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Topics in theoretical surface science
I. Structures of clean and adsorbate covered surfaces _
I1. Epitaxy of metals on metal surfaces

Todd Joseph Raeker

In charge of major work: Andrew E. DePristo
From the Department of Chemistry
Iowa State University

The energetics and structures of clean and adsorbate covered surfaces are
investigated in this dissertation. First, the formalism, within the Corrected Effective
Medium (CEM) method, for calculating the surface energy of a clean surface is
derived. The surface energies for many different metals and their low index surfaces
are presented. The minimization of the surface energy is then used to predict the
multilayer relaxation of the Al(111), (100), (110), Ni(100), (110) and Fe(100) surfaces.
The driving forces behind surface relaxation is then examined within the CEM
method.

Extensions of the surface CEM formalism to calculate the binding energies of
ordered adsorbates on metals surfaces are also derived. The minimization of the
binding energy allowed determination of the binding heights, sites and the extent of

“induced multilayer relaxation for H and N atoms on the Fe(110), (100) and W(110)

surfaces.



The last topic deals with the dynamics of the epitaxial growth of metals on metal
surfaces. The CEM method was first modified by making approximations to enable
faster evaluations of the potential and its corresponding forces for mole‘c;lar dynamics

'simulations. The goal of these simulations was to identify the important steps in the
formation of equilibrium epitaxial structures. Molecular dynamics simulation results

are presented for the Rh on Ag(100) and Au on Cu(100) systems. Static calculations

for Au on Ag(110) system are also presented.
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FORMAT OF THE DISSERTATION

Three areas in the theoretical chemistry of metal surfaces are investigated in this
dissertation. First, extensions of the general N-body corrected effective medium
(CEM-N) theory are derived for the special high symmetry cases of bulk metal (CEM-
B) and clean surfaces (CEM-S). The structure and energetics of various clean metal
surfaces are then predicted using the CEM-S formalism and discussed. Second, a
further extension from the clean surface CEM-S formalism is derived for atomic
chemisorption on metal surfaces (CEM-A). And third, a modified CEM theory
(MD/MC-CEM) is used to examine the dynamics of the initial stages of epitaxial
deposition of metals on metal surfaces. The ultimate goal of the molecular dynamics
calculations was the determination of the mechanisms behind the formation of
equilibrium structures.

This dissertation follows the alternative style format. The work on bulk metals
and their clean surfaces is contained in Paper I, entitled "Corrected effective-medium
method. IV. Bulk cohesive and surface energies of second- and third-row metals and
multilayer relaxation of Al, Fe, and Ni." The work on chemisorption is contained in
Paper 11, entitled "Corrected ¢ffective medium method calculations of the Chemisorption
of H and N on Fe(100), (110), and W(110)." The work on the deposition of metals on
metal surfaces is contained in Papers III and IV, which are entitled "Molecular
dynamics simulations of metal adsorbates on metal surfaces: Rh on Ag(100)." and
"Theoretical studies of dynamical phenomena in epitaxial surface systems.",
respectively.

Paper I has been published in Physical Review B; Paper II has been published in

_Surface Science; Paper III has been published in the Journal of Vacuum_Science
Technclogy A, and lastly; Paper IV has been submitted to Surface Science.



GENERAL INTRODUCTION

Many significant technological advances in surface science have been made over

the past decade. These have provided a wealth of information concerning the atomic
“und electronic structure of surfaces. It is the atomic structures of metal surfaces that
ere of particular interest in this dissertation.. Many metals exhibit surface structures
different from that expected from a simple termination of the bulk lattice. This is
important since the catalytic activity (or reactivity) of many metals depends
significantly on the structure of their surfaces.

Accurate theoretical descriptions of the factors influencing the structures and
reactivities of metal surfaces is an essential ingredient in understanding surface
properties of technological importance. One important factor to understand is the
energetic driving forces involved in the structural changes that surfaces can undergo.
Many theoretical tools used to examine surfaces have already been developed and are
well established. The further development and utilization of one such tool is the major
purpose of the present dissertation.

The use of Quantum Theory in describing bonds between atoms has evolved to the
point where accurate calcuiations on small molecules is now routine. It is however a
very difficult task to calculate accurately the energetics and forces in multi-atom metal
systems using quantum mechanics. The delocalized nature of the electrons in metals
makes the task very laborious. This, coupled with the many electrons present in
heavy elements, makes the effort impractical without the aid of approximations and
extremely fast computers. The treatment of the extremely large number of electrons
present in extended systems by a many electron wave function is the most serious of
the problems that must be dealt with. Some appropriate approximations to reduce the
complexity of a calculation must be developed as alternatives.

One approach that has proven quite useful is to reformulate the quantum
mechanical wavefunction problem into an electron density-functional method. This
then attempts to treat the total electron density as a variable rather than treating

—each electron separately. Density-Functional Theory became a complete and rigorous
theory in the early 1960s with the famous works of Kohn and Sham [1]. Since then,



Density-Functional '"heory has become quite useful and applicable to many systems
[2]. One must however still expend a considerable amount of effort to treat heavy
metal atoms as discussed by Salahub and Zerner [3].

There has emerged over the past few years a set of very promising alternatives to
the costly first principles methods. These enable workers to quickly evaluate the
interaction energy of a many atom system. These methods are categorized as
Effective-Medium type theories which all make use of the important work of Puska et.
al [4]).. They calculated the high symmetry Kohn-Sham self-consistent LD solution [1]
of an atom interacting with jellium!. The central idea behind any effective-medium
type method is to replace the many body interactions among atoms by those of the

above atom-jellium interactions. This is qualitatively shown in the schematic below.

Fig. 1. Schematic drawing of the atomn-atom and atom-jellium interactions

! Jellium is a three dimensional infinite homogeneous electron gas with a uniform positive
density providing charge neutrality. Upon embedding an atom in jellium, the electron density
becomes inhomogeneous.



In mathematical terms, the interaction energy of the system on the left is
calculated by using as a reference state the atom-in-jellium system. This is in contrast
to the usual reference of the vacuum. I introduce a general equation that employs this
reference state from which all effective medium type methods can be derived. First
label the atoms by {A, i=1,...N} where the A, can be any tvpe of atom. The interaction
energy in the N-atom system, denoted AE({A;}), is written as

N
AE({A)})) = ¥ AE[{A;n) + corrections (1)
i1

The AE{A;n;) term is the embedding energy of atom A; in jellium with an electron
density n;,, The corrections represent the non-self-consistent energy that corrects for
the use of the reference state of the atom-jellium system to that of the vacuum
reference state. This is what characterizes the effective-medium type theories. Note

that Eq. (1) is exact only if the above correction is self-consistently evaluated.

It is the particular choice of the jellium electron densities and the form of the
corrections that distinguishes the various effective-medium type theories based on Eq.
(1). In addition, the empirical theories use different embedding energy functions
altogether. Regardless of the particular method, the energy terms have a few general

features:

1. The embedding energies are functions of only the identity of the atom
and the jellium electron density, and can be calculated once and for all
and tabulated;

2. The corrections incorporate the differences between the more localized
electron density and nuclear charges in the real N-atom system
compared to the many atom-jellium systems.

Note that a self-consistent solution to Eq. (1) would require more effort than a self-
.consistent solution of the original N-atom system. Because of this fact, I reemphasize
that the effective-medium type methods are not self-consistent (although a variational

approach can not be ruled out). One then hopes that the corrections are relatively



small. However, I stress that the non-empirical theories based on Eq. (1) use real
atoms and their electron densities. The jellium interaction is really only used to
translate an electron density environment into an energy via the embedding energy
function.

" In what follows I derive the N-body CEM energy relations from which further
develo-ments and extensions are introduced and discussed in Papers I through IV.
My major professor and I have recently published a review paper [5] providing general
derivations of all current effective-medium type theories. The reader is encouréged to
use this as a resource to gain a general understanding of each method. Some of the
calculations that are presented in Papers I and II are compared to some results of the
other methods. An understanding of all these methods would enable differences in
results and the later discussions to be better understood.

The results presented in Papers I and II are both tests of the CEM method and
predictions. Predictions that are compared favorably to experimental results lend
support of predictions for which experimental data are unavailable. In contrast, the
results in Papers III and IV are mostly pradictive with a qualitative comparison to
experimental data.



CORRECTED EFFECTIVE MEDIUM (CEM) THEORY

General Derivation

The derivation that I present follows that of Kress and DePristo [6] to which the
‘reader is referred for further details. As discussed in the previous introduction, I
consider an N-body system consisting of atoms {A, i=1,...,N] where the A; can be any
type of atom. The nuclear positions are {'I?J, nuclear charges are {Z;/, and the
electronic coordinates relative to each nuclear position are {r?j. The spin-up, spin-down
and total electron densities around each atom are denoted by n‘(A‘-;r_',.-b, n'(A;;;:b and
n(Ai;rT),.), respectively.

The desired quantity is the energy difference between the irteracting and non-
interacting systems of atoms, denoted by

N
AE({E)) - EY A) - Y EM,) (2
i1
To evaluate this energy difference, I make use of the interaction energy of each atom
embedded into jellium [4], defined by:

AE(A;;n) = E(A;+n) - EA,) - E(n) (3)

Here, E(n;) and E(A;+n;) are the total energies of the jellium and jellium plus atom A;
systems, respectively. Solving Eq. (3) for the atom energy, E(A,), and subsequent
substitution into Eq. (2) leads one to the first fundamental relationship of the CEM
theory:

N N
AE{AD =Y AEfA;n) + EQA) - Y [E@;+n) - E(n)) (4)
=1 i=1



In Eq. (4), the first term on the right hand side is the sum of the embedding
energies for each atom in jellium of some (as yet unspecified) electron density n,.
These energies can be evaluated from the SCF-LD calculations of Puska-et al. [4] or
from other, semi-empirical, methods as discussed in Papers I and II. I shall not
‘dist'mguish between these two functions until then. The form of the remaining terms
in Eq. (4) and the choice of the electron densities n; are addressed in the remainder of
this subsection.

The total energy is composed of coulombic, kinetic, exchange and correlation parts.

I denote this separation by
E{AD -V (14D + GHA]D (5)

where V, is the coulombic energy and G is the sum of the kinetic and exchange-
correlation energies, T" and E_, respectively. Substitution of Eq. (5) into Eq. (4) yields
the second fundamental relationship of CEM theory,

N
AE({A)) = Y AE@;n) + AV, (14) + AG({4)) (6)

i-1

where

N
AG({4,)) - GQ_4,) - 3 [GA+n) - G(r)] ' (7)

i=1

The AV, term can be written exactly as Eq. (7) with V, in place of G everywhere in the
equation. Eq. (6) is in the same form as Eq. (1) where the last two terms correspond
to the corrections.

Specifically Eq. (6) expresses the stabilization energy of the N-body system as a
total of three terms:

1. The sum of the embedding energies for the separated atoms in jellium;

2. The difference in the coulombic energy between the real system and all
the separated atoms in jellium,;



3. The difference in the sum of the kinetic, exchange, and correlation
energies between the real system and all the separated atoms in jellium.

The AV, term accounts for two physical effects. The first is the difference in the
‘homogeneity of the electron density distributions in the real and atom-in-jellium
systems. The second is the difference between the uniform positive background in the
jellium and the point nuclear charges in the real system. For the AG term there are
also two effects. The most important is the difference in the uniformity of the electron
density distributions. The second is the (possible) difference in spin-polarization
between the real system and the unpolarized atom-in-jellium one.

So far, in the energy terms just discussed above, I huve not specified electron
density distribution of the many atom system. I am at liberty to choose what ever
electron density I wish. However, if one expects reasonably accuracy in describing the
real many atom system, the correct electron density must either be constructed or
determined through the calculation itself, as done in fully self-consistent methods.
Since the CEM method is not a self-consistent method, the easiest solution to this is to
assume a simple construction of the electron density distribution. However, I would
like to retain the essence of real atoms.

At the moment I do not need the exact form of the atomic electron densities.
However in order to continue with the derivation, I must decide on a basic
construction of the electron density distribution of the whole system. The approach I
take rakes use of the assumption of a superposition of atomic electron densities. This
simply states that the electron density at any point in space, r_':) is the sum of the

electron spin-densities from each atom:

N
n*(F) - Y n*(4,;7-R) (8)
i=1



Even with this approximate approach the effects of electron inhomogeneity and
spin-polarization do not vanish. Since the difference in energies of the real vs. jellium
system is calculated, it is hoped that a lower sensitivity to the use of accurate electron
densities will be obtained than the direct calculation of the energetics in either system
by itself due to cancelation of errors. This is assuming of course that the proper
electron density in the jellium is used. Thus, a self-consistent calculation or
experimental data is employed via the AE(A;n;). Only the corrections due to
inhomogeneity of the electron and positive charge distributions are calculated non-self
consistently. This includes the spin-polarization of the electron density.

Since the additive electron density approximation is assumed to hold for each atom
in the jellium also, the coulombic interactions of an atom interacting with both the
homogenous jellium electron density n; and the positive background, cancel. This is a
consequence of the coulomb potential being linear in the electron densities. The

difference in coulombic energies is then just the interatomic coulomb terms:

lN N
AV (A - =Y Y V.ALA) (9)

i=1 i¢f

The coulombic energy can be broken into separate electron-electron and nuclear-

nuclear repulsive and electron-nuclear attractive contributions;

e fn(A,;f’l-I'f‘)n(Aj;Fz—R;)dFlsz . 4%

AV (i -
| ’12' &'j

(10)

_ fn(A;;r“rﬁ.)Z,dﬁ _ fnw,;rz—ﬁ})z‘dfz
| 7-F; | | 7-R, |

Where I have defined 7,2=r—),-r—2) and RU--|P-),.-}_?;|.
This result is quit appealing. The additive atomic electron densities produce a very
simple pairwise coulombic interaction that does not depend on the jellium electron
“density. If appropriate forms of the atomic electron densities n(F} are u;ed, these

electron-electron and electron-nuclear integrals can be evaluated quite easily. I shall
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discuss the specific forms of atomic electron densities in the computational details
section later.

To continue with the evaluation of the correction energy, accurate electron spin-
density energy functionals must be utilized for the kinetic, exchange and correlation

energies. The functional G is written as:
G- [[x(" ) +( () + e, (" (), (P)1dF an

To ensure that the atomic energies can be eliminated between Egs. (2) and (3) the
same kinetic-exchange-correlations energy functionals as used in the SCF-LD
calculations of the atom embedded in jellium system must be used. The SCF-LD
calculations utilized the local Dirac [7] exchange and local Gunnarsson-Lundqvist (8]
correlation functionals. However, the exact kinetic energy within the Kohn-Sham
formalism was used, which is not possible within the electron density based CEM
method. Instead, an accurate Pade representation of the full gradient expansion [9] is
used.

I reproduce the kinetic and exchange energy functionals here since these have
consequences when the superposition of atomic electron density approximation is
imposed. Also they will be useful in determining the jellium electron densities used in
Eqgs. (6) and (7). First let us examine the kinetic energy functional where we write the
total kinetic energy:

T- [[x(*@) + t(n ()]dF (12)

The Pade representation is written as

() (1+0.95x+14.2811x2-19.57962x3+26.64777x*) (13)

T(r*(F) = to(n
(1-0.05x+9.99802x2+2.96085x>)
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where

5 .2 3
To(n*(F)) = E(6ﬂ2)3 n*()? - (14)

is the local kinetic energy functioral as originally used in Thomas-Fermi theory [10].

The gradient contribution comes in via

2
5 23 IVn*()?
W amea—c 6 S ———————————
x 108( %) M (15)
nt('-.-') 3
The total exchange energy
E = [[e,('() + ¢ (- (FN1dF (16)
uses the local energy density functional written as
e (n*(P) - -5(-—)3 n*(F)? an

4n

The = for the kinetic and exchange functionals represents a separate calculation of the
up(+)down(-) electron spin density energies.

Since these energy terms are not linear in the electron density, the correction
energy functional AG, does not simplify to pairwise interactions under the
superposition approximation. This is another point in the CEM theory where many-
body interactions arise. The other is, of course, the embedding energy. The
interactions in a real many-body system are indeed many-body in nature.

To finish the derivation, one must determine the jellium electron densities that are.
employed in Egs. (6) and (7). I have already alluded to this determination in the
diagram on page 3 where the surrounding atoms in some way provide the background

-electron density in which an atom is embedded. The proper choice of this electron
density is important. Since the non-self-consistent part of the CEM formalism is

expected to be less accurate than the self-consistent part (AE (A;n;)), ] minimize the
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|AG| term? with respect to the n;,. Since G is a complicated functional of both the
electron spin-densities and their gradients, an analytic minimization of |[AG]| is not
possible in the current form. In addition, a numerical minimization does not provide
insight into the proper choice of the jellium densities. However, upon examining the
variation of the sum of the leading terms, which are local kinetic-exchange energy, one
can make progress. The integrand in Eq. (11) (excluding the correlation energy
functional) can be approximated quite closely by a quadratic in n* as shown by
DePristo and Kress [9] and reproduced in Figure 2.

~  local kinetic-exchange energy densi ty

. 0.0%

O’ exact: Cy n/3 4 an4/3

OB fit: CRC4 DR -----
C=6.97641226

Do.ot D=-0.060793

()]

C o.0f

Q

0

j—)O.EDI 3

)]

L

@ o.000 = -

% 0.00 0.01 0.02 0.03

spin density, n, (a.u.)

Fig. 2. Local kinetic-exchange spin-up energy density, C,(n*)*”° + C,(n*)"” with
C,=(3/10)(67*)?" and C,=-(3/2)(3/4n)'", as a function of spin-up density n*.
Exactly the same function holds for n. A quadratic fit, based upon

- duplication of the exact position and depth of the minimum, is also shown

2 Minimization of the sum AV,+AG can result in negative values for the jellium density since
the coulombic energy can be quite negative.
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Within this quadratic approximation for the energy functional in both the spin up

and down electron densities , n* and n’, we have
G = C[[n*¢P + n"(FY1dF + D [[n*(F) + n"(F)1dF a (18)

where C and D are the coefficients of the quadratic fit.
Now using Eq. (7) and the atomic electron density superposition approximation we
can now rewrite AG after some algebra as
AG-C Y Y [[n*U;F-Ryn*U;7-R) + nA;7-Ryn (A;7-R))dF
iyl ( 19)
_ZCZ‘: f [n*@;7R)n; + n"(A;F-R)n; 1dF

where the linear contribution completely cancels. Since the SCF-LD jellium utilizes
an unpolarized electron gas, let n*; = n’, = n,/2 in Eq. (19), yielding:

AG-C Y Y [(nUiF-Ryn*U;r-R) + n"(A;F-Ryn (A,;F-R)ldF

1

(20)
-C Y Zn,
1
Setting AG=0 of Eq. (20) leads to solutions for n; which are independent of the
coefficient C. The most symmetric solution is
Y [(n@;7-Ryn'A;r-R) + n(A;7-R)n (A;F-R)1dr -
- j“

n, Z
i

This possesses several reasonable physical properties that are worth discussing. First,
the jellium electron density on atom A, due to atom A, is proportional to the electron
spin-density of atom A; averaged over atom A; with the weight function equal to the
(normalized) electron spin-density of A;. Since the size of atom A; can be characterized
by the atomic electron spin-density, such an average makes good physical sense.

Second, for the case of spin-unpolarized atoms, n; becomes
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SR - R VdF
] ) [tn@A;7-Rynia,7-R) 22
2Z, ~

This is half of the total electron density average because of a division of electron
density between the two atoms, an effect which is analogous to dividing up a pair
potential, V;;, into %V; + %V}, and which thus eliminates over counting of embedding
energies. Note that for a given pair of atoms, i and j, the electron density overlap
contribution (numerator of Egs. (21) and (22)) is always equal on each atom but the
jellium electron density contribution may differ because of the inverse weighting by
the atomic number. Third, the integrals in Eqgs. (21) and (22) are positive for all well
behaved atomic electron densities.

It should be noted that the CEM energies are not invariant to arbitrary changes in
n; because the AG terms are not calculated self-consistently. Because of this, an
optimal choice of n,; is important to achieve. Small variations in n; do not alter
significantly the CEM energies because of a cancellation between the embedding
energies and AG. The quadratic approximation is only used to find an analytic choice
for the n,. In all actual calculations, the original kinetic-exchange-correlation energy
functionals are used in Eq. (7).

Papers I and II extend Eq. (6) by deriving CEM interaction energy relations
specific for high symmetry cases in bulk lattices and surfaces. In both cases all the
energy terms, including the jellium electron densities n;, were evaluated in the same
manner. The purpose of Paper I was to derive specific CEM relations for the bulk
cohesive energy of any bulk lattice and extend this to surfaces. The possible
multilayer relaxations and their driving forces were examined within the CEM
formalism.

Paper II expanded on the surface relations of Paper I to cases of ordered overlayers
of chemisorbed atoms on surfaces. The prediction of the binding energies and heights

_for the adsorbates were the primary purpose. The effect the adsorbates have on the
structure of the surface was also examined.

While the calculations presented in Papers I and II are important they lacked at
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least one important realistic aspect. In those calculations I assumed an equilibrium
structure, based on only a few variable key structural parameters, then simply
calculated its energy. The way in which an equilibrium structure is formed is
disregarded. A next logical step in developing the CEM method was to incorporate it
into molecular dynamics calculations so many more degrees of freedom can be varied.
Papers III and IV present some of results of my work which involves the dynamics of
metal adsorbates on metal surfaces.

The many degrees of freedom in a MD type calculation requires that the
interaction potential be simple enough to evaluate many thousands of times for a
single simulation. The numerical evaluation of the correction energy AG has two
closely related and costly effects. The first is that the numerical evaluation is very
slow for a many atem system. The second is that the derivatives of AG must be
numerically evaluated and thus two evaluations per degree of freedom are required.
This is not acceptable for even today‘s supercomputers. Thus to do molecular
dynamics calculations the CEM method needed to be speeded up considerably. To
achieve this, the CEM method was medified such that the correction energy functional,
AG, was approximated as a simple empirical function of the jellium electron density.
This is just like the embedding energy function. Thus the large amount of computer
time involved in numerically integrating and differentiating the term AG accurately
can be avoided. The derivation of this modified CEM method is shown in these papers
where MD/MC-CEM denotes this new form of CEM.
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SOME COMPUTATIONAL DETAILS OF CEM

The purpose of this section is to discuss some of the computational details of
implementing CEM that have not been published before. In addition seme details that
have been published will be briefly mentioned to give the interested reader a better
idea of what is involved in calculating CEM energies.

To keep the CEM method as accurate as possible accurate atomic electron densities
are employed. To this end Hartree-Fock Slater-Type-Orbital (HF-STO) electron
densities are employed. The following details the use of these electron densities in
further calculations.

Gaussian Expansion of HF Electron Densities

The major impetus for developing the CEM method is to have a method in which
the interaction potential can be calculated very quickly with reasonable accuracy. To
help achieve this goal specific steps have been taken to make the method as
computationally efficient as possible. To facilitate faster evaluations of the overlap
and coulomb integrals in Eqgs. (22) and (10) the radial part of the above mentioned HF-
STO electron densities are fitted by an even tempered Gaussian expansion [11] in 7
(the radial distance from the nucleus). Using these Gaussians, the above integrals can
be evaluated analytically [12].

Two sets of expansions are utilized for each atom. The first is for spherical type
electron densities such as obtained from s-type orbitals. In addition, the d and f
orbitals are forced to be spherical to simplify considerably the analytic overlap and
coulomb integrals because the angular integration of d and f crbitals is very
complicated. Since it is felt that the angular component of these orbitals do not
contribu:te significantly to bonding in extended systems, sphericallization would not be
a severe approximation. The second type of expansion is for non-spherical electron
densities obtained from p-type orbitals. The basic form of the Gaussian expansion is

given as

N
ngr) =Y c,rlexp(-ye'r?) (23)
1-0
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where the parameters v, o, and the coefficients {c;/ are different for each type of atom.
The spherical and non-spherical electron densities have ¢ equal to 0 and 2,
respectively. For the non-spherical (p-type) Gaussian electron densities, the angular
contributions are also included as

3x2  3y? 3722

’ ’ (24)
r P P

times the whole expansion to obtain the idividual p,, p,, p, densities, respectively.

Use of an even tempered Gaussian expansion is very convenient since there are
only two distinct adjustable non-linear parameters. These generate many exponents
to ensure flexibility in fitting the HF-STO electron densities, as will be described
shortly, or in minimizing the total energy as done by Schmidt and Ruedenberg [11].

The procedure for fitting the Gaussian expansion to existing HF electron densities
is simple. We use a standard computer routine called 'STEPIT [13] which minimizes
any function with respect to a set of parameters. I shall go into more detail later but
for now I just briefly describe the fitting process. The function we minimize is simply
related to the square of the difference between the Gaussian and HF-STO electron
density. Initial guesses of the parameters y and a are inputed, and STEPIT
iteratively changes these to appropriate values such that the difference function is
minimized. In each iteration, the {c;} are obtained to achieve a best fit for each set of
o and .

The quality of the above fit of the expansion to the HF-STO electron densities was
quite good except at large distances from the nucleus. The Gaussian electron densities
were typically up to 2 orders of magnitude higher than the HF-STO densities (10 vs.
10®) in this region and thus did not decay quickly enough. This did not cause signifi-
cant errors in the CEM calculations but, as I shall discuss later, did have an effect on
some physical properties that depend on very small energy differences and changes in
the electron density distributions. Paper I utilized this particular form of the

-expansion but after publication, a new expansion was created. This new Gaussian
expansion i3 currently in use and Papers II through IV of this dissertation have all
used it.
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The problem with the original Gaussian expansion in Eq. (23) was that it was not
flexible enough in accurately fitting both the extremely high electron densities in the
core region and the very low electron density far from the nucleus. To correct that
problem two things were done. First, the flexibility was increased by adding a new
parameter in the expansion:

N N
RN =ng(N =Y c,rlexp(-ya'r?) - Y crié, (25)
i i

The additional parameter B can exert a considerable influence on the size and
distribution of parameters generated from o in the expansion. Second, since the long
range electron density behavior was a problem in the first expansion, specific steps
were taken to ensure a better quality fit in this new expansion.

