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Abst rac t 

Numerical illustrations for transient mass transfer from an infinitely long cylinder intersected by a planar 
fracture are shown based on Chambre's exact analytical solutions. The concentration at the cylinder surface 
is maintained at the solubility. In the fracture contaminant diffuses in the radial direction. In the rock matrix 
three-dimensional diffusion is assumed in the cylindrical coordiante. No advection is assumed. Radioactive 
decay and sorption equilibrium are included. Comparison between the cylinder model and the previous plane 
model is given. Radioactive decay enhances the mass transfer from the cylinder. Even though the fracture 
is assumed to be a faster diffusion path than the rock matrix, the larger waste surface exposed to the matrix 
and the greater assumed matrix sorption result in greater release rate to the matrix than to the fracture. 
The cylinder model gives more conservative results than the plane model with respect to the mass transfer 
from the source and the far-field transport for the diffusion-dominant field. 



1 Introduction and Summary 
This paper presents the numerical results of an analytical study for mass transfer and transport of radionu­
clides released from a cylindrical waste solid into water-saturated fractured porous rock. The purposes of 
this study are (1) to predict the diffusive mass flux from a cylindrical waste solid into a planar fracture 
and the surrounding rock matrix for the low-flow conditions wherein near-field mass transfer is expected 
to be controlled by molecular diffusion [1] and (2) to investigate the effects of cylindrical geometry and of 
multidimensional matrix diffusion including diffusion in the directions parallel to the fracture plane. 

Previous analytical studies [2]-[6] of the advective transport of dissolved contaminants through fractured 
rock have emphasized the effect of molecular diffusion in the rock matrix in affecting the space-time-dependent 
concentration of the contaminant as it moves along the fracture. Matrix diffusion only in the direction normal 
to the fracture surface was assumed (Figure 1(a)). Such studies illustrate the far-field transport features of 
fractured media. To predict the time-dependent mass transfer from a long waste cylinder surrounded by 
porous rock and intersected by a fracture, the present study includes diffusion from the waste-solid surface 
directly into porous rock, as well as the more realistic geometry shown in Figure 1(b). 

In the following are presented the derivation of an analytical solution for the time-dependent mass 
transfer from the cylinder for low-flow conditions and computer-code implementation and numerical results. 
The problem was first proposed and solved analytically by Chambre. 

Numerical results are shown for (1) the diffusive mass fluxes from the cylindrical waste solid into the 
fracture and into the rock matrix, (2) the diffusive mass flux across the rock/fracture interface, and (3) the 
instantaneous concentration isopleths in the fracture and in the rock matrix. 

For the diffusive mass flux from the cylinder, effects of radioactive decay and presence of the fracture are 
investigated. For shorter-lived nuclides the flux reaches steady state faster and the steady-state flux for the 
shorter-lived nuclide is greater than the long-lived species. In very early times, the decay effect on release 
rate is negligible. 

Assuming that a dissolving solid is always present, assuming negligible advective transport, and assuming 
that the fracture has a greater diffusion coefficient and less sorption retardation than the rock matrix, the 
concentration in the fracture is always greater than in the rock matrix at the same distance from the surface 
of the dissolving solid. Contaminant diffuses into the rock matrix across the rock/fracture interface, as well 
as from the waste solid. Consequently, the mass flux from the cylinder into the rock matrix near the fracture 
is smaller than the flux from the cylinder into the rock matrix in the region far away from the fracture. The 
effect of the fracture is limited at early time to a very shallow region in the rock matrix. At later times, this 
effect is negligible so that one can assume that the flux from the cylinder to the rock matrix is independent 
of the distance from the fracture. 

Even though the fracture is assumed to be a faster diffusion path than the rock matrix, the larger waste 
surface exposed to the matrix and the greater assumed matrix sorption result in greater release rate to the 
matrix than to the fracture. In this case, we can neglect presence of the fracture, and can apply the analyses 
for a cylinder surrounded completely by porous rock [4]. 

Comparison of the present cylindrical model with previous planar models, wherein contaminant was 
assumed to be released only into the fracture and diffusion in the rock matrix was assumed to be one-
dimensional perpendicular to the fracture plane, shows that the cylindrical model is more conservative than 
the planar models with respect to the mass transfer from the source into the fracture and with respect to 
the far-field transport, provided that diffusion is dominant in the fracture. 

2 Assumptions and Mathematical Formulation 
We consider a cylindrical waste solid of infinite length and constant radius a [m], intersected by a pi.-jiar 
fracture (Figure 1). To be conservative, we assume that no waste container is present. An infinitely long 
cylinder is a good approximation for a long cylinder with negligible end effects. A constant concentration N* 
[kg/m 3] of low-solubility dissolved species is prescribed in the water at the waste surface. The contaminant 
undergoes molecular diffusion both in the fracture and in the rock matrix. The porosities of fracture and 
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Figure 1: (a) Geometry and physical processes considered in the model with a single, planar, infinite fractures, 
(b) Cylindrical geometry with three dimensional diffusion in rock matrix and two dimensional diffusion in 
fracture. Azimuthal symmetry is assumed. 
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rock are £1 and £2- Pores are saturated with stationary water. If £1 < 1, the fracture is filled with porous 
sediment. The fracture width, 26 [mj, is assumed to be much smaller than other dimensions such as the 
cylinder radius, so we assume complete mixing and uniform concentration across the fracture width. 

The concentrations in the fracture and in the rock matrix are described in two- and three-dimensional 
cylindrical coordinate systems, respectively. Different local sorption equilibrium constants are assumed for 
the fracture and for the rock matrix. Radioactive decay is included, but decay precursors are neglected. 
Assuming azimuthal symmetry, the governing equations for the space-time-dependent concentrations in the 
fracture and in the rock matrix are written as: 

9 ( I \ 0 = - E J 6 : 
cW2 , f > a, 0 0, (3) 

=0 

Nj : contaminant concentration in water in region i [kg/m 3], 

Di : diffusion coefficient of the nuclide in region x [m 2/yr], 

q : diffusive flux from the fracture to rock matrix at the interface between rock and fracture [kg/m 2-yr]. 

A', : retardation factor for region «', dimensionless, defined as 

/f,. = 1 + iziiA-,,,, (4) 

A : radioactive decay constant [ y r - 1 ] , 

£i : porosity of region i, dimensionless, 

r : radial distance from the center of the waste cylinder [m], 

z : distance from the interface betv-een fracture and rock [m], 

i : time [yr], and 

Kdi '• sorption distribution coefficients in region i, concentration in solid phase divided by concentration in 
water phase, dimensionless. 

