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Abstract

Numerical illustrations for transient mass transfer from an infinitely long cylinder intersected by a planar
fracture are shown based on Chambré’s exact analytical solutions. The concentration at the cylinder surface
is maintained at the solubility. In the fracture contaminant diffuses in the radial direction. In the rock matrix
three-dimensional diffusion is assumed in the cylindrical coordiante. No advection is assumed. Radioactive
decay and sorption equii:drium are included. Comparison between the cylinder model and the previous plane
model is given. Radioactive decay enhances the mass transfer from the cylinder. Even thongh the fracture
is assumed to be a faster diffusion path than the rock matrix, the larger waste surface exposed to the matrix
and the greater assumed matriX sorption result in greater release rate to the matrix than to the fracture.
The cylinder model gives more conservative results than the plane model with respect to the mass transfer

frora the source and the far-field transport for the diffusion-dominant field.



1 Introduction and Summary

This paper presents the numerical results of an analytical study for mass transfer and transport of radionu-
clides released from a cylindrical waste solid into water-saturated fractured porous rock. The purposes of
this study are (1) to predict the diffusive mass flux from a cylindrical waste solid into a planar fracture
and the surrounding rock matrix for the low-flow conditions wherein near-field mass transfer is expected
to be controlled by molecular diffusion [1] and (2) to investigate the effects of cylindrical geometry and of
multidimensional matrix diffusion including diffusion in the directions parallel to the fracture plane.

Previous analytical studies [2]-[6] of the advective transport of dissolved contaminants through fractured
rock have emphasized the effect of molecular diffusion in the rock matrix in affecting the space-time-dependent
concentration of the contaminant as it moves along the fracture. Matrix diffusion only in the direction normal
to the fracture surface was assumed (Figure 1(a)). Such studies illustrate the far-field transport features of
fractured media. To predict the time-dependent mass transfer from a long waste cylinder surrounded hy
porous rock and intersected by a fracture, the present study includes diffusion from the waste-solid surface
directly into porous rock, as well as the more realistic geometry shown in Figure 1(b).

In the following are presented the derivation of an analytical solution for the time-dependent mass
transfer from the cylinder for low-flow conditions and computer-code implementation and numerical results.
The problem was first proposed and solved analytically by Chambré.

Numerical results are shown for (1) the diffusive mass fluxes from the cylindrical waste solid into the
fracture and into the rock matrix, (2) the diffusive mass flux across the rock/fracture interface, and (3) the
instantaneous concentration isopleths in the fracture and in the rock matrix.

For the diffusive mass flux from the cylinder, effects of radioactive decay and presence of the fracture are
investigated. For shorter-lived nuclides the flux reaches steady state faster and the steady-state flux for the
shorter-lived nuclide is greater than the long-lived species. In very early times, the decay effect on release
rate is negligible.

Assuming that a dissolving solid is always present, assuming negligible advective transport, and assuming
that the fracture has a greater diffusion coefficient and less sorption retardation than the rock matrix, the
concentration in the fracture is always greater than in the rock matrix at the same distance from the surface
of the dissolving solid. Contaminant diffuses into the rock matrix across the rock/fracture interface, as well
as from the waste solid. Consequently, the mass flux from the cylinder into the rock matrix near the fracture
is smaller than the flux from the cylinder into the rock matrix in the region far away from the fracture. The
effect of the fracture is limited at early time to a very shallow region in the rock matrix. At later times, this
effect is negligible so that one can assume that the flux from the cylinder to the rock matrix is independent
of the distance from the fracture.

Even though the fracture is assumed to be a faster diffusion path than the rock matrix, the larger waste
surface exposed to the matrix and the greater assumed matrix sorption result in greater release rate to the
matrix than to the fracture. In this case, we can neglect presence of the fracture, and can apply the analyses
for a cylinder surrounded completely by porous rock [4].

Comparison of the present cylindrical model with previous planar models, wherein contaminant was
assumed to be released only into the fracture and diffusion in the rock matrix was assumed to be one-
dimensional perpendicular to the fracture plane, shows that the cylindrical model is more conservative than
the planar models with respect to the mass transfer from the source into the fracture and with respect to
the far-field transport, provided that diffusion is dominant in the fracture.

2 Assumptions and Mathematical Formulation

We consider a cylindrical waste solid of infinite length and constant radius @ {m}, intersected by a pi.nar
fracture (Figure 1). To be conservative, we assume that no waste container is present. An infinitely long
cylinder is a good approximation for a long cylinder with negligible end effects. A constant concentration N*
[kg/m?] of low-solubility dissolved species is prescribed in the water at the waste surface. The contaminant
undergoes molecular diffusion both in the fracture and in the rock matrix. The porosities of fracture and
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Figure 1: (a) Geometry and physical processes considered in the model with a single, planar, infinite fractures.
(b} Cylindrical geometry with three dimensional diffusion in rock matrix and two dimensional diffusion in
fracture. Azimuthal symmetry is assumed.



rock are g, and €2. Pores are sat_urated with stationary water. If €, < 1, the fracture is filled with porous
sediment. The fracture width, 2b [m], is assumed to be much smaller than other dimensions such as the
cylinder radius, so we assume complete mixing and uniform concentration across the fracture width.

The concentrations in the fracture and in the rock matrix are described in two- and three-dimensional
crlindrical coordinate systems, respectively. Different local sorption equilibrium constants are assumed for
the fracture and for the rock matrix. Radioactive decay is inclided, but decay precursors are neglected.
Assuming azimuthal symmetry, the governing equaticus for the space-time-dependent concentrations in the
fracture and in the rock matrix are written as:

6N1 - D1 le _ q(f ~) - P
Kl—b—r__ ~ ar( > SRRy - 7 F>a >0, 6]
2 0Ny D, 8 [.0N, 9N, .
1\2(9{ = rar(raf Dza 2 _ AEyN,, £> 0, F>a,1>0, (2}
where )
q‘(f,z):—szbz%% , F>& >0, (3)
i=0

N; : contaminant concentration in water in region i [kg/m?],
D; : diffusion coefficient of the nuclide in region i fm?/yr],
§ : diffusive flux from the fracture to rock matrix at the interface between rock and fracture [kg/m?-yr].

