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Quantum-Limited Detection of Millimeter Waves
Using Superconducting Tunnel Junctions

By
Carl Atherton Mears

Abstract

The quasiparticle tunneling current in a superconductor-insulator-
superconductor (SIS) tunnel junction is highly nonlinear. Such a
nonlinearity can be used to mix two millimeter wave signals to produce a
signal at a much lower intermediate frequency. We have constructed
several millimeter and sub-millimeter wave SIS mixers in order to study
high frequency response of the quasiparticle tunneling current and the
physics of high frequency mixing. We have made the first measurement of
the out~of-phase tunneling currents in an SIS tunnel junction. We have
developed a method that allows us to determine the parameters of the
high frequency embedding circuit by studying the details of the pumped I-
V curve. We have constructed a 80-110 GHz waveguide-based mixer test
apparatus that allows us to accurately measure the gain and added noise of
the SIS mixer under test. Using extremely high quality tunnel junctions,
we have measured an added mixer noise of 0.61 + 0.36 quanta, which is
within 25 percent of the quantum limit imposed by the Heisenberg
uncertainty principle. This measured performance is in excellent
agreement with that predicted by Tucker's theory of quantum mixing. We
have also studied quasioptically coupled millimeter- and submillimeter-
wave mixers using several types of integrated tuning elements.
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Chapter 1
Intreduction

The quasiparticle tunneling current in a superconductor-insulator-
superconductor (SIS) tunnel junction is highly nonlinear. There is an
extremely rapid onset of tunneling current at a voltage corresponding to the
sum of the energy gaps of the superconductors on either side of the junction.
Such a nonlinearity can be used to mix two millimeter wave signals; a strong
local oscillator at frequency wpo and a weaker signal at frequency ws to
produce a signal at a lower or intermediate frequency wir. An SIS tunnel
junction can thus be used as the mixer in a millimeter wave heterodyne
reciever. At frequencies higher than about 30 GHz where it is difficult to
build sensitive amplifiers, a mixer is typically the first element in the
receiver. In Fig. 1.1 we show a block diagram of a typical high frequency
receiver. Usually, wiris much less than wLo and ws, so wir is low enough so
that it is possible build a sensitive intermediate frequency amplifier.

The important parameters that characterize a mixer are the conversion
gain Gm and the spectral density of the added noise Syn. The conversion gain
is defined as the ratio of the output power of the mixer at the intermediate
frequency to the available power input at the signal frequency. The added
noise is refered to the input of the mixer. Traditionally this has been
expressed as the equivalent temperature (noise temperature) of a blackbody
placed at the input to account for the added noise. For a typical receiver, Sm
>hws, and thus Ty = Sm/kg. However, an SIS mixer can have noise levels
low enough that Sy, ~ fiws. In this regime, the different definitions of noise
temperature used by various authors yield different results. To avoid this
ambiguity, we report values of Sy measured in units of quanta (fiws) of the
signal radiation.

As we can see in Fig 1.1, a receiver contains an intermediate frequency
amplifier with added noise of spectral density Sir. The spectral density of the
overall noise added by the receiver is given by

St = Sm + Sig/Gm . (1.1

In order for the receiver to have good overall noise performance, it is
necessary to make Sm, and Sj¢ small and Gp, as large as is practical.

Because the voltage scale of the nonlinearity of the SIS junction is
smaller than the voltage associated with a photon of millimeter wave
radiation hws we must use a quantum theory to predict its high frequency

response. The quantum theory was worked out by Tucker.*? The Tucker
theory makes several surprising and important predictions. First, the

conversion gain G, can be greater than unity.3 This was unexpected since
classically Gm < 1.0. The theory also predicts that the added noise can




approach the quantum limit, i.e. be limited only by the A¢An uncertainty
relation.

SIS heterodyne receivers are currently the most sensitive coherent
receivers over a broad range of the millimeter and sub-millimeter

electromagnetic spectrum.* However, even the best of these receivers have
fallen short of the performance predicted by the Tucker theory. Because of the
lack of detailed comparison between experimental and theoretically calculated
performance, it has been unclear whether this discrepancy arises

from difficulties in coupling the signal to the mixer, or from problems with
Tucker's theory.

The purpose of this work is to provide a detailed comparison between
the predictions of the Tucker theory and experimental measurements of the
millimeter wave behavior of SIS tunnel junctions. The following outline
provides a framework for our investigations. In Chapter 2 we review
relevant details of the BCS theory of superconductivity, especially as it applies

to quasiparticle tunneling. We discuss Werthamer's® derivaton of the high-
frequency response function for an SIS junction and introduce the Tucker
theory of quantum mixing. We also discuss the quantum noise limit as it
applies to mixers. In Chapter 3 we discuss measurements of the high
frequency response of a SIS tunnrel junction in the small signal limit. We
have made the first measuremeut of the out-of-phase component of the

quasiparticle tunneling current. 7 This out-of-phase current is roughly
analogous to the cos¢ term in the Josephson or pair tunneling current. In
Chapter 4 we use the Tucker theory to explain the dependence of the shape of

the pumped I~V curve on embedding admittance seen by the junction.8 We
have fit the shapes of experimentally measured pumped I-V curves to
deduce the value of the high-frequency embedding admittance under the

actual experimental conditions.” 10 In Chapter 5 we discuss extremely

accurate mixer measurements using high quality tunnel junctions.g' 10" These
measurements were carried out in a waveguide-based mixer test apparatus
specially designed to perform accurate measurements of mixer noise and
gain. We have measured the lowest added mixer noise reported to date.
Measured performance is in excellent agreement with that predicted by the
Tucker theory. This represents the first detailed comparison between
experimentally measured noise performance and the Tucker theory. In
Chapter 6 we discuss the the development of a quasioptically-coupled
submillimeter-wave receiver.!! This receiver utilizes planar lithographed

antennas to couple the radiation to the mixer, as well as several types of
integrated tuning elements to resonate the capacitance of the junction.



Chapter 2
Theoretical Overview

This chapter provides the basic theoretical background necessary for
understanding the discussion of high—frequency response of tunnel junctions
and the discussion of quasiparticle mixers operated in the quantum limit that
is presented in the following chapters. First we discuss the BCS theory of
superconductivity, focusing on those aspects related to superconducting
tunnel junctions. We then discuss tunneling between superconductors,
including the treatment of high-frequency response worked out by
Werthamer. We then turn our attention to Tucker's quantum theory of
mixing, and discuss its remarkable predictions. We finish this chapter with a
discussion of quantum limited sensitivity. This minimum added noise in
the mixing process is imposed by the Heisenberg uncertainty principle.

21  BCS Theory
Excellent treatments of the BCS Theory of superconductivity already

exist in a number of books,!? as well in the original work,13 so only the results
essential to understanding quasiparticle ‘unneling are presented here. The
basic idea of the BCS theory is that an attractive interaction exists between two
electrons due to an exchange of a virtual phonon. Because of this interaction,
the Fermi sea of electrons is unstable to the formation of bound pairs ot
electrons (Cooper pairs) with roughly equal and opposite momentum. Below
a critical temperature, a new ground state consisting of these Cooper pairs is
formed - the superconducting state . Excitations above this ground state are
called quasiparticles. There are no low-lying quasiparticles, as all
quasiparticles have an energy of at least A, the superconducting energy gap.
The density of quasiparticle states diverges at the gap energy. This divergence
is the cause of the extreme nonlinearity in the quasiparticle currents in a
superconducting tunnel junction.

22  Superconducting Tunnel Junctions

Since the discovery of tunneling between superconductors, tunneling
phenomena have been studied extensively. SIS tunnel junctions exhibit
tunneling currents due both to the tunneling of Cooper pairs, or Josephson
tunneling, and to the tunneling of single-particle excitations, or quasiparticle
tunneling. Josephson tunneling has been studied extensively, and is the basis
of the SQUID (Superconducting QUantum Interference Device), several types
of digital logic circuits, and studies of n.acroscopic quantum phenomena. The
focus of the work presented in this thesis is the extremely nonlinear
tunneling currents due to the divergence in the quasiparticle density of states

discussed in section 2.1. We now discuss the physical origin of this nonlinear
I-V curve.



Following the treatment by Cohen, Falicov and Phillips,!* we use a
Hamiltonian theory to describe the quasiparticle tunneling through a
potential barrier. The Hamiltonian used is

H=Hy + HrR + Hr + eV(t)NL , (2.2)

where I and Hg are the many-body Hamiltonians describing the left and
right electrode respectively. V(t) is the applied voltage, and NL is the number
operator for the left side,

NR = 2 Gg, - (2.3)
k

Ht describes the transfer, by tunneling, of a quasiparticle from one electrode
to another and is given by

Hr = 2 (TiqeyCh + ThqSech) - 2.4)
kq

Here, cx (cq) and cx’ (cq') are the quasiparticle destruction and creation
operators for the right (left) side electrode. The tunneling matrix elements
Tkq characterize the sirength of the coupling between the superconducting
electrodes. They are assumed to be small enough that Hr may be analyzed
using lowest order perturbation theory. A calculation of the tunneling
current using linear response theory yields a dc quasiparticle current,

i -
Igc(V) = ?nf- I dar deg| Tgf AL(k,0p) Arck,0R)
kqo J.

[f(flop) -f(fwr)] 3(eV/H + wL - ©R) - (2.5)

Here f(hw) = (eh®@/kT 4 1)-1 is the Fermi-Dirac distribution function, and
AL R are the single particle spectral distribution functions for the left and right
side electrodes. In the BCS theory, the spectral distribution function is given

by

Alk,0) = ufd(w - Ex/K) + vE8(w + Ex/h) . (2.6)

where vik2 = 1-uk? = 1/2(1~ ex/Ey) is the probability that a given pair (kT, -
kl) is occupied in the BCS ground state. Here e is the normal state energy of
an excitation with momentum fik, and Ex= (e2 + A2)1/2 js the energy of an
excitation of momentum Rk in the superconducting state. A(k,w) depends
only on ug? and vg2 , so no "coherence factors" of uyvy enter into the
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tunneling current. If we substitute the spectral distribution function (Eq. 2.6)
into the expression for the tunneling current (Eq. 2.5), and rewrite everything
in terms of Eg, we obtain the simple expression,

E| |E - eV|
Iycgs(V) = —L |
dc,SIS eRN (E'Z } A%)l/‘z [( eV - El)z - A{l]ﬂ

oo

(2.7)
x [f(E' - eV) -{(E)] dE

Note that we have assumed that Tkq is constant and absorbed it into Ry, the
normal resistance of the junction. Because no coherence terms are present in
the expression for the tunneling current, we are able to use a simple
"semiconductor” model for discussion. In Fig. 2.1, we plot the density of
states for single-particle excitations D(E) as a function of energy for each
electrode. At T=0, there are no thermally excited quasiparticles, and there is
an energy gap 2A for each electrode required to break a Cooper pair to produce
two quasiparticle excitations. As we increase the voltage V, no tunneling
takes place until eV = A1 + Ay . Here there is sufficient energy to allow an
electron to tunnel into an empty quasiparticle state above the gap on the
right, leaving behind an unpaired electron quasiparticle on the left. Because
of the singularity of the density of states, the onset of tunneling current is
extremely rapid. Above the sum-gap voltage Vg = (A1 + A2)/e, ldc
asymptotically approaches V/RN, where Ry is the normal resistance. Igcsis
is plotted for several reduced temperatures t = T/T¢ in Fig 2.1b. Note that for t
near 1 there is also a structure at the difference-gap voltage | A1 - A2 |/e due to
thermally excited quasiparticles.

In an ideal junction, the current rise at the sum-gap voltage is
infinitely sharp. In real junctions, the current rise is rounded by effects such
as short quasiparticle lifetimes, gap anisotropy, or gap inhomogeneity.

23  High-Frequency Response of Tunnel Junctions
Based on a perturbation theory using the tunneling Hamiltonian,4-18

Werthamer® derived an expreszion for the tunneling current as a function of
time in the presence of both dc and ac bias:

I(t) = Im I J dodo’ [ W(e)WH(w)ei-odt joplw+eVo/h) +
(2.8)
+ W(@)W(a)ei(@rot+io j (o' +eVo/1)]
where jqp and jp are the response functions of quasiparticles and Cooper pairs
respectively. The first term in Eq. (2.8) is the quasiparticle tunneling current.
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The second term is the pair tunneling current which depends on the phase
difference ¢ between the superconducting ground state wave functions on the
two sides of the junction. The real parts of the response functions correspond
to the reactive components, and the imaginary parts correspond to the
resistive components. W(w) is the Fourier transform of the time-varying
phase factor W(t) caused by the ac bias voltage:

t o

W(t) = exp { -i—;—f ar[va) - Vo]} = f doW{w) eiot | (2.9)

For BCS-like superconductors, jqp and jp can be calculated using the density
of states of quasiparticles and Cooper pairs. However, the calculation is quite

complicated.’ The following shows that the quasiparticle response function
jqp can be measured directly from the dc I-V curve. When the bias voltage
Vé)t) contains only a dc component V,, then W(w) = 8(0), and from Eq. (2.8) we
have,

I(t) = Im[jqp(wo)] + Reljp(wo)] sing + Im(jp(wo)] coso, (2.10)

where wp=eV/h. Since both the sing and cos¢ terms oscillate at the
Josephson frequency wj=2eV,/H, the only dc component in Eq. (2.10) is the
first term. Therefore, Imljqp(eVo/h)] is equal to the dc quasiparticle I-V curve
Iac(Vo),

Im[jqp((l)o)] = Idc(Vo) . (2.11)

Eq. (2.11) implies that the imaginary part of the quasiparticle response function
at frequency wo=eV,/h is equal to the dc tunneling current at bias voltage V.
Because of the absence of Reljqp(wo)] in Eq. (2.10), it is clear that the reactive
part of the quasiparticle response function has no contribution to the
tunneling current when the bias voltage is time-independent. In contrast to
the quasiparticle response function, both the real and imaginary parts of the
pair response function contribute to the tunneling current at dc bias. The real
part of jp gives rise to the familiar Josephson sin¢ term, while the imaginary
part of jp gives the Josephson cos¢ term.

The real and imaginary parts of both quasiparticle and Cooper pair
response functions are related through a frequency Kramers-Kronig

transform, as required by any causal, finite response. For jqp((o),1




e
Re [jgp(@)] = pj dar I 9] -Fs/

_ w-o
Crwyop [ 4V LlV) - V/R, (212)
R V-V '

In Eq. (2.12), we have used Eq. (2.11) to replace Im[jgp(w)] with Igc(V'), eV'/fi =
®' and eV/H = ®w. We subtract an Ohmic term from the quasiparticle I-V
curve to prevent divergence of the integral. This is allowed because only the
nonli ear pertion of Igc.(V) gives rise to a reactive component. The
frequency-independent Ohmic response corresponds to an instantaneous
current-voltage relation and thus does not contribute to the reactive
component. It can be shown from Eq. (2.8) that all measurable quantities
depend only on differences between values of Ixk(V) and not on their
absolute magnitudes. In Fig. 2.2(a) and 2.2(b), we plot an experimentally
measured I-V curve of an SIS junction and the voltage Kramers-Kronig
transform calculated from Eq. (2.12). The peak of Ikk at the gap voltage Vg
corresponds to the sharp nonlinearity of the dc I-V curve 13¢(V) at Vg AtT =
0, for an ideal SIS junction whose quasiparticle density of states is given by the
BCS theory, the peak in Ixx diverges logarithmically at Vg.l' 2,5,19-21

Egs. (2.11) and (2.12) suggest a very powerful way of deducing the
frequency dependent response function of quasiparticles. The dc current
I4c(V) as a function of dc bias voltage gives the imaginary part of the response
function as a function of frequency; its voltage Kramers-Kronig transform
gives the real part of the response function. Therefore the dc I-V curve,
which can be easily measured, contains all the information about the
response of the quasiparticles in an SIS junction at high frequencies. Two
conditions must be satisfied for this statement to be valid. First, the
quasiparticle tunneling must be elastic within the tunnel barrier so that the dc
I-V curve gives direct information about the density of states of the
quasiparticles in the two sides of the junction. Second, the tunneling
probability must be small enough that tunneling does not significantly
change the density of states on either side. These two conditions are met for
SIS junctions with modest current densities < 104 A/cm2, and high quality
tunnel barriers which are free from impurities and imperfections.

24  Mixer Theory

24.1 Basic Terminology

Before discussing the quantum mixer theory, let us first introduce
some basic mixer terminology. A mixer contains a non-linear element, in
our case an SIS tunnel junction. The weak signal, at frequency s , and the
the strong local oscillator, or "pump”, at frequency wpo are coupled into the

7



nonlinear device, where they produce an intermediate frequency wir = | ws -
oLo |- The performance of the mixer is characterized by two quantities, the
added noise referred to the input, and the conversion gain. The noise added
by the mixer is characterized by the spectral density of the added noise referred
to the input of the mixer. Traditionally, this has been reported as the
ternperature (the noise temperature) of a fictitious blackbody placed at the
input of a noiseless, ideal mixer to account for the noise produced by the real
mixer. This works well as long as the blackbody is in the Rayleigh-Jeans
limit at the signal frequency. For an SIS mixer operating near the quantum
limit, this is no longer true. Under these conditions, the definition of noise
temperature becomes ambiguous. We choose to report the spectral density of
the mixer noise in units of hw of the signal radiation.
The conversion gain is defined as:

_ power delivered to the IF Load
m — . . .
available power at the signal frequency

(2.13)

The mixer will produce an output at wir from either of two input
frequencies, the upper sideband, at wysp = wLo + @, and the lower side band,
at wsp = wLo — wrg. Clearly, there are two distinct conversion gains, Gysp and
Gisp at the two frequencies. Sometimes equal powers are applied at the upper
and lower side bands, in which case it is useful to define a double-sid .band
conversion gain Ggsp = Gisp + Gusp. This quantity is appropriate when the
input signal is from a blackbody, as is the case when the mixer noise is being
measured.

When the signal is in only in one sideband, that frequency is referred
to as the "signal" frequency, and the other sideband is referred to as the
"image" frequency. A mixer with Gs >> G; (image rejecting) is called a
single-sideband (SSB) mixer. If Gygp = Gisp, the mixer is called a double-
sideband (DSB) mixer.

242 Classical Mixer Theory

The classical theory of mixers has been discussed by many authors.?% 23
Classical mixer theory, as well the quantum mixer theory that we will discuss
later, uses the Y matrix to describe the small signal mixing properties. The Y-
matrix is defined by

im = Z Ymm Vm' p (2.14)

m

where

oo

stg = Re z Vrnei('o"“t
m== (2.15)



m=-oo (2.16)

and
Om = MOLO + O[F m=0, 1, £2,.... (2.17)

Note that vsjg is only the small signal voltage, and does not contain the local
oscillator, or pump, voltage. The Y-matrix describes how the nonlinear
element, under the influence of the strong local oscillator signal, converts
signals between the various frequencies, or ports, of the mixer. The
equivalent circuit of the mixer that we use is shown in Fig. 2.3. The mth port
of the mixer is assumed to be terminated by an embedding admittance Ym.
Signals are coupled to the mixer by currents sources in parallel with the
Ym's. Typically the mixer is operated with a signal injected at the m=1 (signal)
port, and the output measured at the m=0 (IF) port, as shown in the figure.

