces a quotient-remainder for a long opefand:

DIVL.Q RTA, /1123461, #3081 ;RTA:=33245 (two UWs)
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INC . - Integer increment

INC . {QH.S,D} ’ | - XOP

Purpose: OP1:=OP2+1

Restrictions: None |

Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as: the modifier, . ‘

I—;le following adds opé to RTB and stores the resuit in,RT.A. . L _-I
INC.S RTA,RTB  ;RTA:=RTB+1 .

If the source and destination - are.identical,. ADD' is .preferable from a performance standpoint:

I ADD.S RTA,#1  ;RTA:=RTA+l | _— I l
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DEC ' Integer decrement

DEC . {QH,S.D} XOP

Purpose: OP1:=0P2-1

Restrictions: None

Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

Fle following subtraéts one from A and puts the result in B: . _—I
DEC.S B,A 3Br=A-1 |

If the source and destination are identical, SUB is preferable from a performance standpoint:

I SUB.S B, #1 ;B:=B-1 ' ‘ l
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TRANS . Signed integer translate
TRANS . {QH,S,D} . {Q,H.S.D} | ' XOP
VTRANS . {QH,S,D} . {QH,SD} SR 78

Purpose: TRANS copies a signed integer from OP2 to OP1, converting its prec1s10n if necessary by -
sign-extending or by drscardmg high order bits.

VTRANS performs TRANS on individual elements of vector OP2 and stores the result in vector
OPI1. If the source and destination vectors have the same precision, the vectors may overlap; the
instruction guarantees not to alter any element of the source until it has copied that element to the
destination.

If the source vector’s precision exceeds that of the destination vector, the two vectors may be
identical, but must not otherwise overlap. ' : :

If the source vector’s precision is less than that of the destmatron vector, the two vectors may. not
overlap at all.

Restrictions: None
Exceptions: INT_OVFL ) ‘. '

Precision: OP1 has the precision of the first modifier and OP2 has the precision of the second
modifier. ' : :

The second instruction illustrates the sign-extension of TRANS:

MOV.H.Q RTA,# 1 " ;RTA:=000777 (Hu)
TRANS.H.Q RTA,#-1 - 3RTA:1=777777 (HW)
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NEG o . Integer negate
NEG . {Q,H.S,D} - XOP
VNEG . {H,S,D} Von

Purpose: For NEG, OP L:i=two’s=complement{(OP2).

VNEG performs NEG on each element of the vector beginning with OP2 and stores the results in
the vector beginning with OP1. ‘

Restrictinns: None
Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

| The following negates the value in RTA: ' . ‘ l

"~ NEG.S RTA ;RTA: =-RTA

This piece of code jumps to TWOPOWER if the non-negative singleword integer in HUNOZ
is an exact power of two (where zero is considered to be such a power):

“NEG.S RTA, HUNOZ s RTA: =-HUNOZ
ANDCT.S RIA,HUNDZ 1RTA: = (~RTA) AHUNOZ
JMPZ.EQL.S RTA, TWOPOWER ; jump if RTA now is zero

The BITCNT instruction can be used to do the same thing if zero is not to be considered a I

I power of two.



2.1.3 Signed Integer Arithmetic » ‘ 93

ABS - Integer absolute value
ABS . {QH,S,D} ' o XOP
VABS . {H,S.D} | - . VeV

Purpose: For ABS, OP1:=abs(OP2).

VABS performs ABS on each element of the vector beginning.at OP2 and stores the results in the

vector beginning at OP1. .
Restrictions: None
Exceptions: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

The following takes the absolute value of RTB and-puts it in RTA:

ABS.S RTA,RTB  ;RTA:=|RTB|
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MIN : C Integer minimum
MIN . {Q,H,S,D} TOP
VMIN . {SR,OP1} . {H,S,D} V:=VV

Purpose: MIN stores in DEST the smaller of the signed integers S1 and S2.

VMIN performs MIN on a series of pairs: one element from the vector beginning with OP1 and the
corresponding element of the vector beginning with OP2. If the first modifier is OP]1, results go
back into the vector beginning with OP1; if it is SR, they go into the vector pointed to by SRO.

Restrictions: None
Exceptlluns: None

Precision: For MIN, operands S1, S2, and DEST all have the precisicn specified by the {Q,H,S,D}
modifier. For VMIN, the elements of each.vector have the precision specified by the {H,S,D}
modifier, : ' '

pren——

The following sets RTA to 0 if RTA is positive:

MIN.S RTA,RTA, 42

43
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MAX _ | ) : : Integer maximum
MAX . {QH.5.D} . TOP
VMAX . {SR,OP1} . {H,S,D} V:=VV

Purpose: MAX places in DEST. ,thé larger of the signed integers S1 and S2.

VMAX performs MAX on a series of pairs: an element from the vector beginning with OP1 and
the corresponding element of the vector begmmng with OP2. If the first modifier is OP1, the
instruction stores the results back into the elements of vector OPI; if the modifier is SR, it stores the
results into the vector pointed to by SRO.

Restrictions: None
Exceptions: None

Precision: For MAX, S1, S2, and DEST all have the precision specified by the {Q,H,S,D} modifier.
For VMAX, the elements of each vector have the precision specified by the {H,S,D} modifier.

l The following sets RTA to 100 if RTA is less than 100: _ o . : l
MAX.S RTA,RTA,#(1081

Suppose that. A and B are two byte pointers. Then the following instruction puts in RTA the
byte pointer which indicates the byte starting higher in memory than the other; or, if they start
at the same bit, whichever points to the longer byte. (This is a consequence of the representation
of byte pointers--see Section 2.10). Similarly, all D-precision integer comparison.
instructions--such as MIN D, CMPSF.D, SKP.D, etc --can be used to compare byte pointers in
this fashion:

| MAX.D RTA,A,B ' ;RTA := pointer to higher byte I
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LMINMAX : : Lengthwise integer minimum and maximum

LMINMAX . {H,S,D} §8:=V

Purpose: Select the minimum and maximum elements of a vector of signed integers whose first
element is OP2. Put the minimum in FIRST(OP!) and the maximum in SECOND(OP1).

Restrictions: None
Exceptionst None -

Precision: FIRST(OP1), SECOND(OP1), and each element of vector OP2 have the precision of the
modifier. FIRST(OP1) and SECOND(OP1) must align to form an entity with twice the precision of

theé moditier.
The following sets RTA to -4 and RTAl to 16: I

MOV.S.S %SIZEREG, #7

l LMINMAX.S RTA, [7 ? 12. ? -2 2-4 ? 8. ? 16. ? 3] . ' ' l
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2.2 Unsigned Integer Arithmetic
The unsigned integer data type uses no sign bit, making all bits of the word available for
representing magnitude. Thus, whereas a signed quarterword ranges from 28 to 251, an unsigned
quarterword ranges from 0 to 29._ '

The architecture provides instructions specificaily for unsigned multiplication and division. T‘hbesé
instructions were designed to be used for arithmetic on numbers of arbitrarily great precision (as
exemplified by “bignums” in Maclisp). The instructions for signed addition and subtraction work
properly on unsigned data provided the program ignores the INT_OVFL side effect and uses the
CARRY to signal overflow or to propagate bits from one word of a bignum to another. :
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UMULT ‘ Unsigned integer multiply

UMULT . {QH,S,D} _ TOP
Purpose: DEST:=LOW_ORDER(S 1%52)

Restrictions: None

Exceptions: INT_OVFL; UMULT sets INT_OVFL whenever MULT does. In addition, UMULT
sets INT_OVFL whenever one operand has its high order bit set and the other operand exceeds 1.

Precision: S1, §2, and DEST all have the precision specified by the modifier.

| The following instruction puts the low order QW of the unsigned square of 2%-1in RTA. This I
value is the low-order nine bits of 2'8—2l°+1, that is, 001. Since the full result is greater than
29-1, INT_OVFL is also set: :

L

b ]

UMULT.Q RTA,#777,8#777 (QW) . : l
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UMULTL - . Unsigned integer multiply, long'result

| UMULTL . {QHSS) | . TOP
Purpose: DEST:=S 1xS2

Restrictions: i\lone |

Exceptions: None

Precision: S1 and S2 have the same precision as the modifier. DEST has a precision twice that of
the modifier and must align accordingly.

lThe following instruction puts the un31gned square of 29—1 in RTA. This value is I
2‘8 210, 1——that 1s 776001 ' . .

UMULTL.Q RTA,#777,#777 ; RTA:=776881 (HW) |
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uDIv Unsigned integer divide
UDIV . {Q,H.S,D} | | TOP
UDIVV . {QHS,D} TOP

Purpose: UDIV places. the quotient of the unsigned integer division $1/S2 in FIRST(DEST) and -
the unsigned integer remainder S1 rem S2 in SECOND(DEST).

UDIVYV produces the quotient and remainder from integer division S2/S1.

Resuictiuns: Nune

Exceptions: INT_OVFL, INT_Z DIV

Precis.ion: “For UDIV, S1, $2, FIRST(DEST), and SECOND(DEST) all have the same precision as

the modifier. FIRST(DEST) and SECOND(DEST) must align together to form an entity having
twice that precision. ‘

The following sets RTA to the unsigned quotient-remainder of ‘_29—3 divided by twenty-two:

UDIV.Q RTA,#775,#22. ;RTA:=027883 (two QWs)




2.2 Unsigned Integer Arithmetic : ' 101

UDIVL . Unsigned integer divide, long dividend

UDIVL . {Q,H,S} ' TOP
UDIVLV . {QH,S} : TOP -

Purpose: UDIVL places the result of the unsigned integer division $1/S2 in FIRST(DEST) and the
unsigned integer. remainder S1 rem $2 in SECOND(DEST). ‘

LI

Restrictions: None
Exceptions: INT_OVFL, INT_Z_DIV -

Precision: For UDIVL, S2, FIRST(DEST), and SECOND(DEST) all have the same precision as

the modifier. S1 has a precision fwice that of the modifier and must align accordingly.

FIRST(DEST) and SECOND(DEST) must align together to form a single entity with twice that

precision. )

I The'following sets RTA to the unsigned q‘uotient—remainde.r of 377377 (octal) divided by 777
(octal): ' ' o T :

UDIVL.Q RTA,#377377,#777 UDIVL:=377776 (two QWs)

| . . -




102 2 Instruction Set

2.3 Floating Point Arithmetic

2.3.1 Floating Point Data Format

Floating point data can occur in three of the four standard precisions: halfword, singleword, or
doubleword. The floating point representation is made up of three fields: SIGN, EXP, and MANT.

SIGN] Exp FANT

A 1 &R 17
Halfword floating point format

SIGN EXP MANT

g 1 9 10 35
Singleword floating point format

SIGN EXP MANT

g 1 15 16 71
Doubleword floating point format '

SIGN is 1 if the floating point number is negative.

EXP 1s the exponent, expressed in excess-16 format in halfword precision, excess-256 format for
singleword precision, or excess-16384 format.for doubleword precision. If SIGN is 1 (that is, the
number is negative, EXP is one’s complemented.

MANT represents only part of the true mantissa of the number; to obtain the entire mantissa,
concatenate the sign bit, a kidden bit, a binary point, and the MANT field:

<SIGN><hidden bit>.<MANT>

The complete mantissa consists of the concatenation of <hidden bit> and the MANT field. The
entire mantissa is normalized to obey the following:

1 € mantissa < 2
or
-2 < mantissa < -1

As a result, <hidden bit> and SIGN are always opposites, and it is possible to omit <hidden bit>
from the floating point representation and infer its value from that of SIGN. '
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Converting to floating point format: While the FLOAT instruction automatically converts an
integer to floating point format, the following description of an algorithm for doing so may help
make the format clear: ' ‘

1. Set the SIGN field of the floating point version to 0.

2. Muttiply a copy of the number by 2%, where you choose x so the result is greater than or
equal to 1 but less than 2. Set the EXP field to (-x+16) for a quarterword, (-x+256) for a
singleword, or (-x+16384) for a doubleword.

3. Starting with the most significant bit of the original number, discard bits until you
encounter the first 1-bit. Discard it, too. Place the remaining.bits into the MANT field,
left- justified.

To convert zero to floating point format, set the entire word to O (zero is an exceptional case).

To convert a negative intéger to ﬂoating point format, take its absolute value and represent that
according to the steps just given for positive integers. Then take the two’s complement negation of
the entire floating point representation, without regard to format.

(For the skeptical, here is an outline for a proof that two’s-complement negation works correctly on
floating point numbers. If MANT =0 then no carry from the two’s-complement operation can
reach the EXP 'field, since it will be absorbed by the right-most, non-zero MANT bit. Therefore,
the EXP field will be one’s-complemented. If MANT = O then there are three cases. Case 1: The
floating point number was originally negative. The mantissa was, therefore, -2.0 and the floating
point number was —2°XPONeNt*1 When this number is two’s-complemented, the MANT field is still
zero but the EXP field is two's-complemented. The mantissa becomes 1 and the carry from the
fraction has increased the exponent by one. This gives 1x2°XPonent+l o oexponent+l 1po neoarive
of the original number. Case 2: The floating point number was originally zero. The
two’s-complement of zero is zero. Case 3: The floating point number was originally positive. The
mantissa was, therefore 1 and the floating point number was 1x28XPOP®M  When this number is
two’s—complemented, the MANT ,'field is still zero but the EXP field is two's complemented. The
mantissa becomes -2.0 and the carry from the fraction has decreased the exponent by one. (It
increased the EXP but decreased the one’s~complement of the EXP). This gives ~(2.0)xgexponent-1
or -2°XPONeNt yhe negative of the original number.)

Here are a few examples of the floating point format for halfwords:

!

Halfword 10.0

SIGN=0

EXP=-(-3)+16= 19=238

MANT=(hidden 1)010 000 000 0002=20008
Result: 232 0008
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Halfword -10.0
Two’sComplement(232 0008)=546 0008

Halfword 3.1415

SIGN=0

EXP=~(-1)+18=17-214

MANT=(hidden 1)100 100 100 010,=4442¢
Result: 214 4428

2.3.2 Integrity of Floating Point Arithmetic

The architecture specifies that floating point arithmetic will be performed so that the following
equalities hold for all floating point values A and B:

1.0xA =A
A+(-B)=A-B
AxB=BxA
A+B=B+A

’

2.3.3 Floating Point Exception Values

Besides zero, five floating point numbers have special meanings. The positive floating point
number with the greatest magnitude (in a given precision) is called OFF (overflow). The
two’s-complement of OVF is called MOVF (minus overflow). The smallest positive floating point
number is called UNF (underflow). The largest negative floating point number is called MUNF
(minus underflow). The floating point number with the sign bit-set to 1 and all ather hits set to 0 is’
called NAN (not a number); all floating point instructions consider it illegal.

OVF, MOVF, UNF, MUNF, and NAN correspond to side effects or exceptions that occur during
* floating point arithmetic. One happy consequence of the floating point format is that each of the
special floating point values has the same bit re;‘Jresentation as an easily recognizable integer, as the
following table shows: -
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Name  Meaning _ Integer with identical
bit representation

OVF Positive overflow MAXNUM
MOVF  Negative overflow MINNUM + 1 (ie, -MAXNUM)
UNF Positive infinitesimal +1 .
MUNF  Negative infinitesimal . -1
NAN Indeterminate (*not MINNUM

a number”) :

The range of values representable in the three floating point precisions is approximately the
following:

Precision Underflow Overflow Digits

Halfword 1.53 x 107 6.55 % 10 391
Singleword 863x 10°7® . L16x 1077 818
Doubleword 841 1074933 119 % 10%%%2 17.16

23.4 Comparing Floating Point Values

Another happy consequence of the floating point format is the ability to compare floating point
numbers as if théy were signed integers, without decoding the format. Thus, the:arc}_litqcture does
not provide a separate set of test and branch instructions for floating point numbers. Instead, a
single set serves for both signed integers and floating point numbers.

Integer cpmphrisons will treat the floating point exception values in an intuitively reasonable
fashion, too. For example, they will treat MUNF as greater than any other negative value but less
than zero. The only exception is NAN, which will be treated not as an illegal value but as a value:
that is less than any other floating point value.

235 Floating Point Rounding Modes

During floating point operations, rounding of the result may be necessary. The FIX instruction
includes a modifier that specifies how it rounds; all other floating point instructions which round
their results do so according to the field RND_MODE in the USER_ST ATUS register. Instructions-
RRNDMD and WRNDMD (Section 2.3) read and write that field.

Let F be the magnitude of the difference between a true floating point result, R, and the greatest
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representable floating point number N which is less than or equal to R, expressed as a fraction of
the least-significant representable bit of R. The bits of RND_MODE have the following functions
(reversals of rounding direction accumulate):

Bit Value Effect o
0 0 Round as specified by RND_MODE<1:4>
1 Reserved.
1 0 If F = 0, round as specified by RND_MODE<2:4>
' else deliver R exactly.
1 If F « 1/2 then round as specified by RND_MODE<2:4>
else round to the floating point number neatest W R.
2 o Round toward negative infinity.
1 Round tuward pusitive infihity.
8 0 No effect.
1 If the least significant bit of the mantissa of N is one,
reverse the rounding direction.
4 0 No effect.

1 If and only if R is negative, reverse the rounding direction.

Various combinations of the above bits provide a variety of rounding modes. Some of the more
common modes are; ‘

RND _MODE (octal)  Function Modifier for FIX
S Floor FL '
1 " Diminished magnitude '~ DM
" Ceiling’ ' CL
5 . Augmented magnitude '
12 B Stable ST
14 Half rounds toward positive HP
infinity (PDP-10 FIXR)
15 Approximate PDP-10

FLTR rounding

Inexact rounding: Certain instructions exhibit inexact rounding--that is, the uncertainty in their
tounding behavior slightly exceeds the uncertainty specified for floating point computations in
general. The list of instructions which exhibit this characteristic is implementation dependent.
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2.3.6 Floating Point Exception Handling

In the USER_STATUS register, four bits record “side effects” or exceptions by ﬂoafing point
arithmetic operations:

FLT_OVFL Floating—point overflow (that is, the result of the instruction is-greater than or
equal to OVF or less than or equal to MOVF).

FLT_UNFL Floating-point underflow (that is, the result of the instruction is less than or
equal to UNF and greater than or equal to MUNF, but not equal to zero).

\

FLT_NAN Floating-point result is “not a number” (NAN).

FLT_REP Floating-point result cannot be represented exactly within the allowed mantissa
' (and must therefore be rounded). This bit signals a condition that may happen
most of the time in ordinary floating point arithmetic. ' S

These bits are “sticky”--that is, floating point instructions may set them but not clear them, so once a
bit is set it will remain set until explicitly cleared via manipulation of USER_STATUS.:

In the followmg example, the first instruction sets FLT_OVFL, the second sets FLT.UNFL;, and the
third sets FLT_NAN: : o

DP2 is MOVF to begin wWith
Result too small to represent
Division by 8 is undefined ’

FSUBY.H RTA, #8,#1400201]
FSC.H RTA, #(910000] , #-1
FDIV.H RTA,#8

we . ws ws

In addition to these exception bits, USER_STATUS contains fields called FLT_OVFL_MODE,
FLT_UNFL_MODE, and FLT_NAN_MODE which tell the processor how to react to FLT_OVFL,
FLT_UNFL, and FLT_NAN exceptions respectively. (Note that setting an exception bit by
manipulating USER_STATUS will not invoke the specified behavior; the bit must be set during
floating point arithmetic):

FLT_OVFL_MODE®0:1> .
‘ 0 Invoke FLT_OVFL_TRAP soft trap without storing a result.

1 ' If the result was positive, use OVF as the result; if it was negative, use
MOYVF as the result. :

2 Retain the sign and mantissa but replace the EXP field with a
wrapped-around exponent.

3 Undefined. Attempting to set this value in the user status register

causes an ILLEGAL_STATUS hard trap.
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FLT_UNFL_MODE<0:1>

0 Invoke FLT_UNFL_TRAP soft trap without storing a result.
1 If the result was positive, use UNF as the result; if it was negative, use
MUNTF as the result.
2 Retain the mantissa and sign of the result, but replace the EXP field
‘ " with a wrapped-around exponent. '
3 Use floating point 0.0 as the result.

FLT_NAN_MODE

0 Invoke FLT_NAN_TRAP soft trap without storing a result.
1 Use NAN as the result.
2,3 © - Undefined. Aftempting to set these values in the user stalus register

causes an ILLEGAL_STATUS hard trap.

2.3.7 'Propagating Floating Point Exceptions

If either operand of a floating point instruction is one of the exception values, the instruction
propagates the exceptional condition according to:a precisely defined algorithm.

The tables in this section describe the standard propagation algorithm for all operations. (The
algorlthm is implemented in tables in RAM within the S-1 processor, so a front end processor could-

dictate a different algorithm if desired.)

In the tables, X and Y are assumed to be “ordinary” positive floating point numbers—-that is, greater
than UNF and less than OVF--which do not in themselves invoke exceptions.

Uinary operations

A FNEG (A) FABS (A) FIX(A) FTRANS (A)
MOVF OVF ‘ OVF INT_OVFL MOVF

MUNF | ONF UNF ) NONF

LNF FUNE UNF g UNF

OVF MOVF OVF INT_OVFL OVF

NAN NAN NAN INT_OVFL NAN
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Addition (A+B)

A B—
l'!iDVF

-X

MUNF

%)

UNF

X

OVF

NAN

Multiplication (AxB)

e
MOYF

=X

MUNF

8

UNF

X

OVF

NAN'

Division (A/B)

A B—
Mov

X
MUNF

2.

UNF
X .
OVF
NAN

NAN

MOVF  -Y MUNF %] UNF Y OVF NAN
MOVE  MOVE MOVF MOVF MOVF MOVE NAN NAN
MOVE  -X-Y -X -X =X -X+Y OvF NAN
MOVE  -Y MUNF MUNF 9. Y OvVE NAN
MOVE  -Y MUNF %) UNF Y OVF NAN
MOVE  -Y %] UNF UNF Y OVE NAN
MOVF  X-Y X X X X+Y OVE NAN
NAN OVF OVF OVF OvF OVF OvF NAN
NAN NAN NAN NAN NAN NAN NAN NAN
MOVF  -Y MUNF %] UNF Y OVF NAN
OVF OVF NAN . @ NAN MOVE MOVE NAN
0OvVF XokY UNF 2 MUNF —XxkY MOVF NAN
NAN UNF UNF %] MUNF MUNF NAN NAN
8 ) 8 B 8 %) %] NAN
NAN MUNF MUNF ) UNF UNF - NAN NAN
MOVE  -XxY MUNF g UNF XxY OVF . NAN
MOVF  MOVF NAN %) NAN OVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN
MOVF  -Y MUNF %] UNF Y OvF NAN
NAN OVF OVF NAN MOVE MOVE NAN NAN
UNF X/Y OVF - NAN MOVF -X/Y . MUNE NAN
UNF UNF NAN NAN NAN MUNF MUNF NAN
8 8 ] NAN %] 8 2 - NAN
- MUNF  MUNF NAN NAN NAN UNF UNF NAN
MUNF  -X/Y MOVE NAN OVE X/Y UNF NAN
NAN MOVF MOVF NAN OVF OYF NAN NAN
NAN NAN NAN NAN NAN NAN NAN
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The rules for the remaining instructions are simple enough to state without using additional tables:

FSUB

- The algorithm behaves as if ‘the processor applied FNEG to the second argument

FMAX, FMIN

FSC

and then performed FADD.

If either argument is NAN, the result is NAN. Otherwise, the algorithm
considers MOVF<-X<MUNF<0<UNF<X<OVF for any unexceptional positive
number X. '

The exponentiation portion of the instruction FSC or FSCV is effectively done
in infinite precision and will not produce an exception; the subsequent
multiplication follows the rules given in the tables.
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2.3.8 Floating Point Arithmetic
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FADD o Floating point. add

FADD . {H,S,D} i “TOP
Purpose: DEST:=S1+S2.
Restrictions: None.

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: S1, S2, and DEST all have the precision specified by the modifier.

I The first instruction adds 1.0 to RTA. The second instructlon doubles RTA; alternatlve y, |
FMULT, FSC, or FDIV might be used:. =~ -t . - R L

FADD.S RTA,#[1.8) . .-~ .u S
FADD.S RTA,RTA ;RTA:=2.B%RTA; FSC RTA,#1 is preferable ' |
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FSUB: Floating point subtract
FSUB . {H,S,D} ‘ TOP
FSUBV . {H,S,D} TOP

Purpose: FSUB calculates DEST:=S1-82.

FSUBY, the revefse form, calculates S2-S1.
Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_.NAN

Precision: 51, 52, and DEST all have the precision specified by the modifier. -

The following subtracts a floating point value of one from RTA:

FSUB.S RTA,#I[1.0] sRTA:=RTA-1.8
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FMULT } . ‘ Floating point multiply
FMULT . {H,S,D} + TOP
Purpose: DEST:=S 1xS2.

" Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: S1, S2, and DEST all have the prec1snon specified by the modifier.

g—

The following instruction doubles the value in RTA Alternatlvely, FSC FADD or FD
might be used: :

T

FMULT.S RTA,#(2.0] ;RTA: =RTA%2.0
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FMULTL : Floating point multiply, long result

FMULTL . {H,S} TOP

Purpose: DEST:=S1%S2. Note that the long result format will have more than twice as many
mantissa bits as either operand.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. (These can occur only if one of the operands
was a floating point exception value to begin with. The operation of multiplication itself cannot
overflow or underflow because DEST has such a large exponent field.)

- Precision: S1 and 82 have the same precision as the modifier. DEST has precision twice that of the
modifier and must align accordingly.

—
The following instruction will place in RTA all significant bits of the square of X:

FMULTL.S RTA,X,X s RTA: =X12
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FDIV ) o A Floating point divide
FDIV . {H,S,D} | TOP
FDIVV . {H,S,D}. ' | : TOP .
VFDIV . {SR,OP1} . {H,S,D} . VvV

Purpose: FDIV computes the floating point quotient, S1 divided by S2, and stores it in DEST.

FDIVYV swaps the roles of S1 and S2.

VFDIV divides each element of the vector beginning with OP1 by the corresponding element of the

vector beginning with OP2 and stores the results -either in the vector pointed.to by SRO. (if the
modifier is SR) or back into the vector beginning with OP1 (if the modifier is OP1). '

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: For FDIV and FDIVYV, S1,'S2, and DEST all have the precision specified by the:
modifier. For VFDIV, the elements of all three vectors have the precxslon specxfxed by the modifier.

The following instruction doubles the value in RTA. Alternatively, FADD, FMULT or FSC I
might be used: ‘v

L

FDIV.S RTA,#(0.5] +RTA:=RTA/0.5=2.8xRTA . |
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FDIVL ' ’ Floating point divide, long dividend
FDIVL . {H,S} ' TOP
FDIVLV . {H,S} : TOP

Purpose: FDIVL divides S1 by S2 in floating point and stores the result in DEST.
f‘DIVLV, the reverse f;orm, divides S2 by S1 instead.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_.NAN

Precision: For FDIVL, S2 and DEST have the precision of the modifier. S1 has preéision twice
that of the modifier and must align accordingly. :

For FDIVLYV, S| and DEST have the precision of the modifier and S2 has twice that precision

The following uses a doubleword 1.0 to reciprocate a singleword in RTA. Note that this is I
NOT the same constant that would be used for FDIV:

L

FDIVL.S RTA,#[ZQBBBB,,B ? 18]1,RTA -3 RTA:=1.8 (OW) / RTA I
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FRECIP - ~ Floating point reciprocal

FRECIP . {H,5,D} | . XOP

Purpose: OP1 := 1.0 / OP2. In most implementations, FRECIP offers higher performance than
- FDIV but inexact rounding. - . - : . o . S

Restrictions: None
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: OP1 and OP2 have the same precision as the maodifier.

The following instruction reciproca;e‘s*?.O:

FRECIP.S RTA,#2.8 ; RTA := 8.5 . : : e
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FSC A Floating point scale
FSC . {HS,D} ' ‘ TOP
FSCV . {H,S,D} TOP

Purpose: DEST := S1 % 252 Slisa floating point number and S2 is a signed integer.

FSCV computes the floating point number $2 x 251, where $2 is a floating point number and S1 is
a signed integer.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. (FLT_OVFL and FLT UNFL are not cet
during the exponentiation, which is done with unlimited precision.)

Precision: For FSC, S1 and DEST have the same precision as the modifier and S2 is a singleword.
"For FSCV, S2 and DEST have the precision of the modifier and S1 is a singleword.

The following instruction may be used to double the value in RTA. Alternatively, FADD, I
. FMULT, or FDIV might be used:

L

FSC.S RTA,#1 ;RTA: =RTA%21 (11 =2. 2xRTA ' l
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FIX y - : _ Convert floating point to fixed (integer)
FIX . {FL.CL,DM,HP,ST,US} . {Q;H,S,D} . {HS,D} - - XOP
VFIX . {HS,D} . {H,S,D} I %

Purpose: FIX converts the floating point number specified by OP2 into an integer and stores it in
OP1. The first modifier specifies which of the rounding modes (explained in Section 2.3.5) to use
in the conversion: '

-

FL Fioor

CL Ceiling

DM Diminished magnitude v,

HP Half rounds toward positive infinity

ST . Stable . - : .

US Whichever mode USER_STATUS.RND_MODE specifies .-

VFIX converts each element of the vector beginning with OP2 to an integer and stores the result in
the corresponding element of the vector beginning with OP1. Instead of specifying rounding modes
via a modifier, it always uses the rounding mode. specified in USER_STATUS; the additional cost
of executing a WRNDMD instruction to-change the rounding mode is negligible for vectors of
reasonable length. : -

If the two vectors have equal precision, they may overlap. If the. precision of the source vector
exceeds that of the destination, the two vectors may be identical but must not otherwise overlap. If
the precision of the destination vector exceeds that of the source, the two vectors must not overlap at
all. Violating these rules produces undefined results.

Restrictions: None
Exceptions: INT_OVFL
Precision: For FIX, OP1 has the precision of the second modifier and OP2 has the precision of the

third modifier. For VFIX, the elements of OP1 have the precision of the first modifier and the
elements of OP2 have the precision of the second.

| The following converts a floating point value in RTA into an integer. The exact result depends l
on the value and the rounding mode specified in USER_STATUS.RND_MODE:

| FIX.US.S.S RTA,RTA
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FLOAT ' Convert to floating point
FLOAT . {H,S,D} . {QH,5.D} | XOP
VFLOAT . {H,$,D} . {Q,H,8,D} : V=V

Purpose: FLOAT converts the integer speclfled by OP2 into a floatmg point number and stores it
in OP1.

VFLOAT canverts each element of the vector beginning with OP2 to a floating point number and
stores the result in the corresponding element of the vector beginning with OP1.

If the two vectors have the same precision, they may overlap. If the precision of the source vector
exceeds that of the destination vector, the two vectors may be identical but may not otherwise
overlap. If the precision of the destination vector exceeds that of the source, the vectors must not
overlap. Violating these rules produces undefined results.

Restrictions: None

Exceptions: FLT_OVFL. (This can occur only in the cases of FLOATH.S and FLOAT H.D. For
all other conversions, the floating point format can express the corresponding integer with—-at
worst--only the loss of the least significant bits.)

Precision: OP1 has the precision of the first modlﬁer OP2 has the precision of the second
modifier.

The following loads RTA with the floating point value 1.0:

FLOAT.S.S RTA,#1 ;RTA:=1.8
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FTRANS ' : Floating point translate
FTRANS . {HS,D} . {HSD} S . XOP
VFTRANS . {H,5,D} .{H.S,D} : | Vs

Purpose: FTRANS copies.a floating pomt number from OP2 to OPI, convertmg its precision if
necessary. . :

VFTRANS performs FTRANS on individual elements of vector OP1 and stores the result in vector
OP2. If the source and destination vectors have the same precision, the vectors may overlap; the
instruction guarantees not to alter any element of the source until it has copiéd that element to the

destination.

If the source vector’s precision exceeds that of the destination vector, the two vectors. may be
identical, but must not otherwise overiap.

¢

If the source vector’s precision is less than that of the destination vector, the two vectors may not
overlap at all. ‘

In some implementations FTRANS.S.S will offer better performance than MOV .S.S when operating
on floating point data because a series of floatmg point instructions permits the processor to
maintain the data in an 1nterna1 format that is easier to handle.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. If OP2 has no greater precision than OP],
then these can occur only if OP2 is one of the floating point exception values.

Precision: OP2 has the precision of the second modifier. OP1 has the precision of the first
modifier.

The followihg illustrates the precision alteration possible with FTRANS. The exact values
produced  will, - in general, -‘depend on the rounding mode defined in
USER_STATUS.RND_MODE: :

L

FTRANS.S.D RTA, # (200008, ,8 ? 0] 3 Funny cﬁnstant is 1.8 DW I
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FNEG - ' : Floating point negate
FNEG . {H,S,D} Xorp
VFNEG . {H,S,D} : . o ViV

Purpose: FNEG negates the floating point number in OP2 and stores the result in OP1. VFNEG
performs NEG on each element of the vector beginning at OP2 and stores the results in the vector
beginning at OP1.

The difference between NEG and FNEG is that FNEG handles floating point exceptions.
Restrictions: Nonc
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN o v

Precision: OP1 and OP?2 have the same precision as the modifier.

| These examples show how floating point exceptions are propagated by FNEG. ' |
. FNEG.H RTA, #-1 © RTA:=MUNF, signal FLT_UNFL ‘
FNEG.H RTA,#677777 sRTA:=0VF, signal FLT_OVFL

l FNEG.H RTA, 7108000 $RTA:=NAN, signal TLT_NAN C |
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FABS ; Floating point absolute value
FABS . {H,S,D} XOP
VFABS . {HS,D} | -. L VeV

Purpose: FABS takes the floatmg point absolute value of OP2 and. stores it in OP1. In companson
with ABS, FABS handles floating point exceptions. -

VFABS performs FABS on each element of the vector OP2 and stores the results in the vector

Restrictions: None .
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: OP1 and OP2 have the same precision as the modifier.

l These examples show how the uses of FABS and’ ABS: on floating point ‘numbers differ. |

Ay . T ey,

ABS.H RTA,#[-11 sRTA:==1, no side-effects :
FABS.H RTA,#[-1] "~ 3;RTA:=MUNF, signal FLT_UNFL ' .
ABS.H RTA,#(377777] sRTA: =MAXNUM, no side effects .. o :

FABS.H RTA,#([377777] ;RTA: =0VF, signal FLT_OVFL
ABS.H RTA, # [-400080) ;RTA:=NAN, signal INT_OVFL ™ :
FABS.H RTA, # [-400000] ;RTA:=NAN, signal FLT_NAN T |
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FMIN : Floating point minimum
FMIN . {H,S.D} TOP
VFMIN . {SR,OP1} . {H,S,D} ' - VisVV

Purpose: FMIN places in DEST the smaller of the floating point numbers S1 and S2. The primary
difference between MIN and FMIN is that FMIN properly propagates the floating point exception
values.

" VFMIN performs FMIN on a series of pairs: an element of the vector beginning with OP1 and the
corresponding element of the vector beginning with OP2. If the first modifier is OP1], the results go
back into the vector OP1; if it is SR, they go into the elements of the vector pointed to by SRO.

ot

Restrictivns: Nuie
Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN"

Precision: For FMIN, 81, 82, and DEST all have the precision specified by the {H,S,D} modifier.
For VFMIN, the elements of vector OP1, vector OP2, and the vector pointed to by SRO all have the
precision specified by the {H,S,D} modifier.

prer— —

This instruction sets RTA to the smaller of X and 43.0:

FMIN.S RTA,X,#143.81]
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FMAX _ B . ‘ , Floating point maximum
FMAX . {HS,D} ' | . TOP
VFMAX . {SR,OP1} . {H,S,D} ~ VeVV

Purpose: FMAX places in DEST the-larger. of tile floating point numbers S1 and S2. The primary
difference between MAX and FMAX is that FMAX properly propagates the ﬂoatmg point
exception values. . : :

VFMAX performs FMAX on a series of pairs: an element of the -vector beginning with OP1 and
the corresponding element of the vector beginning with OP2. If the first modifier. is OP1, the results
go back into the elements of vector OPI; if it is SR they go into the elements of the vector pointed
“to by SRO.

Restrictions: None
Exceptlons. FLT_ OVFL FLT UNFL FLT_NAN
Preclslon For FMAX, S1, 82, and DEST all have the precision specifxed by the {H S,D} modlfler

For VFMAX, the elements of vector OP1, vector OP2, and the vector pointed to by SRO all .have
the precision specified by the {H,S,D} m‘odifier. o

I This sequence of :instructions takes the number F and “clips” it to be w1thm the wmdow of I
[0 0,1.0X: : .

FMAX.S RTA,F,#0.0 ;iargef of F and 8.8 to RTA ‘
. FMIN.S F,RTA,#1.0 ;smaller of that and 1.8 to F |
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RRNDMD, WRNDMD ‘ ' Read/write rounding mode
RRNDMD ’ XOP
WRNDMD " XOP

Purposeé RRNDMD sets OPl to USERSTATUSRND_MODE. WRNDMD sets
USER_STATUS.RND_MODE to OPI1. In both instructions, OP2 is unused. For WRNDMD, if
OP1 contains bits outside the field that specifies rounding modes, the result is undefined. See
Section 2.3.5 for a description of rounding modes. '

Restrictions: Nune
Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

The following jumps to ISFLOOR if floor rounding is specified by. USER_STATUS. I
Otherwise, it selects ceiling rounding:

FLOOR=8

CEILING=4

RANDMD RTA ’

SKP.EQL.S RTA,#FLOOR, ISFLOOR - - ;

| WRNOMD #CEILING : I
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2.4 Complex Arithmetic

Certain instructions operate on halfword or singleword complex numbers in either signed integet or
floating point format. A complex number ai:tu’ally'conéists of two consecutive integers or 'floating
point numbers; the one at the lower memory or register address is the real part and the one at the
higher address is the imaginary part. Thus, a halfword complex number occupies two halfwords or
one singleword (and must align as a singleword) while a singleword complex number occupies two
singlewords. :

REAL PART i | Min
IMAGINARY PART Mn+4]

- Figure 2-1
A singleword complex number




128 ‘ 2 Instruction Set

CMAG | : Complex magnitude
CMAG . {H.S} - XOP
FCMAG . {H,S} XOP
VCMAG . {H,S} , Vi=

VFCMAG . {H,S} V=V

Purpose: Compute the scalar magnitude of a complex number.

CMAG regards the complex number as a pair of signed integers, while FCMAG regards it as a.pair
of flnating pnint numbers.:

OP1 := SquareRoot(FIRST(OP2)12 + SECOND(OP2)12)

VCMAG and VFCMAG are vector versions of CMAG and FCMAG. Assuming that “”
increments by the precision of the modifier, they compute:

FOR i := 0 TO SIZEREG-1 DO
OPI1[i] := SquareRoot(FIRST(OP2[2xi])T2 +
SECOND(OP2[2xi])12)

Restrictions: None

Exceptions: INT_OVFL (for CMAG and VCMAG); FLT_NAN, FLT_OVFL, and FLT_UNFL
(for FCMAG and VFCMAG)

Precision: For CMAG and FCMAG, OP1, FIRST(OP2), and SECOND(OP?2) have the precision
specified by the modifier. FIRST(OP?2) and SECOND(OP2) must align together to form an entity
having twice that precision. : '

For VCMAG and VFCMAG, the elements of all three vectors have the precision specified by the
modifier.

l The following finds the length of the hypatennse of a right triangle whose sides have lengths of
3 and 4

l CMAG.S RTA, I3 ? 4] ; RTA := 5
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CADD : " Complex add
CADD . {HS} | - .. TOP
FCADD . {H,S} 4 . TOP

Purpose: Add complex numbers; ‘where FIRST(S1) and FIRST(S2) hold the real parts of the
numbers and SECOND(S1) and SECOND(S2) hold the imaginary parts. . :

FIRST(DEST) =FIRST(S1) + FIRST(S2); (% Real part x) ) Lo
SECOND(DEST):=SECOND(S1) + SECOND(S2); (x Imaginary part %) .

