Nty

- SANDIA REPORT SAND84— 1161 * Unlimited Release » UC—32

Printed February 1985

Vi e () 1-/9921 DR OF06-0

SAND--84-1161

DE85 006856

. User’s Guide for
" Wilson-Fowler Spline Software
" SPLPKG, WFCMPR, WFAPPX
CADCAM—010

Sharon K. Fletcher

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-76DP00789

D,’STE‘”?HW”)
BEINE D T DOCLENT 15
0 Umw
SF2900Q(8-81}

y owned rights. Refer-

DISCLAIMER
y agency thereof, nor any of their
express or implied, or assumes any legal liability or responsi-
, process, or service by trade name, trademark,

completeness, or usefulness of any information, apparatus, product, or

, O represents that its use would not infringe privatel
ns of authors expressed herein do not necessarily state or reflect those of the

or favoring by the United States Government or any agency thereof. The views

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor an

employees, makes any warranty,

bility for the accuracy,

process disclosed
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

ence herein to any specific commercial product
mendation,

and opinio

HILE .
FORYIONS OF THIS REPCRT ARE lllEGlE?‘;'p' -
it has been reproduced from the be:

¢vsiable copy to parmit e broad... Distribution
§ v sy Availun g, Category UC-32
SAND84-1161

Unlimited Release
Printed February 1985

User’s Guide for
Wilson-Fowler Spline Software

SPLPKG
WFCMPR
WFAPPX

CADCAM—010

Sharon K. Fletcher
CAD/CAM Integration Division 2811

Sandia National Laboratories
Albuquerque, New Mexico 87185

United States Government or any agency thereof.

Abstract

The Wilson-Fowler spline is widely used in computer aided manufactur-
ing, but is not available in all commercial CAD/CAM systems. These three
programs provide a capability for generating, comparing, and approximat-
ing Wilson-Fowler splines. SPLPKG generates a spline passing through
given nodes, and computes a piecewise linear approximation to the spline.
WFCMPR computes the difference between two splines with common nodes.
WFAPPX computes the difference between a spline and a piecewise linear

curve. The programs are in Fortran 77 and are machine independent.

(\)
cy
"

DISTRIOTICN O THIS penMENT R i Tt

Introduction

Section I: SPLPKG
Section II: WFCMPR
Section III: WFAPPX

References

Table of Contents

22
30
38

DISTRISUTICN OF THIS DOCUMENT IS UKLINIVED

Introduction

The three programs described here make up the set of spline software
tools described in “Recommended Practices for Spline Usage in CAD/CAM
Systems” [1]. They provide a means for generating Wilson-Fowler splines, com-
paring Wilson-Fowler splines, and evaluating a piecewise linear approximation
to a Wilson-Fowler spline.

The Wilson-Fowler spline is widely used in Computer Aided Design and
Manufacture. The original algorithm developed by Fowler and Wilson [4] has
been incorporated into APT and many commercial CAD/CAM systems. However
the implementations do not all produce identical results, and many newer CAD
systems use other types of splines. The Wilson-Fowler spline is favored for many
applications because it produces a smooth, low curvature fit to planar data
points.

Current product definition exchange procedures are not yet fully automated,
and spline exchange usually requires reentry of spline nodes into a receiver’s
CAD/CAM system and recomputation of the spline by that system. Report
[1] issues guidelines for minimizing errors and verifying the exchange of spline
data. The software tools provided here may be helpful in conjunction with those
guidelines.

Program WFCMPR computes the maximum difference between two Wilson-
Fowler splines, and may be used to verifly the spline recomputed by a receiving
system. Program SPLPKG generates a Wilson-Fowler spline passing through
given nodes (with given end conditions), and also generates a piecewise linear
approximation to that spline within a given tolerance. This program may be
used to generate a “desired” spline against which to compare other splines
generated by CAD/CAM systems. It may also be used to generate an acceptable
approximation to a desired spline in the event that an acceptable spline cannot
be generated by the receiving CAD/CAM system. Program WFAPPX computes
the maximum difference between a Wilson-Fowler spline and a piecewise linear
curve. This may be used to accept or reject a proposed approximation to a desired
Wilson-Fowler spline, even if the origin of the approximation is unknown.

file:////TAPPX

One section of this user’s guide is devoted to each program. Each section
begins with a description of the program’s purpose, method, inputs/outputs, and
limitations. Following are sample run(s) and data files. Program listings are last
within each section.

Section]
SPLPKG

Program SPLPKG

Purpose: The program SPLPKG computes a Wilson-Fowler spline and writes
an 1GLES file of points evaluated on the spline and/ or a file containing the spline
description.

Language/Libraries: The program package SPLPKG is written in Fortran
77. 1t is self-contained, requiring no libraries. Function DPNTLC and subroutine
WFEVAL are also used by program WFAPPX, and are copied.

Inputs (To be read from a file): Spline nodes:
e Number of spline nodes

¢ (X,Y) values of nodes.

Inputs (By the operator):

e Convergence criterion for computed spline

Entry and exit angles - may be defaulted

Maximum deviation of piecewise linear approximation to spline

Number of points for initial piecewise linear approximation

Flag indicating whether or not to write points into an IGES file
e IGES level assignment for the points

e Flag indicating whether or not to write spline definition to a file.

Outputs
¢ IGES file containing breakpoints of piecewise linear approximation

¢ File containing spline definition.

Method:

The algorithm for computing the Wilson-Fowler spline from given nodes and
end angles was provided by W. R. Melvin [2] The algorithm for computing the
distance from a point (on the spline) to a p1ecew1se linear curve was provided by
J. D. Emery [3].

The entry and exit angles for the spline may be defaulted, in which case they
are computed by fitting circles to the first (last) three nodes.

A piecewise linear approximation to the spline is computed and the breakpoints
of it may optionally be written out in IGES file format. The operator inputs the
maximum allowable deviation from the spline, and the initial number of points
on the spline to be used for the approximation. The deviation is checked midway
between each breakpoint, and the number of points is doubled until the deviation
criterion is satisfied.

The spline definition, in terms of local tangents, may optionally be dumped to
a file in one of two formats:

e The 5 column format is one line per node containing the X node value,
Y node value, start local tangent for the segment that begins with that
node, end local tangent for the segment, and length of the segment.

e The linear display format is number of nodes, followed by (X,Y) pairs for
the nodes, followed by local tangent pairs for the segments. This is the
format needed for input to programs WFAPPX and WFCMPR.

Limitations:

The following limitations are explicit in PARAMETER statements at the begin-
ning of the program:

¢ NNODES (maximum number of spline nodes) = 100

¢ XSMALL (smallest number used to prevent machine underflow) = 1E-30
¢ XBIG (largest number used to prevent machine overflow) = 1E+30

¢ NEPTS (maximum number of evaluation points for linear appx) = 1600

The following limitations are explicit in character statements near the beginning
of SPLPKG and its subroutine WRIGES:

o all filename lengths = 12 characters.

Operational Notes:

This program may be used to obtain either the definition of a Wilson-Fowler
spline, or a piecewise linear approximation to a Wilson-Fowler spline, or both.
Appropriate outpul options are provided. If the spline definition dump is all that
is desired, calculation of the linear approximation is incidental, and computation
can be minimized by specifying a small number of initial points (eg., 10) and a
large deviation (eg., 1I210) for the lincar approximation.

