

---

## **FY-1984 Annual Report: Spent Fuel and UO<sub>2</sub> Source Term Evaluation Results**

**W. J. Gray  
G. L. McVay**

---

**February 1986**

**Prepared for  
the Salt Repository Project  
U.S. Department of Energy  
under Contract DE-AC06-76RLO 1830**

**Pacific Northwest Laboratory  
Operated for the U.S. Department of Energy  
by Battelle Memorial Institute**



## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST LABORATORY  
operated by  
BATTELLE  
for the  
UNITED STATES DEPARTMENT OF ENERGY  
*under Contract DE-AC06-76RLO 1830*

Printed in the United States of America  
Available from  
National Technical Information Service  
United States Department of Commerce  
5285 Port Royal Road  
Springfield, Virginia 22161

NTIS Price Codes  
Microfiche A01

| Printed Copy | Price<br>Codes |
|--------------|----------------|
| Pages        |                |
| 001-025      | A02            |
| 026-050      | A03            |
| 051-075      | A04            |
| 076-100      | A05            |
| 101-125      | A06            |
| 126-150      | A07            |
| 151-175      | A08            |
| 176-200      | A09            |
| 201-225      | A010           |
| 226-250      | A011           |
| 251-275      | A012           |
| 276-300      | A013           |

3 3679 00058 5507

PNL-5650  
00E/CH-19  
UC-70

FY-1984 ANNUAL REPORT:

SPENT FUEL AND UO<sub>2</sub> SOURCE TERM  
EVALUATION RESULTS

W. J. Gray  
G. L. McVay

February 1986

Prepared for  
the Salt Repository Project  
U. S. Department of Energy  
under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory  
Richland, Washington 99352



## ABSTRACT

Spent fuel is being considered as a possible waste form for disposal in a salt repository. Static leach tests of spent fuel in salt brine have been conducted to provide a source term that can be used for modeling the potential for release of radionuclides from the repository. The distribution of radionuclides after release from the spent fuel has also been investigated. In addition, leach tests on unirradiated  $UO_2$  pellets have been conducted as an aid toward interpretation of the spent fuel results.

Results from the spent fuel tests showed that almost all of the release of the four elements tested (U, Pu, Tc, and Cs) occurred in the first 5 days and that very little additional release occurred over the next 175 days. Iron coupons in some of the tests had no effect on the total release, but it drastically reduced solution concentrations for all elements tested except Cs. Zircaloy coupons had little or no effect.

The purpose of the  $UO_2$  tests conducted in FY-1984 was to determine whether a  $U_3O_7$  surface layer on  $UO_2$  pellets had any effect on leaching characteristics. It did not.



ACKNOWLEDGMENTS

The authors wish to acknowledge the technical assistance of H. J. Cartmell, J. L. Green, F. D. Hobbs, W. C. Richey and R. W. Stephens of PNL and A. C. Leaf of HEDL, the programmatic assistance of D. J. Bradley of PNL and D. E. Clark and J. S. Perrin of ONWI, and the programmatic support provided by the Office of Nuclear Waste Isolation under the U. S. Department of Energy Contract DE-AC06-76RL0 1830.



CONTENTS

|                                  |     |
|----------------------------------|-----|
| ABSTRACT . . . . .               | iii |
| ACKNOWLEDGMENT . . . . .         | v   |
| INTRODUCTION . . . . .           | 1   |
| EXPERIMENTAL . . . . .           | 3   |
| SPENT FUEL . . . . .             | 3   |
| UO <sub>2</sub> . . . . .        | 8   |
| RESULTS AND DISCUSSION . . . . . | 10  |
| GENERAL . . . . .                | 10  |
| SPENT FUEL . . . . .             | 11  |
| UO <sub>2</sub> . . . . .        | 16  |
| DISCUSSION OF ERRORS . . . . .   | 17  |
| CONCLUSIONS . . . . .            | 19  |
| REFERENCES . . . . .             | 20  |
| APPENDIX A . . . . .             | A.1 |



## TABLES

|    |                                                                                       |    |
|----|---------------------------------------------------------------------------------------|----|
| 1  | Leach Test Matrix (FY-84) . . . . .                                                   | 4  |
| 2  | Selected Chemical Analysis for the Spent Fuel . . . . .                               | 4  |
| 3  | Ductile Iron Composition for UO <sub>2</sub> and Spent Fuel Leach Tests . . . . .     | 5  |
| 4  | Nominal Composition of Zircaloy-4 Tubing Used in the Spent Fuel Leach Tests . . . . . | 6  |
| 5  | Solution Concentrations in Spent Fuel Tests in Brine . . . . .                        | 14 |
| 6  | Uranium Concentrations (mol/liter) in 90°C UO <sub>2</sub> Tests . . . . .            | 17 |
| 7  | Data for 30°C Tests of Unclad Spent Fuel in PBB1 Brine . . . . .                      | 21 |
| 8  | Data for 30°C Tests of Unclad Spent Fuel/Iron in PBB1 Brine . . . . .                 | 22 |
| 9  | Data for 90°C Tests of Unclad Spent Fuel in PBB1 Brine . . . . .                      | 23 |
| 10 | Data for 90°C Tests of Unclad Spent Fuel/Iron in PBB1 Brine . . . . .                 | 24 |
| 11 | Data for 90°C Tests of UO <sub>2</sub> in PBB1 Brine . . . . .                        | 25 |
| 12 | Data for 90°C Tests of UO <sub>2</sub> in Deionized Water . . . . .                   | 26 |

## FIGURES

|   |                                                                                              |    |
|---|----------------------------------------------------------------------------------------------|----|
| 1 | Schematic Diagram of Container Used for Ambient Temperature Spent Fuel Leach Tests . . . . . | 27 |
| 2 | Normalized Uranium Mass Loss from Spent Fuel in PBB1 Brine . . . . .                         | 28 |
| 3 | Normalized Plutonium Mass Loss from Spent Fuel in PBB1 Brine . . . . .                       | 29 |
| 4 | Normalized Technetium Mass Loss from Spent Fuel in PBB1 Brine . . . . .                      | 30 |

|   |                                                                              |    |
|---|------------------------------------------------------------------------------|----|
| 5 | Normalized Cesium Mass Loss from Spent Fuel in PBB1 Brine                    | 31 |
| 6 | Normalized Uranium Mass Loss from UO <sub>2</sub> in 90°C<br>PBB1 Brine      | 32 |
| 7 | Normalized Uranium Mass Loss from UO <sub>2</sub> in 90°C<br>Deionized Water | 33 |

## FY-1984 SPENT FUEL AND UO<sub>2</sub> SOURCE TERM EVALUATION RESULTS

### INTRODUCTION

Spent fuel is being considered as a possible waste form for disposal in a salt repository. To adequately model the potential release of radionuclides, it is necessary to understand the leach behavior in salt brines and the chemical interactions of the released radionuclides with their environment. Toward this end, leach tests were conducted during fiscal years 1982 and 1983 on unclad spent fuel in salt brine.<sup>(1)</sup> Some of the tests contained coupons of ductile iron, which was used to simulate a typical container material. In addition, the distribution of radionuclides after release from the spent fuel was investigated; that is, the proportion of radionuclides in true solution, suspended in solution as small particulates, or plated out on the container walls or iron coupons was established.