If we know the Y-matrix, analysis of the mixer is straightforward. For
each port we have the equation,

Im = im+YmVm = z (Ymm' + YmOm,m ) Vm

m’ (2.18)
which we invert to yield

Vm = 2 Zom'Im
m’ (2.19)
where
Z =( Y + Ymam,m' )-1 . (.20

When a signal source I is placed at the m=1 port, the output voltage at the
m=0 (IF) port is given by

vo = Zoohor Ls , (2.21)
where
My = 20
7 Zoo (2.22)

It is easy to show that Ag; is independent of Y, the IF load admittance. The
SSb mixer gain is given by

Gm = 4 Re(Y1) RelYo)|Zon |2 . (2.23)

In the classical theory, the elements of the Y-matrix are determined
from the time-dependent modulation of the dc I-V curve which produces a
time-dependent conductance



Galt) = a%—ldc (Vo + VLocos @t) = X Gg (me) eimet
° m=-ee (2.24)

which yields

chl-\m’ = GCl [( m-m’ ) (D] . (2.25)

The classical calculation assumes that the high-frequency response of the
junction is given by Eq. 2.24. As we have already seen in section 2.3, this is
not the case when the frequency of the radiation is so high that Rw/e is larger
than the voltage scale of the nonlinearity of the junction. Thus a quantum
version of the Y-matrix is required.

243 Quantum Mixer Theory

Tucker's quantum theory of mixing!’ 2 describes a method of analyzing
the performance of nonlinear resistive mixers where the voltage scale of the
nonlinearity is small compared to fiw/e. The theory assumes that the
measured I-V curve of the device under study is entirely determined by
elastic tunneling. This is a good assumption for high quality SIS tunnel
junctions. The validity of this assumption will be discussed in more detail in
chapter 5.

In order to calculate the Y-matrix using this theory, we must first
determine the local oscillator waveform Vi o(t) impressed across the device.
In general this is a very difficult problem, both because it is difficult
mathematically and also because it requires knowledge of the embedding
admittance at all harmonics of the local oscillator frequency. Fortunately, for
most practical mixers, we can use the 3-port approximation. In this
approximation, we assume that all higher harmonics of the LO are shorted by
the geometrical capacitance of the junction. In this case, VL o(t) = Vcos wt.
Also implicit in this assumption is that all signal ports with |m| > 2 are also
shorted, so that no voltages appear at these ports. Thus the only remaining
ports are those with m =1,0,-1.

Once we know the magnitude Vg, of the LO drive voltage, we can
determine the elements Ymm = Gmm' + iBmm from1.2
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Gmm - —£ Z In(evm)]n (eVm) m-m’ 5n-n'

2hoy
nn
[Idc (Vo + n'fiw/e + Fom)- Lic (Vo + n'Hie/e) + (2.26)
+I3c (Vo + nhiw/e) - L4 (Vo + nhiw/e - ﬁmm')] ,
and
eV eV
Bmm’ = Hw O Z ]n( m)]n( (::) Bm-m'sn-n'
n,n
[Ikk (Vo + nfim/e + o) - Ik (Vo + nhw/e) + (2.27)

+ Ik (Vo + nhiw/ e) - Ik (Vo + nho/e - ﬁ(om')]

Here Ixk(V) is the Kramers-Kronig transform of the dc I-V curve defined in
Eq. 2.12.

2.4.4 Noise in the Quantum Theory

Under the influence of the local oscillator, large tunneling currents
flow at frequencies that are multiples mw of the LO drive. These currents
will be discussed in more detail in chapter 4. These large currents are due to
the tunneling of individual quasiparticles, so they produce shot noise at all
other frequencies. Some of this noise will appear at the various signal ports,
and thus will be mixed down and appear at the intermediate frequency. In
this section we will outline the calculation of this noise.

The noise can be analyzed by placing a current noise source [I(t) - (I(t))]

in parallel with an ideal, noiseless mixer.l* 2 I(t) is the current operator for the
tunnel junction, and (I(t)) is the tu‘ne-averaged current given in Egs. 3.6 and
3.7. The difference then characterizes fluctuations about these average
currents. We define the Fourier transform of the current operator as

T/2
IT(w) = f d—tel‘*’t I(t)
2z
-T/2

(2.28)
T is some long time period which will become infinite at the end of the
calculation. IT(w) has large spikes at multiples mw of the LO frequency, and a
randomly fluctuating noise "floor " in between these spikes. Since the spikes
do not occur at the sideband frequencies, the noise source [I(t) - (I(t))] can be
modeled by placing a noise source 8In(t) at each port of the mixer. The
expression for the noise source is
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@m+xB
SI(t) = f do' [Ir(@)eiot + It(-w)eiot] |

wm-nB (2.29)
B is the bandwidth at the intermediate frequency over which the
measurement is done. These noise generators appear at every port of the
mixer and are all mixed down to the intermediate frequency. Thus we can
refer all these sources to the output frequency using an effective current
generator

Om+rB
SI§f(t) = f do' [§f(w)e-iot + §f(-w)eiot] |
om-nB (230)
where

K@) = Y, MmlIr(me + o)
m (2.31)
The time-averaged mean-square noise current from this effective
noise source that appears in the IF bandwidth is the output noise of the mixer
and is given by
T/2

2
2\ _ Lim 1 f? - r Lim 3 [reft o\
([81F) =4 1 I ad[85of) = B LU0 = ([1¥%w0), 1 00)] )
2 (2.32)
We can define the current correlation matrix Hyym' so that,
([810]2) =B Z 7"0m )‘Om' Hmm’ ,
m,m’ (2.33)
where
Hpm = “m‘—ln—z ([IT((Dm),IT(‘C‘)m’)] ) .
Toe T + (2.34)

Tucker calculated the elements of this matrix using linear response theory!” 2
and found

eV eV
Hmm = g8m,m' + e Z ]n( (:;)]n( ﬁ(::)am-m'an-n'

{coth[BeV, + nfiw + Hom) 1ad Vo + nfio/e + Rom/e)] + (2.35)

coth[B(eV, + nfiw ~ fiom) I4d Ve + nfin/e - Koy / e)]}
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The first term is due to quantum fluctuations in the incident radiation field.24
The second term describes the shot noise produced by the dc current and the
LO-induced currents through the tunnel junction. In order to refer this
noise to the inp-.it, we must divide by the mixer gain, which yields an added
noise spectral density of

Sm,n = 1 > Z Aom )‘vam Hmm
4 Re (Yn)|Aon| mn (2.36)

Here n = +1 or -1 depending on whether the mixing is done from the
upper (n=+1) or lower (n=-1) sideband. The expression has a minimum
value of hw. Half of this noise can be considered to be already present as
vacuum fluctuations on the incoming signal, so only fiw/2 of noise is added
by the mixer, in concordance with the quantum limit discussed in section 2.5.
The minimum value of Eq. 2.36 is not obvious because of the dependence of
AOm on Y,

Extremely low noise, approaching this quantum limit, is predicted
when the calculation is done with experimentally measured I-V curves of
high quality SIS junctions. This low noise is mostly due to the large values of
conversion gain and to the low values of sub-gap "leakage" current.

The Tucker theory of mixing predicts the high-frequency performance
of a tunnel junction mixer from its dc I-V curve, its Kramers-Kronig
transform, and from the values of the embedding admittance at the various
frequencies involved. Much of chapter 5 is a comparison between
experimentally measured and calculated mixer performance. The scheme
used to deduce the hard-to-measure high-frequency admittances is alsc
discussed there.

25 Quantum Limit

The accuracy of any simultaneous measurement of two conjugate
variables is ultimately limited by quantum mechanics. An SIS mixer (or any
phase preserving amplifier) simultaneously measures the photon number
and phase of the incoming radiation, so some noise must be added in the
measurement process. This is in contrast to a square-law detector, such as a
bolometer, which only measures the photon number, thus to which there is
no fundamental limit to its sensitivity.

Recently, Caves, using very general quantum-mechanical arguments,
has shown that any narrow-bandwidth, linear, phase-preserving amplifier

must add noise of spectral density referred to the input of 2°
Sm 2 | 1- Gp~1| fos | (2.37)

where Gp is the photon number gain. An SIS mixer in the weak signal limit
and operated in the single-sideband mode is linear, preserves phase, and
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amplifies photon number. Therefore, the above limit applies. Since the IF
frequency is always much less than the signal frequency, an SIS mixer
operates in the regime of large photon number gain. In this regime, the
quantum limit reduces to

Sm = hwg/2. (2.38)
A mixer operated in the double sideband mode is sensitive to the relative
phase of the local oscillator and the signals in the upper sideband and the

lower sideband and thus this limit does not apply, and the added noise can be
zero.

14



Chapter 3
Measurement of the Quantum Susceptance

3.1 Introduction

Tunneling of quasiparticles is a quantum mechanical phenomenon.
One of the consequences of such processes is that the current-voltage
response is usually not instantaneous in the presence of an ac drive, provided
the driving frequency is higher than the inverse of the lifetimes of the
eigenstates involved. This non-instantaneous current-voltage relation

consequently gives rise to a reactive component 1,2,5,19-21 of the tunneling
current in addition to a dissipative, resistive one. If the tunneling processes
are elastic then the I-V curve contains direct information about the density of
states on the two sides of the junction. In this case, the resistive (dissipative)
tunneling is given by the dc I-V curve of a tunnel junction. The reactive
(non-dissipative) component is related to the resistive component through a
frequency Kramers-Kronig transformation, as required for any causal, linear

response.26 Therefore, the high-frequency response of the junction can be
completely deduced from the dc I-V curve. Consequently, the frequency-
dependent conductance which is associated with a nonlinear elastic tunneling
I-V curve should give rise to a susceptance. The subject of this chapter is the
effect of this susceptance, called quantum susceptance herein, on the small
signal response of Superconductor-Insulator-Superconductor (SIS) junctions
to high-frequency radiation.

It is well known that there are two types of charge carrier that tunnel
across an SIS junction: Cuoper pairs and quasiparticles. They arise from the
superconducting condensate and the excitations, respectively. Due to the
non-instantaneous current-voltage relation, the tunneling current from
each carrier contains two components in the presence of an ac drive. The in-
phase component is dissipative (resistive) while the out-of-phase
component is nondissipative (reactive). For Cooper pair tunneling, the in-
phase component of the current is the Josephson cos¢ term,while the out-
of-phase component is the Josephson sin¢ term.> 15 16, 19-21 po;
quasiparticles, the in-phase component is given by the dc quasiparticle I-V
characteristic, while the out-of-phase component is the quantum
susceptance or quantum reactance.l” 2 19-21 The reactive quasiparticle
tunneling current is a result of "quantum sloshing." If the energy difference
of the initial and final states on two sides of the junction is different from the
photon energy, no photon-assisted-tunneling can take place. Instead, the
quasiparticles slosh back and forth between the two sides by absorbing and
then emitting photons of the same frequency.

Werthamer derived an expression for the response function of both

Cooper pairs and quasiparticles.® The real parts of the response functions
correspond to the reactive components of the tunneling currents; and the
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imaginary parts correspond to the resistive components. Using Werthamer's

theory, Harris!®-21 analyzed the response of an SIS junction to an RF radiation
in the sinall signal limit. He correctly predicted the small effect of the
quantum susceptance at zero dc bias voltage. While Josephson tunneling and
quasiparticle resistive tunneling have been extensively studied, quantum
susceptance has been largely ignored. This is because the contribution from the
quantum susceptance to the tunneling current is only significant at
frequencies high enough that the voltage associated with a quantum o the
radiation, V=hw/e, is larger than the voltage scale on which the i-V

characteristic of an SIS junction is nonlinear. ! Josephson effect devices
originally showed greater promise as useful high-frequency devices, so the
effects of both sin¢ and cos¢ terms on the response of Josephson junctions

have been studied extensively.27' 28 The quasiparticle tunneling was originally
studied as a measure of the density of states for excitations. This measurement
is done essentially at zero frequency so the quantum susceptance makes no
contribution. This situation has changed since the invention of SIS
quasiparticle direct detectors and SIS quasiparticle mixers which utilize

quasiparticle tunneling for high-frequency operation. Tucker! first studied the
reactive quasiparticle tunneling at arbitrary dc and RF bias voltages. He
predicted that an SIS mixer which has a non-instantaneous current-voltage
relation may have a mixer gain greater than unity. In contrast, a classical
resistive mixer, whose current-voltage relation is instantaneous, has a

maximum mixer gain of unity.?? It was speculated that this mixer gain is due
to a parametric amplification from the nonlinear quantum susceptance.

However, a detailed analysis29 indicated that the effect of the quantum
susceptance is quite subtle and is not directly responsible for the predicted

mixer gain. It was further argued that, like the Josephson cos¢ term,30 the
quantum susceptance should be difficult to detect experimentally.

In this chapter, we report experimental evidence for the quantum
susceptance from a measurement of a shift of the resonant frequency of a
superconducting microstrip stub resonator which contains an SIS junction.
This shift of the resonant frequency is due to the change of the quantum
susceptance as a function of dc bias voltage. In the following chapter we
present an analysis of dc I-V curves of an SIS junction pumped with
sufficient RF power that the photon-assisted-tunneling steps are clearly
seen. There we demonstrate that the quantum susceptance is essential to the
explanation of the negative photon-assisted-tunneling steps observed when

the junction is pumped at frequencies slightly below the resonant frequency.®
This chapter is organized as follows: the theoretical background will be
discussed in section 3.2, the experimental details will be described in section
3.3, the comparison between the theory and the experiments will be discussed
in section 3.4, and finally the results will be discussed in section 3.5.
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3.2 Theoretical background
As discussed in section 2.3, the real and imaginary parts of the
quasiparticle response function are given by,

“dw' Im [jgp(w)] - Hiw/eR,
T -

Re [jgp(@)] =Pf

Tdv' LiV) - VI/R, (3.1)
V-V ‘

=I(V) =P I

and

Im[jqp(wo)] = Idc(Vo) . (3.2)
As discussed in chapter 2, we can obtain the Im[ jgp(®wo)] by simply measuring the
dc I~V curve of the junction. Re[ jqp(wo)] can then be calculated using equation
3.1.
In Fig. 3.1(a) and 3.1(b), we plot an experimentally measured I-V curve of the
SIS junction studied and its voltage Kramers-Kronig transform calculated
from Eq. (3.1). The peak of Ixk at the gap voltage Vg corresponds to the sharp
nonlinearity of the dc I-V curve I3(V) at Vg.

Tucker 2, using the above response functions, calculated the quasiparticle
tunneling current in the presence of a time-dependent bias voltage, V(t) = Vg +
V wcoswt. He found that

I(t) = ag + Z [2amcos (mwt) + bysin (mot)] . (3.3)

m=1

The coefficients of the current at frequency w and its harmonics are given by

oo

2an = 2 Jn(®) [Jaem(@ + Jnm@] Iac(Vo + nfiw/e) |,

n=-0o

(3.4)

2bm= 2, Jn(@ [Jnem(@) - Jnm(@)] (Vo + nfiw/e) .

n=-oc

Here, I4c and Ixk are the same as in Egs. (3.1) and (3.2), Jn is the nth Bessel
function, and a=eVy/hw is the dimensionless RF voltage. Eqs.(3.3) and (3.4)
indicate that many harmonics of the drive frequency ® exist in an SIS
junction. The amplitudes of these current components have a nonlinear
dependence on the RF drive voltage V. The non-zero value of by, for m=1
indicates that there exists an out-of-phase reactive component sinwt as well
as an in-phase component coswt. We will show later that the current
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amplitude of the two components can be comparable. It should be noted that
the dc I-V curve 14c(V,) = a5 of a voltage-pumped SIS junction is completely
independent of the real part of the quasiparticle response function Ikk.
Therefore, Re(jgp) cannot be measured from the dc I-V curves of a voltage-
pumped SIS junction. This is in contrast to the pair response function, whose
real part Re(jp) (Josephson sin¢ term) contributes to a dc current at some
discrete voltages which correspond to Shapiro steps. From the width of the
Shapiro steps as functions of RF voltage amplitude, Re(jp) can be measured as
a function of frequency.31

The analysis of the response of the quasiparticle tunneling current to a
large amplitude RF radiation is very complicated since multi-photon
nonlinear processes are involved. In general, numerical computation is
required and it is difficult to gain an intuitive understanding of the physics
involved. However, in the small signal limit, @ < 1, only the one-photon
process is significant, so the problem is linear. If we define an admittance
Yq(w) as the ratio of the induced RF quasiparticle current and the RF voltage,
Yq(w)=Iy/ Vg, then from Egs. (3.3) and (3.4) to the leading order of a, the real
and imaginary parts of Yq(w) are given by

Gal@) = Re[Yg(w)] = 55 [Lac(Vo + iwo/e) -
(3.5a)
I4c(Vo - hw/e)] ,
Bq(®) = Im[Yq(@)] = 55 (Vo + w/e) - (Vo) +
(3.5b)

+ Ikk(Vo - ﬁ(!)/e)]

Ggq and Bq are called quantum conductance and quantum susceptance,

respectively, in this thesis and in the previous papers.® 7 In the limit of low
frequency, the quantum conductance Gq(w) reduces to the classical limit dI/dV as
expected for any system whose characteristic frequency is much higher than the
driving frequency. In the limit of high frequency, Gq(w) approaches the inverse
of the normal state resistance 1/Rp at frequencies far above the gap frequency.
This implies that the response of an SIS junction is like a classical diode at low
frequencies and becomes Ohmic when the photon energy is much greater than

the gap energy. We have shown® that the quantum conductance Gq and the
quantum susceptance Bq defined in Egs. (3.5a) and (3.5b) are related through a
frequency Kramers-Kronig transform, as required for any causal, linear

response,?®

£ . .G )
_p | do Q'

—oo
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This approach is simpler than the one we discussed above. However, in this
thesis, we are interested in the case of arbitrary signal strength, so we started
with Egs. (3.3) and (3.4) which apply to the general case.