-5 -

$ run splpkg

Enter convergence criterion for spline (eps):

.000001

Input filename ?

testi

Calculated entry, exit angles = 323.1301 648.1301
Enter new values, if desired (>360 TO KEEP DEFAULTS):

500 500

Enter max allowed deviation for a piecewise
linear approximation to the spline (delta):

.00001

Enter initial number of points for the approximation:
200

Number of interpolated points is 200

Maximum deviation is 1.1348096E-04

Number of interpolated points is 3989

Maximum deviation is 2.9065832E-05

Number of interpolated points is 797

Mzximum deviation is 7.7114091E-06
¥ant these points written to an IGES file (Y/N)?

n
Choose file
N
(default) T
L
n
FORTRAN STOP
$

format for dump of spline definitiom:

no dump
5 column table: (x, y, tana, tanb, length)

linear display: n, (x,y), (tana,tanb)

SPLPKG Sample Run #1

$ run splpkg

Enter convergence criterion for spline (eps):

.000001

Input filename °?
testl

Calculated entry, exit angles = 323.1301 548.1301
Enter new values, if desired (>360 TO KEEP DEFAULTS):
500 6500

Enter max allowed deviation for a piecewise

linear approximation to the spline (delta):

le10

Enter initial number of points for the approximation:
10

Number of interpolated points is 10

Maximum deviation is &§.0445277E-02

Fant these points written to an IGES file (Y/N)?

Yy .
Enter IGES level number:
1
Enter IGES file name:
igesl
Choose file format for dump of spline definition:
N = no dump

(default) T = 6 column table: (x, y, tana, tanb, length)

L = linear display: n, (x,y), (tana,tanb)
t
Enter dump file name:
dump1
FORTRAN STOP
$

SPLPKG Sample Run #2

Input File for SPLPKG Sample Runs.

INTERPOLATED POINTS FROM WILSON-FOWLER SPLINE PACKAGE S
+ » 19HINTERPOLATED POINTS, ,6HSPLPKG; G
116 1 1 1 1 D
116 1 POINT D
116 2 1 1 1 D
116 1 POINT D
116 3 1 1 1 D
116 1 POINT D
116 4 1 1 1 D
116 1 POINT D
116 5 1 1 1 D
116 1 POINT D
116 6 1 1 1 D
116 1 POINT D
116 7 1 1 1 D
116 1 POINT D
116 B 1 1 1 D
116 1 POINT D
116 9 1 1 1l D
116 1 POINT D
116 10 1 1 1 D
116 1 POINT D
116, 0.5000000E+01, 0.0000000E+00,0.0000000; 1p
116, ©0.4338B405E+01, 0.5660306E+00,0.0000000; 3P
116, 0.3848392E+01, 0.128878BE+01,0.0000000; 5p
116, 0.3594636E+01, 0.2119220E+01,0.0000000; 7P
116, 0.3416715E+401, 0.2974932E+01,0.0000000; 9P
116, 0.3124311E+01, 0.3792482E+01,0.0000000; 11P
116, 0.253B533E+01, 0.4489997E+01,0.0000000; 13P
116, 0.175499BE+01, 0.4863973E+01,0.0000000; 15p
116, 0.8680618E+00, 0.5012667E+01,0.0000000; 17p
116, -0.238B418B6E-06, 0.5000000E+01,0.0000000; 19P
S 1G 1D 20P 10 T

Output IGES File from SPLPKG Sample Run #2.

NS o ol ol el g
CTNOUNPWNHOOVDNIDU B WNH

~
(=]

-
HOWOM~NOU S WN -

5.000000

0.0000000E+00 0.1428571

4.000000 1.000000 0.2336244
3.000000 4.000000 -0.5655161
1.000000 5.000000 -0.1056955
0.0000000E+00 5.000000 0.1428573

-0.2385142
0.2775339
0.3745124
0.1428573

0.0000000E+00

Output Dump File from SPLPKG Sample Run #2.

-10-

1.414214
3.162278
2.236068
1.000000

0.0000000E+00

nnoonoaoaaaannanNaaaaaanaaOaaoaoaOoOoaaoaaaaaoaNannNOoNoNaOOOOnNnnn

PROGRAM SPLPKG

PARAMETER (NNODES=100, NEPTS=1600)

PARAMETER (XSMALL=1E-30, XBIG=1E+30)}

PARAMETER (NEOQ2=NEPTS/2)

CHARACTER*12 F2, F4

CHARACTER#]1 ANS

DIMENSION TABL(5,NNODES)

DIMENSION XOUT(NEPTS),YOUT(NEPTS) ,XTMP(NEO2) ,YTMP(NEO2)
COMMON /MACHIN/ ZERO, BIG

DATA ZERO, BIG / XSMALL, XBIG /

PROGRAM TO CALCULATE A WILSON-FOWLER SPLINE THROUGH A
SET OF NODES, AND THEN INTERPOLATE ON THE SPLINE TO
OBTAIN A SET OF OUTPUT POINTS REPRESENTING A PIECEWISE
LINEAR APPROXIMATION TO THE SPLINE. THE OUTPUT POINTS
MAY BE WRITTEN INTO AN IGES FILE. THE SPLINE DEFINITION
IN TERMS OF LOCAL TANGENTS MAY BE WRITTEN TO A FILE.

THIS PACKAGE OF FORTRAN ROUTINES IS WRITTEN IN FORTRAN77.
I/0 OCCURS IN: .
MAIN PROGRAM .
SUBROUTINE NWF (3 ERROR MESSAGES WEAR END)
SUBROUTINE WRIGES.

ANY QUESTIONS SHOULD BE REFERED TO:
SHARON FLETCHER
SANDIA NATL LABORATORIES, DIV 7611
{505) B46 - 5506

TWO END CONDITIONS ARE REQUIRED IN ADDITION TO0 THE INPUT
NODES TO DEFINE THE SPLINE; THESE MAY BE ENTERED AS
ENTRY AND EXIT ANGLES (DEGREES) OR MAY BE DEFAULTED, IN
WHICH CASE THE PROGRAM CALCULATES THE TANGENTS TO CIRCLES
FIT THROUGH THE INITIAL 3 AND LAST 3 POINTS.

EPSILON IS A CONVERGENCE CRITERION FOR SUBROUTINE NWF -~
NWF GUARANTEES TO CONVERGE TO THE TRUE (THEORETICAL)
SOLUTION TO WITHIN EPS UNITS ALONG THE ENTIRE LENGTH OF
THE SPLINE.

DELTA IS THE MAXIMUM ALLOWED DEVIATION FOR THE PIECEWISE LINEAR
APPROXIMATION TO THE SPLINE. THE SPLINE IS INITIALLY EVALUATED AT
NPTS POINTS FOR THE APPROXIMATION. THEN THE NUMBER OF EVALUATION
POINTS IS DOUBLED UNTIL THE APPROXIMATION IS WITHIN DELTA OF

THE SPLINE.

INPUTS:
(UNIT 2): N = NUMBER OF POINTS (SPLINE NODES)
TABL(1,I),TABL(2,I) = X & Y COORDINATES OF A POINT
(OPERATOR) : EPS = SPLINE CONVERGENCE CRITERION
EN = OVERRIDE ENTRY ANGLE IN DEGREES
EX = OVERRIDE EXIT ANGLE IN DEGREES
DELTA = MAX DEVIATION OF LINEAR APPROXIMATION
NPTS = NUMBER OF INITIAL POINTS FOR LINEAR APPX
ANS IGES FILE WRITE OPTION
LVL = IGES LEVEL ON WHICH TO WRITE POINTS
ANS = DUMP FILE OPTION
F2, F3, F4 = FILENAMES

OUTPUTS :

(UNIT 3): OPTIONAL IGES FILE CONTAINING INTERPOLATED POINTS
(UNIT 4): OPTIONAL DUMP FILE CONTAINING SPLINE DEFINITION

~11~

oo aao aan OOO:; naa

a0

a0 e

aoonun

PRINT *, ‘' Enter convergence criterion for spline (eps):’
READ *, EPS

READ THE SPLINE NODES INTO TABL.
PRINT %, ’ Input filename 7 '
READ (*,200) F2
OPEN (UNIT = 2, FILE = F2, STATUS = ‘OLD’)
READ (2,%) N
Do 10 I=1,N