Besides experiments with actual spent fuel, some experiments were conducted using unirradiated UO<sub>2</sub> pellets. The latter are much less difficult to work with than spent fuel, and a greater variety of analytical tools (primarily surface analytical techniques) can be used with the less radioactive UO<sub>2</sub>. Since the matrix material of spent fuel is primarily UO<sub>2</sub>, one would expect the uranium release from these two materials to be similar.

A number of noteworthy observations were listed with the FY 1982-83 test results<sup>(1)</sup> and are reproduced below:

- The leaching characteristics of uranium from both UO<sub>2</sub> and spent fuel in PBB1 brine have a very small temperature dependence over the range studied (25 to 150°C).
- The leaching characteristics of both UO<sub>2</sub> and spent fuel in PBB1 brine are nearly independent of time. Within the scatter of the data, most of the uranium is released in the first few days. This

suggests that the uranium release is restricted by solubility limitations or that there exists a surface phase that is more readily soluble than the bulk material.

- Unlike brine, leaching of  $\text{UO}_2$  in deionized water is dependent on temperature, at least when iron was not present. Uranium release values in deionized water, in the absence of iron, are 50 to 300% higher at  $150^{\circ}\text{C}$  than at  $75^{\circ}\text{C}$  and a factor of 3 to 5 higher at  $75^{\circ}\text{C}$  than at  $25^{\circ}\text{C}$ .
- Considerably more uranium leaches from  $\text{UO}_2$  in deionized water than in PBB1 brine at  $150^{\circ}\text{C}$ ; the difference is less pronounced at  $25^{\circ}\text{C}$ . In the absence of iron, the difference between the uranium released in deionized water and brine is a factor of about 5 at  $25^{\circ}\text{C}$  but increases to a factor of about 20 at  $75^{\circ}\text{C}$ . This trend continues at  $150^{\circ}\text{C}$  to the point where the release in deionized water is greater than that in brine by a factor of about 50. When iron is present, there is little difference between deionized water and brine at 25 and  $75^{\circ}\text{C}$ , and the difference at  $150^{\circ}\text{C}$  is only a factor of 3 to 4.
- Uranium leached from spent fuel in PBB1 brine is more than 100 times greater than from  $\text{UO}_2$ , over the temperature range of 25- $75^{\circ}\text{C}$ .
- The presence of iron coupons reduces solution concentrations of uranium; the uranium plates out on the iron and container walls or precipitates as filterable particles. Iron has no effect on the total uranium released in brine, but it causes a substantial reduction in solution concentration of uranium--probably because it lowers the oxidation potential, thereby lowering uranium solubility or by selective sorption of multivalent ions. The same trend is true for plutonium and technetium in the spent fuel tests. Cesium, the only other element analyzed in the spent fuel tests, was not affected by iron.
- Oxidized zircaloy coupons have no effect on  $\text{UO}_2$  leaching characteristics.

- Final pH values, with few exceptions, are in the range 5.0 to 7.5, which is a change of no more than about one pH unit from the starting values of both PBB1 brine and deionized water.

The FY-1984 tests were designed to help answer some of the questions raised by the earlier tests as follows:

- The observation that the leaching characteristics of  $UO_2$  and spent fuel was independent of time after the first few days was tested only out to 60 days. Also, there was an exception in that Pu release at  $25^{\circ}C$  after 60 days was much higher than at shorter time periods. To be sure that the Pu release at 60 days was not the beginning of a trend, as well as to generally extend the data to longer time periods, the FY-1984 test matrix was extended to 180 days. Some replication was also included to improve our knowledge of the reproducibility of these data.
- The time independence phenomenon suggests that the release of the different elements is solubility limited or that there exists a surface phase that is more readily soluble than the bulk material. It was thought that the surfaces of the spent fuel and  $UO_2$  pellets might be more highly oxidized and therefore more soluble. If more of this "oxidized" surface layer was present on the spent fuel than on the  $UO_2$ , this could even help to explain why uranium release from spent fuel was so much higher than from  $UO_2$ . To test this hypothesis, leach tests in both PBB1 and deionized water were performed on  $UO_2$  pellets, half of which had more highly oxidized surfaces.

#### EXPERIMENTAL

##### SPENT FUEL

Spent fuel specimens were leach tested in Permian Basin brine No. 1 (PBB1) at the times and temperatures given in Table 1. Fourteen of the tests included a ductile iron coupon and four tests included both a

ductile iron coupon and a short piece of Zircaloy-4 cladding. The 30°C tests were conducted at ambient hot-cell temperature. The 90°C tests were carried out in a specially constructed oven whose temperature was controlled at 90  $\pm$  1°C.

TABLE 1. Leach Test Matrix (FY-84)

| Time<br>(days) | Number of Tests Run Under Each Condition |      |               |      |                  |      |
|----------------|------------------------------------------|------|---------------|------|------------------|------|
|                | Spent Fuel                               |      | Spent Fuel-Fe |      | Spent Fuel-Fe-Zr |      |
|                | 30°C                                     | 90°C | 30°C          | 90°C | 30°C             | 90°C |
| 28             | 1                                        | 1    | 1             | 1    |                  |      |
| 60             | 1                                        | 1    | 1             | 1    |                  |      |
| 90             | 1                                        | 1    | 2             | 2    | 1                | 1    |
| 120            | 1                                        | 1    | 1             | 1    |                  |      |
| 180            | 2                                        | 2    | 2             | 2    | 1                | 1    |

The spent fuel used in the study was from fuel bundle B0-5 which was discharged from the H. B. Robinson II reactor on June 6, 1974, at an average burnup of 28 MWD/kgM. Fuel was removed from the fuel rod at the Battelle-Columbus Hot Laboratory. Unclad fuel fragments from more than one rod were combined and shipped to PNL for testing. About 5g of spent fuel fragments were dissolved and chemically analysed for uranium, plutonium, and two important fission products; the results are listed in Table 2.

TABLE 2. Selected Chemical Analysis for the Spent Fuel

| Species                                 | Value                             |
|-----------------------------------------|-----------------------------------|
| U                                       | $8.4 \times 10^5$ $\mu\text{g/g}$ |
| $^{239}\text{Pu}$ and $^{240}\text{Pu}$ | $2.47 \times 10^7$ $\text{Bq/g}$  |
| $^{99}\text{Tc}$                        | $4.55 \times 10^5$ $\text{Bq/g}$  |
| $^{137}\text{Cs}$                       | $2.37 \times 10^9$ $\text{Bq/g}$  |

Each leach specimen consisted of three fuel fragments whose  $^{137}\text{Cs}$  activity had been individually measured ( $^{137}\text{Cs}$  activity is considered to be proportional to burnup). The individual fragments were combined into groups of three in such a manner that the total activity of all the three-fragment specimens was the same within  $\pm 5\%$ . This assured that each specimen represented an overall average of the fuel being tested.

Photographs were taken of each specimen together with a millimeter scale and used to estimate surface areas. Total surface areas of the three-fragment specimens ranged from  $2.6$  to  $4.1\text{cm}^2$ . The ratio of spent fuel surface area to leachant volume (SA/V) was  $10\text{ m}^{-1}$  for all tests.