Expression (3.5b) for the quantum susceptance Bg can be interpreted
geometrically. Bq((n) is a measure of the curvature of the ?hree points Ixk(Vo +
hw/e), Ikk(Vo), and Ixkk(Vo - Kw/e). When the curvature is upward, Bgq is
positive and capacitive; when the curvature is downward, Bq is negative and
inductive. It can be seen from Fig. 3.1(b) that as we change the dc bias voltage
Vo from zero, the curvature of Ixx changes from positive to negative and back
to positive. This implies that the quantum susceptance changes from
capacitive to inductive and back to capacitive as shown in Fig. 3.1(d). Bq has
the largest capacitive value at one photon voltage iw/e below the gap voltage
Vg and the largest inductive value at Vg. In Fig. 3.1(c), we also plot the
quantum conductance Gq as a function of bias voltage. Gq is large only within
one photon voltage fiw/e below and above Vg, which corresponds to the
voltage where a quasiparticle can tunnel to the other side by absorbing or
emitting one photon.

It is easy to understand that the quantum conductance Gq comes from
the photon-assisted tunneling. It is less straightforward that the quantum
susceptance Bq comes from a sloshing back and forth of quasiparticles. We
will use the semiconductor model in Fig. 3.2 to help to understand both the
photon-assisted tunneling and the quantum sloshing. The superconducting
energy gap 2A splits the density of quasiparticle states into two separate bands,
the conduction band and the valence band. At T = 0, all the states in the
valence band are full and all the states in the conduction band are empty. The
dc bias voltage V, shifts the relative Fermi levels on the two sides by eV,,.
Consider an SIS junction in the presence of a photon field with photon
energy hw. Conservation of energy allows transitions to take place only
between two states whose energy difference is hw. Also at T = 0, the Pauli
exclusion principle requires that if one state is in the valence band then the
other state must be in the conduction band.

The tunneling between states A and B in Fig. 3.2, which satisfies the

condition Ep + hw = Eg, is the photon-assisted tunneling32' 33 which gives
rise to a step-like structure on the dc I-V curve of a pumped SIS junction.
This tunneling can also be assisted by absorbing more than one photon if the
photon field is strong enough. The tunneling of a quasiparticle in an initial
state A to final states other than B cannot occur because it violates
conservation of energy. However, this does not imply that the tunneling
between two such states can never take place. A quasiparticle in state A can
absorb a photon hw temporarily to tunnel to a state on the right side other
than state B, then emit a photon of the same energy and tunnel back to state
A. This movement has been called "quantum sloshing" and its effect is to
alter the phase of the photon field and leave the total photon number

unchanged.! Therefore, the contribution of this quantum sloshing to the
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quasiparticle tunneling current is the reactive component, which is what we
called quantum susceptance.

The sign of the susceptance contributed by the quantum sloshing
between two states with energies Ei and ER depends on whether the energy
difference |ER - EL| is larger or smaller than the energy of the photons hw of
the RF drive. If [ER-EL| > Hw, then the susceptance is capacitive; if [ER-EL| <
hw, the susceptance is inductive. When the energy difference between the
two states is equal to the energy of the photons, the tunneling is purely
resistive. These results can be understood if we model the SIS as a
superposition of two-level systems.

Consider two quasiparticle states, one on the left side and the other on
the right side of an SIS junction whose energy difference is Rwz-j. The
transition between these two states is analogous to the transition between two

levels in an atom. Following Yariv's derivation,3* the electrical dipole
moment P(t) induced by such a transition can be characterized by the "atomic"
susceptibility x = x' - ix", such that P(t) = Re(eoxEei®t), where E is the external
electrical field. The current associated with this time-varying dipole is the
time derivative of the electrical dipole moment, I(t) e dP(t)/dt =
Re(imeo)Eei®t). Since the RF voltage V, is proportional to the electrical field
E, the RF admittance Y,_g(w) is proportional to (iwep)). Here the subscript "2-
£" is to emphasize that this admittance is the contribution only from the
tunneling between these two specific states. Then from Eq. (8.1-19) in Yariv's
book, we obtain the expression for the quantum conductance and susceptance

which arise from these two states in the absence of inelastic scattering during
the tunneling,

Gog (@) o< Y o< @

, (3.7a)
1+ (0 - wpp)?t?

w(wyg- w)T
Bo.g (@) o< wy o< (@34 )2 > . (3.7b)
1+ (®-wyg)“t

Here 71 is the lifetime of the quasiparticle concerned. From Eq. (3.7b), at o >
w2-g, B2y is negative and the susceptance is inductive; and at w < wp-g, By
is positive and the susceptance is capacitive. Finally, at @ = wp-y, By—g is zero
and the admittance is purely resistive and the conductance Gy_; takes a
maximum value. If we assume that the quantum sloshing processes are

uncorrelated,®’ the total quantum conductance Gq(w) and the quantum
susceptance Bq(w) are computed by integrating G-y and By_y over all the
quasiparticle tunneling processes allowed by the Pauli principle. These results
can also be understood qualitatively from the behavior of a classical harmonic
oscillator with an intrinsic frequency w;-g. When the drive varies slowly
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with time, ® < wp_g the displacement, which is proportional to the dipole
moment, follows the drive, i.e. P «< E. When the drive varies rapidly with
time, ® > wy-¢, the displacement is 180° out of phase with the drive, so P « -
E

Returning to the formal theory, we plot in Fig. 3.3 the calculated

quantum conductance Gg(®) and the quantum susceptance Bq(w), using Egs.
(3.5) and (3.8) and the I4c and Ik in Fig. 3.1, as functions of frequency at a fixed
dc bias voltage Vo = 2.50 mV. The peak of Gq at 62 GHz occurs when the
photon energy is equal to the energy dlfference between the edge of the
"conduction” band on one side and the edge of the "valence" band on the
other side of the junction. This frequency is a simple function of dc bias
voltage, fo = (Vg - Vp)/h. Slightly above this frequency, the quantum
susceptance Bq vanishes just as we expect for a two-level system. At
frequencies below f,, Bq is positive and the quantum susceptance is capacitive;
at frequencies above fo, Bq is negative and the quantum susceptance is
inductive. The plot in Fig. 3.3 is strikingly similar to Fig. 8.2 in ref. 65, where
the real and imaginary parts of the atomic susceptibility x' = B2—g /@ and %" <
G2-¢ /@ are plotted as functions of frequency. This strong similarity suggests
that an SIS junction can be approximated as a voltage-tunable two-level
system whose energy difference is e(Vg-V,). This approximation is valid
because the singularities of the quasiparticle density of states at the gap energy
cause a large portion of the quasiparticles to occupy the states near the gap.

Using the discussion in the last two paragraphs, we can provide a
detailed physical explanation of the voltage dependence of the quantum
susceptance. At Vo < Vg - hw/e, the energy difference between all the states in
the conduction band on one side and all the states in the valence band on the
other side is greater than the photon energy, i.e. wp_g> . Therefore, Y2y {(w)
from all possible quantum sloshing events are capacitive. As V, increases
from zero to Vg - Hw/e, the difference (wy—g —®@) becomes smaller, so the
denominator in Eq. (3.7b) decreases. This results in a maximum capacitive
value of the quantum susceptance Bg at Vg - Hiw/e, as show in Fig. 3.1(d). As
the bias voltage V., increases from Vg - ﬁ(o/ e, there will be states in the
conduction band with energy less than ho greater than some states in the
valence band on the other side. For these pairs of states, wp_y < ®, so their
contribution to the quantum sloshing is inductive. This explains why the
quantum susceptance Bg becomes more inductiive as V, increases from Vg
fiw/e, and has the largest inductive value at the gap voltage Vg, as shown in
Fig. 3.1(d).

Although the above discussion was carried out at T=0 for simplicity,
the results are still valid at finite temperature. Two modifications should be
introduced in the above discussion at finite temperatures. First, the
superconducting energy gap is reduced. Second, the states in the valence band
are not completely filled, the occupation probability is given by the Fermi
distribution f(E). Similarly, the states in the conduction band are not
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completely empty, and the unoccupied probability is given by 1 - f(E). These
two modifications at finite temperature affect the dc I-V curve in the same
way as they affect the high~frequency response of the SIS junction. Therefore,
the RF admittance of an SIS junction is still given by Egs. (3.8a) and (3.8b) as

long as its dc I-V curve at T # 0 is still due to elastic 'cunneling.lg'21

In the general case, o = eV, /hw can be any value and we must consider
a complicated nonlinear solution of Eq. (3.4) to analyze the response of an SIS
junction to RF radiation. We can still define an admittance Y(w)=Iy/ Ve,
where I, and V, are the current and voltage at frequency w. In this case, Y(w)
will be a function of Vg as well as a function of Vo and . Numerical
computation is required for detailed analysis. However, some of the
qualitative features discussed above in the linear limit will still apply as long
as a is not so much greater than unity that multi-photon processes dominate

the one-photon process.® One of the important features is that the quantum
susceptance takes its maximum capacitive value at one photon voltage below
the gap Vg - fiw/e, and changes to an inductive value as the bias voltage
increases to the gap voltage Vg. We will show later in chapter 4 that this
feature is responsible for the photon-assisted-tunneling steps with negative
dynamic resistance which were observed when the embedding admittance is
slightly inductive.

3.3 Experimental details

As discussed in section 3.2, the reactive part of the quasiparticle
response function (or, equivalently, the quantum susceptance Bg) has no
contribution to the tunneling current when the bias voltage is purely dc, i.e.
V(t) = Vo. Also, the quantum susceptance Bq has no effect on the dc I-V curve
of an SIS junction pumped by an RF voltage source whose amplitude V, is
independent of dc bias voltage. Consequently, the quantum susceptance
cannot be measured in a dc voltage biased SIS junction, or from the dc I-V
curves of an RF voltage biased SIS junction.

The most straightforward and convenient way to measure a reactive
eizment is to measure the resonant frequency of a resonator which contains
the element to be measured. In a less direct way, the quantum susceptance Bq
can be measured from the shape of the I-V curves of an SIS junction pumped
by an RF source with a non-zero output impedance. The first method gives a
direct and definitive measurement of the quantum susceptance. The second
method gives an independent check and can also help in understanding the
role of the quantum susceptance in the RF impedance match, especially in the
large signal limit. This impedance match is crucial for many SIS devices, such

as SIS direct detectors,3® SIS heterodyne mixers,> and SIS parametric

amplifiers.?” In this chapter we focus on the first method of measurement.
We have constructed a millimeter wave resonant circuit by using a

superconducting microstrip stub and an SIS junction. This resonator is

quasioptically coupled to the radiation source by a planar antenna and several
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lenses.!! A photograph and a schematic drawing of the junction and
microstrip stub located at the center of a log-periodic antenna are shown in
Figs. 3.4(a) and 3.4(b). The response of this resonator to an RF signal can be
analyzed using the equivalent circuit shown in Fig. 3.4(c). The signal and the
antenna are represented by an RF current source in parallel with its source
admittance Y. The SIS junction is represented by the parallel combination of
the quantum conductance Gq(w), quantum susceptance Bq(m), and the
geometric capacitance C. The admittance of the superconducting microstrip
stub is essentially reactive and can be represented by a susceptance Bgtyp().
The loss of the stub at the RF frequency can be modeled by a conductance in
parallel with Bgtyp(w). This loss does not affect the value of the susceptance
Bstub(®) to first order, and therefore it is unimportant in the determination of
the resonant frequency.

In order to measure the quantum susceptance Bq, we need to know the
imbedding susceptance Bemb, which is the total susceptance that is
independent of dc bias voltage. In the equivalent circuit in Fig. 3.4(c), the
imbedding susceptance Bemp is the sum of the susceptances of the junction
capacitance wC, and of the microsirip stub Bgiyp(®), and of the antenna
Im(YA). The resonance of the equivalent circuit of Fig. 3.4(c) corresponds to
the condition Bigta] = Bq(o)) + Bemb(®w) = 0. Without the quantum susceptance
Bq, the resonant frequency would be independent of bias voltage. However,
since Bg changes rapidly with dc bias voltage V, as shown in Fiy. 3.1(d), we
expect 3\at the resonant frequency will change as V, changes.

The susceptance of the capacitance is simply oC, and the susceptance of
the stub Bstub(w) can be calculated using formulas in a standard microwave

engineering text book.38 The expression of the susceptance of an antenna can
be quite complicated in general. However, for a special class of planar
antennas called "self-complementary antennas", in which the pattern of the
metallic part is the same as that of the dielectric part, the admittance of the
antenna is real and independent of frequency.39 The antenna admittance is
given by Ya = (1+¢)1/2 3.74x10-3 Q-1, where ¢, is the relative dielectric
constant of the substrate. Use of a self-complementary antenna greatly
simplifies the characterization of the embedding admittance. In this
experiment, we have used a circular-toothed log-periodic antenna which has
been measured to have a high antenna efficiency (~ 60%) and a nearly
Gaussian antenna beam pattern.39' 40 As shown in Fig. 3.4(a), the antenna is
self-complementary. We have used a fused quartz substrate, which has a
relative dielectric constant €; = 3.85 at millimeter wave frequencies.4! 42 This
gives an antenna admittance of Y = 8.3 x 10~3 w-1.

We have used a superconducting microstrip stub with the stub made
out of Pb-In-Au alloy and the ground plane of Nb. As shown in Figs. 3.4(a)
and 3.4(b), the stub contains two sections, a narrow section 1 and a wide
section 2. The widths and the lengths of the two sections are: wi = 6 um, wy =
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40 pum, €7 = 135 pm, and £7 = 260 pm. The phase velocity within the
microstrip line is v = 1/(LsCs)1/2, where Ls = (Lo /ko)[t + Aicoth(t1/A1) +
Aacoth(t2/A2)] is the inductance per unit length,74 and Cs = kereow/t is the
capacitance per unit length."'3 t and €, are the thickness and the dielectric
constant of the insulating layer (SiO in our case), t1,2 and Aj2 are the
thicknesses and the London penetration depths of the ground (Nb) and top
(Pb-In-Au) plane, and k is a fringing factor close to unity. Using the designed

values, e = 5.7, t = 3000 A, t; = 2000 A, tp = 4250 A, Anp = 850 A,* App-In-Au =
1450 A, the phase velocity is v = 0.301£0.01 c. The length of the wider section
is 1/4 of the wavelength at 87 GHz, so the wider section transforms an RF
open circuit at point A to an RF short circuit at point B in Fig. 3.4(b).38 This
two-section stub has a slower variation of the susceptance as a function of
frequency than an one-section open-ended stub, so the effect of the quantum

susceptance is more profound.*>The length of the narrow section is 1/8 of the
wavelength at 85 GHz which transforms the RF short to an inductive

admittance. The total susceptance of the two-section stub is given by38

Y, [Yz tan (B22) + Y; tan (Bﬂl)] (3.8)
Bstub(®) = . )
Y; - Yo tan (B21) tan (B22)
Where B = /v, Y12 = (Cs1,2/Ls1,2)1/2 are the characteristic admittances of
section 1 (narrow) and section 2 (wide) of the stub, Y1 = 0.124 Q-1, and Y7 =
0.637 Q-1. We have shown that the expression of the susceptance of the stub

Bstub(®) remains the same when there is a small RF loss in the stub.46

In order to measure the small-signal frequency response of the
junction/stub resonator, the RF power coupled to the resonator must be less
than 10 pW so for Gg=0.01 Q-1a = eVy/fiw « 1 at 75 GHz and Eq. (3.8) applies.
Consequently, we need a very sensitive detector. Also, the frequency
dependence of the detector must be known in order to separate the frequency
response of the resonator from that of the detector. We have used the
internal detection mechanism in the SIS junction to measure the frequency
response of the resonator. SIS direct detectors are known to be among the

most sensitive 4.2 K video detectors at millimeter wave frequencies,47 and
they have been proved to be very useful in measuring the frequency response

of millimeter and submillimeter wave resonators.4éThe frequency-
dependent responsivity of the SIS direct detector can be easily calculated from

Tucker's theory.1 There is also a major advantage of this scheme: because of
the proximity of the SIS detector to the resonator, there is no Fabry-Perot
interference between them. The output of the SIS detector as a function of RF
frequency is the procuct of the frequency response of the resonator, the

spectrum of the source, and the frequency-dependent responsivity of the SIS
detector.
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The current responsivity Sy of an SIS direct detector, defined as the
induced dc current per unit RF power absorbed, as a function of frequency is

given by,!

Si(w) = Alge _ e Lic(Vo+hiw/e) - 2I3(V) + Igc(Vo-fiw/e) ' (3.9)

P, HRo Igc(Vo+hw/e) - Iy(Vo-hm/e)

Here Py = Re(IyVe /2) is the RF power actually dissipated in the SIS
junction. Note the absence of the reactive quasiparticle response function Ixk
in Eq. (3.12), which implies that the quantum susceptance By does not affect

the responsivity. As pcinted out by Tucker,? Sj(@) reduces to a frequency-
independent classical current responsivity (d2I/dV2)/2(dI/dV) at low
frequencies; and approaches a quantum limit e/hw at frequencies so high that
the voltage associated with one photon hw/e is larger than the width of the
current rise at the sum gap voltage. The induced dc current per unit available
RF power P4 in the SIS junction as a function of RF frequency is then given

where Y] = Gq + i(Bq + ®C + Bstub) is the total admittance of the SIS junction
and the stub, and Sj(w) is the current responsivity defined in Eq. (3.9). The
second factor on the right hand side of Eq. (3.10) is the RF coupling coefficient

CRrr defined in previous publications.!! Cgg is the fraction of the available RF
power which is delivered to the dissipative element Gq. Eq. (3.10) implies that
the induced dc current is the product of the RF coupling coefficient CRp(w)
and the current responsivity Si(w). Since Si(w) is a smooth function of
frequency except at e(Vg - Vo)/H, the frequency dependence of the RF-
induced dc current Aly. is mainly determined by the frequency dependence of
CRF(w). Therefore, the frequency which corresponds to the maximum Algc is
mainly determined by the resonance condition of the resonator, that is, Im(Y;)
= Bq + 0C + Bstyp = 0. When this condition is met, the RF coupling coefficient
CRr has the maximum value.