K; : retardation factor for region #, dimensionless, defined as

Ri=1+ 1:""'12',,_, ()

i
A : radioactive decay constant [yr~?],
& : porcsity of regicn i, dimensionless,

: radial distance from the center of the waste cylinder [m},

el

: distance from the interface between fracture and rock [m],

[

1 : time {yr], and

Kgi : sorption distribution coefficients in region i, concentration in solid phase divided by concentration in
water phase, dimensionless.

Subscripts 1 and 2 refer to fracture and rock, respectively. The hat symbol indicates the quantities with

physical dimensions; later we introduce non-dimensionalization. From the assumptions, we can set the side

conditions as follows:

Ni(#,0) =0, > @, (5)
No(7,2,0)=0, #>a, >0, (6)
Ni(a,i) = N=, i>0, (M

Ni(co, 1) =0 i>0, (8)
No(a,£,0)= N, >0, i>0, 9
Ny(o0,£,0) =0, >0, i>0, (10)

No(#,0,8) = Ny(7,0), #>a, {>0, (1)
Bl o #saiso (12



(3) and (11) provide the coupling of the governing equations.
To simplify further mathematical manipulations, we introduce the following nondimensionalization:

_ T _z - Dot
rE3, zEZ, t= i (13)
L . .
acifa M, GG (14)
DzKl €2ﬂK2 Dz
e Ry(s D) R 2,0
Al 2(F, 2, é .
N,tE—l.E—,N,,iE = = —= (15
ng= 2 M ng= TR0, 0= 2 )

The variable ¢ is the Fourier number, which measures the time of the diffusion process. A is the Thiele
modulus. Then, the system of equations (1) to (3) and (5) to (12) can be rewritten as:

8N, A8 ( 8N,
W_rar( 6r) - AN - b’ r>1, t>0, (16)
N, 10 8Ny 82N,
9N _19 222 _ 4N 1 t>0, 17
a0 rar('ar)az2 ANg, r>1, 2>0, (a7
where ON
=_222
q(r,t) = 2l r>1, t>0, (18)
subject to From the assumptions, we can set the side conditions as follows:
Ni(r,0) = r>1, (19)
Na(r,z,0)=0, r>1, z>0, (20)
Ni(l,2) =1, t>0, (21)
Ny(co,t) =0, t>0, (22)
Na(l,z,2)=1, 2>0, t>0, (23)
Ny(e0,2,8)=0, z>0, t>0, (24)
Na(r,0,t) = Ny(r,t), r>1, t>0, (25)
9N,
Tz—z-.w_OI r>a, t>0 (26)

We will solve the problemn (16)-(26). Since one of our concerns here is mass transfer from the waste solid,

we derive the following auxiliary functions:

\ . s 8N _¢ D N°
i@ =—eby a—.‘ 22, (27)
T 2
and
- AN _ DN+
jfd.88) = —esDy 2 2 ja(=,1), (28)
i=a
where aN
)= - Lt
== >0 (29)
and N
Jz )=~ ar_ L z>0, t>0 (30)

(29) and (30) are the dimensionless diffusive fluxes at the waste surface to the fracture and to the porous

rock, respectively.

In the following sections analytical forms are obtained and numerical evaluations are

shown for (18), (29}, and (30) as well as for the concentrations Ny(r,t) and No(r, z,1).



3 Derivation of Analytical Solutions

The outline of the solution method is the following: First, apply a2 Weber transform([7] with respect to r and
Laplace transform with raspect to ¢ for (16) to (18). Second, solve the second-order ordinary differential
equation resulting from (17) and obtain the double-transformed q(z,t). Third, substitute the transformed ¢
into the algebraic equation resulting from (16) and solve the resultant equation. Finally make the inverse
transforms twice to obtain the solutions. Imvortant steps to the solution are discussed below.

3.1 Application of Integral Transforms

The Weber transform of a function f(r) for the domain r > 1 is defined as:
o= [ s rdr, s>, e
1
where s is a Weber variable, real, and

&(r, s) = Jo(rs)Yo(s) — Yo(rs)Jo(s), (32)

The overbar symbol stands for a Weber-transform of f(r). With the following formula (see Appendix for
derivation):

*®18 { 8f _ 2 23
/1 - (rg) 8(r,s)rdr = ~2f(1) = £f(s), 5 >0, (33)
(16) and (17) can be transformed as
dfy | oao G2,
7+[‘1N1+-5+;A-—0,5>0,t>0, (34)
Ny | o BN, 2
—at‘—+#;Nz— 927 +;-—0,s>0,z>0,t>0, (35)
where
pi=stA LA, pi=s4, (36)

and the boundary conditions (21) and (23) have been used. Next, we apply a Laplace transform on (34) and
(35), obtaining
q

(1] +p)Vy + 3

2A
+—=0,5>0, 37
Tp
4N,
dz?
where p is a Laplace variable, complex, and the tilde, ~ , denotes the Laplace transformed variable. We will
solve (38) subject to the boundary conditions:

= 2
-(#§+p)Ng——7r—;;=0,s>0,z>0, (38)

Na(s,0,p) = Ni(s,7), s >0, (39)
dN,
e =0, s>0. (40)
- 2=

The solution to (38) satisfying (39), (40) is written as

No(s,z,p) = {ﬁx(S.pH R i — §20,z>0 (41)

!
mp(p + p3) mp(p + p3)



To obtain N 1(s,p), we need the expression for §(s,p). Dlﬁ'erentlatmg (41) with respect to z and setting 2

to he zero in the resultant expression, we obtain:

7=1/u} +p{1§71(s,p)+ %’i—”g—)}

Substitution of (42) into (37) yields

2 1
igor) = {g(P) bg(p)\/ﬁfﬂ-—P}' $20

where . -
. i
ie)=p+ui+gypi+r
Finally, substituting (44) into (41) yields:

A 1 1

2 5 2
N s,z ——— = + — eI . 530,220,
o 5.p) = rp{ i) bip)ms+p #§+p} (k3 +p)

3.2 Inversion of Integral Transforms
We first make inverse Laplace transforms of (43) and (45). Considering that

e —1d) = (VB+ )P+ B),

where l 14T
a=E—7—, f=—— <5

the reciprocal of § in (43) and (45) can he reduced to

I=1—48(a - D)5,

1 1 { 11 }
Gp-m) B-c\ypta vB+BS

Using (48) and the following inversion formulaz {8]:

b = [ seorar

_kf l u2 k
E"[ } e - g™ f(\/{ ——),k>0.
ae"“e” “erfc | a +‘2\/t- > 0.