At large distances the Gaussian electron density must match the HF-STO electron
densities. Consider two points: r; is some radial point very far from the nucleus and
r;; some point slightly closer. I require that the Gaussian electron density be equal to
the HF-STO electron density at both points

n(r;.y) = Rgo(r;,) 26

na(rj) - "sm(’j)

In these equations I employ a table containing a set of closely spaced radial distances
r; G=1,N,, and typically N_=2000) ranging from r,=10° to some r,,,,. Herer,,, is
determined such that 72 _ng(r)=10° a.u. The following discussion is completely
general in the sense that fitting to spherical or non-spherical electron densities 1s
transparent. One only needs to let ¢ equal the appropriate value for spherical (s) type
or non-spherical (p) type electron densities. Note that only the radial part of the
electron densities are fit. The angular parts ot the electron density distributions are
completely retained for the p type orbitals while the d and f orbitals are sphericallized
-in with the s type orbitals. -

For large r, say r; with j near N, only the i=0 term in the Gaussian expansion
contributes significantly to the total electron density when o>1. Therefore Eq. (25)
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can be truncated to
ng(r,) = c,r;exp(-y r,’) (27

This is very convenient since now I have a way in which y car. be easily determined.
Dividing the first equation in (26) by the second and replacing n; with that given
in Eq. (27) one obtains after some algebra

R (7, )r'
exp(-y (rj., -1} )= 1L (28)
Rsro(T )71
Solving this for vy gives
I l
Rero(r;_ )75
y- Rso (1t (29

2 2
(rj “rj__l)

This determines Y much more reliably than simply allowing STEPIT to determine a
value by a fit to the global electron density.
It remains to determine what o and B are for each type of Gaussian expansion.
This iz done by minimizing the function,
:érz[n () - 12 (30)
2 7" J) = nep(N]
with respect to both o, f and the {c;/. This function has two effects in the fitting
process. First, the square of the differen~e matches the Gaussian electron deasity to
the HF-STO electron density. Second, including r* has the effect of putting more
weight on the difference term at large distances from the nucleiv:: This last feature

provides an added measure of control on providing a better quality fit of the small

electron densities far from the nucleus. Fortunately, this is not at the expense of a

quality fit to the core electron densities. For each choice of a and B in the

minimization procedure, the coefficients of the expansion in Eq. (25) are determined by
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a least squares fit.

Multiply both sides Eq. (25) by ¢, and integrate over r’dr to get
N
8- cXy (31)
10

where for convenience I let

e, - fd)k(r)nm(r)rzdr
(32)
Xy = [r'®, (00,0 dr

Doing this for every expansion function ¢, (k=1,N), I can then create the matrix
equation

(0,] [Xo Xo1 - - - Xanl|[ %o

6, Xo - - -- - |l

Q- . - . . o s e . . -;C l (33)

100 (Xm0 - - - - X6

The coefficients {c;} can then be readily found by numerically solving this set of linear
equations by standard mathematical procedures.

I summarize the process of fitting the even tempered Gaussians as follows:

1. Obtain the HF-STO electron densities and set up a table of 2000 points
spanning the whole range of the atomic electron density;
2. Obtain y from Eq. (29);

3. Guess o and f;

4. Find the coefficients {c;/ from Eqs. (31) through (33) and evaluate the
Gaussian electron density in Eq. (25);
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5. Determine the value of Eq. (30);

6. STEPIT changes a and B according to a modified Newton-Raphson
procedure; -

7. Repeat step 4 through 6 until Eq. (30) is minimized with respect to a, B

and the {c; /.

The above procedure is carried out twice for each atom. Once for the spherical (s
and, if present, d and f type) electron densities and again for non-spherical (p-type)
electron densities. In addition, the number of Gaussian functions are varied to further
minimize Eq. (30). I have found the spherical density expansion required about 35
terms and the non-spherical density expansion required about 25 terms for Eq. (30) to
be minimized. This provided electron densities in agreement with STO values usually
to better than 0.1 % regardless of the magnitude of the electron density.

The following papers contain some of the initial developments and applications of
the CEM method. Each paper refers to Papers I-IV that are not the same papers that

are presented in the dissertation.
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PAPER I
CORRECTED EFFECTIVE MEDIUM METHOD: IV.
BULK COHESIVE AND SURFACE ENERGIES OF SECOND AND THIRD ROW
METALS AND MULTILAYER RELAXATION OF AL, FE AND NI
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ABSTRACT

We provide a detailed analysis and discussion of the recently developed corrected
effective medium method (CEM) as applied to the calculations of the bulk cohesive
energies of the second and third row metals. The results demonstrate that a
quantitatively accurate description of these quantities requires a new "covalent"”
embedding function instead of the SCF-LD Puska et al. [29] "ionic" embedding
function. Construction of these covalent embedding functions from diatomic and bulk
electron density binding potentials is detailed.

We present the formalism within the CEM method for the calculation of the
surface energy of infinitely periodic two-dimensional solid surfaces. Calculations of
the surface energies for the perfectly terminated low miller index faces of Na, Mg, Al,
K, Ca, Fe, Ni and Cu are carried out. These results are compared to experimental
measurements and very good agreement is found for almost all of these metals. More
demanding multilayer surface relaxation calculations are performed for
Al(111),(110),(100), Ni(110),(100), and Fe(100). Very good agreement with
experimental observations is obtained for these systems with the exception of Al(111)
and (100). Detailed analysis of these calculations leads to an explanation of the

relaxation process and its driving components.
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1. INTRODUCTION

The experimental and theoretical study of metal surfaces has produced a wealth of
information concerning the electronic and structural properties of metal surfaces. Of
particular interest for the present paper are the geometric deviations of surfaces from
that of the truncated bulk arrangement. Observations of large multilayer relaxations
have been made for a number of systems such as Al(110) [1,2] and Ni(110) [3-6].
Smaller relaxations limited to the top surface layer have also been reported for Al(100)
[7,8], Ni(100) [9] and Fe(100) [10].

First principles self-consistent calculations using a local-density functional
formalism [11,12] have been carried out for & small number of systems, obtaining good
agreement with experiment. These calculations, though accurate and very
informative, are computationally very time consuming and difficult to carry out. Thus
a large variety of simpler theoretical models [13-21] have also been developed in an
attempt to predict and explain these dramatic deviations from that of the ideal
surface. Some of these simplistic models are unable to accurately predict the
magnitude and scmetimes even the direction of the relaxation process. By contrast,
the previously developed embedded-atom method EAM of Daw and Baskes [22] has
recently been applied to surfaces of fcc transition metals [23] and though not being
self-consistent produced relatively good agreement with experimental observations and
measurements for surface energies and multilayer relaxations. In addition, the
related effective medium EM theory [24-25] has been applied to the relaxation of Al
surfaces [25] with some success.

Recently three articles [26-28] (referred to as Papers I, II and III) have been
published detailing the development and applications of the corrected effective medium
CEM method for the calculation of the interaction energies of small and large systems,
including diatomic molecules, metal clusters, and bulk solids. In the present paper,
we apply the CEM method to the calculation of the surface energy of a variety of metal

‘surfaces. The CEM method is not entirely self-consistent but it does, as_will be
discussed in Section III, have a basic component of self-consistency. Like the effective

medium theory, the CEM method begins by replacing the interaction energy of the
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multi-atom system by the summation of the embedding energies for each atom in
jellium having an effective electron density provided by the rest of the atoms in the
system. The energy of embedding an atom in jellium is known from the SCF-LD
calculations of Puska et al. [29] as a function of the homogeneous electron gas density.
In CEM, one goes further by introducing and evaluating numerically the explicit
corrections which describe the coulombic-kinetic-exchange-correlation energies in the
multi-atom and jellium systems.

It is worthwhile to discuss briefly the relationship between the EM, CEM and EAM
methods. It is important to emphasize that the CEM formalism was not developed as
an explicit correction to either of the other theories, but was derived from a consistent
replacement of the fundamental relationship between the interaction energy of an
N-body system and the embedding energy of each atom in jellium. The derivation is
compietely different from that of either of the EM or EAM theories. Nevertheless, by
suitable approximations to the CEM formula, one can derive either EM or EAM
theory. For EM, one neglects the correction for the kinetic - exchange - correlation
energy; approximates the coulombic correction via an induced polarization formula;
uses the SCF-LD embedding functions; and, uses a slightly different choice for the
density of the jellium. For EAM, one also neglects the correction for the
kinetic-exchange-correlation energy; replaces the coulombic correction by an empirical
function; uses empirical embedding functions; and, uses a particularly simple choice of
the jellium density. More details of these relationships can be found in Papers I and
II, with some further remarks in Paper II.

One of the important points to come from Paper II was that the Puska et al.
embedding curve reflects a rather ionic interaction of the atom with jellium. For
homonuclear systems this is not quite correct and one should introduce another
correction to reflect this fact. The form and implementation of this correction is still
under active investigation, and at present a (semi-empirical) covalent embedding
function is used to replace the ionic Puska et al. interaction in order to be
_quantitatively accurate for homonuclear systems. These curves were constructed from
knowledge of the experimental diatomic binding curves in Paper II.

In Paper III the N-body formalism was derived for an infinitely periodic 3D bulk
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metal system with one atom per unit cell. Applications to the binding in Mgy and Cuy
clusters with N=2,3...13,19 were presented. The covalent embedding functions for
these two metals were constructed from knowledge of both the diatomic.and bulk
binding curves. It was suggested that these embedding functions were not functions of
the number of atoms in the system but instead were universal for any one type of
atom in a homogeneous system.

The present article is divided into four sections. In Section II we derive the CEM-
N relation for infinite systems with 2D translational symmetry (e.g., surfaces). In
Section ITI we present calculated bulk cohesive energies for the metals of the second
and third rows. The covalent embedding functions for Al, Na, K, Ca, Fe and Ni are
constructed. We then present and discuss results for the calculated surface energies of
the perfectly terminated (111), (100), (110) faces of these metals. Following this, the
multilayer relaxation of Al(111),(100),(110), Ni(100),(110) and Fe(100) is discussed in
detail. Finally Section IV contains a summary and conclusions of the method as
applied to surfaces.
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2. THEORY

The full details of the CEM method, especially CEM-N, are contained in Papers I-
I11, to which the reader is referred. Here, we shall only present the features necessary
to understand the extension and application to surfaces. The starting point is the
interaction energy for a system of N-atoms,

N N
AE({A D=-E (EA,) - E EA) (1
i=1 i1
which within the CEM-N formalism is rewritten in the equivalent form,

N
AE({A D= AE,A;n) + AV, + AG({Ay) (2)
-1

where all summations extend over the number of atoms in the system. The first term
in eq. (2) is the sum of the embedding energies in jellium of all the atoms of the
system; two different types of embedding functions are considered in this paper and
they are denoted as the covalent, AE.(A;n), and Puska et al. [29], AE(A;n), functions
respectively. The second term is the difference in coulomb energy between the multi-
atom system and all the atoms in jellium. The last term is the difference in kinetic-
exchange-correlation energy between the multi-atom system and all the atoms in

jellium, written as

N N
AG({AN})-G[‘E;A.) - 316U, n)- G &)
where G denotes the sum of kinetic, exchange and correlation energy functionals of the
density and n, is the density of the jellium for the i** atom.

Eq. (2) is not solved self-consistently but instead utilizes the approximation of
_superposition of atomic densities to form the total system density. Minimizing the
effect of this approximation on the non-self-consistent AG term in eq. (2) yields a

prescription for the choice of the jellium density for each atom [27], which for non-
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spin-polarized atomic densities is

N
Y. (-8, [nF)n(F)dr @
n~L1 2z,

The generalization to spin-polarized densities is presented in Paper II, but this is not
necessary for the present article. Here,n(?,-j is the unpolarized electron density
distribution and Z; is the atomic number of atom i. Use of the superposition
approximation simplifies the coulombic correction AV, to be the sum of the atom-atom
coulomb interactions.

Now, we invoke periodicity to simplify the evaluation of eq. (2). The formalism for
an infinite bulk system having 3D translational periodicity with one atom per unit cell
has been presented previously [28] and thus will be merely outlined here. The
cohesive energy is defined to be E_,=AE({Ay/)) /N in the limit N — <. Using the fact
that all atoms in the system are equivalent in this limit, we can rewrite eq. (2) for the

cohesive energy as

N
E_.~AE,(A,n,) + AG, + %2 AV, ®)
T

where AV, is the coulomb interaction between atom j and the bulk atom b, and

AGb'Gb(bulk) - [G(Ab+"b)'G(nb)] (6)

The subscript "b" refers to any one of the bulk atoms. The evaluation of G,(bulk)
involves an integral over the Wigner-Seitz cell of the atom A, (see Paper II). The task
of calculating the energy of the infinite N-body system is now reduced to the
calculation of the interaction energy of a bulk atom (4,) in the electron density
environment due to the rest of the atoms in the metal.

In the case of surfaces, we can also simplify the evaluation of Eq. (2) but are
-restricted to use of 2D translational periodicity rather than the 3D periodicity in the
bulk. Assuming no in-planar reconstruction, this periodicity implies that for surfaces

we may consider the atoms within a particular layer as being equivalent (i.e., having
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the same electron density environment). In this case we calculate the cohesive energy

of an atom in the i* layer as

N
E,-AE;A;n) + AG, + %EAVJI 0
i

To be more explicit, we pick a ’focus’ atom in layer i and calculate its cohesive energy
via Eq. (7). The evaluation of AG, entails a generalization to the simple integration
over a Wigner-Seitz cell in the calculation of AG,: the integration is over all spatial
points which are closer to the focus atom ’i’ than to any other atom (just as in the
general case for systems without any symmetry described in Paper II).

For surfaces the fundamental quantity of interest is the surface energy, defined as
o=[E(bulk system) - E(two cleaved surface systems)] [total surface area. We can obtain
this quantity by calculating AE; for each layer leading into the bulk and by using the
fact that AE; —» E,, as i gets large. Since only one type of atom is considered here,
there is only one atom per surface unit cell yielding the total surface area as 2N A, for
N, surface atoms and unit cells each with area A,. (Remember that two surfaces are
formed from cleavage of one bulk system.) Combining this definition with Eq. (7)
yields the final formula within the CEM formalism for the surface energy:

E (AE,-E_;)
1
A

(8

o-

The summation over 'i’ extends over the layers and not over the individual atoms. To
determine the extent of surface layer relaxation, we minimize the surface energy in
Eq. (8) with respect to the displacement of one or more lattice planes in a direction
perpendicular to the surface.

All that remains is to choose the energy density functionals and the atomic
densities. The kinetic energy density functional used was a Pade’ summation of the
gradient series [30]in | V(n)|/n*”°. The local Dirac exchange functional [31] and the
local Gunnarsson-Lundqvist [32] correlation energy functional were used. As a
representation of the atomic densities we have generated an even-tempered Gaussian

basis [33] from Slater-type atomic Hartree-Fock densities [34]. This allows convenient
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analytic evaluations of the coulomb integrals and the density overlaps [35] (i.e., Eq. (4)
for the jellium density). Following Paper II on diatomic molecules and subsequent
(unpublished) studies by us of a variety of metals (including those under study in the
present paper), we utilized a non-spin-polarized atomic density since this yielded the
most accurate energies within the CEM formalism. In addition, we have forced all the
3d transition metals to have a (3d°,4s%) rather than a (3d"*},4s') configuration; it was
seen in Paper III that the semi-empirical embedding function using two diffuse 4s
electrons allowed for a much smoother match of the bulk and diatomic contributions to
the curve. We have also restricted the 3d shell t,o be spherically symmetric which has
a negligible effect on the total electron density.distributions at the stomic separations
of interest in this article.



32

3. RESULTS

3.1. Bulk Metal Cohesive Energies

We have calculated the CEM bulk cohesive energies using the SCF-LD Puska et al.
embedding functions for the second and third row metals by minimizing Eq. (5) with
respect to the lattice constant of the metal system. In the case of the hcp lattice,
calculations were carried out by constraining the ratio %, to that which is observed
experimentally [36]. The atomic density around each atom was cut-off at a radial
distance (R) such that R**(atom density) < 10° a.u., and all atoms within 2R of the
focus atom were used to represent the infinite lattice. Inclusion of atoms outside this
range and use of a larger cutoff radius resulted in negligible change in the calculated
energies.

In Figure 1a, we show both the minimized CEM and experimental cohesive
energies vs. atomic number. A similar plot for the equilibrium nearest neighbor
distances (NNDs) is shown in Figure 1b. For the second row metals, the CEM
predictions are nearly quantitative for both the cohesive energies and NNDs.
However, for the third row metals the situation is less satisfactory with nredictions of
the cohesive energy being accurate for K — V only and with predicticns of the NNDs
all being contracted considerably with the exception of K where an expansion is
predicted. Clearly there is some aspect of the interaction that is not described
adequately using the Puska et al. embedding function for the third row metals.

We have further investigated the above problem by considering some relevant
properties of atoms and jellium. First, we have also plotted the Pauling [37]
electronegativity for the free metal atoms in Figure la, indicated as stars. An
interesting correlation appears between the variation of the CEM calculated energies
and the electronegativity as a function of the atomic number in each row. But this is
not the scle reason for the inaccuracy of the Puska et al. functional for the 3d elements
since even for Al and Si having relatively large electronegativities the predictions are
still good.
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A second important point involves the variation of the work function for jellium, which
is basically an increasing function from densities of 0 to 0.0018 au, with a peak of 2.4
eV, and then a linearly decreasing function of density thereafter, becoming negative
after 0.0163 au. Figure 1c is a plot of the bulk jellium sampling densities for both the
CEM and experimental NN distances as a function of the atomic number. One
immediately notes that in general the density sampling increases as one proceeds
across the second row metals for both cases. For the transition metals we note that
the density peaks at about V to Co and then decreases as the 3D shell is continually
filled. From these considerations, the predicted results seen in Figures. 1a and 1b can
be understood in terms of the overemphasis on an ionic interaction which is inherent
in the Puska et al. SCF-LD embedding curve for an electronegative atom in a high
density jellium system.

Let us consider the above points in more detail. For the second row metals the
density sampled by the atoms in the bulk is relatively low and thus the work function
of jellium is high ensuring that the degree of ionic interaction is small. This results in
the general agreement found with experiment for both the cohesive energy and the
NND distance. In the case of the third row metals for Ti to Cu the sampling density
is considerably larger resulting in a lowering of the work function of jellium.

Therefore one would expect the ionic interaction with jellium to be significant and that
the use of the Puska et al. functional will predict a substantial ionic component to the
bonding, especially for the right-half transition metals. Since the experimental trend
in binding energy does not follow the CEM predictions, we must conclude that a
substantial ionic bonding component is not correct. These results support our initial
argument in the theory section that in order to obtain quantitative binding energies
an alternative embedding function must be used. The use of a corrected embedding
function will allow us to adequately describe the correct type of interaction occurring

on clean metal surfaces.

3.2. Covalent Embedding Functions
Paper II presented semi-empirical covalent embedding functions which were

constructed solely by inverting the experimental binding potential curves for
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homonuclear diatomics [38]. These covalent embedding functions are determined by
solving Eq. (2) (with J=C) for AE(A;n),

[AEA,) - AG(4,) - AV (4))]
2

AE_(A;n)~ €)

For AE(A,) a Morse potential representation of the experimental data [38] was used.
Foillowing Paper III, we also utilize the bulk cohesive energy to determine the covalent
embedding function via Eq. (5):

AEA;n)~E,, - AG, - %2 AVb (10)
J%b

In this analysis, the bulk experimental binding potential is obtained from a harmonic
expansion about the equilibrium lattice constant with the bulk modulus providing the
second derivative of the cohesive potential. Table I contains the experimental data
used to construct the bulk portion of the embedding functions for the atoms considered
in this paper.

Included in this table is the bulk data for other metals for which we have
constructed covalent embedding functions but which are not discussed in this paper.
Once the two portions of the embedding curves are constructed they are combined to
form one covalent embedding function that we propose will be universal with respect
to the number (V) of atoms in the system of a particular element as applied with the
CEM approach.

This universality implies that the effects of all other variations with number of
atoms in the system are incorporated into the coulombic and correction terms. The
latter is particularly important to discuss since the reader may question the
requirement of a correction term (which is time consuming to compute) when the
embedding functions are determined semi-empirically. First, note that the correction |
term is determined by the spatial variation of the electron density, becoming small as
a system becomes more homogeneous. In particular, the correction is most important
for diatomics and becomes rather small for bulk systems (both assumed to be near the

equilibrium distance). By contrast, the embedding energy (per atom) is smallest for
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diatomics and becomes rather larg 2 for bulk systems due to the increasing number of
neighbors. Thus, the correction term cannot be incorporated intc a semi-empirical
embedding function. To test this argument, we have determined new embedding
functions in exactly the same manner as described above but without the correction
term; the results for the surface energies and relaxations were considerably poorer
than those in which the correction term is retained (and which will be presented in
part C). For transition metal surface energies, including relaxation, typical errors are

on the order of 5% with the correction energy and 20% without the correction energy.

Table I Cohesive energies and lattice constants from Eq.(5) using the embedding
functions of Puska et al.(Ref.29)

CEM Experimenta
a (au) E_, (eV) Structure a (au) E_, (eV) Bulk Modulusb
(1011 N/m2)

Na 7.94 1.38 BCC 7.98 1.113 0.68
Mg 5.76 1.62 HCP® 6.07 1.53 3.54
Al 7.35 4.05 FCC 7.65 3.39 7.22
K 10.65 0.88 BCC 9.87 0.934 0.32
Ca 9.49 1.71 FCC 10.54 1.84 1.52
Fe 4.75 7.52 BCC 5.42 4.28 16.83
Ni 6.32 7.00 FCC 6.65 4.44 18.6

Cu 6.72 4.26 FCC 6.82 3.50 13.7

sid 10.88  4.76 DIA® 1025  4.63 9.88
Sc 5.63 3.66 HCP 6.25 3.90 4.35
Ti 4.68 5.62 HCP 5.74 4.85 10.51
\' 4.98 5.52 BCC 5.73 5.31 16.19
Cr 4.79 7.71 BCC 5.44 471 19.01
Co 4.27 8.80 HCP 4.74 4.39 19.14

—— ———

2 Al éxperimental values obtained from ref. [36].

b The Bulk modulus provides the second derivative for the harmonic expansion
of the cohesive energy in construction of covalent embedding function.

€ The ratio of ¢/a was held constant for HCP structures.

d The surface energies or relaxation of the metals under the dashed line are not
studied. Thus a covalent embedding function is not constructed in this paper for
these metals. The Mg and Cu functions were constructed in Paper III.

€ The diamond lattice structure was used for Si.
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These quantities are rather sensitive to the difference in inhomogeneity of the electron
density between bulk and surface atoms. For quantities which may not be so sensitive
to such inhomogeneity (e.g., composition of bimetallic systems or even the desorption
energy of a surface metal atom), it may be possible to eliminate the correction term.
We illustrate the construction of the semi-empirical embedding functions by providing
a step by step analysis for the construction of the covalent embedding function for Al
The semi-empirical embedding curves for the rest of the metals will simply be
presented and discussed since the construction procedure is the same for all atoms.

In Figure 2a, we have plotted the harmonic binding potential for bulk Al as a
function of both the lattice constant and the sampled jellium electron density. Figure
2b is an analogous plot for the binding potential of Al,. The five points shown in
Figure 2a correspond to lattice constants of 90, 95, 100, 105 and 110 percent of the
experimental equilibrium lattice constant.

In Figure 3, we have plotted the covalent embedding function resulting from the
application of Egs. (9-10) to these data. The Puska et al. embedding function for Al is
also shown. Only the high density (90% — 105%) bulk points were retained since the
true binding curves are expected to be softer than harmonic for the very expanded low
density geometries. These points correspond to the four points labeled to the left of
and including the point indicated by an arrow on Figure 2a and with the
corresponding embedding energies labeled N=« on Figure 3. The diatomic points for
bond lengths less than the point indicated by a closed square on Figure 2b were not
retained since the Morse potential is not expected to be accurate in this region. The
two vertical arrows in the low and high density regions of Figure 3 indicate the
location of the diatomic and bulk densities on the embedding curves corresponding to
the experimental equilibrium bond distance and lattice constant, respectively.

Examination of these Figures demonstrates that the diatomic and bulk systems
correspond to separate regions of sampled density. Hence, the smoothness of the
interpolation between these two regions provides strong evidence for the universality
of the covalent embedding curve. One should also note the excellent qualitative

agreement between the two embedding curves in Figure 3.
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Fig. 8. The semi-empirical covalent embedding function (squares) for Al is shown.
Also shown is the SCF-LD embedding function (open circles) as calculated
by Puska et. al. [29]. The embedding energy is plotted as a function of the
jellium density. The vertical arrows in the low and high density regions
indicate the location of the equilibrium diatomic and bulk points, respectively
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The two differ by a constant for almost all densities with the Puska et al. curve lying
below the covalent curve. This is characteristic, as seen in Paper II, of a partial ionic
interaction for the (partially negative) charged atom in jellium. The fact that the
slopes are almost the same is reflected in the excellent agreement of the Al NND in
Table I with experiment. Another important distinction between the two embedding
curves is that the Puska et al. embedding function is drawn to the negative of the
electron affinity of the free atom in the zero embedding density limit [29] while the
covalent embedding function is drawn to zero. This will be the case for all atoms with
a positive electron affinity [24,29].

Carrying out the same procedure for Na we show in Figure 4 both the Puska et al.
and the covalent embedding function. In this case only the three highest bulk electron
density points were used in order to obtain a smooth fit and as can be seen even this
leaves a somewhat non-smooth curve. This will be seen later to lead to difficulties in
accurately calculating the energies of Na surfaces. In comparison to Al, we find that
the Puska et al. Na embedding function is closer to the covalent curve throughout the
whole density range, indicating that Na is slightly less negative in jellium. This is
expected since not only is the electronegativity of Na lower but the sampled electron
density is also much lower, yielding a higher jellium work function. Also note that
there is only one calculated Puska et al. embedding energy point in this lower density
region.