We also need to know the power spectrum of the RF source. We have
used both a tunable coherent millimeter wave source which utilizes the

Gunn effect*® and an incoherent source from the output of a Fourier
transform spectrometer (FTS). Calibration of the coherent power incident
upon the resonator was difficult due to Fabry-Perot resonance within the
source. These resonances have sharper peaks than that of the stub/junction
resonator so they dominate the measured response. The short coherence
length of the radiation from the FTS eliminates most of this problem. In this
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paper, the resonan* frequencies and the widths of the resonances of the

stub/junction resonator were measured using the FIS. The coherent source

was used to study the shape of the photon-assisted-tunneling I-V curves.
The FTS used in this experiment is a far-infrared Michelson

interferometer?® operated in the step-and-integrate mode. The output
spectrum of the FTS is the blackbody radiation from a Hg-arc lamp at 500 C°,
modified by the efficiency of a 250 mm thick Mylar beamsplitter. Since the
antenna-coupled SIS direct detector is sensitive to only a single
electromagnetic mode, and the source is in the Rayleigh-Jeans limit, the
power spectrum of the source is given by a constant multiplied by the

beamsplitter efficiency Mpm, which is a smooth function of frequfs:ncy.46 For
250 mm thick Mylar film at 450 to the beam with a relative dielectric constant
€r = 3, the beamsplitter efficiency Npm is slowly increasing with frequency in
the frequency range of interest.46

The experimental apparatus used in this work is essentially the same as
was used in our quasioptical SIS mixer experiments to be discussed in detail
in chapter 6. The output of the FTS is connected to the cryostat through a 1-
meter long, 11-mm diameter light pipe. The cryostat has a 25-mm diameter
window which is covered with a 25-mm thick polypropylene window, which
transmits almost 100 per cent at millimeter wave frequencies. Within the
cryostat, the signal beam is focused by a £/0.85 TPX lens, and then further
focused by a hyperhemispherical quartz lens to a f/0.5 converging beam
whose beam waist occurs at the flat side of the hyperhemispherical quartz
lens, where the log-periodic antenna with the junction and the resonator is
centered. The quartz lens is heat sunk to the liquid helium tank through a
copper support. The temperature of the SIS junction is estimated to be 4.5 K
for an unpumped helium bath. Under unpumped condition, the liquid
helium in the cooling tank can last about 10 hours as compared to ~5 hours
when the helium is.pumped. The longer hold time allows us to improve the
signal/noise ratio by using longer integration times. Therefore, all the results
reported in this chapter were obtained at 4.2 K bath temperature. This
temperature is cold enough for our experiment since our all-Nb SIS
junctions have a relatively high T, (~9 K) so the operating temperature is
about half of the transition temperature.

The SIS junction used in this experiment was fabricated at the National
Institute of Standards and Technology at Boulder. It is a Nb/Al;03/Nb
sandwich made using the tri-layer process.’’ The critical current density of
the SIS junction is about 500 A/cm2. The normal resistance of 70 Q is
approximately matched to the antenna impedance. The I-V curve of the
junction shows a low leakage current and a sharp gap structure even at 4.5 X,
as shown in Fig. 3.1(a). The sharp gap structure causes a dramatic peak in
Ixk(V) at the gap voltage Vg. This peak, and the associated large values of
curvature, are essential to observe the effects of the quantum susceptance as
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discussed above. The junction has been thermally cycled between room
temperature and liquid helium temperature over 30 times, and the I-V
characteristic has not changed. The junction area is estimated to be 2.5x2.5
um2, which gives a geometric capacitance of 0.28+0.03 pF if we assume a

specific capacitance value of 45+5 fF/mm2.°! This capacitance value gives a
susceptance of 0.14 Q-1 at 80 GHz. Fig. 3.1(d) indicates that the change of the
quantum susceptance is as large as 0.05 Q-1 between 2.4 and 2.7 mV,which is
significant compared to that of the junction capacitance. Therefore, the
change of the quantum susceptance as a function of dc bias voltage should

have a very noticeable effect on the resonant frequency of the stub/junction
resonator.

3.4 Data Analysis

In this chapter, we present the measured resonant frequency and the
width of the resonance peaks as functions of dc bias voltage. These data were
obtained from spectra measured in the small signal limit using a Fourier
transform spectrometer. The effects of the quantum susceptance were easily
measurable from these data. In chapter 4, we will present the dc I-V
characteristics for junctions exposed to large amplitude narrow-band
millimeter-wave radiation. Analysis of those data in the large signal limit
provides an additional, though less direct measurement of the quantum
susceptance. After these measurements were made, additional

measurements were performed at Yale University52 using a millimeter-
wave reflectometer which provided further evidence for the quantum
susceptance. The Yale measurements were done both in the small and large
signal limits.

The interferograms in this experiment were obtained from the RF-
induced dc current Algc as defined in Eq. (3.10) as a function of the difference
between the two optical paths of the FTS. These interferograms were
measured in the step-and-integrate mode, with the integration time
typically ~1.5 seconds. The spectra were obtained by Fourier transformation of

the product of the interferogram and the apodization function.*’ We chose to
use an apodization function with a form of [1 + cos (xn/xmax)]/2, where x is
the path length difference and xmax is the maximum of the path length
difference used in ihe experiment. This apodization function lowers side
peaks of the instrument function at the expense of a moderate increase of the
width of the resonance peak. Figs. 3.5(a) and 3.5(b) show interferograms
measured at two bias voltages, Vo = 2.350 mV, and V, = 2.500 mV. At Vg =
2.350 mV, the value of the quantum conductance Gqis low as shown in Fig.
3.1(c), so the Q-value of the stub/junction resonator is high and the peak of
the resonance is narrow. Consequently, the fringe amplitude decreases slowly
as the path difference increases as shown in the interferogram in Fig. 3.5(a).
At Vo = 2.500 mV, the value of the quantum conductance Gq is high due to
the onset of the photon-assisted-tunneling, so the Q-value of the
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stub/junction resonator is low and the peak of the resonance is broader than
that measured at V, = 2.350 mV. Consequently, the fringe visibility in the
interferogram decreases rapidly as the path difference increases as shown in
Fig. 3.5(b). The corresponding spectrum shown in Fig. 3.5(d) shows a broader
peak than that in Fig. 3.5(c). Besides the apparent difference in the widths of
the resonances in the two spectra, the frequencies which correspond to the
peaks of the two spectra differ by a noticeable amount.

In order to improve the signal/noise ratio of the measured spectra, we
co-added 5-10 spectra measured at a given bias voltage. After normalizing
these spectra to the beamsplitter efficiency Mpm, we obtain the resonant
frequencies by least-mean-square fitting the top 50% part of the resonance
peaks with 2nd to 4th order polynomials. The degree of the polynomials in
the fitting is determined by the asymmetry of the peak. The error bars on the
measured resonant frequencies are chosen as the frequency ranges in
whichthe fitting polynomials are over 90% of their peak values. The result is
plotted in Fig. 3.6(a) as a function of dc bias voltage V,. Below 2.150 mV and
above 2.650 mV, the signal/noise ratio of the spectra is very poor due to the
roll-off of the current responsivity S of the SIS direct detector. Therefore, no
data are plotted outside of this range. The error bars are twice as large for V, >
2.450 mV as those for < 2.450 mV because the peaks are broader for Vg > 2.450
mV due to the sharp increase of the quantum conductance Gq. Fabry-Perot
fringes appear on these broad peaks if we keep the resolution of the FTS the
same as for the narrow peaks. These Fabry-Perot fringes probably arise from
the standing waves between the SIS junction and the TPX lens. In order to
average over those Fabry-Perot fringes, we have used a lower resolution of
0.3175 cm~1 in our FTS which resulted in large error bars for the measured
resonant frequencies above 2.450 mV. The experimentally measured resonant
frequencies clearly show a smooth shift as the dc bias voltage changes. The
most dramatic change of the resonant frequency takes place within the
voltage range from 2.400 mV to 2.650 mV, where it changes “-om 73 GHz to 87
GHz. From Fig. 3.1(d), we can see that the quantum susceptance By changes
rapidly from capacitive to inductive in exactly the same voltage range.

In order to make accurate comparisons between theory and
experiment, we obtain the theoretically calculawu resonant frequencies using
the same method used to obtain the experimental resonant frequencies. First,
we compute the RF-induced dc current as a function of RF frequency using
Eq. (3.10). Second, we convolve these computed spectra with the Fourier
transform of the apodization function which was used in the Fourier

transformation of the experimental interferograms.49 Third, we chose the
same number of computed data points at the same discrete frequencies as we
did from the experimental data. Finally, for each spectrum, we fit these
discrete computed points with a polynomial with the same degree as was
used in fitting the experimental data. The theoretically calculated curve for
the resonant frequency as a function of V, is shown in Fig. 3.6(a) as the solid
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line, and it is in excellent agreement with the experimental results. We
would like to emphasize that the values of two key parameters, the junction
capacitance C = 0.275 pF, and the phase velocity v = 0.286 c, which were used
in our theoretical computation, are essentially the same as the ones we
estimate from the geometric dimensions, 0.28+0.03 pF and 0.30£0.01 c. As a
comparison, the dashed line, which is essentially flat and obviously differs
from the experimental results, is the theoretically calculated resonant
frequency as a function of V, without including the quantum susceptance Bg.
The weak voltage dependence of the dashed line is due to the change of the
current responsivity Sy(w) with V,. Clearly, these results provide decisive
evidence for the quantum susceptance.

We have also investigated the effect of Josephson oscillation on the
shift of the resonant frequency by applying a magnetic field to change the
Josephson critical current. From Egs. (3.1) and (3.2), we can see that the pair
tunneling current also contains a reactive component, the sin¢ term. This
reactive component from the pair tunneling may also affect the resonant
frequency of the stub/junction resonator. If there is any significant effect from
the pair tunneling, then this effect should be changed as we modulate the
Josephson critical current with a magnetic field. We did not measure any
change of the resonant frequency within cur experimental accuracy up to a
field corresponding to several quanta of magnetic flux in the SIS junction.
This is probably because, at bias voltages from 2.15 to 2.65 mV, the Josephson
current oscillates at frequencies above 1 THz, which is strongly shunted by the
junction capacitance.

We discovered a strong signal at the output of the SIS detector at Vg =
0.158 mV, which corresponds to a 77 GHz Josephson oscillation. The level of
this strong signal is comparable to the largest signal obtained in the voltage
range from 2.100 mV to 2.650 mV using quasiparticle direct detection. This
detection is a result of a Josephson homodyne detection in a self-pumped
mode. In this mode, the Josephson current, which oscillates at wj/2n = 2eVy/h
= 77 GHz, which coincides with the resonant frequency of the microstrip stub
resonator, mixes with the RF signal at the same frequency and produces a dc
output. We found that the signal level at the output of the detector is a very
sensitive function of the dc bias voltage. At voltages below 0.150 mV and
above 0.170 mV, the signal level decreases to essentially the level of the
broadband noise. A similar detection mode was reported by Richards and

Sterling®, in which the Josephson detector exhibited a very narrow frequency
response at the resonant frequency of a cavity. The interferogram obtained in
this detection mode is very similar to those obtained using quasiparticle direct
detection. The peak frequency of the resonance is the same as the Josephson
oscillation frequency, 77 GHz. We would like to point out that at this low bias
voltage, the curvature of Ixk(V) is almost zero, as can be seen from Fig. 3.1(b).
So the quantum susceptance is negligible compared to that of the embedding
structures. In addition, the susceptance of the Josephson sin¢ term is
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negligible at this low RF power level.2” Therefore, the measured resonant
frequency should be the resonant frequency of the microstrip stub and the
junction capacitance. The coincidence of this measured resonant frequency
and the calculated one without including the quantum susceptance (dashed
line in Fig. 3.6(a)) is an additional verification of the values of the junction
capacitance C and the phase velocity v which are used in our calculations.

In Fig. 3.6(b), we plot the 3—-dB linewidths Af of the resonance peaks as a
function of the dc bias voltage. The experimental value of Af were obtained
from the best fitted polynomials. The solid line is calculated using the same
apodization function used in the experiment. Again, the agreement between
experiment and theory is excellent. This comparison provides an additional
verification of the values of C and v in our calculations. The sharp increase of
Af at 2.450 mV corresponds to the sharp increase of the quantum conductance
Ggq at one photon voltage Hiw/e below the gap voltage Vg. Note from Fig.
3.1(d) that the quantum susceptance has the largest capacitive value at this
voltage, Vg - fiw/e, so the resonant frequency is the lowest as shown in Fig.
3.6(a). There is some disagreement between the theoretical and experimental
values of Af at Vo = 2.45 mV. This discrepancy arises because the quantum
conductance Gq depends on the I-V curve around V, + Rw/e which, at Vg =
2.45 mV, lies just above the sum gap voltage. Our junction exhibits a negative

resistance in this region due to the proximity effect>®. This is not correctly
measured by our I-V curve measurement system.

3.5 Discussion

Quantum mechanical tunneling wusually resuits in a non-
instantaneous current-voltage relation if the time scale of the modulation is
shorter than the lifetime of the quasiparticles involved. This non-
instantaneous current-voltage relation will consequently give rise to a
nondissipative reactive component as well as a dissipative, resistive
component in the tunneling current. Such a reactive component, which is
called the quantum susceptance, should exist in many types of tunneling
devices. In a special case in which the tunneling is elastic so the quasiparticles
emitted from one side of a junction reach the other side at the same energy
level, the high-frequency response function can be simply measured from
the dc I-V curve. SIS tunnel junctions with high quality tunnel barriers is an
example. Other devices, such as quantum well resonant tunneling devices in
which electrons tunnel through a double barrier quantum well, may also
exhibit similar behavior.

The effect of the quantum susceptance is usually complicated at low
frequencies because the experimentally acceptable signal/noise ratio requires
that the dimensionless RF voltage a=eV/fw>>1. In this limit multi-photon
processes dominate so the system is highly nonlinear. In a linear scheme in
which a<<1, the effect of the quantum susceptance can be predicted
analytically. However, a<<1 requires sufficiently high frequency so Vg, is
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large enough for an acceptable signal/noise ratio. We have obtained
definitive experimental evidence for the existence of the quantum
susceptance by studying the response of an SIS junction to a weak RF
radiation at millimeter wavelengths. We have measured the shift of the
resonant frequency of a resonator which contains an SIS junction. The
observed 19% shift, from 73 GHz to 87 GHz as the dc bias voltage is changed
from 2.40 mV to 2.65 mV, is due to the change of the quantum susceptance
with bias voltage. This is in excellent agreement with Werthamer-Tucker
theory and is a direct experimental evidence of the existence of the quantum
susceptance. Our result has therefore, for the first time, directly verified one
of the important aspects of this theory.
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Chapter 4
Analysis of Pumped I-V Curves

4.1 Introduction

When millimeter wave radiation is incident on an SIS tunnel
junction, a series of steps is observed on the dc I-V curve above and below
the current rise at the sum-gap. These steps correspond to the stimulated
emission or absorption of one or more photons during the tunneling process.
The I-V curve with radiation applied is commonly called the pumped I-V
curve. This chapter gives a detailed discussion of the influence of the source
admittance as seen by the junction (the embedding admittance) on the exact
shape of the pumped I-V curve. First we discuss the case when the junction
is pumped by a voltage source. This case is simple to analyze but
experimentally unrealistic. We then discuss the influence of the source
admittance on the magnitude of the pump voltage. Borrowing from the
discussion of junction admittance from the last chapter, we find that pump
voltage is dependent on the dc bias voltage. This causes the pumped I-V
curve to differ from that calculated using a RF voltage source. We then show
accurate fits to experimentally measured pumped I-V curves obtained by
using the embedding admittance as a free parameter. We then discuss this
theoretical fitting to the pumped I-V curve as a method of measuring the
embedding admittance under experimental conditions.

4.2 Photon Assisted Tunneling
The dc quasiparticle tunneling current pumped by a time-dependent
potential V(t) = Vcos(wt) is given by 33

o0

I(VoVe) = 2 JA@) Iy (Vo +nfiw/e) (4.1)

n = -co

where o = eV/1®, Jn(a) is the nth order Bessel function of the first kind, and
I3c(V) is the dc current that flows through the unpumped junction at dc bias
voltage V. This expression assumes that all higher harmonics of the ac
waveform are shorted. We assume that this is the case throughout this
chapter. This assumption is identical to the 3-port approximation used to
evaluate mixer performance in later chapters. The approximation is valid for
all experimental results reported in this thesis due to the relatively large
geometrical capacitance of the junctions used in our work.

If the junction is pumped by an rf voltage source, calculation of the
pumped dc I-V curve can be accomplished by evaluating this expression
numerically at each dc bias voltage. The result of this calculation is shown in
Fig. 4.1 for a typical I-V curve. Note that this is different that the classical
method of calculating the pumped I-V curve in which the time-dependent
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voltage is applied to the dc I-V curve and the time-averaged current is
calculated. The classical analysis would not produce the steps seen in Fig. 4.1.
The quantum mechanical expression, Eq. 4.1 does reduce to the classical case

in the low-frequency limit.!

4.3 I-V Curve with Arbitrary Source Admittance

In a typical experiment, the junction is pumped by a source with a
non-zero, usually complex, output admittance. Tucker has extended the
theory of photon assisted tunneling to include the case of arbitrary source
admittance. Since the input admittance of the junction varies with bias
voltage, the pump voltage varies with bias voltage. This causes the pumped
dc I-V curve to differ from that calculated for the voltage pumped case. With
the correct source admittance, we can obtain photon assisted tunneling steps
with low or negative dynamic conductance. We will now explain the
appearance of this low or negative conductance using the Tucker theory.

As pointed out by Smith et al, the dynamic conductance can be divided
into two parts,ss' >6

Gdyr\ =

- 2, 04 (Vo + nfiw/e)
Z T,

(4.2)

do 9 %

v .a_an_z J2(@) Lge (Vo + nfiwo/e)
The first part is simply the dynamic conductance of the voltage pumped I-V
curve. This is almost always positive; it can only be negative near the gap
voltage for a junction with a pronounced proximity-effect-induced super-

gap structure.>* The second part is due to the change in pump voltage. The

partial derivative with respect to o is always positive below the sum-gap
voltage. In order for steps of negative dynamic conductance to occur, the

second term must be negative and larger than the first term, i.e. da./dV, must
be large and negative. We will show that this second term is primarily due to
the change in the imaginary part of the pump-frequency input admittance of
the junction with bias voltage.

In order to facilitate discussion, we use the equivalent circuit shown in
Fig. 4.2. The junction is assumed to be driven by a sinusoidal current source
I(t) = Iycos(wt) with output admittance Yemp = Gemb + iBemb. The source has
an available power Pay =142 / 8 Gemb - We consider the embedding
admittance to be the parallel combination of the admittance due to the local
environment of the junction (e.g. the junction mount, any tuning elements
present, output admittance of any antenna) and the susceptance due to the
geometrical capacitance of the junction. The junction admittance Yq = Gq +
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qu includes only the quantum admittance, i.e. that due to the quantum
mechanical tunneling process. To calculate the pumped I-V curve, we must
calculate Vg at each bias point. Since the quantum admittance of the
junction is dependent of the magnitude of the drive voltage, we must self-
consistently solve the equation

To| = VaYemb + VaYq(Vo, V) 4.3)

with Yq = Gq + iBq given by (from Eqs. 3.6 and 3.7)

Gq(Vo, Vo) =;JL 3 1) [rem(@ + Jom(@] Lac(Vo + nfiw/e) , (4.4a)
[O)]

Nn=-oc0

and

BaVoVa) =tk 2 1a(@ [nem(@ - Jom@] (Vo + nfiw/e) . (440

@

The quantum admittance used here is the arbitrary signal version of Egs. 3.8a
and 3.8b. In general, this equation must be solved numerically at each dc bias
point.