Subscripts 1 and 2 refer to fracture and rock, respectively. The hat symbol indicates the quantities with 
physical dimensions; later we introduce non-dimensionalization. From the assumptions, we can set the side 
conditions as follows: 

JVi(r.O) = 0, f>a, (5) 
AT2(r,z,0) = 0, r > 5 , i > 0 , (6) 
N,(a,i) = N-, <>o, (7) 
#1(00,0 = 0, ( > 0 , (8) 

N2(a,z,i) = N', i > 0 , < > 0 , (9) 
#2(00, z, t) = 0, z > 0 , t">0, (10) 

N2(f,Q,i) = N?(f,t), f > a . ' > 0, (11) 

t = 0, r > a, < > 0 . (12) 
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(3) and (11) provide the coupling of the governing equations. 
To simplify further mathematical manipulations, we introduce the following nondimensionalization: 

D2i 
K2a? 

A = 
D,K2 

and 
JV,(r,<); 

D2Kt 

N' 

c2aK2 

A = 
c?\K2 

N- e2D2N' 

(13) 

(14) 

(15) 

The variable t is the Fourier number, which measures the time of the diffusion process. A is the Thiele 
modulus. Then, the system of equations (1) to (3) and (5) to (12) can be rewritten as: 

where 
dt ~ r dr V dr J 3z 2 ' 

9(r,t) = 

i r > l , t > 0 , 

2, r > l , z > 0 , t > 0 , 

r > 1, * > 0 , 
dN2\ 
d* L=o' 

subject to From the assumptions, we can set the side conditions as follows: 

JV-1(r,0) = 0, r > l , 
N2(r,z,0) = 0, r > 1, z > 0, 

iVi(l,t) = l, t > 0 , 
#1(00,1) = 0, 

N3(l,z,t)= 1, 
7V2(co,z,i) = 0, z>0, l > 0 , 

JV2(r,0,i) = Jv"i(r,r), 
dN2\ 
dz 

i > 0 , 
2 > 0, t > 0, 
* > 0, 1 > 0, 
r > 1, < > 0 , 

= 0, r > o, t > 0. 

(16) 

(17) 

(18) 

(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 

(26) 

We will solve the problem (16)—(26). Since one of our concerns here is mass transfer from the waste solid, 
we derive the following auxiliary functions: 

and 

where 

and 

j2(a.z,i) = —£2D2 

6W1 
8t 

6N2 

dr 

eiDlN' 

i . ( 0 - ^ | 

.n(<). 

e2D2N- . 
: 1—Mz,t), 

( > 0 , 

M'.t) = - 2 > 0, <>0 . 

(27) 

(28) 

(29) 

(30) dr L, 
(29) and (30) are the dimension less diffusive fluxes at the waste surface to the fracture and to the porous 
rock, respectively. In the following sections analytical forms are obtained and numerical evaluations are 
shown for (18), (29), and (30) as well as for the concentrations N\(r,t) and N2(r,z,t). 
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3 Derivation of Analytical Solutions 
The outline of the solution method is the following: First, apply a Weber transform[7] with respect to r and 
Laplace transform with respect to t for (16) to (18). Second, solve the second-order ordinary differential 
equation resulting from (17) and obtain the double-transformed q(z,t). Third, substitute the transformed q 
into the algebraic equation resulting from (16) and solve the resultant equation. Finally make the inverse 
transforms twice to obtain the solutions. Important steps to the solution are discussed below. 

3 . 1 A p p l i c a t i o n o f I n t e g r a l T r a n s f o r m s 

The Weber transform of a function ' / (r) for the domain r > 1 is defined as: 

f(s) = y " / ( r )*(r ,*) rdr , * > 0, (31) 

where s is a Weber variable, real, and 

*(r, s) = Jo(rs)Y0(s) - Y0{rs)J0(s)t (32) 

The overbar symbol stands for a Weber-transform of / ( r ) . With the following formula (see Appendix for 
derivation): 

(16) and (17) can be transformed as 

^T-+/if JV,-I-1 + - A = 0, s>0, (>0 , (34) 
at o T 

^ - + n l N 2 - ^ - + l = 0,S>Olz>0,t>0, (35) 

where 
ti\ = s 2 A f X, /if. = s 2 + A, (36) 

and the boundary conditions (21) and (23) have been used. Next, we apply a Laplace transform on (34) and 
(35), obtaining 

(/if + p)tf i - r | + ^ = 0, s > 0 , (37) 

* • ? 

where p is a Laplace variable, complex, and the tilde, " , denotes the Laplace transformed variable. We will 
solve (38) subject to the boundary conditions: 

d , (fl + P)N? - — = 0, s > 0, z > 0, (38) 

N2{s,0,p) = Ni(s,p), s > 0 , (39) 

dN-, 
dz 

z—ca 

•0, s > 0. (40) 

The solution to (38) satisfying (39), (40) is written as 

N-,(s,z,p)= ( # i ( s , p ) - r , ' • • • < i ) r ' V l ^ : 2

 s > 0 , z>0. (41) 
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To obtain Ni(s,p), we need the expression for q(s,p). Differentiating (41) with resp«ct to z and setting z 
to be zero in the resultant expression, we obtain: 

? = V^{*«('.ri + ; ^ b l ) } < 4 2 > 
Substitution of (42) into (37) yields 

# i (» .p ) = -—\^-T+ , . \ , > , s > 0, (43) 
*p\l7(p) 6j(p)V^fTpJ 

where 
s(p) =? + /*! + JSJPI+P- (44) 

Finally, substituting (44) into (41) yields: 

. ^ ( • . , ) - 2 [ A 1 I X I - - " ^ 2 

* p \ ff(p) 4 j (p ) v

/ / ' a+P P-2+Pj »p(p§ + P/' 
s > 0 , 2 > G . (45) 

3 . 2 I n v e r s i o n o f I n t e g r a l T r a n s f o r m s 

We first make inverse Laplace transforms of (43) and (45). Considering that 

HP-MI) = (VP + <*)(JP + I}), (46) 

where 
« = ^f, P=^f- r = N / l - 4 6 ' ( A - l ) s 2 , (47) 

the reciprocal of g in (43) and (45) can be reduced to 

1 - ' f • !_\ 
9(P-I'l) 0-aXy/p + a y/p + Pi' 

(48) 

Using (48) and the following inversion formulae [8]: 