For K we show in Figure 5 both the Puska et al. and the resulting covalent
embedding curves. The bulk points in this case were also truncated at the 100%
lattice value. Although the Puska et al. curve is slightly above the covalent curve, this
is not of concern since the Puska ef al. embedding function in this region is an
extrapolation from a calculated high density point to the negative of the electron
affinity, and is thus quite uncertain. With no real data points this region of the
embedding curve is unknown self-consistently and thus the covalent embedding
function not only provides the correct type of interaction but it also fills in the gap in
the Puska et al. calculations.



41

] 05 9daoxa g ‘31 se sweg °g “S1q BN 10§ 3daoxa ¢ ‘81 s8 oureg *§ *S1g

('n'0) Ayrsusg won 2913

, 01761 ol S 0 ('n°0) Hyisua( u0.}23)3
T 01 _01x0e 02 01 0,
T 7 < __
O
youy D 50
2=N__
M- mOI_ ..‘..-‘.., ~ .u muq..
— 00 0d
rout (0=N""— m.om “ T yowt =N | 5
o 2 1S5S0 o
{01 wa o
a YU |DACD - -~ |
JU8|DAOD - - - g€ <
1D 18 DysNg < 1D Y8 DNy 12
yuaysisuoo-jas — °° JUBYS1SU0D-} [8S
52
c

SuUO1}oun) buippaqws SUO13}0UNn) Dulppsagua DN



42

This also indicates that the calculated bulk cohesive energy and NN distance
shown in Figures 1a and 1b for K should not be taken very seriously.

In the case of Ca we see in Figure 6 a smooth curve again with truncation at the
100% bulk lattice point. Like K, the Puska et al. embedding curve for Ca is very
slightly above the covalent curve and is mainly an extrapolation in the zero density.
As in the case of K the covalent embedding function fills in the gap in the Puska et al.
embedding function.

Moving now to Fe we see in Figure 7 that in the covalent embedding curve the
smooth interpolation between the diatomic and bulk regions is quite remarkable. We
were able to retain many more diatomic points (e.g., note the last diatomic point
relative to the first vertical arrow) without any loss of smoothness. We were even able
to retain the 105% lattice value in the bulk region as well. We also see a dramatic
transition in the ionic character of Fe in jellium indicated by the increasing separation
of the covalent and Puska et al. embedding curves as the density is increased. The
increased density results in a lower work function for jellium suggesting that Fe is
slightly negative in jellium at such densities. Since there are a number of Puska et al.
points in the region of interest the bulk calculation can be considered reliable.

Finally we examine the embedding functions of Ni in Figure 8. We see that the
covalent embedding function is above that of the Puska et al. embedding function
throughout the whole range of densities in contrast to that seen in Fe. Even though
they both have the same electronegativities the Ni atom has a greater tendency to fill
its 3d shell than Fe does. In the case of Ni we had to again truncate the high density
diatomic and low density (>100%) bulk contributions to the embedding curve to obtain
a smooth interpolation of the diatomic and bulk regions. Again the bulk calculation
can be considered reliable as there are plenty of Puska et al. points in this region.

The covalent embedding functions of both Cu and Mg were presented in Paper III
where the same procedures as above were carried out. The characteristics seen for
these two metals are very similar to Ca for Mg and Ni for Cu. In the case of Cu the
Puska et al. and covalent embedding function were very close indicating only a very

small ionic interaction of Cu in jellium.
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Fig. 8. Same as Fig. 3 except for Ni

3.3. Surface Energies and Relaxation
As described previously, an accurate calculation of the bulk cohesive energy and
lattice constant requires the use of the covalent embedding functions. With these
functions at hand, we can predict a number of properties of the metal, and in this
subsection, we have calculated the surface energies of a number of perfectly
terminated low Miller index faces of Na, Mg, Al, K, Ca, Fe, Ni and Cu from Egs. (7-8).
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Later, we will consider the multilayer relaxations of a select few of these surfaces, but
we emphasize that the surface energy is only slightly affected by such relaxation.

As in the calculations for bulk systems, the total number of atoms must be large
enough such that the electron density sampled by the focus atom in each layer is
unaffected by the addition of more atoms. In addition for surfaces, the summation in
Eq. (8) over the energy of each layer must be converged with respect to the number of
layers. For the closely packed surfaces, it was found that only 4 layers were needed
for convergence of Eq. (8) to be obtained while, for more open surfaces, 5-6 layers were
needed. In all cases the total number of layers in the system was constrained to 2n+1
where n is the number of focus layers indicated above. This ensured that the energy
of the n' focus atom was equal to E_, within numerical accuracy.

Before discussing the results we feel that a few general points concerning the
various contributions to the surface energy is in order. First, we expect the embedding
energy contribution to be negative since the embedding energy repulsion is smaller
due to the lowered electron density at the surface relative to the bulk. This also
implies that the more open the surface is, the more negative this contribution will
become. Second, we expect that the coulombic contribution will be positive and
dominant since the surface atoms have completely lost the longer range electrostatic
interactions with the atoms above the plane of the surface. Note also that the more
open surfaces will have a larger coulombic energy contribution than the more closely
packed surfaces. The trend of the correction energy contribution is difficult to predict
but we do expect that it will be relatively small for the simple free electron like
metals.

In Table II we show the CEM predictions for the surface energies along with its
energy components (with obvious notation) for the low index faces of various metals.
Due to the unavailability of experimental data on isolated surface planes direct
comparison is only semi-quantitative. In general though, very good agreement with
experiment is obtained for almost all of these metals and if the experimental data is
assumed to be mainly for the most close packed surfaces, the predictions are nearly
quantitative. One also notes immediately the difference in magnitudes for the simple

metals as compared to the transition metals. Also, as expected, the trend of increasing
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surface energy with increasing openness of the surface is seen for these cases. During
the calculations we also noted that the contributions to the total surface energy arose

from deeper layers for the more open surfaces.

Table II Calculated surface energies and energy components in J/m? of the
low-index-surface faces

CEM Other  Exp?
Okhom Oy Ocor Orot theory

Na 100 -0484 0570  0.053  0.139 0.2702
110 -0407 0484 0069 0.147 0248  0.261
111 -0473 0583 0048 0158  0.305

Mg 1000 -1.403 1.999 0.048 0.643 0.629b 0.785

Al 100 -4.061 5.456 -0.160 1.230 1.70 b
110 -4.275 5.812 -0.183 1.353 2.964b 1.143
111 -3.732 4.938 -0.110 1.096 0.852

K 100 -0.306 0.383 0.013 0.090 0.16 b
110 -0.270 0.322 0.029 0.081 0.147b 0.145
111  -0.304 0.386 0.013 0.095 0.176

Ca 100 -0.866 1461 -0.017 0.578 0.615{:
110 -0.920 1.563 -0.020 0.622 0.737b 0.578
111 -0.795 1.307 0.010 0.523 0.472

Fe 100 14970 17.637 -0.135 2.429
110 -12.651 15.245 -0.105 2.489 2.417
111  -15.106 17.978 -0.181 2.690

Ni 100 -13.106 15.935 -0.207 2.622 1.580°
110 -13.935 17.073 -0.259  2.878 1.730°  2.380
111 -11.899 14596 -0.135 2.561 1.450°

Cu 100 -9.731 11775 -0.321  1.722 1.280°
110 -10.350 12551 -0.388  1.813 1.400°  1.790
111 -8.756 10.640 -0.259 1.625 1.170°

a Average of a polycrystalline surface, ref. [39].

b Variational jellium calculations with weak ion pseudopotentials for
nuclear core roles from ref. [40].

€ Embedded-Atom-Method results from ref. [23].
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This trend agrees with the experimental finding that multilayer relaxations can occur
for the open surfaces while for the more closely packed surfaces the relaxation is
limited to the top layer and in some cases the second layer as well. We shall have
more to say about this aspect of the surface energy and relaxation.

In comparison to the variational jellium with ion co : pseuclopotential model
results of Sahni et al. [40] we note that agreement is " .ot very good for Na,Al and K
where CEM consistently underestimates the surface energy. This 1s especially true for
Na and K. Even then, recall that their calculations were a variational treatment of
the surface and thus would represent an upper limit on the surface energy of these
simple metals. Comparison to the embedded-atom-method celculations [23] that
included planar relaxation for Ni and Cu shows that EAM considerably
underestimates the surface energy. EAM can be considered a simpler CEM method
without the correction terrs and with parametrized forms for the homogeneous and
coulombic energy terms. Since O, is negative, its neglect would increase oy, and
thus the errors in EAM must come from parametrizing the homogeneous and
coulombic energies.

Of the metals studied in this paper the cases of Na and K show calculated surface
energies that are in significant disagreement with both experiment and Sahni et al.
To understand why this occurs we examined more closely the embedding energy
contributions and noted that the top layer atoms of any metal sample a jellium density
that is between the last diatomic point and the first bulk point as seen in Figures 3-8
of the embedding functions. As mentioned in the previous section this area of the
embedding curve is the least known due to the unavailability of experimental data for
systems that would have sampling densities in this region. With this in mind a
quantitatively accurate calculation of surface energies would support confidence in the
universality of the embedding function.

For Na we find that the jellium density for the top layer atoms correspond to a
point just below the upward hump of the embedding curve, thereby causing the
embedding energy for these atoms to be artificially lowered relative to the bulk. This
lowered embedding energy would result in a more negative surface energy contribution

and thus tend to lower the total surface energy for sodium. Because of this we feel
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that in order to describe accurately the Na surfaces we need to have a much smoother
embedding function in this region of the surface density. This non-smoothness, we
believe, may be a result of the restriction to non-polarized atom densities which will be
more severe for low atomic number atoms. By contrast, for K such non-smoothness for
the embedding function does not occur. But we do note that the correction energy
contribution is significantly less for K than it is for Na and the magnitude of the
difference between the experimental and CEM results is not very large.

For the rest of the metals there are no dramatic deviations from experiment. We
see that the coulombic contribution to the surface energy is indeed dominant and that
the correction energy contribution is non-negligible (= 10 - 20% of 6, ) and negative
for the more inhomogeneous transition metals, and also surprisingly for Al as well.

Now we examine in detail the multilayer relaxations of some of the surfaces
studied above. The more closely packed surfaces will bu studied first leading into
more open surfaces where large relaxations are expected to take place and to extend
deep into the subsurface layers.

The Al(111) surface has been studied experimentally a number of times with nearly
all results indicating an expansion of only the top layer, with values ranging from
Ad,,=3+2% [41] to Ad,=0.5+0.5% [42]. There is one instance where a very large
contraction, Ad,,=-7.7+2%, has been observed [8]. A recent theoretical study [18] has
reported a slight contraction, Ad,,=-0.4%, while we have found a larger top layer
contraction, Ad,,=-3.0+1%. To see if an expansion is possible for this surface we
allowed small expansions of the first interlayer spacing, but this always yielded a
larger surface energy compared to the ideal surface.

In Figures 9a-d we show a plot of the CEM energy components ( AE (ALn), V2
IAV,, AG; and the sum) for each layer-atom from Eq. (9) for the ideal and contracted
surface of Al(111). Examining these plots one notes immediately that the largest
changes as a result of the contraction are in the embedding and coulomb energies.

The embedding energy becomes more repulsive due to the increased electron density
during contraction, but at the same time the coulombic at.raction between these layers

increases due to the decreasing separation.
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Also note that the correction energy in Figure 9c ends up being slightly more
repulsive for this surface indicating that the electron gas density is more
inhomogeneous after contraction has occurred. The potential per layer-atom shown in
Figure 9d indicates that even though the individual energy components change
significantly during relaxation, these changes tend to cancel. Indeed the minimized
surface energy for the contracted geometry is 1.076 j/m2 compared to 1.096 ym2 for
the ideal surface. This change in surface energy is so small that it pushes the limits
of precision of our calculations. In view of this difficulty, a smaller contraction
certainly could be possible. For larger changes in the surface energy, this will not be a
problem, and it will be seen next that the slightly more open (100) surface falls into
this category.

We show in Table III the results of the multilayer relaxation of A1(100) in
comparison to experimental values. The correct direction of relaxation is predicted but
again the magnitude is much larger than is observed experimentally. Also note that
we find that the second interlayer distance has significantly expanded where the
experimental study seemed to have not take into account or observed a possible
relaxation of this spacing.

Table III Multilayer percent of bulk relaxation of A1(100), Fe(100), and

Ni(100)
Al B} Fe Ni

CEM EXP. EM?2 CEM EXP. CEM EXP.
Ad, % -50 -22° .30 15 -1.0° 35 -3.24
Ad,y,%  +35 00 0.0 +05 0.0 +2.0 0.0
Ad,, % +05 00 0.0 00 0.0 00 0.0
e 1.230 2.461 2.621
o, 1.158 0.830  2.399 2.320
8 Ref. [25].

b This is an upper limit to the contraction as provided in ref. [8].
In ref. [7] a value of -1.5% is reported.

€ Ref. [10].

4 Ref. [9].

€ Surface ene.gy for the ideal surface in j/m2.

f Surface energy for the relaxed surface in j/m2.
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To see if this expansion effects the top layer contraction we allowed only the top layer
to relax with the result being the same, Ad,;,=-5.0% contraction, indicating that for this
surface the magnitude in relaxation of the top layer is independent of the relaxation of
the second or deeper interlayer distances.

In Figure 10 we show the components of the energy contribution to the cohesive
energy for each layer-atom. For the top two layers, the embedding energy has
increased, but the expansion of the second interlayer spacing leads to a significantly
lowér electron density for the third layer atoms which results in a lowering of their
embedding energy. The analogous behavior is also apparent for the coulomb and
correction energies. Note that the magnitude for these changes in the first and third
layers are almost the same but opposite in direction. Inspection of Figure 10c shows
that the correction energy has increased with relaxation for the top two layers and
then has decreased dramatically for the third layer. The increased repulsion seen in
the correction for the first two layers seems to be a characteristic of Al surfaces and
will be seen later to reflect the lack of 3d electrons.

Although the change in the surface energy is not very large in total, the variation
in the potential per layer is much larger than for Al(111). From Figure 10d, we see
that the potential has been lowered in the top and third layer atoms. The contraction
between the first two layers results in a lower first layer potential while the second
layer potential is raised, and the latter is lowered again by expanding the distance
between the second and third layers. This decrease in interaction does not however
raise the potential of the third layer over that of the ideal surface, but on the contrary
is more stable after relaxation. Closer inspection shows that while the expansion
between the third and second layers has decreased the attractive coulomb interaction,
it has also decreased the embedding energy by a slightly larger amount. This feature
along with the decrease in the correction energy for this layer accounts for most of the
lowering in the layer potential. Through these plots we are able to see a simple
picture of the oscillatory behavior of the relaxation process beginning to appear.
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Next, we show in Table III the results of the multilayer relaxation of Fe(100). We
find very good agreement with experiment but, as can be seen, the change in the
surface energy is small enough that the accuracy of the calculations might be in
question. Indeed, during the analysis the surface energy oscillated a considerable
amount within this range and it was found that an expanded first interlayer distance
was more favorable than the ideal surface but not the contracted surface.
Examination of Figure 11 shows that all the energy components remain essentially
constant during the contraction, and therefore not much can be said about this surface
at this time.

We also show in Table III the results of the multilayer relaxation of Ni(100)
finding very good agreement with experimental results. While Ad,,=-3.5% in both
studies, we find a corresponding expansion of 2.0% for the second interlayer spacing.
The experimental study did not mention this possible expansion, and when only the
top layer were relaxed we still obtained Ad,,=-3.5% . This indicates that as in Al the
relaxation of the top layer seems to be rather independent of the relaxations of other
layers in the subsurface. The energy of relaxation for this surface is very large and
thus the results can be considered very reliable since this energy is well outside the
precision limits of the calculations.

In Figure 12 we show the energy components for this surface as a function of layer.
s a result of the contraction we see the expected increase in the embedding energy for
the top two layers, and also the expected corresponding decrease for the third layer
atoms due to the expansion. The coulomb energy shows the same trend as Al(100) but
now the correction energy decreases upon relaxation for all the layers, in contrast to
the oscillatory behavior that is seen for the same Al face. Despite this difference the
potential in Figure 12d again reveals the oscillatory behavior of the relaxation process
as explained in detail for the Al(100) surface. '

Earlier we mentioned that the increase in AG; with decreasing Ad,, for the first two
layers in Al(111) and Al(100) was due to the lack of ’d’ electrons. To confirm this we
removed the 3d shell electrons from Ni by contracting them into the nucleus and

thereby reducing the atomic number by eight.
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Using the Puska et al. embedding function, we found a=7.3 bohr and E_,=2.8 eV
resulting in an expanded and weakly bound solid. This clearly indicates the
significant bonding nature of the 3d electrons. Calculations for the ideal and relaxed
surfaces showed that the correction energy now increases upon relaxation and exhibits
the oscillatory behavior as observed in the Al surfaces. This indicated that the 3d
electrons are an important factor in the difference between the relaxation process in
simple vs. transition metal surfaces. A similar finding occurred if we did not use the
Puska et al. embedding function but instead created a new covalent embedding curve
using the same experimental diatomic and bulk data as before in part B of this
section.

Returning to computations of surface relaxations, we consider the more open
fce(110) surface for both Al and Ni. The ideal surface energy seen in Table II is much
larger than for the fcc(100) face, and thus we expect the multilayer relaxations to be
more pronounced. In Table IV we present the CEM results for Al(110) in comparison
to experimental data and theoretical EM [25] and SCF-LD [12] calculations. We
obtain very good agreement with experiment and relatively good agreement with the
self-consistent calculations for all interlayer spacings. In comparisbn to the EM values
we find that CEM is more sensitive to the relaxation process and that the surface
energy of the relaxed surface is much more in agreement with that seen by the SCF-
LD calculations and experiment. The energy of relaxation is small but, keeping in
mind that the surface area of the unit cell is quite large, is none the less large enough
to lie outside the precision limits in the calculations.

During the analysis we also allowed only the top layer to relax obtaining a Ad,,=-
10% contraction, again indicating that the top layer relaxation is relatively
independent of other interlayer relaxations. The situation is quite different for the
remaining layers where large correlations between the relaxations were observed. The
relaxation of the second interlayer spacing was difficult to determine without a
corresponding contraction of the third interlayer spacing which in turn was dependent
on the fourth interlayer spacing expansion. Basically, since the surface is so open the
interactions between layers becomes more sensitive to changes in the local

environment of atoms in each layer.
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Table IV Peroent of bulk multilayer relaxatlon of Al(110) and Ni(110)

AL(110) | TNi(110)

CEM  SCF-LD? EMP Exp® CEM  Exp.
Ad, % 95 -6.8 70 -86:08 -95 -9.0%1.0 -8.7°
Ad,, % +55  +35 +10 +50%11 +4.0 +35:l5 +3.0
Ad,, %  -15 2.0 16+12 -15 -0.5
Ad;% +1.0 +1.6 +1.0
of 1.353 =12 2.879
R4 1.265 1.09 0.883 2.592

2 Ref. [12] indicated relaxation energy of =10meV.
b Ref. [25].

€ Ref. [1].

d Ref. [4].

© Ref. [43).

f Surface energy for the ideal surface in j/m2.

€ Surface energy for the relaxed surface in j/m2.

The above correlation can best be seen by examination of Figure 13. The
embedding energy shows an increase for the top two layers but a decrease for the
third and fourth layers. By contrast the coulomb energy is nearly constant after the
first two layers, while the correction energy decreases after the first two layers. The
plot of the potential in Figure 13d again reveals the oscillatory behavior of the
relaxation process. When the top layer contracts so much, the second layer responds
by increasing d,; in order to greatly decrease its interaction with the third layer. Now
the third and fourth layer atoms compensate for this loss of interaction by contracting
the third inter-layer spacing. This cycle continues in a decreasing manner as the
layers progress inward towards the bulk.

For the relaxation of Ni(110), we present in Table IV a summary of the results

from CEM in comparison to experimental data.
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As in the case of Al(110) we obtain excellent agreement for the top two layers whereas
the relaxations for the third and fourth layers were either not experimentally studied
or not detected in the ref. [4] while in ref. [43] a very small contraction of the third
interlayer spacing was reported. The calculated relaxation process showed a similar
correlation between the relaxation of the layers as observed in Al(110). A plot of the
energy components for Ni(110) is shown in Figure 14 and comparison to Figure 13 for
Al(110) shows qualitatively similar features for both the embedding and coulomb
energies in the top two layers with differences beginning in the third layer.The
embedding energy for the third layer in the relaxed geometry is now larger than that
of the ideal surface for Ni(110) whereas the opposite is true for Al(110). This feature
may be a result of a smaller expansion in the third inter-layer spacing for Ni(110)
than in Al(110). The most striking difference though lies in the correction energy,
where all the layers in Ni(110) lower their respective correction energies as a result of
the relaxation. This is especially true for the third and fourth layers. The resulting
sum of the energy components yields the potential in Figure 14d. We see that the top
layer potential is lowered while the second layer stays relatively stable. But
surprisingly, the third and fourth layers give significant contributions to the relaxation
process as reflected by their respective potentials.

With the above calculations we can now draw some important conclusions about
the multilayer relaxation process. We have seen that the top layer contraction is
independent to a significant degree of the relaxation of the rest of the layers below it.
In contrast, the second inter-layer spacing expansion (if it is relatively large) is highly
dependent upon the relaxation (contraction) of the third-layer spacing. This feature of
the relaxation process can most likely be extended to the rest of the simple and

transition metals and studies are underway to determine if this is indeed true.
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4. SUMMARY AND CONCLUSIONS

Calculated cohesive energies for the second and third row metals were presented
using the corrected effective medium CEM method with the Puska et al. ¢/:bedding
functions for the atoms in jellium. It was shown that these embedding functions do
not provide an accurate description of the type of bonding occurring for such
homonuclear systems. In an attempt to describe the correct type of interaction we
have constructed (semi-empirical) covalent embedding functions using both the
experimental diatomic binding potential and bulk cohesive vnergies. These two
different types of systems determined different parts of the covalent embedding curve
and a smooth interpolation between the two was obtained. This feature supported the
postulated universality of this embedding energy as a function of the size of the
system. It was also seen that for the electropositive atom the covalent embedding
energy is lower than the ionic Puska et al. energy. This is in contrast to characteristics
of the electronegative atoms studied in Paper II where the covalent embedding energy
is larger than that of the Puska values.

We have presented the formalism for the calculation of the surface free energy of
an infinitely periodic 2-D metal surface within the CEM method. Within this method,
we used the covalent embedding functions to calculate the surface energy for a number
of second and third row metals. The energies were shown to agree very well with
experimental measurements and to predict the correct qualitative trend of increasing
surface energy with increasing openness of the surface. We then carried out
multilayer relaxation calculations of well known surfaces through minimization of the
surface energy. Very good agreement was obtained for most of the surfaces studied.
In our opinion these calculations are in general consistently more accurate and
complete than those of other models presented to date in their ability to correctly
describe the stability and structural features of various metal surfaces at modest
computational expeuse (e.g., determination of an energy for Ni(110) required 125
minutes on a RIDGE 3200 which is approximately three times faster than a VAX
11/780).

With the ability to accurately describe the metal surface, calculations are currently
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being carried out to determine the effect on relaxation of various chemisorbed atoms
as a function of the coverage. These results will be presented in a ruture publication
[44]. Also the method is being extended to include more complicated in-planar
reconstructions of the metal surface. Improvements in computational methodology are
being implemented which may greatly increase the speed of this method to the point
where simulations of crystal and cluster growth and roughening may become feasible.
If fundamental extensions can be developed to allow for a non-empirical correction
between covalent and ionic bonding embedding functions, the CEM approach offers the
real possibility of a consistent, accurate and fast computational scheme for the
determination of the interaction energies of a collection of different types of atoms
ranging from heteronuclear diatomics to large clusters of aundreds of atoms to bulk
solids.
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ABSTRACT

We employ the recently developed corrected effective medium method (CEM) to
study chemisorption of H and N atoms on low Miller index surfaces of Fe and W. The
binding energy, height and adsorbate induced surface relaxation is investigated as a
function of coverage via explicit treatment of the 2-D periodicity of an infinite surface
with an infinitely ordered overlayer of chemisorbed atoms. There is no use of the
approximation of a cluster model.

We find that the most stable site for both H and N on Fe(100) is the four-fold
center; for H on Fe(110) and W(110), both the long-bridge and three-fold center sites
are nearly equal in adsorption energy; for N on Fe(110), the three-fold center site is
most stable; and, for N on W(110), the long-bridge site is most stable. Thus, H and N
differ in their adsorption properties. Such differences are accentuated in the effect of
chemisorp:ion on surface relaxation. For example, the chemisorption of N induces a
strong coverage dependent outward relaxation of the Fe(100) top metal surface layer

distance while H induces a much smaller outward relaxation.
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1. INTRODUCTION

Extensive experimental study of H, [1-4] and N, [5-9] on Fe surfaces has occurred
over the past few years. A practical reason is to provide a better understanding of the
mechanisms involved in the production of ammonia over Fe catalysts in which the
dissociation of N, is thought to be the rate limiting step in the reaction process [10].
Theoretical research has lagged behind the experimental studies. To the best of our
knowledge, there are no studies of these dissociative chemisorption reaction energetics
using accurate first-principle or ab-initio methods. Such calculations are only now
beginning to appear for less demanding transition metals such as Ni, Cu and Pt [11-
14].

The theoretical treatment of atomic chemisorption is still a demanding problem
due to the complexity and size of extended systems. As such, accurate first principle
and ab-initio calculations are very few. Some examples include O/Fe(100) [15],
H/W(100) [16], H/Ni(100) [17,18], S,P,Cl and Li on Rh(001) [19], S,P,C and H on
Fe(001) [20] and Si/A1(001) [21]. In addition, there are cluster calculations for the
H/Ni [22,23], O/Ni [22-24], H/Pd [25], and O/Ag [26,27] systems. Semi-empirical
methods have been used more extensively and we just mention the relevant H/Fe
cluster results [28]. Several studies based upon simpler models of adsorbate-substrate
binding exist for H on metal surfaces, some of which can be found in refs. [29] and
[30]. For N on metal surfaces, these are non-existent to our knowledge.