The iron and zircaloy coupons were prepared to have surface areas equal to the average spent fuel specimen, about  $3.3\text{ cm}^2$ . The iron coupons were freshly machined parallelepipeds whereas the zircaloy coupons were short segments of PWR tubing. Table 3 lists the composition of the iron; Table 4 lists the nominal composition of Zircaloy-4 tubing. The iron was cleaned with  $6\text{ M HCl}$  and the zircaloy was cleaned with  $6\text{ M HNO}_3/1\text{ M HF}$  prior to the leach tests.

TABLE 3. Ductile Iron Composition for  $\text{UO}_2$  and Spent Fuel Leach Tests

| <u>Element</u> | <u>Wt%</u> |
|----------------|------------|
| C              | 3.53       |
| Mn             | 0.31       |
| Si             | 2.51       |
| P              | 0.05       |
| S              | 0.004      |
| Fe             | Balance    |

The leach tests were conducted in fused silica containers that were cleaned in accordance with MCC-1 requirements.<sup>(2)</sup> Fused silica or Pyrex lids were sealed to the ground surfaces of the leach containers using silicone rubber gaskets. The spent fuel, iron, and zircaloy specimens

TABLE 4. Nominal Composition of Zircaloy-4 Tubing Used in the Spent Fuel Leach Tests

| <u>Element</u> | <u>Wt%</u>   |
|----------------|--------------|
| Sn             | 1.20 to 1.70 |
| Fe             | 0.18 to 0.24 |
| Cr             | 0.07 to 0.13 |
| Fe + Cr        | 0.28 to 0.37 |
| Zr             | Balance      |

were placed in separate compartments of perforated fused silica baskets to minimize contact between the specimens and the container, and to maximize the surfaces of the specimens exposed to the leachant. Figure 1 is a schematic diagram of the leach container used for the ambient tests. The 90°C tests used the same type of container, but the fused silica lid was held in place by the lid of the specially constructed oven.

The Permian Basin brine No. 1 (PBB1) used in these studies represents an intrusion brine because it simulates the saturated solution obtained by dissolving Permian Basin Cycle 4 salt (a blended composite of 10 core samples from G. Friemel Core Hole No. 1, approximately 10-foot intervals in the 2440.2 to 2575.5 ft. section) in deionized water. It was prepared by dissolving the following salts in deionized water to produce 1.0 liter of solution.

| <u>Salt</u>                           | <u>Weight (g)</u> |
|---------------------------------------|-------------------|
| NaCl                                  | 309.7             |
| CaCl <sub>2</sub> · 2H <sub>2</sub> O | 5.73              |
| Na <sub>2</sub> SO <sub>4</sub>       | 4.73              |
| MgCl <sub>2</sub> · 6H <sub>2</sub> O | 1.12              |
| KCl                                   | 0.075             |
| SrCl <sub>2</sub>                     | 0.064             |
| NaHCO <sub>3</sub>                    | 0.032             |
| NaBr                                  | 0.031             |
| ZnCl <sub>2</sub>                     | 0.016             |
| NaF                                   | 0.0021            |

Following the leach period, the containers were cooled to ambient hot-cell temperature (see the following discussion regarding this practice) and weighed to determine if any leachate had been lost. The leachate pH was measured, and two aliquots of leachate were taken for chemical analyses; one aliquot was passed through a 1.8 nm filter. Both aliquots were then acidified with 0.1 ml of concentrated nitric acid per 10 ml of solution to assure that the U and Pu remained in solution. After removing the spent fuel specimen and metal coupons, any remaining fragments of spent fuel were rinsed from the container and basket using fresh leachant. Then, a 5 M HNO<sub>3</sub>, 0.05 M HF solution was placed in the leach container with its associated specimen basket in volume slightly greater than the original leachate volume and allowed to stand at least 2 hours at ambient temperature to dissolve any material plated out on the container walls or on the basket. Material plated out on the iron and zircaloy coupons was removed by placing each coupon in a series of three fresh solutions of 6 M HCl for ten minutes each. Then the solutions were combined and diluted to a known volume.

Each solution was analyzed for uranium, plutonium, cesium, and technetium. Cesium was determined by direct gamma counting each solution. Uranium was determined by making two direct fluorometric measurements on each solution; once by itself and a second time after spiking with a known amount of uranium to reduce matrix effects. Plutonium was separated from other radioactive species by extraction into thenoyltrifluoroacetone in xylene, evaporating onto a plate and alpha-counting the residue. Technetium was determined by removing most other cationic radioactivity from the solution in a cation exchange column; adding tetrphenylarsonium chloride to the solution to form tetrphenylarsonium pertechnetate; extracting the latter from the aqueous solution with hexone; evaporating the hexone from a known amount of the extract; and counting the residue with a beta proportional counter.

It was stated earlier that the leach containers in the 90°C tests were cooled to ambient temperature prior to preparation of aliquots for analyses. This practice was considered to be acceptable because the brine

is saturated at 25<sup>0</sup>C, not at 90<sup>0</sup>C. Thus, no precipitation of the brine components, which could drag down some of the elements of interest, is expected. Furthermore, no procedure has yet been developed for elevated temperature filtration. Table 5 shows that the concentrations of U, Tc, and Cs are higher in the 90<sup>0</sup>C tests indicating that these elements, at least, are not reduced to the 30<sup>0</sup>C concentrations by this practice. Plutonium concentrations at the two temperatures were about the same. Whether or not this is an artifact of the cooldown prior to filtration is not known, but it is to be noted that other aspects of the Pu leach behavior (e.g., total release) are only mildly temperature dependent over this range. The bulk of the evidence, therefore, points toward the cooldown prior to filtration being an acceptable practice for these tests.

### UO<sub>2</sub>

Surface-oxidized and as-prepared UO<sub>2</sub> pellets were leached in this series of experiments to test the hypothesis that a more highly oxidized, and therefore more soluble, surface layer on UO<sub>2</sub> pellets dissolves quickly after which the leach rate decreases. The pellets were prepared by cold-pressing UO<sub>2</sub> powder depleted in <sup>235</sup>U, and then sintering at 1700<sup>0</sup>C in a 50% H<sub>2</sub>-50% Ar atmosphere for 4h to 96% theoretical density. Then they were centerless ground, cleaned with ethanol and dried, and fired again at 1045<sup>0</sup>C in a 50% H<sub>2</sub>-50% Ar atmosphere for 4h to assure that any surface material that might have been oxidized during centerless grinding was again reduced to UO<sub>2</sub>. Half the pellets were then heated at 215<sup>0</sup>C in air for 10 days to generate a thin U<sub>3</sub>O<sub>7</sub> film.<sup>(3)</sup> Weight gains for the 16 pellets ranged from 1.3 to 4.4 mg and averaged 2.0 mg. This weight gain is equivalent to  $5.5 \times 10^{-4}$  g/cm<sup>2</sup>, and since the density of U<sub>3</sub>O<sub>7</sub> is 11.05 g/cm<sup>3</sup> compared to 10.75 g/cm<sup>3</sup> for UO<sub>2</sub>, this weight gain is equivalent to a U<sub>3</sub>O<sub>7</sub> surface layer 18  $\mu$ m thick. The pellets were 9.1 mm diameter by 8.2 mm long and, although the lengths varied slightly, they all had surface areas within 2% of 3.62 cm<sup>2</sup>.