In order to gain some physical insight into the effects of the quantum
admittance on the pumped I-V curve, we first recall the small signal limit
discussed in the previous chapter. In this limit, Gq and Bq are independent of
V- They are plotted as a function of bias voltage in Figs. 3.1c and 3.1d In the

region between fiw/e below the sum-gap voltage and the sum-gap voltage
(where the first photon assisted tunneling step will appear in the large signal
limit), the quartum conductance is approximately constant. The quantum
susceptance, however, decreases rapidly with increasing bias voltage from a
relatively small positive (capacitive) value to a relatively large negative
(inductive) value. It is easy to see how this change in susceptance is
responsible for a variation of pump voltage with dc bias voltage. If Bg + Bemb
= 0, no current flows through the susceptive part of the circuit, which leads to
a large pump voltage. If |Bq + Bembl is large, current is shunted through the
susceptive part of the circuit, which leads to a small pump voltage. Note that
if Bemb is much greater than the variation in Bg, the change in Bq will have
little relative effect on |Bq + Bempl, and V¢ will cLe almost independent of dc
bias voltage. This means that a junction with a large geometrical capacitance
without any tuning elements will be close to being voltage pumped. For
most results in this work, the capacitance is resonated at the pump frequency
by an inductive tuning element, so |Bemb| less than or on the same order as Bg.

In the large signal limit, the situation become more complicated. The
currents at the pump frequency are no longer linearly related to the pump
voltage. To calculate the LO currents, the pump voltage must be calculated
numerically at each point, and then substituted into Eqs 3.6 and 3.7 to obtain

34




the pump currents. The results of such a calculation are shown in Fig 4.3.
Two different values of the embedding admittance are used to illustrate
general trends. Notice that the shapes of the junction conductance and
susceptance are similar to those calculated in the small signal limit. On any
photon assisted tunneling step, the conductance is fairly constant, but changes
rapidly between steps. The susceptance, however, changes rapidly on the first
sub-gap and the first super-gap steps. Now we will focus our attention on
the first sub-gap step, and explain the effects of the embedding admittance on
the dynamic conductance of that step.

In the capacitive case (Yemb = GN + i2GN, where GN is the normal
conductance of the junction), |Bq + Bembl is large at the lower end of the step,
and approaches zero at the upper end of the step. This causes the reduced
pump voltage to increase across this step. Thus da/dV is positive, leading to
a large dynamic conductance.

In the inductive case, |Bq + Bembl is finite but small at the lower end of
the step, and increases to a iarge value at the upper end of the step, causing o

to decrease across the step. In this case, da/dV is negative and large enough
to cause the second term in Eq. 4.2 to dominate the first, and the dynamic
conductance on the first step is negative.

Calculations were also carried out using the same dc I-V curve, but
ignoring the out-of-phase currents which flow in the junction. Negative
dynamic ccnductance was observed on the calculated pumped dc I-V curves
only when the real part of the embedding admittance was unreasonably low (
< 0.001 Q-1). The negative conductance only appeared at the extreme low
voltage end of the first sub-gap step, in a region actually between the first and
second sub-gap steps. We have never experimentally observed negative
conductance in this region.

We therefore conclude that the quantum susceptance in necessary for
the production of photon-assisted tunneling steps with low or negative
dynamic conductance, at least for the moderate quality junction used in this
part of the study. In higher quality junctions with a sharper current rise at the
sum-gap voltage, the quantum susceptance is probably even more important
because the magnitude of the cusp in the Kramers-Kronig transform of the
dc I-V curve would be larger, leading to a larger swing in the quantum
susceptance across a step.

4.4 Fitting of Experimental Pumped I-V Curves

Since the pumped I-V curve depends on the embedding admittance at
the pump frequency, it should be possible to infer the embedding admittance
under actual experimental conditions by fitting to measured pumped I-V
curves using embedding admittance as a free parameter. There are several
methods that can be used. In practice, these methods can only be used when
harmonic response is assumed to be shunted (usually by the geometrical
capacitance of the junction). All of these methods assume an embedding
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admittance and an available pump power, then calculate the pumped I-V
curve based on these parameters, and then compare the shape of the
calculated and measured pumped I-V curves. We outline the variations
below. These methods are similar to the method of circles developed by

Shen®” for determining the embedding admittance.

4.4.1 "Eyeball" Method

The first method is the so-called "eyeball" technique. In this method,
pumped I-V curves are computed for various values of embedding
admittance, and after optimizing the available pump power, the shapes of the
measured and theoretical are compared by eye. This method is at best tedious
and non-quantitative.

4.4.2 Computerized Current Match

This method is essentially an automated version of the eyeball
technique. Here an admittance is assumed, the available pump power is
optimized. Then the sum of the squared differences between the
experimental and calculated pumped dc current is calculated for a number of
representative bias voltages. The computer can be used to step through a
range of admittances to find the best fit. The disadvantage of this method is
that a large amount of computer time is required because a Fourier-Bessel
series must be inverted for each admittance-bias point.

4.4.3 Computerized Voltage Match

The voltage match method®®is a more efficient approach. In this
method, the experimental pumped IV curve and the measured unpumped
IV curve are used to compute the values Vi of the pump voltage at several
(~10) dc voltages at which the curves are to be compared. This pump voltage
is used to the compute the input admitiance Yk of the junction at the pump
frequency at each of the dc voltages. For a given value of the embedding
admittance Yemp we can calculate a new value for each of the pump voltages
using the above input admittances,

Vi = Ly (4.5)
Kk=—0——7— .

Yemb + Yk
The optimum values of the embedding admittance and the pump drive

current I o are those that minimize the mean square deviation € between the
Vi's and the Vk''s,

€= (V- |Vi|]P =X VE +2 |V~ 22X VidVi] =
k k k k
(4.6)
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By differentiating this expression with respect to I, we obtain the optimum
value for I, given by

2
K | Yemb + Yl
o| = 47)
2 1
k| Yemb + Yif
Substituting this into the expression for € we obtain
2
Yemb + Yk
k
e =D, VE- 4.8)
k 1
| Yemp + Yk

Here € can now be regarded as a parameter quantifying the quality of the fit

between the experimental and theoretical pumped I-V curves for a given
embedding admittance.

4.4.4 Automated Fitting

To illustrate the fitting process, we plot contour maps of the fit quality €
as a function of position on a Smith chart. An example of such a map is
shown in Fig. 4.4 In general, when € is less than 5 x 10-4 (mV)2, the
simulated pumped I-V curves are visuaily indistinguishable from each other
and fit the experimental pumped IV curves very well.

4.4.5 Fit Quality

An example of a typical fit is shown in Fig. 4.5. To our knowledge,
these are the highest quality fits to pumped I-V curves yet obtained. Over the
past several years, we have used this procedure to fit hundreds of pumped I-
V curves of various SIS junctions. In general we have found that the more
closely the dc I~V curve of a given junction resembles that predicted by elastic
tunneling theory, the higher the quality the fit obtained. Specifically,
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junctions with substantial leakage currents yield poor fits. Also, junctions
whose I-V curves exhibit substantial proximity-effect induced structures
immediaiely above the current rise at the sum-gap yield poor quality fits
above the sum-gap. Typically, in such junctions, there is a region of negative
dynamic conductance, and the measured dc I-V curve does not accurately
represent the density of quasiparticle states near the gap because of
instabilities in the bias circuit when driving this negative dynamic
conductance. We have also fitted pumped I-V curves of series arrays of 5

nominally identical junctions. It has been argued? that such arrays can be
treated as a single junction if the measured voltage and current are scaled
down by a factor of five. We have found that the fits of pumped I-V curves
using such a scaling procedure are of relatively poor quality, even when the
junctions in the array have nearly identical critical currents.

4.4.6 Comparison with Results from a Scaled Model

To check the validity of the I-V curve fitting technique, we can
compare the deduced embedding admittances to those obtained from a scaled
model. These measurements were done using the waveguide-based mixer
test apparatus to be discussed in chapter 5. The mixer block has a single
adjustable tuning element, and non-contacting backsiorts. We have also
constructed an accurate scaled model of this mixer block which allows us to
measure the embedding impedance at a scaled frequency range of 6-8 GHz.
Because of experimental difficulties in our apparatus, it was difficult to relate
the position of the backshort in the scaled model to the position of the
backshort in the actual experiment.  So, instead of comparing the deduced
and measured embedding admittances for specific backshort position, we
compare the range of embedding admittances accessible by moving the
backshort while holding the LO frequency fixed. To do this, we measured a
set of I-V curves pumped at 93 GHz, each with the backshort position
stepped 0.0165mm farther away from the junction, starting at approximately
1.15mm away from the junction. The range of admittances consistent with
each I-V curve was deduced using the voltage match method. For each I-V
curve, this range can be represented on the Smith chart as a roughly oval
shaped region. These regions, along with the range of admittance measured

from the scaled model® at the scaled frequency, are shown in Fig. 4.6.

The deduced admittances are in good qualitative agreement with those
measured from the scaled model. The deduced admittances lie on an oval
with a larger radius than the circular range measured from the scaled model.
This could be caused by inaccurate scaling, or by differences in the surface
impedance between the scaled model and the mixer block at the measured
frequencies. It should be noted that I-V curves were measured only for a
small range of backshort positions. For most positions the admittance lies
between region (a) and region (k). The pattern is qualitatively repeated with
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period ~ 1.5mm, which is approximately 1/2 the guide-wavelength at 93
GHz.

The successful comparison between admittances measured from a
scaled model and those deduced from pumped I-V curves gives us
confidence to apply the I-V curve method to the modeling of mixer
performance. This will be discussed in chapter 5.

45 Conclusion

We have studied the effect of the quantum susceptance in the large
signal limit by studying the photon-assisted-tunneling steps with negative
conductance. This negative conductance is due to the larger RF drive voltage
caused by the capacitive quantum susceptance at lower bias voltage. The
agreement between the I-V curves calculated including the quantum
susceptance and the experimental ones is essentially perfect. This resuit
provides an effective way to identify whether the imbedding admittance is
inductive or capacitive by observing the slope of the photon-assisted-
tunneling steps. This method has proved to be very useful in searching the
optimum frequencies for SIS mixers coupled to tuning elements.
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Chapter 5
Waveguide Mixer Results Using Tantalum Tunnel Junctions
5.1 Introduction
Heterodyne receivers which use the nonlinear response of SIS tunnel
junctions have been shown to provide the lowest noise over a broad range of

the millimeter and sub-millimeter electromagnetic spectrum.z' 4 However,
even the best of the receivers have fallen short of the performance which is

predicted by the theory of quantum mixing.!’? Because of the lack of detailed
comparisons between experimental and theoretical performance, it has been
unclear whether the discrepancy between measured and predicted
performance is due to difficulties in coupling the signal to the mixer, or
problems with the theory.

Several authors have made quantitative comparisons of SIS mixer

performance with theory. Feldman et al.? obtained good agreement with
theoretical predictions of mixer gain at 115 GHz using embedding admittances
measured from a scaled model. However, they were not able to measure

mixer noise accurately enough for a comparison with theory. McGrath et a].o1
made an extensive comparison between theory and experiment near 36 GHz.
They concluded that the theory overestimates the gain, and underestimated
the noise by a significant amount. They did not measure the embedding
admittances involved in the actual experiment, and therefore could only
compare experimental performance with that predicted with the embedding
admittance optimized for best performance. The ranges of allowable
embedding admittance for their work were determined from a scaled model.
In this chapter and more briefly in the letter and paper that preceded

we carry out a detailed analysis of the performance of high quality, small
area (1.0 x 1.0 micron) Ta/Ta2Os5/PbBi tunnel junctions used as quasiparticle
mixers near 90 GHz. We compare theoretical and experimental pumped I-V
curves to deduce accurate embedding admittances under experimental
conditions, and use these admittances to predict both mixer noise and mixer
gain. These predictions are then compared with experimentally measured
values.

This chapter is organized as follows. In sections 5.2, 5.3, and 54, we
discuss, respectively, the RF, IF and dc measurement apparatus. In section 5.5
we give a description of the tunnel junctions used. In section 5.6 we discuss
the measurement scheme. In section 5.7, we show our mixing results, and in
5.8, we compare these results with the theoretical predictions of the Tucker
theory.

52  RF Measurement Apparatus
A block diagram of the RF apparatus is shown in Fig. 5.1. The local

oscillator is a tunable Gunn effect oscillator®® . The oscillator provided ~20
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mW of RF power over a tuning range of 78-115 GHz. For monitoring
purposes, a switch could be used to redirect the RF power to a thermistor
based power meter or to a digital frequency counter. The RF power enters the
dewar by way of a stainless steel waveguide and is coupled to the mixer block
through a 23-dB crossed-guide coupler. Both the loss in the 80 cm stainless
steel waveguide and the 23-db coupling value of the coupler serve to reduce
the amount of room temperature radiation incident on the mixer.

In order to make precise measurements of mixer performance, a
calibrated signal must be coupled to the mixer. To do this, we terminate the
straight-through arm of the coupler with a specially designed variable

temperature RF waveguide load®? which provides a calibrated blackbody
signal with a spectral density that depends on its temperature. A diagram of
this variable temperature load is shown in Fig. 5.2. The load is made from a
250 pum thick silicon vane inserted through a narrow slot in the broad wall of
silver WR-10 waveguide. The vane was made from a standard 2 inch silicon
wafer. The gradual taper of the secion in the waveguide minimized
reflection. A nichrome film was evaporated on one face of the vane to
provide an absorbing surface. The emissivity was inferred from VSWR
measurements to be very close to unity (~0.999).

The temperature of the load is measured using a germanium resistance
thermometer, and the load can be heated using a 500 Q metal film resistor.
The load is thermally isolated from the bath by thin-walled fiberglass tubes.
The time constant was set to be ~ 5 seconds by choosing the length and
diameter of the copper wire thermal link to the helium bath. The internal
time constant of the vane is estimated to be less than 1 second at cryogenic
temperatures due to the low heat capacity of silicon. ‘

The resistance of the thermometer is read out using a four-wire ac
bridge method to avoid errors due to lead resistance and thermal emf's. The
thermometer was isolated from external heat sources by using 125 pm
diameter manganin wires which were well heat sunk at the bath
temperature.

The load is connected to the mixer block by the following lossy
components: a 76 mm length of silver waveguide, a 25 um thick mylar
window epoxied between two waveguide flanges, a 23 dB crossed-guide
coupler, and a 25 mm length of silver waveguide. Together these cause an
input loss of 0.5 £ 0.2 db at 1.3 K.

A diagram of the mixer block is shown in Fig. 5.3. The mixer block is
made of OFHC copper. Each half of the split block contains one half of a WR-
10 waveguide channel. A channel-waveguide transformer reduces the
waveguide height by a factor of four. A non-contacting A/4 backshort serves
as an adjustable tuning element. The SIS tunnel junction, along with an
integrated RF band-reject filter pattern is deposited on a 0.9 mm x 12.5 mm
fused quartz substrate which is 0.15 mm thick. The substrate is placed across
the waveguide in a smaller channel forming a suspended stripline circuit
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outside the waveguide. One side of this stripline circuit is connected to the
center conductor of an SMA connector, to provide coupling to the IF
amplification system.

53  IF Measurement Apparatus

The IF measurement apparatus must be able to accurately measure the
power coupled out of the mixer at the IF frequency, as well as the power
reflection coefficient off the mixer at the IF frequency. A diagram of the IF
measurement system is show in Fig. 5.4. The IF power from the mixer is
coupled to a liquid Helium temperature GaAs high electron mobility
transistor (HEMT) amplifier through a quarter-wave microstrip matching
transformer, and a cooled L-band isolator. The noise temperature of the
HEMT is measured to be 5-6 K between 1.2 and 1.6 GHz. The output of the
HEMT amplifier is coupled out of the Dewar using stainless steel coaxial cable
and is further amplified by room temperature amplifiers. Also at room
temperature is a tunable bandpass filter with a bandwidth of 50 MHz used to
define the IF bandwidth and center frequency. The amplified signal can be
evaluated using a precision power meter, a spectrum analyser, or a crystal
detector. A 20-dB bidirectional coupler is used to inject monochromatic test
signals in order to measure the reflection coefficient |pJ2 for the IF power.

By switching a coaxial switch, the input of the IF system can be
connected to a variable-temperature coaxial matched load. This load is
similar in function to the RF waveguide discussed above, and is used to
provide a blackbody signal to calibrate the performance of the IF system.

54  dc Measurement Apparatus

The dc bias is coupled to the junction through a bias tee incorporated
into the IF frequency matching circuit. The bias is provided by a battery
powered source with an output impedance (load line) that can be varied from
10Q2 to 10kQ. The voltage across the junction and across a monitor resistor in
series with the junction (used to measure the bias current) are measured
using low-noise instrumentation amplifiers. The bias current can either be
held constant, or swept to provide an I-V curve on an oscilloscope or chart
recorder. The I-V curve can also be measured using two computer controlled
digital voltmeters to provide an accurate digitized I-V curve for theoretical
modeling of mixer performance. This dc measurement system was also used
for the measurements discussed in chapters 3 and 4.

5.5 Tantalum Junctions

In order to test quantum mixer theory we require the highest quality
tunnel junctions possible. To reduce the nois.: we require low subgap leakage
currents, and in order to see strong quantum effects, we require a sharp
current rise at the sum gap voltage. Both of these criteria are met by

Ta/TaOs/PbBi junctions fabricated at Yale University.63' 64 The TapOs tunnel
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barrier used in these junctions is of extremely high quality because Ta does
not form stable suboxides which would degrade barrier quality.

5.5.1 Fabrication
The Ta/Taz0s5/PbBi junctions used for this experiment are small area

(1.0 x 1.0 um2).%% A 3000A thick Ge film is thermally evaporated on the 150
um-thick quartz substrate. 100A of Nb and 3000A of Ta are then ion-beam
sputtered and patterned by liftoff. The thin Nb layer nucleates the bcc phase
of the Ta base electrode. A chlorobenzene-soak resist process produces a 1
(um)?2 resist "dot" with an undercut profile necessary for lift-off. 3000A of
SiO is then thermally evaporated: lift-off of the resist "dot" defines the
junction window in the SiO film. After patterning the counter-electrode
lift-off stencil, the junction is ion-beam cleaned. The exposed Ta is then
oxidized by a dc glow discharge in Apure Oy to produce the TaOs5 tunnel
barrier. Thermal evaporation of 3000A of Pbg ¢Big.1 and 150A of In completes
the tunnel junction. The base electrode ion-beam cleaning, oxidation, and
thermal evaporation of the counter-electrode are completed in-situ in order
to produce a high quality tunnel barrier. The device is completed by lift-off
of the counter electrode. All fabrication of tantalum junctions was performed
at Yale University by A. H. Worsham.