In the present article, we try to build on the above studies by employing the
recently developed corrected effective medium (CEM) methoa [31-34] to study
chemisorption of H and N on Fe(110), Fe(100) and W(110). The binding energy, height
and adsorbate induced surface relaxation were investigated as a function of coverage
via explicit treatment of the 2-D periodicity of an infinite surface with an infinitely
ordered overlayer of chemisorbed atoms. A major focus was tn examine in detail the
effect that adsorbates can have on the structural geometry of the metal surface atoms.
In general, relaxations and reconstructions can occur, but in this study we focus on the
former.

The CEM theory was first presented in a one-body formalism in ref. [31], referred
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to as Paper I from now on, as a method to calculate the chemisorption binding
energies of single atoms on metal surfaces. The first fundamental idea, which
originated with the effective medium theory [29,30,35], is to replace the atom-surface
system with an effective medium, the atom embedded in jellium. The second idea in
Paper 1 is to provide non-self-consistent corrections due to coulomb and kinetic-
exchange-correlation energy differences between the effective medium and the real
many atom system. This CEM method is quite accurate for adsorbates which do not
interact too strongly with the substrate. However, it suffers from an inconsistent
treatment between the inert surface atoms (i.e., not embedded in jellium) and the
active adsorbate atom (i.e., embedded in jellium). In other words, it neglects the
changes in bonding in the metal due to the adsorbate.

Removal of this inconsistency is provided by the N-body formalism in ref. [32],
referred to as Paper II. In this theory, every atom in the system is embedded in an
appropriate jellium whose density is determined by the remaining atoms. Again, non-
self-consistent corrections due to coulomb and kinetic-exchange-corrilation energy
differences are calculated. Further extensions to bulk [33] and surface [34] systems,
referred to as Papers III and IV respectively, have also been presented. The CEM
method was shown to be accurate and reliable in its ability to describe and predict
surface relaxations in Paper IV. In the present paper, we have extended the method
yet again to include adsorbates on a metal surface.

This paper is divided into four sections with two major purposes in mind. In
Section II, we develop the formalism to calculate the binding energy of an ordered
layer of adsorbates on metal surfaces within the CEM method. This derivation uses
previously developed CEM energy relations for extended surface and bulk systems.
Section III includes a brief presentation of CEM results for the diatomics, HFe, NFe,
HW and NW and extensive results for H and N chemisorption on Fe and W surfaces,
including binding energies and adsorbate induced surface relaxation. Also within this
section, results for the clean surface relaxation are discussed and related to those for
the adsorbate covered surface. Following this, Section IV contains a summary and

conclusion of the method as applied to chemisorption.
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2. THEORY

The major developments, and illustrative applications, of the CEM method have
been presented previously in Papers I-IV [31-34] and the reader is encouraged to refer
to these papers. We start from the basic CEM relation for the interaction energy of N-
atoms, as developed in Paper II:

N
AE({A, 1) =S AEfA;n) + AV, + AG({AD) (1)
-1
where
N
AG{A ) = G(Y_A) - Y [GA+n) + G(n)] (2)
i=1

A, represents the i** atom in the set of atoms {Ay/ in a specified geometry. The first
term in Eq. (1) is the sum of the embedding energies of all the atoms in jellium, with
each jellium having an electron density n,, Each embedding function, AE,, should be
considered as a known function of the density, which we will discuss further later in
this section. The second term is a coulombic correction that Cescribes the different
electrostatic interaction among the atoms compared to that between the atoms and
jellium. Finally the last term describes the different kinetic-exchange-correlation
energy in the N-atom system compared to that of the atom-jellium systems. Both
corrections arise due to the difference between the homogeneity of the electron density
in the N-atom and atom-jellium systems. The energy functional, G(S), denotes the
sum of the kinetic, exchange and correlation energy density functionals of the electron
density for the system S. The energy density functionals we have used are the same
as described in Papers II-IV: Pade’ representation of the kinetic energy functional [36],
local exchange and correlation with the Gunnarsson-Lundqvist form [37] for the latter.
The latter are required by the use of the embedding functions of Puska et al. [38]
which were determined from SCF-LD calculations with local exchange and |
Gunnarsson-Lundqvist correlation functions.

From the fundamental relation in Eq. (1), we extended the formalism to include
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periodic systems in Papers III and IV. For an infinitely periodic three-dimensional
homogeneous crystal, the cohesive energy is

N
1

where
AG, -G, - [GA,+n,) - G(n,)] (4)

The last term V,; of Eq. (3) is the pairwise coulomb interaction between atoms b andj.
The subscript "b" refers to any one bulk 'focus’ atom in the system. The evaluation of
G, in Eq. (4) requires an integration over the Wigner-Seitz cell of atom b (see Paper
II).

For a two-dimensional surface of a monatomic crystal, the basic idea is to use the
fact that each atom in a particular layer is identical to any other atom in the layer.
Thus, for surface structural energies one simply calculates the cohesive energy of one

focus’ atom in the i* layer as;

AE,- AE,(A;n) + AG, + %2 Vy 5)
Jo

The evaiuation of G, for surface and near-surface atoms involves an integral over a
generalization to the Wigner-Seitz cell of atom i: one integrates over all spatial
locations which are closer to atom i than to any other atom. With this formalism the
task of calculating the energy of an infinite N-body surface system is reduced to a
finite calculation over the layers of a surface system. We have found that Eq. (5)
converges with 3-5 layers for the relatively close packed surfaces studied in Paper IV
and in this paper. For very open surfaces, the summation will converge more slowly
since many more layers lie close to the vacuum.

For chemisorption systems with an ordered and infinitely periodic overlayer, it is
not each surface atom but each unit cell of the chemisorbed overlayer which is the
periodic unit. Thus the cohesive energy of the unit cell can be obtained through

calculation of the cohesive energy of each unique atom in a layer for the unit cell by
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use of Eq. (5). (This is exactly equivalent to using a larger basis associated with the
space lattice of the metal substrate, and will also occur for solids with more than one
atom per unit cell.) This allows a simple calculation of the binding energy of a
chemisorbed atom in an ordered overlayer without the use of a cluster model
approximation. We sum the energies of Eq. (5) for all the atoms in the unit cell (NV,)
for both the adsorbate covered and clean surface to obtain the adsorbate binding
energy as;

NI N.
E,- E AEu - Z AE, (6)
=0 i=1

The first sum is the energy of the unit cell for the adsorbate covered surface where i=0
is the adsorbate atom, with one adsorbate atom per unit cell, and where i=1,N,
includes the metal atoms. The second sum is the energy of the clean surface with the
same unit cell but only includes the metal atoms i=1,N,. We emphasize that each
summation requires a separate calculation since the embedding energies of the surface
change due to the adsorbate and since a full geometry optimization must be
performed. Thus, one cannot calculate E, directly.

The question of the choice of the jellium densities for each embedding energy now
arises. In Paper II, we have shown that an elegant solution exists in which the
correction energy, AG, is minimized with respect to all the densities {n,}. This yields
the CEM jellium density,

N
g‘: [nE)n()d7 G
zzl

n,-

where Z; and n( _r')J are the atomic number and atom electron density, respectively.
The integral in Eq. (7) is over all space with the electron densities centered on atoms
A, and A, respectively. It is thus an overlap of electron densities that determines n,.
Finally, we must specify the embedding function. There are two distinct iypes of
embedding energies available. The first is provided by first-principle SCF-LD
calculations of Puska et al. [38] on atom-jellium systems. The second is constructed
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semi-empirically from experimental binding curves as detailed below following papers
III and IV. These are denoted by AE, and AE_, respectively. Papers II-IV suggested
that the Puska et al. embedding energies describe an ionic interaction of the atom in
jellium. For systems with a single type of atom, a different embedding energy function
must be used to reflect coriactly covalent or metallic bonding, thereby labelled AE,.
The AE_ function for N is presented in Paper II while that for Fe is presented in Paper
IV. For easy reference, these are reproduced here along with introducing the AE,
function for W.

The H and N covalent embedding energy curves are constructed from Extended
Rydberg [39] and Morse diatomic potentials [40] as discussed in Paper II. For the Fe
system, the low density region of the embedding energy curve is constructed from
Morse potentials fit to diatomic data [41]. The higher density region is generated from
a Morse expansion (i1 the lattice constant [42]) of bulk data that includes the lattice
constant, cohesive energy and the bulk modulus {43]. The AE, curve for W is
constructed as for Fe except that no diatomic data is used. Although first principles
relativistic calculations [44] exist, we do not use these since there is no real evidence
that they are of sufficient accuracy. For the lower density region of the embedding
curve we instead rely on a smooth interpolation of a fourth order polynomial in the
density between the bulk points and the zero embedding energy at zero density. The
lack of good information about the low density area of the W covalent embedding
energy function may have an effect on the results. This is because the surface atoms
have an overlap embedding density between the bulk and diatomic limits of the
respective metals.

We present in Figure 1 the AE, and AE, functions for H, N and Fe; for W, only AE,
is shown since AE, is not available. From Figures 1a and 1b one can see that the H
and N embedding functions have minima that are negative. This phenomena is
characteristic [38] of electronegative atoms. The curves for Fe and W in Figures 1c
and 1d by contrast show no minima and increase with density much faster than do H
and N.
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AE, for H continues to decrease at high density; this occurs because AG remains
nearly constant while the coulomb integral becomes more repulsive than the binding
curve, and the sum of the three terms must equal the binding curve [32]. This
behavior is unique to H because the difference between the H, molecule and the H-
jellium system is particularly large. The differences for the N and Fe are less with
both types of functions in qualitative agreement. Quantitatively, we note that use of
the Fe AE, would yield a coutracted and overly bound Fe of £24.75 a.u. and AE,,=7.52
eV compared to the experimental values of a=5.42 a.u. and \E.,=4.28 eV [43] which
are duplicated by use of AE.. A smaller overestimation of the binding energy also
occurs for full SCF-LSD calculations [45] but as in most variational methods, the bond
distances are much better.

One feature of all the embedding functions in Figure 1, except AE(H), is
particularly interesting, namely the near-linearity of the function at high density. In
this case, the embedding energy is nearly pairwise additive since the density on the i*
atom is a summation over pairwise overlap in Eq. (7). The two body potentials will be
extremely complicated however since the electron density of each atom is represented
by many Gaussian or Slater type functions. For example, in W there are 36 s-type
and 26 p-type Gaussians used to represent the electron density. Thus, there are 1953
unique terms in both the overlap and coulomb integrals, which is why one does not
want to utilize empirical two body functions as is done in the EAM method [46].

For the electron density of the i atom, we have used Slater-type atomic Hartree-
Fock densities [47]. We then fit an even-tempered Gaussian basis [48] to the atomic
electron densities. This allows simple analytical evaluations of the coulomb and
density overlap [49] (i.e., for the sampled jellium density) integrals. The atomic
density around each atom was cut off at a radial distance such that R**(atomic
electron density) < 10° a.u. For all atoms in the present paper we utilized non-spin
polarized atomic electron densities, (except as noted), since it was seen in Paper II
that this yielded the most accurate energies within CEM.

A few computational details may be of interest. As described above, we do
calculations for the ’focus’ atoms in each layer of a periodic metal surface with a semi-

infinite overlayer of adatoms. We used a large encugh number of atoms around each
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’focus’ atom such that the ’focus’ atoms did not feel’ the edges of the lattice. To mimic
an infinite surface for a ’focus’ unit cell we swept out a volume of radius 1.5R where R
is th.e radial density cutoff distance as described above. Including atoms outside this
range changed the surface unit cell energy by less than 0.005 eV. We used a slab of
2n layers where the energy was calculated for the top "n" layers. A value of n=3
yielded chemisorption binding energies converged to 0.01 eV. This procedure led to
about 300 atoms interacting with each focus’ atom.

It is worthwhile to reiterate the six steps in a CEM calculation:

1) construct atomic densities from Gaussian fit to HF values;
2) compute density overlap and evaluate n; from Eq. (7);

3) evaluate the embedding energies;

4) compute coulcmb energies;

5) calculate AG;

6) add embedding and coulomb energies and AG, as in Eq. (5).

For each adcitional geometry only steps 2-6 are repeated. The most time consuming
step is "5" since it involves a three dimensional numerical integration over many
centers. We emphasize here that there are no adjustable parameters or empirical
constructs in this prescription once the embedding energies are known. These are
constructed solely from diatomic and bulk data on the respective homonuclear systems
or from the SCF-LD calculations of Puska et al. in ref. [38]. Any further calculation
on heterogeneous systems is predictive, as is any other homogeneous calculation (e.g.,

surface energy).
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3. RESULTS

In this section we first examine the binding potential of the diatomic molecules
HFe, HW, NFe and NW as a prelude to discussing the chemisorption systems. From
there we go on to discuss the results of our calculations on the chemisorption of H and
N on various Fe and W surfaces. We consider both adsorption on surfaces which aie
not allowed to relax further and on those which are allowed to relax in response to the
adsorption. These two cases are referred to as rigid and non-rigid surfaces,
respectively. The reader should clearly understand that a rigid surface does not buve
perfectly terminated bulk positions but instead retains the fully optimized positions of
the clean surface.

3.1. Diatomic Hydrides and Nitrides

As a severe test of the adequacy of the CEM calculated results, we have treated
the above diatomics. In contrast to SCF ab-initio and first principle methods, the
CEM method is least accurate for diatomics due to the significant deviation from the
zero'th order model of atoms-in-jellium [32]. The known problems with the behavior of
AE(A;n—0) = -IP(A) are also well illustrated by the errors in the curvature around the
PES minimum in a diatomic molecule [32]. However, it is possible to utilize a
comparison of CEM results with accurate diatomic information to gain some
understanding of the adequacy of the former, and that is our main purpose in this
subsection.

We have calculated the binding potentials of the HFe and HW molecules from Eq.
(2) by using the AE, function for H and the AE, functions for Fe and W. The Puska et
al. embedding function should be most appropriate for the interaction of a single H-
atom with a metal. Calculations using AE-(H) are not reported since this embedding
function is pathological in Figure la. AE, is used for the metals since we want to
compare binding i:. diatomics to binding on surfaces. In Table I, we summarize our
results for these two diatomics and compare to experimental data and other
theoretical results when available.
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In more detail, we note that the CEM binding energy for HFe is in good accord
with one ak-initio result but too small compared to the other. The CEM bond length is
too long by about 0.1 A or about 7%. The major inaccuracy occurs for the frequency,
which is only 62% of the experimental value. Both these errors are expected and are
discussed further later. For the HW system, experimental data as well as other
theoretical calculations are non-existent (to our knowledge). We however note that
calculations for WH; are in somewhat good agreement with our results for the bond
length. An important ol'servation is that HW is more strongly bound than HFe.

Table I Results for HFe and HW

rA) DeV)  aleml)

HFe 174 1.78 1040 CEM2
1.56 1.65 1821 Other Theory?
1.61 2.83 1605 Other Theory®

1.63 1680  Experimentd
HW 177 2.29 950 CEM2
WH, 1.80 2.8 CEM2

1.85 Other Theory®

8 H with Puska et al. embedding function and metal
with covalent embedding function.

b CASSCF/MCPF calculations [50].

€ CASSCF/CI calculations [51].

d Ref, [52] and refs. therein.

€ Relativistic W-H bond length in WH; [53].

We examine HFe and HW bonding in more detail in Figure 2. In HFe at the

equilibrium bond length, the coulomb and embedding energies contribute nearly
equally to binding while the correction energy is slightly repulsive. The negative total
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embedding energy arises because the H embedding energy is negative at these
densities, AE(H;n=0.0094 a.u.)=-1.3 eV, and because the contribution from Fe is
positive and small, AE(Fe;n=0.00036 a.u.)=0.30 eV. In HW, the embedding energy
destabilizes the bond while the coulomb and correction energy stabilize the bond; the
correction and embedding energy nearly cancel. The destabilization occurs because
there is a much higher electron density on H from W which causes the embedding
energy to rise much more quickly and is thus no longer in the negative region of the
embedding curve of H, AE,(H;n=0.0214 a.u.)=0.09 eV). The W embedding energy is
very similar in magnitude to that for Fe, AE(W;n=0.00028 a.u.)=0.33 eV. The
correction and coulomb energies in HW also change at a much faster rate than in HFe.
The inhomogeneity in the electron density for HW is more pronounced, leading to the
more significant ¢ntribution of the correction energy.

The above discussion leads to two important conclusions. First, even though the
same AE,(H) function is used for both HFe and HW, the CEM binding is substantially
different due to the differences in the embedding functions and electron densities of
the meta’s. It is not true that the binding potential reflects the H-embedding function.
Second, despite the differences in the individual components, the resulting total
binding potentials are very similar to each other. Both curves are very flat, making
the location of the minimum very difficult to determine and the variation of ~0.1A in
Tables I and II relatively insignificant. Bond lengths from these curves thus should
not be taken as a definitive test of the abili.y of CEM to describe well the HFe and
HW binding features. Furthermore, the inaccuracy of the frequency is a direct result
of the flatness of AE,(H) in the density range from zero up till the minimum. This
arises because AE,(H;n—0) — -0.8 eV, the negative of the electronegativity of the H-
atom, which is a significant fraction of the binding potential. This inaccuracy in the
asymptotic variation of the embedding energy with density cannot be corrected at
present, but does not cause significant inaccuracies in the values of the binding

energy.
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Although the Puska et al. embedding energy function accounts for a negatively
charged H atom in jellium it is not completely correct for H' interacting with Fe* or
W*. The approximation of not explicitly treating charge transfer also contributes to
the inaccuracy in the frequency [32). The lack of very good agreement with
experimental data for diatomics is a known consequence of the approximations in the
CEM formalism at present. Efforts to improve the situation are underway, but these
will undoubtedly lead to a more complex and time-consuming theory.

We have calculated the binding potentials of the NFe and NW molecules from Eq.
(2) by using both the AE, and AE, functions for N and the AE, functions for Fe and W.
We summarize our results in Table II and compare to experimental and other
theoretical results. In general, we find that the bond energies for these two molecules
are much larger than the hydrides. Also note that, as in the hydrides, NW is more
strongly bound than NFe.

The difference in binding energy calculated with the two N embedding functions is

small for NFe but not for NW. This can be understood by examining the N embedding

energy function in Figure 1. Note that AE,(N) is smaller thau AE(N) for electron
densities above 0.017 a.u. and that AE(N) rises at a slower rate. The electron density
overlap in NFe (at the equilibrium bond length) lies in the region about where the
curves cross. The increased atomic electron density from the much larger W atom
causes the overlap electron density to be larger on N which leads to a significant
separation between AE(N) and AE(N) with the former being less positive than the
latter. The difference in bond length for both molecules is also in accord with the
larger value of the Puska et al. embedding function for N. As for the hydrides, we
expect that the results using AE(N) are more accurate since this functional should
describe atom-metal binding.

In comparison to other results, we note that the CASSCF binding energy of
Siegbahn and Blomberg [54] is smaller that either of our values by over 4 eV. We do
not beiieve such a small value since, experimentally, several transition metal-nitrogen
diatomics have been isolated with significant binding energies tabulated [40]. Some
examples includ: CrN (=3.87 eV), TiN (=4.9 eV), and VN (=4.9 eV). If indeed the bond
of NFe is as strong as we predict here this molecule should be easy to isolate and
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study experimentally. The CASSCF bond length is larger than the CEM value by 0.19
A using AE,(N). It would be reasonable to assume that the CASSCF results are a
general reflection of the good bond lengths and poor energies provided by nearly all
ab-initio calculations involving transition metals with partially filled d-shells. The
comparison of our results of NW become even more difficult since not only are there no
experimental data, but to our knowledge, no theoretical data exists for thiz molecule.
However, we do observe that our bond lengths for NW are smaller by about 0.11 A as
compared with those of a molecular complex of W and N in ref. [§5]. Finally, we note
that the value of AE,(N;n—0)=-0.2 eV, which is only a small fraction of the binding
energy. Thus, we expect that the frequencies of the diatomic nitrides should be much

better than for the hydrides and also that the bond energy using AE,(N) is reasonable.

Table II Results on NFe and NW

r(A) DeV)  a(cml)

NFe 148 5°5 1320 CEM AE.2
1.40 5.11 1410  CEM AE.
1.67 0.90 Other Theory®
NW 156 7.93 1310 CEM AE2
1.47 9.04 1702 CEM AE.D
1.684 Experiment

8 N Puska et al. embedding function.

b N Covalent embedding function.

€ CASSCF results from ref. [54].

d pata for a complex of N and W from ref. [55].
" In Figure 3 we show a plot of the total binding potentials and its CEM energy
components of NFe and NW when using both N embedding energy functions. We
examine NFe and NW bonding ib more detail in Figure 3.
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In all cases at the equilibrium bond length, the coulomb energy contributes most to
binding; the correction energy contributes a smaller amount; and the embedding
energy is quite repulsive. The difference from the hydrides is characteristic of all
heavy adsorbates which have much larger coulomb attractions, substant{ally larger
correction energies and also much larger and repulsive embedding energies.The
binding energy curve is not determined by the N-embedding function since the
corrections play a central role.

3.2. H and N Atomic Chemisorption

Now that we have examined the diatomics, we consider the bonding of H and N
atoms on Fe and W surfaces. In Figure 4 we show the clean surface unit cells and the
adsorbate binding sites for different coverages on the BCC (100) and (110) surfaces.
Note that only a single type of adsoryition site is illustrated for each surface in Figures
4c and 4d, but we have considered other sites such as the bridge on BCC(100) and
short-bridge and three-fold sites on BCC(110) in this paper. The relative openness of
these surfaces varies only slightly. We provide binding energies and heights. We do
not report vibrational frequencies of the adatom on the surface for three reasons.
First, these values are sensitive to the order of the polynomial used to represent the
binding energy variation with height. Second, as discussed for the diatomics, the CEM
frequencies will generally be too small, especially for H adsorption, because of the
behavior of AE(H;n—0). Third, the motions of the surface layer and the adsorbate are
strongly correlated which requires many calculations of extremely high accuracy to
determine frequencies.

The effect of the adsorbates on the surface structure is examined in detail. In this
regard, we emphasize that the CEM theory automatically incorporates both direct
interactions between the adatoms via overlaps and coulomb integrals and indirect
interactions via overlap with common substrate atoms. The correction term includes

~ “both direct and indirect interactions and thus cannot be separated in such an easy
‘manner. - -

As indicated previously, two completely different types of calculations are

performed. The first set is for adsorbates on a rigid (R) surface where no relaxation of
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the surface is allowed. Calculations that allow the surface to relax in addition to
varying the adsorbate binding height are referred to as non-rigid (NR).

BCC
100> C110D

B

ad

(110)

Fig. 4. BCC clean and adsorbate covered surface unit cells (a) (100) (b) (110) (¢)
p(2x2), o(2x2) and p(1x1) on BCC(100). (d) p(2x2) and p(2x1)
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As a final general point of information, we note that, following the investigation on
the diatomics, the Puska et al. embedding functions were used for H and N while the
covalent embedding functions were used for Fe and W. .

3.2.1. H and N on Fe(100)

The chemisorption of H and N on the rigid Fe(100) surface for various coverages 6
is studied to help determine the extent of any interactions among the adatoms. The
lowest coverage is 6=0.25 monolayer arranged in a p(2x2) structure, then 0=0.5
monolayer in a ¢(2x2) structure, and finally the highest coverage of 6=1.0 monolayer
in a p(1x1) structure. These surface structures can be seen in Figure 4c.

Before studying the adsorbates on Fe(100) we first determine the extent of
relaxation for the clean surface as predicted by the CEM method. We find a
contraction between the first and second layers of 1.5% relative to the ideal bulk
terminated distance. There is no variation in the second to third layer distance.
These values agree with previous results by us [34] and experimental measurement
[5].

We find that both "I and N are most stable when bound in the four-fold center site
at all coverages. With the adsorbate in the center site, in Table III we show the
results for the minimum energy for rigid and non-rigid surfaces for all three coverages.
There are several important general points illustrated by these values.

1) The chemisorption bond is less than half as strong for H than N.

2) The amount of relaxation of the metal surface increases with both the
coverage and the binding strength of an adsorbate.

3) The induced relaxation of the metal surface increases slower than
linearly with coverage (e.g., 3.5%, 5.5% and 8.5% for 0.25, 0.50 and 1.0
N-layers).

“~4) The energy variations with coverage are almost certainly too small to be
predictable by the CEM method. - -
5) These binding energies do not contain vibraticn zero point energy which
is also likely to change considerably with coverage. For H, we calculate

the difference in energies between the center and bridge site binding to
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be 0.16 eV for p(2x2) and ¢(2x2) structures and 0.20 eV for a full
monolayer coverage. For N, the values are 0.50 eV and 0.76 eV. This
variation in bridge vs. center binding will modify the in-plane
vibrational frequencies and thus the zero-point energy contribution.

6) Dipole-dipole interactions are not included within the CEM method and
these will vary substantially with coverage.

Hence, we need to investigate the general characteristics of coverage dependence and
not focus on the small energy differences.