VP+a Vit
N b
E_l [_e______ = ka3t fi ( 1 __) L >
TR, ¢ e (o g ) k20,

_kﬁ
E"l[e . }:erk(?_k\/_i)' k>0,

the Weber- and Laplace-transformed solutions (43) and (45) can be inverted to:

2 1
mf—a

Fy(s,t) = [(ﬂA-— —) F(8;0,t) — (QA - %) F(x;0, z)] ,$20, 120,

= _%/0' 3“‘3’erf(2\/_) dr - Qﬂ%n [(ﬂA- _) F(B;z1) - ( A- —) Flajz, z)}

6

(42)

(43)

(44)

(45)

(46)

{17)

(48)

(49)

(50)

52)

(53)



§20,z2>0,1>0, (54)

where
F(z;z,t) = e”/ = '“i)rerfc (z\/-+ ) (55)
o 2/7
‘The integral F(z; z,t) converges uniformly in s over {s > 0} fort >0 and z > 0 to
1 z - M2 -
rasnt = g {ee (- ) 1 (Ve )+ Sl (7 )
Ll N t) 120,220,520 56
2”2:3 erfc 2\/t'+”2\/_ , 120,220,520, (56)
where R
H(z) = e erfe(z), z complex. (57)

The first integral in the right hand side of (54) can be obtained by setting z = 0 in (56). Then, we obtain
the Weber-transformed solutions as:

Fi(s, 1) = ~Wa(s) = Wi(s;0,2) — Wi(s;0,2) - Wa(s;6,2), s 20, £ 2 €, (58)
No(s,z,8) = —Wo(s) — Wils; 2,1) = Wals; 2,8) + Wi(s; 2,8) — Wa(s;2,1), s 20, 220, £ 20, (59)
where
- 21
Wa(s) = ;-;g, (60)
Visizg) = L_(B=DA =
et = e (a4 o
1 (A=-1x ..
Wa(s;2,2) = "'me P3erfc (7 —#2\/{) , ' (62)
Wa(s;z,t) = —;—;e"‘"erf( ) (63)
and N
_— 25‘«"‘: BA -~ -5- o'A—i- ( _z_
Walsizt) = g {ﬂz H(ﬁf+ f) _—az-—ng avi+ 2ﬁ)}' (64)

Because of the uniform convergence in (56 with respect to s, we can make inverse Weber transforms on
(58) and (59) without any restriction on s, obtaining

Ny(r,t) = 1;0((\/_\/: —{L(r,0,2) + Ix(r,0,2) + Ls(r,0,1)}, r 2 1, t > 0, (65)
Na(r,2,0) = %‘/\/";’)) L n )+ h(r2,0) = I(r 2 ) + T(r, 2,00}, v 2 1, 230, 30, (66)
0
where L(r,2,1) / Wils; 2, ) 2n8)sds o 034 (67)
' T Mo(s))? e
Mo(s) = Wo(s))? + [Yo(s)], (68)

and Kg(x) modified Bessel function of the zeroth order, Jo(z) and Yo(z) Bessel functions of the zeroth order,
and &(r,s) is defined by (32). Tke first term in the right hand side of (65) and (66) is obtuned by the
inverse transform of Wy(s) (see Appendix for derivation).



(65) and (66) are the final solutions for the problem (16) to (26). The diffusive fluxes from the waste
solid to the fracture and to the rock matrix can be calculated as follows:

A= fﬁ‘zﬁi - Z{1(0,8) + I3(0,8) + 73(0,1)}, £ > 0, (69)
. I(l \/_) 1 ! 7
J2(zxt) = ‘/_'_—T) - {I -,t) + IZ(Z t) Ia(zrt) + I.,(D,t)}, z2 01 t>0, (70)
where
Ii(z,1) ~/ W(s,z,t)[M( Tl i=1,2,3,4, (71)
and the identity [9]:
P =% - ) = -2 ()

is used in the course of the derivation.
By differentiating (59) with respect to z and setting z to be zero, we obtain the diffusive mass flux from
the fracture to the rock matrix at the interface as:

g(r,t) = =I¢(r, 1) + I (r 1), {73)
vhere ®(r, s)sds
If'(r,t) = / W:(s t)— (Mol s ‘12 » £=5,6, (74)
We(sit) = 2(A 1)Aliif=erf(,ﬂ, . (75)
T -5 :
2 e~H3t [ B(BA - alaA -
We(s;t) = ;ﬂ'—_-; {737—75— (ﬁ\/—) _-—-[1_ (a\/_)} (76)

4 Mathematical Preparation for Numerical Evaluation

4.1 Classification with

We must consider three cases, A > 1, A =1, and A < 1, separately. By definition of A, (14), A > 1 means
that diffusion is faster in the fracture than in the rock matrix, which is the most likely case. The case A <« 1
could happen if the fracture is filied with highly sorbing material such as clay. In the case of A = 1, the
waste cylinder is surrounded entirely by porous rock. The solution to Nj(r,t), (65), then becomes identical
to that to Na(r, z,t), (66). By setting A to be unity, we have:

Wl(s,‘, = Wa(s; 2,8)=0,22>0,t>0, s> 0,
and o = 0, 8 = }. Therefore,

V(si2.1) = — 2L gmudt 2\
Wa(s;z,t) = “#ge ’erfc(2\/t_/,

Then, (65) and (66) both reduce tc

Ny(r,t) = Na(r,t) =

Ko(Var) + 2‘/"” e=#3 ®(r, s)sds
T Jo

Ifo(\/x) u3 [Mo(s)]2



Notice that (77) is independent of z. For a stable nuclide (A = 0), the first term in the right hand side
of (77) becomes urity, and ibe solution (77) becomes identical to the solution for temperature in a region
internally bounded by a circular cylinder with a constant temperature at the boundary, obtained by Carslaw
and Jaeger [10].

For safety assessment of waste disposal, A > 1 is likely and conservative, and is so assumed below. In
the rest of this section we consider mathematical preparation for numerical evaluation of Na(r, z,1). ji, j2,
and ¢ can be treated in a similar way.