READ (2,%) TABL(1,I), TABL(2,I)
CONTINUE

CALCULATE ENTRY AND EXIT ANGLES
CALL ANGLES(N,TABL,ENTRYA,EXITA)

ALLOW OVERRIDE OF CALCULATED ANGLES

PRINT %, ‘' Calculated entry, exit angles =', ENTRYA,EXITA

PRINT %, ‘' Enter new values, if desired (>360 TO KEEP DEFAULTS):’

READ *, EN,EX
IF (EN .LE. 360.) ENTRYA = EN
IF (EX .LE. 360.) EXITA = EX

CALCULATE WILSON-FOWLER SPLINE
CALL NWF(N,TABL,ENTRYA,EXITA,EPS)

OBTAIN PIECEWISE LINEAR APPROXIMATION BY EVALUATING
SPLINE AT NPTS POINTS

PRINT *, ' Enter max allowed deviation for a piecewise’

PRINT *, ' linear approximation to the spline (delta):’

READ «, DELTA

PRINT *, ' Enter initial number of points for the approximation:’
READ *, NPTS

GET TOTAL CHORD LENGTH
TOTL = 0.
DO 40 I=1,N-1

TOTL = TOTL + TABL(5,I)
CONTINUE

INTERPOLATE AT POINTS EQUALLY SPACED ALONG THE CHORD LENGTH

RINC = TOTL/(NPTS-1)
DO 50 I=1,NPTS

ULOCL = (I-1) # RINC

CALL WFEVAL(N,TABL,ULOCL,X0UT(I),YOUT(I))
CONTINUE

CHECK AT MIDPOINTS

TINC = .5 * RINC
NINC = 2 # (NPTS-1)
DIST = CHEKIT(N,TABL,NPTS,XOUT,YOUT , NINC,TINC,XTMP,YTMP, .TRUE.)

PRINT #, ’ Number of interpolated points is’, NPTS
PRINT #, ’' Maximum deviation is’, DIST
IF (DIST .LE. DELTA) GOTO 75

-12-

o INCREASE NPTS (ADD MIDPOINTS) UNTIL APPX IS WITHIN DELTA

DO 72 I=NPTS,1,-1
J = 2xI-1
XoUT(J) = XOUT(I)
YOUT(J) = YOUT(I)
72 CONTINUE
DO 73 I=1,NPTS-1
J = 241
XOUT(J) = XTMP(I)
YOUT(J) = YIMP(I)
73 CONTINUE
NPTS = 2 « NPTS - 1
TINC = .5 & TINC
NINC = 2 # (NPTS - 1)
IF (NPTS .GT. NEO2) THEN
DIST = CHEKIT(N,TABL,NPTS,X0UT,YOUT,NINC,TINC,XTMP,YIMP,
+ .FALSE.)
PRINT *, ’ Number of interpolated points is‘, NPTS
PRINT *, ' Maximum deviation is’, DIST
PRINT *, ‘' *** Warning: Deviation may exceed delta. ***’

GOTO 75
ENDIF
GOTO 60
C
C (OPTIONALLY) WRITE AN IGES FORMATTED FILE CONTAINING THE
c EVALUATED POINTS
(o]
75 CONTINUE
PRINT *#, ‘’ Hant these points written to an IGES file (Y/N)?’
READ (%,200) ANS
IF (ANS .EQ. 'Y’ .OR. ANS .EQ. ‘y’) THEN
PRINT *, ’ Enter IGES level number:’
READ *, LVL
CALL WRIGES(LVL,NPTS,XO0UT,YOUT)
ENDIF :
c
C (OPTIONALLY) DUMP OUT SPLINE DEFINITION IN TERMS OF LOCAL TANGENTS
C
PRINT #, ’ Choose file format for dump of spline definition:’
PRINT ~, * N = no dump’
PRINT *, ° (default) T = 5 column table: (x, y ,tana, tanb, length)’
PRINT %, * L = linear display: n, (x,y), (tana,tanb)’

READ (#,200) ANS

IF (ANS .NE. ‘N’ .AND. ANS .NE. '‘n’) THEN
PRINT #, ‘' Enter dump file name:’
READ (%,200) F4

C(VAX) OPEN (UNIT=4, FILE = F4, STATUS NEW’, CARRIAGECONTROL = ‘LIST’)

" OPEN (UNIT=4, FILE = F4, STATUS = 'NEW’')
IF (ANS .EQ. 'L’ .OR. ANS .EQ. '1l‘) THEN
WRITE (4,*) N
Do 80 1=1,N
WRITE (4,*) TABL(1,I), TABL(2,I)
80 CONTINUE

DO 85 I=1,N-1
WRITE (4,*) TABL(3,I), TABL(4,I)

85 CONTINUE
ELSE
DO 90 I=1,N
WRITE (4,*%) (TABL(J,I), J=1,5)
90 ENDDO
ENDIF
ENDIF

-13-

200

0 aaaaaganonnaaan

50

nnooaononNnnNnoaononnann

STOoP

FORMAT(A)

END

FUNCTION CHEKIT(N,TABL,NPTS,X,Y,NINC,TINC,XTMP,YIMP,SAVFLG)
DIMENSION X(1), Y(1), XTMP(1l), YIMP(1)

LOGICAL SAVFLG

INPUTS:
N = NUMBER OF SPLINE NODES
TABL = SPLINE DEFINITION TABLE
NPTS = NUMBER OF POINTS ON PIECEWISE CURVE
X(I), Y(I) = PIECEWISE CURVE POINTS
NINC = NUMBER OF INCREMENTS ALONG SPLINE T0 CHECK
TINC = CHORD LENGTH INCREMENT CORRESPONDING TO NINC
SAVFLG = IF .TRUE., SAVE NEWLY EVALUATED POINTS

OUTPUTS :
CHEKIT = MAXIMUM DEVIATION FOUND
XTMP, YIMP = EVALUATED POINTS

CHEXIT = 0.
(CHECK ODD MULTIPLES OF THE INCREMENT TINC -- THESE ARE MIDPOINTS)
DO 50 I-=1,NINC,2
T = I « TINC
CALL WFEVAL(N,TABL,T,U,S)
IF (SAVFLG) THEN
d = (I+1l) / 2

XIMP(J) = U
YTMP(J) = 8
ENDIF

(LIMIT PIECEWISE CURVE TO 3 SEGMENTS AROUND SPLINE POINT BEING CHECKED)
NK = 4
K = (I-1) / 2 ¢
IF (X .LT. 1) K =1
IF (K+3 .GT. NPTS) NK=3
DIST = DPNTLC(NK,X(K),Y(X),U,S)
IF (DIST.GT. CHEKIT) CHEKIT = DIST
CONTINUE
RETURN
END
function dpntleci(nk,x,y,u,s)
dimension x(1), y(1l)
common /machin/ zero, big

INPUTS:
nk = number of points (piecewise linear curve)
x(i) = i-th curve point x coordinate
y(1) = 1i-th curve point y coordinate
u x coordinate of measurement point
y coordinate of measurement point

nn

OUTPUT':
dpntlc = distance from the point (u,s) to the curve

Finds minimum distance from a point to a piecewise linear
curve defined by its breakpoints {x,y}. All segments of
the linear curve are tested.

m=nk -1
dpntlc = big
do 10 1i=1,m

a
b

sqrt((x{ i)-u)**2 4+ (y(1)-s)*%2)
sqri((x(i+4l)-u)A*2 + (y(i+l)-s)A*2)

"o

-14-

if (abs(a*b) .lt. zero) goto 50
c = sqrt((X(1+1)-x(1))**2 + (y(i+1)-y(1))4*x2)
cosa = (bXb + c*c - a*a) / (2.xbxc)
cosb = { a*a + c*c - b*b) / (2.4a*c)
if (cosa*cosb .ge. 0.) then
e = b % sqrt(abs(l-cosar*2))
else
e = aminl(a,b)
endif
if (e .1t. dpntlc) dpntlc = e
10 continue
return
50 dpntlc = 0.
return
end
SUBROUTINE WRIGES(LVL,NPTS,X,Y)
DIMENSION X(1), Y(1)
CHARACTER*12 F3