Table III Binding energies, heights and surface relaxation relative to the bulk
terminated distances for H and N adsorption in four-fold sites on rigid and
non-rigid Fe(100)

BE(eV) H(A) %Ad,, %Ad,s BE(eV) H(A) %Ad,; %Ad,

p(2x2)  2.73 077 -15 0 5.93 040 -15 00 R
» 2.73 076 0 0 5.96 036 20 00 NR
o(2x2) 272 077 -15 0 5.92 041 -15 00 R
2.73 073 1.0 0 5.94 034 40 -10 NR
5.93 030 65. 0.0 NR?
Expt 610 o027 7.7d
p(ixl)  2.74 078 -15 0 5.94 041 -15 00 R
275 071 20 0 5.96 032 70 -15 NR

Exptd  2.87
Other® 244 065 0 0

2 Calculations allowing only the adsorbate and first metal layer to move.

-

C Ref, [5].
d Ref. [1].
€ MINDO/SR calculations from ref, [28].
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The calculated binding energy for H/Fe(100) is about 0.15 eV smaller than the
experimental data. MINDO/SR calculations by Blyholder et al. [28] for H on a 12
atom Fe cluster, 6 atoms in the top layer and 6 atoms in the second layer, suggested
that H prefers to bind in the bridge site with a binding energy of 2.60 e\;' compared to
the center site of 2.44 eV. We obtain a bridge site binding energy of 2.57 eV in
excellent agreement with their results. Their use of a cluster model limits
comparison to our results. Some of the Fe atoms coordinated to H in the center site
had a lower coordination than some of the bridge site Fe atoms did, this is especially
for the case of the secend layer atoms that had no Fe atoms below them. Recent ab-
initio investigations [56] alsc indicate that for such small clusters one must carefully
prepare a wavefunction with the proper symmetry for binding to the adsorbate to
mimic the infinite surface results.

The calculated binding energy for N/Fe(100) is about 0.18 eV smaller than the
experimental data while the binding height is 0.07 A too large. Calculations using
other methods for N on Fe(100) have not been done to our knowledge.

The lack of agreement for the experimental binding energies and heights is most
likely due to the lack of a proper treatment of charge transfer from the surface to the
adsorbates. Clearly the CEM method is not treating everything correctly but is
retaining the most significant aspects involved in the interactions.

It is interesting to contrast the equal stability of the various coverages with the
fact that the experimental [6] saturation limit of N on Fe(100) is at a half monolayer.
First, once a half monolayer coverage is reached the metal surface is considerably less
exposed, and in particular the absence of several contiguous exposed Fe atoms
precludes dissociation of N, on the surface. The diffusion barrier is over 0.5 eV.
Second, as mentioned earlier, repulsive dipole-dipole interactions would increase
substantially past a half-monolayer.

Let us examine in detail the nature of the bonding of H and N with the Fe(100)

~ ‘rigid surface in the center site. Figure 5 shows plots of the center site binding

i)otentials and their energy components for ¢(2x2) H and N using their réspective AE,
functions. These curves are similar in shape but less rapidly changing than those in
Figures 2a and 3a for the diatomics.
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The correction energies are generally smaller in magnitude relative to the total
potential. This is expected since the electron density distribution for the adsorbate-
surface system is more homogeneous than for the diatomic, and AG is designed to
correct the embedding energy for these inhomogeneities. )

Along these lines, we determine the relevance of pair potential models for the
adsorbate-surface interaction. From the binding heights, we determine the bond
lengths of H and N to the nearest Fe atoms on the surface and in the second layer.
Using these bond lengths in the pairwise energies from the diatomic binding
potentials, we predict the chemisorption binding energies of H and N on Fe(100).
From a H binding height of 0.8 A, there are two very similar H-Fe bond lengths of 2.17
A and 2.19 A yielding a pairwise energy of 1.5 eV. With four top and one second layer
atom, this predicts a H adsorption energy of 7.5 eV vs. =2.7 eV for the full CEM
surface calculation. Clearly the bonding of H on the surface cannot be predicted
correctly by using pairwise diatomic potentials. For N-Fe, the bond distances are 2.06
A to the four nearest top layer Fe atoms and 1.83 A to the second layer, yielding
diatomic energies of 1.3 eV and 3.1 eV, respectively. This predicts a binding energy of
8.3 eV vs. =5.9 eV for the full calculation.

From the above results, we see that both H and N binding on Fe(100) is greatly
overestimated by pairwise additive models with predictive ability (i.e., one can always
fit a pairwise form to the CEM calculations after the latter are performed.) Many
body repulsive contributions to the adsorbate binding potential are very important,
and are due to the embedding and correction energies. This is why pairwise forms are
non-transferable. However, we do find that the N-Fe(100) pairwise form is in better
agreement with the CEM results than is the H-Fe(100) form. This can be traced to
the fact that AE,(H) varies non-linearly for densities around both the diatomic and
surface minima. By contrast, AE,(N) varies nearly-linearly for densities around both
the diatomic and surface minima; a linear variation means that the embedding energy
~ is proportional to the overlap which is in turn made up of summed pairwise overlaps.
’ Now we turn to analysis of the results in which the surface is alloWeﬁ to relax
upon adsorption of either H or N. On clean metal surfaces, experiment indicates that

large relaxations occur for the more open clean surfaces; these persist perhaps two to
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three layers down and exhibit oscillatory behavior (i.e., contraction of the top layer
followed by an expansion of the layer below it). The results in Table III provide the
first evidence for similar oscillatory behavior with an adsorbate covered surface: as the
adsorbate binding height contracts, the top metal layer expands away from the second
metal layer.

For p(2x2) H we observe a binding height contraction of 1.2% with a top layer
expansion of 1.5% from the original rigid surface calculation. Upon doubling the
coverage to the c(2x2) structure, the values are 5% and 2.5%, while for the full
monolayer they are 9% and 3.5%. In all calculations, H is never observed to induce
any relaxation in the second layer distance.

For N, the binding height contractions and top layer expansions are (10%, 3.5%),
(17%, 5.5%) and (22%, 8.5%) for the p(2x2), ¢(2x2) and monolayer coverages, ‘
respectively. At the higher coverages, the N induces a second layer contraction of 1%
and 1.5%, respectively. Thus, the N-atom induced changes are much larger than are
the H-atom changes, which is in accord with the much larger strength of the N-Fe
bonding.

For the ¢(2x2) N adsorption, the binding height of 0.34 A is in better agreement
(than the 0.41 A for the rigid substrate) with the experimental value of 0.27 A by
Imbihl et al. [5]. The expanded distance between the first and second metal layers of
4.0% is also in reasonable agreement with the experimental value of 7.7%, both with
respect to the ideal bulk terminated layer distance. However, we also find a
contraction of the second layer, a possibility which was not taken into account in the
analysis of the experimental data. To see the effect of this second layer contraction,
we performed calculations in which only the top layer distance was allowed to relax
with the second layer distance constrained to its ideal bulk value. In this case, we
find a 6.5% expansion in the top layer distance relative to the ideal structure and a
binding height of 0.30 A, in much better agreement with experimental data. These
* “valculations show a strong correlation between contraction of the second layer and the
’adsorbate binding height and first layer relaxation. As such, we suggést that further
experimental analysis should be done to include the possibility of contraction of the

second layer.
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In Figures 6 and 7, we plot the CEM energy components and their sum for an
atom in each layer of the surface. These plots provide insight into the energetics
before and after chemisorption of H and N on the Fe(100) surface. .

Let us first examine Figure 6 in detail for p(1x1) H on rigid Fe(100). Note that in
Figure 6a the embedding energy of the unrelaxed surface atoms rises slightly upon
chemisorption of H (due to an increased electron density overlap) while that for H is
negative. In Figures 6b and 6c, the coulomb and correction energies for the Fe layers
are lowered upon adsorption of H. Now, turn to the results for the relaxed surface.
The expansion of the top layer away from the second layer lowers the embedding
energies of both the first and second metal layers due to a decrease in the electron
density overlaps. This is opposed by the rise in the coulomb energies. In contrast, the
correction ervrgies are nearly unchanged. Overall, in Figure 6d the potential
(cohesive energy) of each layer atom shows that the second layer is slightly stabilized
upon relaxation while the first layer is essentially unchanged. Thus, although there
are very small changes in the energies, the relaxation induced by H seems to be driven
by the second layer Fe atoms increasing their interaction with H. Note slso from
Figure 6d that the H binding energy (=2.7 eV) is dominated by stabilization of the free
H atom (=2.0 eV or 74%) with smaller contributions from both the first (=0.5 eV) and
second (=0.3 eV) layers of the Fe.

The p(1x1)N/Fe(100) system in Figure 7 shows similar but much more pronounced
behavior of the energy components. First note that upon chemisorption of N the
embedding energy of each layer atom increases much more than for H chemisorption.
This is because N gets much closer to the Fe atoms on the surface and thus the
density overlaps are much larger. The coulomb and correction energies are lowered
considerably upon chemisorption of N. The changes in these energy components due
to the induced relaxation are also very similar to H but much larger in magn:tude.
The embedding energies are lowered; the coulomb are raised; and, the correction are
- J‘)nearly unchanged. It is now clear in Figure 7d that the second layer is stabilized
while the N atoms and the top Fe surface layer are slightly destabilizéd by the
induced outward relaxation.
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The myjor difference between the N and H adsorption is illustrated by Figure 7d: a
smaller fraction of the N binding energy comes from the stability (=3 eV or 50%) of the
N atom, with larger fractions from both the first (=2% eV) and second (=3/4 eV) layers
of the Fe. It may be surprising that the strong interaction between adsorbates and
the second substrate layer actually drives expansion. We hs.ve tezted this by fixing
the adsorbate on the bridge site and repeating the calculations. We find that raither
H or N induce relaxation of Fe(100). This suggests that when chemisorption occurs on
other surface faces where there is no second layer atom directly below the adsorbate,
or if the second layer atom - adsorbate distance is large, no induced relaxation should
be observed. We shall test this when we consider chemisorption on Fe(110) and
W(110).

3.2.2. H and N on Fe(110)

We now consider the slightly more close packed Fe(110) surface as shown in Figure
4b. Two coverages, p(2x2) and p(2x1) in Figure 4d are examined to determine possible
adsorbate interactions aund coverage effects on adsorbate induced relaxation.

As for the (100) surface we first determine the extent of relaxation of clean Fe(110).
We find that the top layer distance contracts by 1.5% relative to the ideal bulk
termination distance. This is in good agreement with the experimentally determined
[4] contraction of 1.5% + 1.5. It is this surface geometry on which rigid surface
chemisorption calculations are done. Later full relaxation of the surface is allowed.

We summarize in Table IV the calculated equilibrium binding heights, energies
and relaxations for rigid (R) and non-rigid (NR) surfaces. In general, we find that the
relative strengths of H and N binding on the (110) surfaces are weaker than seen on
the (100) surface. This is due to two features. First, the (110) is slightly more closed
than the (100) surface which implies that the cohesive energy of the surface atoms is
- Elarger on (110). Second, the lower coordination sites on (110) vs. the =5-fold
coordination on (100) surface inhibits slightly the binding of H and N compared to the
(100) surface. The larger change for N (0.26 eV or =4.3%) compared to H (0.1 eV or
=3.6%) between the two surfaces is in accord with the stronger N binding to
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subsurface Fe on the (100) surface, leading to a larger change in coordination for the
N. '

We find that H binds in both the three-fold center and long-bridge sites with
equal strength and does not induce any relaxation of the surface layers. While it may
appear that the N prefers the three-fold center site over the long-bridge site, we
should reemphasize the point that such small energy differences are likely outside the
accuracy of the CEM method. We do find that N induces a small amount of relaxation
that is weakiy dependent upon coverage.

Table IV Binding energies, heights and relaxation of the first layer distance o' H
and N on rigid /R) and nor-rigid (NR) Fe(110)

H N
BE(eV) H(A) %Ad,, BE(eV) HA) %Ad,
(2x2) center®  2.64 148 -15 5.68 101 -15 R
....b c—— e 5.69 1.00 -05 NR
(2x1) center® 2.65 148 -15 5.66 103 -15 R
. 5.67 102 0.0 NR
Expt. 0.90¢
(2x2) -bridge® 2.64 149 -15 5.66 104 -15 R
--b e 5.68 102 -05 NR
(2x1) 1-bridge® 2.65 149 -15 5.62 106 -15 R
.- e 5.64 103 0.0 NR

expt. 2.78d 6.03d

2 Site shown in Figure 4b.

.~ b Induced relaxation not observed.

C Ref, [4]. - -
d Ref. [8].
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The calculated bindi.ng energy for H/Fe(110) is about 0.13 eV smaller than the
experimental data [8], similar to the case on the (100) surface. Note though the
excellent agreement with the bond weakening between the two surfaces, 2.75-
2.65=0.10 eV for CEM vs. 2.87-2.78=0.09 eV for experiment. There has been some
discussion in the literature dealing with the preferred H binding site. Recent LEED
studies by Moritz et al. [4] indicate that H binds in the three-fold center site 0.90 A
above the surface at a temperature less than 270K. We predict a much higher binding
height of 1.48 A for this site. On the other hand, Bard and Erley [3] used HREELS to

_determine that H prefers the short-bridge site 1.49 A above the surface at 130K. We
predict a binding energy only 0.05 eV less in this site and a height of 1.62 A. Finally,
Bozso et al. [1] determined that the long-bridge site is most favorable for the H atoms
but did not predict a value for the binding height. Obviously there is considerable
disagreement on the assignment of the H binding site.

We are aware of only three other theoretical studies of this system. Using an
embedded cluster method Muscat [57] determined that the center site is most stable.
Later using a multiple scattering Xo theory [58] he determined the short-bridge site to
be most stable. Unfortunately quantitative data were not given. Ngrskov, using the
effective medium EM method [29b,59], reports a H binding energy of around 2.7 eV for
the most closed pack surface in the three-fold center site but unfortunately does not
indicate the equilibrium binding height.

We find that both the three-fold center and long-bridge sites have the same binding
energies and that the short-bridge site has a binding energy only 0.05 eV smaller.
Furthermore, we calculate that the H binding potential is flat as far as 0.45 A from
the long-bridge site toward the three-fold center site. Allowing the surface to relax
results in no changes in the above binding site preference. Based upon our
calculations alone, we would suggest that it is likely that any of these sites can be
occupied. The appearance of an ordered overlayer suggests that most likely the types

~ ~of interactions that we do not include may play an important role in determining an

'equilibrium site. - -

The lack of H induced relaxation for either coverage supports our prévious

discussion on the (100) surface. The H atoms are so far away from the second layer
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they do not significantly interact with these Fe atoms. With no strong interaction,
inducement of an expansion of the first layer distance spacing cannot occur.

The calculated binding energy for N/Fe(110) is about 0.35 eV smaller than the
experimental data, which is about twice the underestimate of 0.18 eV for the (100)
surface. Thus, the bond weakening between the two surfaces is predicted to be 5.94-
5.68=0.24 eV for CEM which is too large compared to the experimental value of 6.10-
6.03=0.07 eV for experiment. The larger underestimation of the binding energy for
(110) may indicate a slight adsorbate induced reconstruction. In addition, it indicates
that dipole-dipole interactions, directional bonding or magnetic effects may stabilize
the N/Fe(110) binding a little more than the N/Fe(100) binding.

As a simple test of the latter, we have repeated the CEM calculations utilizing a
maximally spin polarized d-shell occupancy of Fe. (The spin-polarization can be
included in the two limits within CEM but cannot be treated self-consistently since the
atomic densities must be specified for the CEM method.) Negligible changes in the H
binding resulted; for p(2x2)N/Fe(100) and p(2x1)N/Fe(110), the binding energy became
5.96 eV and 5.45 eV, respectively. Thus, the binding energy in Fe(110) is actually
decreased, leading to even worse agreement with the experimental change of 0.07 eV.
We believe that either directional bonding is more important in the N/Fe(110) system
or that a substantial contribution from surface reconstruction may occur.

When relaxation of the metal surface is allowed we observe that N induces a much
smaller relaxation of the (110) surface compared to the (100) surface. These small
sizes of relaxation are in good agreement with our previous explanation about the
driving force for adsorbate induced relaxation. Note that when N is in the long-bridge
site the surface relaxes virtually the same as the center site relaxation. This makes
sense since in both sites N is almost the same distance from the second layer Fe
atoms.

Due to the lower stability and lack of adsorbate induced relaxation of the Fe(110)
> “surface for both H and N adsorption, §ve do not show figures analogous to Figures 6
‘and 7. Instead, we just note a few details. First, only the top layer réspbnds
significantly to the adsorbate. Second, the H binding energy (=2.7 eV) is dominated by
stabilization of the free H atom (=2.2 eV or 82%) with smaller contributions from both
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the first (=0.4 eV) and second (=0.1 eV) layers of the Fe. For the N binding energy
(=5.7 eV), the analogous values are (=4.2 eV or 74%) with smaller contributions from
both the first (=1.2 eV) and second (=0.2 eV) layers of the Fe. '

It is also interesting to note the stability of the l-bridge site on Fe(110). This is
perhaps surprising since the second layer Fe is 2.03 A below the surface and thus does
not participate strongly in the binding. However, the participation is not negligible on
the energy scele of importance for site-to-site variation, as demonstrated in the above
paragraph.

From the above points, we can see why adsorbate binding on the Fe(110) surface is
weaker than on the Fe(100) surface. For Fe(100) both H and N interact strongly with
both the first and second layer and to a lesser degree with the third layer. On the
other hand for Fe(110), only the first layer interacts strongly while second layer
interacts in a weaker fashion. This also causes a much weaker effect on the surface
relaxation of the Fe(110) surface.

3.2.3. H and N on W(110)

Finally, we examine the chemisorptior of H and N on the W(110) surface. As for
the Fe(110) surface, we consider two coverages, p(2x2) and p(2x1).

First we carried out calculations on the clean surface to determine the equilibrium
structure before chemisorption. We calculate that the top layer contracts by 3%
relative to the ideal bulk termination distance. One experimental observation
indicates no relaxation [60] while another, more recent, measurement suggests a
contraction of less than 2% [61]. This is the surface structure that rigid surface
chemisorption calculations are done on. Later, relaxation of the surface is allowed to
determine the extent of adsorbate induced relaxation on the W(110) surface.

We summarize in Table V the calculated equilibrium binding heights, energies and

= “relaxations for rigid (R) and non-rigid (NR) surfaces. In general, we find that the

relative strengths of H and N binding on the W(110) surfaces are strohgiar than on the
Fe(110) surface by 0.22 eV and 0.75 eV, respectively. These differences are in
excellent agreement with the experimental values of 0.28 eV and 0.69 eV, showing
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that the CEM method is capable of a systematic description of binding to different
metals. We also find that H does not induce relaxation while N does induce a weak
coverage dependent relaxation of W(110). There is also a slight coverage effect on the
N adsorbate binding energies which is absent for H. Chemisorption of H does not
induce any relaxation of the surface but it is possible that H can induce small
reconstructions that may change the barrier height.

Table V Binding energies, heights and relaxation of the first layer distance of H and
N on rigid (R) and non-rigid (NR) W(110)

H N
BE(eV) H®X) %Ad,, BE(eV) H®X) %Ad,,

(2x2) center®  2.86 1.38 -3.0 6.44 0.98 30 R
..D — — 6.44 0.97 25 MR
(2x1) 2.86 1.37 -3.0 6.41 0.99 30 R
—— — — 6.42 0.97 15 MW
(2x2) l-bridge  2.87 1.36 -3.0 640 . 1.03 30 R
— — — 6.41 1.02 25 M
(2x1) 2.87 1.35 -3.0 6.37 1.04 .30 R
e e — 6.38 1.03 15 MW
experiment 3.06° 6.724

2 Site shown in Figure 4b.

b Induced relaxzation not observed.
C Ref. [62].

d Ref. [63].

Reconstruction of the (110) surface is not studied in this paper but it is well

~ “documented [64] that H induces reconstruction on the W(100) surface. -
] The calculated binding energy of 2.87 eV for H on W(110) surface fs a slight
underestimation of the experimental [62] value of 3.06 eV, just .as for the Fe surfaces.
Binding to the three-fold center site is favored over the long-bridge site by only 0.01
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eV, with the equilibrium three-fold center site in the unit cell located about 0.5 A from
the long-bridge. Experiments [65] indicate a long-bridge site binding but the short-
bridge site has also been postulated in the past (see references in [65]). We find that
binding to the short-bridge site is only 0.05 eV less stable, which makes it very
difficult to assign any permanent binding site for H on W(110).

This small barrier appears in disagreement with an experimental [66] diffusion
barrier of 0.20 eV that is weakly coverage dependent (increases with coverage).
However, a quantum simulation of the diffusion is necessary to see whether this is the
case. To help in such an undertaking, we present the binding curves for three
different sites in Figure 8 and provide the energy values in Table VI. We also include
data for H on Fe(110). At odds with a large diffusion barrier being intrinsic to the
binding site energy variation is the fact that it has been difficult in general to observe
experimentally ordered structures of H. Observations may be possible [67,68] at high
coverages of around a full monolayer, indicating that adsorbate interactions may play
a role in determining the equilibrium binding site for H atoms. We do not see any
significant evidence of adatom interactions for coverages at or below a half monolayer
but that does not mean they are not present at higher coverages. We did not do any
calculations at a full monolayer for the (110) surfaces. Furthermore, as discussed in
the adsorption on Fe(100), CEM does not treat dipole-dipole interactions and thus may
not be accurate at high coverages. A dynamical simulation of the diffusion would
utilize the potential in Table VI but should add on additional dipole interaction terms;
the strength of the dipole could be estimated from the coverage dependence of the
work function.

The calculated binding energy of 6.44 eV for N/W(110) is about 0.28 eV smaller
than the experimental data [63]. This underestimate is in accord with all the other
systems studied in this paper. As the coverage increases, the binding energy is
lowered by 0.03 eV to 6.41 eV. This difference is still too small to be interpreted as
* “evidence for a repulsive adsorbate interaction at half monolayer coverage.
Calculatxons using other methods for N on Fe(110) have not been done to our
knowledg:.
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We observe that N induces only a small relaxation of the W(110) surface, in accord
with our previous explanation about the driving force for adsorbate induced relaxation.
Note that when N is in the long-bridge site the surface relaxes virtually the same as
the center site relaxation. This makes sense since in both sites N is almost the same
distance from the second layer W atoms. The binding height is also very weakly
dependent upon coverage and about the same for the two sites.

Due to the lack of adsorbate induced relaxation of the W(110) surface for both H
and N adsorption, we do not show figures analogous to Figures 6 and 7. Instead, we
just note a few details as in the Fe(110) case. First, only the top layer responds
significantly to the adsorbate. Second, the H binding energy (=2.9 eV) is dominated by
stabilization of the free H atom (=2.0 eV or 69%) with the remaining contribution from
the first (=0.9 eV) layer of the W. Third, for the N binding energy (=6.4 eV), the
analogous values are (=4.3 eV or 67%) with smaller contributions from both the first
(=1.9 eV) and second (=0.2 eV) layers of the Fe.

The slightly stronger H bonding to the W(110) surface compared to the Fe(110)
surface comes from the top layer W atom stabilization of 0.9 eV being significantly
larger than the 0.4 eV of the Fe; the H-atom stabilization is actually smaller by 0.2 eV
on the W(110) surface. A similar explanation occurs for N in which the W is much
more stable by 0.7 eV while the N is slightly more stable by 0.1 eV, as compared to the
Fe(110) case. This interesting feature can be traced to a combination of two CEM
energy components. The first is the higher electron density overlap with the W atoms
compared to the Fe atoms. A higher electron density from W raises the overlap
density and results in a higher H and N embedding energy. The second is the
increased coulomb interaction of the adsorbates with W atoms. The combination of
the two results in a slightly weaker H and only a slightly increased N stabilization
energy. However, the coulomb interaction dominates for the surface stabilization and
this then dominates the change. Physically, this makes sense since it indicates that
~ “adsorption on different metals varies mainly due to properties of the metals and only
‘slightly due to properties of the adsorbates. . -
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4. SUMMARY AND CONCLUSIONS

‘We have presented an extension and application of the CEM method to the
chemisorption of overlayers. In the CEM method, the only flexibility arises from the
choice of embedding function. Covalent embedding functions were used for all metals,
as determined from the diatomic potential curve and the variation of bulk cohesive
energy with NND. The SCF-LD embedding functions of Puska et al. [38] were used
for the adsorbates. Thus the embedding functions used in all calculations were not
adjusted to reproduce any experimental data used for comparisons in this paper. We
calculated the relaxation of metal surfaces and then determined chemisorption
energies and binding heights on these surfaces. We also carried out calculations in
which both the surface relaxation and the adsorbate height were varied to determine
the true potential energy minimum.

Results for chemisorption energies and binding sites were in general agreement
with experimental data. However, the calculated binding heights and vibrational
frequencies were not always in agreement. The vibrations frequencies were never very
good and it is likely that without improvements the CEM method will never be able
obtain correct frequencies. These drawbacks should not detract us from the added
understanding the method can give us in chemisorption system. These calculations
showed that the method can be successfully applied to both clean and adsorbate
covered surfaces. In addition to providing a test of the CEM method, we determined a
number of points about adsorbate induced relaxation. First, N induced a larger
amount of outward relaxation of the Fe and W surfaces than did H. Second, Fe(100)
was observed to relax the most and revealed a strong coverage dependence on the
relaxation. Third, through detailed analysis of the CEM energy components and
binding energy potential for each layer atom in the unit cell we have developed a
simple rule for adsorbate induced relaxation:

- -

The interaction between the adsorbates and the second layer metal gtoms
drives the relaxation. In particular, the adsorbates’ binding height tends to
decrease in order to increase the adsorbates’ interaction with the second layer.
In response, the second layer forces the top layer to move away, leading to an
expansion of the distance between the top and second layers.
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This is very similar to our previous [34] explanation for the multi-layer relaxation of
clean surfaces.

This led to the prediction that induced relazation would not occur when either
there were no second layer atoms directly below the adsorbate or the adsorbate
binding height was large. Calculations on the Fe(110) and W(110) surfaces confirmed
the above prediction. Analysis of the calculations also showed that the lack of a strong
interaction (due to larger distances) of H or N with the second layer atoms resulted in
weaker binding of the adsorbate.

We believe these calculations are the first to predict the significant effects
adsorbates have on the structure of metal surfaces. Important effects are due not only
to the type of adsorbate atom but also to the local geometry of the adsorbate and
surface.

The CEM method has now been tested for both clean and adsorbate covered
surfaces leading to the conclusion that both structures and energies can be predicted
with good accuracy. This offers the opportunity for the study of a number of
important types of systems. Current work is directed towards calculations on the
chemisorption of metals on metais, in order to predict and describe the processes
involved in growth of thin metal films.