### FY 84 Test Matrix for UO<sub>2</sub>

The UO<sub>2</sub> pellets were leach tested according to the following matrix:

|                |   |                                                                   |
|----------------|---|-------------------------------------------------------------------|
| 1 Temperature  | - | 90°C                                                              |
| 2 Sample types | - | Oxide film; no oxide film                                         |
| 2 Leachants    | - | PBB1; deionized water                                             |
| 4 Time periods | - | 5, 14, 28, 28 days (i.e., duplicate samples were run at 28 days.) |
| 2 Environments | - | With iron; without iron                                           |

$$\text{Total number of samples} = 1 \times 2 \times 2 \times 4 \times 2 = 32$$

Ductile iron coupons with surface areas of 3.6 cm<sup>2</sup> (same as the UO<sub>2</sub> pellets) and the composition listed in Table 3 were used in half the UO<sub>2</sub> leach tests. The ratio of UO<sub>2</sub> surface area to leachant volume (SA/V) was 10 m<sup>-1</sup> for all tests.

The leach tests conducted on UO<sub>2</sub> used Teflon leach containers and specimen baskets, which were cleaned in accordance with MCC-1 requirements.<sup>(2)</sup> The baskets prevented contact between the UO<sub>2</sub> pellets and iron coupons and minimized contact of both with the container surfaces.

Following the leach period, the containers were cooled to ambient laboratory temperature (see the discussion of this practice in the spent fuel section) and weighed. In all cases, the loss of water was found to be less than 2 percent. The leachate pH was measured and the different analytical solutions were prepared in the same manner used in the spent fuel leach tests as described earlier. An exception was the dissolution of material off the iron coupons; only one 6 M HCl solution was used for 15 minutes because it was felt that this was adequate to remove at least 90% of any deposited uranium. Uranium concentrations in each solution were then analyzed using the same method as in the spent fuel tests.

## RESULTS AND DISCUSSION

### GENERAL

Results are presented in terms of normalized mass loss, which is the actual mass loss divided by the fraction of the given element present in the specimen, and divided by the surface area of the specimen. This procedure allows a direct comparison of leach values for specimens of different size and composition. It should be noted, in particular, that the normalized mass loss will have the same value for each element provided that the specimen leaches congruently. Thus, unequal normalized mass loss is indicative of preferential (incongruent) leaching. For uranium release from  $\text{UO}_2$  or spent fuel, results are presented in terms of the normalized uranium mass loss:

$$(NL)_u = \frac{M_u}{f_u (SA)}$$

where  $(NL)_u$  = normalized uranium mass loss,  $\text{g/m}^2$ ;

$M_u$  = mass of uranium in a solution = mass per unit volume  
times solution volume, g;

$f_u$  = mass fraction of uranium in the unleached specimen = 0.84  
for spent fuel and 0.88 for  $\text{UO}_2$ ;

SA = surface area of the leach specimen,  $\text{m}^2$ .

Similarly, results for the more radioactive species from spent fuel, which were analyzed by activity, are presented in terms of the normalized elemental mass loss:

$$(NL)_i = \frac{a_i}{a_0} \frac{W_0}{SA}$$

where  $(NL)_i$  = normalized elemental mass loss,  $\text{g}/\text{m}^2$ ;  
 $a_i$  = activity of the element in the solution,  $\text{Bq}$ ;  
 $a_0$  = activity of the element in the spent fuel fragment,  $\text{Bq}$ ,  
 $W_0$  = mass of the specimen,  $\text{g}$ , and  
 $SA$  = surface area of the leach specimen,  $\text{m}^2$ .

The results are presented in terms of location of the released radioactive species. The sum of species in the leachate, plateout on the container, and plateouts on the iron and zircaloy coupons, as applicable, represents the total released during a particular test. The amount in the filtrate represents the amount of the species that passed through the 1.8 nm filter and can be considered to be in solution. The difference between the leachate value and the filtrate value represents that which was suspended, possibly in colloidal form, in the leachate.

The data are presented in both graphic and tabular form in Figures 2-5 and Tables 7-10. In addition, raw data are given in Appendix A. Data points are not shown on the graphs because they would become too busy. Rather, straight lines were drawn between data points; averages were used where data points were replicated. Error bars shown on the graphs represent the spread in the total release data for the replicated points (i.e., the bars extend from the maximum to minimum measurement rather than a standard deviation).

#### SPENT FUEL

The FY-1984 spent fuel program extended the leaching data from 60 to 180 days and provided some needed replication. A number of observations regarding the data, which are presented in Figures 2-5 and Tables 7-10, are given below. It is also important to note at the beginning that: (a) these observations also apply almost without exception to earlier spent fuel leaching data;<sup>(1)</sup> and (b) the values obtained for the normalized mass losses in the two sets of experiments were in good agreement. The good agreement was particularly reassuring since the two sets of experiments were done in different laboratories by different people using different equipment. However, the source of spent fuel specimens was the same; the same leach procedures were used; and the

chemical analyses were done in the same laboratory for the two sets of experiments. Note that ambient hot cell temperature was 25 and 30<sup>0</sup>C for the earlier and later tests, respectively. The difference in terms of its effect on leach results is insignificant.

- All four elements (U, Pu, Tc, and Cs) exhibit very little time dependence in the total release data. That is, nearly as much was released in 28 to 60 days as in 180 days. This trend was also observed in the earlier tests where leaching time periods of 5 days produced nearly as much total release as times up to 60 days. A possible exception with the present data is uranium at 90 days without iron. However, despite the high release by replicate samples at 180 days, the apparent increase in total release at long times must be viewed with suspicion since it is the exception to a general trend.
- Of the four elements tested, cesium release exhibits the largest temperature dependence with the 90<sup>0</sup>C release being about 3 times the 30<sup>0</sup>C release. Pu release is essentially independent of temperature in the range 30 to 90<sup>0</sup>C. The temperature dependence of U and Tc release falls between that of Cs and Pu. Only Cs was shown to have a small temperature dependence between 75 and 25<sup>0</sup>C in the earlier data.
- The presence of iron has no effect on total release (Pu at 90<sup>0</sup>C appears to be an exception but, again, this must be viewed with suspicion since it is contrary to the trend), but it does reduce solution concentrations (filtrate) nearly to zero for all elements tested except Cs.
- Zircaloy has no noticeable effect on leaching although some Tc collected on it in the 90-day tests (none at 180 days).

The following statements can be made regarding the dispositions of the different elements in the various tests:

Uranium (See Figure 2)

- Most of the released U was found in solution when iron was absent, but almost none when iron was present.
- When iron was present, about half the released U was deposited on the iron; the other half was in filterable form.
- Very little released U was plated out on the container walls at 30°*C*, but there was some at 90°*C*.

Plutonium (See Figure 3)

- About half the released Pu was found in solution when iron was absent, but almost none when iron was present.
- Almost none of the released Pu deposited on the iron.
- Roughly half the released Pu plated out on the container walls in all cases; the other half was in solution when iron was absent and it was filterable when iron was present.

Technetium (See Figure 4)

- Essentially all the released Tc was found in solution when iron was absent, but only very little when iron was present.
- A large portion (more than half) of the released Tc deposited on the iron.
- Almost none of the released Tc plated out on the container walls in any case.
- Some of the released Tc was plated out on the zircaloy after 90 days but none after 180 days. Because only a few tests contained zircaloy, no generalizations can be made.