CADD deals with signed integers while FCADD, deals with floating point numbers.

Restrictions: None

Exceptions: CARRY and INT_OVFL. (for CADD); FLT OVFL FLT..UNFL and FLT_NAN (for
FCADD) -

Precision: . FIRST(DEST), SECOND(DEST), FIRST(S), SECOND(S1), FIRST(S2), :
SECOND(S2) have the -precision specified by the modifier. Each FIRST must align thh the
corresponding SECOND to form an entity with twice that precision. Co e

The following leaves in RTA and RTA1 the sum of the complex numbers 4+i5 and 3+il2:

CADD.S RTA,[4 ? 51,3 ? 12.1. ; RTA := 7; RTAl := 17
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CSuUB Complex subtract
CSUB . {H,S} TOP

FCSUB . {H,S} A TOP

Purpose: Subtract complex numbers, where FIRST(S1) and FIRST(S2) hold the real parts of the
numbers and SECOND(S1) and SECOND(S2) hold the imaginary parts.

FIRST(DEST):=FIRST(S1) - FIRST(S2); (x Real part x)
SECOND(DEST):=SECOND(S1) - SECOND(S2); (* Imaginary part %)

CSUB deals with signed integers while FCSUB deals with floating point numbers.

Restrictions: None

Exceptions: CARRY and INT_OVFL (for CSUB); FLT_OVFL; FLT_UNFL and FLT_NAN (for
FCSUB) '

Precision: FIRST(DEST), SECOND(DEST), FIRST(S1), SECOND(SI), FIRST(S2), and
SECOND(S2) have the precision specified by the modifier. Each FIRST must align with the
corresponding SECOND to form an entity with twice that precision.

| The following leaves in RTA and RTA1 the difference of the two complex numbers 4+i5 and I
8+il12:

L

CSuB.S RTA, {4 ? 5],[3 ? 12.1 .3 RTA := 1; RTAl := -7 I
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CMULT A Complex multi;;ly

CMULT . {H.S} TOP
FCMULT . {H,S} TOP

Purpose: Multiply complex numbers, where FIRST(S1) and FIRST(S2) hold the real parts of the
numbers and SECOND(S1) and SECOND(S2) hold the imaginary parts.

FIRST(DEST).=FIRST(S1) % FIRST(S2) -
SECOND(S1) x SECOND(S2); (* Real part %)

SECOND(DEST):=FIRST(S1) x SECOND(S2) +
SECOND(S1) x FIRST(S2); (% Imaginary part x)

The -instruction actually finishes the computation before altering DEST or NEXT(DEST), so
- operands may overlap without harm.

CMULT deals with signed integers while FCMULT deals with floating point numbers.

Restrictions: None

Exceptions: INT_OVFL (for CMULT), FLT_NAN, FLT_OVFL, and FLT_UNFL (for
FCMULT) '

Precision: FIRST(DEST), SECOND(DEST), FIRST(S1), SECOND(SI), FIRST(S2), and
SECOND(S2) have the precision specified by the modifier. Each FIRST must align with the
corresponding SECOND to form an entity having twice that precision.

 pe— —

The following leaves in RTA and RTA1 the result of multiplying the complex numbers 4+i5
and 3+il2:

CMULT.S RTA, 4 ? 51,[3 2 12.] ; RTA := -48; RTB := B3




132 2 Instruction Set

2.5 Mathematics



2.5 Mathematics _ ‘ 133

SQRT _ p V Square root
FSQRT . {HS,D} . . XOP
VFSQRT . {H,S,D} | o Vie

Purpose: Compute the principal squafe root in-floating point: OP.1:=SquareRo_ot(OP2).,
VFSQRT performs FSQRT on each element of vector OP2 and places the results in vector OP1.
The implementation is guaranteed to be monotonic--that is, if x2y then SQRT(x)2SQRT(y).

Attempting to take the square root of a negative number invokes FLT_NAN, which will result in
either a FLT_NAN_TRAP hard trap or NAN, depending on the setting of USER_STATUS.

Restrictions: None - |
Exceptions: FLT_NAN

Precision: Both OP1 and OP2 have the precision specified by the modifier.

e

*The following leaves the square root of 25 in RTA:

FSQRT.S RTA,#25.9 ; RTA := 5.0
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FLOG Floating point logarithm (base 2)

FLOG . {H,S,D} | | XOP
VFLOG . {H,S,D} Vi

P'urpose: FLOG computes the base 2 logarithm of OP2 and stores the result in OP1. The results
are guaranteed to be monotonic—-that is, if x>y then FLOG(x)2FLOG(y).

VFLOG performs FLOG on each element of OP2 and places the result in the corresponding
element of OP1.

Restrictions: None

Exceptions: FLT_OVFL, FLT_UNFL, FLT_NAN. Taking the logarithm of a non-positive
number invokes FLT_NAN, resulting in either NAN or a FLT_NAN_TRAP hard trap, depending
" on the setting of USER_STATUS. | '

Precision: OP1 and OP2 have the precision specified by the modifier.

| The 'following leaves RTA set to the base 2 logarithm of 32: I

FLOG.S RTA,#32.0 ;s RTA := 5.0

Using the rule that log,z = logyz / logob, the following instructions compute the base 10
logarithim of 1000.0:

FLOG.S RTB,#18.0 ; RTB :=-b.ase 2 log of 108.8
FLOG.S RTA,#1008.9 s RTA := base 2 log of 1000.8

| FODIV.S RESULT,RTA,RTB ; RESULT := 3.9 l
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FEXP . - Floating point exponential (base 2)
FEXP . {HS,D} | - XOP
VFEXP . {H,S,D} | L vav

Purpose: Raise 2.0 to a power: FEXP computes OP 1:=2.0TOP2.. VFEXP performs. FEXP on each;
element of OP2 and places the result in the corresponding . element of OP1l. The results are
guaranteed to be monotonic--that is, if x2y then FEXP(x)>FEXP(y).
Restrictions: None

Exceptions: FLT_NAN, FLT _OVFL, FLT_UNFL

Precision: OP1 and OP2 have the precision specified by the modifier.

Using the rule that xTy = 27(y % logyx), the following ‘raises 81.0 to the power 025: : |

FLOG.S RTA,#81.8 ,.
FMULT.S RTA,#8.25 RTA := 8.25 % FLOG(81.0)

FEXP.S RTB,RTA . 3 RTB:= 3.0 Lo l

|
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FSIN : ' Floating point sine
FSIN . {H,5,D} ' XOP
VFSIN . {H,S,D} Vi=

Purpose: FSIN computes OP1:=Sine(OP2). OP2 specifies the angle in cycles--that is, a “1.0”
corresponds to 360 degtees or 2xPI radians. :

VFSIN performs FSIN on each element of OP2 and places the result in the corresponding element
of OP1. : .

Restrictionst Nonc
Exceptions: FL'I'_NAN

Precision: Both operands have the precision specified by the modifier.

| The following computes the sine of an angle expressed in ‘degrees: I
MOV.S.S ANGLE,#33.0 s 30 degrees
FOIV.S RTA,ANGLE,#360.9 s+ convert to cycles

I FSIN.S RTA A 5 RTA := 8.5 l
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FCOS ‘ Floating point cosine
FCOS . {H,S,D} | - o XOP

VFCOS . {H,S,D} Vi

Purpose: FCOS computes OP1:=Cosine(OP2). OP2'specifies thé'angle in cycles--that is, a “1.0"
corresponds to 360 degrees or 2xPI radians. :

VFCOS performs FCOS on each element of OP2 and places the result in fhg corresponding element
of OP1.

Restrictions: None
Exceptions: FLT_NAN

-

Precision: Both operands have the precision specified by th_é modifier.

I The following computes the cosine of an angle expressed in degrees: . . I
MOV.S.S ANGLE, #68.06 . s 60 degrees

FDIV.S RTA,ANGLE,#368.8 _ .. s convert to cycles

FCOS.S RTA RTA := 8.5 : , : I

we

[
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FSINCOS Floating point sine and cosine

FSINCOS . {H,S,D} o XOP

Purpose: Computes FIRST(OP 1):=Cosine{OP2) and SECOND(OP1):=Sine(OP2). OP2 specifies the
angle in cycles—-that is, a “1.0” corresponds to 360 degrees or 2xPI radians.

Note that because the cosine appears in the first anyword of the pair and the sine in the second, the
result can be used as a complex number.

Restirictions: INone
Exceptions: FLT NAN

Precision: FIRST(OP1), SECOND(OP1), and OP2 have the precision specified by the modifier.
FIRST(OP1) and SECOND(OP1) must align together to form an entity having twice that precision.

I The following computes both the sine and the cosine of an angle expressed in degrees; I

MOY.S.S ANGLE,#69.9 ; 68 degrees
FDIV.S RTA,ANGLE,#3BB¢B ; convert to cycles
I FSINCOS.5 RTA ; RTA := 8.8B86...; RTAl := 9.5 |
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FATAN v - Floating point arctangent
FATAN . {HS,D} TOP
FATANV . {HS,D} ‘ TOP
VFATANV . {SR,OP1}. {H,S,D} : Vi=VV

Purpose: FATAN computes DEST:=Arctangent(S1/S2). Expressing the tangent as a quotient
instead of a single value ‘allows the instruction to determine the correct quadrant for the result,
which is expressed in cycles--that is, “1.0” corresponds to 360 degrees or 2xPI radians.

FATANY, the reverse form, swaps the roles of S1 and S2.

VFATAN performs FATAN on each pair of elements, one from vector OP1 and the other from
vector OP2, and places the result in the corresponding element of either vector OP1 or the vector
pointed to by SRO, depending on the first modifier: '

FOR i:=0 TO SIZEREG-1 DO
IF {modifier is OP1} THEN }
OP1[iX=Arctangent(OP1[i)JOP2li]) -
" ELSE A D
‘SROelik=Arctangent(OP1[iyOP2li])
Restrictions: None

Exceptions: FLT_NAN

Precision: All three operands have the precision specified by the {H,S,D} modifier.

|

| The following computes an atctangent in degrees:

FATAN.S RTA,#1.8,#1.8 ,
FMULT.S RTA, #368.8 : RTA := 45.8 degress I

L
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V2DSQ, V3DSQ Vector 2- or 3-dimensional distance squared
V2DSQ . {SR,OPL} . {HS,D} | y=vy
VF2DSQ. . {SR,OP1}. {H,S,D} A - Vi=VV
V3DSQ . {SR,0P1}. {H,S,D} ' V:i=VVV
VF3DSQ . {SR,OP1}. {H,S,D} ‘ , ' Vi=VVV

Purpose: Compute the sum of squares of a series of coordinate pairs or triples.

V2DSQ and VF2DSQ deal with coordinate pairs, where the vector beginning with OP1 holds the
tirst coordinate of each pair and the vector beginning with QP2 holds the second. Depending on
the first modifier, these instructions put the result back in vector OP1 or in the vector pointed to by
SRO. V2DSQ deals with integers, while VF2DSQ deals with floating point numbers:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier is OP} THEN OPI[i}:=OP1[i]2 + OP2[1]T2
ELSE SRO0e[il:=OP1[ilT2 + OP2[ilT2

V3DSQ and VF3DSQ deal with coordinate triples, where the vector beginning with OP1 holds the
first coordinate of each triple, the vector beginning with OP2 holds the second, and the vector
pointed to by SRO holds the third. Depending on the first modifier, these instructions put the result
back in vector OP1 or in the vector pointed to by SR1. V3DSQ deals with integers, while
VF3DSQ deals with floating point numbers:

FOR i:=0 TO S$IZEREG-1 DO
IF {modifier is OP1} THEN OPI1[il=OP1[i]12 + OP2[1112 + SRO@[I]IZ
ELSE SR1e[il:=OP1[i}12 + OP2[i]t2 + SROe[i}t2 '

Restrictions: None

Exceptions: For the integer instructions, INT_OVFL; faor the flaating pnint instructions,
FLT_OVFL, FLT_UNFL, and FLT_NAN

Precision: Each element of each vector has the precision specified by the second modifier.

I The following example illustrates the use of V2DSQ; I

MOY.3.S SIZEREG,#3 s Speclty length ot vectors.
MOVP.P.A SR@,RESULT ; Set up SRB to point to result
v2DSQ.SR.S [1 2 2 ? 31,04 ? 5 ? 6]

| RESULT now holds [17. ? 29. ? 45.1 l
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v2DIS, V3DIS Vector 2- or 3-dimensional distance
V2DIS . {SR,OP1} . {H,S,D} S ' VvV
VF2DIS . {SR,OP1} . {H,S,D} R | VvV
VSDIS . {SR,OP1}. {HSD} -~ - Vi=VVV
VFSDIS . {SR,OP1} . {H,S,D} . V Vi=VVV

Purpose: Compute the square root of the sum of squares for a series of coordinate pairs or triples.

V2DIS and VF2DIS operate on coordinate pairs, where the vector beginning with OP1 contains the
first coordinate of each pair and the vector beginning with OP2 contains the second. Depending on '
the first modifier, the resulting vector goes back into OP1 or into the vector pointed to by SRO.
V2DIS deals with integers while VF2DIS deals with floating point numbers:

FOR i:=1 TO SIZEREG-1 DO
IF {modifier is OP1} THEN
. OPI1[ik=SquareRoot{OP 1[i]12 + OP2[i]12)
ELSE .
SROe[i}=SquareRoot(OP1[i]12 + OP2[il12)

V3DIS and VF3DIS operate on triples, with the vector beginning at OP1 containing the first
coordinate of each triple, the vector beginning at OP2 containing the second, and the vector pointed
to by SRO containing the third. Depending on the first modifier, the result goes back into the vector
starting at OP1 or into the vector pointed to by SR1:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier is OP1} THEN
OP1[i}=SquareRoot(OP1[i]12 + OP2[i]12 + SROe[il 2)
ELSE _ ‘
SR lelil:=SquareRoot(OP1[i]T2 + OP2[ilT2 + SR0e[i]12)

Restrictions: None

Exceptions: For the .integer instructions, INT_OVFL; for the floating point instructions,
FLT_OVFL, FLT_UNFL, and FLT_NAN

Precision: Each element uf vach vector has the precision specified by the second modifier.

I—S;ppose X:_DISP and Y_DISP represent a drawing as a series of line segments, describing eacTI
' segment as a pair of displacements in the X and Y directions from the endpoint of the preceding
segment. The following program fragment converts this data to represent each segment as an
angle and magnitude:

s Obtain a vector of angles
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MOV.S.S SIZEREG, #9
MOVP.P.A RTA,X_DISP
MOVP.P.A RTB,Y_DISP’
NEXT:  FATAN.S ANGLE [SIZEREG]42,RTA [SIZEREG) 12,RTB [SIZEREG] 12
ISKP.LSS SIZEREG,LENGTH,NEXT '
3 Now SIZEREG = length of vector
VF20SQ.0P1.S X_DISP,Y_DISP s X_DISP becomes a vector

I | . s of magnitudes I
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VDOT . Dot produict
VDOT . {H,S$,D} | | | §:=VV
VFDOT . {H,8,D} . Sevv

Purpose: Compute the dot product of two vectors:

RTA:=0;
FOR i:=0 TO SIZEREG-1 DO _
RTA:=RTA + OPI[i] x OP2[i]

To avoid overflow and underflow problems, the processor accumulates the sum with as much
precision as it can, regardless of the {H,S,D} modifier. If that modifier is “H”, the result goes into
RTA as a singleword, and if the modifier is “S”, RTA is a doubleword. If the modifier is “D”,
however, the result is still a doubleword.

Restrictions: None
Exceptions: INT_OVFL (for VDOT); FLT_OVFL, FLT_UNFL, and FLT_NAN (for VFDOT).

Precision: The elements.of each vector have the precision specified by the modifier. RTA has twice
that precision unless the modifier is D, in which case RTA is a doubleword.’

| Suppose that singleword vector V contains the results from sampling a ﬁo]tagewaveform at 100 |
Hz for one second. The following computes the RMS voltage:

Put length in S1ZEREG
.Sum of squares
Mean

MOV.S.S SIZEREG,#198.
YFDOT.S V,V
FOIV.0 RTA,#198.8

| FSQRT.D RTA,RTA 3 Root I

-y we we
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CONV Convolution
CONV . {H,S,D} Vi=VV
FCONV . {H,S,D} Vi=VV

Purpose: Compute the convolution of two vectors. OP1 and OP2 are the initial elements of the
vectors, SIZEREG defines the length of vector OP1, and SR1 defines the range of integration {(and
therefore the length of vector OP2). The result appears in the vector pointed to by SRO:

FOR i:=0 TO SIZEREG-1 DO
BEGIN
3R0e[i):=0;
FOR j=0 TO SR1-1 DO , -
$ROe[i]:=SR0eli] + OP2[j] x OPI[SRI-1 +i - j]
END

Restrictions: None
Exceptions: INT_OVFL (for CONV); FLT_OVFL, FLT_NAN (for FCONV)

Precision: SR1 and the elements of each of the vectors have the precision specified by the second
madifier. '

Convolve A with B and store the result in C:

MOVP.P.A R8,C ; SR@ points to destination
MOV.S5.S SIZEREG, #198. s A is 198 elements long
MOV.S.S R1,#18. s+ B'is 18 elements long

I CONV.S A,B .
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RFLT2 . 4 Second order recursiveé filter

RFLT2 . {HS,D} | v
FRFLT?2 . {H,S,D} v

Purpose: Apply a second order recursive filter to the vector whose first element is OP2 and leave
the results in the vector whose first element is OP1. The instruction obtains the coefficients of the
filter from the five element vector pointed to'by SRO. The result is actually two elements shorter
than SIZEREG indicates, since it begins at OP1[2] instead of OP1[0]. The user must initialize the
first two elements of the-OP1 vector to start the recursion properly.. :

FOR i:=0 TO SIZEREG - 3 DO
OP 1[i+2):=SR0e[0] x OP 1[i]
+ SROe[1] x OPI1[i+1]
+ SR0e[2] x OP2[i]
+ SRO0e[8] x OP2[i+1]
+ SROe[4] x OP2[i+2]

Restrictions: None
Exceptions: INT_OVFL (for RFLT2); FLT_OVFL, FLT_UNFL, and FLT_NAN (for FRFLT?2)

Precision: The coefficients and the elements of each vector have the precision specified by the
modifier. ' ‘

|' The following example filters the signal in vector SENSE_IN: " . I

MOVP.P.A SR@,COEFFICIENTS ; Pointer to five coefficients

MOV.S.8 RESULT, [1.73476 ? 1,73476] ‘
s Initialize the recursion

MOV.S.S SIZEREG, #1008. s Specify length of SENSE_IN

FRFLT2.S RESULT,SENSE_IN , . : __l

L
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INTRAN o In-place square matrix transpose

INTRAN . {H,S,D} ' Vv

Purpose: Transpose a square two-dimensional matrix without moving the matrix to a different area
of memory. (The TRANSP instruction can operate on a matrix which is not square but must move
the matrix to a new, non-overlapping area of memory as it does so.)

OP1 is the first element of the matrix, which must be stored in row major order (second subscript
varying more ré,pidly than the first). OP2 gives the number of rows (which is, of course, the same
‘as the number of columns) in the matrix, and must be a multiple of 8 fur halfword precision (or a
multiple of 4 for singlewords, or a multiple of 2 far doublewords).

Restrictions; Nune

Exceptions: None

+

Precision: Every element of the matrix has the precision specified by the modifier. OP2 is a
singleword. ‘

l To transpose the following matrix: A | I

g 1 2 3
4 5 6 7
8 9 le11
12 13 14 15

one could use the INTRAN instruction like this:

DSPACE
; Expressions separated by "?" assemhle
3+ successive singlewords in memory
FOURBY: P?21?22?23247257286727 728
9?218?211 21272137214 7?15

ISPACE
INTRAN.S FOURBY, #4.
; Now FOURBY = 82 4?28 ?212?21?257?9 2?13
3 9727?67?18 ?2147?23?27?211 7?15 __l
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TRANSP -~ : , : . 'Matrix transpose

TRANSP . {H,S,D} . : : ViV

Purpose: Transpose a two-dimensional matrix, moving it to a different, non-overlapping area of
memory in the process. (The INTRAN instruction transposes a matrix without moving it, but
requires that the matrix be square.)

The instruction expects the matrix to be stored in row major order with its first element at OP2.
The result of the transposition appears in row major order with its first element at OP1.

Registers RO and R1 respectively specify the number of rows and columns in the source matrix.
Registers R2 and R3 specify the number of columns to ignore between each row in the source and
destination matrices respectively. To transpose an entire matrix, one sets R2 and R3 to zero; to
transpose a submatrix, one sets R2 and R3 to skip over the columns that lie outside the submatrix.

The number of rows (and the number of columns) in the source matrix must be a multiple of '8 for
halfword precision (or 4 for singlewords, or 2 for doublewords.)

Restrictions: None
Exceptions: None

Precision: All elements of the source and destination matrices have the precision specified by the
moadifier. RO, R1, R2, and R3 are singlewords. '

l To transpose the following matrix: . ' I
g1 2 3
4 5.6 7

use the TRANSP instruction like this:

; Assume the matrix is stored as a series of doublewords
: in the following order: 81 23 4567
1SPACE :
MOV.S.S %R0, #2 s Number of rous
MOV.S.S %R1,#4 ; Number of columns
MOV.S.S %R2,#0 3 Do not skip anything
MOY.S.S %R3,#0 : ‘
TRANSP.S NEWPLACE, TWOBY4
; The result is a series of doublsuords in the following
: order: 84152637 '
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As an example of how to use R2 and R3 to transpose a submatrix, suppose we have the

following matrices (in Pascal notation):

" VAR A: ARRAY [8..ARouws, B..ACols-11 OF INTEGER;
B: ARRAY [8..BRous, 8..BCols-11 OF INTEGER;

and we want to transpose the submatrix of A whose origin is A[Ax,Ay] and whose size is SRows
by SCols, storing the result in the submatrix of B whose origin is B[Bx,By). Assuming the -
submatrices are proper (that is, they truly fit within A and B) we can use the following

instructions:

MOY.S.S %R@,SReuo
MNIV.S.S %R1,SCols
MOV.S.S5 %R2,ACols
SUB.S %R2,SCols
MOV.S.S %R3,BCols
SUB.S %R3,SCols

MOVP.P.A RTA,A[Ayl 1?2
ARRIND.RTA 4%ACols, Ax

MOVP.P.A RTB,B [Byl 12
ARRIND.RTB 4xBCols,Bx
TRANSP.S (RTB), (RTA)

we

Number of rows in aubliali-ix
Number of columna in submatrix

Skip {ACols-SCols) columns between source rows

Skip (BCols-SCols) columns between dest rous

RTA: =ADDRESS (A [Ax, Ayl )

RTB: =ADORESS (B (Bx,Byl)
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MATMUL | | | Matrix multiply
MATMUL . {H,S,D} : ' Vi=VV
FMATMUL . {H,;S,D} : _ Vi=VV

Purpose: Multiply two 2-dimensional matrices stored in memory in row major order. OP! is the
first singleword. of a 9-singleword vector which describes the two source matrices and the destination
matrix. ‘

l

=]
]
[«

Meaning
Number of rows in source matrix 1

Number of columns in source matrix 1 -

Number of columns in source matrix 2

Number of columns to skip between rows of source matrix 1
Number of columns to skip between rows.of source matrix 2
Number of columns to skip between rows of destination matrix
Pointer to origin of source matrix 1

Pointer to'origin of source matrix 2

Pointer to origin of destination matrix

0 TP G WN = O

OPI1[3]112, OP1[4112, and OPI1[5]12 are used when multiplying submatrices. To multiply entire
matrices, one ordinarily sets these to zero. - :

Like VFDOT, FMATMUL and MATMUL accumulate results internally in the greatest feasible
precision regardless of the precision of the result. :

Restrictions: None

Exceptions: INT_OVFL (for MATMUL); FLT NAN, FLT_OVFL, and- FLT_UNFL (for
FMATMUL)

Precision: Every element of each matrix has the precision specified by the modifier. OP1 is the first
element of a vector of 9 singlewords. :

| The following example multiplies the two matrices shown and stores the result in matrix D: I
A=1 2 3 B=1 2

-3 2 1 -3 3

2 1

NOV.S.S %RB, #2 : Rows in source matrix 1
MOV.S.S %R1,#3 . s Columns in source matrix 1
MOV.S.S %R2,#2 s Columns in source matrix 2
MOV.S.S %R3,#0 '
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‘MOV.S.S %R4,#8
MOV.S.S %RS,#8
MOVP.P.A %RG,A : Pointer to source matrix 1
“MOVP.P.A %R7,B s Pointer to source matrix 2
MOVP.P.A %R8,D s+ Pointer to destination matrix
MATMUL.S %R@

As an example of how to multiply subm}atrices, assume we have the following matrices (in Pascal
notation): '

VAR A: ARRAY [0Q..ARows-1, @..ACols-1] OF REAL;
B: ARRAY [B..BRows-1, 8..BCols-1] OF REAL;
Ds ARRAY [8..DRows-1, 8..0Col=-11 OF REAL;

and that we want to multiply the submatrix whose origin is at A[Ax,Ay] with the submatrix
whose origin is at B[Bx,By], storing the result in D[Dx,Dyl. The submatrix of A has R rows by
S columns and the submatrix of B has S rows by T columns. Assuming further that the
submatrices are proper (that is, they fit-inside the corresponding matrices), we can use the
following code: ' ’
MOV.S.S DESC,R Number of rows in source matrix 1
. MOV.S.S DESC+4x%1,S
MOV.S.S DESC+4x2,T
MOV.S.S DESC+4%3,ACols
SUB.S DESC+4%3,S
MOV.5.5 DFSC+4%4,BCala
SIR.S NFESC+4x6, T
MOV.S.S DESC+4x5,DCols
SUB.S DESC+4x5, T ; Skip (DCols-T) columns betuween rows in
destination

Number of columns in source matrix 1
Number of columns. in source matrix 2

s we we

Skip (ACols-S} columns between rouws in matrix 1

-e

Skip (BCole=T) columns betuesn rous in matrix 2

-e

MOVP.P.A RTA,A[Ayl12
ARRIND.RTA ACols, Ax

MOVP.P.P DESC+4x6,RTA Pointer to Al[Ax,Ayl

MOVP.P.A RTA,BI[Bylt2
. ARRIND.RTA BCols,Bx
MOVP.P.P DESC+4x%7,RTA° : Pointer to BIBx,Byl

MOVP.P.A RTA,DI[Dyl*2
ARRIND.RTA DCols,Dx
MOVP.P.P DESC+4%8,RTA ;s Pointer to DI[Dx,Dyl

I FMATMUL.S DESC |
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FFT : . In-place complex FFT and inverse FFT
CFFT . {HS} | . Ve
FCFFT . {H,S} V=V
CFFTV . {HS} . . - V&V
FCFFTV . {H,S} ‘ ' - Vis

Purpose: Compute the fast Fourier transform (FFT) or inverse fast Fourier transform of a vector of
complex numbers.

CFFT and FCFFT compute the FFT, with CFFT operating on c.:’omplex‘ signed integers and FCFFT
on complex floating point numbers.

CFFTV and FCFFTV compute the inverse FFT, with CFFTV operating on complex signed
integers and FCFFTV on complex floating point numbers.

For all four instructions, OP1 designates the first element of the vector to be transformed. In each
case, the instruction puts its results back into the original source vector. The number of elements in
the vector must be a power of 2; OP2 contains that power (i. e, the base 2 logarithm of the number
of elements). If OP2 is not positive, the instruction leaves the vector untouched.

If the source vector exceeds the maximum allowable length, an FFT_TOO_LONG soft trap occurs.
(This limit is implementation-dependent; see Section 1.12)) If desired, one can provide a software
trap handler that operates transparently to the user on vectors of arbitrary size, transforming a
lengthy vector by repeatedly applying the instruction to subvectors.

The last step of the FFT algorithm is a “scrambling” operation which swaps elements of the vector
whose indices within the vector are bit reversals of each other. (For example, in a 16-element vector
where indices range from 0 to 15, this scrambling would sviap element 12 with element 3 because
reversing the bits of the four-bit binary representation of 12 yields 3. Similarly, the scrambling
would swap element 1 with element 8, and so on.) Because this step represents a considerable
fraction of the time required for the total FFT, the architecture does not incorporate it in the FFT
instructions themselves, but provides a separate instruction called BADREYV to perform it.

Similarly, “scrambling” is the first step of the complete inverse FFT algorithm, but it is omitted from
the inverse FFT instructions, which expect their source arrays to be scrambled.

Thus, a complete FFT would require the CFFT instruction (for example) followed by the BADREV
~ instruction. A complete inverse FFT would require the BADREV instruction followed by (for
example) the CFFTV instruction.

Providing a separate instruction for swapping elements saves time in many applications where one
wants to transform a signal, operate on it, and transform it back. Because the FFT instructions
produce a scrambled result and the inverse FFT instructions expect a scrambled input, one can
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simply omit to unscramble and rescramble between them--provided the operations that take place
between the FFT and inverse FFT instructions preserve the scrambled order.

Restrictions: None

Exceptions: INT_OVFL, (for CFFT and CFFTV); FLT_OVFL, FLT_UNFL, and FLT_NAN (for
FCFFT and FCFFTV) ’

Precision: Every element of the vector has the precision specified by the modifier. OP2 is a

singleword.

| Consider a simple filtering operation where one transforms the input signal, multiplies it by a |
vector of selected filter coefficients, and transforms it back. One could write:

MOVP.P.A RTA,COEFFIC ;: Point to filter coefficients
CFFT.S INPUT,LOGSIZE ;s FFT : '
BADREY.D INPUT

Y"SX".S QUTPUT, INPUT 3 Filter signal using coefficients
BADREY.D OUTPUT,LOGSIZE ' :

CFFTV.S QUTPUT,LOGSIZE ; Inverse FFT

But by scrambling the coefficient vector itself (an operation which need be performed only once
no matter how many signals are to be passed through the same filter),

BADREY.D COEFFIC

one can remove both BADREV aperations from the preceding sequence:

MOVP.P.A RTA,COEFFIC  ; Point to scrambled coefficients
CFFT.S INPUT,LOGSIZE ; FFT

Y"SX".S OUTPUT, INPUT : Filter using scrambled coefficients
. CFFTV.S OUTPUT,LOGSIZE ; Inverse FFT

The following example uses the FCFFT, BANREYV, and INTRAN instructions togelher to
perform a two-dimensional FFT:

320FFT - Tuwo dimensional complex FFT

s+ half-uword floating-point

sTransform complex 20 array whose origin is in ORG
31Size of array is 21LOGSIZE by 21L0OGSIZE

Called via JSR PC,20FFT

20FFT: SHF.LF.S RTA,#1,LO0GSIZE ;Get number of rows (and columns)
MOV.S.S ESIZE,RTA :1Save number of elements in rows and columns
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T 2dfftl:

2dfft2:

L

SHF.LF.S SIZE,RTA,#2
MOVP.P.P ‘T,ORG
MOV.S.S RTA,ESIZE
FCFFT.H (T),LOGSIZE
BADREV.S (T),LOGSIZE
ADD.S T,SIZE .
DJMPZ.GTR RTA,2dfftl
INTRAN.S (ORG),ESIZE
MOVP.P.P T,0RG
MOV.S.S RTA,ESIZE
FCFFT.H (T),LOGSIZE
BADREY.S (T),LOGSIZE
ADD.S T,SIZE

DJMPZ.GTR RTA,2dfft2

INTRAN.S (ORG) ,ESIZE
RETSR PC, (SP)

;:Convert to half-word complex size and save
sInitialize row pointer to first rou

;Loop counter ’ -
sTransform a row’

:Un-bit-reverse this rou

;Step to next rou

;Last rou?

s Transpose array

;Transform a column
;Un-bit-reverse this column
;Steh to next column

;Last cblumn? ‘

s Transpose array back

sReturn

158
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N\,

BADREV - In-place bit address reversal

BADREV . {H,S,D} ViV

Purpose: Within a vector, swap each pair of elements whose addresses represent bit-reversals of
each other. The instruction is primarily useful in conjunction with the FFT and inverse FFT
instructions. -

The last step of the FFT algorithm is a “scrambling” operation which swaps elements of the vector
whose indices within the vector are bit reversals of each other. (For example, in a 16-element vector
where indices range from O to 15, this scrambling would swap element 12 with element 3 becanse
reversing the bits of the four-bit binary representation of 12 yields 3. Similarly, the scrambhng
would swap element 1 with element 8, and so on.)

OP1 is the first element of the vector to be scrambled; the instruction puts the results back into the
same vector. The number of elements in the vector must be a power of 2. OP2 specifies that power
(or, in other words, the base 2 logarithm of the number of elements) If OP2 is not positive, the
instruction leaves the vector untouched.

Restrictions: None
Exceptions: None

Precision: The elements of the vector all have the precision specified by the modifier. GP2 is a
singleword.

Note that when one uses BADREYV to complete an FFT operation, the precision must be twice
that of the FFT instruction because the vector in question contains complex numbers and tius
each data point comprises two values:

CFFT.S SIGNAL ’ 3 Fourier transform leaves the vector
s scrambled

| BADREY.D SIGNAL : Undo the scrambling I
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QPART Quicksort partition inner loop

QPART - Ve

Purpose: Pipelined processors must predict with considerable accuracy whether conditional branch
instructions will alter the flow of control, or execution speed suffers. Because Sorting algorithms
usually contain unpredictable conditional branches, the architecture provides an instruction to
perform the inner loop of the Quicksort algorithm, eliminating branches.

" OP1 is a pointer to the first element of a vector of records and OP2 is a pointer to the last record in
the vector. Each record consists of a singleword key followed by a singleword of data (typically a
pointer to a larger amount of data).

RTA contains a partitioning value. : o

The instruction rearranges the elements of the vector, segregating them into two groups so that all
the records in one.group have keys exceeding RTA and all the records in the other have keys less
than or equal to RTA. Within each group, the records may still be disordered (though in moving
records about to achieve the segregation, the. instruction does attempt to order.them locally); the
instruction guarantees merely to partition the vector into two groups relative to the value in RTA.

' Y

When the instruction finishes, the first part of the vector contains the group. of records with keys
less than or equal to RTA, and OP2 points to the last record in that group. OP1 points to the next
record, which-is.the first record in the group whose keys exceed RTA. RTA contains a code that
reports the status of the two partitions: . ' : v

. The lower partition is sorted, but the upper one is not.
The upper partition is sorted, but the lower one is not.
Both partitions need sorting. The upper has fewer records.
Both partitions need sorting. The lower has fewer records.
Both partitions are sorted.

WD O N = O

In simplified form, the instruction does the following:

Before

Not sorted by key
aPl - OPQ

After
Keys<RTA Keys>RTA

0r3 B
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Restrictions: None
Exceptions: None

Precision: Each element of the vector is a pair of singlewords, the first serving as a key and the
second as data which the instruction moves along with the key. RTA is a singleword.

| The following exampie illustrates how to use QPART to implement the complete quicksort l
algorithm: ' '

;s Quicksort
: Called via: .ISR #-1, QUICKSORT

On entry :

3 LOW - pointer to first record of array to be sorted
3 HIGH - pointer to last record of array to be sorted
H (HIGH must immediately follow LOW)
s On exit :
: Array between LOW and HIGH is completely sorted
QUICKSORT: ’
ADJSP.UP SP,#18 ;Reserve space to save HIGH and LOW
s+ later on
QUICK1: SuUB.S RTB,HICGH,LOW : sCalculate size of array - 8
SHFA.RT.S RTB, #4 :Get half the size '
;s (in double-words)
- SEXCH.D (LOW), (HIGH) ;Swap the first, last, and middle

SEXCH.D (LOW)BIRTBI*3, (HIGH) ;: words nf the array as necessary
SEXCH.D (LOW), (LOW)BIRTBIN3 : an firstemiddlie<lou

MOY.S.S RTA, (LOW)BIRTBI 13 sPartition array around middle’s value
MOv.D.D (SP)-18,L0Ul - 3Save high and low pointers
QPART LOW,HIGH tDo the parlitionlng
JMPA QUICKZ[RTAI?3 :Dispatch to correcct rautine
QuICKZ2: ;Uispatch table.

sIt is important that all sections (except the last)
s+ be two words long

sSort upper half only => tail recursion
MOV.S.S HIGH, (SP)-4
JMPA QUICK1

sSort lower half only => téil recursion
MOY.S.S LOW, (SP)-18
JMPA QUICK1

sSort upper first then lower => full recursion
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EXCH.S HIGH, (SP) -4
JMPA QUICKSORT ‘

- ;Sort lower then upper => full recursion
EXCH.S LOUW, (SP)-10
JMPA QUICKSORT

;All sorted : ,
MOVP.P.A SP, (SP)-18 ;Discard the HIGH and LOW just saved
MOV.D.D LOW, (SP)-18  ;Restore previous HIGH and LOW o 4

;1f LOW is the -1 value pushed by the JSR that invoked the quicksort, .

; we're finished, so return to the caller. Otherwise, tail recursion '
s continues sorting. s '
JMPZ.GEQ.S LOW,QUICK1 ;Tail>recursioh

| RET (SP)-4, (SP) sDiscard -1 and re{urﬁ to criginal catller l
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2.6 Chained Vectors

These instructions perform arithmetic on vettors, often combining two or more operations. This
results in faster execution not only because it reduces the number of instructions the processor must
fetch--a single multiply-and-add instruction can take the place of a multiplication followed by an
addition, for example--but also because the processor can use its adder and multiplier in parallel.

Because the mnemonics for chained vector instructions explain themselves, and because the
arithmetic operations are logical extensions of those for scalars, this section will not describe each
instruction in detail. -

Each mnemonic consists of a V followed by up to two letters defining the data type and then an
equation within quotation marks: ' ' S '

V<data type>"<equation>"

For <data type>, a “CF” indicates complex floating point, a “C” alone indicates complex signed
integer, and “F” alone indicates floating point. If <data type> is missing, the instruction deals with
signed integers. :

Within the equation, “X”, “Y”, and “Z” are the first, second, and third source veciors while “S” and
“R” are the first and second source scalars. As in algebrz, concatenating variables indicates
multiplication.