£ - 1 | } / ( P ) ] = jT /M*V (49) 

£ " [££]=wt e ~* - a e a v" e r f c (°^+>5f) •k>- ° (5o) 

£ _ l b s S r d ='*•*•''* ( ° ^ + i5f) • * * °' (51) 

^[l^J.e^^.^O, ( 8 2 ) 

the Weber- and Laplace-transformed solutions (43) and (45) can be inverted to: 

Ni(s.l) = ~ \ j ^ [ f ^ - { ) ' " ( f t M ) - l a A - j \ F(a;0,t)] , s > 0, t > 0, (53) 



s > 0, z > 0, ( > 0, (54) 

where 
F(x;z,t) = ex' f e^'-^erfc (xy/7+ ^=) dr. (55) 

The integral F(x; z, t) converges uniformly in s over {s > 0} for t > 0 and z > 0 to 

_ £ ± £ E e « ' e r f c f - ^ = + / i 2 V«) | , t > 0, z > 0, s > 0, (56) 

where 
H(x) = ex erfc(z), x complex. (57) 

The first integral in the right hand side of (54) can be obtained by setting i = 0 in (56). Then, we obtain 
the Weber-transformed solutions as: 

N!(s,t) = -W0(s)-W1(s;0,t)-W2(s;0,t)-Wi(s;(l,t), s > 0, t > 0, (58) 

N2(s,z,t) = -W0(s)-W1^-,z,t)-W2(s-,z,i) + W3(s-,z,t)-Wi(s-,z,t), s > 0, z>0, < > 0, (59) 

where 
W>W = \ - s , (60) 

* l ( s ; M ) = h m % e " " e i f c fe+"2^) • (61) 

and 

Because of the uniform convergence in (56) with respect to s, we can make inverse Weber transforms on 
(58) and (59) without any restriction on s, obtaining 

JVi(r,0 = ^ 7 7 ^ - { A ( r , 0 , t ) + 7 2 ( r ,0 ,0 + / 4 ( r , 0 , 0 } , r > l , < > 0, (65) 

N2(r,z,t)= K ° { ^ l } -{h(r,z,t) + h(r,z,t)-I3(r,z,t) + Wr,z,t)}, r > 1, z > 0, * > 0, (66) 
Ko(vA) 

(63) 

where 
J i ( r , , , 0 = f ^ i M ) * ! ^ , , "=1,2 ,3 ,4 

Jo [M>(s)]2 
(67) 

A/oM = >/[Jo(s)] 2 + [Vo(s)]2, (68) 

and/^o(x) modified Bessel function of the zeroth order, Jo(x) and Yo(x) Bessel functions of the zeroth order, 
and *(r ,«) is defined by (32). The first term in the right hand side of (65) and (66) is obtained by the 
inverse transform of Wo{s) (see Appendix for derivation). 
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(65) and (66) are the final solutions for the problem (16) to (26). The diffusive fluxes from the waste 
solid to the fracture and to the rock matrix can be calculated as follows: 

; l ( r) = V ' I ^ T S - " M(0'*) + SC' 1) + 3(0,0}. « > 0. (69) 

Mztt) = V\^^-l{I{(:J) + I&,i)-r3(z,t) + W,t)},:>0,t>0, (70) 
/f 0(VA) T 

w h e r e r°° sds 
/<(*,!)= / Wi(s;i,t) i = l ,2 ,3 ,4 , (71) 

Jo [Mo(s)\ 
and the identity [9]: 

5 ^ i l | = _ , {AWVOW - A(*)y,(.)} = - \ (72) 

is used in the course of the derivation. 
By differentiating (59) with respect to z and setting z to be zero, we obtain the diffusive mass flux from 

the fracture to the rock matrix at the interface as: 

-/here 

<,(r,0 = - /£(r ,0 + /?(r.«), (73) 

^,0=rW)^ff,.- = 5,6, (74) 
Jo [M0('}] 

W.(»;t) = ; ( A - 1 ) A * " ; _ ; , ' . (75) 

4 Mathematical Preparation for Numerical Evaluation 

4.1 Classification with 
We must consider three cases, A > 1, A = 1, and A < 1, separately. By definition of A, (14), A > 1 means 
that diffusion is faster in the fracture than in the rock matrix, which is the most likely case. The case A < 1 
could happen if the fracture is filled with highly sorbing materia) such as clay. In the case of A = 1, the 
waste cylinder is surrounded entirely by porous rock. The solution to Ni(r,t), (65), then becomes identical 
to that to A^fr, z,t), (66). By setting A to be unity, we have: 

W!(s;z,t) = W2(s;z,t) = 0, z > 0, i > 0, s > 0, 

and a = 0, /? = f Therefore, 

Wt(s;z,t) = --Xe-"''etfc (-^ ) , 

Then, (65) and (Q6) both reduce to 

wi(M) = ^(r,t) = " ° ' ; ™ ; + 5 / \ ; ~,\'".'Z°. ( " 
/fo(\Ar) I / • °°e-" i '$ ( r , s )5ds 
A'0(\/A) W o /»! [ A / 0 ( S ) ] 2 



Notice that (77) is independent of z. For a stable nuclide (A = 0), the first term in the right hand side 
of (77) becomes unity, and the solution (77) becomes identical to the solution for temperature in a region 
internally bounded by a circular cylinder with a constant temperature at the boundary, obtained by Carslaw 
and Jaeger [10]. 

For safety assessment of waste disposal, A > 1 is likely and conservative, and is so assumed below. In 
the rest of this section we consider mathematical preparation for numerical evaluation of N2(r, ztt). ji, j2» 
and q can be treated in a similar way. 