INPUTS:
LVL = IGES LEVEL ON WHICH TO WRITE POINT ENTITIES
NPTS = NUMBER OF (X,Y) POINTS
X = ARRAY OF X VALUES

Y = ARRAY OF Y VALUES :

OUTPUTS :
(UNIT 3): IGES FILE

WRITES AN IGES FILE CONTAINING THE (X,Y) POINTS.

anoaoaaonooanana

PRINT #, ’ Enter IGES file name:’
READ (%,200) F3

C(VAX) OPEN (UNIT = 3, FILE = F3, STATUS
OPEN (UNIT = 3, FILE = F3, STATUS
NPTS2 = NPTS * 2

‘NEW’, CARRIAGECONTROL = ‘LIST’)
‘NER')

WRITE START AND GLOBAL SECTIONS (1 CARD IMAGE EACH)

aan

WRITE (3,100)
WRITE (3,101)

WRITE DIRECTORY SECTION (2 CARD IMAGES PER POINT)

DO 10 I=1,NPTS
I2 = 142
I2Ml = 12 -1
WRITE (3,102) I, LVL, I2M1
Y WRITE (3,103) 12

00

WRITE PARAMETER SECTION (1 CARD IMAGE PER POINT)

DO 20 I=1,NPTS
I2Ml = I * 2 -1
0 WRITE (3,104) X(I), ¥(I), I2M1, I

aoaw

WRITE TERMINATE SECTION

aaawN

WRITE (3,105) NPTS2, NPTS
CLOSE (3)
RETURN

100 FORMAT (* INTERPOLATED POINTS FROM WILSON-FOWLER SPLINE PACKAGE',

+ 19%,’'S 1)
101 FORMAT(‘', ,19HINTERPOLATED POINTS, ,6HSPLPKG; '37X,’'G 1)

-15-

102
103
104
105
200

aaoaaanooannan

\ nnnanaananana

FORMAT(* 116’ ,18,2(7X,’1'),18,32%X,'D’' ,1I7)

FORMAT ("’ 116’ ,23%,'1',24X,’ POINT’ ,8X,'D’,17)
FORMAT('116,’,2(E15.7,',’),’0.0000000;,18X,18,'P’,17)
FORMAT('S 1G 1D’ ,17,'P’' ,17,40%X,'T 1)
FORMAT(A)

END

SUBROUTINE ANGLES(N,TABL,ENTRYA,EXITA)
DIMENSION TABL(5,100)

INPUTS:
N = NUMBER OF POINTS (SPLINE NODES)
TABL(1,I) = I-TH X COORDINATE
TABL(2,I) = I-TH Y COORDINATE
OUTPUTS :

ENTRYA = TANGENT ANGLE (DEGREES) FOR FIRST POINT
EXITA = TANGENT ANGLE (DEGREES) FOR LAST POINT

TANGENT ANGLES ARE CALCULATED BY FITTING A CIRCLE THROUGH
THREE CONSECUTIVE POINTS.

PI =
DX1
DYl
DX2
DY2
RS1
RS2
GAl
DEN
DEN
A2 =
Al =

4. % ATAN(1l.)

TABL(1,2) - TABL(1,1)
TABL(2,2) - TABL(2,1)
TABL(1,3) - TABL(1,2)
TABL(2,3) - TABL(2,2)

DX1A*2 + DY14%2

DX2A%2 + DY24A%2
ATANZ(DY1,DX1)

RS1 ~ DX2 + RS2 *« DX1
SIGN(AMAX1(1E-S,ABS(DEN)) ,DEN)

ATAN((RS1 * DY2 + RS2 # DY1l) / DEN)
GAl - (A2 - GAl)

ENTRYA = Al *~ 180./P1

DXNM1
DYNM1
DXNM2
DYNM2
RSNM1
RSNM2
GANM1
DEN =
DEN =
ANM1

TABL(1,N) - TABL(1,N-1)

TABL(2,N) - TABL(2,N-1)

TABL(1,N-1) - TABL(1,N-2)

TABL(2,N-1) - TABL(2,N-2)

DXMNM1Ax2 + DYNM1#%2

DXNM2*42 + DYNM2#xk2

ATAN2 (DYNM1 ,DXNM1)

RSNM2 » DXNM1 + RSNM1 * DXNM2
SIGN(AMAX1(1E-9,ABS(DEN)) ,DEN)

= ATAN((RSNM2 » DYNMl + RSNM1 # DYNM2) / DEN)

AN = GANM1 + PI - (ANMl1 - GANM1)
EXITA = AN * 1B80./PI
RETURN

END

SUBROUTINE WFEVAL(N,TABL,ULOCL,U,S)
DIMENSION TABL(5,100)

INPUTS:

N = NUMBER OF POINTS (SPLINE NODES)

TABL(1,I) = I-TH POINT X COORDINATE

TABL(2,I) = I-TH POINT Y COORDINATE

TABL(3,I) = I-TH SEGMENT ENTRY ANGLE TANGENT

TABL(4,1I) = I-TH SEGMENT EXIT ANGLE TANGENT

TABL(5,I) = I-TH SEGMENT LENGTH

ULOCL = A VALUE ALONG THE CHORD LENGTH FOR INTERPOLATION
OUTPUTS :

U = GLOBAL COORDINATES X VALUE OF INTERPOLATED POINT

s

GLOBAL COORDINATES Y VALUE OF INTERPOLATED POINT

-16-

u naonaaon

anoow

aoan

aaaooaaaaaaaaoaaaaaaaoana

INTERPOLATE TO THE SPLINE AT ULOCL IN TERMS OF THE LOCAL
COORDINATE SYSTEM, THEN ROTATE THE POINT TO THE GLOBAL
COORDINATE SYSTEM.

(DETERMINE WHICH SEGMENT ULOCL IS IN -- J-TH SEGMENT)

J =1)

IF (ULOCL .LT. TABL(5,J) .OR. J .EQ. N-1) GOTO 10
ULOCL = ULOCL - TABL(5,J)
J=J+1
GOTO 5

CONTINUE

(EVALUATE HERMITE FORM OF CUBIC)

UMT = ULOCL - TABL(5,J)
SLOCL = (TABL(3,J) * ULOCL * UMTA#2 +
TA.BL(4,J)* ULOCL**2 & UMT) / TABL(S5,J)**2

(ROTATE AND TRANSLATE LOCAL POINT {ULOCL,SLOCL) TO
GLOBAL COORDINATE SYSTEM (U,S))

TH = ATAN2(TABL(2,J+1)-TABL(2,J),TABL(1,J+1)-TABL(1,J))
U = ULOCL * COS(TH) - SLOCL ~ SIN(TH) + TABL(1,J)
S = ULOCL * SIN(TH) + SLOCL * COS(TH) + TABL(2,J)

i

SUBROUTINE NWF(N,TABL,ENTRYA,EXITA,EPS)
REAL 2(150),F(150),R(150) ,FPR(3,150),TABL(5,1)
DATA IFLAG/0/,CONV/.0174532925/,C1D3/.333333333333/

SUBROUTINES NWF, FSPL, TRIDG, AND FURCTIONS DINV, DFLIP ARE
ADAPTED FROM A SUBROUTINE PACKAGE WRITTEN BY W. MELVIN OF
LOS ALAMOS NATL LABORATORIES. REF. REPORT LA9178.