4.2 Evaluation of IL(r;z;t)

Assuming A > 1 results in evaluation of complementary error functions of a complex argument in Wy(s; z, 1),
(64). From (47) o and @ become complex for s in

1
>80 = == 7
§7 0= /AT %)
Therefore, we must divide I4(r, z,1) into two parts:
Io(ry2,1) = Lu(r, 2,8) + Lep(r, 7, 1), (79
where
In(r, 2 t)—/"vi/(s-z p&ris)ads (80)
alnz) = J Walsiz, Mo’
o _ o(r, d
otz = [ Wtesn TR, (81)
%0 o
- 2 { 22
Wa(s; z,t) = {w(B; z,t) — w(a; z,t)}; exp \—z{ - At) (82)
and
e—* 7t 2A —
w(z;z,t) = ——ar (z\/—+ \/_> yz2=0,8 (83)
4.2.1  Iy(r,z,t)
By variable transform from s to T, defined as
5% =(1-I%s?, (84)
the integration interval is changed to 0 < ' < 1, and I4(r, z,t) can be written as
1
Ta(r,z,t) = —exp (——- - At) {1} (r 2,t) = I (2, 1)), (85)
where
1
oV 1 — %)
IE(r,2,1) :/ e-“-r’)’i‘wi(r;z,t)-?;(rﬁ——l——,dr, (86)
o [Mo(s.v1—T7)]
AT £ (A~ 2) Vit
Iz,0)=
we(Di20) = Rr R —oya a0 — a7l ( (lir)"'zf) ®7)

Assuming A # 0, one may notice that either wy or w_ has a singularity inside 0 < ' < I, de-
pending on the values of A, b, and A. If 1 < A < 2 4 A/s2, then w4([;z,t) becomes singular at I’

=T, = {1-a+ FXB]I} /A IEA > 2+ A/s], then w_(T;z,t) becomes singular at T = T, =



{A ~1-1+4 ,\A/sg} /A. These singular points are never the end-point of the integration iaterval, and
50 I§;(r, 2,t) can be considered as the Hilbert transform:

1
IE(r,z,0) =/0 rfffl}. dr, 0<T, <1, (88)

where f(T') can be obtained from (86), (87). The integral is interpreted as a Cauchy principal value. The
subroutine DO1AQF from the NAG library [11] is suitable for this integration. The subroutine employs a
modified Clenshaw-Curtis integration scheme [12] and = global acceptance criterion for error estimation [13].
The same type of singularity is found also in I)(r, z,).

If A =0, w_(T;z,1¢) has an end: point singularity at T’ = 1, while w;(T;2,t) has no singularity point
inside the interval. This singularity can be removed by the variable transformation from T to £ by

Fr=1-e¢. (89)
Then, I; reduces to
1 ] P{r soVA
I5(r2,1) :/ PR (2—\/;&—6 + = )——(———)idf, (90)
o 2V [MotsevA)]

where A = 2e¢ —e~2€. As £ tends to infinity, A teuds to zero, and the H function tends to H{z/2/). If 4
approaches zero, Yo(s.,\/Z] in ® and M, tends to —oo. To avoid this difficulty, let us consider the following
polynomial approximation [14]:
Yo(z) = 21 (3) To(z) + a0 +a (5'2+a (£)4+~--++a (3
o(z) =~ g ) Jo o+a; 3) 23 613
where ao = 0.36746601, a, = 0.60550366, a» = —0.74350384, a3 = 0.25300117, ay = —0.04261214, a5 =
0.004279186, ag = —0.00024&45.
Substituting s,v/4 into z in (91), we may approximate Y3(s,V/A), for large £, by

12
) He 0<z <3l < 14x107%, (91)

1 2
Yo(soVA) & = (ln % - s) +a0, Jo(soVA) ~ 1. (92)
Then, &(r, so\/;l-) can be approximated, for large £, by

3(r,5VE) ~ Lin (}) , (93)

2
and [Mo(s.,\/Z)] becomes proportional to (€2 + const) for large £. Thus, in the interval [£., 00), where £,
is determined so that the approximation (92) holds, (90) can be calculated as [15]

01~

H(%ﬁ)%]né/j’ [1+{% (ln;—g-f)wo}-] ldf

= 1 () {5 - (i)}

In the rest of the interval, i.e., [0,&], (90) is evaluated numerically by Gaussian quadratures without difficulty.
The same type of singularity occurs also in Is(r, z,t).
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4.2.2  Iy(r,z,0)

In the interval s > s,, o and § become complex. For a complex argunent, the error function can be evaluated
by the following formula [16]:

erf(z + yi) = Rz,y) + il(z.3), (%5)
where N o 1.3
e~ T 2 _.s e 1"
R(z,y) = erf(z) + -25(1 — cos2zy) + ol gl n—zﬁz—:;f,.(:, v), (96)
Hz,) = S sin? 223 () o7
T,y) = 5—sin2zy+ n=1n2+4:29n z,y), (o1
Jn(z,y) = 2z — 2z cosh(ny) cos(2zy) + n - sinh(ny) sin(2zy), (98)
and
gn(2,y) = 2z cosh(ny) sin(2zy) + n - sinh(ny) cos(2zy), (99)

With (95)-(92) and the variable transformation:

2
1=\ (100)
I42(7, z,t) can be rewritten as follows:
2 22 2 b
Lip(i2,t) = S exp (—ﬂ —(x +5.;)t) {4’ (ﬁﬂ) Igpi(r, z,t) — 1422("12:75)} s (101)
where
0 g=as3ty” ®(r,sv/1+72
Lioy(r,2,t) = / %{A(ﬂsin(ﬂﬂ - B(7) 605(97)]L———)7d7, (102)
7 [Mo (so/TH77)]
00 ,—s3ty? ®(r se0/1+72
Lia(r,z,1) = CD( ; S(7) ( )zd‘h (103)
7t (o)
1 4z 3 i
W= HE) =g =T Y g (100
A
A =ot)-(a-0% B =r{otn+22}, (105)
2 A2
D) =(r"+ No(n + 55 (8y" -8 +2) + 5, (106)
B(v) 192\ 1 2:B(y) + nA 1 N A%
S0 = G ewp (22 + ;g%‘ﬁm{'z (-35) } (107)
1 & 22B(y) — nA 1 VI
+;ﬂ§%7‘)“f’{'z (n+ %) }
ol = B2 4 (A=2R Q=5+ 2, zzéﬂ. (108)