4 . 2 E v a l u a t i o n o f I4(r;z\t) 

Assuming A > 1 results in evaluation of complementary error functions of a complex argument in W\{s\ zti)t 

(64). From (47) a and /? become complex for s in 

I 

where 

/ 4 l ( r , M ) = r ^ ; , , o ^ ^ 
Jo [Ma( 

and 
. - » 3 ' xA— - t z \ 

c(x;z,t)=- ^ \H (xy/i+—= , x = a ,3-

where 

Iti(r,z,t) = l e x p (-- - At) {/+(r,z,f) - / ^ ( r , z, t)}, 

(78) ° 2JV2T- l ' 

Therefore, we must divide I^r, z,t) into two parts: 

J„(r, 2,<) = hi(r,z,t) + I„(r,z,t), (79) 

(80) 
lMo(s)Y 

M^)=f^(W)^£, (81) 
2 / z 2 \ 

W<(s;z,t) - {w(0;z,t)-w(a\z,t)}-exp f-— - At J (82) 

(83) 

4.2.1 J 4 i ( r ,z , f ) 

By variable transform from s to T, defined as 

s 2 = (1 - r 2 ) 5 2 , (84) 

the integration interval is changed to 0 < T < 1, and l4i(r,z,t) can be written as 

(85) 

(86) 

^ ' • t > ^ A r ± ( r - 1 , H . V r ) - v . i g ( ^ 1 ± r ) + i^)- ( 8 7 ) 

Assuming A jt 0, one may notice that either w+ or w_ has a singularity inside 0 < T < 1, de­
pending on the values of A, 6, and A. If 1 < A < 2 + A/s 2 , then w+(r\z,t) becomes singular at V 
= I \ = | l - A + y/\ + A A / s ; ) / A . If A > 2 + A/s;, then ui_(r;z,() becomes singular at T = T, = 



I A — 1 — y ' l + AA/s 3,} /A . These singular points are never the end-point of the integration interval, and 
so /*i(r ,2,t) can be considered as the Hilbert transform: 

J±( r , z , i ) = J j A ^ d r , 0 < T, < 1, (88) 

where / (T) can be obtained from (86), (87). The integral is interpreted as a Cauchy principal value. The 
subroutine DOIAQF from the NAG library [11] is suitable for this integration. The subroutine employs a 
modified Clenshaw-Curtis integration scheme [12] and % global acceptance criterion for error estimation [13]. 
The same type of singularity is found also in Ji(r, z,t). 

If A = 0, u/_(r ;z , t ) has an end-point singularity at T = 1, while u>+(r;z,t) has no singularity point 
inside the interval. This singularity can be removed by the variable transformation from f to { by 

r = l - e - f . (89) 

Then, 1^ reduces to 

—r--(£-^)g •d?, (90) 

where A = 2 e _ f — e - 2 * . As £ tends to infinity, A tends to zero, and the H function tends to H{z/2y/i). If A 
approaches zero, Yo(s0VA) in $ and Mo tends to —oo. To avoid this difficulty, let us consider the following 
polynomial approximation [14]: 

Y0(x) = | I n ( | ) Jo(*) + ao + ai ( | ) 2 + a 2 ( | ) 4 + . . . + + a 6 ( | ) l 2 + £, 0 < x < 3, |e| < 1.4x 10" 8 , (91) 

where a 0 = 0.36746691, a, = 0.60559366, a2 = -0.74350384, a 3 = 0.25300117, a 4 = -0.04261214, <t5 = 
0.00427916, a 6 = -0.00024846. 

Substituting s0VA into x in (91), we may approximate Yo(s„y/A), for large £, by 

Y0(s.y/A) as ^ (la ?g-(]+<*>, M*OVA) « 1. (92) 

Then, <I>(r, s„VA) can be approximated, for large f, by 

*(r , «„%/ ! )* i In ( i ) , (93) 

and Afo(s©-\/A) becomes proportional to (£ 2 + const) for large £. Thus, in the interval [£«,oo), where £ c 

is determined so that the approximation (92) holds, (90) can be calculated as [15] 

°>Ha){;-'"-f--'--:M'w)}-
In therest of the interval, i.e., [0,£ e], (90) is evaluated numerically by Gaussian quadratures without difficulty. 
The same type of singularity occurs also in hir, z,t). 
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4.2.2 J 4 2 (r ,z ,*) 

In the interval s > ss,a and 8 become complex. For a complex argunent, the error function can be evaluated 
by the following formula [16]: 

erf(i + yi) = R{x,y) + il(x,y), (95) 

where 
e~" 2 » ^ , - - i - 3 

R(x,y) = erf(r) + — ( 1 - cos2xy) + - e " * £ ^ T + 4 ^ " ^ ' »>' < 9 6 ) 
n=l 

/ ( * ' y ) = 2̂ r~ S i n 2 l y + *'"*' 5Z n* + 4x*g"ix'y)' ( 9 7 ) 

n=l 
fn(z,y) = 2x — 2r cosh(ny) cos(2a:y) 4 n -sinh(ny)sin(2zy), (98) 

and 
?n(a;.y) = 2xcosh(nj/)siD(2r2/) + n -sinh(nj/)cos(2xy), (99) 

With (95)-(9P) and the variable transformation: 

• J - l . (100) 

•^42(r)^,0 can be rewritten as follows: 

/«(•-,-*,0 = £exp (-^ - (X + sl)tj j * ( i = n ) / « i ( r , z , 0 - W r , * , * ) } , (101) 

where 

J«i(r,*,<) = / -yrr-r-{A(y)sm((l-y)- BMco^a-y)}—^- / , d 7 , 

5(7) 

(102) 

/•« e-»J<7' * ( r , s o X / l + 7 2 ) 
Un(r,z,i)= I _ _ S ( 7 ) - — i - - ^ 7 , (103) 

* ^T) [W„( S 0 N/TT7)] 

^(T) = ^(7)- (A-2)4 , B(-/) = yL{7) + ^ \ , (105) 
SQ I S S ) 

01 12 
£>(7) = (7 2 + D«r(7) + — ( A T

2 - A + 2) + ^ - , (106) 

5(7) / ( 7

2 A , 1 ^ 2 x 5 ( 7 ) + n.4( 7 ) f 1 / V ^ V l 

, 1 ^ 2xB( 7 ) - n.4( 7 ) / 1 / ^ Vt \*\ 

< r ( , r - A V + ( A - 2 ) 2 , fi = ± . + ± , I = - i f i . (108) 

The function <£(x) vanishes quite rapidly for x > 1. Therefore, /.|->i(r, *,() may be evaluated onlv for 
x < 1. 
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4 . 3 E v a l u a t i o n o f h{r\z\i) 

By a variable transform, 
* = vF+-*> ( 1 0 9) 

^2( r » x i0 c a n D e rewritten as 

where 

r , ( ) = ^ ^ / " e - " f e t f c ( ^ - Vfc) K(f)• (r, V ^ T x ) * , (HO) 

^({) = 5 —, (in) 
f {Af» + (1 - A)A + f } [ M 0 ( v l 5 ^ ! ) ] 

If - J - - v/A? > 0, then the argument of the complementary error function is positive for { 6 {\f\ < £ < 
^ } . Then, the combination of the exponential and the complementary error functions can be evaluated by 
using the H function defined by (57): 