Thus, for exainple, the instruction:
VE"X+SY".0P1
performs the operation:

FOR i:=@ TO SIZEREG-1 DO
OP1[il:=0P1[i) + RTA % QP2[i]
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Two Vector Operands and One Scalar

S$+X, 8-X, SX

V*S+X" . {H,5,D) V:=VS
VF"S+X" . {,5.D} Vi=Vs
FOR i:=0 TO SIZEREG-1 DO OPI[i}-RTA + OP2[i]
V"S-X" . {H,S,D} V:=VS
VF"S-X" . {H,S,D} V:=VS
FOR i:=0 TO SIZEREG-1 DO OP1[i}=RTA - OPQ[i]
V"SX" . {H,5.D} V:i=vs
VF"SX" . {H,S,D} V=S |

FOR i:=0 TO SIZEREG-1 DO OPI[il=RTA x OP?[I]

159
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Three Vector Cperands

X+Y, X-Y, Y-X, XY

VUX+Y" . {SR,0P1}.{H,S,D} V:=VV
VF"X+Y" . {SR,0P1}. {H,8,D} V:=vV
FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OPI[i} oplm + OP2[il
ELSE SR0eli}=OP1[i] + OP2[i] '

V'X-Y" . {SR,0P1}. {H,5,D} VizVY
VF X-y" . {SR,0P1} . {H,Z,0} V:sVV
FOR i:=0 TO SIZEREG-1 DO )
IF {modifier OP} THEN OPI1(iL OPl[x] OP2[i]
ELSE SROe[1}=0OPI1[1] - OP2[i] "

v y-X" . {SR,0P1}. {H,5,D} V:=vV
VF*Y-X" . {SR,0P1} . {H4,5,D} V:=VV
FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OP l[i}=OP2[i] - OP1[i]
ELSE SR0eli}:=OP2[i] - GPIii]

VeXY" . {SR,0P1} . {4,5,D} V=WV
VF*XY" . {SR,0P1)} . {H,5,D} Vi=vy
vCHXY" . {SR,CP1} . {H,S) ViV
VFC"XY" . {SR,0P1} . {H,S} V:=VV

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OP 1[i}=OP1[i] x OP2[i]
ELSE SR0eli:=OP1[i] x OP2[i] -
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Three Vector Operands and Cne Scalar

X+SY, $X+Y, SY-X, $X-Y, SX+SY, SX-SY, S+XY, §-XY

VeX+SY" . {SR,0P1} . {#,5,D} V:=VVS
VF"X+SY" . {SR,0P1} . {H,S,D} V:=VVS
FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OPI1[il=OP1[i] + RTA x CP2[i]
ELSE SRO0e[il=OP1[i] + RTA x OP2[i]

VuSX+Y" . {SR,0P1} . {H,S,D} V:=VVS
VF"SX+Y" . {SR,0P1} . {H,S,03 \:=VVS
FOR i:=0 TO SIZEREG-1 DO o |
IF {modifier OP} THEN OP1[i}=RTA * OP1[i] + OP2[i]
ELSE SR0e[i}=RTA % OP1[i] + OP2[i]

vrsy-X" . {SR,0P1} . {H,S,D} V:=VVS
VF"SY-X" . {SR,0P1} . {,5,D} V:=VV3
FOR i:=0 TO SIZEREG-1 DO
TF {modifier OP} THEN OP1[i}l=RTA % OP2[i] - OP1[i]
ELSE SROelil=RTA % OP2[il - OP1[i]

v'sX-Y" . {SR,0P1} . {H,S,D} V:=VVS
VF"SX-Y* . {SR,OP1} . {H,8,D} V:=VVS
FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OPI1[i}=RTA x OP1[i] - OP2[i]
ELSE SROe[i]l:=RTA x OP1[i] - OP2Ii] ‘

V"SX+SY" . {SR,0P1}. {H,S,D} V:=VVS
VF"SX+SY" . {SR.OP1} . {H.S.D} V:=VVS$
FOR i:=0 TO SIZEREG-1 DO _
IF {modifier OP} THEN OPI1[i}=RTA x (OP1[i] + OP2i))
ELSE SROe[i}=RTA x (OP1[i] + OP2[i])

v*sX-sY" . {SR,0P1} . {H,S.D} V:=VVS
VF"SX-SY" . {SR,0P1}. {H,S,D} V:=VVS
FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OPI1[i}=RTA x (OP1[i] - OP2[i])
ELSE SROe[il=RTA x (OPI1[i] - OP2[i])

V'S+XY" . {SR,0P1} . {H,S,D} V:=VVS
VF"S+XY" . {SR,0P1} . {H,S,D} V:=VVS
FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OPI[i}=RTA + (OP1[i] x OP2[i))
ELSE SROeli}=RTA + (OP1[i] x OP2[il)
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V"S-XY" . {SR,0F1} . {{,8,0) V:=VVS
VF"S-XY" . {SR,0P1} . {H,5,D} V:=VVS

FOR i:=0 TO SIZEREG-1 DO
- IF {modifier OFP} THEN OPI[il=RTA - (OPI[i] x OP2[i])

ELSE SROe[il:=RTA - (OP1[i] x OP2[i))

2 Instruction Set
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~ Two Vector Operands and Two Scalars

S+RX

V"S+RX" . {H,S,D} V:=VSS
VF"S+RX" . {H,S,D} | V:=VSS
vC"S+RX" . {H,S) V:=VSS
VFC"S+RX" . {H,S) - © - . Vi=VSS .

FOR i:=0 TO SIZEREG-1 DO OP1[i}=RTA + RTB:x OP2[i] -

163
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Four Vector Operands

X.YZ

V"X+YZ" . {SR,OP1}. {H S,D} V:=VVV
VF"X+YZ" . {SR,0P1} . {H,S ,D} V:=VVV
FOR i:=0 TO SIZEREG-1 DO '
IF {modifier OP} THEN OPI1[i}=OPI[i] + 0P2[1] x SROeli]
ELSE SR1eli}=OP1[i] + OP2[i] x SROe[i]

2 Instruction Set
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2.7 Data Moving
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MOV Logical move

MOV . {QH,SD} . {Q,H.S,D} | XOP
Purpose: OP1:=OP2. If OP2 has greater précision than OP1, the low-order bits of OP2 are used.
If '0P2 has smaller precision than OP], it is zero-extended to the left. This is best thought of as a
“logical” or “unsigned” move operation. No condition bits (eg, carry or integer overflow) are
affected. Note that the TRANS instruction can be used to perform sign-extended or truncated

integer moves.

It is preferable to use FTRANS rather than MOV on floating point numbers, because the former
will execute faster on most implementations.

Restrictions: Nohe
Exceptions: None

Precision: The two modifiers specify the precisions of OP1 and OP2 respectively.

I The following copies the low-order QW of RTA into the high-order QW: I
MOV.Q.Q RTA,RTA+3
The next example shows how MOV extends an integer with zeroes rather than sign bits:

HOV.H.Q RTB, #-1 . ; HIB 1= BBB777 octal.

| TRANS.H.Q RTB, #-1 3 RTB := 777777 octal . I
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MovMQ Move many quarterwords

MOVMQ . {2 .. 32, 64} .. . -XOP
Purpose: Moves a series of quarterwords beginning with OP2 into the series of quarterwords-
beginning with OP1, so that OP1:=OP2, NEXT(OP1):=NEXT(OP2), and so on. The modifier

specifies how many quarterwords to move. If the source and destination regions overlap, the result
is undefined. Unlike vector instructions, MOVMQ can access the registers.

Restrictions: None'

Exceptions: None -

Precision: This instruction deals with quarterwords for both source and destination precisions.. .

e

The following copies the three high-order QWs from RTA into RTB:

MOvMQ.3 RTB,RTA
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MOVMS Move many singlewords

MOVMS . {2 .82} XOP
- Purpose: Moves a series of singlewords beginning with OP2 into the series of singlewords beginning
with OP1, so that OP1:=OP2, NEXT(OP1):=NEXT(OP2), and so on. The modifier specifies how
many singlewords to move. If the source and destination regions overlap, the result is undefined.
Unlike vector instructions, MOVMQ can access the registers.

Restrictions: None

Exceptions: None .

Precision; This instruction deals with singlewords for both source and destination precisions.

I The following saves all the registers from RTA on in a block starting at SAVEBK: - |
MOVMS.28 SAVEBK,RTA

The following clears the registers:

I ' MOVMS.32 %R0, 49
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VINI A Vector initialize

VINI . {QH,5.D} | | Vi=§
Purpose: Initialize each elemeﬁt.of a vector OPl1to match the scalar OP2.

Restrictions: None

Exceptions: None

Precision: The elements of the vector OP1, like the scalar OP2, have the precision specified by the
modifier.

The following stores in each element of A the value in RO:

VINI.S A,R8
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VREV : _ Vector reverse

VREV . {H,S,D} ’ ' V=V
Purpose: Reverse a vector end-for-end by swapping the first element with the last, the second
element with the next-to-last, and so on. OP2 is the first element of the source vector and OP1 is
the first element of the destination. Either OP1 and OP2 must be identical or the two vectors must
not overlap at all; otherwise, the result of the instruction is undefined.

Restribtionsz None

Exceptions: None

Precision: The elements of the two vectors have the precision specified by the modifier.

!' The following stores in DOWN the reverse of the vector in UP: | o |

MOV.S.S SIZEREG, #5
VTRANS.S.S UP, 1 ? 1 ?2 3 ?2 4 ? 5]
VREV.S DOWN,UP ; DOWN :=5, 4, 3, 2, 1 I

L
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EXCH ; Exchange
EXCH . {QH.5.D} | - XOP
VEXCH . {Q,H,S,D} | ‘ SR 4

Purpose: EXCH exchanges OP1 with-OP2; VEXCH exchanges vector. OP1 with vector OP2. ..

1

Restrictions: None
Exceptions: None

Precision: OP1 and OP2 each have the precision specified by the modifier.

| The following swaps RTA and RTB: = .-~ . " . ' RO I

EXCH.S RTA,RTB

One can contrive a situation where the result depends on two rules: the processor; prefetches .
operands, and XOP instructions store OP1 after storing OP2:

MOV.S.S RTA,#5
MOV.S.S RTAL,#6
MOV.S.S RTB,#7
EXCH.D RTA,RTAl ; RTA:=6; RTAl:=7; RTB:=6
: (first RTAL:=5 and RTB:=6; then

I ; RTA:=6 and RTAl:=7) ' |
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SEXCH, USEXCH | Signed and unsigned sorted exchange
SEXCH . {QH,S,D} XOP
USEXCH . {QH.S,D} XOP

Purpose: If OP1 > OP2 then exchange OP1 with OP2. The instruction requires read and write
access to both OP1 and OP2 even if the inequality is false and no exchange takes place. SEXCH
treats the operands as signed integers, whereas USEXCH treats them as unsigned integers.

Restrictions: None
Exceptions: Nuie

Precision: OP1 and OP2 each have the ﬁrecision specified by the modifier.

iy

The following swaps RTA and RTB only if RTA > RTB:

SEXCH.S RTA,RTB
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SLR ' . N Save and load regiSter

SLR. {RO. RS} - » . XOP

Purpose: Loosely speaking, the instruction saves the contents of the register specmed by the modifier
in OP1 and then loads that register with OP2. . NS

More precisely, note that. the processor prefetches operands and that XOP instructions store into
OP1 last Thus SLR effectlvely does the following: o

TEMPL:=Rn
TEMP2:=OP2
" Rn:=TEMP2
'OPL:=TEMPI

As illustrated below, one can contrive situations where this behavior makes a difference.
Restrictions: None

Exceoptiohs:' None
- Precision: All operands involved are singlewords. The modifier must be a multiple of 4 within the
range 0 .. 124.

The first instruction moves RTA into RTB and zeros RTA. The second and third instructions l
. show what happens when one of the operands is the register specified in the instruction. The
fourth shows what happens when the operands are the same.

SLR.NTA RTO,#8 ;RTB:=RTA, RTA:=8

SLR.RTA RTA,F  ;essentially a NOP

' ' s (TMPR:=REG; TMP2:=0P2; REG:=TMP2; OP1:=TMPR)
; (TMPR:=RTA;. TMP2:=F; RTA:=TMP2; RTA:=TMPR)

SLR.RTA F,RTA ;effectively MOV F,RTA

- : (TMPR:=RTA; TMP2:<RTA; RTA:=TMP2; F: ~TEMPR)

SLR.RTA F,F  ;effectively EXCH RTA,F | ‘
; (TMPR:=RTA; TMP2:=F; RTA:=TMP2; F:=TMPR) |

s ,
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SLRADR : Save and load register with address

SLRADR . { RO.. R31 } . XOP

Purpose: Loosely speaking, the instruction saves in OP1 the register specified by the modifier and
then loads the register with ADDRESS(OP?2).

‘Because the processor prefetches operands, and because XOP instructions store into OP1 last, it is
more precise to say that: ‘

TEMPI1:=Rn
Rn:=ADDRESS(OP2)
OP1.=TEMPI

As illustrated below, one can concoct examples where this behavior makes a difference.
Restrictions: None
Exceptions: None

Precision: All operands involved are singlewords. The modifier must be a multiple of 4 in the range
0..12¢ ' .

The first instruction moves RTA into RTB and puts ADDRESS(F) in RTA. The second shows I
what happens when the first operand is the register specified in the instruction. The third
shows what happens when the operands are the same. '

SLRADR.RTA RTB,F "sRTB: =RTA, RTA:=ADDRESS (F)
SLRADR.RTA RTA,F seffectively a NOP

s (TMP:=REG:; REG:=ADDRESS (OP2); OP1:=TMP)
; (TMP:=RTA; RTA:1-ADDRESS(F)y RTA:=TMP)

SLRADR.RTA F,F 1same as MOV F,RTA; MOVP.P.A RTA,F
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ARB IND : ’ Array index

ARRIND . {RTA,RTB} | XOP

Purpose: RTA := (RTA + OP1 % OP2) Modulo 2°! or RTB := (RTB + OP1 % OP2) Modulo 2%!.
The instruction uses RTA (or RTB) to accumulate an array index. ~

Restrictions: None
Exceptions: None

Precision: All operands are singlewords.

I Given the following fragment of a Pascal program: ' l
TYPE DECADE = 8 .. 9;
YAR

I, J: DECADE;
TABLE: ARRAY [DECADE, DECADE] OF INTEGER;
BEGIN :

TABLE(I,J1:=25; -
...one might implement the assignment statement with the following code:

MOV.S.S RTA,J

ARRIND.RTA #18.,1 "3 index is 18 x 1 + J
l MOV.S.S TABLE [RTA1%2, #25. s TABLEI[I,J]l := 25 . I
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MOVP : Move pointer

MOVP. {P.R}. {P.RA} ‘ XOP
Purpose: Move poinfer, optionally transforming it.

This instruction deals with three kinds of “pointers”, as the modifiers “P”, “R”, and “A” indicate. “P”
specifies true pointer format, with tag and address. “R” specifies an untagged relative address, simply
a signed displacement (in quarterwords) from the address of the pointer itself. “A” specifies the
virtual address of the operand instead of the operand itself.

Thus there are cix cases:

MOVP.P.P Treat OPZ as a tagged pointer, validate a copy of it according to the rules of
Section 1.8.3 (possibly altering the tag or invoking the BAD_P_VALIDATION
hard trap) and store the resulting tagged pointer in OP1. A pointer with a fault
or reserved tag will cause a BAD_POINTER_TAG hard trap, but a pointer
with a NIL or gate tag will not.

MOVP.R.P Treat OP2 as a tagged pointer and validate a copy of it according to the rules of
Section 1.8.3 (possibly altering the tag or invoking the BAD_P_VALIDATION
hard trap). If the resulting tag is NIL. store the validated pointer in OP1.
Otherwise, if the result is a tag for the current ring, subtracc ADDRESS(OP1)
from the address field within OP2, and store the result in OP1. Otherwise, a
BAD_P_VALIDATION hard trap occurs.

This instruction need not check bounds because checking will occur whenever
the pointer is converted back to “P” form.

MOVP.P.R If OP2 has a NIL tag, move it to OP1 without change. Otherwise, add OP2 to
- ADDRESS(OP2) and perform segment bounds checking. Store the address in
OP1 along with the tag appropriate to the ring containing OP2.

MOVP.RR OP2:=OP2+ADDRESS(OP2)-ADDRESS(QP1)

MOVP.P.A Store into OP1 the ADDRESS(OP2) along with the tag appropriate to the ring
containing OP2.

MOVP.R.A Store ADDRESS(OP2) - ADDRESS(OP1) into OP1.
In every case, the operand corresponding to the “R” modifier must not be a register, or an

ILLEGAL_OPERAND_MODE hard trap will occur. Neither operand may be a constant, or an
ILLEGAL_CONSTANT hard trap will occur.
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Restrictions: None
Exceptions: None

Precision: Both operands are singlewords.

The following makes register RO point to location DATA:

MOVP.P.A R@,DATA
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VALIDP Validate pointer

VALIDP XOP

Purpose: Validate the pointer OP1 with respect to the ring containing OP2. The address for OP2
is computed following the usual address validation rules, but OP2 itself is not actually fetched.
(Thus this operation might cause an OUT_OF_BOUNDS trap, but not a PAGE_FAULT trap.)
Then, OP1 is validated and moved to itself using the address validation level of OP2 instead of
that of OP1 to derive the new tag. If the tag of OP1 is a ring tag and the number of the ring is
less than the validation level of OP2, trap; if the tag of OP1 is a fault or reserved tag, a trap also
occure:

If the tag of OP1 is a user tag and the validation level of OP1 is equal to the validation level of
OP2 then preserve the tag.

If the tag of OP1 is a user tag and the validation level of OP1 is greater than the validation level
of OP2 then change it to a ring tag corresponding to the validation level of OP1.

Sections 1.8.2 and 1.8.3 describe the address and pointer validation mechanisms.
Restrictions: None
Exceptions: None

Precision: Both operands are singlewords.

Suppose a process executing in ring 3 has called a routine executing in ring 1, passing it a
parameter in register R27. The routine in ring 1 could use the return address saved on the
stack--which by definition specifies the caller’s ring of execution--to assure that the pointer in
R27 is trustworthy. That return address is within the save area pushed by CALLX during the
gate crossing (Section 2.12.2) at (SP)-12:

I VALIDP R27, (SP)-12 ‘ |
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BASEPTR ' ' Base pointer

BASEPTR ' | XOP

Purpose: Store in OP1 a pointer to the beginning of the segment containing OP2. (T'he instruction
stores ADDRESS(OP2) in OP1 and. then sets to zero the low order SEGSIZE+PGSIZE bits of OP],
where SEGSIZE is the base 2 logarithm of the number of pages in the segment and PGSIZE is the
base 2 logarithm of the number of quarterwords in a page:)

Restrictions: None

Eiceptionsz None

Precision: Both operands are singlewords.

Make BP point to the beginning of the segment containing the following instruction:

" BASEPTR BP; .
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RMVIW Read/modify/write

RMW ' TOP
Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system) DEST:=S2 and then S2:=S1. (More precisely, because the processor prefetches
operands and because TOP instructions store DEST last, this instruction makes a temporary copy of
S2, stores S1 in S2, and then stores the copy into DEST".)

Other atomic instructions are MOV CSF and MOV CSS.

Restrictions: None

Exceptions: None

Precision: S1, 2, and DEST are all singlewords.

The following illustrates the use of RMW to implement a test-and-set lock for interprocessor
communication. The lock is a singleword flag which is -1 if some processor has seized the lock
and 0 if the lock is free: ' ‘

SEIZE: RMW RTA,#-1,L0CK sattempt to seize lock
JMPZ.NEQ.S RTA,SEIZE gbusy-wait if sofeone else has it
cee ‘sdo ... If lock was zero (now | have it}

. I REE:  MOV.S.S LOCK,#9@ jrelease the lock I
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MOVPHY , y ‘ Move physical address

MOVPHY ' XOP

Purpose: OPl:=PHYSICAL_;ADDRESS(QP2). If OP2 is an immediate constant or a register, an
ILLEGAL_OPERAND_MODE or ILLEGAL_CONSTANT hard trap will occur. .

Restrictions: Illegal in user mode.

Exceptions:‘ None

Precision: OP1 is a singleword.

Ee following loads RTA with tI‘1e physical address of F: : T

MOVPHY RTA,F ;RTA: =PHYSICAL_ADDRESS (F)




182 2 Instruction Set

RPHYS, WPHYS Read/write physically addressed location
RPHYS XOp

WPHYS . . | XOP

Purpose: RPHYS reads into OP1 the contents of a memory location whose physical address is
specified by the 34 low order bits of R3. WPHYS writes OP1 into a memory location whose
address is specified by the 34 low order bits of R3.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is a singleword. R3 is a singleword whose 34 low order bits are a physical address.
OP2 is unused.

The following moves SOURCE to DESTINATION even if the mappmg tables are changed I
following the first two instructions:

MOVPHY R3,SOURCE
MOVPHY R2,DESTINATION
RPHYS RTA

EXCH.S R3,R2

WPHYS RTA | I
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MOVHWR Move hardware representation

MOVHWR . {N,C} . {L16} | XOP

Purpose: This implémentation—dependent instructiori exists for use by memory diagnostics. It reads
words from a block beginning with OP2 and writes them to a block beginning with OP1, bypassing
the cache. Depending on the second madifier, it copies either 1 or 16 singlewords.

If the first modifier is N (for “no correction”), the instruction copies each singleword along with its
associated error-correction bits into a doubleword, right-justified with leading zeros, instead .of
applying the error correction algorithm. If the first modifier is G (“correction”), the instruction copies
source singlewords into destination singlewords, applying the correction algorithm and then
discarding the error-correction bits.

Restrictions: None.
Exceptions: None
Precision: OP?2 is the first element of a vector of {1,16} singlewords. For MOVHWR.N, OP1 is the

first element of a vector of {1,16} doublewords; for MOVHWR.C, OP1 is the first of a vector of
{1,16} singlewords. : : .

The following example copies a vector of 16 singlewords into a Vvect'or of 16 doublewords, I
revealing the error-correction bits:

MOVHWR.N.16 DEST, SOURCE I
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2.8 Skip, Jump, and Comparison

Skip and jump instructions branch to locations other than that of the next sequential instruction.
Skip instructions branch within a short range while jumps branch anywhere in the 229 singleword
address space.

Many skips or jump§ occur only if a condition specified by a modifier to the instruction is true. An
arithmetic condition (ACOND) can be any of the following :

ACOND = {GTR,EQL,GEQ,LSS,NEQ,LEQ}
These correspond to the conditions >, =, 2, <, =, < respectively.
The SKP instruction may use a logical condition (LCOND) as well. The LCOND:s are:
LCOND = {NON,ALL,ANY,NAL}

These correspond to the logical conditions that relate two operands (say OP1 and OP2) as shown in
the table below. Here OP2 is considered to be a mask whose “1” bits select bits of OP1 to be tested.

Moadifier Condition Meaning

NON (OP1 AOP2) =0 If no masked bits are 1
ALL (one’s-complement{OP1) A OP2) = 0 If all masked bits are 1
ANY (OP1AOP2) = 0 If any masked bit is 1
NAL (one’s-complement(OP1) A OP2) = 0 If not all masked bits are 1

Combining the ACONDs and the LCONDs gives the arithmetic and logical conditions
(ALCONDs):

ALCOND = {GTR,EQL,GEQLSSNEQLEQNON,ALLANY,NAL}
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SKP Skip on condition

SKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ,NON,ALL,ANY,NAL} . {QHSD} | , SOP

Purpose: If OP1 ALCOND OP2 is true (where ALCONDe{GTR, EQL, GEQ, LSS, NEQ, LEQ,
NON, ALL, ANY, NAL}), control is transferred to the specified location that is ‘within -8..7
singlewofds of the current PC. If the comparison is false, control is‘tran'sfe'rred to the next
instruction. ‘ '

Restrictions: None

F:xceptions: None

Precision: The precision of OP1 and OP?2 is specified by the second modifier.
The following instructions compute the function “IF.. RTA is Odd THEN BEGIN |

- RTA:=3%xRTA+1 END; RTA:=RTA/2;" repeatedly while RTA>1. Note that FASM determines
the SW offset automatically from the JUMPDEST operand: -

THREEN: \
SKP.LEQ.S RTA,#1,D0NE
SKP.NON.S RTA,#1,RTAEVN ;skip if RTA has an even .integer
MULT.S RTA,#3 smultiply by three ' '
" ADD.S RTA,#1 ;add one - result must be even,
RTAEVN: . ;3 so fall into even case
QUO2.S RTA,#1 ;this is better than QUO RTA,#2

"~ JMPA THREEN
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ISKP Increment, then skip on condition

ISKP . {GTR,EQL.GEQ,LSS,NEQ,LEQ} SoP
Purpose: OP1:=OPI+l. CARRY is not affected. Then if OPl ACOND OP2 (where

ACONDe{GTR,EQL,GEQ,LSSNEQLEQ}), control is transferred to a location that is within
-8 .. 7 singlewords of the current PC. If the comparison is false, control is transferred to the next

instruction.
Restrictions: None
Exceptions: INT_OVFL may be set by the incrementing operation.

Precision: OP1 and OP2 are both singlewords.

l The following is a typical loop of the form, “FOR =M TO N DO ..". The inner part of the |
loop must not exceed 8 singlewords when assembled:

MOv.S.S I,M
LOCP:

| - ISKP.LEQ I,N,LOOP l
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DSKP Decrement, then skip on condition

DSKP . {GTR,EQLGEQ,LSSNEQ,LEQ} - : - SOP

Purpose: OP1:=OP1-1. CARRY is not affected. - Then .if OP1 ACOND OP?2 is true (where
ACONDEe{GTR,EQL,GEQ,LSSNEQ,LEQ}), control is transferred to a-location that is within
-8 .. 7 singlewords of the current PC. If the comparison is false, control is transferred to the next
instruction. '

Restrictions: None
Exceptions: INT_OVFL may be set by the decrementing operation.

Precision: OP1 and OP2 are both singlewords.

The following instructions search an array of N singlewords starting at TABLE for the Iargg—l
index I such that TABLE[Il=I. Assume that TABLE[0] contains 0 toc ensure loop termination,
and that N singlewords follow this entry. In the following, I must be a register. Note.that since
the loop is one instruction long the singleword skip offset is zero. The "-4" added to the base
address TABLE ‘compensates. for the fact that the. address calculation occurs before the
decrementation operation, but the skip condition. is tested after the decrementation operation. In
turn, "N+1" is used instead of "N” in the initialization to compensate for this compensation:

MOV.S.S I,#<N+1> o
LOOP:  DSKP.NEQ I, <TABLE-4>[1112,L00P |

L
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JMP Jump on condition

| JMP . {GTR,EQL.GEQ,LSS,NEQ,LEQ} _ JoP

Purpose: If FIRST(OP1) ACOND SECOND(OPI) is true (where ACONDe{GTR, EQL, GEQ,
LSS, NEQ, LEQ)}), control is transferred to the location specified by JUMPDEST. If the condition
is false, control is transferred to the next instruction.

Restrictions: None _ . B
Exceptions: None

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords which are together treated as a
doubleword. '

The following loop searches down a chain of pointers for a specified tail pointer FPTR. Let P
be a register and HEAD the address of the first link in the chain. Note that NEXT(P) is
implicitly used by this routine to hold the comparison operand:

MOY.D.D P,#<[HEAD ? FPTR]> sinitialize P and NEXT(P)
: (this is an assembler |iteral
¢ Whosé address becomes a constant)

LOoP:  MOV.S.S P, (P)

I JMP.NEQ P,LOOP ' I
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JMPZ Jump on condition relative to zero

| JMPZ . {GTR,EQL,GEQ,LSSNEQ,LEQ} . {Q,ﬁ,S.D} JOP
Purpose: If OP1 ACOND 0 is true (where ACONDe{GTR, EQL, GEQ, LSS, NEQ, LEQ}), control
is transferred to the location specified by JUMPDEST. If the condition is false, control is
transferred to the next instruction. -

Restrictions: None

Exceptions: None

Precision: OP1 has the precision specified by the second modifier.

By using the indexed constant addressing mode (Section 1.6.2), a programmer can use the JMPZ
instruction to compare the contents of a register against any integer constant, not just against
zero. For example, the following jumps to AWAY iff RTA<L

I JMPZ.LEQ.S #[-11 (RTA), AWAY |
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JMPA : Jump always

JMPA jop
Purpose: Jump unconditionally to JUMPDEST. ' For a simple jump to a label, the SJMP
instruction is often more compact, but JMPA allows indexing and indirect addressing, usually at the
expense of an extra singleword.

Restrictions: None

Exceprions: None

Precision: None

| The following instruction jumps to the RTA-th address stored in a list of indirect pointers that
begins at JVECTS:

L

JMPA JVECTS [RTAl12e I
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mMpP . ‘ . ' Increment, then jump on condition

IJMP . {GTREQLGEQLSSNEQLEQ} | L - JOP
Purpose: FIRST(OP1):=FIRST(OP1)+1. CARRY s not affected. Then if FIRST(OP1). ACOND
SECOND(OP1) is true (where ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control.is transferred to

the location specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Restrictions: None
Exceptions: INT_OVFL may be set by the incrementing operation.

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords which together are treated as a
doubleword. .

The following is a typical loop of the form, “FOR =M TO N DO ...”. The inner part of the I
“loop ‘may be any length when assembled:

MOV.D.D I, M ? NI sM,N are assembly literals
L.O0P:

| IJMP.LEQ I,LO0P ' I
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IVMIPZ Increment, then jump on condition relative to zero

IJMPZ . {GTR,EQL,GEQ,LSSNEQ,LEQ} . jop
Purpose: OP1:=OP1+1. CARRY is not affected. Then if OP1 ACOND 0 is true (where

ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to the location specified by
JUMPDEST. If the condition is false, control is transferred to the next instruction.

Restrictions: None
Exceptions: INT_OVFL may be set by the incrementing operation.

Precision: OP1 is a singleword.

The following increments N and jumps to AWAY if N=0:

1JMPZ.EQL N, AWAY
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IJMPA : Increment and jump always

IJMPA R K JoP

Purpose: OP1:=OP1+1. CARRY is not affected. Jump unconditionally to JUMPDEST.

‘

Restrictions: None
Exceptions: INT_OVFL may be set by the incrementing operation.

Precision: OP1 is a singleword.

The following is an extremely inefficient way to add RTA into RTB, assummg that 1ntege1 |
overflow traps are disabled. However, it shows off the IJMPA instruction: =

LOOP: OSKP.EQL RTA, #-1 sdecrement RTA; skip next instruction if -1
IJMPA RTB,LOOP ;otherwise .increment RTB and loop
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DJMP Decrement, then jump on condition

DJMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ} - JoP

Purpose: FIRST(OP1):=FIRST(OP1)-1. CARRY is not affected. Then if FIRST(OP1) ACOND
SECOND(OP1) is true (where ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to
the location specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Restrictions: None
Exceptions: INT_OVFL may be set by the decrementing operation.

Precision: FIRST(OP1) and SECOND(OP1) are both singlewords which together are treated as a
doubleword.

The following is a typical loop of the form, "FOR I.=M DOWNTO N DO..". The inner part of l
the loop may be any length when assembled:

MOV.D.D I, [M ? NI sM,N are assembly literals
LOOP: '

I DJMP. GEC] I,LO0P |
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DJMPZ Decrement, then jump on condition relative to zero

. DJMPZ . {GTR,EQLGEQ,LSS,NEQ,LEQ} | JoP
Purpose: OP1:=OP1-1. CARRY is not affected. Then if OP1 ACOND 0 is true (where

ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control- is transferred- to the location ‘specified by
JUMPDEST. If the condition is false, control is transferred to the next instruction.

Restrictions: None
Exceptions: INT_OVFL may be set by the decrementing operation.

Precision: OP1 is a singleword.

The following decrements N and jumps to AWAY if N=0:

OJMPZ.EQL N, AUAY
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DJIVIPA : ' Decrement and jump always -

DJMPA Jop
Purpose: OP1:=OP1-1. CARRY is not affected. Jump unconditionally to JUMPDEST.
Restrictions: None

Exceptions:'INT_OVFL may be set by the decrementing operation.

Precision: OP1 is a singleword.

The following decrements N and jumps to AWAY:

DJMPA N, AWAY
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SJMP . ' Simple jump

SJMP : : : HOP
Purpose: Unconditionally jump anywhere in the address space.

The HOP format performs a PC-relative jump using a 29 bit unsigned displacement field. Because
the address calculation “wraps around”if it exceeds the maximum virtual address, it can:reach any.

singleword in the virtual address space.

While SJMP never occupies.more than 1 singleword, it allows only a direct memory address
reference. One must use JMPA for any other addressing mode, such as indexing or indirect
addressing.

Restrictions: None

Exceptions: None

Precision: None

Go to CRUNCH:

SJMP CRUNCH
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MOVCSF, MOVCSS Move condifionally, skip on failure/success
MOVCSF . {QH,S,D} SOP
MOVCSS . {Q,H,S,D} SOP

Purpose: For MOVCSF, IF OP1=OP2 THEN OP1:=%7R3 ELSE GOTO DEST.
For MOVCSS, IF OP1=OP2 THEN BEGIN OPI1:=%R3; GOTO DEST END.

In a multiprocessor system, these instructions are atomic (that is, they finish work on OP1 before
any other processor can alter that operand). Another atomic instruction is RMW.

Restrictions: None
Exceptions: None

Precision: OP1, OP2, and ZR3 have the precision specified by the modifier.

I Singleword LOCK represents a lock, which holds -1 if unlocked and 0 if locked. The following l
sequence seizes the lock, using busy-waiting if the lock is not free:

s3; Seize the lock stored in location LOCK.
MOV.5.5 %R3, #-1 ;Prepare the value -1 to he stored.
LOOP:  MOVCSF.S LOCK,#8,L.00P ;Store -1 when LOCK holds 8.

The following code sequence atomically turns on bit 35 of word FOl.

$33 Turn on bit 35 of word FB1.

LOOP: MOV.S5.S RTA,F@l ’ sPick up a copy of the former value of F@1.
ON.% %N3,RTA, #2 ;Turn on blt 35, creating the new value in %R3.
MOYCSF.S F@1,RTA,LOOP ;+Store the new value if the value has not

schanged since we began.

The following code sequence leaves in ZR3 a unique number; no two callers will ever be
returned the same number even if they run this routine simultaneously from different processors.
The location UNIQUE holds a number, whose value is increased by one atomically to get the
new unique value.

s33; Return a unique value in %R3.

LOOP: MOY.S.S RTA,UNIQUE ;:Get the old value of UNIQUE.
ADD.S.S %R3,RTA,#1 ; The new value should be one greater.
MOVCSF.S UNIQUE,RTA,LOCP sStore the new value if the value

;of UNIQUE has not changed in the meantime.
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The following code sequence atomically adds a new element to a singly linked list. The pointer
to the first list element is stored in location HEAD,; the first word of each element contains a
pointer to the next element. Register ZR3 contains a pointer to a new element to be added to the
head of the list. '

.;;; Add the element in %R3 to the list.

LOOP:  MOV.S.S RTA,HEAD ;Pick up the pointer to the former first
selement of the list.
MOY.S.S (%R3),RTA sMake the new element point to it.

MOVCSF.S HEAD,RTA,LOOP ;Store the new pointer if the old aone

~| , shas not changed. 3 |
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CMPSF, UCMPSF Signed/unsigned compare and set flag
CMPSF . {GTR,EQL.GEQ,LSS,;NEQ,LEQ} . {Q,H.S.D} TOP
UCMPSF . {GTR,EQLGEQ,LSS,NEQ,LEQ} . {Q,H,S,D} TOP

Purpose: If S1 condition S2 then DEST := -1 else DEST := 0, where condition is the first modifier.
CMPSF performs a two’s complement signed comparison whereas UCMPSF performs an unsigned
comparison. ‘

Restrictions: None
Exceptions: None

Precision: $1 and $2 have the same precision as the modifier. DEST is a singleword.

I—I:t X, Y, and Z be singlewords, with Y=NEXT(X). The following code implements settin?l
RTA to X if Z>0 and to Y otherwise. It uses indexing rather than a conditional jump or skip.
Such use of indexing can often make more effective use of instruction pipelining than jumping
or skipping:

CMPSF.GEQ.S RTA,Z,#B
MOY.S.S RTA,Y[RTAI12 sindexing with flag result

CMPSF.LSS can be used to produce an extended-sign word for a number. TRANS or
FTRANS can be used to sign-extend a number to one of the four standard precisions, but this
trick is useful in dealing with numbers of very large precision:

CMPSF.LSS.S RTA,NUM,#8 ;all bits of RTA get the sign bit of NUM

Though instructions CMPSF.{NONALL,ANY,NAL} do not exist, their effect can be obtained
by an AND or ANDCT followed by a CMPSF.EQL or CMPSF.NEQ;

ANDCT.S RTA, ARG1, ARG2 s this behaves as would the fictional
CMPSF.EQL.S RTA, 8@ s Instruction CMPSF.ALL RTA, ARG1,ARGZ |

B
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BNDSF : : Bounds-check and set flag

BNDSF . {B,MIN,M10,1}. {Q,H,S,D} ' TOP

Purpose: Check S2. against the bounds specified by the first modifier and by S1. If S2 is within
bounds then DEST := -1 else DEST := 0. The following table explains the first modifier:

Modifier Meaning o

B (“both™) FIRST(S1) < $2 < SECOND(S1) .
MIN MINNUM < $2 < Sl

Ml -1<82<5sl1

0 0<82<SlI

1 1 <82 <81

Restrictions: None
Exceptions: None
Precision: DEST is a sihgleword. S2 has the precision specified Sy the second modifier. If the first

modifier- is B, then FIRST(S1) and SECOND(S1) have the same precision as S2 and must alizn
together to form a single entity with twice that precision; otherwise, S1 has the same precision as S2.

I This first example shows a standard way to use BNDSF: : | I
BNDSF.9.S RTA,#LIMIT,X 3 8 < X < #LINT

This second example shows how to use a constant addressing mode to obtain a different kind of
check. This makes use of the rule that a singleword instruction which expects a
FIRST/SECOND operand pair will expand a constant to twice the specified precision and use
half for the FIRST part and half for the SECOND part:

L

BNDSF.B.S RTA,#ILIMIT 2?2 181,X ; HLIMIT < X <@ I
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BENDTRP Bounds check and trap on failure

BNDTRP . {B,MIN,M10,1} . {Q,H,S,D} XOP

Purpose: Check OP2 against the bounds specified by the first modifier and by OP1. If OP2 is out
of bounds then a BOUNDS_CHECK soft trap will occur. The following table explains the first
modifier:

‘Moadifier Meaning

B (“both™) FIRST(OP1) < OP2 < SECOND(OPI)
MIN : MINNUM < OP2 < OP1

M1 -1 £ OP2 < OP1

0 : 0 < OP2 < OPI

1 1 £ OP2 < OP1

Restrictions: None

Exceptions: None

Precision: OP2, the upper bound, and the lower bound all have the precision specified by the
second modifier. If the first modifier is B, then the instruction uses FIRST(OP1) and
SECOND(OP1); thus, each has the precision specified by the second modifier, but both must align
to form an entity with twice that precision.

The following instruction traps if |RTA[]>2.0:

BNDTRP.B.S [-2.8 ? 2.01,RTA
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STRCMP - : . . String conipare

STRCMP . {RTA,RTB} . . | XOP

Purpose: Consider OP1 and OP2 to be vectors of quarterwords--in other words, strings of

characters—-whose quarterword length is specified by SIZEREG. Signed comparison is used, and '
each quarterword character is compared -separately. The result of the comparison is computed as

shown in the following table and is stored into {RTA,RTB}. The result values are designed to have

two useful properties. First, the result (as a signed integer) bears the same relation to zero that

‘STRINGI does to STRING2. Second, the value can be used as an index into the string no matter

what the result, because indexing arithmetic “wraps around” the address space. '

Condition Result

STRINGI = STRING2 0

STRING! > STRING2 n - :
STRING1 < STRING2 =~ -2%%n (i.e. MINNUM+n)

(n is the position of the first character to differ)
“Restrictions: None
Exceptions: None

Precision: OP1 and OP2 are quarterwbrd vectors, and thus may designate registers. RTA and
RTB are single words.

| The folldwing sets RTA to the result of comparing the eighty-character blocks at X and Y.I

MOV.S.S %SIZEREG, #89.
STRCMP.RTA X,Y

The following illustrates a more general sort of comparison. Assume that XLENGTH contains
the length of a string beginning at X and YLENGTH that of string at Y. For the purposes of
this comparison we will imagine that appended to the two strings are infinitely many imaginary
characters defined to be “less than” all real characters. We will then define the result of the
comparison as the result of a STRCMP performed on these extended strings. (This definition is
similar to that used in some high-level languages): '

MIN.S RTA,XLENGTH, YLENGTH :set RTA to minimum real IengthA

MOV.S.S %SIZEREG,RTA

INC.S RTB,RTA ‘ ssave one greater in RTB for unequal case
STRCMP.RTA X,Y :do comparison

JMPZ.NEQ.S RTA,DONE sdifference found

SKP.NEQ.S XLENGTH, YLENGTH sdone if strings are equal length

JMPA DONE
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" 3RTB is index of "imaginary" character

SKP.LEQ.S XLENGTH,YLENGTH,DONE ;set high-order bit if necessary
OR.S RTA, #<400808, , 0> sor DIBYT RTA,#1,#1 to save a word!

ens sRTA contains result l

MOV.S5.S RTA,RTB
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2.9 Shift, Rotate, and Bit Manipulation

These instructions all manipulate bits within a word, either by shifting, by rotating, or by
performing bitwise logical functions. Note that a left shift (or rotate) by N is equivalent to the
corresponding right shift (or rotate) by -N. The SHFA instruction, which shifts signed - integers,
appears in Section 2.1 with the other signed integer arithmetic instructions.