The function ¢(z) vanishes quite rapidly for z > 1. Therefore, I40,(r, z,t) may be evaluated only for
r< 1.
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4.3 Evaluation of h(rizit)

By a variable transform, _
€= VTR, (109)

I(r,z,t) can be rewritten as

L 2,8) = (A_I)A/ﬁe“ferfc(2f ff) K (0 (r VE—2) &, (110)

T
where 1
k(&) = - (111)
¢{ae+~an+§} Mo (VET)]
1If ﬁ; —~ /At > 0, then the argument of the complementary error function is positive for £ € Vicex

£}. Then, the combination of the exponential and the complementary error functions can be evaluated by
using the H fuaction defined by (57):

e~ *Eerfe (ﬁ - Jt'e) = exp (—% - f’t) H (2f ff) (112)

For £ € {¢€ > £}, the above combination can be calculated as follows:

)= (=) 5o (- - 5).

If =% ~ +/AL < 0, then the argument of the complementary error function is always non-positive. (113)

can be used for the entire integration interval.
In summary, I2(r, z,t) can be evaluated with the following formula:

L(rzt)= 1(A—1) e+ {I“, () - ¥ ha ()] foraiz-vai>o, (114)
o s La (V) - B"‘lea(\/x)} for 3% — Vit <o,
where
In= ‘/\/;:: fo1(€)dE, where fo1(€) = =€ H (_2% —\/56) K@ (r’ VEr - '\) : (115)
(k)= [ ), where ) = 27 KO0 (r VET=T), (116)

)= [ fa(@)d, where (@) = (Vi - 37 ) K2 (VTR ()

Due to the exp(—£2t) term, the interval for I»3 may be replaced by a finite one.

4.4 Oscillation of Integrands

Due to the presence of ®(r,s), all integrands in N;(r,t), Na(r,z,1), and ¢(r,1) oscillate. How rapidly they
oscillate depends on how large r is. For the cases of I3(r,z,t) and I4(r,z,t), the integrands vanish quite
rapidly because of the term, exp(~u3t), so that the integration interval can be considered to be finite. If the
computer underflow limit is ™Y, then the integration may be performed in the interval of 0 < s < ,/—- - A
On the other hand, the integrands of I)(r, z,t) and I»(r,z,t) vanish much more slowly, so one may have to
integrate over hundreds of cycles of oscillation to evaluate the integrals with enough accuracy. For such slowly
convergent integrands, the ¢!-transformation for slowly convergent series and integrals {17} is employed.
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For the evaluation of the flux, j2(z,?), we may consider the case without the function, (r, VE: - A), in
the above formulation. Here we do not have oscillation, so numerical evaluation is easier. However, without
oscillation, the evaluation of (116) for z = 0 or very small z needs special care. In jy(z,t) the integral
corresponding to (116) is written as

()= [ Fale)de, where fi€) = 2K (E). (118)

fa2{z) decreases very slowly if z is very small or zero. We can evaluate (118) by speed-up of convergence
with the help of B-transform [13].

5 Numerical Evaluations

Computer programs are implemented for No(r, z,t), ja(z,t) and ¢(r,¢). Ni(r,t) and ji() can be calculated
by setting z = 0 in the input data for the programs for Na(r, z,t), and ja(z,1), respectively. Programs are
written in FORTRAN 77.

5.1 Input Data Formats

For the flux, j2(z,t), input data can be either with or without dimensions. Table 1 shows the format. For
the flux, ¢(r,t), data for z or £ in Table 1 are replaced by those for r or 7.

For the concentration Nz(r, z,t), one can obtain results as a function of r, z, or ¢, or as an isopleth. One
must use nondimensionalized values as input data.

5.2 Input Data

We assume that the waste solid comes from the spent fuel of a pressurized-water reactor. The radius of
the cylinder is & = 25 e¢m. Fracture width 2b is 1 cm. Surrounding rock has porosity €2 = 0.01, whereas
the fracture has no filling material (¢, = 1). The diffusion coefficient is the same for both fracture and
rock, and is conservatively chosen as that for a liquid continuum (500 cm?/yr). Sorption on fracture walls
is neglected (K;=1). Sorption in the rock matrix is assumed to retard the matrix diffusion process by the
factor K7 = 500. Three actinides and a stable nuclide are compared in the numerical results: 234U (:\ =
2.806x10=¢ yr=1), 2'Am (3 = 1.513x10~% y=1), and 239Pv () = 2.841x10~5 yr~1). With these values,
non-dimensionalized parameters can be calculated as:

b=0.004, A =500, t =1.6x 1072 [yr]

and
A= 1.754 x 1073 for P4U, X = 0.9456 for > Am, A = 1.7755 x 102 for 2°Pu.

5.3 Features of Diffusive Mass Transfer in Cylindrical Geometry

Figure 2 gives an overall idea of how the contaminant is transfered from a cylinder and is transported in the
fractured porous rock. Shown there are instantaneous concentration isopleths, mass flux from the cylinder to
rock, mass flux to the fracture, and flux across the rock/fracture interface for 23?Pu at Fourier number ¢ = 1,
which corresponds to 625 yr for the parameter values shown above. The concentration in rock is larger near
the cylinder and near the fracture. The concentration isopleth shows that the influence of the fracture cn
the concentration in the rock matrix becomes negligible beyond five radii from the rock/fracture mterface.
The mass flux from the cylinder into the fracture is calculated to be about two orders of magnitude greater
than that into the rock matrix because of the assumed hundred-fold greater porosity in the fracture. ‘The
mass flux into the rock matrix becomes smaller in the vicinity of the fracture because contaminant diffusing
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Table 1; Input data format for flux j» calculation

(1) For values with dimensions

Line Parameter | Explanation
1 ’inp’ input 'phy’ to indicate that the following data have dimensions
2 Ky, Ko retardation factors
3 Dy, Dy diffusion coefficients
4 £, porosity of rock
5 a,b cylinder radius and half-width of fracture
6 nxl, xax™*
7
: X decay constants
6 + nxl
nxl+7 nt, ‘tax’™*
nx!+8
: i time
nxl+nt+7
nx]+nt+8 nz, zax’*
nxl+nt+9
: H distance from the fracture/rock interface
nxl+nt+nz+8
(2) For nondimensionalized values
Line Parameter | Explanation
1 ’inp’ input ’non’ to indicate that the values are nondimensionalized.
2 Ab
3 nxl, 'xax’*
4
: A Thiele moduli
3+ nxl
nxl+4 nt, ‘tax’*
nxl+5
: t Fourier numbers
nxl+nt+4
nxl+nt+5 nz, ‘zax’*
nxl+nt+6
: z nrmalized distance from the fracture/rock
nxl+nt+nz+5 interface

* For these character data, ’var’ or ’par’ can be input. If ’var’ is input, that variable is considered to be
principal and others are parameters.