•"*•* (i5r" ^ ) = e x p ( - 5 - < 2 <)* G T ? " ^ ) ( 1 1 2 ) 

For £ g {( > ^ } , the above combination can be calculated as follows: 

(113) 
If 7 T - — \ / \ 7 < 0, then the argument of the complementary error function is always non-positive. (113) 

can be used for the entire integration interval. 
In summary, U(r, z,t) can be evaluated with the following formula: 

h(r,z,t)- i(A-l)A { 
e - * / „ + { /„ (•£,) - e~£l23 ( ^ j ) } ] , for ^ - v/At > 0, 

hi(V\) - e -^ /2 3 (v / A)] for ^ - V A 7 < 0, 
(114) 

where 

hi = J ^ / « « K , "here / „ « ) = e'^'H (jj= - St() tf ( 0 * (r, v ^ 7 ^ ) , (115) 

hi(k) = 1 ° ° / « « ) < « , where / 2 2 ( £ ) = 2 e - j £ A - « ) * (r, >/« 2 - A) , (116) 

J 2 3 ( t ) = jf°° / a K K . "here / 2 3 ( 0 = e-<*'ff (v 7 !* - ^ ) tf « ) * (r, V ^ T A ) , (117) 

Due to the exp(—£2f.) term, the interval for I22 may be replaced by a finite one. 

4 . 4 O s c i l l a t i o n of I n t e g r a n d s 

Due to the presence of $( r , s ) , all integrands in Ni{r,t)t . /^(r , r ,*) f and q(r,t) oscillate. How rapidly they 
oscillate depends on how large r is. For the cases of h{r^z,t) and 7^(r,2,/), the integrands vanish quite 
rapidly because of the term, exp(—[&t)t so that the integration interval can be considered to be finite. If the 

computer underflow limit is t~u, then the integration may be performed in the interval of 0 < s < %/— — X. 
On the other hand, the integrands of h(r,z,t) and h(r,z,t) vanish much more slowly, so one may have to 
integrate over hundreds of cycles of oscillation to evaluate the integrals with enough accuracy. For such slowly 
convergent integrands, the e1 -transformation for slowly convergent series and integrals [17] is employed. 
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For the evaluation of the flux, j 2 ( r , t), we may consider the case without the function, * [r, v ^ 2 - A j , in 
the above formulation. Here we do not have oscillation, so numerical evaluation is easier. However, without 
oscillation, the evaluation of (116) for z = 0 or very small z needs special care. In h(z,t) the integral 
corresponding to (116) is written as 

I22(k) = J°° M$W, where / 2 2 « ) = 2e"'f K((). (118) 

/ 2 2 ( i ) decreases very slowly if z is very small or zero. We can evaluate (118) by speed-up of convergence 
with the help of B-transform [13]. 

5 Numerical Evaluations 
Computer programs are implemented for AT2(r, z,<), h(z,t) and q(r,t). Ni(r,t) and j'i(i) can be calculated 
by setting z = 0 in the input data for the programs for /V2(r, r,<), and j 2 ( z , i ) i respectively. Programs are 
written in FORTRAN 77. 

5.1 Input Data Formats 
For the flux, J2(ztt), input data can be either with or without dimensions. Table 1 shows the format. For 
the flux, q(r, t), data for z or z in Table 1 are replaced by those for r or r. 

For the concentration W 2(r, z, t), one can obtain results as a function of r, z, or t, or as an isopleth. One 
must use nondimensionalized values as input data. 

5.2 Input Data 
We assume that the waste solid comes from the spent fuel of a pressurized-water reactor. The radius of 
the cylinder is a = 25 cm. Fracture width lb is 1 cm. Surrounding rock has porosity £ 2 = 0.01, whereas 
the fracture has no Ailing material (£i = 1). The diffusion coefficient is the same for both fracture and 
rock, and is conservatively chosen as that for a liquid continuum (500 cm 2 /yr) . Sorption on fracture walls 
is neglected (Ki=l). Sorption in the rock matrix is assumed to retard the matrix diffusion process by the 
factor Kn — 500. Three actinides and a stable nuclide are compared in the numerical results: 2 3 4 U (A = 
2.806X10"6 y r " 1 ) , 2 4 1 A m (A = \.^nY.\^-'- y " 1 ) , and 239Pe (A = 2.841xl0" 5 y r " 1 ) . With these values, 
non-dimensionalized parameters can be calculated as: 

4 = 0.004, A = 500, t = 1.6 x 1 0 - 3 (" [yr] 

and 
A = 1.754 x 10" 3 for 2 3 4 U , A = 0.9456 for 2 4 1 A m , A = 1.7755 x 10~ 2 for 2 3 9 P u . 

5.3 Features of Diffusive Mass Transfer in Cylindrical Geometry 
Figure 2 gives an overall idea of how the contaminant is transfered from a cylinder and is transported in the 
fractured porous rock. Shown there are instantaneous concentration isopleths, mass flux from the cylinder to 
rock, mass flux to the fracture, and flux across the rock/fracture interface for 2 3 9 P u at Fourier number t = 1, 
which corresponds to 625 yr for the parameter values shown above. The concentration in rock is larger near 
the cylinder and near the fracture. The concentration isopleth shows that the influence of the fracture en 
the concentration in the rock matrix becomes negligible beyond five radii from the rock/fracture interface. 
The mass flux from the cylinder into the fracture is calculated to be about two orders of magnitude greater 
than that into the rock matrix because of the assumed hundred-fold greater porosity in the fracture. The 
mass flux into the rock matrix becomes smaller in the vicinity of the fracture because contaminant diffusing 
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Table 1: Input data format for flux fa calculation 

(1) For values with dimensions 
Line Parameter Explanation 

1 'inp' input 'phy' to indicate that the following data have dimensions 
2 Ki.K, retardation factors 
3 DuD-i diffusion coefficients 
4 «2 porosity of rock 
5 a, t cylinder radius and half-width of fracture 
6 nxl, 'xax'* 
7 

6 + nxl 
A decay constants 

nxl+7 nt, 'tax'* 
nxl+8 

nxl+nt+7 
t time 

nxl+nt+8 nz, 'zax'* 
nxl+nt+9 

nxl+nt+nz+8 
z distance from the fracture/rock interface 

(2) For nondimensionalized values 
Line Parameter Explanation 

1 'inp' input 'non' to indicate that the values are nondimensionalized. 
2 A, ft 
3 nxl, 'xax'* 
4 