206 2 Instruction Set

NOT Logical bit-wise NOT
NOT . {Q,H,S,D} ‘ XOP

VNOT . {H,S,D} : Vi
Purpose: NOT computes OP 1:=(~OP2), where “-” signifies one’s complement

VNOT performs NOT on each element of the vector beginning with OP2 and stores the result in
the corresponding element of the vector beginning with OP1.

Restrictions: Nune
Exceptions: None

Precision: OP1 and OP2 (or the elements of vectors OP1 and OP2) have the same precision as the
modifier.

e —

The following is an alternate to NEG RTA:

NOT.S RTA,#[-1] (RTA) ;RTA := -RTA
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AND E ‘ " Logical bit-wise AND

AND . {QHS,D} : | | | TOP
VAND . {SROP1} . {HSD} Vi=VV

Purpose: AND computes DEST:=S1AS2.

. VAND performs AND on each element of vector OP1 and the corresponding element of OP2. It
puts the results either back into vector OPl or into the vector pointed to by SRO0, depending on the
, flrst modifier: R, _ ¢

FOR i:=0 TO SIZEREG-i DO
IF {modifier OP} THEN OPI1[i}=0P1[i] A OP2[i]
ELSE SRO0e[il:= OPl[l] A OP2li]

Restrictions: None
Exceptions: None

Precision: For AND, S1, S2, and DEST all have the precisien specified by the {Q,H,S,D} modifier.
For VAND, the elements of the vectors all have the precision specified by the {H,S,D} modifier.

The following instruction illustrates the effect of AND:

AND.Q RTA, #3,#5 ;RTA:=1 (QUW)
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ANDTC Logical bit-wise AND true/complement
ANDTC . {QHSD} TOP
VANDTC . {SR,0P1}. {H,S,D} V:i=VV

Purpose: DEST:=S1A(-S2). Note that the “TC” in ANDTC means “True-Complement" and refers
to the fact that S1 and one’s—complement(S2) respectively are operands to the AND function. The
reverge form of ANDTC is ANDCT, not ANDTCV.

VANDTC performs ANDTC on pairs of corresponding elements in the vectors beginning at OP1
and OP2 It puts the results back into the vector OP1 or into the vector pointed to by SRO,
depending on the first modifier.

FOR I.=0 TO EIZEREG-1 DO
IF {modifier OP1} THEN OPI1[il:=OP1li] A (~OP2[i])
ELSE SR0elil:=OPI[i] A (-OP2[i))

Restrictions: None

Exceptions: None

Precision: For ANDTC, S1, S2, and DEST all have the precision specified by the {QH,S,D}
modifier. For VANDTGC, the elements of the vectors all have the precision specified by the {H,S,D}

modifier.

I The following instruction illustrates the effect of ANDTC: , “

ANDTC.Q RTA,#3,#5 . ;RTA:=2 (QW)
Suppose that MASK is a mask whose “1” bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a "field", and the contents of that field decremented as
an integer "in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows:

AND.S RTA, WORD, MASK sRTA:=WORD with non-selected bits zeroed
SUB.S RTA,#1 ;zeroed bits propagate the borrou

AND.S RTA,MASK smask out non-selected bits

ANDTC.S WORD, MASK smask out SELECTED bits in WORD

l OR.S WORD,RTA smerge the two results l
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ANDCT - Logical bit-wise AND complement/true
ANDCT . {Q,H.S.D} | ‘ | TOP
VANDCT . {SR,OP1}. {H,S,D} S V:=VV

Purpose: ANDCT computes DEST:=(-SI1)AS2.  Note that the “CT” in  ANDCT means
“Complement-Trqe” and refers to the fact that oné’s-complement(S1) and S2 respectively are
operzds to the AND functiq_nz The reverse form of ANDCT is ANDTC, not ANDCTV.

"VANDCT performs ANDCT on pairs of elements from the vectors beginning at OP1 and OP2. It
puts the results back into the vector QPl or into the vector pointed to by SRO, depending on the
first modifier. o '

FOR I:=0 TO SIZEREG-1 DO ' N
IF {modifier OP1} THEN OPI1[i}:=(-OP1[i]) A OP2[il '
ELSE SROelil=(-~OP1[i]) A OP2[i]
Restrictions: None . i _ .
Exceptions: None
‘Precision: For ANDCT, S1, $2, and DE"S'T all hdve_the prec’isic)n specified by the {QH,S,D}

modifier. For VANDCT, the elements of the vectors all have the precision specified by the {H,S,D}
modifier. - -

The following instruction illustrates the effect of ANDCT:

ANDCT.Q RTA,#3,#5 ;RTA: =4 (QW)
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OR Logical bit-wise OR
OR . {Q,H,S,D} TOP

VOR . {SR,OP1}. {H,S,D} ' Vi=VV
Purpose: OR computes DEST:=S1vS2.

VOR performs OR on pairs of elements from the vectors OP1 and OP2, putting the results into
vector OP1 or the vector pointed to by SR0, depending on the first modifier:

FOR ii=0 TO SIZEREG-1 DO
TF {mndifier OP} THEN QP i[i}=0P1[i] v OP2[i]
ELSE SRO0e[il:=OP1[i] v OP2li]

Restrictions: None
Exceptions: None

Precision: For OR, S1, S2, and DEST all have the precision specified by the modifier {Q,H,S,D}.
For VOR, the elements of the vectors all have the precision specified by the modifier {H,S,D}.

The following instruction illustrates the effect of OR:

OR.Q RTA,#3,#5 1RTA: =7 (QW)
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ORTC . 4 Logical bit-wise OR true/complement
ORTC . {Q,H,S,D} ' | TOP
VORTC . {SR,OP1}. {H,S,D} ' V:=VV

Purpose: ORTC computes DEST:=S1v(-S2). Note that the “TC” in ORTC means
“True-Complement” and refers to the fact that S1 and one’s-complement(S2) respectively are
operands to the OR function. The reverse form of ORTC is ORCT, not ORTCV.

’VORT C performs ORTC -on pairs.of elements of the vectors OP1 and OP2, putting the results in
either vector OP1 or the vector pointed to by SRO, dependmg on the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OPI1[i}:=OP1[i] v (-OP2[i])
ELSE SROe[i}=OP1[i] v (~OP2[i))
Restrictions: None

Exceptions: None N

Precision: For ORTC, S1, $2, and DEST all have the precision specified by the second modifier.
For VORTGC, the elements of the vectors. all have the precision specified by the second. modifier.

l The following instruction. illustrates the effect of ORTC: . : - , _ |
ORTC.Q RTA,#3,#5 ;RTA: =773 QW)
Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a “field", and the contents of that field incremented as

an integer "in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows:

ORTC.S RTA,WORD, MASK :RTA:=WORD with non-selected bits set to "1"

ADD.S RTA,#1 s "1 bits propagate the carry
AND.S RTA,MASK ;smask out non-selected bits
ANDTC.S WORD,MASK smask out SELECTED bits in WCORD

| OR.S WORD,RTA : smerge the tio results ' I
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ORCT Logical bit-wise OR complement/true
ORCT . {Q,H,S,D} TOP
VORCT . {SR,OP1}. {H,S,D} Vi=VV

Purpose: ORCT computes DEST:=(-~S1)vS2. Note that the “CT” in ORCT means
“Complement-True” and refers to the fact that one’s-complement(S1) and S2 respectively are
operands to the OR function. The reverse form of ORCT is ORTC, not ORCTYV.

VORCT performs ORCT on pairs of elements of vectors OP1 and OP2, putting the results either
in vector OP1 or in the vector pointed to by SRO, depending on the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {inudifies OP} THEN OP 1[il:=(~OP 1[i]) v OP2[i]
ELSE SRO0e[il:=(-OP1[i]) v OP2i]

Restrictions: None
Exceptions: None

Precision: ForA ORCT, S1, S2, and DEST all have the precision specified by the {Q,H,S,D} modifier.
For VORCT, the elements of the vectors all have the precision specified by the {H,S,D} modifier.

prer— o e

The following instruction illustrates the effect of ORCT:

ORCT.Q RTA,#3,#5 ;ATA: =775 (QW)
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NAND o ‘ Logical bit-wise NAND
NAND . {QH.S,D} : TOP
VNAND . {SR,OP1} . {H,S,D} : ' © Ve=VV

Purpose: NAND computes DEST:=—(S1AS2).

VNAND performs NAND on pairs of elements of the vectors OP1 and OP2, putting the results
either in vector OP1.or in the vector pointed to by SRO, according to the first modifier:

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OP1[i}=—(OP1[i]) A OP2[i]
ELSE SROe[il=—~(OP1[i] A OP2[i]) .

Restrictions: None

Exceptions: None

-

Precision: For. NAND, S1, S2, and .DEST all have the precision specified by the {QH,S,D}
modifier. . For VNAND, the elements of the vectors all have the precision specified by the {H,S,D}
modifier. -

. . .

The following instruction illustrates the effect of NAND:

NAND.Q RTA, #3, 45 ‘RTA:=776 (QW)
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NOR : Logical bit-wise NOR
NOR . {QH,S,D} : TOP
VNOR . {SR,OP1} . {H,S,D} Vi=VV

Purpose: NOR computes DEST:=—(S1vS2), where “-” signifies one’s complement.

VNOR performs NOR on pairs of elements of the vectors OP1 and OPZ, putting the results either
in vector OP1 or in the vector pointed to by SRO, according to the first modifier:

FOR i:=0 TO EIZEREG-1 DO
IF {modifier OP} THEN OP1[i}=~(OP1[i] v OP2[i])
ELSE SROelil=—~(OP1[i] v OP2[i))

Restrictions: None
Exceptions: None

Precision: For NOR, S1, S2, and DEST all have the precision specified by the {Q,H,S,D} modifier.
For VNOR, the elements of the vectors all have the precision specified by the {H,5,D} modifier.

The following instruction illustrates the effect of NOR:

NOR.Q RTA,#3,#5 sRTA: =778 (QW)
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XOR | Logical bit-wise XOR
XOR . {QHSD} | .. TOP
VXOR . {SROPY} . {HS.D} | | 1 Vi=VV

Purpose: XOR computes DEST:=(S1A~(S2)) v (—~(Sl)AS2) where “-~” represents the one’s complement
operation.

VXOR performs XOR -on pairs of elements of the vectors OP1 and OP2, putting the resuits either
in vector OP1 or in the vector pointed to by SRO, depending on the first modifier:-

FOR i:=0 TO SIZEREG-1 DO
IF {modifier OP} THEN OP |[i]:=ExclusiveOR(OP 1[i], OP2[1])
ELSE SROe[i)=ExclusiveOR(OP 1[i],OP2[i]) .
Restrictions: None

Exceptions: None

Precision: For XOR, S1, S2,' and DEST all have the precision specified by the {Q,H,S,D} modifier.-
For VXOR, the elements of the vectors all have the precision specified by the {H,S,D} modifier.

| The following instruction illustrates the effect. of X OR: : _ . |
XOR.Q RTA,#3,#5 sRTA:=6 (QW)

The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving
property of XOR.)

XOR.S QUUX,ZTESCH
X0R.S ZTESCH, QUUX

| XOR.S QUUX,ZTESCH ' : , l
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EQV Logical bit-wise equivalence
EQV . {QHS,D} | TOP
VEQV . {SR,OP1} . {H,S,D} V:=VV

Purpose: EQV computes DEST:=(S1AS82) v (—~(SI1)A(=S2)), where “~” represents the one’s complement
operation.

VEQYV performs EQV on pairs of elements of the vectors OP1 and OP2, putting the results either
in vector OP1 or in the vector pointed to by SRO, according to the first modifier:

FOR i:=0 TQO SIZEREG 1 DO
IF {modifier OP} THEN OPI[i}=EQV(OPI1[ilOP2[i])
ELSE SROe[i:=EQV(OPI[i,OP2Lil)
Restrictions: None

Exceptions: None

Precision: For EQYV, S1, S2, and DEST all have the precision specified by the {Q,H,S,D} modifier.
For VEQYV, the elements of the vectors all have the precision specified by the {H,S,D} modifier.

I The following instruction illustrates the effect of EQV: - I
EUY.Q RTA,#3; #5 , sRTA: =771 (QW)
The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving

property of EQV.)

‘EQV.S QUUX,ZTESCH -
EQY.S ZTESCH, QUUX

I FAV.S X, ZTESCH ' |
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SHFA Shift arithmetically’
SHFA . {LFRT} . {Q,H,S,D} TOP
SHFAV . {LF,RT}. {Q,H,S,D} : TOP
VSHFA . {LF,RT} . {HSD} ' . . Vi=VS§

Purpose: SHFA computes DEST:=S1 arithmetically shifted {left,right} by $2. Shifts to the (true) left
introduce “0” bits; shifts to the (true) right feplicate the sign bit and discard bits shifted out the low
end. This is equivalent to a multiplication. or division by a power of two, where it is understood
“that such a division rounds towards negative infinity. For division by a power of two, rounding
towards zero, the QUO2 instruction should be used instead. Note that a left shift by Sl is
equivalent to a right shift by -S1. If the absolute value of S2 exceeds the width of the anyword
being shifted, an ILLEGAL_SHIFT_ROTATE hard trap occurs.

SHFAY swaps the roles of S1 and S2.

VSHFA performs SHFA on each element of the vector beginniﬁg at OP2 and stores the results in
the corresponding elements of OP1. RTA specifies how far to shift each element.

Restrictions: None
Exceptions: INT_OVFL (the instruction behaves exactly as would a multiplication by a power of 2)

Precision: For SI—IFA $2 is a smgleword and DEST and S1 have the precision spec1f1ed by the
second modifier. : : .

For SHFAYV, S1 is a singleword, and DEST and S2 have the precision specified by the second
madifier.

For VSHFA the elements of vectors OP1 and OP2 have the precision of the modlfler and RTA is
a scalar singleword.

The following'two instructions illustrate the difference between SHF.RT and SHFA.RT:

SHF.RT.Q RTA,#-1,#1 sRTA: =377
SHFA.RT.Q RTA,#-1,#1 sRTA: =777
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SHF Logical shift
SHF . {LF,RT} . {QH.S.D} TOP
SHFV . {LF.RT}. {Q,H,5.D} TOP
VSHF . {LF,RT}. {H,S D} : V:=VS$

Purpose: SHF computes DEST:=S1 logically shifted {leftright} by S2. Bits shifted in are “0” bits;
bits shifted out are lost. Note that a left shift by S2 is identical to a right shift by -S2. If the
absolute value of S2 exceeds the width of the anyword being shifted, an
ILLEGAL_SHIFT_ROTATE hatd trap occurs. ‘

SHFYV, the reverse form, behaves identically except that it swaps the roles and precisions of S1 and
S2.

VSHF performs SHF on each element of the vector beginning with OP2 and stores the results in
the corresponding elements of the vector beginning with OP1. RTA specifies the number of bit
positions by which to shift.

Restrictions: None
Exceptions: None

Precision: For SHF, S2 is a singleword; DEST and S1 have the precision specified by the second
modifier. For SHFV, S1 is a singleword; DEST and $2 have the precision of the second modifier.
For VSHF, RTA is a singleword; the elements of OP1 and OP2 have the precision specified by the
modifier.

The following shows the effect of a positive left-shift argument:

SHF.LF.Q RTA,#-1,#1" ;RTA:=-2 (QU)
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DSHF , . Extended logical shift
DSHF . {LF,RT} . {QH.S} ' TOP
DSHFV . {LF,RT} . {QH.S} TOP

Purpose: Just as a programmer can use the ADDC instruction repeatedly to add numbers of
_arbitrarily great precision, the programmer can use the DSHF instruction repeatedly to shift an
arbitrarily long .string of bits. Ordinary logical shift instructions are difficult to chain in_this
fashion because they shift zeros into the word. DSHF solves the problem by shifting in bits from the
ad jacent word in memory instead. '

More precisely, DSHF.LF concatenates S1 and NEXT(S1), logically shifts the resulting double
precision entity left by S2 bits and stores in DEST the high order 9, 18, or 36 bits (corresponding to
Q, H, or S precisions). DSHF.RT logically shifts the entire entity right by S2 bits and stores in
NEX'1{DES'T) the iow order 9, 18, or 36 bits.

»|S2 bits|e
s1 NEXT (S1)
ot — DSHF.LF DEST,S1,S2

!

DEST

Careful use of DSHF even permits in-place shifting--that is, leaving the result of the shifting in the
- original memory locations: right shifts must start at the right end of the series of words, and long
left shifts must start at the left end. a

An ILLEGAL_SHIFT _ROTATE hard trap occurs if the absolute value of S2 exceeds the width of
the anyword being shifted.

DSHFYV, the reverse form, swaps the roles of S1 and S2.

See also the vector instruction VDSHF.

Restrictions: None

‘Exceptions: None

Precision: For DSHF, operands S1, NEXT(S1), and DEST (or NEXT(DEST)) all havé the
precision specified by the modifier. S2 is a singleword. S1 and NEXT(SI) need not be aligned

specially: using DSHF.H, for example, S| must be a properly aligned halfword, but S1 and
NEXT(S1) together need not be a properly aligned singleword.
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For DSHFV, the same is true except that the roles of S1 and S2 are swapped.

I The following illustrates the result of shifting a long operand: I

MOY.H.H  %R8, #123456
DSHF.LF.Q RTA,%RS8, #1 sRTA: =247 (high-order QW of RTA)

Suppose that a 30-word block of bits MARKERS is to be logically shified in place three bits to
the left. While using VDSHF provides better performance, the following example illustrates the
use of DSHF within an explicit loop:

MOV.S.5 RIR, &1 $RTB indoxes MARKERS from left to right
LOOP: DSHF.LF.S MARKERS[RTBI*2,#3 ;produce one result word
. ISKP.LSS RTB, #29.,L00P s increment RTB and loop if < 29.
SHF.LF.S MARKERS+29.x%4, #3 ;do the last word in single precision

The same block of bits can be logically shifted three bits to the right as follows. Note that the
operation must proceed in the other direction within the block, ie. from right to left:

MOY.S.S RTB, #29. , ;RTB indexes MARKERS from right to left
LOCP: DSHF.RT.S MARKERS [RTB112,#3 ;produce cone result word
' DSKP.GTR RTB, #2,L00P _ sdecrement RTB and loop if > @
SHF.RT.S MARKERS, #3 sdo the last iword in éingle preclsion

The same black of bits can be arithmetically shifted three bits to the right by using the same
I loop but changing the last SHF.RT instruction to SHFA RT. I
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VDSHF : Lengthwise vector logical shift

VDSHF . {LF,RT} : . Vi=VS

Pﬁrpose: Logically shift an arbitrarily long series of bits. OP2 is the first word of the source vector,
OP1 is the first word of -the destination vector, SIZEREG gives the length of the vector in
singlewords, and RTA specifies how- far to shift the bits.

If the source and destination vectors overlép at all, they must coincide completely, or the result is
‘undefined. An ILLEGAL_SHIFT_ROTATE: hard trap .occurs if the absolute value of RTA is
greater than 36.

VDSHF.RT does not alter the first word of the vector, and VDSHF.LF does not alter the last word.
This allows the programmer to use a scalar shift or rotate instruction to finish the operation, and.
thereby obtain a logical shift, arithmetic shift, or rotation. This also permits chaining of VDSHF
instructions. : : :

This instruction accomplishes the same task as a loop that applies the scalar DSHF instruction to a
series of words; one at.a time (see.the. example. under the discussion of DSHF).- For all but the"
shortest series of bits, the vector version will execute more rapidly, but the scalar version gives a
choice of precisions. '

Restrictions: None
Exceptions: None

Precision: The elements of both vectors are singlewords in terms of alignment (though the
instruction can operate on larger sections of the vector to achieve greater speed). RTA and
SIZEREG are singlewords.

’ This is a simple illustration of VDSHF and SHF combined to perform a logical shift: I

MOV.S.S SIZEREG, #3 ; Length of vector is 3 singleuords
MOV.S.S RTA, #13. ;s Shift by 19 bit positions
VTRANS.S.S SOURCE, {1,,2 ? 3,,4 ? 5,,6]
;s "a,,b" tells FASM to put a in
the left halfuord, b In the iright
VDSHF.LF DEST, SOURCE : Result is
SHF.LF.S <SOURCE-4x1>[SIZEREG]112,RTA . 4,,6 2 8.,,18. ? 12.,,0]_—|
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ROT Logical rotate
ROT . {LF.RT}. {QH.S.D} TOP
ROTYV.. {LF,RT} . {QHS.D} TOP

Purpose: ROT computes DEST:=S1 rotated {left,right} by S2. Rotation introduces bits shifted out
of one end into the other end, so that no bits are lost. An ILLEGAL_SHIFT_ROTATE hard trap
occurs if the absolute value of S2 exceeds the width of the anyword being shifted.

ROTYV, the reverse form, rotates S2 left or right by S1 bits.

Restrictions: None

Exceptions: None -

Precision: For ROT, S2 is a singleword. DEST and S1 have the precision specified by the second
modifier.

For ROTY, S1 is a singleword; DEST and S2 have the precision of the second modifier.

l The following illustrates a right rotation by a positive amount:

ROT.RT.Q RTA,#1,#1 ;RTA: =408 (QW) oo
L o
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BITRV | Bit reverse
BITRV . {QHS,D} .+ TOP
BITRVYV . {QH.S,D} - TOP

Purpose: BITRV  reverses the order of the S2 low-order bits of S1, and zero-extends.the result into
DEST. An ILLEGAL_SHIFT_ROTATE hard trap occurs if S2 is negative or exceeds the word
width.

:BIT RVY reverses the order of the S1 low-orde”r' bit; of S2 insteéd.

Restrictions: None

Exceptions: None

Precision: For BITRV, S1 and DEST ha\./e the samé p;eéisit;n as 'the modifier. S2 isa sinéleword.

For BITRVYV, S$2 and DEST have the precision of the modifier; S1 is a singleword.

The following reverses all nine bits of its operand:

BITRY.Q RTA,#[123]1,#9. ;RTA:=624 (QW)
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BITEX ' Bit extract
BITEX . {QHS,.D} TOP
BITEXV . {Q,H,S,D} TOP

Purpose: BITEX extracts the bits of S1 selected by the “1” bits of $2. It squeezes these selected bits
to the right, zero-extends them, and stores them into DEST.

BITEXY, the reverse form, swaps the roles of S1 and S2.
'Restrictions: None
Exceptions: None

Precision: S1, S2, and DEST all have the precision specified by the modifier.

—
The following extracts alternate bits from.the operand:

BITEX.Q RTA,#(765],#[525] ;RTA: =37 (QW)




2.9 Shift, Rotate, and Bit Manipulation ' ‘ 225

BITCNT. - o . . .~ ... ... - Bitcount
BITCNT . {QH,S,D} . o _ .- XOP
VBITCNT . {H.S.D} i o S Vi

LBITCNT . {H,S,D} : : =

Purpose: BITCNT computes OPl:=number of “I” bits in OP2. This instruction is useful for
counting the number of elements in a Pascal set.

'VBITCNT performs BITCNT on each element of the vector.beginning at OP2 and stores the
results in the corresponding elements of the vector beginning at OP1.

LBITCNT counts all the “1” bits in all elements of the vector OP2 and stores the resulting totai in
singleword OP1.

Restrictions: None
Exceptions: None

Precision: For BITCNT, OP1 is a singleword and OP2 has the same precision as the modifier. For
VBITCNT, the elements of vector OP1 are singlewords and those of OP2 have the same precision
as the modifier. For LBITCNT, OP1 is a singleword and the elements of vector OP2 have the
precision specified by the modifier.

I The following sets RTA to -1 if RTA has odd parity, 0 otherwise: 4 ‘ I

BITCNT.S RTA,RTA
AND.S RTA,#1
NEG.S RTA

The parity of an arbitrarily long block of bits can be obtained by using the XOR instruction to
condense the block.” (The XOR operation essentially causes pairs of one-bits to cancel) If
TABLE is a block of N singlewords (N>2), this code sets RTA (flag-style) if TABLE has odd
parity:

XOR.S RTA, <TABLE+4%(N-1) >, <TABLE+4% (N-21> sRTA gets XOR of two uwords
MOV.S.S RTB, # IN-4x%3] sRTB counts all other words
LOOP:  XOR.S RTA, TABLE [RTB112 1 XOR in next word
DSKP.GEQ RTB, #8,L00P ; loop until all words done
BITCNT.S RTA,RTB scount result as before
AND.S RTA,#1
NEG.S RTA

A non-zero integral power of two always has a two's-complement representation with exactly one
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bit set. Assuming that HUNOZ contains a positive singleword integer, this code jumps to
TWOPOWER if HUNOZ is an exact power of two:

" BITCNT.S RTA,HUNOZ sRTA<1l if HUNOZ is a power of two
DJMPZ.EQL RTA, TWOPOWER ; jump to TWOPOWER if RTA-1 is zero

I If zero is to be considered a power of two, DJMPZ.EQL can be changed to DJMPZ.LEQ, I
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BITFST Bit number of first “1” bit
BITFST . {QHSD} | | XOP
~ LBITFST . {H,S,D} . ' : §:=V

Purpose: For BITFST, if OP2=0 then OP1:=-1 else OP L:=bit number of the leftmost “I” bit in OP2.
This instruction is useful for finding the index of the first element of a Pascal set.

LBITFST finds the first “1” bit in—vector OP2 and puts its number--or, if there are no “1” bits in

‘ the vector, a zero--into scalar singleword OP1.
Restrictions: None
Exceptions: N.or)e

Precision: OP1 is a singleword. For BITFST, OP2 has the same precision as the modifier. For
LBITFST, each element of OP2 has the same precision as the modifier.

| The following sets RTA to floor(log?(RTA)) with RTA assumed to be a non-zero unsigned I
singleword integer: '

BITFST.S RTA,RTA
SUBY.S RTA, #35.

This piece of code constructs a byte pointer in (doubleword) RTA to the sméllest byte containing
all the one-bits in HUNOZ: '

BITFST.S RTA,HUNOZ snumber of leading “‘B’° bits
BITRV.S RTAL,HUNOZ, #3B. ;reverse |IUNOZ into RTAL
BITFST.S RTAl snumber of trailing **8'’ bits
ADD.S RTA1,RTA ‘ snumber of surrounding ‘‘@’’ bits
SUBV.S RTAL, #36. ; length of smallest containing byte
MOV.H.S RTA1l,RTA sput position in high hal fuord of RTAl
|__ MOYP.P.A RTA,HUNOZ ;make pointer to HUNOZ in RTA . __J
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2.10 Byte Manipulation

Bytes, byte pointers, and byte selectors: A -byte is simply a field of zero or more bits within a
singleword or doubleword. The native mode architecture does not tie the concept of a byte to the
representation of a character. Instead, it lets the programmer specify the position and width of a byte
by constructing a byte pointer: ‘

g8 - 45 35
A |- ADDR
POSITION LENGTH
8 ~ 17 18 35

The TAG and ADDR tields comprise a pointer {as described in Sectinn 181), and are sub ject to
the validation checking described in Section 1.8.2. They must point to an aligned singleword in
femory--that is, ADDR must be a multiple of 4 The POSITION field gives the bit number
within the singleword or doubleword at which the byte begins, and must lie within the range 0 .. 35
for singlewords or 0 .. 71 for doublewords. The LENGTH field gives the number of bits within
the byte, and must lie within the range 0..36 for singlewords or 0..72 for doublewords. A
singleword byte instruction requires each byte operand to lie within an aligned singleword. A
doubleword byte instruction requires each byte operand to lie within the doubleword specified by
TAG and ADDR.

If the POSITION and OFFSET fields of a byte pointer violate any of those rules, an
ILLEGAL_BYTE_PTR hard trap occurs. '

Immediate byte instructions use an operand to specify the singleword or doubleword containing a
byte, and thus can access a byte within a constant or register as well as in memory. They use a
simplified version of the byte pointer, called a byte selector, eliminating the TAG and ADDRESS

fields:

POSITION LENCTH
8 - 17 18 35

One useful consequence of the format for byte pointers is the ability to compare them as if they
were ordinary doublewords (provided that one knows the tag fields of the pointers match). The
comparison will reveal which byte is higher in memory or, if the two bytes begin at the same
position of the same word, which byte is longer.
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LBYT » . ‘ Load unsigned byte

LBYT . {S,D} ‘ ~ XOP

Purpose: The instruction copies the byte specified by byte pointer OP2 and stores it, right Justlfled
in a field of zeros, in OP1. .

~ Restrictions: None
Exceptions: None

Precision: OP1 has the precision specified by the modifier. OP2 is a byte pointer. The byte which
OP2 points to must obey the length and alignment rules for the precision specified by the modifier.

The followmg sets RTA to the exponent fleld of the smgleword floatmg pomt number X (the I
exponent field is 9 bits wide and starts at bit 1 of the word):

LBYT.S RTA, [TAG+X ? 1,,9. ] - | | | I



230 . 2 Instruction Set

LIBYT - Load immediate unsigned byte

LIBYT . {S,.D} ' TOP

Purpose: The instruction copies from S1 the byte specified by byte selector S2 and stores it, right
justified in a field of zeros, in DEST.

Restrictions: None
Exceptions: None
Precision: S1 and DEST have the same precision as the modifier. S2 is a byte selector.

I The followxng sets RTA to the exponent field of the singleword floating pomt number X (the |
~ exponent field is 9 bits long and starts at b1t 1 of the: word) :

| LIBYT.S RTA,X,#101,,9.] _ |
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LSBY'T ‘ : o Load signed byte

LSBYT. {SD} = ' o XOP

Purpose: The instruction copies the byte specifiéd by byte pointer OP2; sign-extends it, and stqfes it
in OPL ‘ T

Restrictions: None

Exceptions: None

Precision: OP1 -has the -precisibn» specified by-the modifier. OP2 is a byte ‘pointer. The byte

specified by OP2 must obey the length and alignment rules for the precision specified by the

modifier. e L e e R, :

| The fdllowing uses RTB as a byte pointer, setting RTA to the signed value of the sign and |
exponent fields of the singleword floating point number X:

MOYP.P.A RTB,X s+ Set address part of pointer
MOV.S.S RTB1,#[8,,18.] ; Set position, length parts

| LSBYT.S RTA,RTB : l
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LISBYT Load immediate signed byte

LISBYT . {S,D} TOP

Purpose: The instruction copies from S1 the byte specified by byte selector S2, s:gn—extends it, and
stores it in DEST.

Restrictions: None
Exceptions: None

Precision: $1 and DEST have the same precision specified by the modifier. S2 is a byte selector.

| The following sets R'I'A to the sighed value of the sign and exponent fields of the singleword I
floating point number X. Notice that a short constant can be used, because the position field of
the byte selector is zero: :

I LISBYT.S RTA,X,#18. ; Same as #<8,,18.> |
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DBYT ~ B Deposit byte

DBYT . {S.D} A ‘ . . XOP

Purpose: The instruction copies the appropriate number.of low-order bits from OP2-and stores
them in the byte specified by byte pointer OP1. . ' '

Restrictions: None

Exceptions: None

FARN

Precision: OP1 is a byte poihter: The byte specified by OP.1 must obey -the length and alignment

rules of the precision specified by the modifier. OP2 has the precision specified by the modifier.

l The fo]lowiﬁg sets the mantissa of thé sihgiév}gprd ﬂoéﬁing po'i“nt'nu:r;)bér X to the ,t_wg.nty-'éix low. |
order bits of RTA (the mantissa is 26 bits long and begins at bit 10:

l © DBYT.S [TAG+X ? 18.,,26.1,RTA S ‘ I
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DIBYT ' B Deposit immediate byte

DIBYT . {S.D} ' ' _ © TOP

Purpose: The instruction copies the appropriate number of low-order bits from S1 and stores them
in the byte within DEST specified by byte selector S2.

Restrictions: None
Exceptions: None

Precision: S1 and DEST have the precision specified by’ the modifiér.' S2 is ai byte selector(i

The following sets the exponent field of the smgleword ﬂoatmg point number m RTA to zero I
(The exponent field is 9 b1t:s long and begins at bxt l) ' : ‘ ‘

L

DIBYT.S RTA,#08,#I(1,,8.]

_
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ADJBP . ' Adjust byte pointer

ADJBP . {C.A,Z} TOP

Purpose: This instruction assumes S1 is a byte pointer which points to one byte in a series of packed
bytes. It copies that byte pointer from S1, adjusts it to point to an earlier or later byte in the series,
and stores the new pointer in DEST. S2 specifies how many bytes forward (or, if $2 is negative, how
many bytes backward) to move the pointer. -

The modifier specifies one of three dlfferent ways to pack bytes with respect to singleword
boundaries. :

If the modifier is “C”, the instruction positions bytes continuously, one after another, splittiﬁg a byte
across a singleword boundary when necessary. The pointer S1 must specify LENGTH < 72 and
(LENGTH + POSITION) < 72. '

If the modlfxer is “A”, the instruction positions bytes contmuously, except that it will leave bltS
“unused” if necessary to prevent a byte from bemg split across a singleword boundary. It mamtams
the same alignment of bytes (that'is, the same pattern of bytes and unused bits) in each smgleword
The pointer S1 must specify a byte which does not cross a smgleword boundary, and whose length
does not exceed 36 bits. - . . o

If the modifier is “Z”, the instruction positions bytes beginning at the bit-zero (high-order) end of
~ each singleword. No'byte ever crosses a singleword boundary, and if 36 is not evenly divisible by the
byte length, then the “leftover” bits all appear at the low-order end of the word. It is illegal for the
byte pointer S1 to point to a byte which crosses a word boundary or whose length exceeds 36 bits. It
may point to a-byte whose position within the word suggests that the bytes are not bit-zero aligned;
_ if so, the instruction will impose bit-zero alignment if S2 causes it to point to a different singleword.

Given that ADDRESS, POSITION, and LENGTH are fields of the byte pointer, ind DIV and
MOD indicate integer division and modulo in the Pascal language sense rather than the S-1 native
mode assembly language sense, the algorithms for this instruction are:

ADJBP.C

ADDR := ADDR + ((POSITION + S2xLENGTH) DIV 3B) % 4;
POSITION := (POSITION + S2%LENGTH) MOD 36;

ADJBP.A

BP := POSITION DIV LENGTH; (x BYTE NUMBER )
BPW := BP + ((36-POSITION) DIV LENGTH); (x BYTES PER WORD x)
ADDR := ADDR + ((S2+BP) DIV BPW). % 4; o
POSITION := POSITION + ((S2+BP) MOD BPW) % LENGTH;
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AD]JBP.Z

‘BPW := 36 DIV LENGTH,;
BP := POSITION DIV LENGTH,;
IF S2 > 0 THEN

(x Bytes per word x)

(% Byte number %)

2 Instruction Set

BF := (36—POSITION—LENGT.H) DIV LENGTH (x Bytes after x)

ELSE BF := BP;
IF ABS(S2) > BF
THEN BEGIN

(x Bytes before )

(x New byte pointer points to different word x)

ADDRESS := ADDRESS + ( (S2+BPW-BF-1) DIV BPW ) x ¢;
POSITION := ((S2+BPW-BF-1) MOD BPW) x LENGTH;

END
ELSE _
POSITION := POSITION + S2xLENGTH,;

(x New byte pointer still points to same word x)

To show the effect of the three different modifiers, assume that RTA is a byte pointer to an 8-bit
byte beginning at bit 2 of singleword M[n]. . Executing the instruction “AD JBP.{C,A,Z} RTA 1"
eight times will cause it to point to eight successive bytes in memory, as shown in the drawings:

ADJBP.C | .
2 918 1718 2528 33

34

PRSP N USSR YU PR TN P— -

e

ADJBP.A

—]— | —2— | e—3—>

—L e | e—B——— | —-T7—>

2 919 17 18 25 26 33

AD]JBP.Z

—b—

%] 7 8 15 16 23 24 31
Restrictions: None

Exceptions: None

Precision: S1 and DEST are byte pointers. S2 is a singleword.

| The following advances the byte pointer at BP by one byte:

Minl
MIn+4]

Mn)

Min+4]

MIn]
Min+4]
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ADJBP.C BP,#1

Suppose that TABLE is a vector of NBYTES four-bit bytes, packed nine per singleword.
Suppose that a purported index into this table is in RTB. This code checks the purported
index for validity and then produces the désired byte in RTA, or zero if the index was invalid.
It produces a flag indicating whether the index is valid, and then selects one of two byte pointers
to adjust. If the index is valid, a byte pointer to the beginning of the table is ad justed to point
to the desired byte; if not, a byte pointer to a zero-length byte is produced. Loading a byte using
a zero-length byte pointer always produces a zero. Note the "3" in the ADJBP instruction: it
causes the indexing by RTA to be doubleword indexing, because byte pointers are two words
long:

BNDSF.B;S RTA, #INBYTES-11,RTB ;RTA:=-1 if index okay, else @
ADJBP.A RTA, <BPTRS+18>[RTA]I*3,RTB ;get ptr to desired byte, or null ptr
LBYT.S RTA,RTA ' ; load byte into RTA

BPTRS: TABLE ? 4,,4 ;byte pointer to beginning of TABLE

.' TABLE ? @,,0 szero-length byte pointer ) l
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2.11 Stack Manipulation

A stack is specified by any two consecutive singlewords. The architecture interprets these
singlewords as a stack-pointer and a stack-limit. While this pointer/limit pair may reside in
memory or in registers, the stack itself always resides in memory. The architecture supports both
stacks which grow upward in memory toward higher addresses and stacks which grow downward in
memory toward lower addresses. Instructions which manipulate stacks generally specify either “UP”
or “DOWN?” as a modifier, indicating the direction in which they consider the stack to grow.

For upward-growing stacks, the first of the two consecutive singlewords of the pointer/limit pair is
the stack-pointer and the second is the stack-limit. For downward-growing stacks, the first is the
limit and the second is the pointer. When an upward-growing stack and a downward-growing stack
share the same segment of memory, this allows the same pointer/limit pair to serve both stacks: the
pointer of the upward-growing stack is the limit of the downward-growing stack, and vice versa.

For upward-growing stacks, the stack-pointer specifies the next free singleword on the stack, so that
a push operation first stores the item and then increments the pointer. For downward-growing
stacks, the pointer specifies the top item of the stack, so that a push operation first decrements the
pointer and then stores the new item. '

For upward-growing stacks, the stack-limit points to the first singleword beyond the end of the stack.
For downward-growing stacks, the stack-limit points to the last singleword into which one may-
legally store an item.

The processor compares SP with SL using signed 3%6-bit arithmetic and invokes the
STACK_OVERFLOW hard trap on any instruction that would cause the stack to overflow.

Registers %R 30 (called SP) and %R31 (called SL) specify a particular upward-growing stack for
implicit use by interrupts, traps, and linkage instructions such as JSR and ALLOC. The
instructions in this section can operate on that stack, but usually they operate on additional stacks
specified by other stack pointér/limit pairs.

Note that both the stack pointer and the stack limit are truly pointers, and this undergn the pointer
validation described in section 1.8.2.
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ADJSP o : Adjust designated stack pointer

ADJSP . {UP,DN} - | | | XOP

Purpose: Adjust the size of an {upward-growing, downward-growing} stack. The instruction
assumes that FIRST(OP1) and SECOND(OP1) are-a stack pointer/limit pair, and ad justs the stack
pointer to point to operand OP2. ‘

The pointer itself is sub ject.to ségment bounds checking during ADJSP. If the ir;struction would -
‘make the stack pointer exceed the stack limit, a STACK_OVERFLOW hard trap will occur.

Restrictions: None

Exceptions: None

Precision: FIRST(OP1), SECOND(OP1) and OP2 are singlewords.