NWE COMPUTES THE WILSON-FOWLER SPLINE WHICH PASSES THROUGH
THE N POINTS FOUND IN THE FIRST 2 COLUMNS OF TABL WITH
GIVEN END CONDITIONS, AND PUTS THE RESULTING SEGMENT
ENTRY TANGENTS, EXIT TANGENTS, AND SEGMENT LENGTHS

IN COLUMNS 3, 4, 5 OF TABL. THE SPLINE CAN BE EASILY
EVALUATED FROM THIS INFORMATION USING ITS HERMITE
REPRESENTATION.

NEWTON ITERATION IS USED TO SOLVE FOR THE INTERNAL SLOPES;

THE ITERATION CONTINUES UNTIL THE COMPUTED SOLUTION IS WITHIN

EPS OF THE THEORETICAL SOLUTION ALONG THE ENTIRE LENGTH OF
THE CURVE.

THE INPUT DATA 1S CHECKED FOR VALIDITY AND THE

SOLUTION IS CHECKED FOR EXISTENCE AND UNIQUENESS --

ERROR MESSAGES ARE OUTPUT.

TLM = 0.
SEPS = SQRT(EPS)*.1
NM1 = N-1

IF (NM1 .LT. 2) GOTO 999

DO 10 I=1,NM1
DX = TABL(1,I+1) - TABL(1,I)
DY = TABL(2,I+1) - TABL(2,I)
IF (I .NE. 1) GOTO 2
THETA = ENTRYA * CONV
GOTO €
IF (I .NE. NMl1l) GOTO 8

-17-

THETA = EXITA * CONV

6 SINN = SIN(THETA)
COSN = COS(THETA)
Z(I) = (SINN » DX - DY ~ COSN) / (DX *~ COSN + DY %« SINN)

IF (I .EQ. NMl) Z(N) = Z(])
8 TL = SQRT(DX * DX + DY * DY)
X = DX / TL
DY = DY /7 TL
. TABL(5,1I) = TL
TLM = AMAX1(TL,TLM)
- IF (I .EQ. 1) GOTO 9
DX0 = DX0 + DX
DY0 = DYO + DY
DEN = DX # DX0 + DY # DYO
. IF (DEN .EQ. 0.) GOTO 999
TL = (DX0 ~ DY - DX ~ DY0) / DEN
TABL(3,I) = TL
TABL(4,I) = 1. + TL *# TL
Z(I) = 0.
9 DX0 = DX
DY0 = DY
10 CONTINUE
TABL(3,1) = 0.
TABL(3,N) = 0.
TABL(5,N) = 0.
FPR(1,NMl) = 0.
FPR(3,NM1) = 0.
TL = TLM * .148148148

K= 0.
c
15 CALL FSPL(Z,N,TABL,F,FPR)
DO 20 I=2,NM1
R(I-1) = -F(I)
20 CONTINUE
Cc
CALL TRIDG(FPR(1,2),N-2,R,IFLAG)
IF (IFLAG .LT. 0) GOTO 999
Cc
RNORM = 0.
DO 30 I=1,N-2
RNORM = RNORM + ABS(R(I))
30 CONTINUE
C
DO 40 I=2,NM1
Z(I) = Z(I) +R(I-1)
40 CONTINUE
K=K+1
c
IF (K .LT. 10 .AND. RNORM .GT. SEPS) GOTO 15
c

GAMMA = DFLIP(Z,TABL,NM1,SEPS)
TWORK = 2. * GAMMA * DINV(FPR(1,2),N-2) * RNORM
IF (TWOAK .GE. 1.) GOTO 100
El = TWOAK * RNORM
TK = 0.
- DO 45 1=2,NM1
TK = AMAX1(TK,TABL(4,I)/(1.-ABS(E1*TABL(3,1)))*%2)
45 CONTINUE
ERMAX = El1 * TL * TK
IF (K .GT. 20) GOTO 90
IF (ERMAX .GT. EPS) GOTO 15

-18-~

50 TABL(3,1) = Z(1)
DO 60 I=2,N
DI = TABL(3,I)
2T = 2(1)
T4 = TABL(4,I-1)
TABL(3,I) = (ZI - DI) / (1. + ZI % DI)
TABL(4,I-1) = (2I + DI) / (1. - 2I % DI)
IF (I .EQ. 2) GOTO 60

[]

RI = TABL(5,I-1) / TABL(5,I-2)
El = T4 ~ (1. + C1D3 / RI) - 2.
E2 = 2. - T4 * (1. + C1D3 « RI)

IF (DIM % TABL(3,I-2) .LT. E2 .OR. DIM * TABL(4,I-1) .GT. El)
+ GOTO 60

ML =1I-1
PRINT #, ‘' UNIQUENESS NOT SATISFIED AT NODE #', IM1
60 DIM = DI

RETURN
C
90 PRINT %, ‘' ACCURACY NOT ATTAINED ... MAX ERROR =', ERMAX
GOTO 50
C
100 IF (X .LT. 10) GOTO 15
PRINT A, ’ ITERATION FAILED TO CONVERGE !!’
GOTO 50
c
999 PRINT %, ‘ ERROR IN SPLINE DATA t!!’
STOP
END
SUBROUTINE FSPL(Z,N,TABL,F,FPRIME)
REAL Z(1),TABL(S,1),F(1),FPRIME(3,1)
ZDPI = 1.
ZMDI = Z(1)
ZDMP = 1. - Z(2) * TABL(3,2)
ZPDP = Z(2) + TABL(3,2)
RL = TABL(S5,1)
C
DO 10 I=2,N-1
DI = TABL(3,I)
ZDPM = ZDPI
ZMDM = ZMDI
ZDMI = ZDMP
ZPDI = ZPDP
ZDPI = 1. + 2(I) « DI
ZMDI = Z(I) - DI
ZDMP = 1. - Z(I+1) ATABL(3,I+1)
ZPDP = Z(I+1l) + TABL(3,I+1)
TBI = ZPDP / ZDMP
TAIM = ZMDM / ZDPM
RLM = RL
RL = TABL(5,I)
C
F(I) = ZDPI *~ ZDPI * (2. *ZMDI +TBI # ZDPI) * RLM
+ + ZDMI ~ ZDMI * (TAIM * ZDMI + 2. * ZPDI) * RL
c
IF (I .NE. 2) FPRIME(1,1-1)=ZDMIATABL(4,I-1)*(2ZDMI/ZDPM)**2*RL
IF (I .NE. N-1) FPRIME(3,I)=ZDPI*TABL(4,I+1)*(ZDP1/ZDMP)A*2*RLM
c
FPRIME(2,1) = RLM*ZDPI * ((2.43.*DI*TBI)AZDPI + 4.ADI*ZMDI)
+ + RLAZDMI * ((2.-3.*DIATAIM)*ZDMI - 4.#DI*ZPDI)
10 CONTINUE
RETURN
END

-19-

FUNCTION DFLIP(Z,TABL,NM1,EPS)
REAL TABL(5,1),Z2(1)

RL = TABL(5,1)

RLP = TABL(5,2)

TABL(4,NM1+1) = O.

EPS2 = 2.%EPS

GAMMA = O.

c2 = 0.

DI = 0.