3 + nxl 
A Thiele moduli 

nxl+4 nt, 'tax'* 
nxl+5 

nxl+nt+4 
t Fourier numbers 

nxl+nt+5 nz, 'zax'* 
nxl+nt+6 

nxl+nt+nz+5 
z n jrmalized distance from the fracture/rock 

interface 

* For these character data, 'var' or 'par' can be input. If 'var' is input, that variable is considered to be 
principal and others are parameters. 
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Table 2: Input data format for concentration calculation 

(1) For an isopleth: 
Line Explanation 

1 'inp' input 'contour' to indicate that the following data are for an isopleth. 
2 A, 6, A 
3 t 
4 nr 
5 

: 
nr+4 

p normalized distance from the cylinder center 

nr+5 nz 
nr+6 

nt+nz+5 
2 normalized distance from the rock/fracture interface. 

nr+nz+6 nline number of contour lines. Contour lines are drawn for 1 0 _ 1 to l o _ 1 ~ n ' l n e . 
(2) For one variable cases: 

Line Parameter Explanation 
1 'mp* input 'one-dim' to indicate that the following data are for one-variable case. 
2 A,6, A 
3 nr, 'rax'i 
4 

nr+3 
r 

nr+4 nz, 'zax'J 
nr+5 

nr+nz+4 
z 

nr+nz+5 nt, 'tax'J 
nr+nz+6 

nr+nz+nt+5 
t 

JOne of these three must be input as 'var', 'par', or 'fix'. The variable for which 'var' is input is considered 
as the horizontal axis. If 'par' is input, the variable is a parameter. 
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Figure 2: Illustration of nuclide migration at 625 year, or Fourier number 1: (a) isopleths of normalized 
concnetration in fracture and in rock, (b) normalized flux from waste cylinder to rock, and (c) normalized 
flux from fracture to rock. 
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Figure 3: Mass fluxes for three radionuclides and a stable nuclide from the cylinder to the fracture at the 
cylinder surface as a function of time. Parameters from Figure 2 apply. 

from the fracture reduces the concentration difference between the surface of the cylinder and inside the rock 

m a T h e mass flux across the interface between rock and fracture is zero at the surface of the cylinder (r = 1) 
because of the boundary conditions at r = 1. The concentration difference increases w.th the distance from 
the cylinder surface because of the assumed larger retardation factor and smaller porosity in rock matrix, 
so concentration in the rock matrix decreases faster with distance than in the fracture. Mass flux across the 
interface starts to decrease after it reaches the maximum because both concentrations in the fracture and in 
the rock matrix approach zero. 

The maximum results from mass transfer from the cylinder directly into the rock matrix and lrom 
diffusion parallel to the fracture plane. In the plane model (Figure 1(a)), where matrix diffusion is assumed 
to be only perpendicular to the fracture plane, the diffusive mass flux at the fracture/rock interface shows 
the monotonically decreasing profile against the distance from the source. The comparison between the two 
models is mentioned later. 

Figure 3 shows the changes of mass flux from the cylinder to the fracture with Fourier number for three 
actinides and a stable nuclide. In very early times effect of decay is not apparent. Curves for shorter-balf-life 
nuclides deviate from that k a stable nuclide at an earlier time and reach steady state. For a stable nuclide 
the mass flux approaches zero as time increases. Because of the loss by radioactive decay during diffusion in 
the medium less of the shorter-half-life nuclides will reach a given distance from the surface. Therefore, the 
steady-state concentration gradient is steeper for shorter-half-life nuclides. Thus, radioactive decay enhances 
the long-term mass transfer from the cylinder to the rock matrix and to the fracture. 

In Figure 4 mass flux of 2 3 9 P u from the cylinder to the rock matrix is depicted as a function of Fourier 
number. The location z = 0+ is located at the rock-matrix side of the interface. The curve for .- = 0+ is, 
therefore, a hundred-fold less than that for ; i ( t ) , shown in the previous figure. In early times the effect of the 
fracture on rock-matrix diffusion is limited to the vicinity of the fracture, and there the mass flux is much 
lower than the mass flux to the rest of the rock matrix. For example, at t - 10 3 , in r > 0.1, the mass flux 
from the cylinder is virtually uniform, but the difference between the flux in the region z > 0.1 and the flux 
at the fracture-rock interface is large. As time increases, the affected region extends to greater r, and the 
differences in mass fluxes become small. At t = 10" and later the mass fluxes are essentially uniform over z. 

Figure 5 illustrates the effect of the Thiele modulus, or radioactive decay, on the mass flux to the fracture. 
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Figure 4: Normalized mass flux of 2 3 £ l Pu from the cylinder to the rock matrix at the cylinder surface as a 
function of Fourier number. Four curves depict the effect of diffusion from the fracture to the rock matrix. 
Parameters from Figure 2 apply. 

In early times, for long-half-life nuclides, radioactive decay has no effect. At t = 1 0 - 2 only 9°Sr and 3 H have 
short enough half-lives to affect the mass flux. By t = 10 2, mass fluxes of 2 3 4 U , 2 3 9 P u , and M 1 A m are also 
affected by radioactive decay. A curve for each Fourier number starts to increase at some value of the Thiele 
modulus. Curves merge with each other at large Thiele modulus. 

Figure 6 shows the profiles of the mass flux of 2 3 9 P u at the rock/fracture interface from the fracture to 
the rock matrix as a function of distance from the waste surface. As seen in Figure 2, there is a maximum 
along r, which is quite different from what has been observed in planar geometry in the previous study [19]. 
At r = 1, the mass flux is zero because of the boundary conditions (21) and (23). Because diffusion in the 
rock matrix is slower than in the fracture, the concentration in the fracture is always larger than that in rock 
matrix if compared at the same distance from the cylinder surface. As r tends to infinity, both concentrations 
tend to zero. Therefore, there should be a maximum mass flux between r = 1 and infinity. The maximum 
value decreases and the location of the maximum advances with time. Because both concentrations approach 
steady state, the profile for I = ID"8 shows only slight change from t = 10 a . 

5.4 Validity of the Cylinder Model 
As material is released, the cylinder radius will decrease with time, so the boundary conditions (21) and (23) 
may be valid only within limited time. The waste is in a cylindrical borehole, with water filling the annular 
space between the waste and rock. Liquid in the annulus will be well mixed by diffusion and convection. 
If the liquid is saturated at the waste surface, it will be saturated throughout the annulus. Therefore, the 
saturated concentration at r = 1 will maintain. 