Cesium (See Figure 5)

- Essentially all the released Cs was found in solution with or without iron present.
- Essentially none of the released Cs plated out on either the walls or the iron in any case.

Tables 7-10 and Figures 2-5 show that the amounts of elements in the filtrates (i.e., solution concentrations) do not vary much with time over periods from 28 to 180 days. Therefore, solution concentrations were averaged over time for each element and each condition and are listed, along with detection limits, in Table 5. These concentrations were assumed to represent elements truly in solution since they have passed through a 1.8 nm filter. In the presence of iron, only small fractions of the total release of U, Pu, and Tc were found in solution. Even without iron, only about half the released Pu was found in solution. Solution concentrations in these cases can, therefore, be taken to represent solubility limits since solution and solid phases coexisted over considerable periods of time.

TABLE 5. Solution Concentrations in Spent Fuel Tests in Brine  
(mol/liter)\*

|            | Without Iron       |                    | With Iron           |                     | Detection Limit     |
|------------|--------------------|--------------------|---------------------|---------------------|---------------------|
|            | 30°C               | 90°C               | 30°C                | 90°C                |                     |
| Uranium    | $8 \times 10^{-5}$ | $3 \times 10^{-4}$ | $2 \times 10^{-6}$  | $8 \times 10^{-6}$  | $8 \times 10^{-9}$  |
| Plutonium  | $2 \times 10^{-8}$ | $2 \times 10^{-8}$ | $2 \times 10^{-10}$ | $1 \times 10^{-10}$ | $2 \times 10^{-11}$ |
| Technetium | $1 \times 10^{-6}$ | $2 \times 10^{-6}$ | $5 \times 10^{-8}$  | $1 \times 10^{-7}$  | $5 \times 10^{-9}$  |
| Cesium     | $3 \times 10^{-6}$ | $1 \times 10^{-5}$ | $3 \times 10^{-6}$  | $1 \times 10^{-5}$  | $1 \times 10^{-8}$  |

\*These approximate concentrations were measured after the solutions were cooled to ambient temperature (30°C) and passed through a 1.8 nm filter.

It has been noted that there is a general lack of time dependence in the total release data for either the present or earlier test matrix. Furthermore, as has also been noted, the presence of iron has little effect on the total release of U, Pu, and Tc despite its marked effect on the solution concentrations of these elements. It appears that the release simply stops after a short time, independent of an apparent difference in redox conditions caused by the presence or absence of an

iron coupon. This phenomenon suggests that one of three conditions exists: (1) a relatively reactive phase has been depleted leaving a less reactive phase and an apparent halt in the release; (2) some type of protective layer has been formed; or (3) some reactant in the brine has become depleted.

pH values were measured at the end of the leach tests using a combination glass electrode, but the electrode was subsequently found to be faulty. Evidence for this derived from measured values that were consistently lower than measured in previous tests<sup>(1)</sup> despite the fact that the instrument was frequently calibrated using buffers at pH 4 and 7. In addition, the measured pH values of two blank samples (PBB1 brine allowed to stand in the hot cell at 30°C in leach containers for 43 days with no spent fuel or metal coupons present) were similarly low. For reasons that are not well understood, a pH electrode can sometimes fail to read high ionic strength brine correctly despite the fact that it properly reads the low ionic strength buffers. This problem is usually not observed except with electrodes that have been used in brines for periods of several weeks to several months. Unfortunately, in the present case the faulty electrode was discarded and a new one installed before a direct comparison between the two, using the same test solution, could be made. However, since the pH of the blank samples should have been nearly the same as fresh PBB1 brine, a means of correcting the erroneous pH measurements is provided. The new electrode registered a pH of 5.65 for fresh PBB1 brine, whereas the faulty electrode registered 4.69 and 4.65 for the two blank samples. Thus, the correction is 1.0 pH units. In addition, there is a correction of 0.9 pH units for the liquid junction potential of the combination electrode.<sup>(4)</sup> Therefore, a total correction of 1.9 was applied to the data in Tables 7-10. Relative uncertainties of  $\pm 0.1$  pH unit are probably applicable when comparing values for the different samples. Because of the above correction, however, absolute uncertainties are somewhat larger, probably  $\pm 0.5$  pH units.

The pH data listed in Tables 7-10 show that the pH of the 180-day samples is about 0.6 units less than at all shorter time periods. This decrease appears to be real since measurements on the 180-day samples were made 2 to 3 weeks prior to those on the 120-day and 60-day samples. pH measurements on the 28-day and 90-day samples were made 5 months and 3 months prior to those on the 180-day samples, respectively. Thus, a

gradual deterioration of the electrode does not seem to be the reason for the lower pH values of the 180-day samples.

Table 11 lists pH values for leachates from  $UO_2$  leach tests that are somewhat lower than those listed in Tables 7-10 for the spent fuel leach tests. Because of the uncertainties in the absolute values of the latter, this difference is not considered to be significant.

### $UO_2$

Data for the  $UO_2$  tests are presented in Figures 5 and 6 as well as in Tables 11 and 12. The purpose of these tests was to determine whether a  $U_3O_7$  surface layer had any effect on leaching characteristics of  $UO_2$ . Apparently, it did not since the only case where oxidized pellets did release more uranium was at 28 days, without iron, in deionized water. Since this was the only exception, it can probably be discounted. Thus, if a more readily soluble surface layer, different from the bulk, is part of the reason for the difference between  $UO_2$  and spent fuel, it must be something other than  $U_3O_7$ .

When comparing the earlier data<sup>(1)</sup> with the present results, it must be remembered that the former data were from 25 and  $75^0C$  tests, whereas the latter were from  $90^0C$  tests. Although only a few of the earlier tests were conducted with deionized water, some temperature dependence of uranium release in deionized water was observed--at least in the absence of iron. In brine, there was little or no temperature dependence. The present data, in the absence of iron, are quite consistent with the earlier results. However, data from the present tests conducted in the presence of iron are not consistent with the earlier results. In deionized water, iron had little effect on the total uranium release in the present results. In contrast, the earlier results show a marked decrease in total uranium release when iron was present at both 25 and  $75^0C$ , although the effect was greater at  $75^0C$ . The reverse happened in brine. That is, the present data show an increase in total uranium release in the presence of iron, whereas the earlier data show no effect of iron on total uranium release at either 25 or  $75^0C$ .

Rationalization of these seemingly inconsistent results will require further studies to discover the mechanisms involved in  $\text{UO}_2$  leaching. The most important point to be made here, however, is that the  $\text{U}_3\text{O}_7$  surface layer had no effect, which was the question these present tests were designed to answer.

Table 6 lists solution concentrations, averaged over time, of uranium in the filtrates. These data can be compared with those for the spent fuel in Table 5. Solution concentrations in the spent fuel tests averaged 400 and 3000 times greater than in the  $\text{UO}_2$  tests for the tests with and without iron, respectively. Perhaps the alpha and/or gamma radiation from the spent fuel makes the solutions more oxidizing and makes the uranium, therefore, more soluble. Tests designed to answer this question are planned.