Tahle 2: Input data format for concentration calculation

(1) For an isopleth:

Line Explanation
1 ’inp’ input ’contour’ to indicate that the following data are for an isopleth.
2 A b A
3 t
4 nr
5
: r normalized distance from the cylinder center
nr+4
or+5 nz
nr+-6
: z normalized distance from the rock/fracture interface.
nr+nz+5
nr+nz+6 nline number of contour lines. Contour lines are drawn for 10-1 to 10~ 1-70ne
(2) For one variable cases:
Line Parameter | Explanation
1 inp’ input ‘one-dim’ to indicate that the following data are for one-variable case.
2 Ab, A
3 nr, ‘rax’}
4
: r
nr3
nr+4 nz, 'zax’{
nr+5
: z
nr+nz+4
nr+nz+5 nt, 'tax’t
nr4+nz+6
: t
nr4-nz+nt+5

1One of these three must be input as ’var’, 'par’, or ’fix’. The variable for which ’var’ is input is considered
as the horizontal axis. If ’par’ is input, the variable is a parameter.
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Figure 3: Mass fluxes for three radionuclides and a stable nuclide from the cylinder to the fracture at the
cylinder surface as a function of time. Parameters from Figure 2 apply.

from the fracture reduces the concentration difference between the surface of the cylinder and inside the rock

matrix.

The mass flux acros!
because of the boundary conditions at r = 1. The concentration difference incre
the cylinder surface because of the assumed larger retardation factor and smaller porosity in rock matrix,
so concentration in the rock matrix decreases faster with distance than in the fracture. Mass flux across the
s to decrease after it reaches the maximum because both concentrations in the fracture and in

s the interface betweel, rock and fracture is zero at the surface of the cylinder (r = 1)
ases with the distance from

interface start.
the rock matrix approach zero.

The maximum results from mass transfer
diffusion parallel to the fracture plane. In the p
to be only perpendicular to the fracture plane,
the monotonically decreasing profile against the distance fro:

models is mentioned later.
Figure 3 shows the changes of mass flux from the cylinder to the fracture with Fourier number for three

actinides and a stable nuclide. In very early times effect of decay is not apparent. Curves for shocter-half-life
nuclides deviate from that t. a stable nuclide at an earlier time and reach steady state. For a stable nuclide
the mass flux approaches zero as time increases. Because of the loss by radioactive decay during diffusion in
the medium, less of the shorter-half-life nuclides will reach a given distance from the surface. Therefore, the
steady-state concentration gradient is steeper for shorter-halflife nuclides. Thus, radioactive decay enhances
the long-term mass transfer from the cylinder to the rock matrix and to the fracture.

In Figure 4 mass flux of 2%Pu from the cylinder to the rock matrix is depicted as a function of Fourier
number. The location z = 0+ is located at the tock-matrix side of the interface. The curve for = = 0+ is,
therefore, a hundred-fold less than that for jj (¢), shown in the previous figure. In early times the effect of the
fracture on rock-matrix diffusion is limited to the vicinity of the fracture, and there the mass flux is much
lower than the mass flux to the rest of the rock matrix. For example, at ¢t = 10=2, in z > 0.1, the mass flux
from the cylinder is virtually uniform, but the Jifference between the flux in the region z > 0.1 and the flux
at the fracture-rock interface is large. As time increases, the affected region extends to greater :, and the
differences in mass fluxes become small. At t = 10% and later the mass fluxes are essentially uniform over z.

Figure 5 illustrates the effect of the Thiele modulus, or radioactive decay, on the mass flux to the fracture.

from the cylinder directly into the rock matrix and from
lane model (Figure 1(a)), where matrix diffusion is assumed
the diffusive mass flux at the fracture/rock interface shows
m the source. The comparison between the two
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Figure 4: Normalized mass flux of ***Pu from the cylinder to the rock matrix at the cylinder surface as a
function of Fourier number. Four curves depict the effect of diffusion from the fracture to the rock matrix.
Parameters from Figure 2 apply.

In early times, for long-half-life nuclides, radioactive decay bas no effect. At t = 10~2 only *°Sr and ?H have
short enough half-lives to affect the mass flux. By ¢ = 102, mass fluxes of 24U, 23Py, and 24!4m are also
affected by radioactive decay. A curve for each Fourier number starts to increase at some value of the Thiele
modulus. Curves merge with eacb other at large Thiele modulus.

Figure 6 shows the profiles of the mass flux of 2*°Pu at the rock/fracture interface from the fracture to
the rock matrix as a function of distance from the waste surface. As seen in Figure 2, there is a maximum
along r, which is quite different from what has been observed in planar geometry in the previous study [19)].
At r =1, the mass flux is zero because of the boundary conditions (21) and (23). Because diffusion in the
rock matrix is slower than in the fracture, the concentration in the fracture is always larger than that in rock
matrix if compared at the same distance from the cylinder surface. As r tends to infinity, both concentrations
tend to zero. Therefore, there should be a maximum mass flux between r = 1 and infinity. The maximum
value decreases and the location of the maximum advances with time. Because both concentrations approach
steady state, the profile for ¢ = 107 shows only slight change from ¢ = 102.

5.4 Validity of the Cylinder Model

As material is released, the cylinder radius will decrease with time, so the boundary conditions (21) and (23)
may be valid only within limited time. The waste is in a cylindrical borehole, with water filling the annular
space between the waste and rock. Liquid in the annulus will be well mixed by diffusion and convection.
Tf the liquid is saturated at the waste surface, it will be saturated throughout the annulus. Therefore, the
saturated concentration at r = 1 will maintain.