The finite initial inventory of radionuclides in the waste cylinder requires an upper bound of time for 
applicability of the present model. For this purpose we consider a cumulative mass release from the cylinder. 
Cumulative mass releases to the fracture and to the rock matrix are defined as: 

A>,(fh i: Ji(t)dt • 2Ta24[g], (119) 
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Figure 5: mass flux from the cylinder to the fracture as a function of Thiele modulus. Typical radionuclides 
are indicated at the corresponding Tbiele Moduli, which can be calculated by assuming the parameter values 
applied in Figure 2. 
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Figure 6: Diffusive flux across the interface between rock and fracture from fracture to rock matrix, as a 
function of distance from the cylinder surface. The curve for Fourier number of 10,000 is so close to that for 
100. 
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and 
r' ri-f -

M,(i)= / h(i,r)dz • 2x2xadf [g], (120) 
Jo .'o 

respectively. By (27), (29), (28), (30) and (13), (119), (120) can be written in terms of Fourier number a«id 
non-dimensionalized mass fluxes, j \ (i) and j 2 ( z , / ) as: 

D t' 
M1(t) = 4ira2klK^N' i i ( r )d r , (121) 

D2 JO 
and 

M2(t) = ixa3e2K2N' / / j2(z,r)dzdr, (!22) 
Jo Jo 

respectively, where I is Fourier number. 
From the numerical results shown in Figure 4, the 2-dependency of h(z,t) is becomes negligible at later 

times, and the value of j2(z,t) at the cylinder ends is always the greatest in the surface exposed to the rock 
matrix. So, instead of calculating the integral with respect to z in (122), we approximate the integral by 
the value of j2(z,t) at the cylinder ends multiplied by the length, " | - > . Then, (122) can be estimated 
approximately, but conservatively as follows: 

M2(t) < i^k2N'e2 (| - 6J J'h (y?fi,TJ dr. (123) 

If the initial inventory of the nuclide of interest in the unit length of the waste cylinder is w° [g/cm], 
amount of the nuclide in the cyhnder L is Lw° [g]. Normalized with this amount, the total cumulative release 
of the nuclide from the cylinder to the fracture and to the rock matrix is now written as: 

The present model is valid until Af t o t a ] ( t ) becomes unity. 
For a spent fuel we assume L = 300 cm, where L is the length of a spent-fuel assembly. In one assembly, 

there are 2,300 g of 2 3 9 F u , 230 g of M 1 A m , and 88 g of 2 3 4 U [18]. If the solubility of these three nuclides is 
assumed to be N' = 1 0 - 9 g/cm 3 , we have: 

For 2 3 9 P u , w° = 7.67 g/cm, R = 5.12 x lO" 4 

For 2 4 l A m , w° = 0.767 g/cm, R = 5.12 x 10" 3 

For 2 3<U, w° = 0.293 g/cm, R = 1.34 x 10" 2 . 

In Figure 7 plotted are JWt o t a l(0 Versus Fourier number. These curves do not reach unity even at 104 of 
the Fourier number, which corresponds to 6.25 million years, for 2 3 9 P u , M 1 A m and 2 3 4 U . 

In Figure 8 the amount of radionuclide released into rock matrix is compared with that into the fracture. 
Instantaneous release rate into the fracture is defined as: 

rhi(i) = 2»- 2naj1{t) = it,ab,ff' \£l^-)ji(,t). (126) 
V &D2J 

Instantaneous release rate into the rock matrix is defined as: 

where 

*-*. . . H»-
m2{t) = 2 x 2ira / h(z,t)dz = iiraD2N'e / h(z,t)dz 

Jo Jo 
(127) 
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Figure 7: Cumulative mass release from the cylinder, normalized by the initial inventory of each species in 
the cylinder of 3 m high. 

In Figure 8 release rates are normalized by the factor izafyN'. Even though the mass flux from the 
waste into the rock matrix is low relative to that into fracture, the larger waste surface exposed to the matrix 
and the greater assumed matrix sorption result in greater release rate to the matrix than to the fracture. 
This indicates that for the parameters assumed here, the earlier mass-transfer theory [4] for a waste solid 
completely surrounded by porous rock can adequately predict release rates in low-flow conditions in fractured 
rock. If tortuosity significantly reduces the diffusion coefficient in the rock matrix and not in the fracture, 
mass-transfer directly from the waste to the fracture becomes more important. 

5.5 C o m p a r i s o n of t h e Cyl inder Model wi th the Planar Model 
In [19] we studied the one-dimensional advective-dispersive transport in the fracture associated with one-
dimensional matrix diffusion in the planar geometry. The contaminant is released only to the fracture. We 
compare in this section the planar model with the cylinder model. We make the following assumptions for 
the planar model. The planar source exposed to the fracture is assumed to be the constant-concentration 
boundary. No advection is assumed in the fracture (v = 0). 

The models are compared in two ways: (1) mass fluxes from the source, and (2) far-field transport. 
For mass transfer from the source, we adopt from [19] the expression for the mass flux from the plane 

source to the fracture, comparable to (27): 

• A t A -i(0 = S ^ ^ I ^ { e X P (-i(7~r4) vT 

'-y/W-f2A) A (i - fAfl-
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Figure 8: Normalized release rate of nuclides from a 3 m-high waste cylinder. Geologic parameters from 
Figure 2 apply. 
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+ ('X + 1±\ e x p (-XAf - Vlf2) erfc I . / * ' - J'Xtf-li'A)) \ d/i, t > 0,(128) 

where 

A = - ^ L r , (129) 

and 

e : porosity of the rock matrix (the fracture is assumed to be completely open in the planar model), 

Rj : retardation factor for the fracture transport, 

ftp : retardation factor for the matrix diffusion, 

D : diffusion coefficient in the fracture, and 

Dp : diffusion coefficient in the rock matrix. 

Here the symbol * indicates that the quantities have dimensions. The subscript p stands for planar geometry. 
For far-field transport, the steady-state solutions are useful. From (65), as i increases, the concentration 

in the fracture for the cylinder case approaches: 

N{(r)= \ >- - ( A - l ) A / _ r i - < a j £ U < p , r > l . (130) 

Superscript s stands for steady state. For the planar model, from [19] the steady-state solution for the 
concentration in the fracture for zero advection and the constant-concentration boundary is available as: 

JV'(i) = Af*exp< bh z \ ff + ̂ -h-^i) (131) 

where z is the distance from the plane source. 
For the numerical results shown in Figures 9 and 10, the values in Table 3 are assumed. 
In Figure 9 the mass flux from the source, normalized by the source-boundary concentration, is plotted 

against time in years. For the cylinder, the curves are identical to the curves in Figure 3; only the scaling 
of the axes is changed. In early times both geometries give close results. As time proceeds, the planar 
model yields smaller mass fluxes, and the difference between the two models at steady state is greater for 
longer-lived radionuclides. 