DIP = TABL(3,2)

V1l = 1. - (Z(2) - EPS2) *~ DIP
V2 = 1. - (Z(2) + EPS2) * DIP

R1P = AMAX1(V1,V2)

R2 = 1. / AMIN1(V1,V2)
Zl = Z2(1)
22 = 21
Z1P = Z(2) - EPS2
Z2P = 2(2) + EPS2
DO 10 I=2,NM1
RLM = RL
RL = RLP
RLP = TABL(5,I+l1)
DIM = DI
DI = DIP
DIP = TABL(3,I+1)
Rl = R1P
R2M = R2
Z1IM = Z1
Z2M = 22
21 = 21P
22 = Z2P
Z1P = Z(I+1) - EPS2
Z2P = Z2(I+1) + EPS2
ViP = 1. - Z1P % DIP
V2P = 1. - Z2P * DIP

Vil =1, + 21 = DI
V2 = 1. + 22 » DI
R1P = AMAX1(V1P,V2P) / AMIN1(V1,V2)
R2 = AMAX1(V1,V2) / AMIN1(V1P,V2P)
Cl = R1P * R1P * RLP ~ TABL(4,I)
ALIPP = 4, % C1 *« DI % RI1P
CLIPP = 6. * C1 % DIP
BLIPM = 4. * C2 # DI * R2M
C2 = R2 * R2 # RLM * TABL(4,I+1l)
DLIP = 6. * C2 ~ DI
DI2 = DI * DI
Al = (RLM - RL) & (2. - DI2)
A2 = 3. % (RLM + RL) * DI
ELIP = DI2 * (12.*(AMAX1(ABS(Z1P+DIP),ABS(Z2P+DIP))*RLMAR2
+ AMAX1 (ABS(Z1M-DIM) ,ABS(Z2M~DIM))*RL*R1)
+ 8.AAMAX](ABS(Al1+A2*Z1) ,ABS(A1+A24Z22)))
GAMMA = AMAX1(GAMMA, BLIPM+ELIP+ALIPP,DLIP+CLIPP)
CONTINUE
DFLIP = GAMMA
RETURN
END
SUBROUTINE TRIDG(D,M,B,IFLAG)
DIMENSION D(3,1),B(1)
DATA E/.0000001/
IF (M .EQ. 1) GOTO 30
DO 10 I=1,M-1
IF (IFLAG .GT. 0) GOTO S
IF (ABS(D(2,I)) .LT. E) GOTO 999

-20-

D(1,I) = -D(1,I) / D(2,I)

D(2,I+1) = D(2,I+1) + D(1,1)*D(3,1)
5 B(I+1l) = B(I+l) + D(1,I)*B(I)
10 CONTINUE

DO 20 I=1,M-1
J=M-1I
IF (IFLAG .GT. 0) GOTO 15
IF (ABS(D(2,J+1)) .LT. E) GOTO 999
D(3,J) = -D(3,J7) / D(2,J+1)

15 B(J) = B(J) + D(3,J) ~ B(J+1)
B(J+1) = B(J+1l) / D(2,J+1)
20 CONTINUE
Cc
30 B(1) = B(1) / D(2,1)
RETURN
c
999 IFLAG = -1
RETURN
END

FUNCTION DINV(D,M)

DIMENSION D(3,1)

RNORM = 1.

QSNORM = 1. / ABS(D(2,1))

IF (M .EQ. 1) GOTO 40

RCOL = 1.

QSCOL = QSNORM

DO 30 I=1,M-1
QSCOL = QSCOL * ABS(D(3,I)) + 1./ABS(D(2,I+1))
RCOL = RNORM # ABS(D(1,M-I)) + 1.
RNORM = AMAX]1(RNORM,RCOL)
QSNORM = AMAX1 (QSNORM,QSCOL)

30 CONTINUE

40 DINV = RNORM * QSNORM
RETURN
END

~21-

Section II
WFCMPR

- 29 _

Program WFCMP

Purpose: The program WFCMPR compares two Wilson-Fowler splines with
common nodes. It reports the maximum distance between curves and the maxi-
mum difference of their tangents (or normals), both computed along the entire
length of the splines. Distance is measured perpendicular to segments.

Language/Libraries: Program WFCMPR is written in Fortran 77. It is self-
contained, requiring no libraries.

Inputs (To be read from a file):
Spline nodes (common to both splines):
¢ Number of spline nodes
e (X,Y) values of nodes.
First spline:
e Start and end local tangents for each segment.
Second spline:

e Start and end local tangents for each segment.

Outputs (To the terminal screen):
¢ Maximum difference between splines.

¢ Maximum deviation of spline normals.

Method:

The algorithms for computing the difference and normal deviation between
splines were provided by J. D. Emery [3]. Both use a difference curve, which
is the piecewise cubic representing the differenice between the two splines in a
direction normal to the segment orientation.

One of several equivalent methods of describing a Wilson-Fowler spline is to
specify the nodes and the local tangents (ie., endpoint tangent angles for each
segment measured with respect to the local segment coordinate system). This
form is used because it is easy to obtain from most CAD/CAM systems and it
facilitates computation of the difference curve.

- 93 -

Function WFNORM finds the maximum absolute value of the difference curve
over all segments. Within each segment, the maximum occurs either at the
midpoint or at one of the roots of the derivative of the difference curve.

Function WFDNRM finds the maximum absolute value of the derivative of the
difference curve over all segments. Within each segment, the maximum occurs
either at one of the endpoints or at the root of the second derivative of the
difference curve.

Limitations:

The following limitations are explicit in PARAMETER statements at the begin-
ning of the program:

¢ NNODES (maximum number of spline nodes) = 100
¢ XSMALL (smallest number used to prevent machine underflow) = 1E-35

The following limitation is explicit in a character declaration statement near the
beginning of the program:

¢ filename length = 12 characters

- 924 -

$ run wfcmpr

Compares two Wilson_Fowler splines interpolating
the same set of points.
Enter data filename:

testcmpr
Maximum difference = 0.28747765463777E~03
Maximum diff of normals (degrees) = 0.49119293689728E-01

FORTRAN STOP
$

WFCMPR Sample Run.

- 95 -

5

5.000000 0.0000000E+00
4.000000 1.000000
3.000000 4.000000
1.000000 5.000000
0.0000000E+00 5.000000
0.1428571 -0.2385142
0.2336244 0.2775339
-0.5655161 0.3745124
-0.1056955 0.1428573
0.142 -0.238
0.233 0.277
-0.565 0.374
-0.105 0.142

Input File for WFCMPR Sample Run.

-26-

nnonnonannoaononNnnaonNnnNONOoONNNONONO0N

n

program wfcmpr

parameter (nnodes=100, xsmall=1E-35)

dimension px{(nnodes), py(nnodes), dtana(nnodes), dtanb(nnodes)
character*12 fname

data rad2dg / 57.29577951 /

data zero / xsmall /

common /machin/ zero

Program to compare two Wilson-Fowler splines, based on an
algorithm by J. D. Emery, Bendix Xansas City. Requires

as input the spline nodes and local tangents of each spline
for each segment. Returns (1) the maximum difference between
the two splines measured normal to each segment, and (2) the
maximum difference of the tangents (or normals) to the splines
along the entire length.

This program is written in Fortran7?7. All input/output
occurs in the main program.

Any questions should be refered to:
Sharon Fletcher, Division 7611
Sandia National Laboratories
(505) 846-5506

INPUTS:
(unit 2): np = number of spline nodes
{px(i), py(i)} = i-th node;
one pair per line; i=1,np
{tal(j), tbl(3)} = spline 1 j-th segment local tangents;
one pair per line; j=1,np-1
fta2(Jj), tb2(3j)} = spline 2 j-th segment local tangents;
one pair per line; j=1,np-1
OUTPUTS :
(terminal): an = max difference between splines
dn = max deviation of spline normals

print *, ' = ccmceeeeeeo > PROGRAM WFCMPR (----=--c----- ‘
print %, ' Compares two Wilson-Fowler splines interpolating’
print *, the same set of points.’

print * ’ Enter data filenmame:’
read (*, 101) fname
open (unit=2, file=fname, status-’old)

Read spline nodes.

read (2,%) np
nseg = np - 1
do 10 i=1,np
read (2,%) px{i), py(i)
continue

Read local tangents for both splines; need only keep
difference between them.

do 20 i=1l,nseg
read (2,*%) dtana(i), dtanb(i)
continue
do 30 i=1,nseg
read (2,%) ta2, tb2
dtana(i) = dtana(i) - ta2
dtanb(i) = dtanb(i) - tb2