. r _. . .
pr— . . e

The following thi;ows away the top 4 singleword stack elements of the upward-growing stack
designated by the stack pointer/limit pair SPL:

ADJSP.'UP SPL, (SPL)—ZI»Q&
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PUSH — Push onto designated stack

PUSH . {UP,DN} . {Q,H.S.D} - XOP

Purpose: Push OP2 onto the upward-growing or -downward-growing stack designated by stack
pointer/limit pair FIRST(OP1) and SECOND(OP1).

If the instruction would cause the stack pointer to pass the stack limit (that is,
OP1+{1,2,4,8}>NEXT(OP1) for PUSHUP or NEXT(OP1)-{1,2,48}<OP1 for PUSH.DN) a
STACK_OVERFLOW hard trap will occur. Similarly, c'ausing the stack pointer to cross a segment
boundary results in an OUT_OF_BOUNDS hard trap.

Restrictions: None
Exceptions: None

Precision: FIRST(OP1) and SECOND(OPI1) are singlewords. OP2 has the precision of the
modifier. S :

[r— ——

The following pushes RTA on the stack designated by stack pointer/limit pair SPL:

PUSH.UP.S SPL,RTA
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POP . S Pop from designated stack

POP . {UP,DN}. {QH,SD} .. XOP
Purp@se; From the upward-growing or dow.hward—growing sté_ck designated by pointér/limit._pair
FIRST(OP2) and SECOND(OP2), pop the.top :value (whose precision is specified by the.second

modifier) and store that value in OP1.

A STACK _ OVERFLOW hard trap.occurs:if the instruction would make the stack pointer pass the
stack limit, and an OUT_OF_BOUNDS hard trap occurs if it would make the stack pomter cross a
‘'segment boundary. o

Restrictions: None

Exceptions: None

Precision: FIRST(OP2) and SECOND(OP2) are singlewords; OPl ‘has the precision of . the
modifxer

The followmg pops t:he top halfword on an upward—growmg stack into RTA. Let SPL be the I
pomter/11m1t doubleword designating the stack:

| POP.UP.H RTA, SPL ' |
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PUSHADR - Push address onto designated stack

PUSHADR . {UP,DN} | XOP

Purpose: Compute a tagged pointer to OP2 and push that pointer onto an upward-growing or
downward-growing stack specified by stack pointer/limit pair FIRST(OP1) and SECOND(OP1). -

If the instruction would cause the stack pointer to pass the stack limit (that is, OP1+4>NEXT(OP1)
for PUSH.UP or NEXT(OP1)-4<OP1 for PUSH.DN) a STACK_OVERLOW hard trap will
occur. Similarly, causing the stack pointer to cross a segment boundary results in an
OUT_OF_BOUNDS hard trap. ‘ '

Restrictinns: None
Exceptions: None

Precision: FIRST(OP l).and SECOND(OP1) are singlewords.

| The following pushes a pointer to WHIRR onto the stack specified by a pointer at ZR25 and a |
limit at %R26: o o

i
I

I PUSHADR.UP %R25,WHIRR I
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2.12 Routine Linkage and Traps

These instructions "provide call and return mechanisms for subroutines, coroutihes, trap handlers,
and interrupt handlers. (Additional instructions WTDBP and RTDBP, used to specify the
locations for trap and interrupt vectors, appear in Section 2.15.) :

The architecture provides several complete sets of call and return instructions with varymg degrees
of sophistication. They include:

JSR, ALLOC, RETSR, RET :
Jump to and return from simple subroutines. JSR calls the subroutlne pushing
a single parameter on the stack; ALLOC may be used to save registers and
allocate space upon the stack; and RETSR returns from the subroutine, restoring
the parameter. Alternatively, RET returns but discards the parameter pushed by -
JSR and, if desired, a number of words preceding it on the stack.

CALL, JSP, ENTRY, UNCALL
Call and return from an internal procedure, using a stack frame. CALL calls the
procedure, ENTRY builds the stack frame, and UNCALL returns from the
procedure, dropping back to the preceding stack frame. JSP-is useful when the
‘chain of procedure calls permlts calls to share a stack frame. S

CALLX, ENTRY RETGATE, UNCALL :

) Call and return from an external procedure,. using a stack frame CAL LX calls
the procedure and ENTRY builds the stack frame. If the call crossed a ring
boundary, the procedure returns with RETGATE rather than with UNCALL.

TRPSLF, RETUS : ‘ . ’
Cause a trap to one of the vectors for the current address space, and return from
the corresponding trap handler. See Section 1.9.3 for details. RETUS is also
used to return from the handler of a soft trap. '

TRPEXE, RETFS
Cause a trap to the executive and return from the corresponding trap: handler.
See Section 1.9.3 for details. RETFS is also used to return from the handler of a

hard trap or interrupt.
JCR ‘ Jump between coroutines without using the stack.

JMPCALL, JMPRET
These are 51mple jump instructions which are considered to be call and return

instructions for purposes of call tracing.

The following instructions will invoke the CALL_TRAD hard trap when the call tracing
mechanism in PROCESSOR_STATUS is enabled:
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CALL
CALLX
JCR
JMPCALL
JMPRET
JsP

JSR

RET
RETGATE
RETSR
UNCALL

2.12.1 The Stack Frame Convention

A1l of the linkage instructions use registers R30 and R31 as stack pointer (SP) and stack limit (SL).
The CALL/JSP/ENTRY/UNCALL family of instructions establish a stack frame convention which
further defines R28 to be a closure pointer (CP), defines R29 to be a frame pointer (FP), and defines
a stack frame consisting of three singlewords called SF.EP, SF.FLAGS, and SFRET_ADDR. FP
points to SF.EP for the current procedure. g

Ccp

FP

The closure pointer points to the stack frame for the procedure which is
immediately global to the one which is currently executing. In Pascal, this is the
procedure (or main program) inside which the currently executing procedure was;
declared. This pointer establishes the static scope of a language.

The frame pointer points to the stack frame for the.currently executing
procedure.

Though the stack frame need contain only three singlewords, we'll present a more elaborate example
that contains the following; ' ‘

SF.CP The closure pointer that points to the stack frame of the procedure which
statically encloses the current one. ' '

SF.PREV_FP The frame pointer which points to the stack frame of the procedure which called
the current one. '

SF.EP An entry pointer, which points to the first singleword of code for the current

procedure. This permits the placing of debugging and runtime information
between the physical beginning of the procedure and the first instruction.
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SF.FLAGS A word of flags which is zeroed on entry to the routine.

SF.RET_ADDR The return address, a pointer to an instruction within the current procedure.
' When the current proceduré calls another. one, this pointer . specifies where to
resume execution when the other procedure returns.

To illustrate the stack frame convention, consider the following fragment.of a Pascal program:

PROCEDURE A;
VAR Al, ‘A2, A3;
PROCEDURE C;
VAR C1, C2, C3;
BEGIN
END (% C %);
PROCEDURE B;
VAR B1, B2, B3;
BEGIN
C;
END (x B x%);
BEGIN.
B; -

END (x A %);

Suppose that someone calls procedure A, which calls procedure B, which in turn calls procedure C.
‘We stop the processor some time after C begins to execute, but before it has called any further
procedure. Following the stack frame convention, Figure 2-2 shows the appearance of the stack and
the cade frame. ‘

The CALL and CALLX instructions save SF.RET_ADDR within the stackframe, and the ENTRY
instruction saves SF.EP and clears SF.FLAGS. The remaining portions of the stack frame must be
handled by a sequence of individual instructions. In Figure 2-2, for example, the instructions
required for procedure B to call procedure C might look like:

Within procedure B:
CALL CP,C
NI: ...

Call C, giving it the same
CP as B because both are
nested in A. The address NI
is saved as SF.RET_ADDR
‘Wwithin the stack frame of B

At the beginning of procedure C:
<information for runtime debugging>

C:ALLDC.2 CP, (SP)4x%<3+5ize0flLocals> Push the CP and FP, allocate
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3 SWs for the rest of the
stack frame, allocate more for
the local variables

Make SF.EP point to C,

clear SF.FLAGS, make FP

point to SF.EP

ENTRY (SP)-4%<3+SizeDfLocals,C

ws we we we ws we

<Code of procedure C> :
UNCALL (FP)4x-1, (FP)4x-2 Return, retrieving B’s FP
from our frame and popping

our frame from the stack

.. we wa
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Stack . Code Segment -

1 L SF.CP B Debug Hooks 1
SF.PREV_FP r —

—| SF.EP .

SF.FLAGS
' SF.RET_ADDR f————
A

CALL FP,B

&
<

>
>

Debug Hooks

LOCALS

CALL CP,C

&
<

SF.CP
p 8F.PREV_FF e
——|  SF.EP

B | SF.FLAGS
SF.RET_ADDR

-
>
-~

&
<

>
rd

Debug. Hooks .

LOCALS
PC-»

SF.CP . -
SF.PREV_FP ’
— SF.EP
SF.FLAGS
SF.. RET_ADDR

&
€

&
<«

{
|

FP- LOCALS

&
o

SP——}Top of Stack

SL—>

Figure 2-2
Stack Frame Illustration
If procedure C expected parameters, the sequence could eaﬁily be changed to use the modifier and
OP1 of the ALLOC instruction to push additional registers onto the stack preceding SF.CP and

-SF.FP:
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ALLOC. <Parms+2> CP-4xParms, {SP}4%<3+Size0flLocals>

2.12.2 Cross-ring Calls

To simplify the user interface to the operating system, it is desirable to make the mechanism for
calling operating system procedures appear identical with the mechanism for calling external
procedures in general.

To achieve this, the architecture provides an instruction called CALLX, a special kind of pointer
called a gate pointer, and a vector of entry points called gates. When the CALLX instruction
employs a ring or user pointer to specify the called procedure, it cannot--due to the validation
mechanism described in Section 1.8.2--call a procedure in a lower-numbered ring. When the
CALLX instruction employs a gate pointer, however, it invokes a trap-like mechanism which
permits calling a routine in a lower-numbered ring, but subjects the call to some protectxve
mechamsms

Thus, the only difference between calling an ordinary external procedure and calling an operating
system procedure is in the TAG field of the pointer used to link to the procedure.

the ring in question:

New FP Mnl
New SP MIn+4]
 New SL | M [n+8]
Neu— USER_STATUS MIn+12]
New PROCESSDR_STATUS MIn+161
Maximum Yector Index M [n+20]
ADDRESS (Set of Gates) M {n+24]

[} ‘ 35

The “set of gates” pointed to by the gate descriptor corresponds to a set of trap vectors The gates
are numbered consecutively beginning at 0, and each has the following format:

ADDRESS (Gate Routine) MIn]
New CP Mn+4]
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A gate routine is actually the routine to be called by the CALLX instruction, but here it roughly
corresponds to a trap handler. When the CALLX instruction executes using a gate pointer, the
following sequence occurs:

1. Use the gate pointer to determine the desired ring and gate index. The usual pointer
ADDRESS field is redefined, so the format of a gate pointer is the following:

TAG=1 |Reserved| RING INDEX
8 45 15 16. 17 18 35

If RING=3, a GATE_INDEX_TOO_BIG hard trap occurs (there are no gates into ring 3
because the address validation mechanism does not prevent any ring from making
ordinary calls into ring 3). Otherwise, the processor consults the gate descriptor for the
specified ring. If INDEX is greater than the maximum vector index specified by that gate
descriptor, a GATE_INDEX_TOO_BIG hard trap occurs. Otherwise, the processor uses
INDEX to select the specified gate from the set of gates pointed to by the gate descriptor.
Note that the pointer-and-index mechanism forifinding the proper gate is subject to
address validation. ‘

2. Save FP, SP,:SL, PROCESSOR_STATUS, and USER_STATUS internally. Load FP,
SP, SL and' USER_STATUS with the new values specified in the gate descriptor. If the.
ring specified by RING is privileged, load PROCESSOR_STATUS with. the value
specified in the gate descriptor. -

8. Push the current state onto the SP stack specified by the new PROCESSOR_STATUS
and SP found in the gate descriptor. The act of pushing this information onto the stack is
atomic, and any interrupts will remain pending until it is complete. A hard trap can result,
however--if, for example, the SP would cross a segment boundary, exceed SL, or touch an
absent page--and such a hard trap does intercede (Section 1.9:6).

The information is pushed onto the stack in the'following format, known as the sqgve area
for the gate crossing (if the ring specified by RING is not privileged, push zero in place of
PROCESSOR_STATUS):
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old FP

old SP

old SL

old PROCESSOR_STATUS
old USER_STATUS
PC_NEXT_INSTR of the CALLX

PC of the CALLX
Gate Pointer

%] 35
Top of stack

4. Luad CP with Lhe value specified in the gate irself. Load PC with the address of the
gate routine specified in the gate itself and resume execution. By thus changing the ring of
execution before executing the first instruction of the called routine, the processor
effectively bypasses the usual address validation mechanism and the checking of the
execute bracket (STE.EB field) of the-corresponding segmentito.

A typical operating system would rely on address validation checking to prevent higher-numbered

rings from calling or jumping into lower-numbered rings arbitrarily; a user wishing to call into a
privileged ring would have to use the gate mechanism. (If the operating system mapped itself into
the same address space as the user, it would additionally use the STE.EB execute bracket
" mechanism to prevent the user from calling operating system routines except via gates.)

e
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2.12.3 Routine Linkage Instructions
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CALL v Call an internal procedure

CALL | | jop
Purpose: Call an internal procedure, assuming the use of the standard stack frame. First CP:=OP]1,
then SFRET_ADDR:=PC_NEXT_INSTR (SF.RET_ADDR is the singleword at (FP)4x2). Then
GOTO JUMPDEST, which must lie within the ring of execution.

Restrictions: None

Exceptions: None '

Precision: OP1 is a memory address; OP2 is a jump destination.

| Suppose a procedure named C is declared within a procedure named B. The following sequence I
would call C from B:

s Pointer to pafameters

s Call C. Use B’s FP as C’s
s CP.because C is nested
H

|_ | Wlthin B __l

MOYP.P.A %R27,Parmlist
CALL FP,FirstC
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CALLX : Call an external procedure

CALLX XOP

Purpose: Call an external procedure, assuming the use of the standard stack frame. First CP:=OP],
then SFRET_ADDR:=PC_NEXT_INSTR (SF.RET_ADDR is the smgleword at (FP)4%2). Then
fetch OP2 and treat the resulting value as a pointer. If the pointer has a gate tag, perform a
crosS—ring call through a gate (see Section 2.12.2); otherwise, simply go to the instruction it points to
and resume execution there. .

If OP2 is a register or constant, an ILLEGAL«—OPERAND(—MODE or ILLEGAL(—CONSTANT
hard trap occurs. :

Restrictions: None
Exceptions: None

Precision: OP1 and OP2 are singlewords. The contents of OP2 must point to a singleword.

Assume that a procedure has been passed as a parameter to the current routine, and that the two
singlewords at (AP)0 are a pointer to the code for that procedure, followed by its closure pointer.
To invoke the procedure the current routine would execute:

I CALLX (AP)1x4, (AP}Bx4 . I
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JSP Jump and save PC

P | JoP
Purpose: First OP1:=PC_NEXT_INSTR, then go to JUMPDEST.

Restrictions: None |

Exceptions: None

Precision: GPI is a singleword.

The following saves the return address in RO and calls PRSTR:

JSP R@,PRSTR
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ENTRY ' Initialize a stack frarfn‘é

ENTRY ; ~ XOP

Purpose: Initialize the stack . frame assumed "by the CALL and - CALLX. instructions.
OP1:=ADDRESS(OP2), typically used to make SF.EP point to the first instruction of the called
. routine. NEXT(OP1):=0, typically used to clear SF.FLAGS. FP:=ADDRESS(OP1), typically used to
make FP point to SF.EP, marking the location of the stack frame.

Note that ENTRY does not alter'éP. It éssumes tﬁat an.instructio.n.such as ALLOC has alloéated
space for the stack frame. o 4

Restrictions: None
Exceptions: None

Precision: OP1 and OP2 are singlewords.
|,The following sequence saves the entire register file, with the exception of SP and SL, preceding A|I
the portion of the stack frame initialized by ENTRY: ' -

ALLOC.38 R@,4x%<3+Size0flLocals> ; Save registers-and- al locate space
, S 3 for stackframe -and locals
ENTRY (SP) -4%<3+SizeOfLocals>,C ; Make SF.EP point to C, clear

I' ; SF.FLAGS, make FP point to SF.EP |
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UNCALL Return from a call

UNCALL B XOP
Purpose: Return from a procedure called by the CALL or CALLX instruction. FP:=OP];
SP:=ADDRESS(OP2). Go to the instruction pointed to by SF RET_ADDR (SFRET_ADDR is
(FP)4x2 after OP1 has been moved to FP.)

If the instruction causes SP to cross a segment boundary, an OUT_OF_BOUNDS hard trap occurs.
Use RETGATE, not UNCALL, to return from cross-ring calls.

Restrictions: None

Exceptions: None

Precision: OP1 and OP2 are singlewords.

The following sequence restores the entire register file, with the exception of SP and SL, from
the area of the stack preceding SF.EP, pops the stack frame, and returns to the caller:

MOVMS. 3@ RA, (FP) -4%38.
I UNCALL (FP)-4x1, (FP) -4%30.

Restore registers

Restore old FP, pop all '
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RETGATE . . ' Return from a cross-ring call

RETGATE XOP

Purpose: Return from a cross-ring call initiated. by the CALLX instruction. OP1 is the first of six
singlewords specifying new values for FP, SP, SL, USER_STATUS, PROCESSOR.STATUS, and
PC respectively. If the new value of PC specifies a ring whose number is less than that of the ring
of execution, a BAD_A_VALIDATION hard trap occurs. Otherwise, the instruction loads the new
values into the FP, SP, SL, and USER_STATUS registers. If the ring of execution is privileged, it
also loads the new value specified for PROCESSOR_STATUS. In any case, it loads the new value
into PC and resumes execution. .

Use UNCALL, not RETGATE, to return from ordinary calls.
Restrictions: None
Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

+

A cross-gate call will present the called routine with a stack like the one shown in Section 2.12.2. l
The callee might use the following instruction to return:

RETGATE (SP)-4x%8. s Restore the caller’s state from the
;s first B singlewords of the 8 singlewords

B o

pushed by the CALLX instruction. I
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JSR A : Jump to subroutine

JSR | Jop

Purpose: Push first OP1 and then the return address onto the stack whose pointer is'SP. Then
transfer to JUMPDEST. '

If this instruction would cause SP to pass SL, a STACK_OVERFLOW hard trap occurs; if it
would cause SP to cross a segment boundary, an OUT_OF_BOUNDS hard trap occurs.

Restrictions: None
Exceptions: None

Precision: All operands are singlewords.

' I The following pushes RTA and ADDRESS(FO1) on the stack before jumping to BAZ: I

JSR RTA,BAZ

Fal: e sreturn address I

0P1
PC_NEXT_INSTR

%] 35
Top of stack

Figure 2-3
JSR Save Area Format
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ALLOC : ‘ Allocate space atop stack

ALLOC . {1 .. 32} , XOP

Purpose: This instruction pushes a specified group of singlewords onto the SP stack (the one used
by the subroutine calling mechanism) and then adjusts the stack pointer, possibly allocating
- additional space atop the stack. Typically it is used to save registers and make room for a stack
frame.

More specifically, the instruction first moves a vector of 1 .. 32 singlewords starting with OP1 to the
vector pointed to by SP (if the two - vectors “overlap, ‘the result is undefined). Then
SP:=ADDRESS(OP2). Thus, OP2 is typically a memory location beyond the last of the words
moved, though this. is not required. If this instruction would cause SP to pass SL, a
STACK_OVERFLOW hard trap occurs; if it would cause SP to cross a segment boundary, an
OUT_OF_BOUNDS hard trap occurs.

Restrictions: ‘None

Exce_pfions: None

Precision: OP1 and OP2 must be singlewords.

4'|__;1e following saves all the registers and reserves an add;txonal DW on the stack as wel_—l

ALLDC 32 %RB (SP)<4*(48+2)>

Note that the modifier is a decimal number, but the numbers in the operands are octal. The
same instruction could be written: -

| ALLOC.32 %R®, (SP) <% (32.42) > ’ . I
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RETSR Return from subroutine

RETSR ' _ XOP

Purpose: Return from a subroutine that was invoked by the JSR instruction. First the instruction
copies ADDRESS(OP2) into SP. Then it pops the first singleword (return address) from the stack
pointed to by SP and stores it in the PC. Then it pops the second singleword (typically the value of
OP1 placed there by the JSR instruction) and stores it in OP1.

To be sure that RETSR is the exact reverse of JSR, the programmer must use the same OP1 in
both JSR and RETSR, and assure that OP2 in the RETSR instruction is the same memory location
that SP pointed to immediately after the JSR. If the subroutine does not alter SP, then OP2 should
be “SP)”; otherwise, the subroutine should save a stack marker and use it as OP2.

If the instruction would cause SP to cross a segment boundary, an OUT_OF_BOUNDS hard trap
occurs. .

Restrictions: None
Exceptions: None

Precision: All operands involved are singlewords.

The following code calls BAZ, ‘which returns to FOl, savmg and restormg RTA on the stack. I
Assume SP is the stack pointer:

JSR RTA,BAZ
Fol: ces ireturn here

BAZ: e sealled routine
RETSR RTA, (SP)

Suppose that BAZ needs N words of temporary stack space while it is running. These words
can be allocated using the ADJSP instruction (or ALI.QC if registers must also be saved), and
the RETSR instruction can automatically discard these words and pop the JSR save area as well:

BAZ: ALLOC.2 %R8, (SP)<N+2>%4 ;save %R8 and %R9, and allocate N uords
scalled routine
MOVMS.2 %R8, (SP) -<N+2>%4 srestore registers %R8 and %R9
L— RETSR RTA, (SP)-<N+2>%4 ;pop stack and return from subroutine __I
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RET : Return and pop parameters

RET XOP

Purpose: Return without restoring parameters. First the instruction makes SP point to OP2. Then
it pops one singleword (the return address) from the stack pointed to by SP and stores it in the PC.
Then it makes SP point to OP1, thereby optionally popping and dxscardmg parameters (such as the
one pushed onto the stack by the JSR mstructlon)

<

If the instruction would cause SP to cross a segment boundary, an OUT -OF BOUNDV hard trap
occurs.
Restrictions: None

Exceptions: None

Precision: All operands involved are singlewords.

2

The following returns from a previous JSR call, throwing away the operand previously pushed
on the stack by the JSR: .~ . . , |

I ~ RET (SP)-4, (SP).
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TRPSLF ' Trap to self

TRPSLF . {0 .. 63 } | XOP

Purpose: Trap to a routine in the current address space. The operation of TRPSLF is explained in
detail in Section 1.9.3; briefly, the modifier selects one of 64 trap vectors. The selected vector itself
specifies a handler address -and -a word called TRP_PARM_DESC_SW. Within
TRP_PARM_DESC_SW are two fields called TMODE1 and TMODE2 which can be set to tell the
processor to evaluate the operands of the TRPSLF instruction as it would the operands of an
ordinary instruction. The processor pushes the evaluated operands onto the SP stack so that the trap
handler can access them and operate upon them, praviding software emulation of whatever
instruction ic desired. -

Restrictions: None
Exceptions: None

Precision: Determined by TRP_PARM_DESC_SW for each operand

The following causes a trap to the “number 0” trap routine in the current address space, passing I
to it the operands X and VY:

l TRPSLF.8 X,Y ' |
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RETUS : ' Return, restoring user status

RETUS . {RA} ‘ ‘ ~ XOP

Purpose: Return from a soft trap or TRPSLF trap. This instruction uses the save area beginning at
OP1 to recover the pre-trap state of the processor, and pops the stack by making SP point to OP2.
(Thus, OP2 should ordinarily be the value of SP precedmg the trap, and OP1 snould be the first
word of the save area pushed by the trap.)

The instruction loads USER_STATUS with the old USER_STATUS found in the save area.
(Se;tion 1.9 illustrates the save area format.) ‘

Ordinarily, RETUSR repeats the instruction that was in progress when the trap or interrupt
occurred (that is, the instruction at the PC stored in the save area) whereas RETUS.A skips to the
following instruction.

However, if the instruction that was in progress is interruptable--a vector arithmetic instruction, for
example--and the instruction state within the save area is non-zero, RETUS.R reprocesses the
unfinished element of the vector whereas RETUS.A skips.that element.and proceeds with the next.

Note that the instruction does not copy REGISTER_SAVE_AREA back into the registers.

If the instruction would cause SP to cross a segment boundary, an OUT_OF_BOUNDS hard trap
occurs.

Restrictions: None
Exceptions: None

Precision: Both operands are singlewords.

The following example shows how to use the RETUS.A instruction as a one-word trap handler
that ignores the trap and resumes execution at the instruction following the one that caused the
trap. The pseudoregister (SP)-4 obtains the old SP from the last singleword of the save area.
The operand ((SP)-4)0 thus indicates the singleword pointed to by the old SP. Because the SP
stack grows upward, SP always points to the free location atop the stack, and thus in this case it
also designates the first word of the save area:

L

RETUS. A k(SP)-4)B, ((SP)-4)8 |
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TRPEXE ’ : Trap to executive

TRPEXE . {0.. 63 } _ XOP

Purpose: Trap to an executive routine. The operation of TRPEXE is explained in detail in Section
1.9.3; briefly, the modifier selects one of 64 trap vectors. The selected vector itself specifies a handler
address and a word called TRP_PARM_DESC_SW. Within TRP_PARM_DESC_SW are two
fields called TMODEl and TMODE2 which can be set to tell the processor to evaluate the
operands of the TRPSLF instruction as it would the operands of an ordinary instruction. The
processor pushes the evaluated operands onto the SP stack so that the trap handler can access them
and operate upon them, providing software emulation of whatever instruction is desired.

Restrictions: None
Exceptions: None

Precision: Determined by TRP_PARM_DESC_SW for each operand

| The following causes a trap to the “number 0” trap routine in the executive’s address space with l
operands X and Y: »

| TRPEXE. 8 X, Y | |
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RETFS ‘ ' ‘ Return, restoring full status

RETFS . {R,A} . XOP

Purpose: Return from a hard trap, interrupt, or TRPEXE trap. This instruction first pops the stack
used by the trap handler by making SP point to OP2 and then recovers the pre-trap context of the
processor from the save area pointed to by OP1. (Thus, OP2 should ordinarily be the value of SP
for the trap handler’s stack preceding the trap, and OP1 should be the first word of the save area
pushed by the trap. The value of SP for the task interrupted by the trap is assumed to exist
unaltered in the register file used by that task.)

To recover the pre-trap -context, the instruction loads USER_STATUS and
PROCESSOR_STATUS with the old USER_STATUS and the old PROCESSOR_STATUS
found in the save area. (Section 1.9 illustrates the save area format.)

Ordinarily, RETFS.R repeats the instruction that was in progress when the trap or interrupt
occurred (that is, the instruction at the PC stored in the save area) whereas RETFS.A skips to the

following instruction.

- However, if the instruction that was in progress is interruptable--a vector arithmetic instruction, for
example--and the instruction state within the save area is non-zero, RETFS.R reprocesses the
unfinished element of the vector whereas RETFS.A skips that element and proceeds with the next.

When the instruction state is non-zero, RETFS.A sets the TRACE_PEND bit to match the
TRACE_ENABLE bit in the saved PROCESSOR_STATUS and the CALL_TRACE_PEND bit
to match the saved CALL_TRACE_PEND bit, just as the instruction would if it were allowed to
finish; thus, aborting an instruction does not erroneously disable tracing. . '

Note that the instruction does not copy REGISTER._SAVE_AREA back into the registers.

If the instruction would cause SP to cross a segment boundary, an OUT_OF_BOUNDS hard trap
occurs. -

Restrictions: Illegal in user mode.
Exceptions: None

Precision: Both operands are singlewords.

The following shows a trap handler for a hard trap. The pseudoregister ((SP)-4)0 specifies thTI
last word of the save area, which contains the old SP for the trap handler’s stack. Because the
SP stack grows upward, SP points to the free location atop the stack, so the old SP also points to
the first word of the save area pushed onto the stack by the trap:
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(code to handle the trap without altering SF’)
RETFS.R ((SP)-4)8, ((SP)-4)8 ' |

L
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JCR Jump to coroutine

JCR | XOP

Purpose: The instruction first exchanges OP1 (usually register SP) with OP2 (usually a memory
location holding a saved copy of the value of SP used by the other coroutine). Then it copies.the
saved “return address” from NEXT(OP?2), stores PC_NEXT_INSTR in NEXT(OP2), and branches

to the return address.
Restrictions: None
Exceptions: None

Precision: All operands involved are singlewords.

When each of two coroutines has its own distinct stack, the JCR instruction transfers between
them without using either stack. Instead, it stores the stack pointer and program counter for the
currently inactive coroutine in two consecutive singlewords pointed to by OP2. In the following
example, let SAVE.AREA be the first of those two singlewords. Then the following instruction
saves the stack pointer and PC for the current routine, sets up the stack pointer and PC for the
other routine, and branches to it.

I - JCR SP,SAVE.AREA scall other coroutine ' ' l
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JMPCALL, JMPRET Jump to call/return
JMPCALL jop
JMPRET ' Jop

Purpose: These instructions are identical with the JMPA instruction, except that JMPCALL is
- considered to be a call instruction and JMPRET is considered to be a return instruction when call
tracing is enabled. '
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2.13 Interrupts and I/O

SeevSections 1.9 and 1.10 for explanations of the interrupt and. input/output mechanisms.

The {B,Q,H,S} modifiers that appear on certain instructions refer to bitwise, quarterword, hélfword,
and singleword translations, which are likewise explained in Section 1.10.
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IOR ' 1/O read
IOR . {Q,H,S,D} a . XOP
VIOR . {BQ,H,S} : S 7%

Purpose: Transfer from an I/O memory to main memory.

IOR transfers a scalar from OP2 (which must lie on an I/O page) to OP1 (whlch must lie on a
non-I/O page) without translation.

VIOR transters the vector OP2 (which must lie within an 1/OQ page) to vector OP1 (which must lie
within a non-1/O page), translating each singleword according to the modifier. '

Restrictions: None

Exceptions: None

Precision: For IOR, OP1 and OP2 have the precision of the modifier. For VIOR, OP1 and OP2
are vectors of aligned singlewords regardless of the modifier, and SIZEREG specifies the number of
singlewords in the destination (main memory) vector.

Assume BUFFER is a legitimate IOBUF address. To read eighty characters from the I/O I
memory (starting at BUFFER) to a block in memory starting at IMAGE, the fol]owmg
instruction sequence could be used:

MOV.S.5 zs‘rzem—:c,#<aa./4> ;set YSIZEREG to eighty Qs
VIOR.Q IMAGE,BUFFER ;do read - ‘ ‘ l

L
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tow ‘ - ' /O write

IOW . {QH.S,D} o XOP

VIOW . {B,Q,H,S} ‘ Vi=
Pufpose: Transfer from main memory to. an I/O memory;

IOW transfers a scalar from OP2 (which must lie’.o.n a non—ilO page) to OP1 (which must lie on
an I/O page) without translation. :

VIOW transfers the vector OP2 (which must lie within a non-J/O pé.ge) to vector OP1 (which must
lie within an I/O page), translating each singleword according to the modifier.

Restrictions: None
Exceptions: None " R o -
Precision: For IOW, OP1 and OP2 have the precision of the modifier. For VIOW, OP1 and OP2’

are vectors of aligned singlewords regardless of the modifier, and SIZEREG specifies the number of -
singlewords in the source (main memory) vector. '

Assume BUFFER lies within an 1/O page. To transfer the four characters “S-1'” into the II
IOBUF starting at BUFFER the following instructions could be used: '

MOV.S.S %SIZEREG, #<4/4> ;make vector 4 characters long
vIiou.qQ BUFFER,#["S—l!'?] sdo write

Because no translation is required, however, the following instruction would work just as well

I 10W.S BUFFER, ["S-11"] ;copy a singleword l
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IORMW - 1/0 read/modify/write

IORMW | - TOP
Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system) DEST:=S2 and then $2:=S1. (More precisely, because the processor prefetches
operands and because TOP instructions store DEST last, this instruction makes a thporary copy of
S2, stores S1 in S2, and then stores the copy into DEST)

DEST and S1 must lie in main memory. S2 must lie on an 1/O page.

Restrictions: Nohe

Exceptions: None

Precision: S1, §2, and DEST are all singlewords.

pr——— E——

The following illustrates the use of IORMW:

IORMW RTA,#-1,L0CK
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VPIOR, VPIOW : ' Vector 1/O read/write by physical address
VPIOR . {B,Q,H,S} ‘ V=V

VPIOW . {B,Q,H,S} : VeV

Purpose: VPIOR copies a vec_tq_r. from OPI, which must Vlié.on an.I/O page, to the vector in main
memory whose physical address is specified by the 34 low order bits of RTA.

VPIOW copies a vector from main memory, beginning at the location. whose physical address is
; specified by the 34 low order bits of RTA, to OP1, which must lie on an I/O page. '

Both instructions ,perform the translation specified by the modifier.
Restrictions: Illegal in user mode.
Exceptions: None

Precision: Regardless of the modifier, OP1 is a singleword and the low order.34 bits of RTA are
the physical address of a singleword. SIZEREG specifies the number of singlewords in the vector in
main memory. '

I Copy 4000 singlewords, treated as packed 8-bit characters, from TTYMEM to BUF in main |
memory:

MOYPHY RTA,BUF
MOV.S5.S SIZEREG, #4000.

I VPIOR TTYMENM : I
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INTIOP ‘ : Interrupt 1/O processor

INTIOP - ' : XOP

Purpose: Interrupt the I/O processor connected to the I/O memory containing OP1, and pass OP2
to the 1/O processor as a parameter whose purpose is not specified by the architecture.

Restrictions: None
Exceptions: None

Precision:t OP1 and OP2 are singlewords. OPl must- lie within an 1O page having
WRITF_PERMIT access. ‘

I Assume BUFFER lies within an 'IIO page. The following instruction will interrupt the I/O I
processor connected to the /O memory containing BUFFER:

l : INTIOP BUFFER, #8 ‘ ‘ ' |
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WAIT . .

275

Wait for interrupt

 WAIT

Purpose: Cause the processor to wait for an interrupt:. -

Restrictions: Illegal in user mode.
~Exceptions: None

Precision: OP1 and OP2 are unused.

r—————

The following instruction waits for an interrupt:

WAIT

L

Xop
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RIEN Read interrupt enable

RIEN | | XOP

Purpose: If interrupts are enabled for the I/O memory containing singleword OP2, then OP1 := -1
else OP1 := 0. .

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 and OP2 are both singlewords; OP2 must lie on an I/O page.
| The followmg jumps to DISABLED if mterrupts are not enabled for the I/O memory which I
contains TTYMUX: ot

RIEN RTA, TTYMUX
JMPZ.EQL.S RTA,DISABLED l

B
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WIEN - Write interrupt enabié

WIEN ' : XOP

Purpose: If the low order bit of OP2 is “1”, enable’ mterrupts for the I/O memory contammg OPl
otherwise, disable interrupts for that I/O memory.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 and OP2 are Bqth singlewords. OP1 must lie on an I/O pag’é.‘ o

The following enables all interrupts for the T/O memory containing' TTYMUX:

" WIEN TTYMUX,#1
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RIPND - : Read interrupt pending

RIPND XOP

Purpose' OPl gets the priority level of the pending 1nterrupt for the I/O memory contammg OP2
(OP1=0 indicates no interrupt is pendmg)

Restrictions: Traps if the processor is in virtual machine mode.
Exceptions: None

Precision: OP1 and OP2 are both singlewords. OP2 must lie on an 1/O page.

I The following . sets RTA to the level of pending interrupt for the I/O memory containing
- TTYMUX: .

l _ RIPND RTA, TTYMUX
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WIPND Write intérrupts pending

WIPND - . L , _ XOP

Purpose: If an interrupt is pending for the I/O memory conté.ining OP|, change the priority of the
interrupt to the level specified by OP2. If not, cause an interrupt with priority specified by OP2 on
behalf of the I/O memory containing OP1 (whether the interrupt occurs immediately or remains
pending depends, as always, on the relative priority of the uniprocessor). If OP2=0, the instruction
effectively clears any pending interrupt for the I/O memory in question. If OP2 is not a valid level,
an IJLLEGAL_PRIORITY hard trap occurs. '

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 and OP2 are both singlewords. OP1 must lie on an [/O page. ,

prr— —

The following clears any pending interrupt for the /O memory. containing TTYMUX:

WIPND TTYMUX, #8

N
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2.14 Cache Handling

The S-1 uniprocessor has four caches: an instruction cache, a data cache, an instruction map cache,
and a data map cache. The first two hold recently used words from address spaces, and the latter
two hold recently used entries from the virtual-to-physical address mapping tables (described in
Section 1.7).

If the uniprocessor accesses memory to fetch an instruction, then that access involves the instruction
cache and the instruction map cache. If the access reads or writes a piece of data, then it involves
the data cache and the data map cache. If the ACCESS bits. for a particular page specify
EXECUTE_PERMIT as well as READ_PERMIT or WRITE_PERMIT, then conceivably one
could, by alternately reading (or writing) a location and executing it, cause that location to appear in
both the instruction cache and the data cache; no problems need result. (In the more likely situation
where the ACCESS bits are used to enforce separation of instructions and data, such a situation
wanld not occur)

In general, the caches employ a least recently used (LRU) algorithm to decide which cache residents
to evict to make room for new residents. Not every instruction causes its operands to be regarded as
used, however. I/O instructions do not update the LRU status bits for their operands, for example
since the data involved in an 1/O operation is unlikely to be accessed repeatedly.

While the caches are usually invisible to software, instructions are provided to sweep them--that is,
deliberately update main memory to reflect any changes in cache contents—-if this is felt to improve
performance. The cache sweeping instructions take ordinary operands which specify memory
location on the pages to be swept; the instructions implicitly examine the addresses of those operands
rather than the operands themselves to determine which pages to sweep. '
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SWPIC Sweep instruction cache

SWPIC . {V,P} XOP

Purpose: Sweep the instruction cache by removing a vector of consecutive singleword residents
without writing them back to main memory. (Since access to an instruction page prevents writing,
the contents of the cache cannot differ from the corresponding portions of main memory.) OPI is
the vector.

The {V,P} modifier tells the processor how to determine whlch locatlons are “consecutive”. In either
case, it first evaluates OP1 as it would for any ordinary memory reference. If the modifier is V, it

then sweeps the vector of words whose wvirtual addresses follow that of OP1. If the modifier is P, it
sweeps the vector of words whose physical addresses follow that of OP1.

Restrictions: Physical sweeps are legal only in privileged mode.
Exceptions: None

Precision: OP1 is a vector of singlewords. OP2 is unused.

| The following sweeps all instructions from START up to but not including the'following I
instructions: '

MOV.S.S %SIZEREG,<.-START>' " 3specify the length of the vector

| SWPIC.V START ; sWeep cache . I
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SWPDC ' ' Sweep data cache

SWPDC. {V,P}. {UUK} XOP
Purpose: Sweep the data cache by writing a vector of consecutive singleword residents back to main
memory. If the second modifier is U, merely update main memory; if it is UK, update main memory
and then remove the specified residents from the cache (“kill” them). OP1 is the vector.

The {V,P} modifier tells the processor how to determine which locations are “consecutive”. In either
case, it first evaluates OP1 as it would for any ordinary memory reference. If the modifier is V, it
then sweeps the vector of words whose virtual addresses follow that of QP 1. If the modifier is P, it
sweeps the vector of words whose physical addresses follow that of OP1.

Restrictions: Physical swéeps are legal only in privileged mode.