5.5.2 I-V curves

The majority of the experiments reported here were carried out on a
single SIS junction. This junction had a normal resistance of 72Q at 1.3 K.
Both the normal resistance and the shape of the I-V curve remained constant
over a period of six months even though for much of that time the junction
was stored at room temperature in a desiccator. This durability is in contrast
to the behavior of earlier tantalum junctions and is attributed to the 150A

overlayer of indium deposited on top of the counter-electrode.®*

The I-V curve of the tantalum junction used in this experiment
showed an extremely sharp current rise at the sum-gap voltage as well as
extremely low sub-gap leakage current. The voltage width AV over which
the sum-gap current step rises from 0.1 to 0.9 of its full value is less than 0.01
mV. The leakage current at 0.8 Vggp is less than 0.05 .. The dc I-V curve of
the junction is shown in Fig. 5.5.

5.5.3 Dependence of I-V curves on Magnetic field

The quasiparticle branches of the dc I-V curves of these junctions
depended on applied magnetic field and on the amount of magnetic flux
trapped in the junction. When no magnetic field was applied, and for some
amount of trapped flux, the current rise at the sum-gap voltage was
extremely sharp, and in some cases exhibited negative dynamic conductance.
For different amounts of trapped flux, as evidenced by a lower value of the
critical current, the sum-gap current rise was not so sharp, and the leakage
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current increased by as much as a factor of two. Two different I-V curves for
the same junctior. at the same temperature are shown in Fig 5.5. Both I-V
curves were measured with zero applied field.

For the comparison between measured and calculated mixer
performance discussed later in this paper, it was important that the dc I-V
curve remain constant throughout the experiment. We found that certain
operations (such as switching the electrically controlled coaxial switch) sent
transients to the junction which caused the amount of flux trapped in the
junction to change. We found that we could regain the original I-V curve by
repeatedly switching the coaxial switch, presumably reproducing the original
value of the trapped flux..

When an external magnetic field of moderate strength was applied
parallel to the plane of the junction, the dc I-V curve changed significantly.
I-V curves for the same junction at the same temperature but for several
different values of the applied magnetic field are shown in Fig. 5.6. Notice
that the dynamic conductance of the sum-gap current rise decreased with
increasing field, but without a significant rise in leakage current at bias
voltages less than 0.8 V,. This effect is due to a smearing of the density of
states as the applied field approaches the critical field of the superconducting
films.

56  Measurement Scheme
Accurate measurements of mixer noise and gain are required in order
to evaluate mixer performance . The technique used in this work, which

employed variable temperature loads, is described elsewhere. %% © We will
summarize the technique here. First we will discuss a simplified version of
the measurement scheme we use to measure the mixer performance.
Because all quantitative measurements were done using broadband blackbody
signals, we use spectral densities (measured in WHz-1 ) to characterize the
signal strength. With the local oscillator applied, the spectral density of the IF
output signal Spyt is

Sout = G;(Sr + Sin) . (5.1)
Here Sjp, is the spectral density of the input signal, S; is the spectral density of
the noise added by the receiver (i.e. the total noise added by the mixer and the
IF amplification system), and Gy is the gain of the receiver. In our case, the
input signal incident on the mixer is a single-mode blackbody signal
produced by the RF load at temperature T with

5 (Zﬁkci) . (5.2)

Sil’\ = —2—' coth

When Rw/2kT << 1, note that this reduces to Sin = kT, as expected in the
Rayleigh-Jeans limit for a single-mode source. The measurement scheme is
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as follows. First, we measure Spyt as we vary T. Then we plot Soyt as a
function of Sin, which we calculate from the measured values of T and Eq. 5.2.
The slope of the best linear fit to this plot is the receiver gain G, and the x-
intercept gives the negative of the spectral density of the noise added by the
receiver. If we switch the coaxial switch so that the IF amplification system is
connected to the variable temperature IF load, we can repeat the above
procedure to measure the gain Gir and noise spectral density Sir of the IF
system. We can rewrite eq. 5.1 in terms of the mixer and IF parameters,

Sout = GiF [SIF + Gm(sm + Sin)] p (5.3

Where Sy, is the spectral density of the noise added by the mixer, G, is the
gain of the mixer. Its easy to see that we can extract the mixer parameters as

G S
Gn =-2 , and Sy = S, -2E
™ Gir " " Gm . (5.4)

In this simple discussion we have neglected many sources of noise,
losses between the RF load and the mixer, and losses due to impedance
mismatches in the IF system. A more realistic analysis yields

Sout = GIF {SiF + p2SB + Gm(1-p2)[Sm + SLo + 0Sp + (1-0051n]}. (5.5)

where Gn, is the gain of the mixer, Sm, SLo, and Sp are the spectral densities of
the noise added by the mixer, room temperature noise leaking down the LO
waveguide, and the Helium bath respectively. Here a is the loss between the
rf load and the mixer, and pm is the magnitude of the IF reflection from the
mixer due to admittance mismatch. The term pm2Sp is due to blackbody
radiation emitted by the isolator reflecting off the mixer and then coupling to
the amplifier.

A mixer test proceeds as follows. First, the receiver performance is
measured as described above using the varaible temperature RF load. Then
the reflection coefficient from the mixer is measured by injecting coherent
signals through the test ports shown in Fig 54. When a signal is injected into
port one, it is coupled straight out through the isolator and IF amplifier.
When a signal is injected into port two, it travels first toward the mixer,
where it is reflected, and then couples through the isolator. The power of the
two signals is measured using a spectrum analyser, and the ratio between
them is the power reflection coefficient of the mixer pm2.

We then calculate mixer performance by solving Eq. 5.5 for Gm and Sm,

Gm = Sr
GiF (1 - przn)(l -a) and (5.6)
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2
Sm =(1—0L)S,-—SLO—[(1+ sz}sB_ > 2
1-pm Gm(l-pm) | (5.7)

In a typical experiment, four or five values of the rf load temperature were
chosen in the range from 1.3K to 20K and the output power measured for
each load temperature. A least squares linear fit to these points was used to
compute the mixer performance.

5.7 Mixer Optimization

Mixer performance is dependent on a large number of experimental
parameters. These include, but are not limited to, dc bias point, applied local
oscillator power, local oscillator frequency, IF frequency, backshort position,
temperature, and applied magnetic field. Before the mixer performance is
measured using the above procedure the appropriate parameters were
optimized to maximize the coupled gain G¢ = (1-pm2)Gm. This was typically
done by injecting a monochromatic signal through the LO waveguide at
either the upper or lower sideband and maximizing the output power P of
the IF system, which was monitored with a direct detector.

5.8 Mixer Performance

The coupled gain and mixer noise for our mixer are plotted as a
function of local oscillator frequency in Fig. 5.7. The backshort position and
available local oscillator power were optimized for each frequency. The
minimum mixer noise was found to be 0.61 +/- 0.36 quanta at 93.0 GHz. The
sideband ratio for this operating point was 9.8 dB, essentially making this a
single sideband (SSB) mixer. The mixer noise is within 25 percent of the
SSB quantum limit of 0.5 quanta. This is, to our knowledge, the closest
approach to the quantum limit ever demonstrated.

The coupled (transducer) gain was always measured to be less than
unity. Simulation has shown that DSB mixers with such sharp I-V curves
can give values of coupled gain much greater than unity. We attribute our
low gain to the small instantaneous bandwidth of our mixer mount at the RF
frequency. This matter will be discussed in more detail later in the thesis.

5.9 Comparison with Theory

In order to compare our experimental results with the Tucker theory,
we have carried out computer simulations of mixer performance. All
calculations were done using the three-port model that is, with currents
generated at the first and higher harmonics assumed to be short-circuited.
This is a reasonable assumption in our case because the relatively large
geometrical capacitance of the junction (C ~ 160 fF, oRNC = 14 at 190 GHz) of
the junction shunts currents at harmonic frequencies.
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The Tucker theory provides a method for predicting the high-
frequency properties of a quasiparticle mixer from the dc I-V curve, provided
that both the dc I-V curve and the rf performance are determined only by
elastic tunneling processes. Because the I-V curves of our junctions closely
resemble the I-V curves calculated from the BCS density of states and elastic
tunneling theory, we expect that the dc I-V curve is largely determined by
elastic tunneling events. Many other junctions exhibit sub-gap currents
substantially in excess of those predicted by the BCS/elastic tunneling theory.
These currents may not arise from elastic tunneling, and hence would not be
correctly modeled by the Tucker theory. If this is the case, our junctions
should be a favorable case for a quantitative test of the Tucker theory.

59.1 Determination of Embedding Admittances

To calculate mixer performance from the Tucker theory, we must
know the embedding admittance both at the upper sideband frequency, and at
the lower sideband frequency. These admittances can be determined in
several ways. First, numerical modeling of the embedding structures could be
carried out. While this may be possible in simpler situations, the complexity
of our mixer block would make this process tedious and unreliable. We have
instead used two other approaches. The first is to measure the admittance of
a large scaled model of our mixer block at lower frequencies (3 -10 GHz)
where accurate network analyzers are available. We have also determined
the embedding admittance by studying the shape of the pumped I-V curve at
various frequencies and backshort positions. Comparisons between these two
methods show good agreement. Because of the large amount of backlash
present in the backshort drive, it was impossible to determine the exact
admittance present under specific experimental conditions. We therefore
deduced the embedding admittance by studying the shapes of the pumped I-
V curves measured under experimental conditions.

It has long been known that the embedding admittance at the pump
frequency influences the shape of the pumped I-V curve. The nature of this
dependence was discussed in the chapter 4. Other workers have used the
shape of the pumped I-V curve to determine in general the range of

embedding admittance provided by their mixer mounts.? 60 67 This work
utilizes the shape of the pumped I-V curve to deduce the embedding
admittances present under actual experimental conditions which are needed
to accurately model mixer performance.

59.2 Simulation of Mixer Performance

We have calculated mixer performance using the Tucker theory in the
3-port approximation. We have not made the low IF approximation used by
some other authors. The input data are the dc I-V curve, the bias voltage, the
LO voltage amplitude VL, the RF embedding admittances Yysh and Ysp at the
upper and lower sideband frequencies respectively, and the IF load
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admittance Y[, We consider the susceptance due to the geometrical
junction capacitance to be part of the embedding admittance.

To predict mixer performance we must measure or deduce the above
input data under experimental conditions. The dc I-V curve and the bias
voltage are straightforward to measure. The LO voltage amplitude was
determined from the pumped dc current at the bias point using the Tucker
theory. The IF load admittance was assumed to be matched to the mixer IF
output admittance, yielding the available gain.

The RF embedding admittances were determined by pumping the
mixer first at th» upper sideband frequency, and then at the lower sideband
frequency, and measuring a pumped I-V curve for each case. Frcm these I-V
curves, we deduced a range of embedding admittances consistent with each of
these I-V curves. Ranges deduced using diiferent available pump power
were consistent. In general, the best defined ranges were obtained wher the
available pump power was such that the pumped dc current on the first
photon-assisted-tunneling step below the sum-gap was 1/4 to 1/3 of the
unpumped current immediately above the sum-gap. The admittances used
in this work were deduced from I-V curves measured under these
conditions.

The ranges of admittances deduced were used in the Tucker theory to
predict a range of mixer performance. This was done by exhaustively
sampling on a grid of admittance pairs consistent ( € £ 5.0 x 10-4 (mV)2.¢
defined as in Eq. 4.8) with the shape of the pumped I-V curves. The range of
performance we quote was obtained by plotting a histogram of calculated
available gain and mixer noise value, and noting the range into which 90
percent of the predicted values fell.

5.9.3 Results vs. pump power

As a first test of this procedure, we analyzed the results of a relatively
simple experiment. We measured mixer noise and available gain as a
function of LO power with all other parameters (i.e. LO frequency, backshort
position, dc bias point, IF frequency, magnetic field, and temperature) held
constant. This implies that the embedding admittances at the upper sideband
and at the lower sideband were constant during the experiment, and that
changes in mixer performance were due only to changes in the amplitude of
the LO voltage.

In Fig. 5.8, we plot the experimentally measured mixer noise and
available gain as a function of available pump power. The range of predicted
performance consistent with the I-V curve is indicated by the dashed lines in
Fig. 5.8. The experimental values are consistent with the predicted range of
performance, but are at the poor performance end of the range. This is

consistent with the conclusions reached by McGrath et al.®! For one specific
set of embedding admittances within the allowable range, we are able to
predict performance that is in nearly perfect agreement with the
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experimentally measured values. The comparison is represented by the solid
lines in Fig 5.8. These values of the embedding admittance are identical to
those used to produce the fits to the pumped I-V curves shown in Fig. 4.5.

594 Results vs. Backshort position

We have also modeled mixer performance as function of backshort
position. We measured mixer gain and noise for 13 different backshort
position with LO frequency, IF frequency, and applied magnetic field held
constant . The chosen positions were on either side of the optimum
backshort position. At each backshort position, the LO power and dc bias
point were optimized for maximum coupled gain.

The analysis of this experiment is slightly more complicated because
the embedding admittance changes with backshort position. For each
backshort position, we measured I-V curves pumped at the upper and lower
sideband frequencies and used these to deduce ranges of allowable embedding
admittances, which were used to model mixer performance. In Fig. 5.9 we
plot the experimentally measured mixer noise and available gain as a
functiont of backshort position. The range of predicted performance is
indicated by the dashed lines in Fig. 5.9. The experimental values are in good
agreement with the predicted range of performance for backshort positions
closer to the junction than 0.59mm. When the backshort is farther away, the
agreement is not as good.

The admittances deduced when the backshort is farther than 0.59 mm
from the junction are on the extreme outer edge of the Smith chart, where
either or both the real or imaginary parts of the embedding admittance is
much larger than the input admittance of the junction. Under these
conditions, the change of the input admittance of the junction with bias
voltage does not have a large effect on the LO voltage, and hence I-V curve
with  different embedding admittances are quite similar. However,
admittances that yield almost identical I-V curves have different values of
RF reflection coefficient, and hence different mixer performance.

As the embedding admittance moves radially outward near the edge of
the Smith chart, the power needed to ubtain a specific pumped dc current
increases rapidly. It is possible to eliminate some of the embedding
admittances that are consistent with I-V curve shape, but inconsistent with
the measured value of the LO power. Since the LO power is measured
outside the dewar, we must know the loss between the power meter and the
junction at the pump frequency. We were able to estimate this loss by using
the calculated pump power for the I-V curves measured when the backshort
is closer than 0.59mm to the junction. For these backshort positions, the
embedding admittance is nearer the center of the Smith chart and the pump
power varies only by a factor of two over the range of admittance consistent
with I-V curve shape.

We used this procedure to restrict the range of admittances when the
backshort is more than 0.59mm from the junction. In Fig. 5.10, we replot the
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experimentaily measured mixer noise and available gain. The range of
predicted performance calculated using the restricted range of admittances is
indicated by the dashed lines. The agreement between experiment and theory
is substantially improved over the range in which the corrected admittances
were used. It should be noted that the performance calculated using the
restricted range of admittance falls outside the range calculated using the
unrestricted admittances. This is because the values calculated using the
restricted admittances fell outside the 90 percent range used in Fig. 5.9.

5.9.5 Discussion

It is useful to consider effects that could cause discrepancies between
calculated and experimental mixer performance. It is possible that the Tucker
theory overestimates the performance when the dc I-V curve is used to
predict high-frequency behavior. This could occur if the dc I-V does not
accurately represent the density of states. A very small negative dynamic
resistance observed on the sum-gap current rise indicates that the high
current density of our junctions heats the quasiparticles and sharpens the
current rise at the sum-gap voltage. The time scale of this effect is much
longer than one cycle of the local oscillator, so that the high-frequency
response is not exactly determined by the dc I-V curve. A second possibility
is that the leakage current below the sum-gap does not arise from tunneling,
and so is not correctly modeled by the Tucker theory. If this effect were
important it could explain our relative success because the effect would be
minimized in low-leakage junctions. It is possible that the determination of
embedding admittance using pumped I-V curves gives incorrect results,
either due to non-equilibrium phenomena, leakage currents, or other effects.
We consider this unlikely because of the good agreement between the
admittances deduced by the fitting procedure and those measured using a
scaled model,59 or theoretical expectaticms.8

It is also possibie that harmonic effects are important for some
backshort positions. This is unlikely to be the case for the first experiment
where performance was measured as a function of pump power. In this
experiment, the junction capacitance was nearly resonated at the LO
frequency. Under these conditions, the amplitude of the RF voltage at the
first harmonic of the pump frequency is ~100 times smaller than that at the
pump frequency for typical pump power, and the assumptions of the three-
port model should be very well justified. For the second experiment, where
the backshort position is varied, the embedding admittance was highly
capacitive at the pump frequency when the backshort was farther than
0.59mm from the junction. Under these conditions, voltages at the first
harmonic of the pump frequency could arise either from harmonic
conversion in the m’ cer itself, or from harmonic content in the waveform of
the local oscillator. The pump power needed at these backshort positions is
up to 100 times larger than when the mixer is optimized, thus there is up to
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100 times more power at the first harmonic frequency. It is possible that the
3-port model is no longer valid under these conditions.

We now turn the discussion to the relatively low values (less than
unity) of coupled gain that we measured. Simulations have shown that
junctions similar to ours can give large values of coupled gain if provided
with the correct embedding admittances. The small instantaneous bandwidth
of our mixer block limits our ability to simultaneously provide favorable
embedding admittances at both the upper and lower side band. Simulation
has shown that as the difference between the imaginary parts of the upper
and lower side band embedding admittance increases, the coupled gain
decreases for typical mixer parameters. Coupled gain much greater than unity

was measured in a full-height version of the mixer block used in this work.8
The junction used in that experiment used an integrated tuning element to
resonate the geometrical capacitance of the junction which greatly increased
the instantaneous bandwidth, making the mixer almost double-sideband.

We have accurately measured the performance of an SIS mixer
operating in the quantum limit where the noise is limited by the uncertainty
principle. Our minimum mixer noise is a maximum of 0.42 quanta above
the quantum limit for a phase-preserving linear amplifier. This is, to our
knowledge, the closest approach to the quantum limit measured in any
mixer. We have calculated pumped I-V curves in nearly perfect agreement
with those measured in the experiment for a broad range of experimental
parameters. Using admittances deduced from the fitting parameters and the
Tucker theory of quantum mixing, we have predicted mixer performance in
good agreement with that measured experimentally.

(6]
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Chapter 6
Measurements of Quasioptically Coupled SIS Mixers
6.1 Introduction
One of the major goals in the development of SIS mixers is to increase
the frequency at which they can be operated with useful sensitivity. Tucker's
theory predicts sensitive operation up to frequencies near the sum-gap

frequency (o ~ 2A/ 1% 79, about 600 GHz for mixers using all Nb junctions.
Above ~300 GHz, the sensitivity of existing receivers falls well short of that
predicted by theory. At least part of this low sensitivity is due the difficulty of
coupling the signal to the mixer at submillimeter frequencies.