-27-

100
101

nooaoanaonnnaonNnnonNoaonnNn

10

nnannononn

continue
an winorm(px, py, dtana, dtanb, np)
dn wfdnrm(px, py, dtana, dtanb, np)
dn atan(dn) * rad2dg
print 100, an, dn
close(unit=2)
stop
format(‘’ Maximum difference =',G22.14,/,
* Max diff of normals (degrees) =',G22.14)
format(A)
end
function wfnorm(px,py.a,b,n)
dimension px(1), py(1l), a(l), b(l)
common /machin/ zero
f(x) = x % (x * (x * alpha + beta) + gamma)

INPUTS:
px{i) = i-th spline node x-coordinate
py(i) = i-th spline node y-coordinate
a{i) = i-th spline segment starting local tangent
b(i) = i-th spline segment ending local tangent
n = number of nodes

OUTPUT:

winorm = norm of curve (maximum absolute value)

Calculates norm of the wf-curve described by {px, py, a, bl.
Note that the main program has actually passed a
difference curve, ie., the difference between two splines.

wifnorm = O.
nseg = n-1
do 10 i=1,nseg
al = sgrt((px(i+1)-px{(i))x42 + (py(i+1)-py(i))*%2)
alpha = (a(i) + b(i)) /7 (alkal)
beta = - (2. ~ a(i) + b(i)) / al
gamma = a(i)
d = sqrt(beta * beta - 3. * alpha « gamma)
ul = al /7 2.
uz = ul
if (abs(alpha) .gt. zero) then
u = (- beta + d) /7 (3. * alpha)

if ((u .ge. zero) .and. (u .le. al)) ul = u
u = (- beta - @) /7 (3. * alpha)
if ((u .ge. zero) .and. {(u. le. al)) u2 = u
endif
wfnorm = amaxl{ wfnorm, abs(f(ul)), abs(f{u2)))
continue
return
end

function wfdnrm(px,py,a,b,n)

dimension px(1), py(l), at(l), b(1)

common /machin/ zero

df(x) = x * (x * 3, * alpha + 2. * beta) + gamma

INPUTS:
px(i) = i-th spline node x-coordinate
py(i) = i-th spline node y-coordinate
a(i) = i-th spline segment starting local tangent
b(i) = i-th spline segment ending local tangent
n = number of nodes

—28-

nnnonaon

10

OUTPUT:
wfdnrm = norm of derivative of curve (maximum absolute
value of tangent)

Calculates norm of the derivative of the wf-curve described
by {px, py, a, bl}. Note that the main program has actually
passed a difference curve, the difference between two splines.

wfdnrm = O.
nseg = n-1
do 10 i=1,nseqg
al = sgrt{ (px(i+1l)-px(i))**2 + (py(i+l)~py(i))4A2)
alpha = (a(i) + b(i)) / (al%*al)
beta = - (2. # a(i) + b(1)) / al
gamma = a(i)
rho = 0.
if (abs(alpha) .gt. zero) then
u = - beta / (3. » alpha)
if ((u .gt. zero) .and. (u .1lt. al)) rho = abs(df(u)
endif
wfdnrm = amaxl(wfdnrm, rho, abs(df(0.)), abs(df(al)))
continue
return
end

-29-

Section III
WFAPPX

- 30 -

Program WFAPPX

Purpose: The program WFAPPX compares a piecewise linear curve to a Wilson-
Fowler spline. It reports the maximum deviation between these two curves, and
the parameter value on the spline where it occurs.

Language/Libraries: Program WFAPPX is written in Fortran 77. It is self-
contained, requiring no libraries. Function DPNTLC and subroutine WFEVAL
are also used by program SPLPKG, and are copied.

Inputs (To be read from a file):
Wilson-Fowler spline definition:

¢ Number of nodes

o (X,Y) values of nodes

e Start and end local tangents for each segment.
Piecewise linear curve: ‘

¢ Number of breakpoints

e (X,Y) values of breakpoints.

Outputs (To the terminal screen):
¢ Maximum diflerence between spline and piecewise linear curve.

¢ Spline parameter value (chord length) where maximum difference occurs.

Method:

The spline definition is requested to be input in terms of local tangents (ie.,
endpoint tangent angles with respect to the local coordinate system for each
segment) because this is form is easily obtained from most CAD/CAM systems.

The algorithm for computing the distance from a point (on the spline) to a
piecewise linear curve was provided by J. D. Emery [3].

WFAPPX computes this distance for each of NEVAL points on the spline, and
reports the maximum of these. The points are equally spaced along the total
chord length of the spline.

- 31 -

Limitations:

The following limitations are explicit in PARAMETER statements at the begin-
ning of the program:

¢ NNODES (maximum number of spline nodes) = 100

¢ NBKPNT (maximum number of linear curve breakpoints) = 1000

¢ NEVAL (maximum number of evaluation points along the spline) = 1000
¢ XSMALL (smallest number used to prevent machine underflow) = 1E-35
e XBIG (largest number used to prevent machine overflow) = 1E+35

The following limitation is explicit in a character declaration statement near the
beginning of the program:

e filename length = 12 characters

Operational Notes:

This program does not require that any of the breakpoints of the linear curve
actually fall on the spline. Thus at each point of comparison, the entire linear
approximating curve must be examined. This is very computation intensive, and
will take significant time for a large number of breakpoints.

- 32 -

$ run wfappx

Compares a Wilson-Fowler spline and an approximating
piecewise linear curve.

Enter data filename:

testappx

Maximum deviation is 5.0452072E-02

at parameter value of 0.2017610
FORTRAN STOP
$

WFAPPX Sample Run.

- 33 _

5
5.000000
4.000000
3.000000
1.000000
0.000000
0.1428571
0.2336244
-0.5655161
-0.1056955
10
0.5000000E+01
0.4338405E+01
0.3B48392E+01
0.3594636E+01
0.3416715E+01
0.3124311E+01
0.2538533E+01
0.1754998E+01
0.8680618E+00
-0.2384186E-06

Input File for

0.000000
1.000000
4.000000
5.000000
5.000000
-0.2385142
0.2775339
0.3745124
0.1428573

0.0000000E+00
0.5660306E+00
0.128878BE+01
0.2119220E+01
0.2974932E+01
0.3792482E+01
0.4489997E+01
0.4863973E+01
0.5012667E+01
0.5000000E+01

WFAPPX Sample Run.

-34-

nonoanNnnNnoanananNnoNonNnonNOoNnNNONNANANNNOON

non

naoan k-

program wfappx

parameter (nnodes=100, nbkpnt=1000, neval=1000)
parameter (xsmall=1E-35, xbig=1E+35)

dimension tabl(5,nnodes), x(nbkpnt), y(nbkpnt)
characterx 12 fname

common /machin/ zero, big

data zero, big / xsmall, xbig /

Program to find the maximum deviation between a Wilson-Fowler
spline and a piecewise linear curve, based on an algorithm by
J. D. Emery, Bendix Kansas City.

Measurement is made at 1000 points along the spline.

The spline definition is input as a set of nodes and local
tangents for each segment. The piecewise linear curve is
input as a set of coordinate points. Output is the maximum
deviation and the spline parameter value where it occurs.

This program is written in Fortran77. All input/output
occurs in the main program.