In cylindrical geometry, the contaminant is dispersed through more volume of the medium as it progresses 
farther away from the cylinder-source surface. So the mass transfer from the source is greater in cylindrical 
geometry than in planar geometry. On the other hand, because there is no matrix diffusion parallel to the 
fracture, the diffusive flux at the interface between fracture and rock becomes larger in the planar model 
than in the cylinder model, especially in the vicinity of the source surface. More material would be removed 
from the fracture in the planar model, resulting in greater mass transfer from the source. The numerical 
results in Figure 9 show that cylindrical geometry increases mass transfer from the source more than does 
one-dimensional matrix diffusion. 

In Figure 10, the normalized concentrations in the fracture at steady state are compared. The horizontal 
axis represents the distance from the source surface; r — a, in the cylinder case, and z in the planar case. 
In the region near the source, tK j planar model gives greater concentrations, whereas in the far region the 
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r >;;ure 9: Comparison of the diffusive mass flux from the source in the cylinder model with that in the plane 
model. Parameter values in Table 3 apply. 

Table 3: Summary of assumed parameter values 

nomenclature value 
cylinder planar 

value 

cylinder radius a — 25 cm 
fracture aperture b 1 cm 
porosity fracture 

rock 
Ei 
£2 e 

1 
0.01 

water velocity — V 0 
retardation coefficients fracture 

rock 
A", 
I<2 RP 

1 
500 

diffusion coefficients fracture 
rock 

D 0.05 n r / y r 
0.05 n r / y r 
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Distance from source surface, m 

Figure 10: Concentration profves in the fracture, normalized by the source concentration. Parameter values 
in Table 3 apply. 

cylinder model is more conservative. For shorter half-life nuclides such as 2 4 I A m , the difference is negligible, 
but for 2 3 4 U , the difference is prominent. 

Because the contaminant is released into the rock matrix as well as to the fracture in the cylinder model, 
less contaminant in the fracture can diffuse into the rock matrix than in the planar model. Consequently, 
for the cylinder more contaminant "s transported in the fracture, resulting in greater concentration in the 
far field. For short-lived nuclides, because radioactive decay is predominant, the effect of parallel matrix 
diffusion is not apparent. 

Thus both for the near-field mass transfer and for the far-field transport, the cylinder model gives con­
servative results, provided that molecular diffusion is the sole transport mechanism in the medium. 

6 Conclusions 
Mass fluxes to the fracture and to the rock matrix reach steady state for radioactive contaminants. Shorter 
half-life nuclides reach steady state earlier. In very early times the effect of radioactive decay is negligible. 
Radioactive decay enhances mass transfer from the cylindrical waste solid, from the comparison of the 
magnitudes of the steady-state mass fluxes. 

Because of diffusion from fracture to rock, the mass flux from the cylinder to rock matrix is smaller in 
the region near the fracture than in regions far from the fracture. The effect of the presence of the fracture 
is limited to a shallow region in the rock matrix in early times. From the numerical result for ^ P u , after a 
Fourier number of 100 the fracture effect on the mass flux from the cylinder to rock matrix can be neglected, 
and the mass flux to the rock matrix becomes virtually constant over the waste surface. 

The present model is applicable for more than six million years, which is long enough for the purpose of 
performance assessment study. 

Although the mass flux from the waste to the fracture can be as much as hundred-fold larger than that 
to the rock matrix because of complete openness of the fracture, the total amount of the nuclide released 
into the rock matrix can become greater than that to the fracture because the wacte surface in contact with 
the rock mati..c is much larger than that in contact with the fracture. Under such conditions the model for 
a cylinder surrounded completely by porous rock matrix is adequate. 
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Three-dimensional diffusion in the rock matrix, as well as the release from the cylinder to the rock 
matrix and to the fracture, result in quite different features of transport in the fracture, when compared 
with transport in the planar geometry. The cylinder model is more conservative than the planar model with 
respect to mass transfer from the source and to far-field transport. 

Appendices: On Weber Transforms 

A . l D e r i v a t i o n o f ( 3 3 ) 

Integrating the left hand side of (33) with respect to r, we obtain: 

For large arguments of Jo{z) and Yo(z) [20], 

J o M « ^ { c o s (« - I) + O ( | , | ->) * l I m '1} , (133) 

y„(«) « / J{s in (* - I) + O (kl"1) el I m '!} , (134) 
|arg j | < it, \z\ —» 30, z complex 

For a real x, these reduce to 

Therefore, 

h(x)KyJ^{c<x(x-^+0{x-1)}, (135) 

y ° ( x ) s : \ / J { s i n ( i - D + o ( i " 1 ) } ' < 1 3 6 ) 
X —• CO. 

$ ( r , s ) ~ o ( r - 1 ' 2 ) . (137) 

We assume that f(r) is Weber-transformable, i.e.. the integral Jf° f(r)-Jfdr exists [7], and / ( r ) is continuous 
over r € [l,oo). Then, 

}{r)~0{v-^-"), £ £ ~ O ( r - 3 / 2 - « ) , Q > 0 . (138) 

Because $ ( l , s ) = 0, the first term of the right hand side of (132) vanishes. If we integrate the second term 
in the right hand side of (132) by parts once more, then we obtain: 

Similarly, 

lim r / W - T - = 0. 
r—oa or 

At r = 1, ~ can be evaluated as follows [21]: 

a* = s{- Ji{r*)Ya(s) + Ms)Yi(Ts))r=l = s (~\ = — 
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Therefore, the first term in the right hand side of (139) becomes: 

By differentiating <£(r, s) twice with respect to r, 

From (14C, and (141), the result follows. 

A.2 Inverse Weber Transform of Wo(s) 
Consider the following problem: 

r dr \ dr j 
-A / = 0, r > l , (142) 

rur \ u r / 
subject to 

/ (1) = 1, /(oo) = 0. (143) 

Applying the Weber transform on (142) yields 

~™ = -\*Ti- ( 1 4 4 ) 

This implies that the Weber transform of the solution to (142) is (144). The solution to (142) is known as 

/M = \ J 
A'o ( i / I ) 

Then, the inverse Weber transform of (60) is obtained as above. 
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