The finite initial inventory of radionuclides in the waste cylinder requires an upper bound of time for
applicability of the present model. For this purpose we consider a cumulative mass release from the cylinder.
Cumulative mass releases to the fracture and to the rock matrix are defined as:

.i':,m:/';,(f)d; - 9a 2 [g], (119)
0
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Figure 5: mass flux from the cylinder to the fracture as a function of Thiele modulus. Typical radionuclides
are indicated at the corresponding Thiele Moduli, which can be calculated by assuming the parameter values
applied in Figure 2.
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100.



and : oL
M) = / / P (3, #)dz - 2 x 2xad? (g], (120)
0 Jf0

respectively. By (27), (29), (28), (30) and (13), (119), (120) can be written in terms of Fourier nuniber aad
non-dimensionalized mass fluxes, ji(f) and ja(z,t) as

- - &
Ml(t)=47r&’bz|Kz%1N' / fi(r)dr, (121)
2 [

and
“ . (L-20)/28
M,(t) = 47réseszN'/ / ja(z, T)dzdr, (122)
o Jo

respectively, where t is Fourier number.

From the numerical results shown in Figure 4, the z-dependency of jz(z,t) is becomes negligible at later
times, and the value of ja(z,t) at the cylinder ends is always the greatest in the surface exposed to the rock
matrix. So, instead of calculating the integral with respect to z in (122) we approximate the integral by
the value of jy(z,t) at the cylinder ends multiplied by the length, —/2; Then, (122) can be estimated
approximately, but conservatively as follows:

- i t s - i
Ma(t) < 4nd2Fa i, (g_s) / A (L/ "; b ,r) dr. (123)
0

If the inicial inventory of the muclide of interest in the unit length of the waste cylinder is &° [g/cm],
amount of the nuclide in the cylinder L is £1° [g]. Normalized with this amount, the total cumulative release
of the nuclide from the cylinder to the fracture and to the rock matrix is new written as:

Miopallt) < R{El D’/ Jl(")df+—'/ (L/Z. b,r) dr}, (124)

_ 4xd?KoN*
=
The present model is valid until Mtotal(t) becomes unity.
For a spent fuel we assume L = 300 cm, where L is the length of a spent-fuel assembly. In one assembly,
there ate 2,300 g of 23°Fu, 230 g of 2! Am, and 88 g of 24U [18]. If the solubility of these three nuclides is
assumed to be N* = 10~ v g/em®, we have:

For Py, ° = 7.67 gfcm, R = 5.12 x 1074
For Am, 4° = 0.767 gfem, R = 5.12 x 10-3
or B4y, w° = 0.293 g/cm, R = 1.34 x 1072,

In Figure 7 plotted are Mtotal(t) versus Fourier number. These curves do not reach unity even at 10* of
the Fourier number, which corresponds to 6.25 million years, for >3°Pu, 241Am and 234U.

In Figure 8 the amount of radionuclide released into rock matrix is compared with that into the fracture.
Instantaneous release rate into the fracture is defined as:

where

(i25)

my(t) = 2b- 2745,(t) = 4xa Dy N” (elb%) 7). (126)
2

Instantaneous release rate into the rock matrix is defined as:

. $-0 . ekt
ma(t) = 2 x 2#&/0 j2(2,1)di = 4#&D2N'sjo Ja(z,t)dz. (127)
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Figure 7: Cumulative mass release from the cylinder, normalized by the initial inventory of each species in
the cylinder of 2 m high.

In Figure 8 release rates are normalized by the factor 47aD, N*. Even though the mass flux from the
waste into the rock matrix is low relative to that into fracture, the larger waste surface exposed to the matrix
and the greater assurned matrix sorption result in greater release rate to the matrix than to the fracture.
This indicates that for the parameters assumed here, the earlier mass-transfer theory [4) for a waste solid
completely surrounded by porous rock can adequately predict release rates in low-flow conditions in fractured
rock. If tortuesity significantly reduces the diffusion coefficient in the rock matrix and not in the fracture,
mass-transfer directly from the waste to the fracture becomes more important.

5.5 Comparison of the Cylinder Model with the Planar Model

In [19] we studied the one-dimensional advective-dispersive transport in the fracture associated with one-
dimensional matrix diffusion in the planar geometry. The contaminant is reieased only to the fracture. We
compare in this section the planar model with the cylinder model. We make the following assumptions for
the planar model. The planar source exposed to the fracture is assumed to be the constant-concentration
boundary. No advection is assumed in the fracture (v = 0).

The riodels are compared in two ways: (1) mass fluxes from the source, and (2) far-field transport.

For mass transfer from the source, we adopt from [19] the expression for the mass flux from the plane

source to the fracture, comparable to (27):

- N* 773 Vird ut ir < VX
@ = —ﬁ\/ADR,/O {exp (—m—l\t) [(1\——;&—)

Y
H|—=t—+ A - w2d) +l.—_2"2"f’:q
2/3(f - u24) At = pRAPS
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Figure 8: Normalized release rate of nuclides from a 3 m-high waste cylinder. Geologic parameters from
Figure 2 apply.
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# TR L,
— /A4 }d,u, i>0,(128)

Y

where

(129)

and

€ : porosity of the rock matrix (the fracture is assumed to be completely open in the planar model),
R! : retardation factor for the fracture transport,

Rp : retardation factor for the matrix diffusion,

D : diffusion coefficient in the fracture, and

ﬁp : diffusion coefficient in the rock matrix.

Here the symbol * indicates that the quantities have dimensions. The subscript p stands for planar geometry.
For far-field transport, the steady-state solutions are useful. From (65), as ¢ increases, the concentration
in the fracture for the cylinder case approaches:

s Ko (ﬁ’) @(r.p)
Nit) = m—/\j (A DA -/ “ (#1 + Ef‘) [Mo(P)]zpdp, 2t (130)

Superscript s stands for steady state. For the planar model, from [19] the steady-state solution for the
concentration in the fracture for zero advection and the constant-concentration boundary is available as:

N*(3) = N"exp (131)

where 7 is the distance from the plane source.

For the numerical results shown in Figures 9 and 10, the values in Table 3 are assumed.