Exceptions: None

Precision: OP1 is a vector of singlewords. OP?2 is unused.

| The following updates the first 128 quarterwords in the address space, without removing them l
from the data cache (ie., not killing them):

MOV.5.S %SIZEREG,#128. ;specify the vector length

| SWPDC.V.U -8 ; sweep cache : |
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SWPIN, SWPDWI, FLSHIM, FLSHDM Sweep/flush instruction/data map cache
SWPIM ) XOP
SWPDM , ' XOP
FLSHIM XOP
FLSHDM . _ . XOP

Purpose: Sweep a map cache, removing one resident, or flush a map cache, removing all-residents.

SWPIM removes from. the instruction map cache the entry for the page containing OP1. SWPDM
removes from the data map cache the entry for the page containing OP1.

FLSHIM removes all entries from the instruction map cache. FLSHDM removes all entries from the
data map cache. : -

None of these instructions update main memory.
Restrictions: Illegal in user mode.
Exceptions: None

Precision: For SWPIM and SWPDM, OP1 is a singleword and OP2 is unused. For FLSHIM and
FLSHDM, OP1 and OP2 are unused.

| The following kills the instruction map entry for the first page in the user’s address space: |
SWPIM B

The following kills the data map entry for the page containing the memory location pointed to
by RTA:

| SWPDM (RTA) ' A . |
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2.15 Context (Map, Register Files, and Status Registers)

This section describes a number of instructions which an operating system can use to set up the
proper environment for a task. They manipulate the user and processor status registers, the multiple
sets of user registers, the mapping system, and the origin of trap, interrupt, and gate vectors. Sections
1.2.3, 1.4, 1.7, and 1.9 explain details of these features of the architecture.

The logical conditions (LCONDs) mentioned in this section are described at the beginning of
Section 2.8.

Address Space IDs: In a multiprogramming environment, it is likely that various tasks will
alternately ‘use the same virtual address space but different portions of the physical address
space—in other words, that the operating system could keep multiple tasks in various regions of
physical memory and switch between them by changing the virtual-to-physical address mapping
tables. The operating system would have to sweep the map caches before switching from one task to
the next to prevent the new task from being affected by mapping information left in the caches by
the old one. To obviate this time-consuming process, the operating system can specify via the
SWITCH instruction a different code, called an address space ID, for each task. The caching
mechanism combines this code with virtual address references made by that task, rendering them
unique from virtual address references made by other tasks. Thus, for example, a reference to
virtual address 1000 in ring 3 with address space ID 5 is distinct from a reference to virtual address
1000 in ring 3 with address space ID 20; the mapping information for both of these may reside in
cache simultaneously and can provide two different address transformations. It is the responsibility
of the operating system never to Specify the same ID for two different tasks which use the same
address space unless it sweeps the map caches between instances of the two tasks.
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SWITCH . . | Switch context

SWITCH . XOP

Purpose: OP1 is a vector describing the state of a task to be run. The instruction loads the
appropriate internal registers - with: the information from this vector and resumes execution
(restarting an interrupted instruction if INSTRUCTION_STATE so demands.) :

The vector contains the followihg information:

Singleword  Information

: DSEGP
Address space ID for ring 0
Address space ID for ring 1 .
Address space 1D for ting 2
Address space 1D for ring 3 .
PROCESSOR_STATUS
USER_STATUS
SIZE of INSTRUCTION_STATE
INSTRUCTION_STATE

W o0~ O O W I N = O

Address space IDs are explained in Section 2.15. The DSEGP is explained in Section 1.7.
Restrictions: Illegal in user mode.
Exceptions: None .

Precision: OP1 is the first element of a vector of singlewards. OP2 is unused. A

Start executing the task described in the vector beginning at NextTask:

SWITCH NextTask
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WASJMP , Write address space and jump

WASJMP , jor

Purpose: OP1 is a vector describing a particular mapping of four virtual address spaces onto the
physical address space. The instruction loads the DSEGP and address space IDs from this vector,
thereby causing the address translation mechanism to adopt this mapping, and resumes execution at
JUMPDEST (where JUMPDEST is translated according to the newly established mapping).

The vector contains the following information:

Singleword Information

DSEGP )

Address space ID for ring 0
Address space ID for ring 1
Address space ID for ring 2
Address space ID for ring 3

B 0N = O

Address space IDs are explained in Section 2.15.
Restrictions: Iﬂega] in user mode.
" Exceptions: None

Precision: OP1 is the first element of a vector of singlewords.

l Tell the address translation mechanism to use the mapping specified by NewMap, and resume ' I
execution at NewProcess: '

I WASJMP NewMap,NewProcess l
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RRFILE . e ' Read register file identity

RRFILE _ . XOP

Purpose: OP1: PROCESSOR_STATUS REGISTER_FILE, rlght Justlfled and padded with zeros.
This instruction tells whic/ register file is:in use. : : Coe :

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is a singleword. OP2 is unused. RETENE

Set RTA to the number {in the range 0 .. 15) of the current register file:

RRFILE RTA




288 o 2 Instruction Set

WRFILE Write register file identity

WRFILE ' XOP

Purpose: PROCESSOR_STATUS REGISTER_FILE:=OP1. This instruction c/ooses which register
file to use. If OP1 is not within the range 0. . 15 the consequences.are undefined.

Restrictions: Illegal in user mode.
Exceptions: None
Precision: OP1 is a singleword. OP2 is unused.

Select register file number 2:

WRFILE #2
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RREGFILE . . - ' Read register file

RREGFILE _ : - XOP

Purpose: OP2 is a singleword specifying a register.file. The instruction copies the entire register file
into vector OP1, which is 32 singlewords long. ' :

If OP2 is ouside the range 0 .. 15, an ILLEGAL_REGISTER hard trap occurs. . -
Restrictibns: Illegal in user mode.
Exceptions: None

Precision: OP1 is a vector of 32 singlewords. OP2 is a singleword. . ..

Push register file 7 onto the stack pointed.to by ANSP:.::

ADJSP.UP ANSP, (ANSP) <32. %4>
RREGFILE (ANSP)}-~4,#7

[
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WREGFILE" ‘ Write register file

WREGFILE Xorp

Purpose: OP1 is a singleword specifying a register file. The instruction copies vector OP2, which is
32 singlewords long, into that register file. 2 o

If OP1 is ouside the range 0. . 15, an ILLEGAL_REGISTER hard trap occurs.
Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP?2 is a vector of 32 singlewords. OP1 is a sing]eword.

Initialize register file 7 using 32 singlewords popped from the stack pointed to by ANSP:

WREGFILE #7, (ANSP) <-32.%4>
ADJSP.UP ANSP, (ANSP) <-32.%4>
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RREG ‘ : . Read register

RREG o  Xop

Purpose: OP2 is a singleword specifying a register within a partlcular reglster file. The instruction
copies that register into OP1. The format of OP2 is: -

) FILE | REGISTER
2 27 3831 35

where FILE is in the range 0.. 15 and REGISTER is in the range 0.. 31. If OP2 is invalid, an
ILLEGAL_REGISTER hard trap occurs. ‘ o

Restrictions: Tllegal in user marle.

Exceptions: None

Precision: Both operands are singlewords.

Copy the version of %ZR4 in register file 7 into the cufrent RTA:

RREG RTA, #<32.%7+4>
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WREG Write register

WREG Xop

Purpose: OP1 is a singleword specifying a register within a particular register file. The instruction
copies OP2 into that register. OP1 has the following format:

L] FILE | REGISTER
8 27 30 31 35

where FILE is in the range 0.. 15 and REGISTER is in the range 0.. 31. If OP1 is invalid, an
ILLEGAL_REGISTER hard trap occurs.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: Both operands are singlewords.

I Copy the current register ZR3 into the version of register 2R3 in register file 7 (note that this
involves register 3, not the PC):

| WREG #<32.%7+3>,%R3 , I
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RPS

293

Read processor status

RPS

Purpos'e: OP1:=PROCESSOR_STATUS
Restric‘tions: Illegal in ﬁsef mode.

| Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

RPS RTA- :

The following copies PROCESSOR_STATUS into RTA:

XOP *
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WFSJMP . Write full status and jump

WFSJMP ‘ jor
Purpose: USER_STATUS:=FIRST(OP1), PROCESSOR_STATUS:=SECOND(OP1). Note that
an ILLEGAL STATUS hard trap will occur if an illegal value of USER_STATUS or
PROCESSOR_STATUS is specified.

Restrictions: Illegal in user mode.

Exceptions: None

Precision: FIRST(OP1) and SECOND(OPI) are singlewords.

I The following sets USER_STATUS to FIRST(NEWPST), sets PROCESSOR_STATUS to
SECOND(NEWPST) and jumps to BRAZIL:

| WFSJMP NEWPST,BRAZIL

|
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RUS

295

Read user status

RUS

Purpose: OP1:=USER_STATUS. OP2 is unused.
Restrictions: Noﬁe

Exceptions: None

Precision: OP1 is a singleword.

The following loads RTA from USER_STATUS:

RUS RTA

. XOP
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JUS o o Jump on selected user status bits

JUS . {NON,ALL.ANY,NAL} | JOP

- Precision: If USER_STATUS LCOND OP1 (where LCONDe{NON,ALLAANY,NAL}) is true,
control is transferred to the location specified by JUMPDEST.

~ Restrictions: None
Exceptions: None

Precision: All operands concerned are singlewords.

Let ERRORS be a mask for several bits in USER_STATUS. The following jumps to ZIP if l
any of these bits are set:

|’ - JUS ERRORS, ZIP ' : l
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JUSCLR . ‘ Jump on selected user status bits and clear

JUSCLR . {NON,ALLANY,NAL} .. JoP

Purpose: OP1 is a mask. for selecting bits from- USER_STATUS~ The instruction first tests those
bits using the.condition specified by the modifier.- Then it clears those bits. Finally, if the test ylelded
true, the processor jumps to JUMPDEST. :

Formally:
TEMP:=USER_STATUS;
(% - represents one’s complement x)
USER_STATUS:=USER_STATUSA(-OP1);.
If TEMP {NON,ALLANY,NAL} OPI THEN GOTO _]UMPDEST

Note that an ILLEGAL_STATUé hafd':trap will occur if clearing the specified B.its would pfoducé
an illegal value for USER_STATUS. ‘ L

Restrictions: None
Exceptions: None

Precision: All operands are singlewords.

Let ZDIV be the mask for the INT_Z_DIV bit in USER_STATUS. The followmg jumps to I
YOW and clears this bit if it is set:

L

JUSCLR.ALL ZDIV, YOW ' . . ' |
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WUSJMP ‘ Write user status and jump

WUSJMP Jop
Purpose: USER_STATUS:=OP1.  Control is then transferred t6 the location specified by
JUMPDEST. Note that an ILLEGAL_STATUS hard trap will occur if an-illegal value of
USER_STATUS is specified.

Restrictions: None

Exceptions: Nane

Precision: All operands concerned are singlewords.

The following sets the USER_STATUS to NEWUS and jumps to AWAY:

WUSJMP NEWUS, AWAY
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SETUS v v : Set specified user status’bits

SETUS ' Xop

Purpose: USER_STATUS:=USER_STATUSVOP1. = OP2 is unused. -Note that. an
ILLEGAL_STATUS hard trap will occur if an illegal value of USER_STATUS/is specified.

Restrictions: None
Exceptions: None

Precision: OP1 is a singleword. OP2 is unused. -

pr—

The following sets the low order bit in USER_STATUS:

SETUS #1
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CLRUS ‘ Clear specified user status bits
CLRUS | XOP
Purpose: USER_STATUS:=USER_STATUSnone's—complement(OP1). Note that an

ILLEGAL_STATUS hard trap will occur if an illegal value of USER_STATUS is specified. The
JUSCLR instruction can clear specified user status bits and simultaneously test them.

Restrictions: None
Exceptions: Nune

Precision: OP1 is a singleword. OP2 is unused (OD2 must equal zero).

p——

The following clears the low order bit in USER_STATUS:

CLRUS #1
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-

RTDBP, WTDBP - Read and write TDRP
RTDBP . .. _XOP
WTDBP XOP

Purpose: These instructions read and write the trap descriptor base pointer, the register which
specifies the origin of a table which in turn specifies the origins of each set of trap, interrupt, and
gate vectors.

RTDBP loads into OP1 the 34-bit physical address stored in TDBP. WTDBP loads into TDBP
the rightmost 34 bits of OP1.

The effect of altering the trap descriptor table without executing a WTBP instruction is undefined.
Restrictions: Illegal in user mode
Exceptions: None

Precision: OP1 is a singleword. OP2 is unused.

The following specifies that the table of trap vector origins begins at the first singleword of
physical memory:

I WTDBP #2 | . - I
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9216 Performance Evaluation

The processor has several doubleword counters which can be configured to count different events. A
user mode program can read these counters, but only a privileged mode program can write them or
alter the bits that enable them. Counter zero is always enabled, by convention, to count real-time

cycles.
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RCTR Read counter

RCTR ‘ XOP
Purpose: OP2 is a counter number. OP1 gets the contents of the counter specified by OP2. .
Restrictions: Traps if the processor is in virtual machine mode.

Exceptions: None

Precision: OP1 is a doubleword. OP2 is a singleword. - _ : .

— .
The following sets RTA (DW) to the current real-time cycle .count:

RCTR RTA,#0
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WCTR Write counter
WCTR XOP

Purpose: OP!1 is a counter number. Write OP2 into. the counter specified by OP1.
Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1l isa singleword. OP2 is a doubleword.

. .
The following zeros the real-time cycle counter:

WCTR #9,#0
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RECTR ‘ - B - : Read enable bits for counter

RECTR o XOP

Purpose: OP2 is a counter :number: OPI1 gets the contents of the enabling register for the counter-
specified by OP2. ‘ '

Restrictions: Traps if the processor is in virtual ‘machine mode.
Exceptions: None

Precision: OP1 is a doubleword. OP2 is a sihgleword.

The following reads the enabling bits for counter COUNT .into .RTA: e e

RECTR RTA,COUNT
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WECTR ‘ Write enable bits for counter

WECTR ' o XOP

Purpose: OP1 is a counter number. Write OP2 into the enabling register for the counter specified
by OP1.

Restrictions: Illegal in user mode.
Exceptions: None

Precision: OP1 is a singleword. OP?2 is a doubleword.

The following writess ENABLE into the enabling .register for counter COUNT:

WECTR COUNT,ENABLE
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217 Miscellaneous
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NOP : 4 No operation

NOP ., XOop
Purpose: NOP may have operands, but it performs no operation and stores no result. It always
transfers control to the next instruction. The operand addressing calculations are carried through;

while the operands themselves are not referenced, an invalid addressing mode will cause a
RESERVED_ADDRESS_MODE hard trap.

Restrictions: None
Exccptions: None

Precision: OP1 and OP2 may be any precision since they are not fetched.

I The following three instructions are, respectively, one, two and three word NOPs: I

NOP #@,#8
NOP #@,#1(0]
NOP #1(0],#(@]
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HALT , N _ " Halt this processor

HALT | _Jor.

Purpose: ‘Halt the processor. Execution contiues at JUMPDEST when the halted: processor
continues. HALT affects only the processor that executes it. OP1 is unused.

Restrictions: Illegal in user mode.
Exceptions: None
Precision: OP1 is unused

I The first instruction continues at CONT; the second halts immediately'upon continuation: |

HALT CONT

L‘— HAE_T.." _ 'A ) | . __J
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RPID Read processor identification number

RPID | XOP
Purpose: OP1:=PROC_ID

Restrictions: Traps if the processor is in virtual machine mode.

Exceptions: None

Precision: OPll is a singleword. OP2 is unused

The following sets RTA to the processor ID number.

RPID RTA




311

3 The FASM Assembler

3.1 Commands to,ihvoke FASM

FASM is a cross-assembler which executes on the PDP-10 and emits code for the S-1 native mode
instruction set. To use it with the WAITS operating system at Stanford University, type: )

R FASM; <output>,<listing>e<input>

<input> is the name of the file containing assembly source language. The file extension defaults to
© “,81” if omitted.

<output> is the file FASM puts relocatable code into. The file extension defaults to “.LDI” if
omitted. '

disting> is the file FASM puts its listiné into. If you omit the file extension, FASM assumes
“.LST”.

Alternatively, type the following and FASM will suppress the listing:
R FASH; <output>e<input>

Or type the following and FASM will suppress the listing, putting relocatable code in a file whose
name matches that of <input> but whose extension is “. LDI”:

R FASM; <input:

Or type the following and the program will prompt with “x” and wait for the rest of the command
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line.
R FASM

It is possible to segment the input into severa! files. To assemble files IN1, IN2 and INS3, for
example, type:

R FASM; OUT«IN1+IN2+IN3

or:
R FASM: DUT«INL. INZ. INS

or create a file called IN containing the line “IN1+IN2+IN3” and then type:
R FASM;OUTaIN

A file which, like IN, contains part of the command line is an indirect file. Within an indirect file a
semicolon tells the program to ignore the rest of the line, including the carriage return and line feed.
This allows the command to extend over more than oJne physical line, as the following example
shows: '

OUT«INI+;
IN2+;
IN3

The first linefeed that is not ignored will cause the indirect file to be closed and command line
processing to continue from where the indirect file was called. An indirect file may also call another
indirect file (up to 10 levels).

Use the SNAIL commands LOAD and COMPILE to automatically run FASM and then optionally
call FSIM. The /L switch may be used with SNAIL to force FASM to make a listing.



8.2 Preliminaries _ S 813

3.2 Preliminaries

FASM makes three passes over the input file to do a good (but not perfect) job of substituting
relative-JOP instructions for génera]ly bulkier absolute- JOP instructions. During the first pass,
FASM uses only absolute jumps, setting each label to the maximum possible value it will attain.
During the second pass, FASM replaces absolute jumps with relative ones where possible, provided
the jump destination is in instruction space only and not external. During the third pass, FASM

generates the code.

FASM accepts the superset of the ASCII character. set used at the Stanford Artificial Intelligence
Lab (SAIL), but wherever its syntax uses special characters from the SAIL set, it also accepts
substitutes from the standard ASCII set. This section will present both choices.

Because each page of S-1 memory can be marked EXECUTE_PERMIT, READ_PERMIT, and/or-
WRITE_PERMIT, FASM maintains separate location counters controlled by the ISPACE,
DSPACE, XSPACE, IPAGE, and DPAGE pseudo-ops explained later.

Like any assembler, FASM processes statements, each of which may define a symbol, emit an S-1
. instruction, or emit a dataword.

But unlike many assemblers, which simplemindedly parse lines looking for label, opcode, and
operand fields, FASM starts by scanning the text character by character, expanding macros. The
resulting strings go to the portion of the assembler that recognizes assembly language constructs.
Many of thosé constructs themselves (symbol definitions, literals, pseudo-ops, and so on) return
values just as functions in a high-level language do, so the programmer may embed them in
expressions with considerable flexibility. ‘
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3.3 Expressions

The primary building block of a FASM statement is the expression. An expression is made up of
terms separated by operators with no embedded blanks. The simplest legal expression is a single
term with no operators.

Attributes: An expressibn may have one or more attributes. The possible attributes are: register,
instruction value (IVAL), data value (DVAL), and external value (XVAL). These attributes are
derived from the terms and operators that make up the expression.

A term in an expression may be a number, a symbol, a literal, a text constant or a value-returning
pseudo-op. '

When it encounters an expression, FASM attempts to perform the indicated operations on the
specified terms. Sometimes, the value of a term is not available (for example, is undefined or is
external) at the time the expression is evaluated. Sometimes this is permissible and sometimes it will
cause an error. In the descriptions that follow it will sometimes be said that an expression must be
defined at the time it is evaluated.

3.3.1 Operators

The following are the valid operators along with their precedences. . Each is binary unless marked
“unary)”.

Purpose ASCII symbol  SAIL symbol Precedence
Addition + + 1
Subtraction - - 1
Multiplication % E 2
Division / / 2
Bitwise OR ' v 3
. Bitwise AND & A 2
Bitwise XOR # # 3

Power of 2 A T "4
Bitwise NOT - 5 (unary)
Plus ] + + 5 (unary)
Minus C - -0 5 (unary)
Register % % 5 (unary)

attribute ’

(Though FASM recognizes no ASCII equivalent for “~”, the programmer can achieve the effect of
“~X” by writing “<-1#X>".)
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A1TB has the value of A shifted left (if B is positive) or right (if B is negative) by B bits.

The “%” symbol gives the term following it the register attribute (though context may override that
attribute; for example, a “45” in an expression inside a constant operand merely contributes an
integer “5” to the expression which then becomes a constant.)

Each operator has a precedence which is used to determine order of association. For operations
with the same precedence, association is to the left. Angle brackets <> (also known as brokets and
pointy brackets) may be used to parenthesize arithmetic and logical expressions. (Parentheses ()"
themselves may not be used for this purpose because they are significant for expressing various
addressing modes.) A parenthesized (or rather, broketed) expression may take more than one line, in
which case the value of the last line is used as the value of the expression. However, all the lines
“are evaluated and then all the values are thrown out except for the last one. These evaluations may
have side effects like defining symbols, or executing macros, etc. - )

3.3.2 Numbers

A string of digits is interpreted as a number. If it contains “.”, FASM assumes it is decimal.
Otherwise, FASM assumes the current radix, which defaults to base 8 (octal) but may be changed
with the RADIX pseudo-op. A singleword floating point number has digits on both sides of a
decimal point and may be followed by an E, an optional + or -, and a one or two digit exponent,
which is assumed to be a decimal number and should not have an explicit decimal point.

3.3.3 Symbols

A symbol is a one- to sixteen-character name made up from letters, numbers, and the characters “.”,
“” and “¢”. (A symbol may actually contain more than sixteen characters, but all characters after
the twelfth are ignored.) Lower-case letters are permitted, but are considered to be the same as the
equivalent upper-case characters. A symbol must not look like a number; for example, 43. is an
integer and 0.1 is a floating point number, whereas 0..1, 1.E5, and 2.3E.5 are symbols (because they
do not quite qualify as floating point numbers).

Following the initial character of a symbol, one may enclose in quotation marks any characters
which would otherwise be forbidden. The quotation marks and the otherwise forbidden characters
all become part of the symbol. For example, the first of the following two lines is an arithmetic
expression involving symbols “CAT”, “A”, and “DOG”, whereas the second is a single symbol
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“CAT"*A-"DOG™

CATxA-DOG
CAT"xA-"D0OG

Symbols have values and attributes. The values are 36-bit numbers which are used in place of the
symbol when it appears in an expression. The attributes are: register, instruction value (IVAL),
data value (DV AL), half-killed, external value, and macro name.

If a symbol is a macro name, then instead of having a value, the symbol has a macro definition
associated with it. This macro definition is expanded when the symbol is seen under certain
circumstances and the expansion is used in place of the symbol in the expression. (See the section
on macros for more details on macro definition and expansion.)

Predefined symbols: FASM recognizes certain symbols without requiring the programmer to define
them.

“” A lone dot represents the -cutrent location counter. It is either an IVAL or a -
DVAL, depending upon whether ISPACE, DSPACE, IPAGE, or DPAGE is in
force. Its value is the quarterword address at which the next instruction or data
will be assembled. Its default attribute is IVAL and its initial value is O for a
relocatable assembly or 10000 octal for an absolute assembly.

RTARTB - RTA and RTB represent %16 and %24 respectively, so their attribute is register.

3.3.4 Literals

A literal is any set of assembler statements enclosed in [ ] (called square brackets) and separated by
“o”, 7", or linefeeds. A literal directs the assembler to assemble the statements appearing inside the
square brackets and store them at some location other than the current location counter. Tf
embedded in an expression, the entire literal returns a value; the address at whirh the first
singleword of the literal is assembled. There are certain restrictions on just what may appear inside
a literal. Certain pseudo-ops are illegal inside of literals (see the section on pseudo-ops). Currently,
labels are not permitted inside a literal, although this may change in the future. The symbol “.” is
not affected by the fact that it is referenced from inside a literal. It will have the value it had at the
point where the literal was begun even though the literal may already have assembled some
statements.

Just where the literal is assembled is determined by several factors. First it is determined whether
the literal is an instruction-space or a data-space literal. This is determined in the following
manner. If the next characters immediately after the [ that begins the literal are !1 or |D, then the



3.34 Literals -~ - - o . 317

literal is an instruction-space or data-space literal, respectively. If not, then the literal will be an
instruction-space literal if it contains any opcodes. Otherwise it will be a data-space literal. All
instruction-space literals will be assembled 'sta'rting.;at the current:location counter when a LIT
pseudo-gp is encountered while in instruction-space. A similar statement is true of the data-space
literals. Certain other pseudo-ops cause an implicit LIT .to be done first.

One typical use of a literal is to move a doubleword from data memo'ry into register space. The
following initializes %40 to the largest doubleword integer:..

MOV.D.D %48,BIGNUM
DSPACE
- BIGNUM: 377777,,-1
-1 :
ISPACE

but a more elegant way, using aliteral, would be: - o
MOv.D.D %48, (377777,,-1 ? -11

Similarly, the following example uses %40 tc index into a table of indirect pointers, perhaps to
implement a CASE statement in Pascal:

JMPA CTABL [%481120

DSPACE , :
' ' CTABL: CASE@+TAG
CASE1+TAG 77
CASE2+TAG
ISPACE R

but a literal expresses the same’structure more compactly: =
. . L . . - . L Lot TR LAY

JMP < [CASE@+TAG 2 CASEI+TAG ? CASE2+TAG]>1%48]128

3.3.5 Text Constants

An ASCII text constant is enclosed in double-quotes and has the value of the rightéad justed ASCII |
characters packed one to a quarterword. For example: :
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"ab"

is the same as the number 1411428. If more than four characters are specified, then only the value
of the last four will be used. If the trailing double-quote is missing, the assembler will stop
accumulating characters when it sees the end of line. The last four characters will be used in the
constant and no error message will be given.

A delimiter such as a space must precede a text constant so FASM does not consider it to be a
quoted portion within a symbol. '

3.3.6 V:ilue-'retuming Pseudo-ops

Some pseudo-ops generate values and may be used as terms in an expression. See the descriptions
of the individual pseudo-ops to learn what values they return.

3.3.7 Combining terms to make expressions

FASM determines the value of an expression simply by combining the values of the individual
terms according to the operators between them.

Determining the attribute of the expression is a bit more complicated, however.

When a symbol with the register attribute appears in an expression, then the entire expression has
the register attribute. At most one external symbol may appear in an expression. It does not matter
how it appears in the _expression; it is assumed to be added in. This causes the expression to be an
XVAL. If an IVAL (DVAL) ever appears in an expression then the whole expression is an IVAL
(DVAL) with one exception. An IVAL (DVAL) minus'an IVAL (DVAL) is no longer an IVAL
(DVAL). Note: in a relocatable assembly all relocation is done by addition of the I space or D space
relocation or of an external symbol’s value. Therefore using the negative of an IVAL, DVAL or
external value will not have the right effect.

3.4 Statements

A statement can accomplish three things: define a symbol, emit an S-1 instruction, or emit a data
word.
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How a statement is terminated will depend upon the exact type of statement. In general, a statement
is terminated with a linefeed, a &, a ?, or a semicolon that begins a comment. (The comment itself
terminates at the next linefeed. Some statements, like symbol definitions, can also be terminated

with a space or a tab.

3.4.1 Symbol Definition

A symbol may be defined to have a specific value either with the assignment statement or by
declaring the symbol to be a label. The assignment statement has two forms:

SYMBOL«expression or SYMBOLe«expression

An = may be used in place of a «. These statements define or redefine the symbol to have the
value of the expression. The expression must be defined at the time the assignment statement is
processed. Any attributes of the expression are passed on to the symbol (except for the half-killed
~ attribute). For example, if the expression has a register value, then the symbol is given the register
attribute. In addition if the second form is used (with two left-arrows) then the symbol will
additionally be given the half-killed attribute. This attribute is not used by the assembler but is
passed on to the debugger, where it means that the symbol should not be used in symbolic typeout.
It does not affect the ability to use the symbol for type-in. |

A symbol may be declared to be a label by saying either of:
SYMBOL: or SYMBOL:: -

These both define the symbol to be equal to the location counter. The attributes of the location
counter are passed on to the symbol. The double colon (: :) causes the symbol to be half-killed.

It is legal to redefine a symbol’s value with an assignment statement but it is not possible to redefine
a label’s value or to define as a label any symbol that has previously had a value assigned.

An assignment statement can itself be an expression and has the value of the expression to the right
of the arrows. Therefore it is possible to assign the same value to multiple symbols as follows:

AcBeeCe%l

which will define all of A, B and C to have the register value 1. An assignment statement is
terminated by almost any separator, including space and tab. Therefore it is possible to put more
than one assignment statement on one line, or to put an assignment statement on the same line with
other statements.
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3.4.2 S-1 Instructions

An instruction is a statement that can cause the assembly of one, two or three singlewords. It is
made up of an opcode with modifiers followed by a list of operands.

3.4.2.1 Operands

(Throughout the following discussion, either “#” or “?” indicates a constant, and “| ... |”, “c ... 2",
and “[ ... J” are all equivalent pairs of brackets.) -
In general, an operand may be any of the following:
Register or memory reference:
expression If the attribute of the expression is “register”, FASM interprets it as a .

quarterword address in the registers; otherwise, FASM interprets it as a
quarterword memory reference. If an instruction requires a singleword
address, FASM derives it by dividing the value of the specified label
or expression by four. If an instruction requires a relative address,
FASM derives it by subtracting the current location counter from
whatever label or expression the programmer provides.

General constant:

Hexpression If the expression is in the range -32 .. 31 (decimal) the assembler will
generate a short constant. If not, it will generate a long, sign-extended
cunstant. (It is dangerous to use an as yet undefined symbol in this
expression, because the assembler might decide to switch from one
length to the other, confusing the rest of the assembly.)

Pseudoregister:

{register expression)expression
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Long constants:

#cexpressiond
# [expression]
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#ic!S e expressiond

#[!S ? expression]

Any of these produces an LO constant (even if the number is small
enough to fit inside an SO) right justified with sign extended or
compressed as necessary. :

#cexpression o 10>

#lexpression ? 10]

Either of these produces an LO constant which, if the instruction using
it calls for a doubleword, is left justified and extended with zeroes. The

spaces around the “6” or “?” are optional.

#(19 ? expression]

Hc!@ o expressiond

Indexed constant:

Either of these operands produces an LO constant which, if the
instruction using it calls for a doubleword, is right justified and

“« »

extended with zeroes. The spaces around the “o” or “?” are optional.

#Hcexpression>(register expression)

Hcexpression>(register expression]
#lexpression] (register expression)
#lexpression] [register expression]

Operand descriptor:

lexpression

An indexed constant adds a constant to the contents of a sing]eword
register. The register expression must lie in the range 0.. 124 and be
divisible by 4.

Intended primarily for patching, this generates an operand descriptor
(OD) that matches the low 12 bits of the result of the expression.
FASM does not check to be sure such an OD is legal, and does not
generate an extended word even if the OD calls for one.
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(base)offsetlindex]tshift
cbaseooffset (index)tshift
base [index] *shi ft
base(index)tshift

This is the general syntax for a long operand (LO) variable. The
processor computes the address as if by scanning the expression from
left to right. It starts with the contents of the memory location or
register specified by “base”. Then it adds “offset”, if any. Finally it
takes the contenis of the memory location or register specified by -
“index”, shifts it lefl Ly the nunber of bits specified by “shift”, and
adds it to the base-offset combination to obtain the address of the
operand.

If "@” appears after the entire phrase, indicating indirect addressing, the
processor interprets the operand as a pointer and uses it to fetch the
ultimate operand. If, on the other hand, the “e” appears after the offset,
the processor uses the base+offset address to fetch a pointer from
memory, and indexes from it.

‘ The 1.0 variahle addressing mnres have space nse the OD for a sort

of “nested” short operand (SO) variable, and they fall into three
categories based on how they use this SO variable: as the base, as the

index; or not at all.

DEFINITION OF TERMS:

SW_REG <%R@ .. %R31l>

LONG_DIGP Jl=bit signed displacement
LONG_ADDR 3l-bit unsigned address
SHORT_DISP 2b-hit signed displacement
SHIFT B .. 3bit left shift
SHORT SHIFT B or 2 bit left ehift
INDEX_REG <%R3 .. %R31>

SF =32 .. 31

LUSTNG THF S0 AS THE BASE:

(SW_REG)LONG_DISP

(SW_REG)LONG_DISPe -

(SW_REG)SHORT_DISP [SW_REGI MSHIFT
(SW_REG)SHORT_DISPe [SW_REG] 1SHIFT
(SW_REG) SHORT_DISP [SW_REG]I*SHORT_SHIFTe
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((INDEX_REG)SF)LONG_DISP

( (INDEX_REG) SF)LONG_DISPe

( (INDEX_REG) SF)SHORT_DISP [SW_REGISHIFT .

( (INDEX_REG) SF)SHORT_DISPe [SW_REGI MSHIFT

( (INDEX_REG) SF) SHORT_DISP [SW_REG] *SHORT_SHIFTe

‘USING THE SO AS THE INDEX:

LONG_ADDR [SW_REGITSHIFT
LONG_ADDRe [SW_REG] ASHIFT
LONG_ADDR [SW_REGITSHORT_SHIFTe
(SW_REG) SHORT_DISP [SW_REGI T*SHIFT
(SW_REG)SHORT_DISPe [SW_REGITSHIFT
. (SW_REG)SHORT_DISP [SW_REG] MSHORT _SHIFTe

LONG_ADDR [ (INDEX_REG)SFIMSHIFT

LONG_ADDRe { (INDEX_REG) SF11SHIFT

LONG_ADDR [ (INDEX_REG) SF11SHORT_SHIFTe
(SW_REG)SHORT_DISP [ (INDEX_REG) SFIMSHIFT
(SW_REG)SHORT_DISPe [ (JNDEX_REG) SFIMSHIFT
(SW_REG)SHORT_DISP [ (INDEX_REG) SF1 1SHORT_SHIFTe

NOT USING THE SO:™

"LONG_ADDR
LONG_ADDRe
(SW_REG)SHORT_DISP .
(SW_REG) SHORT_DISPe

3.4.2.2 Opcodes and Modifiers

An opcode is built out of a base opcode name followed optionally by a “.” and an opcode modifier
and another “.” and another modifier, etc. The modifiers are standard as defined in -the opcode
files. Numeric modificrs are in decimal without a decimal point.

It is also possible to use an already defined symbol as a modifier. For example, if A has been
defined by A«7%4 then SLR.A assembles the same way as SLR.4 does. Note.that an expression may
not be used in place of a modifier. For example, SLR.4+4 is not permitted in place of SLR.8 . Also
note that if there is a conflict between a legal modifier name and a symbolic value, the legal
modifier name will win. For example: ‘
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Mleel
BNDTRP.M1.5 XXX, YYY

will NOT be the same as:
BNDTRP.1.S XXX, YYY

because M1 is a legal modifier for BNDTRP and takes precedence over the lookup of the symbol
ML ,

Modifiers should not be omitted from instruction opcodes, with one exceptiun: a precision modifier
{Q, H, S, D} which is omitted will be assumed to be S. Mndifiers should be written in the urder
defined by the instruction descriptions.

The opcode must be separated from the aperand lict by spaces or tabs.

3.4.2.3 Instruction Types

There are several basic instruction types: XOPs, TOPs, SOPs JOPs, and HOPs. For the assembler,
they differ as to the number and interpretation of operands.

An XOP is (in general) a two-operand instruction. If no operands are given, then the instruction
must be one {eg. WAIT) which requires no operands, and the operand descriptors are set to zero.
If exactly one operand is given then, depending upon the specific instruction, either it is used for
both operands or the second operand is defaulted to be register zero (ZR0). For example,

INC COUNT
is equivalent to
INC COUNT, COUNT.

A TOP is a three-operand instruction, where one of the operands is restricted. Operands may be
written only in certain combinations indicated by a two-bit field called T within the instruction.
FASM automatically sets this field based on the operands specified by the programmer. If X and Y
represent two operands which are distinct from each other and from RTA and RTB, then there are
four possible combinations for the operands, as the following shows:

SUB X,X,Y
SUB RTA,X,Y
SUB X,RTA,Y
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SUB RTB, X, Y
Other combinations, such as the following, are iliegal:
ADD X,Y,RTA
If the programmer writes only two operands for a TOP, FASM repeats the first..

An SOP is a two-operand instruction with a skip destination. Both of the operands must be
present. The skip destination is written as if it were a third operand, and should be an expression
which evaluates to the quarterword address of the instruction that is to be skipped to. If the skip
destination is missing, then the instruction is assembled so as to skip over the next instruction,
however long it is. . For example,

ISKP.GTR %1,#108,EXIT

assembles a conditional skip to the label EXIT. During the last pass of the assembly, the assembler
checks to see that the skip is within range. This means that the value of the skip destination
operand must be within -8 .. 7 singlewords of the location of the SOP. The difference in this
- range is assembled into the SKP field of the instruction. '

A JOP is a two-operand instruction, the second of which is the jump destination. If only one
operand is specified, then which operand it is assumed to be depends upon the exact opcode. Some
opcodes expect only one argument, in which case that argument is the jump destination (JMPA, for
example). The opcodes JSR and JCR expect one or two operands. If only one is supplied it is
assumed to be the jump destination. For other JOPs, if there is only one argument, it is assumed to
be OP1 and the jump is assembled to skip over the next instruction (just as for an SOP with an
omitted skip destination). The assembler will try its best to assemble the jump with the PR-bit on
(using relative addressing). It even takes a whole extra pass through the source file just for this.
For example,

IJMPZ.NEQ %2@,L00P
assembles a jump to location LOOP.

The only HOP instruction is SJMP, which expects a single operand, which should be a simple label
or expression that evaluates to the quarterword address of the jump destination. FASM subtracts
the current location counter from the operand value and divides by 4 to obtain the necessary
singleword relative address. While compact and useful for patching, this instruction lacks the
flexibility of the unconditional branch JMPA, which can use indexing or indirect addressing.
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3.42.4 Data Words

An expression standing alone on a line (or, more precisely, an expression which by itself constitutes
a statement) causes FASM to emit a singleword containing the value of the expression.

-1 s+ A singleword with all bits set

%7+347. 3 A singleword containing 354 decimal

NAME%Z2 ; A singleword containing tuwice the value
5.

nf the symhni NAMF
If two expressions appear on either side of “,”, FASM emits a singleword with the left halfword set
to the first expression and the right halfword set to the second.

30,,7 :A singleword with 3@ in its left
; halfuord and 7 in its right hal fword

The following example illustrates a simple use of a literal. Because the literal itself returns the
address of the first word it emits, FASM generates four singlewords in all. At the next “LIT”
pseudo-~op in data space it generates three singlewords containing 1, 2, and 4 respectively. At the
current location counter, it generates a singleword containing the value returned by the literal.

[ 1
2
4 ]
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3.5 Absolute and Relocatable Assemblies

An assembly is either absolute or relocatable. Initially it is assumed that the assembly is relocatable.
Certain things in the input file may cause the assembler to try to change its mind if it is not too late.
The pseudo-ops ABSOLUTE and RELOCA will force absolute and relocatable respectively. A
LOC will fgrcé absolute. :

In a relocatable assembly, there is one instruction space and one data space. These spaces may be
interleaved in the input file (by use of the ISPACE, DSPACE and XSPACE pseudo-ops) but will
be separated into two disjoint spaces in the output. The data space will be output-immediately after
the instruction space and it is up to the linker to further relocate it to begin on a page boundary (or
whatever).

Whenever a word is assembled, the attributes of the expressions involved in the assembly of that
- word are passed on to the word itself. The assembler outputs i_nstrqctions'to the linker to relocate
every IVAL by adding to it the starting address of the instruction segment, and similarly for every
DVAL and the starting address of the data segment. Notice that this does not do the right thing for
the difference between an IVAL and a DVAL. This is because the assembier does not keep track
of whether the relocation should be positive or negative.