Any questions should be refered to:
Sharon Fletcher, Division 7611
Sandia National Laboratories
(505) B846-5506

INPUTS:
(unit 2): np = number of spline nodes
{tabl(1l,i), tabl(2,1)3} = i-th node;
one pair per line; i=1,np
{tabl(3,3), tadbl(4,3§)} = j-th segment local tangents;
one pair per line; j=1,np-1
nk = number of points on piecewise curve
fx(k), y(k)3} = k-th point on piecewise curve;
one pair per line; k=1,nk

OUTPUTS:
(terminal): dex = max difference between curves
tex = parameter value where max diff occurs
print #, ' = ---c---ee--- > PROGRAM WFAPPX (--=-=woew-- '
print *#, ’ Compares a Wilson-Fowler spline and an approximating’
print *, ' piecewise linear curve.’

print #, ’ Enter data filename:’
read (%*,100) fname
open (unit=2, file=fname, status=‘'o0ld’)

Read spline nodes.

read (2,*) np
nseg = np - 1
do 10 i=1,np
read (2,*%) tabl(l,i), tabl(2,1)
continue

Read local tangents for the spline.
Compute segment lengths and total length.

totl = 0.
do 20 i=1,nseg
read (2,%) tabl(3,1i), tabl(4,i)
tabl(5,i) = sqrt((tabl(l,i)-tabl(1l,i+1))*42 +

-35-

noaoN
o

(=

nonnNnow

100

nonnnonaaonnnoonn

(tabl(2,i)-tabl(2,1i+1))4%2)
totl = totl + tabl(5,i)
continue

Read the approximating piecewise linear curve.

read (2,%) nk
do 30 i=1l,nk

read (2,*) x(i), y(i)
continue

Evaluate the spline at each of NEVAL points (=1000); find
distance from spline point to approximating piecewise curve;
keep maximum distance.

dex 0.

tex 0.

ninc = neval -1

tinc = totl / float(ninc)

do 50 i=0,ninc
t =1 % tinc
call wfeval(np,tabl,t,u,s)
dist = dpntlc(nk,.x,y,u,s)
if (dist .gt. dex) then

dex = dist
tex = ¢t
endif
continue

print *, ‘' Maximum deviation is ’, dex
print A, ‘' at parameter value of ‘, tex
close (unit=2)

stop

format(A)

end

function dpntlc(nk,x,y,u,s)

dimension x(1), y(1l)

common /machin/ zero, big

INPUTS:
nk = number of points (piecewise linear curve)
x(i) = i-th curve point x coordinate
y(i) = 1-th curve point y coordinate
u = x coordinate of measurement point
s = y coordinate of measurement point

OUTPUT :
dpntlc = distance from the point (u,s) to the curve

Finds minimum distance from a point to a piecewise linear
curve defined by its breakpoints {x,y}. All segments of
the linear curve are tested.

m =nk -1
dpntlc = big
do 10 i=1,m

a = sqrt((x(41 d-u)*A2 4+ (y(i)-s)*%2)
b = sqrt((x(i+l)-u)**2 + (y(i+l)-s)A%2)
if (abs(a*b) .1t. zero) goto 50
c = sgrt((x(i+1)-x(i))*A2 + (y(i+1)-y(1))**x2)
cosa = (b*b + cxc - a*a) / (2.*b*c)
cosb = (a*a + cAc - bkb) / (2.*a*C)
if (cosa*cosb .ge. 0.) then

36

10
50

m aoaoaaoaaaaaaaaaoanaaaan

naae

aaaon

e = b % sqrt(abs(l-cosa**2))
else
e = aminl(a,Db)
endif
if (e .1t. dpntlc) dpntlic = e
continue
return
dpntlc = O,
return
end
SUBROUTINE WFEVAL(N,TABL,ULOCL,U,S)
DIMENSION TABL(5,100)

INPUTS:
N = NUMBER OF POINTS (SPLINE NODES)
TABL(1,I) = I-TH POINT X COORDINATE
TABL(2,I) = I-TH POINT Y COORDINATE
TABL(3,I) = I-TH SEGMENT ENTRY ANGLE TANGENT
TABL(4,I) = I-TH SEGMENT EXIT ANGLE TANGENT
TABL(5,I) = I-TH SEGMENT LENGTH
ULOCL = A VALUE ALONG THE CHORD LENGTH FOR INTERPOLATION

OUTPUTS :
U = GLOBAL COORDINATES X VALUE OF INTERPOLATED POINT
S = GLOBAL COORDINATES Y VALUE OF INTERPOLATED POINT

INTERPOLATE TO THE SPLINE AT ULOCL IN TERMS OF THE LOCAL
COORDINATE SYSTEM, THEN ROTATE THE POINT TO THE GLOBAL
COORDINATE SYSTEM.

(DETERMINE WHICH SEGMENT ULOCL IS IN -- J-TH SEGMENT)

J =1

IF (ULOCL .LT. TABL(5,J) .OR. J .EQ. N-1) GOTO 10
ULOCL = ULOCL - TABL(S5,J)
Jd=J+1
GOTO 5

CONTINUE

(EVALUATE HERMITE FORM OF CUBIC)

UMT = ULOCL - TABL(S5,J)
SLOCL = (TABL(3,J) % ULOCL * UMTA*2 +
TABL(4,J) * ULOCLA%*2 * UMT) / TABL(S5,J)A*2

(ROTATE AND TRANSLATE LOCAL POINT (ULOCL,SLOCL) TO
GLOBAL COORDINATE SYSTEM (U,S))

TH = ATANZ2(TABL(2,J+1)-TABL(2,J),TABL(1,J+1)-TABL(1,J))
U = ULOCL * COS(TH) - SLOCL #~ SIN{TH) + TABL(1,J)

S = ULOCL * SIN(TH) + SLOCL * COS(TH) + TABL(2,J)
RETURN

END

-37-

References

1 Fletcher, S. K.
Recommended Practices for Spline Usage in CAD/CAM Systems CAD CAM-007,

SANDS84-0142, Sandia National Laboratories, Albuquerque, NM, April 1984.

2 Melvin, W. R.
Error Analysis and Uniqueness Properties of the Wilson-Fowler Spline, LA-9178,
Los Alamos National Laboratory, Los Alamos, NM, Aug 1982.

3 Emery, J. D.
Personal communications. Bendix Kansas City, Kansas City, KS, 1983.

4 Fowler, A. H. and C. W. Wilson
Cubic Spline, A Curve Fitting Routine, Y-12 Plant Report Y-1400 (Revision 1),

Union Carbide Corporation, Oak Ridge, TN, Jun 1966.

- 38 -

Distribution:

The Bendix Corporation
Kansas City Division

P.O. Box 1159

Kansas City, MO 64141

Attn: Charlie Mentesana, 2D39
Attn: James Emery, MC45
Attn: Charles R. Miller, MC45

General Electric Company
Neutron Devices Department
P.O. Box 2908

Largo, FL 34294

Attn: Virginia McCauley

Mason & Hanger
Pantex Plant
P.O. Box 30020

Amarillo, TX 79177
Attn: Dean Carpenter

Monsanto Research Corporation
Mound Laboratory

P.O. Box 32

Miamisburg, OH 45342

Attn: David Michaels

Rockwell International
Atomics International Division
Rocky Flats Plant

P.O. Box 464

Golden, CO 80401

Attn: Jack Doyle, T881B
Attn: Maryann Gaug, T881B
Attn: M. F. Schweitzer, B750
Attn: Leroy Mellecker

Martin Marietta Energy Systems
Y-12 Plant

P.O.Box Y

Oak Ridge, TN 37831

Attn: Al Stephens, Bldg 9103 MS 3
Attn: Jim Snyder, Bldg 9111 MS 2

Attn: C. W. Wilson
Attn: Robert Easterday

Lawrence Livermore National Lab
P.O. Box 808

Livermore, CA 94550

Attn: Stan Trost, L-125

Attn: John Martin, L-125

Attn: Fred Fritsch, 1-316

Los Alamos National Laboratory
Attn: Ray Elliot, B272
Atin: Ron Dolan, C931

DOE/AL
Attn: H. T. Season, Jr.

Distribution:

Sandia Internal:

2800 H. W. Schmitt
2810 D. W. Doak

2811 J. F. Jones, Jr.
2811 S. K. Fletcher (30)
2812 G. R. Urish

2813 T. M. Schultheis

2814 P. A. Erickson
3141 C. Ostrander (5)
3151 W. L. Garner (3)

" 3154-3 C. H. Dalin (28)

For DOE/TIC
8024 M. A. Pound