In Figure 9 the mass flux from the source, normalized by the source-boundary concentration, is plotted
against time in years. For the cylinder, the curves are identical to the curves in Figure 3; only the scaling
of the axes is changed. In early times both geometries give close results. As time proceeds, the planar
model yields smaller mass fluxes, and the difference between the two models at steady state is greater for
longei-lived radionuclides.

In cylindrical geometry, the contaminant is dispetsed through more volume of the medium as it progresses
farther away from the cylinder-source surface. So the mass transfer from the source is greater in cylindrical
geometry than in planar geometry. On the other hand, because there is no matrix diffusion parallel to the
fracture, the diffusive flux at the interface between fracture and rock becomes larger in the planar model
than in the cylinder model, especially in the vicinity of the source surface. More material would be removed
from the fracture in the planar model, resulting in greater mass transfer from the source. The numerical
results in Figure 9 show that cylindrical geometry increases mass transfer from the source more than does
one-dimensional matrix diffusion.

In Figure 10, the normalized concentrations in the fracture at steady state are compared. The horizontal
axis represents the distance from the source surface; 7 — &, in the cylinder case, and z in the planar case.
In the region near the source, th:» planar model gives greater concentrations, whereas in the far region the
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Ti;ure 9: Comparison of the diffusive mass flux from the source in the cylinder model with that in the plane
model. Parameter values in Table 3 apply.

Table 3: Summary of assumed parameter values

nomenclature value
cylinder | planar

cylinder radius [ — 25 em
fracture aperture b 1 cm
porosity fracture | & — 1

rock &2 € 0.01
water velocity —_ v 0
retardation coefficients fracture | A, Ry 1

rock 1;’2 Rp 500
diffusion coefficients fracture | Dy D 0.05 m*/yr

rock D, bp 0.05 m*/yr
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Figure 10: Concentration profiiss in the fracture, normalized by the source concentration. Parameter values
in Table 3 apply.

cylinder model is more conservative. For shorter half-life nuclides such as >4 Am, the difference is negligible,
but for 224U, the difference is prominent.

Because the contaminant is released into the rock matrix as well as to the fracture in the cvlinder model,
less contaminant in the fracture can diffuse into the rock matrix than in the planar model. Consequently,
for the cylinder more contaminant ‘s transported in the fracture, resulting in greater concentration in the
far field. For short-lived nuclides, because radioactive decay is predominant, the effect of parallel matrix
diffusion is not apparent.

Thus both for the near-field mass transfer and for the far-field transport, the cylinder model gives con-
servative results, provided that molecular diffusion is the sole transport mechanism in the medium.

6 Conclusions

Mass fluxes to the fracture and to the rock matrix reach steady state for radioactive contaminants. Shorter
half-life nuclides reach steady state earlier. In very early times the effect of radioactive decay is negligible.
Radioactive decay enhances mass transfer from the cylindrical waste solid, from the comparison of the
magnitudes of the steady-state mass fluxes.

Because of diffusion from fracture to rock, the mass flux from the cylinder to rock matrix is smaller in
the region near the fracture than in regions far from the fracture. The effect of the presence of the fracture
is limited to a shallow region in the rock matrix in early times. From the numerical result for 2?Pu, after a
Fourier number of 100 the fracture effect on the mass flux from the cylinder to rock matrix can be neglected,
and the mass flux to the rock matrix becomes virtually constant over the waste surface.

The present model is applicable for more than six million years, which is long enough for the purpose of
performance assessment study.

Although the mass flux from the waste to the fracture can be as much as hundred-fold larger than that
to the rock matrix because of complete openness of the fracture, the total amount of the nuclide released
into the rock matrix can become greater than that to the fracture because the waste surface in contact with
the rock mati..c is much larger than that in contact with the fracture. Under such conditions the model for
a cylinder surrounded completely by porous rock matrix is adequate.
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Three-dimensional diffusion in the rock matrix, as well as the release from the cylinder to the rock
matrix and to the fracture, result in quite different features of transport in the fracture, when compared
with transport in the planar geometry. The cylinder model is more conservative than the planar model with

respect to mass transfer from the source and to far-field transport.

Appendices: On Weber Transforms

A.1 Derivation of (33)
Integrating the left hand side of (33) with respect to r, we obtain:

© 18 3 oo
./1 ;—;—r( f) @(r, s)rdr = [r—(b(r, s)] —/1 r%{;%—?dr.

For large arguments of Jo(z) and Yp(z) [20],

Jo(z) = \/:i;{cos (z - ;) +0 ({zI_’) £llm ‘l} ,
e [ fom o= §) # 0 () 1),
larg z| < , {z] — 20, z complex
Jo(z) = \/g{cos (:c - g—) +0 (:")} )
Yo(z) = \/g{sin (z - %) +0 (:—l)} ,

I — 0.

For a real z, these reduce to

Therefore,

&(r,s) ~O (r’l/z) .

(132)

(133)

(134)

(135)

(136)

(137)

We assume that f(r) is Weber-transformable, i.e.. the integral [ f(r)\/7dr exists [7], and f(r) is continuous

over r € [1,00). Then,
f(r)~0 (r—1/2—a) , é[ ~O ( —s/z-a) o> 0.

(138)

Because ¢(1,5) = 0, the first term of the right hand 51de of (132) vanishes. If we integrate the second term

in the right hand side of (132) by parts once more, then we obtain:

[ g rog] - [ ron (5«

Similarly,
l_i.m rf(r)g—(f =
At r=1, 82 can be evaluated as follows [21):
o0 2 2
a . = s{=Ji(rs)Yo(s) + Jo(s)Y1(78)}, ., = s <—-E) ==z
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Therefore, the first term in the right hand side of (139) becomes:

801”2
[re%] = 2sen (140)
By differentiating ®(r, s) twice with respect to r,
N AN
3 (rﬁ) = —5°®(r,s). (141)

From (14C, and (141), the result follows.

A.2 Inverse Weber Transform of Wo(s)

Consider the following problem:

1d [ dF _
i (rﬁ) -Af=0,r>1, (142)
subject to
f()=1, fleo)=0. (143)
Applying the Weber transform on (142) vields
= 2 1
f(s) = e (144)

This implies that the Weber transform of the solution to (142) is (144). The solution to (142) is known as
) Ky (r\/;\_)
ry= ———
Ko (\/X)

Then, the inverse Weber transform of (60) is obtained as above.
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