In an absolute assemb‘ly, no relocation is done. There may be multiple instruction and data Spaces.
The pseudo-ops IPAGE and DPAGE cause the assembler to move the location counter to a new
page boundary and switch to the indicated space. The assembler output will contain multiple spaces
which occur in the same order as the IPAGE.and DPAGE statements. The LOC pseudo-op may
. be used to set the value of the location counter to any desired absolute address (with some
restrictions). It cannot be used to change spaces. -

An IPAGE, DPAGE, or LOC pseudo¥6p may not be used in a rejocatable assembly, and an
ISPACE, DSPACE, or XSPACE pseudo-op may not be used in an absolute assembly.
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3.6 Pseudo-ops

The following lists all the pseudo-ops in alphabetical order.

If a “.” appears in front of the pseudo-op here, then the “.” is mandatory; otherwise it is optional.

Certain pseudo-ops require a string of characters, denoted by ¢ text e. This indicates that FASM
regards the first character (other than a blank or tab) following the pseudo-op as the delimiter for
the beginning of the string, and looks for a matching character to delimit the end of the string.
Thus, for example, the following produce identical strings:

ASCII "Now is the time"
ASCIT ’Nou is the time’
ASCll bNow is the timeb

ABSOLUTE
Forces the assembly to be absolute.

.ALSO, < conditionally assembled text > rest of program

.ELSE, < conditionally assembled text > rest of program

These pseudo-ops conditionally assemble the text in brokets depending upon the success or failure
of the immediately preceding conditional. There is an assembler internal symbol called .SUCC
which is set when a conditional succeeds and is cleared when one fails. .ALSO will succeed if -
SUCC is set and .ELSE will succeed if it is clear. If a conditional succeeds, SUCC is set both at the
beginning and at the end of the conditionally assembled text. This enables the inclusion of
conditionals within conditionals while using .ALSO or .ELSE following any outer conditional. For
example,

IFN A-B,<IFIDN <X>,<Y>,< ...>>
LELSE < ...>

Here, the .ELSE tests the success of the IFN A-B independent of whether the IFIDN succeeded or
failed. '

ASCIl o text o

Assembles text as ASCII characters into consecutive quarterwbrds, padding the last used singleword
with zeros. This pseudo-op may cause more than one word to be assembled as long as it is not
enclosed in any level of brokets. However, the “value” of this pseudo-op is the value of the last
word it would assemble. So if it is used in an expression, the arithmetic applies only to the last
word. If it is enclosed in brokets, then all but the last word are thrown away. For example,
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1+ASCI1 /ABCDEFG/
is the same as

ASCI1 /ABCD/
<ASCI1 /EFG/>+1

but not the same as

14<ASCI1 /ABCDEFG/>
which is the same as

1+ASCI1 /EFG/

ASCIlV 5 text e
Is the same as ASCII except that macro expansion and expression evaluation are enabled from the
beginning of text as in PRINTV. "\, "*", and ™" may be used as in PRINTV.

ASCIZ ¢ text o
Same as ASCII except that it guarantees that at least one null character appears at the end of the

string.

ASCIzZV e text
Is the same as ASCIIV except it does ASCIZ

LAUXO <filename>
Prepares the file <filename> to receive auxiliary output. Auxiliary output can be generated with the
AUXPRX and AUXPRYV pseudo-ops. The auxiliary output file remains open until the next
AUXO or the end of the assembly is encountered. It is probably most appropriate to do the
AUXO during just one pass of the assembly. This can be done, for example by. .

IF3, <. AUXD MSG.TXTIP,PNI>

AUXPRX o text e
The text is output to the auxiliary file. An error message is generated if no auxiliary file is open.

AUXPRY & text e
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Is the same as AUXPRX except that macro expansion and expression evaluation are enabled from
the beginning of text as.in PRINTV. "\", "*", and "’ may be used as in PRINTYV.

BLOCK expression
Adds expressionx4 to the location counter. That is, the expression is the number of singlewords to
reserve. The expression must be defined when the BLOCK pseudo-op is encountered.

BYTE (s1)b11,b12,b13,... (s2)b21,b22,b23,..,

The BYTE pseudo-op ‘is used to enter bytes of data. The s-arguments indicate the byte size to be
used until the next s-argument. The b-arguments are the byte values. An argument-may be any
defined expression. The BYTE pseudo-op may not evaluate to more than one word. The s-values
are interpreted in decimal radix. Scanning is terminated by either > or >, so a BYTE pseudo—op
may be used in an operand or in an expressnon For example,

MOV A,#BYTE (7)15,12>
MOV B, [1+<BYTE (7)15,125]

COMIMENT ¢ text o
The text is totally ignored by the assembler.

DEFINE name argument-list
This pseudo-op is used to define a macro. See the section on macros for a description.

DPAGE
If the current space is instruction space, it does an implicit LTT, advances the location counter to the
next page boundary, and sets the space to data. If the current space is data, it merely advances to
the next page boundary. This pseudo-op may not appear inside of a literal or in a relocatable
assembly.

DSPACE

This is a no-op if the current space is a:lready data. Otherwise it switches to data space and restores
the location counter from the last value it had in data space. This pseudo-op may not appear inside
of a literal or in an absolute assembly.
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END expression

Indicates the end of the program. The expression, which may be omitted, is taken to be the starting
address. This pseudo-op may not appear inside of a literal. END forces an implicit LIT to be done
first for both instruction and data space. The expression must be defined when the END
pseudo-op is encountered.

EXTERNAL syml, syn2, sym3,..- '

This pseudo-op defines the symbols in the list to be "external” symbols. The symbols in the list
must not be defined anywhere in the program. Only one external reference may be made per
expression. The value of the external will be ADDED by the linker to the word containing the
expression regardless of the opération the expression says to perform on the external symbol.

IF1, <conditionally assembled text> rest of program

IFNT, <conditional ly assembled text> rest of program

IF2, <conditionally assembled text> rest of program

IFN2,<conditionally assembled text> rest of program

IF3, <conditionally assembled text> rest of program

IFN3, <conditionally assembled text> rest of program . 4

Assembles cohditionally assembled text if the assembler is in pass 1,2 or 3 for IF1, IF2 and IF3 or if
the assembler is not in pass 1, 2 or 3 for IFN1, IFN2, IFN3.

IFDEF symbol,<conditionally assembled text> rest of program

IFNDEF symbol,<conditionally assembled text> rest of program

Assembles conditionally assembled text if the symbol is defined or not for IFDEF and IFNDEF
respectively. :

IFE expr,<conditionally assembled text> rest of program

IFN expr,<conditionally assembled text> rest of program

IFL expr,<conditionally assembled text> rest of program

IFG expr,<conditionally assembled text> rest of program

IFLE expr,<conditionally assembled text> rest of program

IFGE expr,<conditional ly assembled text> rest of program 7

Assembles conditionally assembled text if the condition is met. If the condition is not met, then the
program is assembled as if the text from the beginning of the pseudo op to the matching > were not
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present. For IFE the condition is “the expression has value zero,” for IFN it is “the expression has
non-zero value,” etc. In any case the expression must not use any undefined or external symbols.
The comma, < and > must be present but are “eaten” by the conditional assembly statement. In
deciding which is the matching right broket, all brokets are counted, including those in comments,
text and those used for parentheses in arithmetic expressions. Therefore one must be very careful
about the use of brokets when also using conditional assembly. For example, the following example
avoids a potential broket problem:

IFN SCANLSS, <
SKP.NEQ A, #"<" ;> MATCHING BROKET
JMPA FOUNDLESS

>3END OF IFN SCANLSS

The broket in the comment is used to match the one in double quotes so that the conditional
assembly brokers will match. ‘

|F|DN <stringl>, <string2>,<conditionally assembled text> rest of program

IFDIF <stringl>,<string2>,<conditional ly assembled text> rest of program

These are text comparing conditionals. The strings that are compared are separaied by commas and
optionally enclosed in brokets. If the strings are identical (different for IFDIF) then the text' inside
the last set of brokets is assembled as for arithmetic conditionals. ‘

IFB <string>,<conditionally assembled text> rest of program

IFNB <string>,<conditionally assembled text> rest of program :

These text testing conditionals compare the one string against the null string. They are equivalent
to ‘

IFIDN <Istr‘ing>,<>,< cee > e
IFDIF <string>,<>,< ... > ...

.AINSERT <filename>

Starts assembling text from the new file <filename>. When the end of file is reached in the new file,
input is resumed from the previous file. INSERTs may be nested up to a level of 10.

INTERNAL synl, sym2, sym3, ...
Defines each symbol in the list as an “internal” symbol. This makes the value of the symbol
available to other programs loaded separately from the one in which this statement appears.
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IPAGE ‘ ,
If the current space is data space, it does an implicit LIT, advances the location counter to the next
page boundary and sets the space to instructions. If the current space is instructions, it merely
advances to the next page boundary. This pseudo-op may not appear inside of a literal or in a
relocatable assembly. :

ISPACE .

Is a no-op if the current space is already instructions. Otherwise it switches to instruction space and’
restores the location counter from the last value it had in instruction space. . This pseudo-op may
not appear inside of a literal or in an absolute assembiy.

LENGTH ¢ text o
Has the value of the length of the string text. A CRLF counts as one character.

LIST ‘ :
Increments listing counter. Listing is enabled when the count is positive. The count is set to one at
the beginning of each pass. XLIST is used to decrement the count.

LIT

Forces all literals in the current space (instruction or. data) that have not yet been emitted to be
assembled starting at the current location counter. It has no effect on the literals in the “other”
space. This pseudo-op may not appear inside of a literal.

LOC expression
Sets the location counter to the specified quarterword address. May not appear inside of a literal or
in a relocatable assembly.

MLIST
Increments macro listing counter. Macro expansion listing is enabled when the count is positive.
The count is set to one at the beginning of each pass. XMLIST is used to decrement the count.



334 8 The FASM Assembler

PRINTV ¢ text e

Prints text on the console. It is identical to PRINTX except that macro expansion may occur within
the text. '\, ’, and ‘ may be used within the text as in macro arguments and expression evaluation.
See the section on special processing in macro arguments for an explanation of \ and “’ processing.
Macro expansion is intially enabled at the beginning of text and may be disabled with \.

PR'NTX w lerl ®
Prints zext on the console.

.QUOTE & text @ .
Legal only inside a macro definition. It allows the assembler to see text without scanning it for a
DEFINE or a TERMIN.

RADIX expression
Sets the current radix to expression. The radix may not be set less than two.

RE_LOCA
Forces the assembly to be relocatable.

REPEAT expression, <-bodg>

Assembles body concatenated with a carriage return expression many times. The expression must be
defined at the time the REPEAT pseudo op is encountered. The expression must be non-negative.
If it is zero, the body will not be assembled.

TERMIN
This pseudo-op is legal only during a macro definition. It is used to terminate a macro definit’on.
See the section on macros for a description.
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TITLE name other_text :
Sets the title of the program to name. Everything else on the line is ignored.

XLIST .
Decrements listing counter. Listing is enabled when the count is positive. The count is set to one at
the beginning of each pass. LIST is used to increment the count.

XMLIST ‘ : _ . :
Decrements macro listing counter. Macro expansion. listing is enabled when the count is positive.
The count is set to one at the beginning of each pass. MLIST is used to increment the count.

XSPACE - :
Has the effect of ISPACE if the current space is data and DSPACE if the current space is
instructions. This pseudo-op may not appear inside or a literal or in an absolute assembly.
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3.7 Macros

The FASM macro facility shows a strong resemblance to those of FAIL (the macro assembler for the
PDP-10 developed and used at the Stanford Artificial Intelligence Laboratory) and MIDAS (the
macro assembler for the PDP-10 developed and used at the M.LT. Artificial Intelligence
Laboratory), which are hereby acknowledged.

Macros are essentially procedures that can be invoked by name at almost any point in the assembly.
They can be used for abbreviating repetitive tasks or for moving quantities of information from one
part of the assembly to another (in fact even from one pass to another). Macro operation is divided
into two parts: definition and expansion. . '

The macro facility does differ in an important way from those of other assemblers, however. Macro
expansion in FASM ‘is performed at the “read-next-character” level, whereas in most other
assemblers it is done at symbol lookup time during expression evaluation. Due to this difference,
macro expansion in FASM inherently produces “string” output rather than evaluated expressions as
is sometimes the case in other assemblers. Wherever a macro call is seen, the effect can be predicted
by substituting the body of the called macro in place of the call..

8.7.1 Macro Definition
Macros are defined using the DEFINE pseudo-op, which has the following format:

DEFINE macroname argument!iet
" body of macro definition
TERMIN

This will define the symbol macroname to be a macro whose body consists of all the characters
starting after the CRLF that ends argumentlist and ending with the character immediately
preceding the TERMIN. '

3.7.1.1 The Parameter List

Basically, the parameter list is a list of formal parameters for the macro. This is similar to the list of
formal parameters for a procedure in a “high” level language. The parameters are symbol names
and are separated by commas. The number of macro parameters must be in the range 0 .. 64. The
macro parameter list is terminated by either a ; (which begins a comment, as usual) or a CRLF.
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Each macro parameter has certain attributes associated with it. In FASM these attributes are
balancedness, gensymmedness, and parenthesizedness. From now on, it shall be said that a parameter
is or is not balanced, is or is not gensymmed, and that certain pairs of parentheses can or cannot
parenthesize a parameter. If a parameter is not balanced or gensymmed then it is said to be normal.

Parameter attributes are specified by enclosing a string of characters in double quotes preceding a
parameter in the parameter list. The attributes specified by that string are “sticky”; that is, they
apply to all following parameters until the next such string is specified. The characters B and G
fnay appear in the string to indicate that the parameter is to be balanced or gensymmed respectively.
- There are four parenthesis pairs: (and ), [ and ], < and >, and { and }. Any of these characters may

appear in the string to indicate that that set of parentheses may be used to parenthesize thai
parameter. One final thing that may appear in the string is a statement about the concatenation
character for the macro body. If the string !-=e appears, where e is any character other than CRLF,
then e will be the concatenation character. If the string O! appears, then there will be no
concatenation character. Only the last statement made in the parameter list about the concatenation
character will apply to the macto body.

At the beginning of the parameter list, the ‘attributes have the following defaults: ! is the
concatenation character, parameters are neither balanced nor gensymmed, and any pair of
parentheses may be used to parenthesize a parameter. Whenever an attribute string is encountered,
the previous set of attributes are forgotten and the new one applies to future parameters .until the
next string is specified.

Here are some examples of valid macro definition lines:

DEFINE MAC

DEFINE MAC1 A,B,C

DEFINE MACZ "i="" A,B, "G" C
DEFINE MAC3 "([B])" A, "[B!" B

With these definitions, MAC has no parameters and has ! for the concatenation character. MACI
has three normal parameters A, B and C with ! for the concatenation character. MAC2 has two
normal parameters A and B and a gensymmed parameter C, and uses ' as the concatenation
character. MAC3 has a balanced parameter A, for which () and [] can be used as parentheses, and
a normal parameter B, for which [] can be used as parentheses. MACS has no concatenation
character.

3.7.1.2 The Macro Body

The macro body begins at the character following the CRLF at the end of the DEFINE line and
ends with the last character before the matching TERMIN. Within the macro body, FASM replaces



338 3 The FASM Assembler

all delimited occurrences of formal parameters with a mark that indicates where the actual argument
should be substituted. Any character that is not a symbol constituent is considered a delimiter for
this purpose. .= The concatenation character is also considered a delimiter. However, the
concatenation character is deleted wherever it occurs and will not appear in the macro body
definition. The concatenation character is useful to delimit 2 formal parameter where, without the
concatenation character, the formal parameter would not have been recognized as such. For
example,

DEFINE MAC A,B,C
PUSH.UP.S SP,B

- PUSH.UP.S SP,C
JSR A!RTN

TERMIN .

If the arguments X, Y, and Z were substituted .for the formal parameters A, B, and C, then the thix;d
' line would assemble as JSR XRTN. Without the concatenation character, it would always assemble
‘as JSR ARTN regardless of the actual value of the parameter A.

In addition to scanning for formal parameters in the macro bod'y, FASM also scans for occurrences
of the names DEFINE and TERMIN. It keeps a count of how many it has seen so that it can find
the TERMIN that matches the DEFINE that began the macro definition. This allows a macro
body to contain a macro definition entirely within it. For example,

DEFINE MAC1 A
NFFINE MACTA
TERMIN
TERMIN

defines a macro called MAC1 which contains a complete macro definition sequence within itself.

Note that FASM does not recognize either comments or text constants as special cases in its search
for DEFINEs, TERMINs and formal parameters. Therefore, the user must be careful when using
the words DEFINE and TERMIN in those places. They will be counted in order to find the
TERMIN that marks the end of the current definition. There is a pseudo-op called . QUOTE that
can be used if it is desired to inhibit FASM from seeing a DEFINE, TERMIN, or macro parameter
name. .QUOTE is like an ASCIZ statement in syntax, taking the first nonblank character after the
QUOTE as a delimiter and passing all characters up to the matching delimiter through to the
macrn definition. For example,

DEFINE MAC
show to put a .QUDTE /DEFINE/ in a comment
TERMIN
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will define MAC’s body to be

show to put a DEFINE in a comment

3.7.2 Macro Calis

A macro call occurs whenever a macro name is recognized in a context where macro calls are
permitted. When this happens, the macro call is processed in two distinct phases. The first is
argument scanning and the second is macro body expansion.

3.72.1 Argument Scanning

Argument scanning is the process of assigning.text strings to the formal parameters of a macro.
These text strings come from the input stream. If a formal parameter is not assigned a string by the
call, then it is assigned the null string as its value, unless the argument is defined to be gensymmed.
In that case, the argument is assigned a six character string beginning with G and followed by 5
decimal digits which represent the value of an internal counter which is incremented before being
converted to a text string.

Argument scanning is performed for those macros that have formal parameters. If a macro does not
have any formal parameters, then the character that terminates the macro name is left to be
reprocessed after the macro expansion is complete, even if it is a comma.

If the macro has formal parameters, then how the argument scan is done depends on the character
immediately following the macro name. If it is a CRLF, then the argument scan is terminated and
all of the formal parameters are assigned the null string or are gensymmed as appropriate. The
CRLF is left to be re;irocessed_after the macro expansion is complete.

If the character following the macro name is a space or a tab, then all immediately following spaces
and tabs are thrown out. The entire sequence of spaces and tabs can be considered to be the macro

name delimiter.

If the character following the macro name is a (, then the macro call is said to be a parenthesized
call; otherwise it is a normal call. A parenthesized call differs from a normal call in the way
argument scanning is terminated. In a normal call, argument scé.nning is terminated by either
CRLF (or its surrogates, ? and ©), semicolon, or the argument terminator for the last argument
(which may be a comma). If terminated by a CRLF or semicolon, the terminator is left to be
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reprocessed after macro expansion is complete. In a parenthesized call, only the matching ) can
terminate the call. The ) is not reprocessed after the macro expansion is complete. The following
paragraphs will describe the syntax of macro arguments and explain how they are terminated. The
phrase “.. macro call terminator” refers to the character that terminated either the normal or
parenthesized call, as described in this paragraph.

3.7.2.2 Macro A‘rgument Syntax

The first macro argument begins with the first character following either the ( that demarks a
parenthesized call or the macro name delimiter in a normal call. This character is laoked at by
FASM to determine how to scan the argument.

It the first character is a left parenthesizing character that belongs to the set of characters that may
be used to parenthesize the argument that is being scanned (as determined by the character string in
force at the time this formal parameter was seen in the macro define line), tiien the argument is
taken to be all characters following that open parenthesis until, but not including, the matching
closed parenthesis. Any characters may appear between the parentheses. Only the particular type of
parentheses that enclose the argument are counted in finding the matching closed parenthesis. This
type of argument is called a parenthesized argument.

If the first character is a comma, then the argument is the null string; the comma is taken to be an
argument separator.

If the first character is a macro call terminator, then this argument and all further arguments are
not assigned strings. That is, if the arguments are gensymmed, they will be assigned urique
gensymmed strings, and if they are not gensymmed they will be assigned the null string.

If the first character is not one of the above, then argument scanning depends on whether the
argument is to be balanced or not. If the argument is not to be balanced, then the argument is
taken to be all characters from the first character until, but not including, a comnma, CRLF (or & or
?), semicolon, or the macro call terminator. If the argument terminator is a comma, it is thrown out;
a macro call terminator, however, will be kept to terminate the macro call. If the argument
terminator is not a comma, then it is usually a macro call terminator. However, if the call is
parenthesized, a CRLF or semicolon will terminate the argument but not the macro call. In this case
the remainder of the line (if the terminator was a semicolon) is ignored and the CRLF is thrown
out. Argument scanning continues on the next line. This allows the arguments of a parenthesized
call to take multiple lines; each CRLTF acts.as if it were a comma (with comments thrown out)
allowing the next line to continue supplying arguments.

If the argument is to be balanced, then all types of parentheses are treated the same. A count is
kept of the parenthesis level. If there are no unbalanced parentheses, then a comma or macro call
terminator will terminate the argument as if it were a normal argument. Also, if the parentheses are
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balanced, any close parenthesis will terminate the argument and the call. If it is a parenthesized call,
the close parenthesis must be a ) or an error is reported. If it is not a parenthesized call, the
parenthesis will be left to be reprocessed after the macro call is complete. In either case, the
remaining formal parameters are assigned the null string or gensymmed as appropriate.

8.72.3 Special Processing in Macro Arguments

_ Ordinarily, macro arguments are the quoted forms of the strings that appear between delimiters
within the macro call. However, it is possible to call a macro or even evaluate an expression within
a macro argument during the macro argument scan.

If a macro argument is not parenthesized, then the appearance of the character \ (backslash) in the
argument will enable macro calls to be recognized during the scanning of the macro argument. The
appearance of a second \ will again disable this feature. If a macro call is detected during this time,
then that new macro is expanded and its expansion appears as if it were written in line in the
macro ‘argument that is currently being read. Every time a new macro. call is seen and macro
argument scanning is started, the macro-in-argument recognition feature is disabled until re-enabled
by a\. The \ charactexj,its‘e]f is discarded. .

Perhaps this will be clearer if explained in terms of the actual implementaticn. FASM maintains a
flag, called the \ flag, which when set enables macro expansion. This flag is pushed when a macro
name is recogmzed and initialized to be off at the beginning of the argument scan. It is
complemented every time a \ is seen in the input. When the entire macro call has been scanned (but

expansion has not yet started) the \ flag is popped.

In fact, the \ flag has wider application than just in macro calls. It is also applicable at expression
evaluation time. Normally it is set during expression evaluation, thereby allowing macros to be
expanded. It is perfectly legal to use \ during expression evaluation to inhibit macro expansion.

There is a second feature, analogous to the \ feature, which allows the expression evaluator to be
called during a macro argument, or in fact even at expression evaluation time. If an expression is
enclosed within "*" and """ characters, the expression evaluator is called upon to produce a value,
which may possibly be null, which is then converted into a character string of digitS representing
that value in the current radix. The conversion always treats the value as a 36-bit unsigned integer.
A null value is converted to the null string. The surrounding singlequotes act in a similar way to
parentheses in arithmetic expressions, in that multiple lines may be used, but only the expression on
the last line is converted. This converted string is used in place of the singlequoted expression. As
in the case of \ this can occur in non-parenthesized macro arguments or in expression evaluation.
The singlequote characters themselves are thrown out.

Following are some examples of the use of these features:
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Xeel FB8°X’:  JMPA F281

will assemble as
Fo@l: JMPA Fog1

If FOO was a macro name, it would have been expanded in the previous example. This could be
inhibited with:

\FBO\ ‘X" : JHPA Fuyl
Next consider:

Xeel
DEFINE MAC
XeeX+1
XITERMIN

. FBB'MAC’ :

will define the label FO002 while incrementing X to be €. The next time FOOMAC’: appears, the
label F003: will be generated. :

It is sometimes useful to extract the value of a symbol in a macro argument before the macro call
changes that value:

DEFINE MAC A
BRR««BRR+1
AxBRR

TERMIN

MAC °‘BRR’

will call MAC with the current value of BRR. Without the singlequotes, the string BRR wonld he
passed to the macro and used where “A” appears, which is after BRR is incremented.
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expression, data value 314, 318
expression, external value 314, 318
expression, in FASM 314
expression, instruction value 314, 318

expression, register 314

extended word, defined 12

extended word, fields of 22

EXTERNAL 331

external procedures, with CALLX 248

F field, in operand descriptor 22

FABS . {H,S,D} 123

FABS 108, 123

FADD . {H,;,D} 111

FADD 109, 111, 113, 115, 118

FAIL 336

FASM assembler, invoking 311

fast fourier transform 151

FATAN . {HS,D} 129

FATAN 67, 139, 142

FATANV . {HS,0} 139

FATANY 67, 139

fault tag, defined 45

FCADD . {H;S} 129

FCADD 129

FCFFT . {HS} 151

FCFFT 67, 151-153

FCFFTV . {HsS} 151

FCFFTV 67, 151-152

FCMAG . {HsS} 128

FCMAG 67, 128

FCMULT . {H;S} 131

FCMULT 131

FCONV . {HSD} 144

FCONYV 144

FCOS . {HsS,D} 137

FCOS b4, 67, 137

FCSUB . {H,S} 130

FCSUB 130

FDIV . {HS,D} 114

FDIV 107, 111, 113, 115-118, 134, 136-138.
143

FDIVL . {H,S} 116

FDIVL 116

FDIVLV . {H,s} 116

FDIVLYV 116

FDIVV . {H,;S,D} 115

FDIVYV 115



fetching 45-46, 48

FEXP . {HSD} 135

FEXP 67, 135

FFT 54, 67, 151-152, 154

FFT, Mark IIA restriction on vector length
67

filter 145, 152

filtering 152

filters 145

finished 157

FIRST() notation 35

FIX . {FLCLDMHPST,US}. {QHS,
D}. {HSD} 119

FIX 105-106, 108, 119

fixed-base 27

fixed-base addressing mode 27

fixed-based-indexed 31

fixed-based-indexed addressing mode 31

FIXR 106

FLAGS, field in PROCESSOR_STATUS
10

FLAGS, field in PTE 42

FLAGS, field in STE 42

FLAGS, in USER_STATUS 11

FLAGS, within stack frame 245

FLOAT . {HsS,D}. {QH,S,D} 120 °

FLOAT 108, 120

floating point 11, 53-54, 102-125, 127-131,
133-141, 151, 158, 166, 229-234, 315,
344

floating point arithmetic 102, 104, 107, 110-
111, 113, 115, 117, 119, 121, 123, 125,
344

floating point comparisons 105

floating point data format 102-103, 344

floating point exception handling 107, 344

floating point exception values 104-105, 121,
124-125, 344

floating point exceptions, propagating 108

floating point overflow, defined 104 .

floating point rounding modes 105

floating point underflow, defined 104

FLOG . {H;SD} 134 - '

FLOG 67, 134-135
floor rounding mode 106

'FLSHDM 283

FLSHIM 283 :

FLT_NAN_MODE 11, 54, 107-108

FLT_NAN_MODE, defined 107

FLT_NAN_TRAP 54, 108, 133-134

FLT_NAN 11, 107, 111-118, 121-125, 128~
131, 133-141, 143-145, 149, 152

FLT_OVFL_MODE 11, 54, 107

FLT_OVFL_MODE, defined 107

FLT_OVFL_TRAP 54, 107

FLT_OVFL 11,107, 111-118, 120-125, 128-
131, 134-135, 140-141, 143-145, 149,
152

FLT_REP 11, 107

FLT_UNFL_MODE 11, 54, 107-108

FLT_UNFL_MODE, defined 107

FLT_UNFL_TRAP 54, 108 A

FLT_UNFL 11, 107, 111-118, 121-125, 128~
131, 134-135, 140-141, 148, 145, 149,
152 .

FLTR 106-

flush 283 . o

FMATMUL . {H,S,D} 149

FMATMUL 149-150

FMAX . {H,5,D} 125

FMAX 109, 125

FMIN . {H;S,D} 124

FMIN 109, 124-125

FMULT . {HsD} 113

FMULT 111, 113, 115, 118, 135, 139

FMULTL . {HS} 114

FMULTL 114

. FNEG . {H,;S,D} 122

FNEG 108-109, 122

ids 44
fourier transform 151, 154
FP, within stack frame 244
FPTR 188
fraction 103, 106, 151
fragmentation 37
frame pointer 7, 244



frame pointer, role in stack frame 244
FRECIP . {H,S,D} 117 -

FRECIP 67, 117

FRFLT?2. {H,S,D} 145

FRFLT2 145

FSC. {HsSD} 118

FSC 107, 109, 111, 113, 115, 118

FSCV . {HSD} 118

FSCV 109, 118

FSIM 312

FSIN . {H,sS,D} 136

FSIN 54, 67, 136

FSINCOS . {H,5,D} 138

FSINCOS 67, 138

FSQRT . {H;$D} 133

FSQRT 67, 133, 143

FSUB. {H,S,D} 112

FSUB 109, 112

FSUBV . {HS,D} 112

FSUBV 107, 112

FTRANS . {HSD}. {H,sD} 121
FTRANS 108, 121, 166, 200
GATE_INDEX_TOO_BIG 57, 60, 249
gate descriptor block, location of 50

gate descriptor, format of 248

gate pointer, fields within 249

gate tag, defined 45

gate, format of 248 .

gates, role in cross-ring procedure calls 248
general purpose registers 6

gensymmed 337, 339-341

gensymmed macro parameter, semantics 339
gensymmed macro parameter, syntax 337
gensymmedness 337 .
GEQ (arithmetic condition), defined 184
global 244

GTR (arithmetic condition), defined 184
half rounds toward positive 106
half-killed 316, 319

half-killed symbol 319

half-word 152-153

hard traps 50-51, 57, 59-60, 343

‘hard traps, defined 50

hidden bit 53, 102

hidden bit, floating point 102

hidden bit, in floating point format 102

HIGH_ORDER() notation 3

HOP 183, 18, 69, 197, 325, 343

HOP format 18

HOPs 324

I/O_PAGE access mode 43.

I/O 61

I/O instructions 269

I/O memory translation 62

I/O memory, addressing 61

1/O memory, defined 81

I/O processor, defined 61

IF 19-20, 139-141, 160-162, 164, 185, 198,
207-216, 236

IF1 331

IF2 331

IF3 329, 331

IFB 332

IFDEF 331

IFDIF 332

IFE 331-332

IFG 331

IFGE 331

IFIDN 328, 332

IFL 331

IFLE 331

IFN 328, 331-332

IFN1 331

IFN2 331

IFN3 331

IFNB 332

IFNDEF 331

IJMP. {GTR,EQL,GEQ,LSS,NEQ,LEQ}
191

IJMP 191

IJMPA 193

IJMPZ. {GTR,EQL,GEQ,LSS,NEQ,LEQ}
192

1JMPZ 192, 325

ILLEGAL_BYTE_PTR 58, 228

ILLEGAL_CONSTANT 23, 58, 176, 181



ILLEGAL_INSTRUCTION 58
ILLEGAL_IOMEM 59, 61
ILLEGAL_MEMORY 20
ILLEGAL_OPERAND_MODE 20, 58, 176,
181 ‘
ILLEGAL_PRIORITY 59, 279
ILLEGAL_REGISTER 59, 289-292
ILLEGAL_SHIFT_ROTATE 58,217-219,
221-223

ILLEGAL_STATUS 59, 107-108, 294, 297-

300 R b
ILLEGAL_TRACE_PEND 58
illegal value, floating point 107
illegal value, in floating point format 104
implementation-dependent 1, 52, 62, 151,
183
implementation-dependent features 67
imprecise 46, 54 '
INC . {QH,8,D} 89
INDEX_REG 322-323
INDEX, field within gate pointer 249
index, in long operand addressing 29
index, role in segm‘ent bounds checking 40
indexed constants 24
indexing, restrictions on registers 6
indirect 20, 26-27, 30-31, 41, 44, 47, 190,
197, 812, 317, 322, 325
indirect addressing 30
indirection 30-32, 41, 49, 65
inexact rounding 67, 106, 117
inexact rounding, Mark IIA spec 67
information-preserving 215-216
input/output 61
input/output instructions 269
INSTRUCTION_STATE 52, 65-66, 285
instruction cache 280
instruction execution sequence 65
instruction formats 12
instruction map cache 280
instruction set 69
instruction state, used in traps and’ inter-

rupts 52

instruction tracing, bitsin PROCESSOR _-
STATUS 9
instruction tracing, role in instruction ex-
ecution 65
instruction, in FASM 320
instruction-dependent 52
instruction-space 316-317
INT_OVFL_MODE-"11, 54, 70-71
INT_OVFL_MODE, defined 70
INT_OVFL_TRAP 54, 71
INT_OVFL 11, 70, 73-82, 87-93, 97-98,
100-101, 108, 119, 123, 128-131, 140-
141, 143-145, 149, 152,.186-187, 191-
196, 217

. INT_OVFL, defined 70

INT_Z_DIV_MODE 11, 54, 70-71 -

" INT_Z_DIV_MODE, defined 70

INT_Z_DIV_TRAP 54, 11 ‘

INT.Z_DIV 11, 70, 79-80, 83-88, 100-101,
297 S

INT_Z_DIV, defined 70 -

integer arithmetic exceptions 70 - -

integer division by zero, defined 70.

integer overflow, defined. 70

integrity 104, 344

interface 248

INTERNAL 332.

interprocessor 180-. ,

interrupt vector 50-51, 60-62, 65

interrupt vector format 51

interrupt-related instructions 269

interruptable instruction, defined 52

interruptable instruction, execution séq uence
of 65 ,

interrupts, role in instruction execution 65

interrupts, save area for 52 -

INTIOP 274

INTRAN . {HS.D} 146

INTRAN 146-147, 152-153

IO_PAGE 61

IOBUF 270-271

IOP 61-63

IOPs 62



IOR . {QH,S,D} 270

IOR 270 '

IORMW 272

IOW . {QH,S,D} 271

IOW 271

IPAGE 313, 316, 327, 333

IPAGE, in FASM 327

ISKP. {GTR,EQL,GEQ,LSS,NEQLEQ}
186

ISKP 33, 142, 186, 220, 325 :

ISPACE 8, 146-147, 313, 316-317, 327, 333,
835 ‘

ISPACE, in FASM 327

IVAL, in FASM 327

J field, in [HOP format 18

JCR 243-244, 267, 325

JMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
188 :

JMP 188, 317

JMPA 156-157, 185, 190, 197, 203, 268, 317,
325, 332, 342

JMPCALL 243-244, 268

JMPRET 243-244, 268

JMPZ. {GTR,EQL,GEQ,LSS,NEQ,LEQ}
. {QH,;s,D} 189

JMPZ 20, 92, 157, 180, 189, 203, 276

JOP 13, 20, 22, 55, 69, 188-196, 252, 254,
258, 268, 286, 294, 296-298, 309, 325,
343 -

JOP format 20

JOP, in FASM 325

JOPs 324-325

JSP 243 244, 254

JSR 87, 152, 156-157, 238, 243-244, 258,
260-261, 325, 338

jump format 20

jump instructions 184

JUMPDEST field in JOP format 20

JUs . {NON,ALL,ANY,NAL} 296

JUS 29

JUSCLR . {NON,ALLANY,NAL} 297

JUSCLR 297, 300

largest-magnitude 46

LBITCNT . {H;S,D} 225
LBITCNT 225

LBITFST . {H,5,D} 227
LBITFST 227

LBYT . {S,D} 229

LBYT 229, 237

LCOND 184, 296

LCOND, defined 184

LCONDs 184, 284
least-recently-used algorithm in caches 280
LENGTH, field in byte pointer 228
lengthwise 96, 221

LEQ (arithmetic condition), defined 184
LIBYT . {S,.D} 230

LIBYT 230

linefeed 312, 319

linefeeds 316

linkage instructions 243

LISBYT . {S,D} 232

LISBYT 232

LISP 45

literal, in FASM 316

- LMINMAX . {HS,D} 9

LMINMAX 96

LO, defined 12

1.OC 327, 333

LOC, in FASM 827

locals 255

location counter 316

log 134-135

log2 227

logarithm 40, 42, 134, 151, 154, 179
luglcal condition, détined 184
LONG_ADDR 322-323
LONG_DISP 322-323

long operand variables 27

long operand, defined 12
LOST_PRECISION 54
LOW_ORDER() notation 3

LRU 280

LSBYT . {S,D} 231

LSBYT 231

LSS (arithmetic condition), defined 184



maclisp 97

macro 316, 329-330, 333-342, 345

macro-in-argument 341

macroname 336

macros 313, 315-316, 330, 334, 336, 339, 341,
345

macros, argument scanning 339

macros, argument syntax 340

macros, body 337

macros, calls 339

macros, defining 336

macros, parameter list format 336

MANT, floating point 102

mantissa 67, 102-103, 106-108, 114, 233

map cache 280

mapping-related instructions 284

mathematical instructions 132

MATMUL . {H,S,D} 149

MATMUL 149-150

matrices 147-150

MAX . {QH,S,D} 95

- MAX 95, 125 '

maximum integer value 70

MAXNUM 70, 105, 123

MAXNUM, defined 70

. MIDAS 336

MIMD 1

MIN . {Q,H,S,D} 94

MIN 94-95, 124, 201-203

minicomputer 61.

minimum integer value 70

MINNUM 70, 105, 201-203

MINNUM, defined 70

misalignment 26

miscellaneous instructions 307

MOD . {QH,SD} 85

MOD 18, 85-86, 235-236

MODKE field, in operand descriptor 22

modifer, in opcode 12

modified 42

MODIFIED, field in PTE 42

modifier, in opcode 4

MODL . {Q,HS} 86

MODL 86
MODLV . {QH,S} 86
MODLYV 86

MODYV . {QH;S,D} 85
MODYV 85

monotonic 67, 133-135

MOV . {QHSD} . {QHSD} 166
MOVCSF . {QH,S,D} 198
MOVCSF 180, 198-199
MOVCSS . {QH,S,D} 198
MOVCSS 180, 198

move instructions 165

MOVF 104-105, 107-109
MOVF, defined 104
MOVHWR . {N,C}. {1} 183
MOVHWR 183

MOVMQ . {2. 32} 167

‘MOVMQ 167-168

MOVMS . {2..32 } 168

MOVMS 168, 256, 260

MOVP. {PR}.{PRA} 176

MOVP 28, 30, 45, 48-49, 56-57, 140, 142,
144-145, 148, 150, 152-153, 157, 174,
176-171, 2217, 231, 252

MOVPHY 181-182, 273

MSG 329 ' '

MULT . {QHS.D} 77

MULT 24, 27, 77, 98, 185

multiprocessor 1, 61, 180, 198, 272

multiprocessor, I/O memories in 61

multiprograunning 87, 284

MULTL . {QH;S} 78

MULTL 78 |

MUNTF 104-105, 107-109, 122-123

Mlx]2 , A A

NAL (logical condition), defined 184

NAN 104-105, 107-109, 122-123, 133-134

NAN, defined 104

NAND . {QH,;s,D} 213

NAND 213

NEG . {QH,S,D} 92

NEG 71, 79, 92, 122, 206, 225

NEQ (arithmetic condition), defined 184



NEWPST 294

NEWUS 298

NEXT 35, 131, 142, 167-168, 188, 200, 219,
240, 242, 255, 267, 343

NEXT() notation 35

nextTask 285

NI 245

" NIL tag, defined 45

NO_FAULT 54, 57

NON (logical condition), defined 184

NONEXISTENT_MEMORY 59

NOP 173-174, 308

NOPs 308

NOR . {QH,s,D} 214

NOR 214

NOT . {QH,S,D} 206

NOT 116, 206, 314, 323-324

not a number, floating point 104, 107

NULL 45

OD, defined- 12

offset, in long operand addressing 29

offset, role in segment bounds checking 40

opcode, format of 12 .

opcode, in FASM 323

OPERAND_NOT_REQUIRED 14, 58

operand descriptor, defined 12

operand descriptor, fields of 22

operand descriptors 22

operand descriptors, unused 14

operands, illegal formats of 36

operands, order of storing into 14, 16

operands, prefetching of 65

OR . {Q,I15D} 210 .