109

5. ACKNOWLEDGEMENT )
This work was supported by NSF grants CHE-8609832 and CHE8921099.



110

6. REFERENCES
(11  F. Bozso, G.Ertl, M. Grunze and M. Weiss, Appl. Surf. Sci. 1 (1977) 103.
2] J. Benziger and R. J. Madix, Surf. Sci. 94 (1980) 119. -
(3] A. M. Bar6 and W. Erley, Surf. Sci. 112 (1981) L759.

[4] W. Moritz, R. Imbihl, R. J. Behm, G. Ertl and T. Matsushima, J. Chem. Phys.
83 (1985) 1959.

[5] R.Imbihl, R. J. Behm and G. Ertl, Surf. Sci. 123 (1982) 129.

[6] | F. Bozso, G. Ertl, M. Grunze and M. Weiss, J. Catalysis 49 (1977) 18.
(7] G. Wedler, G Steidl and D Borgmann, Surf. Sci. 100 (1980) 507.

[8] F. Bozso, G. Ertl and M. Weiss, J. Catalysis 50 (1977) 519.

[9] M. Grunze, M. Golze, W. Hirschwald, H. -J. Freund, H. Pulm, M. C. Tsai, G.
Ertl and J. Kiippers, Phys. Rev. Lett. 53 (1984) 850.

(101 P. H. Emmett, "The Physical Basis for Heterogeneous Catalysis’ E. Drauglis
and R. 1. Jaffee, Eds. (Plenum Press, New York, 1975), p. 3 and references
therein.

[11] P. Siegbahn, M. Blomberg, I. Panas and U. Wahlgren, Theor. Chim. Acta 75
(1988) 143.

[12] 1. Panas, P. Siegbahn and U. Wahlgren, J. Chem. Phys. 90 (1989) 6791.
[13] J.E. Miiller, Phys. Rev. Lett. 59 (1987) 2943.
[14] H. Yang and J. L. Whitten, "Reaction of CH, with Ni(111)", preprint.
[15] S. R. Chubb and W. E. Pickett, Phys. Rev. Lett. 58 (1987) 1248.
[16] R. Biswas and D. R. Hamann, Phys. Rev. Lett. 56 (1986) 2291.
{177 M. Weinert and J. W. Davenport, Phys. Rev. Lett. 54 (1985) 1547.

" 18] C. Umrigar and J. W. Wilkins, Phys. Rev. Lett. 54 (1985) 1551, -

[19] P.d. Feibelman and D. R. Hamann, Surf. Sci. 149 (1985) 48.

[20] G. W. Fernando and J. W. Wilkins, Phys. Rev. B35 (1987) 2995.



[21]
[22)
[23]

[24)

[25]

[26]
[27]

[28]
[29]

[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]
. -[38]

[39]

111

P. J. Feibelman, Phys. Rev. Lett. 54 (1985) 2627.
I. Panas, P. Siegbahn and U. Wahlgren, Chem. Phys. 112 (1987) 325.

T.H. Upton and W. A. Goddard, III, "Chemistry and Physics of Solid Surfaces",
eds. R. Vanselow and W. England (CRC Press, Cleveland, Ohio, 1985), Vol. III.

C. W. Bauschlicher, J. Chem. Phys. 84 (1986) 250; Chem. Phys. Lett. 129 (1986)
586.

N. A. Baykara, J. Andzelm, D. R. Salahub and S. Z. Baykara, Int. J. Quantum
Chem. 29 (1986) 1025.

T. H. Upton, P. Stevens and R. J. Madix, J. Chem. Phys. 88 (1988) 3988.

A. Selmani, J. Andzelm and D. R. Salahub, Int. J. Quantum Chem. 29 (1986)
829.

G. Blyholder, J. Head and F. Ruette, Surf. Sci. 131 (1983) 403.

a) J. K Ngrskov and N. D. Lang, Phys. Rev. B21 (1980) 2136.
b) J. K. Ngrskov, Phys. Rev. B26 (1982) 285.

K. N. Jacobson, J. K. Ngrskov and M. J. Puska, Fliys. Rev. B35 (1987) 7423 and
references therein.

J. D. Kress and A. E. DePristo, J. Chem. Phys. 87 (1987) 4700.

d. D. Kress and A. E. DePristo, J. Chem. Phys. 88 (1988) 2596.

J. D. Kress, M. S. Stave and A. E. DePristo, J. Phys. Chem. 93 (1989) 1556.
T. J. Raeker and A. E. DePristo, Phys. Rev. B39 (1989) 9967.

M. J. Stott and E. Zaremba, Phys. Rev. B22 (1980) 1564.

A. E. DePristo and J. D. Kress, Phys. Rev. A35 (1987) 438.

O. Gunnarsson and B. 1. Lundqvist, Phys. Rev. B13 (1976) 4274.

a) M. J. Puska, R. M. Nieminen and M. Manninen, Phys. Rev. 324 (1981)
b) 13\23}.’ Puska (Provided unpublished embedding energy functions).

J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley and A. J. C. Varandas,
"Molecular Potential Energy Functions" (John Wiley, New York, 1984).



[47]

[41]
[42]

[43]
[44]
[45]

[46]

[47]

[48]
[49]
[50]

[51]
[52]

[53]
- [54]

[55]

112

K. P. Huber and G. Herzberg, "Constants of Diatomic molecules" (Van
Nostrand, New York, 1979).

M. D. Morse, Chem. Rev. 86 (1986) 1049.

a) J. R. Smith, J. H. Rose, J. Ferrante, and F. Guinea, in "Many-body
Phenomena at Surfaces”, edited by D. Langreth and H. Suhl (Academic
Press, New York, 1984);

b) J. H. Rose, J. Ferrante and J. R. Smith, Phys. Rev. Lett. 47 (1981) 675.

C. Kittel, "Introduction to Solid State Physics" (John Wiley, New York, 1986).

D. R. Salahub, in "Transition-metal Atoms and Dimers", Ab Initio Methods in

Quantum Chemistry, ed. by K. P. Lawley, (Wiley & Sons Ltd, London, 1987),

Vol. II and references therein.

V.L. Moruzzi, J.F. Janak, and A.R. Williams, "Calculated Properties of Metals",
(Pergamon, 1978).

a) M.S. Daw and M.I. Baskes, Phys.Rev. B29 (1984) 6443;

b) S.M. Foiles, M.I. Baskes and M. S. Daw, Phys. Rev. B33 (1986) 7983;

¢) M.S. Daw, Phys. Rev. B39 (1989) 7441.

a) E. Clementi, IBM J. Res. Develop. Suppl. 9 (1965);

b) P. S. Bagus, T. L. Gilbert and C. J. Roothan, J. Chem. Phys. 56 (1972)
5159.

M. Schmidt and K. Ruedenberg, J. Chem. Phys. 71 (1979) 3951.

S. Huzinaga, Prog. Theor. Physics Suppl. 40 (1967) 279.

D. P. Chong, S. R. Langhoff, C. W. Bauschlicher, S. P. Walch and H. Partridge,
dJ. Chem. Phys. 85 (1986) 2850.

S. P. Walch and C. W. Bauschlicher, J. Chem. Phys. 78 (1983) 4597.

A. E. Stevens, C. S. Feigerle and W. C. Lineberger, J. Chem. Phys. 78 (1983)
5420.

P. Pyykko, J. G. Snijders and E. J. Baerends, Chem. Phys. Lett. 83 (1981) 432.
P. E. M. Siegbahn and M. R. A. Blomberg, Chem. Phys. 87 (1984) 189.
R. A. Wheeler, R. Hoffman and J. Strihle, J. Am. Chem. Soc. 108 (1986) 5381.



[56])

(571
(58]
[69]
[60]

[61]

[62]
(63]
[64]

[65]

[66]
[67]
[68]

113

1. Panas, J. Schule, P. Siegbahn, and U. Wahlgren, (1988) Chem. Phys. Lett.
149 (1988) 265.

dJ. -P. Muscat, Surf. Sci. 118 (1982) 321.
J. -P. Muscat, Surf. Sci. 139 (1984) 491.
J. K. Ngrskov, Physica B127 (1984) 193.

B. W. Lee, A. Ingnatiev, S. Y. Tony and M. A. Van Hove, J. Vac. Sci. Technol.
14 (1977) 291.

R. J. Smith, C. Hennessy, M. W. Kim, C. N. Whang, M. Worthington and Xu
Mingde, Phys. Rev. Lett. 58 (1987) 702.

P. W. Tamm and L. D. Schmidt, J. Chem. Phys. 54 (1971) 4775.

P. W. Tamm and L. D. Schmidt, Surf. Sci. 26 (1971) 286.

a) D. A. King and G. Thomas, Surf. Sci. 92 (1980) 201;

b) R. A. Barker and P. J. Estrup, J. Chem. Phys. 74 (1981) 1442;

¢) J.J Arrecis, Y. J. Chabal and S. B. Christman, Phys. Rev. B33 (1986) 7906
and references therein.

a) G. B. Blanchet, P. J. Estrup and P. J. Stiles, Phys. Rev. Lett. 44 (1980) 171;

b) G. B. Blanchet, N. J. DiNardo and E. W. Plummer, Surf. Sci. 118 (1982)
496.

R. DiFoggio and R. Gomer, Phys. Rev. B25 (1982) 3490.

J. M. Baribeau and J. D. Carette, Can. J. Phys. 60 (1982) 1008.

K. J. Matysik, Surf. Sci. 29 (1972) 324.



114

PAPER III
MOLECULAR DYNAMICS SIMULATION OF METAL ADSORBATES
ON METAL SURFACES RH ON AG(100)



115

Molecular Dynamics Simulations of Metal Adsorbates
on Metal Surfaces: Rh on Ag(100).

Todd J. Raeker
David E. Sanders?
and
Andrew E. DePristo
Department of Chemistry
Iowa State University
Ames , Iowa 50010

N

1 IBM Predoctoral Fellow



116

ABSTRACT )

The mechanisms of thin metal film growth on metal surfaces are topics of
considerable scientific and technological interest. We have studied the way in which a
deposited metal adlayer behaves as a function of metal substrate temper.ature.
Molecular dynamics simulations are used where the interaction energy and the
corresponding forces are generated from the recently developed Corrected Effective
Medium CEM method. In previcus work the CEM method has been shown to predict
the geometric and energetic properties of clean and adsorbate covered surfaces
accurately.

In this paper we present results for the Rh on Ag(100) surface system. We show
that Rh atoms penetrate the Ag(100) surface by exchanging with Ag atoms in the
surface layer structure. Furthermore this phenomenon is found to depend on both the
initial coverage of Rh atoms and the Ag substrate temperature. As the substrate
temperature increases the number of Rh atoms exchanging with Ag atoms in the
surface increases. Energetic and dynamical aspects of this system are used to

understand the reasons why and also the way in which exchange takes place.
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1. INTRODUCTION

The study of epitaxial growth of metals on metals has been the focus of
considerable attention recently. The development of new technologies t.o.deposit
adatoms at a rate enabling monolayer deposition has catalyzed this fascinating field.
The development of theoretical models to understand the static and dynamical
properties of these systems has lagged behind experiment. Most theories have focused
on the macroscopic kinetics and thermodynamics of epitaxial systems. An atomistic
theory of epitaxial growth would play an important role in understanding the many
new and interesting properties that occur when metals are deposited on other metals.
Until very recently very few theoretical considerations of this type have been done.

While several recent attempts to model epitaxial growth of two and three
dimensional Lennard-Jones systems have been reported [1], such pairwise additive
potentials are inadequate for metals [2]. The simple empirical generalization to two
and three-body interactions has been invoked to overcome this problem [3]. More
promising and general methods have also been developed over the past decade to
describe delocalized metallic bonding: the effective medium theory [4]; the embedded
atom method [5]; the "glue"” model [6] and the related approach of Finnis arnd Sinclair
[7a] and Finnis et al. [7b]; and the corrected effective medium, CEM, method [8-10].
The reader is referred to a recent review of these new methods for a detailed
presentation and discussion of general philosophy, methodology, theoretical
similarities and differences [11]. The embedded atom method has already been
applied to various problems in epitaxy [12].

In this paper, we utilize the CEM method in the simplest and computationally
most efficient MD/MC-CEM form [13]. The CEM method provides accurate surface
energies and relaxation of clean metal surfaces [9]. Extension to adsorbates and their
effect on the structure of the surface was also examined with success [10]. The
= ~excellent agreement with experimental data provided motivation to apply the method
'to epitaxial systems. -

We focus in this paper on initial results for Rh deposited on Ag(100) which has
recently been observed [14] to exhibit an interesting and unexpected feature. After
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deposition of Rh on Ag(100) at 300 K and subsequent annealing to 600 K, the Ag
migrates through Rh to form an Ag film over the Rh film. The equilibrium structure
is proposed to be that of an Ag-Rh-Ag(100) ’sandwich’ that is suggested to be driven
thermodynamically by the lower surface free energy of Ag(100) compare(i to the
Rh(100) surface. We have carried out static and MD calculations on this system and
have confirmed this sandwich structure to be more stable than Rh on top of Ag(100).
Furthermore, we have discovered why a ’sandwich’ and not a solid mixture occurs and
have determined how such ’sandwich’ formations could be inhibited by experimental
modifications.

i\

A
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2. THEORETICAL MODEL

We employ the CEM method (in the MD/MC-CEM form [13] described below) to
calculate the interaction energy and forces of a N-atom system in any ge-ometrical
" configuration, {R;}). Here we present the basic CEM energy relation, referring readers
to previous work for details [8-11,13].

In CEM the interactioxi energy of N atoms is written as

N
AE-Y AE,A;n) + AG + AV, @
i=1

AE ;(A;n;) is the energy of embedding atom A; into a homogeneous electron gas of
electron density n,, i.e., jellium. AG is an explicit correction for the kinetic-exchange-
correlation energy difference between the inhomogeneous electron gas in the real N-
atom system and the many effective atom-jellium systems. AV, is the total interatomic
coulomb energy.

Using the superposition of atomic electron densities approximation,

n(F) =Y n(A;F-R) (2)

in Eq. (1) leads to

AV, - lz pIRAN) 3
2 [ L]

where V,(i,j) is the sum of electron-electron, electron-nuclear and nuclear-nuclear

coulomb interactions between atoms A; and A;, Minimizing AG with respect to the {n;}

yields, for unpolarized atomic electron densities,

n(A ;7-R)n(A,;7-R)dF
-%:f Uar-Ronlr-Rpdr @

22,
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where Z, is the atomic number. ]

We have constructed an even-tempered Gaussian basis [15] to represent the atomic
densities that are generated from Slater-type atomic Hartree-Fock densities [16]. Use
of Gaussians allows for efficient, analytic evaluation [17] of the V,(i,j) and the density
overlaps in Eq. (4). Tke density due to p-orbitals had to be fit separately from the
remaining density. For Z;>10, the number of Gaussian functions was greater than 25
for both the spherical and p-densities.

Both the embedding and coulomb energies are thus very easy to evaluate, but the
AG term involves a full three-dimensional numerical integration over the entire
structure of the system of atoms and is thus very time consuming to evaluate. This
evaluation is perfectly feasible using Becke’s ’fuzzy cell’ integration technique [18] for
systems of up to about 1000 atoms for a small number of energy calculations.
However, when one wants to do MD calculations with forces that are fast enough to
evaluate many thousands of times the computational time involved in AG is too large
for large systems.

There is a simple way to get around this difficulty. We have shown [12] that the
AG term can be approximated as a function of n; and thus Eq. (1) can be rewritten,

using Eq. (3),as
ol 1
AE-3 AF,@in) + 25TV, 00) ®
i=1 1 je

where the AF, are new ’effective’ embedding energy functions. These are determined
from experimental data on two different types of homonuclear systems, the diatomic
and the bulk, which have very different magnitudes of n,, The value of n, for atoms in
different size systems (i.e., clusters, surfaces) lies between these two limits and thus
AF, can be determined by simple interpolation. (This is exactly the same procedure as
developed initially for determining the covalent embedding functions of the full CEM
“ “theory [8b].) -

We call this new form of CEM the MD/MC-CEM method. Two advantages of the
MD/MC-CEM method are that many-body interactions are an integral part of the
method and high accuracy is obtained as revealed in Table I below for the face
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dependent surface energies of several fcc transition metals.

Table I MD/MC-CEM calculated surface energies -
in j/m? for relaxed (111), (100) and (110)

(111) (100) (110) Expt?2

Ni 2.363 2.474 2.696 2.380
Cu 1.632 1723 1.878 1.790
Rh 2.753 2913 3.142 2.660
Pd 1.906 2.023 2.193 2.000
Ag 1.072 1.144 1.246 1.240
Pt 2.252 2.428 2.615 2.490
Au 1.423 1.543 1.664 1.500

8 Average of a polycrystalline surface [21].

Another is that there are no adjustable parameters or empirical constructs once
the embedding energies are determined solely from diatomic and bulk data on the
respective homonuclear systems. Any further calculation on a mixed system is
predictive, as is any other calculation on a homogeneous system. The coulombic
energies are non-empirical. The reader may contrast this situation with the EAM and
related methods, or may consult ref. [11] for a detailed discussion. We do want to
mention that the atomic electron density configuration in the heterogeneous and
homogeneous systems is assumed identical. While small changes will lead to
negligible effects since the theory is correct through second order in any density
variation, large changes due to a significant electron transfer will have effects [8]. We
expect these to be negligible for mixing metals on the right hand side of the periodic

+"-table. There are other embedding functions which describe ionic bonding but at
’typical metallic densities, these functions do not differ from the covalent embedding
functions. It is beyond the scope of this paper to discuss the situation further.

We summarize the steps involved in the MD/MC-CEM calculation, assuming
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availability of the even-tempered Gaussian basis for the atomic densities:
1) compute density overlaps and evaluate {n,} in Eq. (4);

2) evaluate the embedding energies for jellium densities {n,/ and compute
coulomb energies;

3) compute derivatives of steps 2 and 3 and evaluate forces.

When the electron density around each atom is spherical and unpolarized, we have
developed numerical smoothing plus polynomial evaluation techniques [19] such that
steps 1-3 can be accomplished at a speed which is about half that for pairwise additive
Lennard-Jones interactions.
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3. RESULTS

We first present results of static calculations for clean Ag(100) and Rh(100) to test
the MD/MC-CEM method. We find that Ag(100) does not relax and that the top layer
distance for Rh(100) contracts by only 0.5%. The Rh contraction is in agreement with
an observed 0% relaxation [20]. We are unaware of experimental studies of the
Ag(100) surface. The surface energies for relaxed Ag(100) and Rh(100) are calculated
to be 1.14 j/m? and 2.91 j/m?® respectively. Good agreement is found with the
experimental [21] results of 1.24 j/m® and 2.66 j/m? for polycrystalline surfaces for Ag
and Rh.

We showed in a previous paper [9] that the cohesive energy for an atom in any
layer can be calculated using CEM theory. The results presented in Table II for re-
laxed Ag(100) and Rh(100) indicate two important features.

Table I The MD/MC-CEM calculated layer
cohesive energies® and layer distances

Ag(100) Rh(100)
Layer d(A) EdfeV) dA) EeV)

1 205 241 189 4.60
2 " 2.89 190 5.58
3 " 2.95 " 5.75
4 " 2.95 " 5.75
5 " 2.95 " 5.75

L — ]

8 The layer cohesive energy is the cohesive
energy of any atom in the layer.

- =  First, the correct experimental bulk cohesive energies and layer distance spacing
“are achieved by the third layer. Second, the cohesive energy for Rh atoms in the top
layer is nearly twice that of Ag in its top layer. These features will be important in

the equilibrium structures of the respective epitaxial systems.

The mixed systems were examined by depositing a full monolayer of an adlayer
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metal on or in the substrate simply to ascertain whether the adlayer would be favored
to be subsurface. We allowed the surface, down to 5 layers, to fully relax while the
adlayer metal was forced to retain the in plane lattice constant of the respective
substrate. Small incommensurate distances would be unimportant for the gross
effects that these initial calculations were designed to test. Full MD-LE calculations
on layers containing over 20 unit cells on a side showed no inclination to incom-
mensurate structures; this does not rule-out the existence of such a structure but does
indicate that it would be favored only very weakly over the commensurate one.

We stress that these static calculations are used only as a guide in helping to
understand the dynamical calculations. These test if the MD/MC-CEM method can
even predict a stable sandwich type structure.

In Table III we show the results of static calculations for Rh deposited on a
Ag(100) surface. Here the four sets of data represent from left to right: 1) Rh on top of
the Ag surface; 2) one Rh layer on the surface with one layer of Ag on top of the Rh
layer in a sandwich Ag-Rh-Ag(100) configuration; 3) Rh on the surface with two layers
of Ag on top of the Rh layer; and , finally, 4) Rh on the surface with three layer of Ag
on top of the Rh layer. Several very interesting features appear in these data.
Comparigon of the sum between the first and second sets shows the Rh atoms clearly
prefer to be below a Ag layer by 0.67 Ev/atom. Of equal importance is that the
cohesive energy for the top Ag layer on one Rh layer in set 2 is 0.25 eV/atom more
stable than for the top layer of the clean Ag surface in Table II. At the same time
note that the third Ag layer in the second set is more stable than in the first set which
in turn is more stable than for clean Ag(100) shown in Table II. All these imply that
not only does Rh prefer toc be below the Ag surface but that the presence of Rh atoms
stabilizes the nearest and even the next nearest Ag layers as well. Thus from just
energetics alone one can say that, if Ag were mobile enough, the equilibrium
structures would have subsurface Rh. (This is also supported by our value of 2.2 eV for

“~ the energy gained by replacement of a Ag atom by a Rh atom in the Ag lattice, of
“which about 0.1 eV is due to lattice relaxation.) One might even expecf;:that since the
Rh prefers to bind to Rh instead of Ag, this would yield a sandwich type structure as
suggested from experiments [7] by Thiel and coworkers.
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Table IIl The MD/MC-CEM calculated layer (L) cohesive energies® and layer
distances for Rh on Ag(100)

m
Rh on Ag(100) 1 Ag-Rh-Ag(100) 2 Ag-Rh-Ag(100) 3 Ag-Rh-Ag(100)
L dA) EgeV) dA) ELeV) dA) EJeV) dA) EeV)

1 182 390Rh 1.88 2.66 203 245 205 241

2 202 3.03 185 4.76 Rh 1.85 3.09 2.06 294

3 205 299 2.03 3.14 185 4.85Rh 2,02 3.15

4 " 2.95 2.05 2.99 203 3.15 185 4.84 Rh
6 " 2.95 " 2.95 2,05 299 185 3.15

6 " 2.95 " 2.95 " 2.95 2.03 299
Total 18.77 19.44 19.48 19.47

8 See Table II.

(The presence of mixed subsurface layers is not ruled out by the present calculations,
but this is a topic for future work.) Note that the stability limit is almost reached
when there is only 1 Ag layer on the Rh film, with 2 Ag and 3 Ag layers on the Rh
film being of nearly equal stability. Diffusion processes then most likely limit how far
Rh will penetrate and thus a dynamical treatment is required to examine this further.
Also of interest is the calculated layer distances with Rh on the Ag(100) surfaces.
Note that in the first set the distance between the Rh layer and the Ag layer below it
is 1.82 A. This is much shorter than the ideal Ag-Ag distance of 2.05 A and shorter by
0.07 A than even the ideal Rh-Rh distance. This contraction occurs because the Rh in-
plane lattice spacing is now expanded to retain the Ag substrate lattice constant. As a
response to this strain of an expanded lattice layer, the Rh-Ag layer distance
contracts. A similar situation occurs when Rh is the second layer in the second set
where the both the Ag-Rh layer distances are contracted to 1.88 A and 1.85 A.
We show for completeness the similarly calculated layer cohesive energies for Ag
. —deposited on the Rh(100) surface in Table IV. By comparison with Table II it is shown
~"in the first set that the single Ag layer prefers to be over Rh(100) rather than Ag(100)
(2.65 eV vs. 2.41 eV) but that the second layer which is Rh is not as stable if it had a
Rh layer above it (5.34 vs. 5.58 eV). The second set shows that if Ag has one layer of
Rh above it while on Rh(100) it is also more stable than the second layer that is
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observed in Table II but that the total energy is raised by 0.88 eV/atom relative to Ag
on Rh(100). Note that the Ag adlayer is constrained to retain the Rh substrate lattice
constant. This results in the Ag-Rh layer distance being expanded since the Ag in
plane lattice spacing is considerably compressed. )

Table IV The MD/MC-CEM calculated layer
cohesive energies? and layer distances
for Ag on Rh(100)

Agon Rh(100) 1Rh-Ag-Rh(100)

Layer d(A) EqeV) dA) EeV)
1 2.08 265 Ag 203 4.19
2 1.91 5.34 2.05 3.23 Ag
3 1.90 5.68 191 543
4 " 5.75 190 5.69
5 " 5.75 " 5.75
6 " 5.75 " 5.75
Total 30.92 30.04

2 See Table II.

From the above analysis of the data in Table III, it is clear that a Rh layer would
be more stable underneath at least one layer of Ag when deposited on the Ag(100)
substrate. And, the data in Table IV suggest that a Ag layer in turn would rather be
on top of Rh(100) in agreement with experimental data [22]. What these calculations
do not indicate is the time-scale to reach a final equilibrium structure of these
epitaxial systems. If indeed Ag atoms were to migrate through the Rh adlayer they
must be quit mobile and able to travel through or around the Rh adlayer. So far we
have used only thermodynamic arguments to enable a simplistic prediction of what

"~ this system might really look like on an atomic scale.
T To study the dynamics of this system we carried out three distinct sets of
calculations that utilized the MD-Langevin equation technique [23]. In each case we
used a square active zone of 15 atoms by 15 atoms in each of 5 layers. The edge
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atoms have added friction and random forces to allow energy flow between the active
zone and the remainder of the bulk. These atoms in turn are surrounded by 2 rows of
fixed atoms 8 layers deep. The three sets of MD calculations involved:

1)  colliding one Rh atom with an initial kinetic energy of 0.25 eV into a Ag(100)
surface at a specified surface temperature;

2) depositing Rh on Ag(100) at a coverage of a half monolayer and then heating
the system to a specified temperature;

3) depositing a full defect free monolayer of Rh on Ag(100) and then heating the
system to a specified temperature.
These last two are done in order to simulate deposition at low surface temperatures
followed by annealing of the surface. No other adsorbates, surface imperfection, etc.
were allowed in this initial study although this is certainly possible within the
MD/MC-CEM formalism and will be subjected to future work.

