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A GEOMETRY-INDEPENDENT APPROACH TO COARSE-MESH
NEUTRON DIFFUSION CALCULATIONS*
P. Kohut
Department of Nuclear Eneréy

Brookhaven National Laboratory
Upton, New York 11973

Powerful coarse-mesh! and nodal2>3 methods have been recently devel-
oped to calculate accurate node-average fluxes and eigenvalues. The nodal
methods solve for the node-average flux by reducing the multidimensional dif-
fusion problem to a coupled system of 1-D equations. These schemes are mainly
limited to rectangular (xyz) nodes and cannot easily be extended to other ge-
ometries, The polynomial-based coarse-mesh methods have been applied to eRZ
and HEXZ geometries.* However, the complex integral terms arising in this
formulation are difficult to evaluate. It is of practiéal interest, especial-
ly in fast reactor and advanced gas-cooled reactor design studies, to develop
an ultra-coarse-mesh multigroup method for the solution of the neutron diffu-
sion equation in general geometrigs. The neutron distribution inside a homo-
geneous body is uniquely defined by the boundary surface fluxes and by the in-
terior sources. This fact may be used to formulate the neutron'diffusion
problem in integral form containing surface quantities only. The advantages
of evaluating only node boundary fluxes are a) the possibility of arbitrary
node geometry, aﬁa b) the use of ultra-coarse-mesh without loss of accuracy.
This summary describes the development of a boundary coarse-mesh nodal method
applicable to arbitrary geometries using the boundary integral technique coup-

led with nodal source expansion.

*Work performed under the auspices of the U.S. Nuclear Regulatory Commission.



The starting point of this boundary-integral-expansion method is the in-
tegral formulation of the diffusion equation with the Green's function as the
spatial diffusion kernel. The boundary conditions are selected in such a
way that the nodal multidimensional Green's functﬁon, G(rolr'), satisfies zero
jdentically on the node boundary. Other Green's functions can also be consid-
ered, in particular, the free-space solution. However, the selection of the
zero-boundary-flux condition has the advantage that the surface currents are
eliminated from the nodal equations.

The multigroup flux at any pbint inside an arbitrary node may be written

in the usual form as:

$9(r) = J Gg(r'|r) sI(r') dr* + g ¢g(r;) Ig(rglrs) drg (1)
where Ig(rélrs) is the normal component of -ngGg(rglrs). The source term
sg(r') includes all in-scattering and fission neutron productions, and the
nodal properties are assumed to be spatially constant inside the node. The
gurface currents, —Dv¢(rs), are eliminated in this formulation since G(rs,r)so
by definition. Let the point r approach the surface point rg from the node
interior to obtain a similar integral equation for the nodal surface flux at
point res in terms of the boundary fluxes ¢(r;), and the internal sources
s(r'). Even though the Green's function is singular (in 2- and 3-D), the lim-
iting process is well defined and the volume and surface integrals remain con-

vergent,



For a homogeneous region with arbitrary geometry, the following proce-

dure may be used to evaluate the multidimensional zero-boundary-flux Green's

function, G(ro|r'):

1.

2.

An integral equation is constructed for G(rolr'), using the free-
space Green's function, E(roir').

Let ro and r' approach the region boundary from the node interior

(ro +r_and r' » r;) to obtain

S

cE(rslr;) = { E(rslr) I(r;'r) dr,

where ¢ = 1/2 for a smooth surface. This is an inhomcgeneous Fred-
holm-integral equation for I(r;lr) and once a solution is found,
G(rélr) can easily be recovergd. The fact tha% the functions
G(r;|r) and I(rglr) are equivalent will be used to simplify the
source term.

The boundary integral equation is solved using the boundary-element
technique, by dividing the surface T to elements rj's and discre-
i.e.,

.. ,
tizing I(rslr) to I,.,

CEmz = g milzn

where the coefficients ﬁmi’ are weighted integrals of the free-space

Green's function. The weight functions are determined by the order

of approximation (constant, linear, etc.)

Once the surface-to-surface Green's function (or equivalently, the sur-

face normal gradient of G(r;'r)) is known, the surface integral part of
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Equation (1) for ¢(rs) can be reduced to simple algebraic form using the same

boundary-element technique, i.e.,

c¢r?] = % H% . 4,3 + SOURCE TERM .

Here by is the nodal surface flux at point r;, (¢£(rs) = ¢m), and Hmz is a
wejghted integral of I(rglr) on the node surface.

In order to evaluate the volume source (fission and in-scattering pro-
duction), the node interior flux is expanded in polynomial basis functions,
similar to finite-element schemes. The coefficients of these polynomials are
determined by a localized least-square method to satisfy prescribed boundary
values. The complexity of the node geometry enters through the basis func-
tions, which are independent of the nodal flux and can be evaluated before the
flux iteration. This approximation leads to a Qimplification in the source
term, reducing it to integrals of G(r‘|rs) with basis function weighting.
Finally, the source term can also be manipulated to an algebraic expression
using the integral definition of G(r"rs), in terms of E(r'lrs) and I(r'lrs).
In the resulting equation, the nodé surface flux, ¢m(rs) is expressed as a
combination of or response to the.-boundary fluxes, ¢£(r;) on the same nodal

surface, i.e.,

»
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where Tz contains terms related to volume-to-surface and surface-to-surface

diffusion.
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Global coupling is insured by flux céntinuity on adjoining node surfac-
es. Based on Equation (2), matrix equations can be constructed and solved for
each naode corresponding to the inner iteration of other schemes. Since sur-
face currents are not required in this method, the number of equations are
greatly reduced. A 1-D proof-of-principle problem has been constructed with
satisfactory results.

The boundary-element-expansion method presented above shows considerable
promise as an efficient coarse-mesh nodal scheme for problems with complex
periodic geometries. For arbitrary non-periodic geometries, the free-space
Green's function could be more advantageous to use. In this case Equation (2)
will have an additional term on the RHS, proporticnal to the surface flux
gradient (V¢%). The method also has the advantage that the interior homogene-

ous flux distribution can easily be recovered, since it directly solves for

the node boundary flux.
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