OR 79, 198, 204, 208, 210-212, 314

ORCT . {QH,;S,D} 212

ORCT 211-212 ~

ORCTYV 212

ORG 152-153

ORTC . {QH;SD} 211

ORTC 211-212

ORTCV 211 ,

OUT_OF_BOUNDS 40, 58, 60, 178, 240-
242, 256, 258-261, 263, 265

overflow, floating point 107

overflow, in integer arithmetic 70

overlap 21, 37-38, 46, 91, 119-121, 131, 167~
168, 170, 221, 259

overrun 61

OVF, defined 104

PAGE_FAULT 42, 57, 60, 178

page table entries 41-43, 343

page table entry, format of 42

page table entry, used in address translatio
37 '

paged 37

PAGENO, field in PTE 42 ,

PARAMETER_AREA 52-53, 55, 60

parameter area, for trap ar interropt 52

parenthesized macro argument 340

parenthesized macro call arguments, con-
tinuation 340

parenthesized macro parameter, semantics
340 :

parenthesized macro parameter, syntax 337

parity 225

PC_NEXT_INSTR 8, 52,87, 250, 252-254,
258, 267

PC_NEXT_INSTR, defined 8

»PC, defined 8

PC-relative 197

PDP-10 106, 311, 336

PDP-10 rounding modes 106

performance evaluation instructions 302

PHYSICAL_ADDRESS 5, 181

PHYSICAL_ADDRESS() notation 5

physical address space b

pipeline 67

pipelined 1, 155

pipelining 200

POINTER 29-30

pointer validation 44, 48-49, 53, 59, 178,
238, 343

pointer, byte, format of 228

pointer, format of 44

pointer, meaning of tags 44

pointer, self-relative 176



pointer-and-index 249

pointy brackets, in FASM 315

POP . {UPDN}. {QH,S,D} 241

POP 241

POSITION, field in byte pointer 228

PR bit in JOP format 20

PR bit, in FASM 325

precedences 314

prefetched 65

prefetches 171, 173-174, 180, 272

PREV_FP 244, 247

PREV_FP, within stack frame 244

PRINTYV 329-330, 334

PRINTX 334

PRIORITY 9, 61-62

priority, in PROCESSOR_STATUS 9

priority, role in interrupts 61 ’

PRIVILEGE_VIOLATION 6, 58

privilege 50, 53 '

privileged 5-6, 9, 44, 50, 52, 58-59, 249-250,

- 257, 281-282, 302

PRIVILEGED 9, 44

PRIVILEGED bitin PROCESSOR_STATUS
.

privileged mode 5

privileges 48

PROC_ID. 310

procedures, calling with CALLX 248

PROCESSOR_STATUS 9, 44, 51-53, 58-
59, 81-62, 65, 67, 248, 248-250, 257,
265, 285, 287-288, 293-294

processor priority, in PROCESSOR_STATUS
° ;

processor status 9, 284, 293

processor status register 9

program counter 6-8, 13, 18-20, 24-26, 267,
343

* program counter, defined 8

program counter, dual identity of R3 6

propagating floating point exceptions 108

pseudo-op 314-315, 317, 326-328, 330-33],
333-336, 338

pseudo-ops 313, 316-318, 327-329, 331, 333,
335, 345

pseudoregister 6-7, 25-32; 263, 265, 320

pseudoregister addressing mode 26

pseudoregister mode, restriction on registers

for 6 '
pseudoregisters 26
PTA, field in STE 41 _
PTE 37-39, 42-43, 47, 57, 67
PTE, format of 42
PTE, used in address translation 37
PTEs 61
PUSH . {UPDN}. {QH,;S,D} 240
PUSH 240, 242, 338 .
PUSHADR . {UP,DN} 242
PUSHADR 3,56, 242
QPART 155-156
quicksort 155-157
QUICKSORT 156-157
QUO . {QH,;SD} 79
QUO 179, 83, 87, 185 .
QuO2. {QH,;S,D} 81
QUO? 81, 185, 217 |
QUO2L . {QH,S} 82
QUO2L 82
QUO2LV . {QH;S} 82
QUO2LYV 82 '
QuUO2V . {QH,SD} 81
QUO2V 81 . e
QUOL . {QH,S} 80
QUOL 80,84,88 -
QUOLYV . {QH,S} 80 . .
QUOLY 80
QUOTE 334, 338
QUOTE, in FASM 338
quotient-remainder 87-88, 100-101
QuUOV . {QHsD} 79
QUOV 79
QUUX 215-216
R16 20 .
R36-7,21,24-27, 29, 34, 147-149, 182, 198~
199, 292, 322
R3, dual identity with program counter 6



radians 136-139

RADIX 87, 315, 334

RB, field in STE 41

RCTR 303

READ_PERMIT 43, 61, 280, 313

READ_PERMIT access mode 43

read bracket 41

read bracket, field in STE 41

real-time counters 302

reciprocal 116-117

RECTR 305

recursive traps 60, 343

REG field, in operand descriptor 22

REGISTER_FILE 9, 287-288

REGISTER_SAVE_AREA 52, 263, 265

register file 6, 8-10, 51, 59, 255-256, 265,
287-292 -

register file manipulating instructions 284

register file, in PROCESSOR_STATUS 9

register files 6

register save area, for trap or interrupt 52

register-based-indexed 32
register-based-indexed addressing 32
registers, addressing mode for 25
relative jump 20

relative pointer 176

relative- JOP 313

relative- jump 22

RELOCA, in FASM 327
relocatable assembly 327

REM . {QHSDD} 83.

REM 70, 83, 85-87

REML . {QH,S} 84

REML 84, 86, 88

REMLYV . {QH,S} 84

REMLYV 84

REMV . {QH,S,D} 83

REMY 83

REPEAT 334

RESERVED_ADDRESS_MODE 36, 58, 308

reserved tag, defined 45
RET_ADDR 244-245, 247, 252-253, 256
RET_ADDR, within stack frame 245

RET 157, 243-244, 261

RETFS . {R,A} 265

RETFS 56, 58, 60, 67, 243, 265-266
RETFS, Mark IIA implementation limit 67
RETGATE 243-244, 256-257
RETSR 87, 153, 243-244, 260
RETUS . {R,A} 263

RETUS 56, 243, 263

RFLT2. {HSD} 145

RFLT2 145

RIEN 276

RING_ALARM_TRAP 9, 59
RING_ALARM 9

RING 249

ring alarm 9

ring of execution 8

ring of execution, defined 45

ring tag, defined 45-46

RING, field within gate pointer 249

-rings, role in protection mechanisms 44

rings, use in address translation 37
RIPND 278

RMW 180, 198

RND_MODE 11, 105-108, 11, 121, 126
ROT . {LFRT}. {QH.SD} 222
ROT 222 '

rotate instructions 205

ROTV . {LFRT}. {QH,S,D} 222
ROTYV 222 '

rounding modes 105-106, 119, 126, 344
rounding maodes, floating point 106
rounding, inexact 67

_ routine linkage instructions 243

RPHYS 182
RREG 291
RREGFILE 289
RRFILE 287
RRNDMD 105, 126
RTA, defined 6
RTAI, defined 6
RTB, defined 6
RTBI, defined 6
RTN 338



RUS 14, 295,

R[x] 2

SAIL 313-314

sao 27, 34

save area for traps and interrupts 52

save area, for gate crossing 249

save area, for JSR instruction 258

save area, using stack frame 244

SECOND() notation 35

segment 5, 10, 26,°37-42, 44, 51, 57-58, 67,
141, 176, 179, 238-242, 247, 249, 256,
258-261, 263, 265, 312, 327

segment bounds checking, Mark IIA excep-
tion 67 )

segment size, field in STE 42

segmentation 37, 40-41, 343

SEGMENTITO_FAULT 41, 57, 60

segmentito 37-43, 46-47, 57, 250, 343

segmentito table entries 41

segmentito table éntry, used in address trans-
fation 37

segmentito, defmed 37

segmentitos 37, 40; 42

SEGSIZE 179

self-relative 44

self-relative pointer 176

semxco]on 312, 319, 339- 340

SEXCH . {QH S D} 172

SEXCH 156, 172

SF.CP, withini stack frame 244

SF.EP, within stack frame 244

SF.FLAGS, within stack frame 245

SF.PREV_FP, within stack frame 244

SF.RET_ADDR, within stack frame 245

SHF . {LF,RT}. {QH,;SD} 218

SHF 79, 152-153, 217-218, 220-221

SHFA . {LF,RT}. {QH,SD} 217

SHFA 12, 56, 81, 156, 205, 217, 220

SHFAV . {LF,RT}. {QHSD} 217

SHFAYV 217

SHFV . {LF,RT}. {QH,S,D} 218

SHFV 218

- shift instructions 205

shift, in long operand addressing 29
SHORT_DISP 322-323 '
SHORT_SHIFT 322-323

short operand variables 25

short operand, defined 12

SIGN_EXTEND 3

SIGN_EXTEND() notation 3

SIGN, floating point 102

signed integer arithmetic 70

SIGNED() notation 2

singlequote 341

SIZE, field in STE 42

SIZEREG, definéd 21

SJMP 18, 190, 197, 325

skip format 19 ,

skip instructions 184 :

SKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ,
NONALLANYNAL} . {Q,H,S,D}
185

SKP 19, 26, 87, 95, 126, 184-185, 203-204,
825, 832

SKP, in FASM 325

SLR.{RO.R31}173.

SLR 173, 323 s

SLRADR . { RO .. R3I } 174

SLRADR 174

SNAIL 312

SO, defined 12

soft traps 50-51, 53-54, 343 .

~soft traps, defined 50

SOP format 19

SOP, in FASM 325

sorting 155, 157

SQRT 133

square brackets, in FASM 316

square root 133, 141

SRO, SR1, SR2, defined 21

stable 106, 119

stable rounding mode 106

STACK_OVERFLOW 58, 238-241, 258-
259

STACK_OVERLOW 242

stack frame convention 244



stack frame, pointers for 7

stack limit, defined 238

stack manipulation instructions 238

stack overflow, during trap or interrupt 6C

stack pointer, defined 238

stack pointer/limit, defined 7

Stanford 311, 313, 336

statements, in FASM 313

status register instructions 284

STE 38-39, 41, 43, 46-47, 57, 61, 250

STE, format of 41

STE, used in address translation 37

STEs 37, 61

sticky, defined 70

STRCMP . {RTA,RTB} 203

STRCMP 203

structures 49

SUB . {QH,S,D} 75

SUB 16, 56, 71, 75-76, 90, 148, 150, 156,
208, 324-325

SUBC . {QH,S,D} 76

SUBC 71, 76

SUBCV . {QH,S,D} 76

SUBCYV 171, 76 ,

SUBYV . {QHS,D} 75

SUBYV 186, 71, 75, 227

SWITCH 58, 284-285

SwpDC . {V,P}. {UUK} 282

SWPDC 282

SWPDM 283

SWPIC . {V,P} 281

SWPIC 281

SWPIM 283

SWs 246

symbol, attributes 316

symbol, data value 316

symbol, definition of 319

symbol, external value 316

symbol, half-killed 316, 319

symbol, instruction value 316

symbuol, macru tiame 316

symbol, redefinition of 319

symbol, register 316

T field, in TOP format 15

TABLE-4 187

TAG field of pointer, meaning of 44

TEMPI1 173-174

TEMP2 173

term, in FASM 314

TERMIN 334, 336-338, 342

TERMINs 338

test-and-set 180

text constant 317

three address format 15

three-operand 6, 324

TMODE, field in trap parameter descriptor
singleword 55

TOP format 15

TOP, in FASM 324

TRACE_ENABLE 265

TRACE_ENB 9-10, 65-68

. TRACE_ENB bitin PROCESSOR_STATU¢

9

TRACE_PEND 9-10, 58-59, 65-66, 265

TRACE_PEND bitin PROCESSOR_STATU:
10

TRACE_PENDING 87

TRACE_TRAP 58, 65

trace pending, trap for illegal case 58

trace traps, role in instruction execution 65

Lracing, bits in PROCESSOR_STATUS 9

TRANS . {QH38D}. {QHS3 U} g1

TRANS 91, 166, 200

translation of I/O memory to main memory
62 ‘

TRANSP . {HSD} 147

TRANSP 146-148

transpose 146-148, 153

trap descriptor block pointer 50

trap paramneter descriptor singleword, defined
55

trap vector format 51

traps, instructions for 243

traps, role in instruction execution 65

traps, save area for 52

TRP_PARM_DESC_SW 51, 55, 262, 264



TRP_PARM_DESC_SW, defined 55

TRPEXE . {0. 63 } 264

TRPEXE 47, 50, 55-56, b9, 87, 243, 264-
265, 343

TRPEXE trap mechanism 55

TRPSLF . {0. 63 } 262

TRPSLF 50, 52-53, 55-56, 59, 243, 262-264,

343 |
TRPSLF trap mechanism 55
TSegmentito 39
‘two address format 14
two’s complement, used in integer arithmetic
70 ‘
two'sComplement 104-
two-dimensional 146-147, 152
TXT 329
UCMPSF . {GTR,EQL,GEQ,LSS,NEQ,
LEQ} . {QH.$,D} 200
UCMPSF 200
UDIV . {QH,S,D} 100
UDIV 100
UDIVL . {QH,S} 101
UDIVL 101
UDIVLV . {QH,S} 101
UDIVLYV 101
UDIVV . {QH,S,.D} 100
UDIVYV 100 C
UMULT . {QH,5,D} 98
UMULT 98
UMULTL . {QH,S} 99
UMULTL 99
un-bit-reverse 153
unbalanced 340
UNCALL 243-244, 246, 256-257
underflow, floating point 107
UNF 104-105, 107-109
UNPF, defined 104
UNMAPPED_MODE 9-10

UNMAPPED_MODE,bitin PROCESSOR_

STATUS 10
unprivileged 5-6, 9, 53
unsigned integer arithmetic 97
UNSIGNED() notation 2

UNSTORED_RESULT 53

unused operand descriptors 14

unwound 87

upper-case 315

upward-growing 7, 26, 52, 238-242

upward-growing stack 238

USED, field in PTE 42

USER_STATUS 10, 14, 51-53, 59, 70, 105,
107, 119, 121, 126, 133-134, 248-250,
257, 263, 265, 285, 294-300

user mode 5

user status register 10

user status register, role in integer excep-
tions 70 .

user tag, defined 45 |

USEXCH . {QH,S,D} 172

USEXCH 172

V"S+RX". {HS,D} 163

V's+X". {H,SD} 159

V"s+XY". {SR,OP1}. {H;SD} 161

v"$-X".{H,S,D} 159

V"s-XY". {SR,OP1}. {H;SD} 162

v'sX". {H,S,D} 159.

V"sX+SY". {SR,OP1}. {H;S,D} 161

V"sX+Y". {SR,OP1}. {H;SD} 161

V"SX-SY". {SR,OP1}. {H;S,D} 161

V"sX-Y". {SR,OP1}. {H;SD} 161

V"sy-X". {SR,0P1}. {H,S,D} 161

V"X+SY". {SR,OP1}. {HSD} 161

V'X+Y". {SR,OP1}. {H,;S,D} 160

V'X+YZ". {SR,OP1}. {H,S,D} 164

V"X-Y". {SR,OP1}. {HS,D} 160

V"XY". {SR,OP1}. {HS,D} 160

V"'Y-X". {SR,OP1}. {HSD} 160

V2DIS . {SR,OP1}. {H,S,D} 141

V2DIS 141 .

v2DsSQ. . {SR,OP1}. {HS D} 140

V2DSQ 140

V3DIS . {SR,OP1}. {H,;S,D} 141

V3IDIS 141

V3DSQ . {SR,OP1}. {HSD} 140

V3DSQ 140

VABS . {HsS,D} 93



VABS 93

VALID, field in PTE 42

* VALID, field in STE 41

validation level of pointer 48

validation level, in addressing 46

validation of addressing 46

validation of pointers 48

VALIDP 48-49, 178

VALIDP, use of 48

value-returning 314, 318, 345

VAND . {SR,OP1}. {H;S,D} 207

- VAND 207

VANDCT . {S8R,0P1} . {H,8,D} 209

VANDCT 209

VANDTC . {SR,OP1} . {HS,D} 208

VANDTGC 208

variable=base 28

variable-base addressing mode 28

variables, combines long and short operand
29

variables, long operand 27

variables, short operand 25

VBITCNT . {HS,D} 225

VBITCNT 225

VC"S+RX". {HS} 163

vC'XY". {SR,0P1} . {H,S} 160

VCMAG . {HS} 128

VCMAG 128

VDOT . {HS,D} 143

VDOT 143

VDSHF . {LF,RT} 221

VDSHF 219-221

vector instructions 21

vector, defined 21

vector, for traps and interrupts 50

vector, size register for 21

vectors, using constants as 35

VEQV . {SR,0P1}. {HS D} 216

VEQV 216 ‘

VEXCH . {QH;SD} 171

VEXCH 171

VF'S+RX". {H;S,D} 163

VF"s+X". {HSD} 159

VF"S+XY". {SR,OP1}. {H,;S,D} 161
VF's-X".{HS,D} 159
VF"s-XY". {SR,OP1}. {HSD} 162
VF'sX" . {HS,D} 159

VF'SX+SY". {SR,OP1}. {H;S,D} 161
VF"'$X+Y". {SR,OP1}. {HS,D} I61
VF"SX-SY". {SR,OP1}. {HS,D} 161
VF"SX-Y". {SR,OP1}. {HSD} 161
VEF"SY-X". {SR,OP1}. {H,;S,D} 161
VF'X+SY". {SR,OP1}. {H,S,D} 161
VF'X+Y". {SR,OP1}. {H,S,D} 160
VF"X+YZ". {SR,OP1}. {HSD} 164
VF"X-Y". {SR,OP1}. {HSD} 160
VF'XY". {SR,OP1}. {I1,5,D} 160
VF'Y-X". {SR,OP1}. {H,SD} 160
VF2DIS . {SR,OP1}. {H,SD} 141
VF2DIS 67, 141

VF2DSQ . {SR,OP1}. {H,S,D} 140
VF2DSQ 140, 142

VF3DIS . {SR,OP1}. {H,;S,D} 141
VF3DIS 67, 141 ‘

VF3DSQ . {SR,OP1}. {H,S,D} 140
VF3DSQ 140

VFABS. {HsSD} 123

VFABS 123

VFATAN 139

VFATANV . {SR,OP1}. {H,;,D} 139
VFATANYV 139

VFC"S1RX". {H,8]) 163

VFC"XY". {SR,0P1} . {H,S} 160
VFCMAG . {H;S} 128

VFCMAG 67, 128

VFCOS . {HS$,D} 137

VFCOS 137

VFDIV . {SR,OP1}. {HSD} 115
VFDIV 115

VFDOT . {HS D} 143

VFDOT 143, 149

VFEXP . {HSD} 135

VFEXP 135

VFIX . {HsS,D}. {HS,N} 119

VFIX 119

VFLOAT . {HSD}. {QH,S,D} 120



VFLOAT 120
VFLOG . {H;S,D} 134

VFLOG 134 ,
VFMAX . {SR,OP1}. {H,;S,D} 125
VFMAX 125

VFMIN . {SR,OP1}. {H;S,D} 124
VFMIN 124 '

VFNEG . {H;S,D} 122

VFNEG 122

VFSIN . {H,5,D} 136

VFSIN 136 '

VFSQRT . {HS,D} 133

VFSQRT 67, 133

VFTRANS . {H;S,D} .{HsS,D} 121
VFTRANS 121

VINI. {Q,H,;S,D} 169

VINI 169

VIOR . {B,Q,H,8} 270

VIOR 270

VIOW . {B,QH,S} 271

VIOW 271

virtual address space 5

virtual address translation 37
virtual machine mode 9
virtual-to-physical 10, 39, 61, 280, 284
VMAX . {SR,0P1}. {HSD} 9
VMAX 95

VMIN . {SR,OP1}. {H,;S,D} 94
VMIN 94

VMM_TRAP 59

VMM 9 -
VNAND . {SR,OP1}. {HS,D} 213
VNAND 213

VNEG . {H,S,D} 92

VNEG 92

VNOR. {SR,OP1} . {HS.D} 214
VNOR 214

VNOT . {H,8,D} 206

VNOT 206

VOR . {SR,OP1}. {H;S,D} 210
VOR 210 ‘ (
VORCT . {SR,OP1}. {H;S,D} 212
VORCT 212

VORTC . {SR,0P1} .,{H,S,D}__zll
VORTC 211 ' a
VPIOR . {B,QH,S} 273

VPIOR 273

VPIOW . {B,QH,S} 273,

VPIOW 273

VREV . {H,5,D} 170

VREV 170

VS 21, 159, 217-218, 221

VSHF . {LF,RT}. {HSD} 218 .
VSHF 218

VSHFA . {LFRT}. {HS D} 217
VSHFA 217 , o
VSP 26

VSS 163

VTRANS . {QH,S,D}. {QH.S D} 91
VTRANS 35, 91, 170, 221

VXOR . {SR,OP1}. {H;S D} 215
VXOR 215

WAIT 275, 324

WAITS 311 -

WAS]JMP 286

WB, field in STE 41

WCTR 304

WECTR 306

WFSJMP 294

WIEN 277

WIPND 59, 279

WORD 208, 211, 235

WPHYS 182

WREG 292

WREGFILE 290

WRFILE 288

WRITE_PERMIT 43, 61, 2’74 280, 313
WRITE_PERMIT access made 43
write bracket 41

write bracket, in STE 41

write--only 43

WRNDMD 105, 119, 126
wrong-branch 67

WTBP 301 ‘

WTDBP 243, 301

WUS JMP 298



X field, in operand descriptor 22
XLIST 3383, 335 -

XMLIST 333, 335

XOP format 14

XOP, in FASM 324

XOR . {QH,S,D} 215

XOR 79, 215, 225, 314
XRTN 338

XSPACE 313, 327, 335
XSPACE, in FASM 327
ZD1V 297

ZERO_EXTEND 2, 25
ZERO_EXTEND{) notation 2
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1 A new approach to emulation

Given the task of emulating an existing machine such as the AN/UYK-7 on a microprogrammable
processor such as the S-1 Mark IIA, the conventional approach is to write microcode to perform
each instruction in the UYK-7 repertoire. Though possible, this approach presents significant
drawbacks: ' ‘ :

® The underlying microarchitecture used to implement the S-1 native mode instruction set
may change from one implementation to the next, even though the native mode instruction
set remains exactly the same. Such a change would render a microcoded UYK-7 emulation
absolete;

® Writing and debugging microcode is widely appreciated to be more difficult,
time-consuming and unreliable than programming in a high-level language or assembly
language, and the result is harder to read, understand or modify.

To avoid these drawbacks, the S-1 Mark IIA emulation of the UYK-7 instruction set uses S-1
native mode binary machine code instead of microcode. A “post-compiler”—a novel type of software
construct written in.a high level language with some assembly language subroutines—transforms
UYK-7 binary machine code into S-1 binary machine code, typically while also expressing a loader
function. This transubstantiated UYK-7 code then executes in a special runtime environment
which provides a high-level emulation of UYK-7 input/output and protection hardware.

Though the post-compiler typically emits several S-1 instructions while transubstantiating each
UYK-7 instruction, the resulting emulation will execute a factor of two to four faster than the
standard UYK-7 implementation, because it does make optimum use of the pipelined hardware in
the S-1 processor. -

Upon first encountering the post-compiler concept, one might protest that a machine-coded “ob ject”
emulation would necessarily execute more slowly than its microcoded counterpart, and ‘probably
much more so. In the case of a pipelined processor such as the S-1 system, this belief is largely
fallacious. The relevant measure -of the throughput of an emulator is the number of cycles needed
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for it to execute a given block of emulated code, not the number of instructions to be fetched in the
process.

An S-1 processor such as the Mark IIA must execute various sequences of operations for some
number of microcycles in order to emulate scalar instructions such as those of the UYK-7; S-1
native mode almost always specifies such sequences as efficiently as possible. Furthermore, as long
as an S-1 processor’s “parsing” of the emulation specification generated by the post-compiler does
not require more than this former number of cycles, there will be no penalty for using S-1 native
mode as the input language, as the parsing and execution processes proceed simultaneously in
different portions of the processor. S$-1 processors are so designed that this is generally true;
operand calculation and operation execution are more cycle-intensive than are the
instruction-fetching and ~decoding processes.

Of course, it is not always true that gains cannot be made through use of microcode. For slightly
enhanced post-compiler performance, one may, for instance, ’‘fine-tune’ by very selectively
microcoding certain frequently-used processes corresponding to executing particular UYK-?
instructions or calculating certain UYK-7 operands. The frequent use of an extensive sequence of
S~1 native mode instructions might also tempt one to substitute for convenience and enhanced
readability of the resulting code a single new S-1 instruction, whose microcoded expression might
execute slightly faster than the instruction sequence it replaced.

The magnitude of the principal drawback of the post-compiler approach to the emulation problem
depends on how similar the emulated and emulating architectures are. The biggest single
complication occurs if the machine to be emulated permits code to modify itself, as the UYK-7
indeed does. In such cases, the emulation process must be able to detect and 'repair’ the
transubstantiated UYK-7 code as each code-modifying instruction is executed; the S-1 Mark IIA
post—compiler for the UYK-7 therefore does so.

Other problems arise from the use of one’s complement arithmetic in the UYK-7, rather than the
two’s complement arithmetic used in the S-1, in executing a UYK-7 instruction which causes the
next instruction to repeat, and from a UYK-7 instruction which executes a single instruction located
at a remote address. The S-1 Mark IIA post-compiling emulator package for the UYK-7
successfully addresses each of these complications.

/
\‘;
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2.1 Details of implementation

The Mark IIA post-compiler for the UYK-7 is written in Pascal, supplemented with small S-1
assembly language routines for bit manipulation and for running the S-1 code generated by the
post-compiler. The basic functions of its major modules are discussed below. ’

A series of tables is used to correlate UYK-7 code with S-1 code. One table contains the starting
address of the S-1 code corresponding to every UYK-7 half-word. If a UYK-7 half-word does not
constitute an instruction because the preceding instruction occupies a full word, then a meaningless
starting address is stored. Another table contains the length of the S-1 code sequence corresponding
to each UYK-7 half-word. Again, if a UYK-7 half-word does not constitute an instruction, then a
meaningless length is stored.

To satisfactorily address: the problem of self-modifying code, the post-compiler stores in memory a
“marked” copy of the original UYK-7 program, where each 32 bit UYK-7 word appears in the 32
low order bits of a 36 bit S-1 singleword whose high order (“pure”) bit is set. When the UYK-7
program tries to modify itself, it will store a 32 bit value which is zero-extended to 36 bits, thus
clearing the “pure” bit. The next time that instruction is to be executed, the sequence of S-1 code
which emulates that instruction discovers the pure bit is not set, and calls the post-compiler to
dynamically recompile the instruction and replace that code sequence with an updated one befote
the emulation proceeds.

If, when the post-compiler is called to recompile a UYK-7 instruction which has been modified, the
new S-1 code sequence does not fit in the area occupied by the outmoded one, a patch is generated.
This is done by placing the new code sequence in a special patch area of the S-1 processor’s
memory, followed by a jump back to the start of the S-1 code sequence representing the next
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UYK-7 instruction. A jump to the start of the patch is inserted in place of the outmoded code
sequence, and the two tables mentioned above modified to contain the new starting address and
length of the S-1 code sequence. This approach vigorously exploits the fact that even minimal S-1
memory units have several dozen times the storage capacity of the maximum memory complement of
a UYK-T. '

The UYK-7 has three register sets of eight registers each: accumulators, index registers, and base
registers. UYK-7 index register zero always contains zero. Because the UYK-7 uses a 16 bit one’s
compiemént end-around carry adder for indexing, the S-1 indexing modes cannot be used to do
UYK-7 indexing. In the UYK-7 architecture, the high order half of a doubleword is contained in
the higher numbered word. (e.g., if accumulators 1 and 2 form a doubleword, accumulator 2 has the
high order half) This is backwards relative to the S-1 convention, so to make doubleword
manipulation easier, the UYK-7 accumulators are stored in descending order in S-1 processors.
Since the top bits of the UYK-7 base registers are very seldom used, only the bottom 16 bits of them
are stored in S-1 registers, with the top bits being stored in main-memory. Rased on all these
constraints, the 32 $-1 registers are allocated as follows:

‘S-1 Register Purpose ' :

0..2 B UYK-T7 registers S5 through S7
3 UYK-7 PC '
4 S-1 RTA
5 S-1 RTAl

- 6 S-1RTB
7 .$-1 RTBI
8 Temporary
9..16 UYK-7 registers A7 through AQ
17 Temparary
18..24 LIYK -7 registers B1 through B7
25..29 UYK-7 registers SO through S4
30 S-1 stack pointer
31 S-1 stack limit

The post-compiler does not presently attempt to compile all UYK-7 instructions into S-1 native
mode sequences. In general, it currently handles only CPU emulation, leaving other areas of the
architecture (e.g., interrupt handling. input/output, and protertion) for higher level emulation; to be
implemented as determined by Navy interest in such. This is consonant with Navy policy regarding
the NECS version of the UYK-7, which current specifications state is to emulate only. the UYK-7
CPU and is to have a different I/O architecture.
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2.2 Problems posed by the UYK-7 architecture

Unfortunately, the UYK-7 architecture is not a simple one. Several features of it require special
attention to ensure the emulation preserves the meaning of the original UYK-7 program.

As mentioned earlier, perhaps the biggest problem faced by the post-compiler is that of
self-modifying UYK~7 code. Should the UYK-7 program try to modify itself once it has been
compiled into an S-1 program, it will modify the UYK-7 copy and not the.S-1 copy. The emulation
must propagate this change into the S-1 copy. The approach that has been implemented to handle
this is the following. As stated previously, UYK-7 words are stored right justified and zero
extended in S-1 memory. When a UYK-7 instruction is compiled into S-1 code, the high order bit
of the S-1 memory word holding that UYK-7 instruction is turned on. The S-1 code generated
tests this bit (by-trapping if the word is negative) before actually executing the code for the UYK-7
instruction. If the bit is no longer set, the trap reinvokes the post-compiler to recompile the code that
has been modified. '

Two additional problems are posed by the UYK-7 repeat instruction (RP), which executes the
instruction following it a certain number of times (specified by index register 7) or until a certain
-condition is met (specified by the “a” field in the instruction word). Some instructions are specified
in the architecture as not being repeatable. The first problem is that it is not clearly specified
anywhere what happens when a repeat instruction attempts to repeat an “unrepeatable” instruction.
The AN[UYK-7 Technical Description states on page 381, “If an attempt is made to repeat such an
instruction [one which cannot be repeated), the repeat mode may clear with the repeated instruction
executed once, or the repeat mode may go to completion with unreliable results. from the repeated
instruction.” This is too vague for the post-compiler to implemerit. Instead, whenever the
post~compiler finds a repeat instruction followed by an instruction which should not be repeated, the
post-compiler prints a warning and generates code as if the repeat instruction were not present.

The second problem with the. repeat instruction is that it is possible to jump to or execute remotely
the instruction immediately following a repeat instruction. This means that the code generated for a
repeat instruction must consist of the code to repeat the following instruction (in case the flow of
control proceeds normally through the code), followed by a jump instruction, followed by the code to
execute the following instruction by itself (in case a jump is made to it or it is executed remotely). In
the normal case, a jump will be made around this second sequence of code.

Yet another problem is posed by the execute remote instructions (“XR” and “XRL”). These are
handled by use of the two tables mentioned earlier. Once the execute remote instruction has
determined the address of the instruction it is to execute, it looks up the address in S~1 memory of
the start of the S-1 code to execute the instruction using the first table and the length of the S-1
code using the second table. It then copies the S-1 code into a temporary area, places a jump back
to the start of the next instruction to be executed after the copied code, and jumps to the copied
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code. This works well even when the ob ject of an execute instruction is another execute instruction,
but not, unfortunately, when the object is a repeat instruction. When the object is a repeat
instruction, the UYK-7 repeats the instruction following the XR or XRL, not the instruction
following the RP. In this case the UYK-7 post-compiler must be reinvoked at run time to compile
code for the repeat instruction. '

Finally, special sequences of instrui:_tions are generated to perform one’s complement end-around
carry arithmetic on the two's complement architecture of the S-1.

2.3 Preparing input for the post-compiler

The post-compiler operates on files with the extension “BOS8”. These files contain UYK-7 core
images in octal represented as strings of ASCII digits. ASCII files are used because the current S-1
implementation of Pascal cannot read binary files. These files have one octal number per line. Any
line may have a comment consisting of non-numeric ASCII characters before or after the number.
The files consist of eight numbers followed by up to 8 blocks of data. The first eight numbers
specify into which UYK-7 S register to load the starting address of the corresponding block. If not
all eight blocks are present, the corresponding S register numbers at the beginning are ignored. The
format of a block is: :

Starting address (1 word)

N-1, where N is the number of data words in the block (1 word)
Data (N words)

Checksum (1 word)

These “BO8” files can be generated in one of two ways. On the SAIL computer system at Stanford
University, programs called TD.FAI[UYK,S1] and TD8.FAI[TUYK,S1] read 556 and 800 bpi, 7
track UYK-7 boot tapes respectively, creating a binary file called “UYK.BOO". (“BOO?” is the
suffix for standard UYK-7 boot files.) These files can be converted to “BO8” files by a program
called BOOBOS.PAS[UYK,S1], which leaves eight commented but otherwise blank lines at the
beginning of each file on which the S register numbers should be inserted.

The second way to create “BO8” files is to use the macro facility of the FASM assembler -to
translate UYK-7 assembly language into the corresponding octal numbers represented as strings of
ASCII digits. The file UYKMACSI[UYK,SI] provides suitable macros, documentation, and
examples.



3 Improving performance
If desired, the performance of the emulation could be improved further without abandoning the
basic approach or the work done so far.

*

8.1 Improvements to the post-compiler
There are several areas in which the post-compiler itself could be improved.

If the post-compiler were to optimize out the -addition of the base registers at post-compile time
assuming they stayed constant, the speed of the code generatéd would increase because fewer S-1
operations would be needed for each UYK-7 instruction.

If self-modification occurs often in the program being compiled and each new code sequence
requires more space than the previous sequence, then much S-1 memory will be wasted because the
post-compiler places the new sequence in a patch area. It would be useful to have some way of
reclaxming the S-1 memory used for the  sequences that have been replaced

Since S-1 Pascal does not currently pack records, a full word is necessary for every piece of data
mentioned above. This means that there is an overhead of four S-1 words per UYK-7 word, not
counting the S-1 code generated. It is hoped that in the future, this can be improved through the
use of packing.

Finally, additional research can be done to make the code generated for fhe'repeat instruction fail in
the same way that the repeat instruction fails on the real UYK-7 given various illegal instructions. -
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3.2 Additions to the Mark IIA instruction set

This is a proposed list of modifications to the S-1 Mark IIA architecture which would be especially
useful for the post-compiler. In almost all cases, these changes would increase the code density; in
some cases, the speed of the code generated would also increase because the microcode
implementation of some of the new instructions would require fewer cycles than the macrocode that
the post-compiler would have generated.

Add the fulluwing bnistructions.

{UYKADD, UYKSUB, UYKSUBV} . {S, D}
Class: TOP L ' ' One's cumplement arithunetic
Side Effects: CARRY, INT_OVFL ‘ '

Perform one’s complement 32 or 64 bit end-around borrow arithmetic (addition, subtraction, and
TOP reverse form subtraction. This is the type of arithmetic that the UYK-7 uses. These
instructions would be needed in both single and double word precisions. The single word precision
version would operate on 32 bit quantities stored right justified in S-1 singlewords. The high order
four bits of the inputs need not be zero but the high order four bits of the result will be zero.
CARRY and INT_OVFL would be computed assuming 32 bit precision. The doubleword precision
version would operate on 64 bit quantities stored right justified in S-1 doublewords. The high order
eight bits of the first word in the double word pair comprising each input need not be zero but the
high order eight bits of the first word .of the doubleword pair comprising the result will be zero.
CARRY and INT_OVFL are computed assuming 64 bit precision.

UYKPACK, UYKPACKV
Class: XOP . , . Pack a UYK-7 word

Fdrm‘ into the double word OP1 a quantityAconsisting of eight high order zero bits, followed by the
low order 32 bits from {OP2, next{OP2)}, followed by the low order 32 bits from {next(OP2), OPL}.
Note that the high order four bits of OP2 and next(OP2) need not be zero. Note that in this case
the V" does not indicate a TOP reverse form and is not quite consistent, but it is not clear what
else to call this instruction. These instructions are useful to convert UYK-7 doubleword data into a
form that the S-1 can handle better. UYKPACKY is provided because the two singlewords may be
stored in either order. |
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UYKUNPACK, UYKUNPACKV
Class: XOP . : Unpack UYK-7 words

Place bits 8-39 of OP2 in bits 4-31 of {OP1, next(OP1)} and bits 40-71 of OP2 in bits 4~31 of
{next{OP1), OP1}. Note that bits 0-7 of OP2 need not be zero but bits 0-3 of OP1 and next(OP1)
will be zero. Once again, in this case the “V” does not indicate a TOP reverse form. These
instructions are useful as the inverse of the UYKPACK and UYKPACKY instructions.

{UYKSHF, UYKSHFV} . {LF, RT} . {S, D} . '
Class: TOP ' ~ Logically shift a UYK-7 word

Read the {32,64} low order bits from the {singleword, doubleword} S1, logically shift them {left,
right} by the amount specified by singleword S2, and deposit the result in the low order bits of
DEST. UYKSHFYV is the reverse form. Note that bits {0—3 0—7} need not be zero in.S1 but will be
zero in DEST. : v -

{UYKSHFA UYKSHFAV . {S D} {LF RT} : R
Class: TOP = SR Anthmetically shift aUYK 7 word

Read the {32 64} low order bits of the {smgleword doubleword} St, a.rlthmetlcally shift them {left,
right} by the amount specified by the singleword S2, and deposit the result in the low order bits of
DEST. UYKSHFAY is the reverse form. Note that bits {0-3, 0-7} need not be zero in S1 but will
be zero in DEST.

{UYKROT, UYKROTV} . {S, D} . {LF, RT} . _
Class: TOP . ’ . Rotate a UYK-7 word

Read the {32, 64} low order bits from the {singleword, doubleword} S1, rotate them {left, right} by
the amount specified by the singleword S2, and deposit the result in the low order bits of DEST.
UYKROTY is the reverse form. Note that bits {0-3, 0-7} need not be zero in S1 but will be zero in
DEST. :

UYKINDEX . . : ‘
Class: TOP ‘Perform UYK-7 indexing arithmetic

Store in DEST the sum of S1 and S2 using 16 bit one’s complement end-around carry addition. No
overflow detection is done. Note that bits 0—19 of Sl and S2 need not be zero but bits 0-19 of
DEST will be zero. .
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UYKBASE ‘
Class: TOP Perform UYK-7 base register arithmetic

Store in DEST the sum of S1 and S2 using 18 bit addition without carry or overflow. Note that
bits 0-17 of S1 and S2 need not be zero but bits 0-17 of DEST will be zero. This instruction is
roughly equivalent to

ADD.H resul t+2, opl, op2 N
MOV.H.H result,#@ - 3 ¢lear the top half

UYKMOV
Class: - XOP ‘ ‘ 32 Bit Move

Store in OPI1 bits 4-31 from OP2, right justified and zero extended. This operation can be
accomplished with the AND instruction but the UYKMOY instruction can be faster--since it is not
-necessary to fetch the extended word consisting of - the ‘mask--and allows: greater choice over the
destination than AND (a TOP format instruction) would. Notice that “UYKMOV A,A” clears just
bits 0-8 of A. This is useful when a UYK-7 half-word or quarter-word is stored with a DIBYT,
but it is necessary to clear the sign bit modification ﬂag
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4 Status of the emulation project

The post-compiier has been written and is in the final stages of testing.

* Runtime support for the post-compiler, which will provide interrupt handling, input/output, and
protection, will be written later, '
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