We show in Figure 1 a depth profile of the deposited Rh atom as a function of the
Ag(100) substrate temperature. In this plot 'surface Rh’ refers to Rh simply
chemisorbed on the Ag(100) surface without penetration; 'Rh in 1st subsurface layer’
refers to Rh exchange with a top layer Ag atom; and, 'Rh in 2nd subsurface layer’
refers to Rh exchange with a second layer Ag atom. As the temperature increases the
percentage of trajectories (Rh atoms) that simply chemisorb decreases while exchange
with first layer Ag atoms increases. At higher surface temperature, the Ag becomes
more mobile which makes it easier for the Rh atoms to displace Ag from the surface.
At temperatures greater than 900 K limited exchange with second layer Ag atoms
even occurs. This suggests that it may not only be the surface energy that drives
penetration into the surface. Rather it may be the Rh cohesive energies shown in
Table III driving the Rh atoms to be bulk or at least near-bulk atoms.

To examine the dynamical aspect of annealing, we heat an initially deposited half
- monolayer coverage of Rh atoms in a ¢(2x2) configuration on the surface. In Figure 2
“we show snap shot pictures at 2 ps intervals of the surface once heating has begun.
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As time goes on note that not only have several of the Rh atoms clustered together but
that a number of them have penetrated into the Ag(100). Also note that the surface
becomes disordered when this penetration occurs and that penetration occurs for
groups or clumps of Rh atoms as well as for individual Rh atoms. In Fiéure 3 we
show a depth profile of Rh atoms similar to that shown iau Figure 1. The most striking
feature is that the percentage of subsurface Rh atoms is less than that for single Rh
atoms deposited in Ifigure 1. This must mean that even at a half monolayer coverage
of Rh, the penetration of Rh into the Ag(100) surface is inhibited.

One question to ask is what is the rate of exchange of Rh atoms with Ag atoms?

In Figure 4 we show the percentage of Rh atoms that have exchanged with the top
layer Ag atoms as a function of time at two substrate temperatures of 600 K and 1000
K. The number of Rh atoms that have exchanged levels off quickly with time although
the 1900 K surface is still active after 4 ps. The leveling is a direct consequence of a
depletion cf the originally deposited Rh layer on the surface. A resupply of Rh atoms
on the surface would allow more of them to eventually exchange with Ag atoms. This
will be examined in future work on this system.

These findings motivated a similar calculation for a defect free full monolayer
coverage. Analysis shows that even at eievated temperatures of 1000 K no
penetration into the surface occurs. In addition, the surface stays well ordered, there
is no three dimensional clustering, and there is no exposure of the Ag(100) surface.
This is somewhat unexpected since the half monolayer coverage showed considerable
disorder only 4 to 6 ps after heating of the surface. The strong Rh-Rh bonding orders
the adlayer and prevents the Ag atoms from exchanging with the Rh.
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Half monolayer Rh on Ag(100)

t= 2 ps

t =0 ps

t= 6 ps

t= 4 ps

t= 10 ps

t= 8 ps

Fig. 2. Snap shot picture taken at 1 ps intervals after a half monolayer of Rh (solid

circles) was deposited on cold Ag(100) and subsequent heating to 600K
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4. SUMMARY AND CONCLUSIONS

We have presented results of calculations employing the MD/MC-CEM method to
predict the surface energies of the clean Ag(100) and Rh(100) surfaces and agreement
'with experimental data was found to be good. In addition we calculated metal layer
cohesive energies for the pure and mixed epitaxial systems. These calculations led to
a prediction that, thermodynamically, Rh would prefer to lie below the Ag(100) surface
rather than reside on top of the surface. These predictions supported experimental
evidence that indeed Rh lies below at least one Ag layer.

Molecular dynamics calculations confirmed the findings by Thiel and coworkers
that at least for initially low coverages of Rh, the Rh does indeed exchange with Ag
and that this exchange is temperature dependent: an increase in substrate
temperature results in an increase of exchange of Rh atoms with Ag atoms. If a full
monolayer was used in the calculations no exchange occurred at any temperature.
These results suggest that, in order for adlayer Rh atoms to exchange with Ag surface
atoms, defects and/or holes must exist in the Rh layer that expose portions of the bare
Ag(100) surface. These defects must also be present before annealing occurs since
annealing does not induce clustering of the Rh layer. Two possible models were
proposed by Thiel and coworkers to account for their experimental measurements.
One model is for a low coverage of Rh atoms that allow portions of the Ag(100) surface
to be exposed. This exposure gives Ag atoms a chance to migrate out of the surface
layer and then onto the Rh adlayer. The other model suggests that cracks may exist
in the Rh overlayer through which the Ag can migrate and eventually find their way
over the Rh layer.

We believe these models are essentially correct. For regions of exposed Ag atoms,
our calculations reveal that the Rh atoms actually burrow into the surface, forcing out
the Ag atoms. In order for this to occur there must be room for Ag atoms to move. At
a full monolayer coverage there is no room available and thus Rh cannot force the Ag
atoms out of their lattice site. In addition, Rh-Rh bonding is so strong that it is very
difficult for Ag to be forced through without some sort of open pathway. The strength
of the bonds is such that not only would they be difficult to break, but also that Rh
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would lose stability by bonding to Ag atoms rather than to other Rh atoms. Hence,
the dynamical process is extremely slow even though it is significantly energetically

favorable to have the Rh film covered by the Ag. This is why accurate ’dynamlcal
calculations must be carried out, rather than relying just on static energv calculations.
"~ We have not yet examined in detail the possibility of cracks in the Rh layer but
expect that they would play an important role in not only opening up the Ag surface
but also serving as a source of Rh atoms as well. Calculations are underway to
examine this possibility and a'so the effect that 2 or more Rh layers have on the
exchange of Rh with Ag atoms.
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ABSTRACT

The increasing resolution of scanning tunneling microscopy techniqiies is beginning
to reveal new interesting aspects of atomic behavior at surfaces. The ability to
.monitor diffusion of even single atoms is one dynamical example. This atomic scale
resolution enables a close connection to theory, which plays an important role in
uncovering the driving forces and mechanisms behind these dynamical events.

In this paper we briefly discuss the theoretical foundations of the Corrected
Effective Medium (CEM) method and its application to the epitaxy of metals on
metals. Static interaction energy and dynamical Monte-Carlo (MC) and molecular
dynamics (MD) calculations are employed to examine equilibrium structures and the
mechanisms in which equilibrium is obtained. Three specific applications are
considered:

1) the mechanism for the formation of the ordered ¢(2x2) Au/Cu(100) surface alloy;

2) The formation of Ag/Rh/Ag(100) "sandwich" structures;
3) The g'rowth of Au on Ag(110).
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1. INTRODUCTION

Recent studies of the deposition of metals on metals have revealed many
interesting and novel structures. The advanced resolution of scanning tunneling
‘microscopy equipment allows visualization of atoms in particular structures. However,
these techniques cannot (yet) show how these structures are formed and, if the
formation process occurs on the time scale of atomic motion (10 - 10 sec), it will be
many years before such direct dynamical imaging becomes possible. Theory can play a
critical role in understanding the energetics and dynamics of the formation process. In
particular, MD and MC calculations allow simulations of the deposition and growth in
microscopic detail. In combination with computer visualization and animation, these
provide unique insight.

The theoretical study of the epitaxy of metals on metals has focused generally on
the prediction of the type of growth mode and the final structure. These models use
the relative surface energies of the respective metals [1] to discriminate between layer-
by-layer and 3D island growth. Such models are useful but limited, since they neither
provide the microscopic reasons for formation of equilibrium structures nor predict the
presence of non-equilibrium structures. Recent attempts employing rate equaticn [2]
and birth-death equation [3] approaches have provided more insight. However, all the
microscopic processes cannot be included in such kinetic schemes, and even the rates
for many processes are unknown. So one can quickly get lost in examining the effects
of various parameters, making interpretation of the results very complicated. Direct
MD and MC simulations can also help in the development of kinetic models, which are
capable of describing processes on much longer time scales than 10? sec.

The difficult part of atomistic simulations is assuring that the interaction energies
and forces describe accurately the real system. For metal surfaces where many atoms

are present, the choice of the potential used must satisfy two important criteria:

1) proper descmptxon of the interactions among all the atoms, mcludmg the
variations in coordination between surface and bulk atoms.

2) computationally simple to evaluate.
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Even when "2" is satisfied, the forces become very time-consuming to evaluate for
large systems, thus limiting the length of the simulation to 10?2 - 10”° seconds.

The simplest approach involves a pairwise interaction form such as"the well known
Morse and Lennard-Jones type potentials. Unfortunately, these do not properly
.describe the interactions present in both bulk metal and surface systems [4]. This is
not at all surprising since the main justification of these forms is that they reproduce
the diatomic binding curves quite well around the minimum. One may also include 3-
body terms [5].

For metallic bonding, ideas based on t™e atom-jellium system have been developed
over the past decade. These include the Effective Medium Theory [6], the Embedded-
Atom-Method [7], the "glue" model [8] and the Corrected Effective Medium (CEM)
method [9-13]. These methods are connected by the similar approach of embedding an
atom in a homogeneous electron gas as the fundamental energy term. They differ in
the way of introducing additional non-atom-jellium interactions, such as electrostatic
terms for example. We use the CEM rmethod throughout this paper for reasons
detailed in Sections II and III.

In this paper we examine three epitaxial systems displaying different phenomenon
as discovered experimentally. The first involves formation of a surface alloy after
deposition of ¥ mo:olayer of Au on Cu(100) at room temperature [14-16]. The second
entails production of a "sandwich" type structure in the Rh/Ag(100) system: a film of
Ag atoms forms over the initial Rh adsorbate after annealing at 600K [17]. The last
involves the formation of 3D islands at low coverages in a bilayer structure of Au on
Ag(110) [18]). Most of this paper is dedicated to the Au on Cu system while for the
other two systems we only summarize our results to date.

The rest of this paper is broken into four sections. In Section II we present the
CEM methed for calculating energies and forces. Section III contains computational
details about the description of surfaces and the use of MC and MD calculations.

_ Results on all three epitaxial systems are presented and discussed in Section IV.

Finally, in Section V we summarize the results and discuss future directions.
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2. INTERACTION POTENTIAL

We employ the CEM method (in a form suitable for use in large scale MD and MC
calculations) to determine the interaction energy and forces of a N-atom system in any
'geometrical configuration. As already mentioned the basi approach is to first replace
the interaction of one atom with the N-1 other atoms by .he interaction of the atom
with jellium. This is illustrated in Figure 1 where the atomic electron densities of the

surrounding atoms are used to provide the background jelliun electron density around
the center atom.

Fig. 1. Schematic of the embedding of one atom in the electron density of the.

surrounding atoms. This enables the replacement of the atomic interactions with
atom-jellium one.

- The process is repeated for each atom, thus simplifying the N-body problem
considerably to a set of N one-body problems. -

In CEM the interaction energy of N atoms is written as
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N
AE-zAEJ(A‘;ni) + AG + AV, . (1)

i-1 --

AE (A;n,) is the energy of embedding atom A, into a homogeneous electx:on gas of
electron density n, (i.e., jellium). AG is an explicit correction for the kinetic-exchange-
correlation energy difference between the inhomogeneous electron gas in the real N-
atom system and the many effective atom-jellium systems. AV, is the total interatomic
coulomb energy. These last two terms account for the presence of atoms instead of
atom-jellium systems.

Using the superposition of atomic electron densities approximation,

n(F) = 3 n(A;F-R) 2)
in Eq. (1) leads to
AV, - —ZE V. (iJ) (3)
T

where V (i,j) is the sum of electron-electron, electron-nuclear and nuclear-nuclear

coulomb interactions between atoms A; and A;:

[n(A4,;7-R,)-Z8(F-R)1nA,;7 *-R))-Z3(™ -R,)1dF di™
-7

AK) _f 4

Minimizing AG with respect to the {n;} yields, for unpolarized atomic electron

densities,

? 9 R
;;fn(A‘ F- R,)n( - -

27,

n,=
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where Z; is the atomic number. This form of determining the jellium density is
appealing since it is a measure of the real atomic electron density felt by atom "i" from
“all the other atoms. ey

The overlaps and coulomb energies are both pairwise in Egs. (3b) and (4). When
‘the atomic densities are spherical, they can be evaluated once for each pair of atoms
on a grid of radial separations and interpolated for efficient energy and force
evaluations [12]. Unfortunately the AG term in Eq. (1) involves a full three-
dimensional numerical integration over the entire system of atoms and is thus very
time consuming. For example evaluation of AG for a 100 atom cluster requires 99% of
the CPU time (about 4 hours on a 4 MFLOP computer). It is feasible to perform such
calculations for systems of up to around 1000 atoms for a small number of energy
calculations. However, to do MD calculations with forces that are fast enough to
evaluate many thousands of times, the time involved in AG is not acceptable for large
systems.

We, however, have developed an approximate way to get around this difficulty. We
have suggested [12,13] that the AG term can be approximated as an empirical function
of n; and the type of atom just as for the AE, term in Eq. (1). With this in mind Eq.

(1) can then be rewritten as

N
AE=-Y AF,A;n) + AV, . (6)
=1

where the AF, are new ’effective’ embedding energy functions. The simplest way to
determine these embedding functions is to use experimental data on two different
types of homonuclear systems. The first is for a homonuclear diatomic and the second
for atoms in a bulk lattice. These two configurations have very different magnitudes
of n_ and thus provide a wide range of electron densities in which AG can be
approximated.

The above approximation relies on the assumption that the value of n; for atoms in
different size systems (i.e., clusters and surfaces) lies between these twolimits. We
shall see later that this approximation is not always appropriate for systems

containing different types of atoms. In this regard, one should carefully distinguish
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between the full CEM theory in which the AG term accounts for electron
inhomogeneity, but the electron density is not adjusted self-consistently, and the

- MD/MC-CEM theory in which consideration of electron inhomogeneity does not enter.
One must regard the MD/MC-CEM method as a semi-empirical theory designed to
-approximate the full CEM calculations at much higher computational speed. Thus,
one might expect that flexibility in the choice of AF, should be used to ensure close
agreement between CEM and MD/MC-CEM calculations. We will have more to say
about this later.

The MD/MC-CEM method allows evaluation of energies and forces at
computational speeds over 50% of that using the simple Lennard-Jones(12,6)
potentials and forces {19]. We call this new form of CEM the MD/MC-CEM method.
The advantages of the MD/MC-CEM method are that many-body interactions are still
an integral part of the method and good accuracy is obtained as shown in Table I for
some of the surface energies for the metals of interest in this paper.

We now summarize the steps involved in the MD/MC-CEM calculation:

1) Construct atomic densities from Hartree Fock tabulated values;
2) Compute density overlap and evaluate n;;

3) Evaluate the embedding energies for jellium density n; and
compute the coulomb energies for energy calculations;

4) Compute derivatives of steps 2 and 3 and sum for the total force on atom i.

There are no adjustable parameters to reproduce various alloy properties. In
addition, the overlap and coulomb integrals are totally determined from the electron
densities of HF calculations on atoms. Any further calculation on a mixed system is

completely predictive, as is any other calculation on a homogeneous system.
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3. COMPUTATIONAL DETAILS

In this section we discuss some of the computational details involved-in the
_simulations. These involve the methodology in both MC and MD techniques and the
treatment of the surface. For the latter, we have used slabs of various thicknesses
and layer sizes without the use of periodic boundary conditions. Each layer in the slab
may contain atoms which can be moved (i.e., active) and atoms which are fixed. The
fixed atoms ensure that the surface slab stays as a slab and does not reorganize to
form a cluster of presumably near-spherical geometry. In the MD simulations, the
moving atoms obey Newton’s equations with extra random and local frictional forces
on the boundary atoms to the fixed atoms. The latter ensures that the surface can be
kept at any finite temperature and that unphysical reflection of energy does not occur
at the boundary of the active atoms [20].

Different types of MC methods were used to help the simulation obtain equilibrium
with minimum computational effort. In all cases, the number of each type of atom
was conserved throughout the calculation. Mixing of different species was simulated
by allowing exchange of atoms types between existing atoms in the slab. Mixing with
open or vacant surface sites was also employed to allow for extended defect formation
during mixing. Finally, a continuous change in atomic positions was used to allow for
relaxation of the. atomic positions in the new environment. Of course, the fixed atoms
were not allowed to move.

The above MC simulations used a slab of two active and two fixed layers. The
layers were of varied extent with the largest giving a total of about 1600 atoms and

| 300 ghost atoms (movable empty lattice sites). Different sized slabs gave qualitatively
different results, a point which will be discussed in the next section. We note however
that increasing the number of layers does not significantly effect the results.

The MD calculations of Au on Cu(100) used a slab with 4 active and 3 fixed layers.

_ We carried out the calculations for various size layers, containing from 200 to 1200
atoms, in order to determine the effect that slab size and edges may have on the

results. We shall discuss these in the next section. Newton’s equations were solved



148

using the Verlet algorithm [21] with a time step of 10™* seconds, which was found to
be quite adequate.

'l
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4. RESULTS

We now examine the energetics and dynamics of three epitaxial systems,
employing both static and dynamical calculations. The former are used to better
‘understand the energetics underlying the dynamical processes present in each system.
Two different types of MD/MC-CEM embedding functions are determined. The first
follows previous work and utilizes experimental data on the homonuclear bulk and
diatomic systems, with interpolation between the large and small density regime. The
second utilizes experimental data on the homonuclear bulk and CEM calculations on

the top layer of surface atoms. In particular, the new embedding function is defined
by

AF (A n,) = AE.(Ain) + AGU), e ©

where o denotes an atom in the surface layer and WS(o) indicates that the integration
region is the generalized Wigner-Seitz cell of a surface atom [10,11]. The use of bulk
and surface data eliminates the ability to treat the diatomic molecule but increases the
accuracy in the surface region. The two different ways to determine AF, are referred
to as MD/MC-CEM I and MD/MC-CEM 1], respectively. The latter method should
agree with the full CEM method results most and it is these that we measure the
quality of the embedding energy functions.

The three systems are Auw/Cu(100), Rh/Ag(100) and Au/Ag(110). These display
interesting varieties of cohesive energy and lattice constant: Au (3.81 eV/atom, 4.08 A),
Cu (3.49 eV/atom, 3.61 A), Ag (2.95 eV/atom, 4.09 A), Rh (5.75 eV/atom, 3.80 A). For
Au/Cu(100), the adsorbate is much larger and there is a slight favoring of the
adsorbate to be in a bulk environment. For Aw/Ag(110), the adsorbate and substrate
are equally large and there is substantial favoring of the adsorbate to be a bulk
environment. For Rh/Ag(100), the adsorbate is actually smaller than the substrate

* and there is an extremely large favoring of the adsorbate to be in a bulk environment.

-
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4.1. Au on Cu(100)
Experimentally, the deposition of a half monolayer of Au atoms on Cu(100) results

_in a surface alloy in which the top layer is a 50:50 mixture of Au and Ci, The first
LEED structure by [14] of the Au-Cu surface alloy displayed a ¢(2x2) pattern. Further

experimental work [16] also determined a ¢(2x2) LEED pattern but apparently with
streaking. Detailed LEED intensity analysis [15] demonstrated that the Au atoms
bind about 0.1 A above the plane of the Cu atoms, forming a ¢(2x2) pattern.

It is important to place these findings in context. Since the cohesive energy of Au
is 0.3 eV/atom greater than Cu, one would intuitively think that a simple switching of
atoms types should indeed result in the mixed layer being lower in energy than the
pure Cu(100) slab. Also, the larger size of the Au atom should limit the concentration
to something below a full monolayer. Thus, part of the experimental data is rather
understandable. However, the 0.1 A distance is quite surprising since the lattice
constant of Au is 4.08 A while that of Cu is 3.61 A. Simple geometric arguments about
the packing of hard spheres of such different size leads one to expect a buckling height
of around 0.94 A.

First, we carried out static calculations on the Cu, Au, and Auw/Cu systems with the
results in Tables I and II.

Table I Surface energies of various metals of interest in this paper as
calculated by full CEM and two types of MC/MD-CEM

Surface energy (j/m?)
Surface CEM MD/MC-CEM I® MD/MC-CEM IIP experiment®

Cu(100) 1.50 1.72 1.39 1.79
Au(100) 1.29 1.54 1.33 1.50
Ag(100) 0.99 1.14 1.24
Rh(100) 2.56 2.91 2.66

2 The embedding function is determined from bulk and diatomic data

. on the homogeneous system following previously discussed CEM references.

b The embedding function is determined from bulk data and surface-
CEM calculations on the homogeneous system. See text for details.

€ The experimental data are an average of a polycrystalline surface
from W. R. Tyson and W. A. Miller (1977), Surf. Sci. 62, 267.
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Table II Binding energies for p(1x1) and c(2x2) Au on
Cu(100) as calculated by full CEM and Two types
of MC/MD-CEM ’

—

Energy (eV/atom)
Phase CEM MC/MD-CEM1 MC/MD-CEM II
p(1x1) 3.97 3.49 3.36
c(2x2) 3.90 2.96 3.38

The results indicate that the MD/MC-CEM I method overestimates the surface
energies and the stability of the Au adlayer p(1x1) phase while the MD/MC-CEM II
method is generally much better when compared to the CEM results. The lower
accuracy of the former for surface problems can be traced to the inaccuracy of the
assumption that AG of the surface atoms lies on the assumed smooth curve between
the diatomic and bulk atom correction energies. This is evident in Figure 2 for Cu as
an example. The surface correction energies do indeed lie between the diatomic and
bulk limits but not on the assumed smooth interpolation curve.

A comparison of the embedding functions for Cu and Au is shown in Figure 3.
Clearly, the inclusion of the surface points changes quantitatively the lower density
region of the curves. Ignoring the diatomic data has no significant consequences in
the current calculations since we are not dealing with isolated diatomics. In addition,
there were no surface or bulk atoms that had an electron density environment as low
as for an atom in a diatomic.

It is worthwhile to emphasize that the results in Table II indicate that not only are
both pure surfaces described much better by MD/MC-CEM II but also that the Au is
equally stable in both close packed p(1x1) and more open ¢(2x2) structures.
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Cu correction energies
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Fig. 2. The correction energy, AG, for Cu in diatomic, fcc(100) surface and bulk fec
lattice. The points from the diatomic and bulk are connected by straight
line for clarity.

This may help the formation of a surface alloy. It is important to point out that we
are not adjusting the embedding energy functions from any alloy data. We are only
forcing the MD/MC-CEM II method to be closer to the full CEM method for the

| homogeneous surfaces. The MD/MC-CEM II method still does not achieve the same
absolute binding energies of Au on Cu(100) as full CEM. -
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The correction energy is more accurately mimicked for surfaces in the MD/MC-
CEM 11 approach but is still not described exactly. The surface energy for Cu(100) is
“too small. This can be traced to the fact that AG for the second layer G____q atoms is not
the same as for the first layer atoms. There is simply no way to take a t;omplex
‘functional of the electron density and gradients and replace it by a function of the
yellium density without some loss of accuracy. Indeed, AG is also clearly a function of
the bonding formed from mixed atom types, at least for Au and Cu. Nevertheless, the
relative energetics may be described well enough by MD/MC-CEM 11 to capture the
essence of full CEM.

Static calculations are useful for guidelines but do not simulate the process by
which the surface alloy layer is formed. We have carried out both MD and MC
calculations in an attempt to understand how the surface alloy is indeed formed. Due
to current limitations of computer speeds and dynamical methodologies the MD
calculations can only simulate events occurring in less than about 10® sec. We can
examine the initial stages of the alloy formation, but not necessarily the development
of the final equilibrium (or non-equilibrium) structure. MC calculations are employed
to alleviate this difficulty in a crude way; these are unable to describe non-equilibrium
kinetic effects which we have already observed [22] to be an important feature in the
Rh on Ag(100) system.

First, we report the results using the MD/MC-CEM I embedding function, which
we expect will not describe the Au/Cu(100) system accurately based upon the static
calculations in Table II. This is important since it allows one to correlate the behavior
of bimetallic systems with the adsorbate binding energy variation with coverage.

We did two types of MC runs at temperatures of 300 K and 600 K each. The first
was with a preexisting 50-50 adlayer mixture of Au-Cu on the surface with no ghost
atoms present. All results showed almost complete segregation of Au and Cu atoms on
the surface, with no alloy equilibrium structure. When a similar run was done with |
ghost atoms instead of adlayer Cu we found that some substrate Cu atoms mixed with
the Au adlayer atoms. The Au atoms that were originally dispersed on the surface
formed large islands having a (1x1) structure with 2-5% of mixed Cu atoms with a

small amount of Cu clustering among the adlayer Au islands. Some adsorbate Au
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atoms occupied sites in the substrate that were vacated by Cu atoms. However, we
never observed the formation of a surface alloy of long range order having a c(2x2)
~structure.

To investigate the cluster size dependence of these results, we repeated the above
. ghost atom runs but with nearly twice as many atoms in the slab. This resulted in a
5-10% mixture of Cu atoms in the Au adlayer. There seemed to be a weak dependence
of the amount of mixing with the size of the cluster. MD simulations resulted in no
mixing of Cu and Au even for temperatures as high as 800K. Interestingly enough,
compact islands of Au having a clear hexagonal arrangement were observed with large
areas of the Cu(100) surface being exposed. This indicates that in MD/MC-CEM the
Au-Au interactions dominate the Au-Cu ones since the adlayer is forming a close-
packed face even though the substrate provides a (100) template.

It is clear from the above behavior that our interpretation of the static calculations
in Tables I and II is correct. The MD/MC-CEM I method does not describe the
interaction between the Au and Cu with sufficient accuracy, greatly overestimating the
strength of the Au-Au interaction relative to that of Au-Cu. In conjunction with the
larger size of the Au atoms, this greatly inhibits formation of a surface alloy.