TABLE 6. Uranium Concentrations (mol/liter) in 90°C  $\text{UO}_2$  Tests

|                 | Without Iron       |                    | With Iron          |                    |
|-----------------|--------------------|--------------------|--------------------|--------------------|
|                 | <u>Unoxidized</u>  | <u>Oxidized</u>    | <u>Unoxidized</u>  | <u>Oxidized</u>    |
| Deionized Water | $8 \times 10^{-7}$ | $8 \times 10^{-6}$ | $4 \times 10^{-8}$ | $4 \times 10^{-8}$ |
| PBB1 Brine      | $1 \times 10^{-7}$ | $3 \times 10^{-7}$ | $2 \times 10^{-8}$ | $2 \times 10^{-8}$ |

#### DISCUSSION OF ERRORS

Errors in leaching results can arise through improper preparation and/or handling of the different analytical solutions that are represented in the figures and tables that follow. Errors can also occur in the analytical measurements themselves. Estimates of both types of errors could best be made through some type of systematic study using standard solutions, but this has not been done.

There can also be real differences between samples such as different surface conditions or differences in crack structure, particularly with

regard to fission product distributions. Such differences would be expected to be more pronounced with spent fuel than with  $UO_2$ , and there does seem to be more scatter in the spent fuel data.

Tables 11 and 12 are tabulations of the data shown graphically by Figures 5 and 6. These tables also show that the amount of time that the leachate solutions are allowed to stand before analysis can affect the results. Only solutions from samples leached for 28 days were analyzed at different times. Because of the sample-to-sample scatter in the data, it is difficult to compare the "A" samples, which were analyzed immediately, with the "B" samples, which were allowed to stand for one week before analyzing. Not enough re-analyses were made on the Teflon and iron plate-out solutions to establish trends. Trends for the leachate and filtrate solutions appear to be in opposite directions. A possible explanation for the increase with time of uranium in the leachate solutions is that some of the uranium initially remains in particulate form and is, therefore, not "seen" by the analyzer. This, despite the fact that the solution is acidified (0.1 ml concentrated  $HNO_3$  per 10 ml of solution) for the purpose of dissolving and keeping all of the uranium in true solution. With time, more of the uranium may dissolve and be "seen" by the analyzer. If this explanation is true, one would not expect to observe an increase in uranium with time if all the uranium were truly in solution to begin with (i.e., before acidification). Such a situation would be indicated by having leachate and filtrate concentrations the same. That situation existed only for the unoxidized  $UO_2$  without iron in brine (samples BU28A and BU28B). Although the data for sample BU28A, in particular, do not support the explanation offered, the explanation otherwise seems reasonable and should not be discounted unless and until further contradictory evidence is obtained. In the meantime, a change in the way the analytical solutions are prepared and/or handled may be warranted.

A logical explanation for the apparent decrease with time of uranium in the filtrate solutions is more open to question. Evidently, some of the uranium precipitates or plates out on the sample container walls with

time, but that is an unsatisfactory explanation because the solutions were acidified for the express purpose of preventing this from happening. Additional studies would be required to demonstrate whether that is the right explanation and, if so, how to prevent it.

The spent fuel data, in particular, exhibit considerable scatter. It was pointed out earlier that more scatter might be expected in the spent fuel data than in the  $UO_2$  data. Since the leach results should be represented by some type of smooth curve, some feel for the uncertainty can be obtained just by looking at this scatter. In an effort to obtain more information on uncertainties, some of the tests were replicated in both the spent fuel and  $UO_2$  tests. Complete tabulations of these data are given in the tables. Replications are shown only for the total release data in the figures where the spread between the maximum and minimum results are shown as vertical bars. On average, the replicate tests show a scatter that is similar to all the other data in general. Based on the observed scatter, it is estimated that the average leach data are accurate only to within a factor of about 2 for both the spent fuel and  $UO_2$ .

### CONCLUSIONS

Conclusions based on the spent fuel studies are as follows:

- Release of the four elements analyzed (U, Pu, Tc, and Cs) was almost independent of time over the period 5 to 180 days. That is, almost all of the release occurred in the first 5 days.
- The presence of iron had no effect on the total release, but it did reduce solution concentrations nearly to zero for all elements tested except Cs.
- Zircaloy had no effect on the leaching although some Tc collected on it during some of the tests.

Conclusions based on the  $UO_2$  studies are as follows:

- The purpose of the  $UO_2$  tests was to determine whether a  $U_3O_7$  surface layer had any effect on the leaching characteristics of  $UO_2$ . With one exception, which can probably be discounted, it did not.

#### REFERENCES

1. Barner, J. O., W. J. Gray, G. L. McVay and J. W. Shade. 1985. Interactive Leach Tests of  $UO_2$  and Spent Fuel with Waste Package Components in Salt Brine. PNL-4898, Pacific Northwest Laboratory, Richland, Washington 99352.
2. DOE/TIC-11400, Nuclear Waste Materials Handbook, Test Methods. MCC-1. Static Leach Test Method, p. 1-4.
3. White, G. D., C. A. Knox, E. R. Gilbert and A. B. Johnson, Jr. 1983. "Oxidation of  $UO_2$  at 150 to 350°C." In Workshop on Spent Fuel/Cladding Reaction During Dry Storage, NUREG/CP-0049, Appendix F, ed. D. W. Reisenweaver.
4. Pederson, L. R. 1985. Radiation and Heat Damage Effects in Natural Rock Salts. PNL-5212, Pacific Northwest Laboratory, Richland, WA 99352.

## TABLES/FIGURES

TABLE 7. Data for 30°C Tests of Unclad Spent Fuel in PBB1 Brine

| Element       | Sample    | Normalized Mass Loss (g/m <sup>2</sup> ) at Different Times (Days) |       |        |        |        |       |
|---------------|-----------|--------------------------------------------------------------------|-------|--------|--------|--------|-------|
|               |           | 28                                                                 | 60    | 90     | 120    | #1     | #2    |
| Uranium       | Leachate  | 2.01                                                               | 0.666 | 1.69   | 1.56   | 1.14   | 2.34  |
|               | Filtrate  | 1.91                                                               | 0.666 | 1.69   | 1.45   | 0.457  | 2.23  |
|               | Plate-Out | 0.046                                                              | 0.381 | 0.14   | 0.102  | 0.226  | 0.080 |
|               | Total     | 2.06                                                               | 1.05  | 1.83   | 1.66   | 1.37   | 2.42  |
| Plutonium     | Leachate  | 0.269                                                              | 0.023 | 0.0775 | 0.0277 | 0.0716 | 0.237 |
|               | Filtrate  | 0.180                                                              | 0.016 | 0.0561 | 0.0126 | 0.0653 | 0.225 |
|               | Plate-Out | 0.436                                                              | 0.112 | 0.0724 | 0.0828 | 0.154  | 0.121 |
|               | Total     | 0.705                                                              | 0.135 | 0.150  | 0.111  | 0.226  | 0.358 |
| Technetium    | Leachate  | 15.8                                                               | 19.0  | 13.2   | 16.4   | 12.2   | 18.0  |
|               | Filtrate  | 15.2                                                               | 17.5  | 13.2   | 16.7   | 12.2   | 18.2  |
|               | Plate-Out | <0.43                                                              | 0.127 | 1.11   | <0.081 | <0.08  | <0.08 |
|               | Total     | 16.2                                                               | 19.1  | 14.3   | 16.4   | 12.2   | 18.0  |
| Cesium        | Leachate  | 26.2                                                               | 24.3  | 30.8   | 33.2   | 19.4   | 33.9  |
|               | Filtrate  | 26.0                                                               | 24.0  | 31.2   | 32.0   | 18.8   | 32.9  |
|               | Plate-Out | 0.202                                                              | 0.077 | 0.119  | 0.021  | 0.045  | 0.04  |
|               | Total     | 26.4                                                               | 24.4  | 30.9   | 33.2   | 19.4   | 33.9  |
| Measured pH   | Leachate  | 5.2                                                                | 5.0   | 4.9    | 5.1    | 4.4    | 4.3   |
| Corrected pH* | Leachate  | 7.1                                                                | 6.9   | 6.8    | 7.0    | 6.3    | 6.2   |

\*A correction of 0.9 for the liquid junction potential plus 1.0 for the electrode error described in the text was applied to these data.

