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A GEOMETRY-INDEPENDENT APPROACH TO COARSE-MESH
NEUTRON DIFFUSION CALCULATIONS*

P. Kohut

Department of Nuclear Energy
Brookhaven National Laboratory

Upton, New York 11973

Powerful coarse-mesh1 and nodal2»3 methods have been recently devel-

oped to calculate accurate node-average fluxes and eigenvalues. The nodal

methods solve for the node-average flux by reducing the multidimensional dif-

fusion problem to a coupled system of 1-D equations. These schemes are mainly

limited to rectangular (xyz) nodes and cannot easily be extended to other ge-

ometries. The polynomial-based coarse-mesh methods have been applied to eRZ

and HEXZ geometries.** However, the complex integral terms arising in this

formulation are difficult to evaluate. It is of practical interest, especial-

ly in fast reactor and advanced gas-cooled reactor design studies, to develop

an ultra-coarse-mesh multigroup method for the solution of the neutron diffu-

sion equation in general geometries. The neutron distribution inside a homo-

geneous body is uniquely defined by the boundary surface fluxes and by the in-

terior sources. This fact may be used to formulate the neutron diffusion

problem in integral form containing surface quantities only. The advantages

of evaluating only node boundary fluxes are a) the possibility of arbitrary

node geometry, and b) the use of ultra-coarse-mesh without loss of accuracy.

This summary describes the development of a boundary coarse-mesh nodal method

applicable to arbitrary geometries using the boundary integral technique coup-

led with nodal source expansion.

*Work performed under the auspices of the U.S. Nuclear Regulatory Commission.



-2-

The starting point of this boundary-integral-expansion method is the in-

tegral formulation of the diffusion equation with the Green's function as the

spatial diffusion kernel. The boundary conditions are selected in such a

way that the nodal multidimensional Green's function, G(r |r'), satisfies zero

identically on the node boundary. Other Gre'en's functions can also be consid-

ered, in particular, the free-space solution. However, the selection of the

zero-boundary-flux condition has the advantage that the surface currents are

eliminated from the nodal equations.

The multigroup flux at any point inside an arbitrary node may be written

in the usual form as:

•*g(r) = / Gg(r'|r) s9(r') dr' + / f[rl_) I9(r' r ) dr' , (1)r.) dr
S S

where Ig(r'|r) is the normal component of -DgvGg(r' r ) . The source term
s'

s9(r') includes all in-scattering and fission neutron productions, and the

nodal properties are assumed to be spatially constant inside the node. The

surface currents, -Dvij>(r ), are eliminated in this formulation since G(r |r)=0
s s i

by definition. Let the point r approach the surface point rs from the node

interior to obtain a similar integral equation for the nodal surface flux at

point rs, in terms of the boundary fluxes «f>(r̂ ), and the internal sources

s(r'). Even though the Green's function is singular (in 2- and 3-D), the lim-

iting process is well defined and the volume and surface integrals remain con-

vergent.
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For a homogeneous region with arbitrary geometry, the following proce-

dure may be used to evaluate the multidimensional zero-boundary-flux Green's

function, G( r o | r ' ) :

1. An integral equation is constructed for G(r o [ r ' ) , using the free-

space Green's function, E ( r o j r ' ) .

2. Let r0 and r1 approach the region boundary from the node interior

(r0 ->• r and r1 + r ') to obtain

c E ( r l r ' ) = / E(r |r) I ( r ' r) dr ,

where c = 1/2 for a smooth surface. This is an inhomogeneous Fred-

holm-integral equation for I(r'lr) and once a solution is found,

G(r'jr) can easily be recovered. The fact that the functions

G(r'lr) and I(r'|r) are equivalent will be used to simplify the

source term.

3. The boundary integral equation is solved using the boundary-element

technique, by dividing the surface r to elements r-j's and discre-

tizing I(r^|r) to I£n, i.e.,

m* ?V*n
i

where the coefficients Hmi-, are weighted integrals of the free-space

Green's function. The weight functions are determined by the order

of approximation (constant, linear, etc.)

Once the surface-to-surface Green's function (or equivalently, the sur-

face normal gradient of G(r'lr)) is known, the surface integral part of
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Equation (1) for <j>(r ) can be reduced to simple algebraic form using the same

boundary-element technique, i .e . ,

< - I Hm *l + SOURCE TERM '

Here <f> is the nodal surface flux at point r', (<f>.(r ) = 6 }, and H is a

weighted integral of Kr^lr) on the node surface.

In order to evaluate the volume source (fission and in-scattering pro-

duction), the node interior flux is expanded in polynomial basis functions,

similar to finite-element schemes. The coefficients of these polynomials are

determined by a localized least-square method to satisfy prescribed boundary

values. The complexity of the node geometry enters through the basis func-

tions, which are independent of the nodal flux and can be evaluated before the

flux iteration. This approximation leads to a simplification in the source

term, reducing it to integrals of G(r'lrs) with basis function weighting.

Finally, the source term can also be manipulated to an algebraic expression

using the integral definition of G(r')r ), in terms of E(r'|r ) and I(r' r ).
I s i s s

In the resulting equation, the node surface flux, $ (r ) is expressed as a

combination of or response to the boundary fluxes, <k(r') on the same nodal

surface, i.e.,

•a'where T-j contains terms related to volume-to-surface and surface-to-surface

diffusion.
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Giobal coupling is insured by flux continuity on adjoining node surfac-

es. Based on Equation (2), matrix equations can be constructed and solved for

each node corresponding to the inner iteration of other schemes. Since sur-

face currents are not required in this method, the number of equations are

greatly reduced. A 1-D proof-of-principle problem has been constructed with

satisfactory results.

The boundary-element-expansion method presented above shows considerable

promise as an efficient coarse-mesh nodal scheme for problems with complex

periodic geometries. For arbitrary non-periodic geometries, the free-space

Green's function could be more advantageous to use. In this case Equation (2)

will have an additional term on the RHS, proportional to the surface flux

gradient (v<j>|). The method also has the advantage that the interior homogene-

ous flux distribution can easily be recovered, since it directly solves for

the node boundary flux.
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