Next, we performed calculations with the MD/MC-CEM II embedding function,
which we expect describes the Au/Cu(100) system much better. Figure 4 displays
results from two different MD calculations in which an initial 0.25 monolayer coverage
of Au on Cu(100) at 600K and 800K were run for 900 psec using 1000 atoms/layer
slabs. We use higher temperatures to speed-up the rate of alloy formation so that the
process can be simulated in a reasonable amount of computer time. Figure 4a is a
snapshot picture of the surface after annealing at 600K for 900 psec then cooling to
300K for 3 psec. The Au atoms have clustered with little mixing of Cu. It would
appear that the initial stage of the formation of the surface alloy may first involve the
formation of Au islands followed by alloying. This is more easily seen from Figure 4b
for a run at 800K.
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While island formation is still apparent, the open Cu(100) exposed areas display a
significant amount of Au mixing with the Cu surface atoms and these Au atoms are
_not grouped together as when on the surface. Note also that most of tha alloying in
the adlayer occurs near the edges of the Au islands. This is a feature that app~ars for
‘all the simulations we have done on this system and suggests that islands axd their
edges are required in order to form the surface alloy. Thus, alloy formation in this
system may actually occur by either a similar or identical mechanism to that found
recently in the O/Cu(100) system [23]: Cu atoms diffuse from the steps and surround
the O atoms, forming a new surface.

Figures 5a and 5b show results of similar calculations for an initial 0.5 monolayer
coverage of Au. At 600K in Figure 5a we see only a few Cu atoms mixed with the Au
islands but at 800K we see a significantly greater amount of mixing, which is
nevertheless still smaller than the experimentally observed 50% mixture.

If left to run for long enough times both coverages would eventually show
significantly more mixing of Au and Cu atoms. However, we cannot say for sure that
a o(2x2) structure would be formed. Since we ran the dynamics for =10 sec, it is
likely that formation of the alloy is a slow process which cannot bé modeled by any
dynamical calculation in an economically feasible time. In addition, the ordered alloy
may be formed more readily during deposition which can not be simulated on any
realistic time scale.

As an alternative, we did a MC caiculation using the MD/MC-CEM II embedding
functions and found a mixture at 600K of 15-20% of Cu and Au atoms in both surface
islands and in the substrate. A 50:50 mixture was not found and segregation was still
present. It is perhaps appropriate to mention that our high temperature simulations
could have missed the formation of the ordered alloy if the ¢(2x2) phase may is a
metastable state.

We are aware of one theoretical attempt to examine this system [24] employing the
Embedded Atom Method :or the interaction potential. Foiles carried out a MC
simulation on a Cu(100) slab at room temperature in which MC steps involved
chafging the identity of surface Cu and Au atoms. The total number of atoms of the

slab was conserved but the number of each type was not.
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In addition, atom coordinate relaxation and site switching were allowed in order to

relax the surface as a response to creating Au atoms in the surface. The results of

_this calculation were that a 50:50 surface mixture of Au and Cu was stable in an
ordered o(2x2) structure with thesurface buckled by 0.18 A. The EAM potentials used

the dilute heat of mixing for the parametrization. There was no attempt to simulate
the process by which the surface alloy layer is formed.

4.2. Rh on Ag(100)

Experimentally it has been observed by Schmitz et al. [17] that annealing at 600K,
of a Rh film previously deposited on Ag(100) results in a thin film of Ag forming on top
of the original Rh layer. This film formation is complete and no significant mixing of
the two metals is observed. In other words the respective Rh and Ag layers are
homogeneous in content. We have carried out extensive MD simulations for sub-
monolayer coverages of Rh on Ag(100) to investigate the initial mechanisms for the
formation of this "sandwich" structure. We have published results of these
calculations recently [22] and shall only summarize them here.

We used a cluster slab with about 200 atoms/layer plus fixed atoms to ensure
maintenance of the fce(100) surface structure. Runs at temperatures ranging for 300K
to 1000K were done in order to examine the effects of temperature on the rate of
formation of the observed structure. We show in Figure 6 a plot of depth profiles for
three different cases at the above mentioned temperatures. The first simulates the
deposition of a single Rh atom impinging on the Ag(100) surface; the second, a 0.25
monolayer coverage of Rh initially in a p(2x2) configuration; and the third, a 0.50
monolayer coverage initially in a ¢(2x2) structure.

The results in Figure 6 are puzzling at first glance. The single atom deposition is
much more efficient at exchanging with surface Ag than annealing of deposited Rh. In

contrast, the 0.25 monolayer coverage leads to less exchange than the 050 monolayer
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coverage. Clearly the single atom deposition/exchange is quite different than a single
atom exchange in an already deposited layer. This is understandable since about 4.5

. eV is gained in chemisorbing a single Rh atom. This energy leads to censiderable
collision induced local distortion of the Ag lattice, increasing the probability for Rh to
find a large enough gap in the Ag surface to begin pushing aside Ag atoms and
eventually exchanging positions with one of them. Thus, chemisorption energy gained
in attaching Rh to the Ag surface provides a great increase in exchange; this is not
surprising since this energy corresponds to a very large increase in the surface
temperature, which also increases the exchange probability.

For annealing of an adsorbed layer, the small oscillations of the Ag surface limit
the initial exchange of Rh until a relatively high annealing temperature is reached.
Rh atom exchange with Ag is an isolated and rare event. However, each exchange of a
single Rh atom with a Ag atom causes other nearby Rh atoms to follow quickly; Rh
prefers to bind subsurface and with other Rh atoms as compared to on the surface and
with Ag atoms. In a sense the exchange at higher coverages is self-propagated by one
Rh dragging other nearby Rh atoms under the Ag surface. This quickly spreads and
continues until the supply of Rh atoms on the surface is exhausted. In essence our
calculations confirm the experimental "sandwich" structure and also shed light on the

mechanism behind this structure.

4.3. Au on Ag(110)

Recent experimental data [18] has indicated that deposition of low coverages of Au
atoms on Ag(110) results in bilayers being formed at room temperature. This suggests
that growth of Au on Ag(110) proceeds in a 3D island growth mode rather than layer
by layer. Since it has been established that Au grows layer by layer on both Ag(111)
[25] and (100) [26], this new data represents an interesting deviation. One must be
careful in making assumptions for one surface based on known phenomena on others.

We shall examine the energetics as well as the dynamics of this system in order to
understand why the Ag(110) surface behaves differently from thé (100) and (111)

surfaces. This low coverage experimental study is ideal for comparison to the present
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calculations. High coverage large scale structures are not present here.

First, we examine the relative surfaces energies of Au and Ag in Table III to see if

“anything can be learned. In Table III we show results of full CEM and both types of

MD/MC-CEM for the surface energies of the (111), (100) and (110) surfaces of Ag and

‘Au. In order for layer by layer growth to occur, the surface energy of the adlayer must

either be smaller or at least only slightly larger (interfacial energy may be negative)
than that of the substrate. From Table III we can see that the latter case holds. The
question is how much larger can the adlayer surface energy be than the substrate.

The difference between surface energies calculated by CEM are 0.26 J/m?, 0.30 J/m?
and 0.31 J/m? for the (111), (100) and (110) surfaces respectively. The MD/MC-CEM
results show the same general trend although the values are all 0.10 J/m? larger.
Clearly there are no overwhelming differences among these surfaces. Considering that
Au deposition on the (111) and (100) Ag surfaces proceeds in a layer by layer mode,
one might from these data alone predict the same growth mode for deposition on the
Ag(110) surface.

However, knowledge of the surface energies is not sufficient when these values are
close since then one must also know the interfacial energy. This is typically ignored
as small although it is usually negative in value. To estimate the relative magnitude
of this parameter for the three surfaces, we show in Table IV the CEM calculated
binding energies of a full monolayer coverage of Au on each Ag surface. From the
CEM values, it is clear that the binding strength on the (110) surface is the weakest.
This indicates that the interfacial energy for deposition on Ag(110) is most likely
smaller than for deposition on the (111) and (100) surfaces. Indeed, the energy
increase of 0.09 eV/atom between (100) and (110) corresponds to an added surface
energy of 0.12 J/m? on the (110) surface. This makes the effective surface energy
difference for Au(110) and Ag(110) even larger, about 0.43 J/m? and distinguishes the
(110) surface from the (111) and (100) ones. This larger surface energy difference
favors 3D island growth.
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Table ITI Surface energies of the (111), (100) and (110) surfaces of Au and Ag
as calculated by full CEM and both types of MD/MC-CEM -

Surface Energy (/m?)
FACE CEM MD/MC-CEM I* MD/MC-CEM I’  Expt.°
Ag (111) 0.94 1.07 0.91
(100) 0.99 1.14 0.95 1.24
(110) 1.07 1.25 1.07
Au (111) 1.20 1.42 1.26
(100) 1.29 1.54 1.33 1.50
(110) 1.38 1.66 1.46

8 The embedding function is determined from bulk and diatomic data on
the homogeneous system following previously discussed CEM references.

b The embedding function is determined from bulk data and surface CEM
calculations on the homogeneous system. See text for details.

€ The experimental data are an average of a polycrystalline surface from
W. R. Tyson and W. A. Miller (1977), Surf. Sci. 62, 267.

From an atomistic viewpoint, the more closed packed nature of the (111) and (100)
surfaces increases the binding of the Au atoms to the substrate. For these two
surfaces the Au atoms attain nearly their bulk cohesive energy (3.81 eV) at a full
monolayer coverage, or when (1x1) islands are formed. On the other hand, the Au
atoms’ binding energy on the (110) surface is not as close to the bulk cohesive energy
and thus may attempt to attain larger binding by forming a second layer of Au even at
low coverages (i.e., mimicking the bulk environment). We confirmed this by
calculating the binding energy of an additional monolayer of Au atoms on a one
monolayer thick film of Au on Ag(110) to be 3.84 eV/atom from CEM. Similar
calculations for the other two surfaces result in the same binding energy. Thus,
bilayer growth on the (110) surface gains about 0.1 eV/atom more than on the (111)
and (100) surfaces. Results from MD/MC-CEM II show the same trend although the
absolute magnitudes are slightly smaller and the differences in Table IV not as distinct.
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Table IV Binding energies per Au atom of a full
monolayer of Au on Ag(111), (100) and (110) as
calculated by CEM and the two types of B
MD/MC-CEM =

Binding Energy (eV)
CEM MDMC-CEMI® MD/MC-CEM IIP
(111) 3.67 3.40 3.45
(100) 3.64 3.29 3.37
(110) 3.55 3.13 3.25

_—
—

8 See Table II1.
b See Table TII.

We cannot at this time say that growth is occurring in 3D island fashion.
However, we do believe that the static energy calculations provide a plausible
explanation for the results of Fenter and Gustafsson [18].
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5. SUMMARY AND CONCLUSIONS

. We have applied the recently developed CEM and MD/MC-CEM meéthods to three
different thin film systems: Auw/Cu(100), Rh/Ag(100) and Au/Ag(110). Static interaction
.energy as well as dynamical MD and MC calculations were used to investigate the
energetics and dynamics of the initial growth modes in these systems at the atomic
level. The new theoretical development involved utilizing and contrasting two
different types of MD/MC-CEM embedding functions. The first was determined from
experimental data on the homonuclear bulk and diatomic systems. The second was
determined from experimental data on the homonuclear bulk and CEM calculations on
the top layer of surface atoms. The former described a larger range of systems but
was not as accurate as the latter for surfaces and mixtures of metals at surfaces. The
non-universality of the MD/MC-CEM embedding functions arises directly from the
neglect of the explicit kinetic-exchange-correlation energy correction for inhomogeneity
of the electron density distribution in the real N-atom system.

It is worthwhile to emphasize a few of the general conclusions found in these
studies. First, the Au on Cu system, with a larger adsorbate and little energy gain in
making the adsorbate move subsurface, is unlikely to form surface mixtures by
adsorbate-substrate place exchange. Instead, it is much more likely that the substrate
envelopes the adsorbate via diffusion of adsorbate atoms from steps [23]. Second, the
Rh on Ag system, with a smaller adsorbate and large energy gain, undergoes rapid
exchange of Rh and Ag atoms which are catalyzed by the existence of subsurface Rh.
Third, the Au on Ag system, with equal sized adsorbate and substrate and moderate
energy gain, can display more complex behavior that depends upon the geometrical
arrangement of the substrate atoms. This changes thc interfacial surface energy
which plays a dominant role when the surface erergy differences are small.

It is useful to try and place these results in the context of previous work on the
characteristics of epitaxial growth in fcc(100) systems obeying Lennard-Jones
potentials [27]. These potentials are characterized by a size parameter,-g, and a
strength parameter, €. For the substrate-substrate, film-film and film-substrate

potentials, there are six parameters, (0,,, £,,), (g, €4) and (o, €,), respectively. The
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system behavior is determined by the two energy and two size ratios: g€, €,/€,,,

04/0,., 0,/0,,. The two size ratios are not independent since the hard-sphere type

_interpolation, 6,=(04+0,)/2, is expected to hold to good accuracy. Thus-ene size ratio
suffices, and is conveniently expressed as n=(-1+040,,) with -1<n<ee.

. To our knowledge, the general system behavior has not been analyzed in this three
parameter space. Instead, the most thorough investigations [27] have made the
additional simplification that €_=¢, Then, only one energy ratio, W=e /e, is needed.
The assumption of equal substrate-substrate and film-film interactions severely
limited the generality of these investigations.

The cases 1120, equal or larger film than surface atoms, have been investigated in
great detail [27]. For n=0, 3D islands grow for W<1 and layer-by-layer growth for
W>1. For >0, 3D islands grow. for 0<W<W,(n) and 3D islands on top of layer-by-layer
grow for W (n)<Wce. The critical strength ratio, W(n), is a strongly increasing
function of . In this work, no qualitative differences were found between rigid and
non-rigid substrates.

For the systems in the present work, the energy and size ratios can be estimated
from MD/MC-CEM II and experimental data. However, we do caution that these are
not Lennard-Jones systems so the system behavior may not correspond precisely to
that found in ref.[27] even when the parameter ratios are similar. The values are:

Auw/Cu (g4, £5/€,., O4/C,,) = (3.81/3.49, =3.4/3.49, 4.08/3.61)

RW/Ag (e/€,,, /5., O4/0,) = (5.75/2.95, =4.5/2.95, 3.80/4.09)

AWAg (e4E,,, /€ O/C.) = (3.81/2.95, =3.3/2.95, 4.08/4.09)

Only the Au/Cu system approximately obeys the restriction e,~¢,,. And, in this case,

W«<1 and n=0.1. Our finding that the Au/Cu(100) system forms islands of Au is in
accord with the Lennard-Jones based categorization, although the coverages were too
low and the MD simulations too short to allow formation of 3D islands. ‘

The Rh/Ag and Au/Ag cases do not come close to satisfying e,=¢,,, while the former
also has <0 which was not investigated in the Lennard-Jonesian systems. From our
results, it is clear that when the film-film and film-substrate interactions are stronger
than that of the substrate-substrate and when the film atoms are smaller, complex

behavior such as "sandwich” formation is possible. Indeed, we believe that the
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restrictions of the Lennard-Jones investigations to equal film-film and substrate-
substrate interaction strengths, equal or larger film than substrate atoms and,
especially rigid substrates, eliminated much of the interesting surface chemistry that
“can occur in metal on metal systems. These investigations simply categorized the
classical growth modes in terms of microscopic parameters without providing clues to
the rich behavior possible in other types of systems.

The present investigations are based upon describing the interatomic energies and
forces in metallic systems by accurate semi-empirical methods. As such, the intent is
not to categorize different behaviors of model systems, (i.e., perform computer
experiments), but to predict phenomena in real systems. It is important to understand
the limitations in such work. The accuracy of the present semi-empirical interactions
may be insufficient to describe phenomena depending upon small energies, with
comparisons to experiment necessary to delimit the predictive ability. The present
results indicate both areas of caution, the Aw/Cu mixed layer at 2 mono’ayer coverage
may not be predicted correctly (or may not form via a place exchange mechanism), and
success, "sandwich" structure formation in Rh/Ag and growth mode dependence upon
Ag surface in Au/Ag.

Based upon our results, we expect that other systems will also display "sandwich"
structures. These should involve small adsorbates with much larger cohesive energies
than the substrate, for example Rh/Pd, Rh/Au, Pt/Ag and Pt/Au. An interesting
investigation would involve Rh/Cu and Rh/Ni since the adsorbate becomes increasing

larger than the substrate but the former is still favored to exist in bulk environments.
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GENERAL SUMMARIES AND CONCLUSIONS ~~

In the introduction I derived the basic CEM interaction energy relation, Eq. (6), for
any N-atom system. Papers I and 1I develops CEM formalisms specific for high
symmetry cases of bulk metals, clean and adsorbate covered surfaces. By making use
of symmetry I was able o simplify significantly the cumbersome interaction energy of
a N-atom system to that of select 'focus’ atoms interacting with a semi-infinite system
of atoms. This eliminates edge effects when one is trying to examine properties of
infinite systems.

Clean Surfaces

Paper I presents an expression for the bulk cohesive energy of any metal atom in a
monatomic lattice. Analysis of the calculations based on this expression when using
the SCF-LD embedding energy functions of Puska et al. [4] suggested that these
embedding energy functions represent an ionic interaction of the atom with jellium.
This type of interaction is not appropriate for a homogeneous system with covalent
bonding. As a result, a semi-empirical embedding energy function was constructed to
represent covalent or metallic bonding for these systems.

Further use of symmetry for clean surfaces resulted in a very simple expression for
the surface energy. The minimization of the surface energy with respect to interplaner
distances allowed prediction of multi-layer relazation for various surfaces. The good
agreement of the predicted surface energies led to confidence in the mltilayer
relaxation predictions. For open surfaces, the oscillatory relaxations extended deeper
into the surface than experiments have been able to probe.

It was confirmed that the top layer of a metal surface contracts toward the second
layer. The second layer in turn expands away from the layer below it due to the
excess interaction from the top layer contraction. In addition, if the second layer
expansion is large the third layer itself may contract towards the fourth layer below.

This osciliatory pattern continues in a dampened fashion as one goes further below the
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top layer.

The excellent results obtained for the clean surfaces led me to further extensions of
“the method that included adsorbates on the metal surface. This was tha topic of Paper
II. I we showed that the binding energy for any adsorbate in an ordered ovcrlayer can
‘be calculated quite readily. Again the use of a semi-infinite model eliminated the
undesirable feature of edge effects inheren, in cluster models and enabled a direct

comparison to experimental data.

Chemisorption on Surfaces

The binding of H and N atoms on various Fe surfaces and W(110) was examined in
detail. Minimization of the binding energy with respect to the metal surface layer
distances (as in Paper I), as well as the adsorbate binding height, demonstrated that
some adsorbates can influence considerably the structure of the surface. The degree of
influence is dominated by two features of adsorbate binding. The first is the strength
of the adsorbate-second metal layer interaction and the second is the coverage. In
general the magnitude of induced surface relaxation was found to increase with both
the binding strength and coverage.

It is the interaction of the adsorbate with the second layer metal atoms that
governs the relaxation. The adsorbate tends to decrease its binding height to enhance
its interaction with the second layer atoms. If the adsorbate gets close enough, and
interacts strongly, the second layer will push the first layer away. In essence the
second iayer is willing to sacrifice interaction with metal atoms above for a stronger
interaction with the adsorbate. This is in contrast to the traditional thinking that
adsorbates heal the surface [14]. The dangling bonds left on the clean surface cause
the surface to contract. Adsorbates then fill these dangling bonds ard the surface
relaxes away from the second layer. The healing idea makes intuitive sense but I
have shown that this is not a complete picture of the adsorbate induced relaxation of
metal surfaces.

The above calculations were all static in nature: an ordered structure was guessed
and the energy was calculated. This process was repeated until the energy was

minimized with respect to only a few degrees of freedom describing the surface. The
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effects of disorder, temperature and many more degrees of freedom were not examined

in Papers I and II. The purpose of Papers III and IV were to address these and

_extend the CEM method to very large and less symmetric systems. =

Molecular Dynamics of Metal Adsorbates

In Paper III, I described the initial mechanisms involved in the formation of the
equilibrium structures of Rh atoms deposited on the Ag(100) surfice. Many
simulations of temperature annealing of predeposited Rh atoms ‘were done to examine
in detail how atoms move in order to form an equilibrium structure. I have
determined that the dominant motion is Rh atoms exchanging places with surface Ag
atoms. Higher temperature annealing enhanced the rate and overall amount of place
exchange. This confirmed experimental data [15] that suggest a sandwich type
structure is formed after annealing at 600 C of a Rh deposited film on the Ag(100)
surface.

My calculations indicated that the initial stages of the formation of a sandwich
structure is a self-catalyzing mechanism at around half monolayer coverages. The
mechanism has two stages. First, the rare event of a Rh-Ag place exchange has to
have taken place. Then once this is accomplished, other nearby Rh atoms still on top
of the surface are drawn into the surface by the previous Rh atoms that have already
exchanged. If there are no nearby Rh atoms, then the original exchange is & single
isolated event.

Paper IV examined the thin film dynamics of two systems. The dynamics of the
structural formation of Au atoms deposited on Cu(100) at half and quarter monolayer
coverages was examined. The Rh/Ag(100) system was examined again with the results
providing further support of the previous findings in Paper IIL

The molecular dynamics simulations of the Au/Cu(100) system also gave insight on
the initial stages of the formation of an ordered surface alloy of Au and Cu on the
Cu(100) surface. Unlike the Rh/Ag(100) system, place exchange of Au and Cu does not
occur on the time scale of around 1000 ps. Rather, Au and Cu atoms most likely
simply mix on the surface where Cu atoms from step edges diffuse into existing Au

islands. The same can occur for Au atoms diffusing into Cu step edges from these
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same Au islands. This phenomencn has recently been experimentally postulated [16]
for O chem.sorbed on Cu(110). Although this type of phenomena is much to slow to be
_examined completely by a molecular dynamics simulation, such short time scale
calculations have shed light on the initial mechanism involved in forming equilibrium
.structures.

Paper IV also examined the energetics of Au deposited films on Ag(110) system.
Only static calculations were done here. The results indicated that Au atoms may
have an energetic preference to form bilayer rather than single monolayer islands on
the Ag(110) surface. Thus at low coverages, Au atoms may migrate onto an existing
Au island and form a two layer island. There is an energetic advantage to form the
second layer rather than bind on the Ag surface. This confirmed recent experimental
evidence [17] suggesting bilayer island growth of Au on the Ag(110) surface.

The CEM method is fast ¢volving into an efficient predictive tool for several areas
of scientific research. The method is particularly applicable to extended systems
where the electron density distributions more closely resemble that of jellium. Papers
I and II of this thesis presented results that can be compared directly to available
experimental datu. The quantitative predictions agreed very well with available
experiment data. This success of the method thus builds ccnfidence for future
applications.

Papers III and IV presented results that, even without quantitative comparison to
experimental data, do qualitatively help in the interpretation of new and existing
experimental work. Many areas in the materials sciences pose problems which are
ideal for the MD/MC-CEM method. I must reemphasize that the molecular dynamics
simulations should not be used to determine the overall equilibrium structures.
Rather, one should use MD simulations as a tool in identifying and quantifying the
various processes that eventually form an equilibrium structure.

There are limitations of the CEM method that should be mentioned. The most
obvious is that the method is not self-consistent. Thus electronic properties are not
accessible. This self-consistency problem may never be addressed since-making CEM
self-consistent defeats the purpose: to provide a simple, very fast and accurate method.
There are however a few steps that can be taken to make the CEM method more in
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touch with real systems or at least even more reliable.

First the use of free atom HF electron densities turns out to be a problem in some
cases. More recent calculations by another member of the research graup and me [18]
on the relaxation of clean metal surfaces have resulted in the loss of CEM’s ability to
.predict oscillatory relaxation of open surfaces. Only top layer contraction is predicted
to occur. This is in contrast to my original calculations in Paper I. The only difference:
between these sets of calculations was in the form of the Gaussian fit to the HF atomi:
electron density. Paper I utilized the first Gaussian form Eq. (23) and the more recent
results utilized the second in Eq. (25). As already discussed, the first form of the fit
had electron density tails higher in magnitude than the second. Surprisingly,
improving the quality of the fit and, supposedly a better calculation, resulted ir poorer
results.

The reason for this discrepancy is that in bulk systems the electron density is less
localized around an individual atom than in free space. Thus the first fit had
mimicked in a crude way this delocalization of the electron density which in turn
made the atoms more sensitive to small displacements such as layer relaxation. This
indicates to me that the proper representation of the atomic electron density is indeed
important. One way in which to better describe extended systems such as surfaces is
to fit the Gaussian expansion to atomic electron densities derived from bulk systems
rather than from the free atom. Some properties of surfaces, such as relaxation, are
sensitive to small changes in the electron density distributions. We cannot easily
relax the electron densities but at least we can better approximate them for a given
configuration of atoms (i.e., bulk and surface systems).

Second, the MD/MC-CEM method is ideal for molecular dynamics calculations and
far superior to empirical pair-potentials. This is so even though there are some
disagreements in energetics compared to experimental data and the full CEM method.
Remember that the correction energy AG is approximated quite simply as a function of
the jellium electron deunsity environment and is empirically constructed. It is apparent
that a more sophisticatzd approximation of AG will surely improve the accuracy over
the simplistic approach.

One way to improve upon the approximation is to make AG depend also on some



176

average gradient of the electron density environment,;

N

AG =Y [AG(n) + AG,( Va(F))] = 84)
i

The first term is the current empirical approximation (not the exact values) and the
second term depends the gradient correction of the electron density environment. This
approximation is much more reasonable since the correction energy AG was designed
to correct for electron inhomogeneities (gradients) in the first place.

One must however be careful not to make the above gradient correction too
complicated since molecular dynamics of large systems requires a potential that is fast
to evaluate and differentiate. Thus the ideal case would be to use something that is
already calculated or at least easily derived from existing information. The electron

density overlaps in Egs. (21) and (22) may lend themselves to such an approach.
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