TABLE 8. Data for 30°C Tests of Unclad Spent Fuel/Iron in PBB1 Brine

| Element       | Sample    | Normalized Mass Loss (g/m <sup>2</sup> ) at Different Times (Days) |         |         |         |         |         |        |       |       |        |       |
|---------------|-----------|--------------------------------------------------------------------|---------|---------|---------|---------|---------|--------|-------|-------|--------|-------|
|               |           | 28                                                                 | 60      | #1      | 72      | 90      | Ave.    | 120    | #1    | 72    | 90     | Ave.  |
| Uranium       | Leachate  | 1.26                                                               | 2.18    | 1.74    | 1.35    | 1.45    | 1.51    | 3.71   | 4.23  | 1.80  | 3.41   | 3.15  |
|               | Filtrate  | 0.126                                                              | 0.041   | 0.031   | 0.020   | 0.031   | 0.027   | 0.0456 | 0.68  | 0.017 | 0.026  | 0.24  |
|               | Plate-Out | 0.159                                                              | 0.14    | 0.70    | 0.19    | 0.165   | 0.35    | 0.258  | 0.88  | 0.23  | 0.29   | 0.47  |
|               | Iron      | 2.07                                                               | 1.21    | 1.99    | 3.06    | 2.50    | 2.52    | 1.72   | 2.27  | 2.79  | 2.03   | 2.36  |
|               | Zirconium |                                                                    |         | 0.011   |         |         | 0.011   |        | 0.002 |       |        | 0.002 |
| Plutonium     | Total     | 3.49                                                               | 3.53    | 4.44    | 4.60    | 4.12    | 4.39    | 5.69   | 7.38  | 4.82  | 5.73   | 5.98  |
|               | Leachate  | 0.131                                                              | 0.344   | 0.601   | 0.242   | 0.197   | 0.347   | 0.354  | 0.564 | 0.237 | 0.462  | 0.421 |
|               | Filtrate  | 0.00028                                                            | 0.00056 | 0.00023 | 0.00075 | 0.00034 | 0.00044 | 0.0015 | 0.501 | 0.001 | 0.003  | 0.17  |
|               | Plate-Out | 0.0932                                                             | 0.072   | 0.0001  | 0.055   | 0.060   | 0.038   | 0.157  | 0.001 | 0.070 | 0.092  | 0.054 |
|               | Iron      | 0.0049                                                             | 0.012   |         | 0.0058  | 0.0043  | 0.0054  | 0.0233 | 0.037 | 0.126 | 0.0226 | 0.062 |
| Technetium    | Zirconium |                                                                    |         | 0.001   |         |         | 0.001   |        | 0.001 |       |        | 0.001 |
|               | Total     | 0.229                                                              | 0.428   | 0.618   | 0.303   | 0.261   | 0.394   | 0.534  | 0.603 | 0.320 | 0.577  | 0.500 |
|               | Leachate  | 4.40                                                               | 1.97    | 2.71    | 1.56    | 1.87    | 2.05    | 2.23   | 1.74  | 3.34  | 2.42   | 2.50  |
|               | Filtrate  | 2.03                                                               | 0.668   | 0.44    | 0.39    | 0.719   | 0.52    | 0.821  | 0.854 | 1.64  | 3.30   | 1.93  |
|               | Plate-Out | 0.640                                                              | 0.221   | 0.863   | <0.27   | 0.62    | 0.58    | 0.125  | 0.622 | 0.259 | 0.081  | 0.321 |
| Cesium        | Iron      | 2.41                                                               | 8.81    | 11.0    | 12.8    | 12.8    | 12.2    | 10.6   | 11.65 | 8.87  | 11.3   | 10.6  |
|               | Zirconium |                                                                    |         | 2.41    |         |         | 2.41    |        | 0.168 |       |        | 0.168 |
|               | Total     | 7.45                                                               | 11.0    | 17.0    | 14.6    | 15.3    | 15.6    | 13.0   | 14.2  | 12.5  | 13.8   | 13.5  |
|               | Leachate  | 17.7                                                               | 25.3    | 31.2    | 16.8    | 14.8    | 20.9    | 30.4   | 45.0  | 29.2  | 32.0   | 35.4  |
|               | Filtrate  | 17.6                                                               | 25.8    | 27.4    | 16.8    | 15.0    | 19.7    | 29.5   | 43.7  | 29.0  | 30.7   | 34.5  |
| Measured pH   | Plate-Out | 0.033                                                              | 0.103   | 0.064   | 0.037   | 0.041   | 0.047   | 0.079  | 0.036 | 0.021 | 0.02   | 0.026 |
|               | Iron      | 0.0051                                                             | 0.0083  | 0.003   | 0.0014  | 0.0087  | 0.0044  | 0.006  | 0.128 | 0.026 | 0.028  | 0.061 |
|               | Zirconium |                                                                    |         | 0.0008  |         |         | 0.0008  |        | 0.004 |       |        | 0.004 |
|               | Total     | 17.7                                                               | 25.4    | 31.3    | 16.8    | 14.9    | 21.0    | 30.4   | 45.1  | 29.2  | 32.0   | 35.4  |
|               | Leachate  | 4.9                                                                | 4.8     | 4.9     | 5.0     | 4.9     |         | 5.0    | 4.3   | 4.4   | 4.2    |       |
| Corrected pH* | Leachate  | 6.8                                                                | 6.7     | 6.8     | 6.9     | 6.8     |         | 6.9    | 6.2   | 6.3   | 6.1    |       |

\*A correction of 0.9 for the liquid junction potential plus 1.0 for the electrode error described in the text was applied to these data.