SIS mixers operated at millimeter-wave frequencies can be coupled to
the incoming radiation using waveguide-based coupling schemes. Such a
scheme was used successfully in the work discussed in the previous chapter.
As the operating frequency is increased into the submillimeter band, in
becomes increasingly difficult to fabricate waveguide structures with
sufficient accuracy using conventional techniques. The smaller waveguide
dimensions also makes it necessary to fabricate the mixer junctions on
thinner substrates to prevent excessive dielectric loading of the waveguide.
These thin substrates (~20 um at 500 GHz) are difficult to handle and mount
with sufficient accuracy. Although waveguide-based mixers have been

successfully operated up to 345 GHz’!, this is probably near the limit of
conventionally-fabricated waveguide mixers. There are two possible
solutions to this problem. One is to fabricate waveguide structures using

micromachining techniques with integrated mixer junctions.72 The other is
to couple the radiation to the mixer using a quasioptical coupling scheme.

In a quasioptical scheme, optical components such as lenses and
mirrors are used to focus the radiation onto an antenna which then couples
the radiation to the mixer. A planar antenna can easily be fabricated using
microlithography techniques to the accuracy required for sub-millimeter
operation. SIS receivers using planar lithographed antennas and quasioptical
coupling schemes have shown good performance at millimeter and
submillimeter wavelengths.73’75

Another of the major problems encountered at near-millimeter and
sub-millimeter wavelengths is capacitive roll-off, which can significantly
degrade the coupling of the RF signal to the mixer. It may be possible to use
high current density (jc 2 10 kA/cm2 ) small area ( <1 pm?) iunctions so that
the capacitance does not play a dominant role in the RF coupling. Such
junctions are extremely difficult to fabricate. Also, mixers with extremely
small capacitance are prone to complication by harmonic mixing, since the
higher harmonics are not shunted by the junction capacitance. These

harmonic effects are thought to degrade mixer performance®. The highest
performance millimeter wave mixers built to date have capacitances such

52



that @RNC ~ 4-8, and use tuning elements to resonate the capacitance at the
operating frequency. In a waveguide-mounted mixer, the capacitance can be
resonated at the signal frequency using adjustable tuning elements such as
backshorts or screw tuners. For quasioptical receivers such adjustable tuning
elements are not available or poorly understood. However, it is possible to
fabricate lithographed inductive tuning elements which resonate the
capacitance at the signal frequency.

In this chapter we discuss development we have done on quasioptical
coupling to submillimeter mixers. This chapter is organized as follows: First
we discuss the mixer test apparatus we used, including the quasioptical
elements and planar antennas. Then we motivate the use of tuning elements
to resonate the junction capacitance. We then discuss the use of a Fourier
transform spectrometer to rapidly evalute the performance of tuning
elements. We then discuss the design and measured performance of each
type of tuning structure sequentially. Since the performance of the mixers
discussed in this chapter is so far from the quantum limit, we report the noise
added by the mixer by citing the noise temperature of the mixer.

6.2 Mixer Test Apparatus

The mixer test apparatus shown in Fig. 6.1, allows us to measure the
coupled gain and added noise of the mixer under test. The measurement
scheme is similar to that discussed in sections 5.2-5.4. The main difference is
that the RF black-body source is outside the cryostat. The RF black-body is

either a piece of millimeter-wave absorbing foam’® immersed in liquid
nitrogen (77K) or an identical piece of foam at room temperature (~300K).
We note the output of the IF amplifier when each of these loads is placed at
the input of the mixer test system, and from this deduce the gain and added
noise of the test system as a whole. As in chapter 5, we must account for the
contribution to these parameters from the IF amplification system in order to
determine the performance of the mixer.

Returning our attention to Fig. 6.1, the local oscillator is either a Gunn
effect oscillator (near 90 GHz), or a Gunn oscillator pumped reverse-biased-
Schottky varactor multiplier (at 180, 270 and 360 GHz). The local oscillator is
coupled to free space using a horn antenna and lens combination which
provides a parallel beam. The local oscillator and the signal are combined
using a 0.075 mm-thick mylar beamsplitter, which has a transmittance of 0.97
at 90 GHz for the polarization of interest. The combined LO and signal are
focused by a 10 cm-diameter, f/1 off axis paraboloid onto the window of the
cryostat. The vacuum window of the cryostat is a 16 mm-diameter 0.02 mm-
thick polypropylene film. The window is curved by the external air pressure
which reduces Fabry-Perot resonances. A 12.7 mm-diameter 0.83 mm-thick
fused quartz window with a 100 um-thick black-poly film is attached to the
77K heat shield. This window absorbs most of the radiation above the mid-
infrared range (to reduce radiation loading of the LHe temperature cold plate
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of the cryostat) yet has almost 100% transmission at small multiples of 90
GHz. Inside the cryostat the LO and signal are further focused by an on-axis
ellipsoidal mirror onto a hemispherical quartz lens. The quartz lens provides
good thermal contact between the LHe temperature cold plate and the
junction. It also provides a dielectric half-space through which the antenna
couples most efficiently to the input radiation. The planar antenna and
mixer junction are iocated on the flat side of the hemispherical lens.

The on axis configuration of the ellipsoidal mirror suffers from center
obscuration by the mixer mount, so we later changed to a simpler
configuration using a hyperhemispherical quartz lens followed by a second
TPX lens which couples efficiently to a parallel beam at the dewar window.
To accommodate this beam, the dewar window was enlarged to 31.5 mm and
the off axis paraboloid was eliminated from the system.

We have used several planar antennas in our work. We first used a
90° bowtie antenna. The antenna pattern of this antenna suffers from large
sidelobes at 60° from normal and thus would not couple well to the nearly
gaussian beam emitted by a millimeter-wave radio telescope. We have also
used the circular-tooth log-periodic antenna shown in Fig. 6.2a. Both the
bow angle and the tooth angle are 45°, and ratio of the linear dimension of
the adjacent teeth is 2. The choice of angle and ratio is a compromise between
beam pattern and cross polarization. This antenna is designed to be operated
between 20 GHz and 1 THz. The beam pattern of this antenna is nearly
gaussian. One disadvantage of this antenna is that the polarization coupled
to the antenna is frequency dependent. We have also used a two-arm log-
spiral antenna, shown in Fig 6.2b. The antenna pattern of this antenna is
nearly gaussian and frequency independent. The radiation coupled to a log-
spiral antenna is circularly polarized.

All of the antennas used have a self-complementary structure, i.e. the
pattern of the metallized part of the substrate is the same as the pattern of the
unmetalized part. It has been shown that antennas with this property have a
frequency-indepedent admittance which depends on the dielectric constant

of the dielectric half space on which it is mounted.”” For quartz substrates
with ¢, = 3.83, the antenna admittance is 0.083 Q-1. Because the antenna
admittance does not depend of frequency, the task of designing tuning
elements is much simplified.

Care has been taken to ensure that the junction is well heat sunk to the
cold plate through the quartz hemisphere and its OFHC copper support. A
thin layer of vacuum grease was placed between the junction substrate and
the lens to increase the thermal contact. We measured the temperature at the
center of the antenna using a germanium resistance thermometer. For a 1.8K
bath temperature, it is 2.6K with the HEMT amplifier off and 2.8K with the
HEMT amplifier on.



The IF system is identical to that discussed in section 5.3. The overall
noise temperature of the IF system, including contributions due to the
isolator, is typically 6-7 K.

6.3 Integrated Tuning Elements

Before we discuss specific tuning schemes, it is useful to introduce a
simplified equivalent circuit and the RF coupling coefficient Crg. The
equivalent circuit we use is shown in Fig. 6.3. The RF input is represented by
an RF current source in parailel with the admittance of the antenna. The
junction capacitance, the inductance of the junction leads, and the admittance
of any tuning element are represented by C, L., and X. The non-linear
quasiparticle tunneling is approximated by the RF conductance Grr. In
reality, this conductance is a complicated function of dc bias voltage and
pump power. Under typical operating conditions (on the first photon step), it
is approximated by

Grr= 0.7 xGN (ﬁm/eVg) , (6.2)
where GN is the normal resistance of the junction, and Vg is the sum-gap
voltage. Note that we have ignored any effect of the quantum susceptance.
The quantum susceptance only shifts the resonant frequency by at most ~20%,
as seen in chapter 3.

In general, the conversion gain is a very complicated function of
imbedding admittance, dc bias point, and pump power. To a rough
approximation, the performance of the mixer is good (high gain, low noise)
when the RF coupling coefficient Crp is high, where

2

Ya-Yj _ (6.3)

YA+Yj

Here, YA is the admittance of the antenna, and Yj is the admittance of the
right side of Fig. 6.3. Cgrf is the ratio of the power available at the
ari.ennaterminals to the power absorbed by the quasiparticle conductance
Grr. (Note that susceptive elements which appear in parallel can be
considered to be part of the antenna (Ya) or part of the junction (Yj) without
changing CRF, as we expect physically. This is due to the complex conjugation
in the numerator of equation 6.3. The quantity that is mod-squared is not
the voltage reflection coefficient.)

All of the tuning element discussed below make use of microfabricated

superconducting microstrip transmission lines”®7%.  These transmission
lines have typical linewidths of 2-10 pm and inter-conductor spacings of 0.5
pum. Millimeter-wave transmission lines of this size made from normal
metal would be both lossy, due to the surface resistance of the copper, and
highly dispersive, due to either the normal or anomalous skin effect,
depending on the temperature of operation. Such properties limit their
usefulness in the high-Q resonant circuits needed to resonate the junction

Crrp=1 -
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capacitance. Superconductive transmission lines are expected to be nearly
lossless and dispersion free for millimeter-wave frequencies and thus should
be ideal for the fabrication of integrated tuning elements. Superconducting
transmission lines can become lossy, however, if the dielectric separating the
two superconductors is lossy, or if the superconducting films themselves are
of low quality and have excessive high frequency surface resistance.

The junctions used for the majority of the work reported here are 1.7 x
1.7 um Nb/NbOy/Pb-In-Au junctions. The capacitance of these junctions is
estimated to be 160 fF. The normal resistance is typically 50 - 200 Q. Without
tuning elements, the RF coupling coefficient (Crf) is very small, about 0.08 at
90 GHz, and correspondingly worse at higher frequencies. Tuning elements
are required for acceptable mixer performance. The normal resistance of
these junctions is such that good coupling can be achieved if the junction
capacitance can be resonated at the frequency of operation.

64  Tests of Tuning Elements Using a Fourier Tranform Spectrometer

One of the main problems encountered when designing mixers with
integrated tuning elements is that the parameters of the junction (such as the
normal resistance and capacitance) and of the microstrip transmission lines
(such as phase velocity) used are difficult to control precisely. Consequently it
is important to be able to measure the frequency response of the mixer
structures easily so we can reject those with undesirable frequency
characteristics. This often requires measurements over a broader range than
are convenient with millimeter and submillimeter wave oscillators. In this
section we describe a new method of rapidly measuring the frequency
response of quasioptical mixer structures over a frequency range from below
50 GHz to over 500 GHz. In this method we couple the output of a Fourier
transform spectrometer to the antenna and use the SIS junction as a direct
detector (or videodetector) of the coupled power. This is the same technique
we used to measure the quantum susceptance in Chapter 3.

The Fourier spectrometer takes the place of the sweep oscillator
conventionally used for frequency response tests at lower frequencies. This
direct spectroscopic technique has several advantages over the previously
used technique of the resonance induced Josephson steps (or Fiske

modes)’® 7980 The Fiske modes are well defined only for narrow RF
bandwidths and are hard to interpret to find bandwidth information. With
this new method, we can measure both the resonant frequency and the
bandwidth of the resonance.

The spectrum measured by the spectrometer is the product of the
frequency-dependent responsivity S(w) of the junction operated as a
videodetector, the RF coupling coefficient Crr, and the spectrum of the
radiation source of the spectrometer, which is modified by the frequency-
dependent beamsplitter efficiency n(w). Since we are measuring Crr, we need

56



to understand each of the other terms in order to account for their influence
on the measured spectrum.

6.4.1 The SIS Direct Detector
The current responsivity of a direct detector is defined as the induced
change in DC current per unit RF signal power absorbed :n the detecting

element. For an SIS junction it is given by2

Fo Ko
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For a typical SIS junction with a moderately rounded I-V curve, such as the
one shown in Fig 6.4a, S(w,V4c) peaks at about Hiw/e below the sum-gap
voltage. The position of this peak shifts away from the gap voltage as the
frequency is increased. If we fix the bias voltage at a fixed voltage V,, then S
will be a function of frequency. In Fig. 6.4b, we plot curves of S as a funtion of
frequency at several different bias voltages V, computed using equation 6.10
from the I-V curve shown in Fig 6.4a. We can see that the current
responsivity reaches its maximum at @p = e(Vg - Vo)h, and then falls as w-1

at high frequency. Above w, the responsivity is a relatively smooth function
of frequency.

6.4.2 Source Spectrum

The output of the Fourier transform spectrometer is black-body
radiation from a Hg-arc lamp. Only a single mode of this radiation is
coupled to the antenna so that, in the Rayleigh-Jeans limit, the spectrum is
flat. This flat spectrum is modified by the efficiency of the 250 pm mylar
beamsplitter. The beamsplitter efficiency is a smooth function of frequency as
shown in Fig 6.4d.

The dc current produced by the RF radiation is a product of the
responsivity S(w,V,), the RF coupling coefficient Crr, and the efficiency of the
beamsplitter. Since S is a function of dc bias voltage V,, we expect the relative
heights of resonances at different frequencies to vary as it is changed. For the
narrow fractional bandwidths that we typically measure, however, the
frequency dependence of Crr dominates that of S so the resonant frequencies
and bandwidths can be easily obtained.

For the experiments discussed in this section, we used a far-infrared
Fourier Michelson interferometer operated in the step-and-integrate mode.
Since the response speed of the SIS junciton is high, a rapid- scan Fourier
spectrometer could also be used. The high sensitivity of SIS direct detectors
permits data to be obtained at much lower frequencies than are usually
obtained using Fourier spectroscopy.
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Coupling from the spectrometer was accomplished by placing the
11mm diameter lightpipe, which provides the output of the spectrometer,
against the window of the cryostat. The beam diameter of the output beam
from the receiver is estimated to be ~12mm at this point, so the light pipe
beam is efficiently coupled to the receiver.

The junction voltage at the 17.7 Hz chopping frequency of the
spectrometer is lock-in detected and digitized for Fourier transformation.
Although the output impedance of the detector was typically 1kQ, so it was
not well matched to our FET preamplifier, the detected signal was typically
103 times the broadband noise in a 1 Hz bandwidth, so that adequate signal-
to-noise ratio could be obtained with integration times of 1-3 s. Performance
could be somewhat improved by using an impedance matching transformer.

6.5 Design and Measurement of Tuning Elements

In this section we discuss the design and measurement of each type of
tuning element we have designed. The first three types are inductive tuning
elements placed in parallel with the mixer junction. The junction is located
at the terminals of the planar antenna. The last type of tuning schemes use
microstrip impedance transformer. In this case, the junction is located some
fraction of a wavelength away from the antenna terminals on one of the
halves of the antenna.

6.5.1 3A/8 Stub (Open Ended Stub)

The first type of tuning element used is an open-ended
superconducting microstrip stub, as shown in Fig. 6.5. This stub is fabricated
in parallel with the SIS junction. The admittance of an open ended stub
constructed from lossless transmission line is given by

Y =Y, tan( B2), 6.5)

where B is w/v, £ is the length of the stub, Y, is the characteristic admittance
of the microstrip, ® is the frequency of the radiation, and v is the phase
velocity of signals on the stub at frequency w. For nA/2 + A/4 < £ <nA/2 +
A/2, where A is the wavelength of the radiation in the microstrip, and n is an
integer, this admittance is inductive, and can thus be used to resonate the
geometrical capacitance of the junction. The series inductance due to the
junction leads is so small that it can be neglected for both the open-ended
and shorted-end (section 6.5.2) stubs. The resonance condition is given by

woC + Yotan(wyl /v) =0, (6.6)

where C is the capacitance of the junction, and w, is the resonant frequency.
Note that there are an infinite number of resonances, though each successive
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resonance has a smaller bandwidth. The dimensions of the stub are chosen to
satisfy woC/ Y, = 1, which maximizes the bandwidth of the first resonance.

We fabricated mixer junctions with tuning circuits having resonant
frequencies of 90, 180, 270, and 360 GHz. Those are the frequencies at which
local oscillators were readily available. First we discuss the results at 90 GHz,
and then move to higher frequency. The microstrip stubs at all frequencies
are constructed from a Pb-In-Au film separated from a Nb groundplane by
300 nm of thermally evaporated SiO”°.

At 90 GHz, we use a 0.38mm-long stub with a characteristic admittance

of 0.1 Q1. vph was estimated to be 0.30c,”® and the junction capacitance C was
estimated to be 0.160 pF. In Fig. 6.6b, we plot the expected Crr calculated
assuming a lossless, dispersion free transmission line, and Ggrr = YA = 0.083
Q-1. The length and characteristic admittance of the line are chosen so that
the first resonance occurs at 110 GHz. The next two resonances occur at 244
and 387 GHz.

In Fig 6.6a, we plot the response of the junction and tuning circuit
measured using the Fourier transform spectrometer. The junction was biased
at 2.0 mV, which is ~0.9 mV below the sum-gap voltage. The spectrum was
measured with a resolution of 3 GHz. There are 3 distinctive peaks in the
spectrum at 110, 220 and 336 GHz. These peak values, except for 110 GHz,
these values differ from the expected resonant frequencies. By changing the
capacitance C and the phase velocity vph, we can shift the positions of the
peaks. However, we cannot obtain agreement for all three values for any
choice of C and vph. Also, the measured bandwidths of the high resonances
are larger than expected. These discrepancies suggest that the loss and
dispersion are not neglible at these frequencies. The admittance of

transmission line with small loss and dispersion is given by38

_ Yosin? [B(w) £]
B ol

Here a is the loss per unit length, and B(w) = w/vph(w) is the dispersive
propagation constant. If we assume the loss in the microstrip stub comes
mainly from the surface impedance of the superconductor, then the
frequency dependence of vph can be written in the form

Y

+ iYotan [B(w) 2] - (6.7)
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In Fig. 6.6c we replot the RF coupling coefficient CRrr for a stub that is
both lossy and dispersive. We chose a and a in Egs. 6.7 and 6.8 to give a good
fit to both resonant frequency and bandwidth for the three resonances. The
values of the parameters obtained are af/Y, is 1.0 Q-1, and a = 3.8 x 10-26
.The value of a deduced corresponds to a loss of 38 dB per meter. This is
about 10 times more loss than is calculated using the Mattis-Bardeen

59

Vph = (6.8)



theory78. By analyzing the shape of pumped I-V curves measured with the
junction at 4.5 K and at 2.8 K, we have determined that the loss is not
temperature dependent, as would be expected if it were due to the surface
impedance of the superconducting films. We therefore assign the loss either
to the SiO dielectric layer in the microstrip line, or to excess residual
resistance in the superconducting films.

The best mixer performance measured using this type of tuning at each
frequency is summarized in the table below.

Center Frequency Mixer Noise Temp. Coupled Gain
90 150 K -4.8dB

180 200K -4.4dB

270 ~2000 K -10.2 dB

360 >10,000 K < -15dB

In Fig. 6.7 we show a pumped I-V curve for a mixer with a stub designed for
180 GHz. The junction normal resistance is 64 Q, and the leakage current is
3.5 uA at V4c = 2.5 mV. The first photon assisted tunneling step has a
positive slope of about 200 Q, which indicates that the capacitance of the
junction is successfully resonated (see chapter 4).

In Fig. 6.8, we plot the receiver noise temperature, the mixer noise
temperature, the available gain, and the coupled gain as function of LO
frequency for a mixer with a stub designed for 180 GHz. The lowest mixer
noise temperature is 200 K at 176 GHz, where the receiver noise temperature
is 250 K. The best coupled gain of -4.4 dB occurs at the same frequency.

The pumped I-V curves of similar mixers designed for 270 and 360
GHz showed well developed photon-assisted tunneling steps. However, the
mixer performance is very poor. The IF output power from the mixer is very
low, only 2-3 times higher that the shot-noise background. This suggests
that the high mixer noise temperature arises because of poor coupling of the
RF signal to the mixer. One possibilty is that the loss in the stub, which
should increase with frequency, is so large at these frequencies that it limits
the performance of the tuning structures. This assumption is supported by
the analysis of I-V curve shape, which indicates excess embedding
conductance below the resonant frequency, which is expected for a lossy stub.

6.5.2 /8 Stub (Shorted-End Stub)

This tuning element is similar to the open-ended stub, except that the
end of the stub is RF shorted. This is achieved by a A/4 section of high-
admittance (wide) microstrip line. A diagram of this configuration is shown
in Fig. 6.9a. The high admittance of the line provides a good approximation
to an RF short across a wide frequency band. The 3dB linewidth of the
resonance of this structure is expected to be about twice as large as the
resonance associated with the open-ended stub.
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The total susceptance of the two-~section stub is given by38

NP [Y; tan (B2 + Y tan (B21)] 6.9)
stubl®) = Y; - Y3 tan (B21) tan (B ) '

Where B = w/v, Y12 are the characteristic admittances of section 1 (narrow)
and section 2 (wide) of the stub. The resonance condition is given by
WoC + Bstub(wp) = 0 . (6.10)

We designed tuning structures of this type to operate at 90, 180, 270, and 360
GHz. The expected bandwidths of the tuning circuits are summarized below.
All dimensions were optimized for maximum expected bandwidth. The
junctions used for these mixers were fabricated using the tri-layer process at
NIST in Boulder. These were prototype devices for which the processing was
not yet optimized. These devices proved to be extremely sensitive to
mounting-induced stress and were destroyed before definitive mixer tests
could be parformed.

Center Frequency 3 dB Bandwidth
90 10

180 5

270 4

360 4

CRrr is plotted as a function of frequency in Fig 6.9b for a tuning structure
designed for 90 GHz. The junction capacitance and GRrF are the same as in Fig.
6.6b. The junction response measured by the Fourier transform spectrometer
is also shown in Fig. 6.9b.

6.5.3 Five Junction Array with Inductive Wire

Another type of tuning element is an inductive wire in parallel with a
linear array of 5 junctions. A diagram of this configuration is shown in Fig.
6.10a. In order for this type of tuning element to function correctly, it must be
in parallel with the junction array at the RF frequency, and an open circuit at
dc and at the IF frequency. This is achieved by connecting one end of the
inductive wire to a A/4 open-ended microstrip stub which provides an RF
short at the design frequency. In this configuration, the inductance due to the
junction leads is no longer negligible, and must be included in any
calculation of Crr. For large junctions with short leads, i.e. GRp << (C/L1)1/2,
the resonant frequency is given by

wo = [C(Lw+Lp)/2 - 6.11)
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The inductance due to the junction leads, together with the inductive wire,
works as an impedance transformer and transforms GRgrfr of the junction array

to a higher value. Feldman®® has shown that an array of n junctions can be
treated as a single junction with Grr = NGREF single junction and C = (1/n) Cgingle
junction- The inductive wire cannot be used in the single junction case because
of geometrical considerations. Above about 150 GHz, this tuning scheme
becomes ineffective when using current fabrication schemes because of the
series resonance between the inductance of the junction leads and the
junction capacitance. Below this frequency, however, it has the advantage of
a wider bandwidth than the either of the stub based tuning elements.

We fabricated a five junction array with an inductive wire tuning
element designed to operate at 100 GHz. The inductive wire was 60 um long,
5 um wide and 0.27 um thick, giving a geometrical inductance of 44 pH. The
inductance due to the junction leads is estimated to be about 34pH. The
estimated capacitance is 32 fF, giving a resonant frequency of 101 GHz. These
two inductances worked together to transform up the junction admittance at
the operating frequency by about a factor of 3.

The response of the junction array, measured by the Fourier transform
spectrometer is shown in 6.10b. Also shown is the best coupled mixer gain
measured at several frequencies near the resonant peak. The coupled gain of
the mixer is very highly correlated with the measured direct detector
response, and hence with the RF coupling coefficient, as postulated earlier.
The lowest noise temperature measured for this type of tuning structure is
115 K, with a coupled gain of -3.4 dB.

6.54 Open Ended Stub with A/4 Matching Transformer.

The stub-type tuning structures discussed so far (sections 6.5.2 and
6.5.3) do not transform the real part of the junction admittance. At
submillimeter frequencies, it becomes difficult to fabricate junctions with
small enough values of ®RNC (we want ®RNC ~ 4) with high enough values
of RN to efficiently couple to typical antenna admittances. Small WRNC
requires high critical current densities, which in turn requires extremely
small junction areas to obtain high enough RN's. The requirement of small
junction area can be relaxed if the real part of the RF junction admittance can
be transformed down to match the output admittance of the antenna. This

can be achieved using a A/4 matching transformer.8?

An example of such a configuration is shown in Fig. 6.11a. In this
configuration, the junction capacitance is resonated using a 31/8 stub as in
section 6.5.2. Then the relatively high input admittance of a high current
density, moderate area junction is transformed down to match the lower
output admittance at the antenna terminals.

We have designed tuning elements to match 2 x 2 um trilayer>% 83

junctions with a critical current density of 5kA/cm? to a log-periocic
antenna. These junctions have a normal resistance of 10 Q, far too low to
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efficiently match to the 0.008 Q-1 output admittance of the log-periodic
antenna. We chose the characteristic admittance of the 31/8 stub to maximize
the bandwidth over which the capacitance is resonated. We then chose the
characteristic admittance of the A/4 transformer to maximize the frequency
range in which CRrf is greater than 0.8, giving an admittance about 30%
higher than the geometric mean of the RF input admittance of the junction
and the output admittance of the antenna. We have designed tuning
elements for operation at 90, 180, 270 and 360 GHz. A summary of expected
bandwidths is shown in the table below. In Fig 6.11b, we plot the expected CRrf
as a function of frequency for a tuning structure designed for 90 GHz. The
expected bandwidths are much greater than those for the other tuning
schemes discussed so far, due mostly to the smaller values of WRnC possible
with this tuning scheme. The junctions and tuning structures are currently
being fabricated at Conductus, and are not yet available for testing.

Center Frequency Resonant Bandwidth
90 63 GHz

180 80 GHz

270 85 GHz

360 100 GHz

66 Conclusion

We have discussed the design and implementation of several types of
tuning elements used to resonate the junction capacitance of millimeter—
wave and submillimeter-wave quasioptically coupled SIS mixers. These
tuning elements met with limited success at near millimeter wavelengths.
As the operating frequency is increased into the submillimeter, the tuning
schemes appear to be limited by loss in the superconducting transmission
lines. Because this loss appeared to be independent of temperature, we
blamed it either on dielectric losses in the interlayer dielectric used to form
the transmission lines, or on excessive residual surface resistance of the
superconducting films. Such losses probably become even more important at
higher frequencies. Clearly, more work needs to be done in this area.
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Fig. 2.1 a) Density of states b) I~V curves as a function of

temperature.
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Fig. 2.2 Experimentally measured I-V curve, b) KK transform.
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Fig. 2.3 Equivalent circuit used to analyze mixer performance. The
voltage v, at the mth port (wy = moLo + Wy ) is related to
the currents ip, at all other ports through the matrix Ymn. Each
port is terminated by an embedding admittance Ym.A
fluctuating current source 8l is placed at each port to
account for noise. In typical operation, a signal source is
placed at port 1, and the IF output is measured at port 0. In
the three-port model, ports other than -1,0, and 1 are
ignored.
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Fig. 3.1 a) Measured dc I-V curve of the SIS junction studied in this

chapter, the junction temperature is about 4.5 K. b) Kramers-
Kronig transform of the Iy calculated using Eq. 3.1. o)
Quantum conductance Gq at w/2n = 77 GHz calculated from
Eq. 3.5a using the Ijc a). d) Quantum susceptance Bq at 77
GHz calculated from Eq. 3.5b using the Ixk in b).
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Fig. 3.2

Semiconductor model of an SIS junction. The energy difference
between state A on the left side and state B on the right side is
Rw, where o is the angular frequency of the RF drive. The
tunneling between states A and B can be assisted by the real
photons in the RF signal. The tunneling between state A and
any states other than B cannot be finalized because of the energy
conservation law. The quantum sloshing between state A and
the states on the right side other than state B gives a reactive
component in the tunneling current.

74



0.06 — T
0.04— )
GQ
S 0.02[— .
0
-0.02+— ]
1 | l
0 40 80 120 160 200
f (GHz)
Fig. 3.3 Calculated quantum conductance Gq and quantum susceptance

Bq using Eq. 3.5 as functions of frequency at a dc bias voltage Vo =
2.50 mV. The frequency at the peak of Gq, 62 GHz, corresponds to
the energy difference between the edges of the valence band and
of the conduction band on two sides of the junction. At this
frequency, the quantum susceptance Bq vanishes.
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Fig. 3.4 (On next page) a) Picture of a log-periodic antenna with a
microstrip stub, the SIS junction is located at one end of the stub
and at the center of the antenna. b) Schematic of a two-secticn
microstrip stub with one section RF short-ended by the other
section, which is a A/4 long, open-ended stub. c) Equivalent
circuit of a resonator which includes a microstrip stub Bgiyp, a
junction capacitance C, the quantum susceptance Bq, and the
quantum conductance Gq. The variable signs on Bq and Gq
indicate that they are functions of dc bias voltage. The radiation
source and the antenna are represented with an RF current
source in parallel with the antenna admittance Ya.
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efficiency corresponding to the above interferograms, c) at 2.35
mV, d) at 2.50 mV. The dashed lines in ¢) and d) are the

computed spectra.
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result without including the quantum susceptance. Note the
dashed line is essentially flat vs. V,. b) Linewidth of the
resonance as a function of V,. The dots are the experimental
results and the solid line is the calculated result. w,/2n = 77 GHz
is the resonant frequency of the imbedding susceptance without
the quantum susceptance.
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a) Experimentally measured dc I-V curve of an SIS tunnel
junction. b) Voltage-pumped I-V curve calculated using the dc
I-V curve shown in a). The reduced pump voltage o = eVy/hw
used is 1.3, and the pump frequency used is 100 GHz.
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Fig. 4.2

Gemb Bemb Ga Bq

Equivalent circuit used for the analysis of pumped I-V curves.
The embedding admittance Yemp = Gemb + iBemp is the parallel
combination of the susceptance due to the geometrical
capacitance of the junction and the admittance due to the mixer
mount. The quantum admittance Yq = Gq + iBq is due only to
the tunneling currents in the device.
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Fig. 4.4 Example of a contour map of the fit parameter ¢ plotted as a
function of embedding admittance on a admittance Smith
chart. Contour spacing is 10-> mV2. The quality of the fit
improves as the admittance move toward the center of the
series of concentric oblong contours. When a pumped I-V
curve is calculated using any admittance taken from inside
the the innermost contour, it is visually indistinguishable
from the experimentally measured pumped I-V curve.
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Fig. 4.5 a) dc I-V curve of an SIS junction measured at Temperature 1.3

K. b) experimental and calculated pumped I-V curves. The
solid line is the calculated curve. The experimental points are
represented by dots. The pump frequency is 96.35 GHz. The
embedding admittance used in the calculation is Yemp = 0.14 +
0.08i Q-1 . ¢) same as b), except here the pump frequency is 93.65
GHz, and the embedding admittance used is Yemp = 0.04 + 0.18i
Q-1.

(o 4]
W



(h)\
e ()

(9)

Fig 4.6

Comparison between admittances measured using a scaled
model and those deduced from pumped I-V curves. This
analysis was done for our waveguide mixer block at 93 GHz. The
shaded regions (a) - (1) represent the ranges of embedding
admittance deduced from a series of pumped I-V curves
measured, each with the backshort stepped 0.0165 mm farther
away from the junction. The dashed circle is the range of
available embedding admittances measured from the scaled
model measured at a scaled frequency corresponding to 93 GHz.
The solid circle is the same range, except that the susceptance
due to the estimated geometrical capacitance of the junction of
160 fF has been added in parallel.
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fiberglas tube —

silicon vane with — o
NiCr film a

WR- |0 waveguide —/

heater resistor ——

epoxy /
thermometer

Fig. 5.2 Variable temperature RF waveguide load used to produce a

calibrated blackbody signal for accurate measurements of mixer
performance.
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Diagram of the mixer block used for 90 GHz waveguide mixer
experiments.
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Bias Current (uA)

Fig. 5.5

60 —

40 }-

Bias Voltage (mV)

Two dc I-V curves measured from the tantalum junction used.
Both curves were measured at 1.3 K with no applied magnetic
field. The two curves differ because different amounts of
magnetic flux were trapped in the junction.
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Fig. 5.6
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Bias Voltage (mV)

A series of dc I-V curves measured with different values of the
applied magnetic field. As the field is increased from zero, the
density of states near the gap begins to smear, leading to a more
rounded current rise.
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Fig. 5.7
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Added mixer noise and available gain plotted as a function of
local oscillator frequency. At each frequency, the local oscillator
power, dc bias vcltage and backshort position were optimized for
maximum coupled gain. The peak in mixer noise near 90 GHz
corresponds to a resonance in our mixer block which makes it
impossible to provide favorable embedding admittances. The
horizontal line at S = 1/2 is the quantum limit imposed by the
uncertainty principle. The S = 1/2 vacuum fluctuations already
present on the signal are not included in the mixer noise.
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Fig 5.8

Mixer Noise (Quanta)

Available Mixer Gain (dB)

0 20 40 60 80
Available Pump Power (arb. units)

Added mixer noise and available gain as a function of local
oscillator power with fio=95.0 GHz, Vpc = 1.956 mV. The
dashed lines are the limits of the performance that are consistent
with I-V curve shape. The solid line is the best fit to measured
performance, with Yysp = 0.14 + 0.08i Q-1 and Yisg 0.04 + 0.18i
Q-1. All measurements were performed with no applied
magnetic field.
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Fig. 5.9
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Added mixer noise and available gain as a function of backshort
posiiton. The dashed lines are the limits of performance that are
consistent with I-V curve shape. The fit is relatively poor for
backshort positions more than 0.59 mm from the junction.
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Fig. 5.10
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Same as Fig. 5.9 except that now the calculated limits of
performance are calculated using only admittances that are
consistent with measured values of pump power for backshort
position more than 0.59 mm from the junction. Note that the
quality of the fit is dramatically improved in this region.
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Fig. 6.2 a) Circular-toothed planar log-periodic antenna. b) two-
arm log-spiral antenna.
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Fig. 6.3

Equivalent circuit used to analyze the performance of
quaisoptical mixers. The signal at the terminals of the planar
antenna is represented by the current generator is and the
conductance Gp. The mixing element is represented by the
non-linear conductance Grr and the geometrical capacitance
C, the leads of the junction by L, and the tuning element by
the susceptance B.
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Fig. 6.4 a) dcI-V curve of a typical SIS junction. b) Computed
frequency dependence of the current responsivity S(w,V,) at
several values of bias voltage V,. ¢) Computed frequency
dependence of the RF resistance Rgrr at several dc bais

voltages. d) Computed beamsplitter efficiency for a 250um-
thick Mylar sheet at a 45° angle of incidence.
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Fig. 6.5 Diagram of and SIS junction with a 3A/8 open-ended

microstrip stub used as an inductive tuning element. The
junction is shown at the terminals of a log-periodic antenna.
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Direct Detector Response
(in arbitrary units)
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Fig. 6.6 a) Measured frequency response of single junction with a

31/8 stub. b) Computed coupling coefficient Crp for a single
junction with a lossless open-circuited microstrip stub. c)
Computed CRF for a single junction with a lossy, dispersive
stub with parameters indicated in the text.
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Fig. 6.7 a) I-V curves of a pumped (solid line) and unpumped

junction. b) IF output power as a function of dc bias. The
upper curve is for the hot (300 K) and the lower curve is for
the cold (77 K) RF load.
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a) Coupled and available mixer gain as function of LO

frequency. b) Mixer and receiver noise temperature
functions of LO frequency.
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Coupling
(Arbitrary Units)

Fig. 6.9

ARAY
[

=
5 —
4 —te— /8

N o w P
|

|
0 30 60 90 120 150
f (GHz2)

a) Diagram of an SIS junction with a A/8 stub used as an
inductive tuning element. The wide section of microstrip
provides a broadband RF short for the A/8 stub. b) Measured
(Solid line) and computed (dashed line) frequency response
of the structure shown in a).
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Fig. 6.10

Direct Detector Response
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a) Diagram of an S-junctian array of SIS junctions with an
inductive wire as a tuning element. The wire is RF-shorted
by a A/4 section of microstrip transmission line. b) Measured
frequency response of the structure shown in a).

¢) Computed RF coupling coefficient of t-e structure shown
in a).
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Fig 6.11 a) Diagram of a single SIS junction connected to the antenna

terminals by a A/4 impedance transformer. The capacitance
of the junction is resonated by a 3A/8 open-ended microstrip
stub. b) Computed RF coupling coefficient for the structure
shown in a).
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