TABLE 9. Data for 90°C Tests of Unclad Spent Fuel in P8B1 Brine

| Element       | Sample    | Normalized Mass Loss (g/m <sup>2</sup> ) at Different Times (Days) |        |        |        |        |       |
|---------------|-----------|--------------------------------------------------------------------|--------|--------|--------|--------|-------|
|               |           | 28                                                                 | 60     | 90     | 120    | #1     | #2    |
| Uranium       | Leachate  | 0.647                                                              | 2.33   | 5.39   | 1.22   | 16.2   | 17.1  |
|               | Filtrate  | 0.534                                                              | 1.56   | 5.15   | 0.79   | 13.0   | 15.3  |
|               | Plate-Out | 0.647                                                              | 0.54   | 3.37   | 1.48   | 1.29   | 1.39  |
|               | Total     | 1.29                                                               | 2.87   | 8.76   | 2.70   | 17.5   | 18.5  |
| Plutonium     | Leachate  | 0.058                                                              | 0.124  | 0.0602 | 0.0946 | 0.206  | 0.131 |
|               | Filtrate  | 0.036                                                              | 0.085  | 0.0880 | 0.0574 | 0.070  | 0.069 |
|               | Plate-Out | 0.051                                                              | 0.123  | 0.0704 | 0.0483 | 0.0335 | 0.199 |
|               | Total     | 0.109                                                              | 0.247  | 0.131  | 0.143  | 0.240  | 0.330 |
| Technetium    | Leachate  | 0.523                                                              | 23.3   | 29.1   | 28.0   | 24.1   | 30.6  |
|               | Filtrate  | 0.468                                                              | 21.5   | 30.4   | 27.6   | 26.6   | 31.3  |
|               | Plate-Out | <0.0077                                                            | <0.089 | 0.348  | <0.087 | 0.15   | <0.15 |
|               | Total     | 0.531                                                              | 23.3   | 29.4   | 28.0   | 24.3   | 30.6  |
| Cesium        | Leachate  | 81.1                                                               | 79.0   | 109.0  | 66.5   | 74.5   | 81.6  |
|               | Filtrate  | 80.1                                                               | 77.0   | 111.0  | 62.2   | 73.8   | 80.1  |
|               | Plate-Out | 0.022                                                              | 0.45   | 0.0197 | 0.0098 | 0.071  | 0.20  |
|               | Total     | 81.1                                                               | 79.5   | 109.0  | 66.5   | 74.6   | 81.8  |
| Measured pH   | Leachate  | 5.0                                                                | 5.0    | 4.7    | 4.9    | 4.4    | 4.3   |
| Corrected pH* | Leachate  | 6.9                                                                | 6.9    | 6.6    | 6.8    | 6.3    | 6.2   |

\*A correction of 0.9 for the liquid junction potential plus 1.0 for the electrode error described in the text was applied to these data.

TABLE 10. Data for 90°C Tests of Unclad Spent Fuel/Iron in PBBL Brine

| Element       | Sample    | Normalized Mass Loss (g/m <sup>2</sup> ) at Different Times (Days) |         |         |         |         |         |        |        |        |        |        |
|---------------|-----------|--------------------------------------------------------------------|---------|---------|---------|---------|---------|--------|--------|--------|--------|--------|
|               |           | 28                                                                 | 60      | #1      | #2      | #3      | Ave.    | 120    | #1     | #2     | #3     | Ave.   |
| Uranium       | Leachate  | 6.97                                                               | 2.12    | 1.45    | 1.19    | 11.9    | 4.85    | 1.86   | 0.125  | 0.105  | 0.65   | 0.293  |
|               | Filtrate  | 1.00                                                               | 0.648   | 0.107   | 0.139   | 0.24    | 0.162   | 0.339  | 0.314  | 0.141  | 0.051  | 0.169  |
|               | Plate-Out | 1.45                                                               | 9.11    | 8.46    | 4.07    | 1.59    | 4.71    | 1.55   | 3.30   | 1.17   | 0.060  | 1.51   |
|               | Iron      | 1.89                                                               | 4.35    | 4.32    | 9.30    | 5.80    | 6.47    | 10.5   | 5.91   | 9.45   | 8.14   | 7.83   |
|               | Zirconium |                                                                    |         | 0.002   |         |         | 0.002   |        | 0.014  |        |        | 0.014  |
|               | Total     | 10.3                                                               | 15.6    | 14.2    | 14.6    | 19.3    | 16.0    | 13.9   | 9.35   | 10.7   | 9.39   | 9.81   |
| Plutonium     | Leachate  | 0.442                                                              | 0.344   | 0.981   | 0.982   | 1.39    | 1.18    | 0.418  | 0.210  | 0.0306 | 0.146  | 0.129  |
|               | Filtrate  | 0.00096                                                            | 0.00049 | 0.00046 | 0.00013 | 0.00026 | 0.00028 | 0.0004 | 0.001  | 0.0007 | 0.0004 | 0.0007 |
|               | Plate-Out | 0.467                                                              | 0.106   | 0.566   | 0.157   | 0.150   | 0.291   | 0.140  | 2.45   | 0.391  | 1.61   | 1.48   |
|               | Iron      | 0.005                                                              | 0.0305  | 0.8084  | 0.0075  | 0.0086  | 0.0082  | 0.0078 | 0.019  | 0.0127 | 0.014  | 0.015  |
|               | Zirconium |                                                                    |         | 0.0023  |         |         | 0.0023  |        | 0.01   |        |        | 0.01   |
|               | Total     | 0.914                                                              | 0.481   | 1.56    | 1.15    | 1.55    | 1.42    | 0.566  | 2.68   | 0.434  | 1.77   | 1.63   |
| Technetium    | Leachate  | 7.97                                                               | 1.62    | 1.46    | 1.19    | 11.2    | 4.62    | 8.46   | 4.62   | 1.79   | 4.54   | 3.65   |
|               | Filtrate  | 1.92                                                               | 1.12    | 1.12    | 0.595   | 1.30    | 1.01    | 2.19   | 2.14   | 2.84   | 1.63   | 2.20   |
|               | Plate-Out | 0.511                                                              | 1.56    | 4.15    | 1.36    | 0.936   | 2.15    | 1.00   | 0.871  | 0.772  | 0.481  | 0.708  |
|               | Iron      | 3.89                                                               | 7.09    | 15.3    | 20.8    | 16.0    | 17.4    | 19.0   | 11.1   | 13.8   | 12.0   | 12.3   |
|               | Zirconium |                                                                    |         | 3.34    |         |         | 3.34    |        | <0.18  |        |        | <0.18  |
|               | Total     | 12.4                                                               | 10.3    | 24.3    | 23.4    | 28.1    | 25.3    | 28.5   | 16.6   | 16.4   | 17.0   | 16.7   |
| Cesium        | Leachate  | 92.3                                                               | 104     | 118     | 87.7    | 73.0    | 92.9    | 103    | 111    | 71.9   | 105    | 96.0   |
|               | Filtrate  | 91.4                                                               | 102     | 121     | 90.8    | 72.4    | 94.7    | 102    | 105    | 69.3   | 104    | 92.8   |
|               | Plate-Out | 0.601                                                              | 0.075   | 0.039   | 0.019   | 0.024   | 0.027   | 0.0074 | 0.18   | 0.34   | 0.052  | 0.19   |
|               | Iron      | 0.027                                                              | 0.029   | 0.055   | 0.071   | 0.029   | 0.052   | 0.057  | 0.12   | 0.079  | 0.105  | 0.10   |
|               | Zirconium |                                                                    |         | 0.00072 |         |         | 0.00072 |        | <0.004 |        |        | <0.004 |
|               | Total     | 92.9                                                               | 104     | 118     | 87.8    | 73.0    | 92.9    | 103    | 111    | 72.3   | 105    | 96.0   |
| Measured pH   | Leachate  | 4.9                                                                | 5.0     | 4.7     | 4.9     | 4.8     |         | 4.9    | 4.5    | 4.5    | 4.4    |        |
| Corrected pH* | Leachate  | 6.8                                                                | 6.9     | 6.6     | 6.8     | 6.7     |         | 6.8    | 6.4    | 6.4    | 6.3    |        |

\*A correction of 0.9 for the liquid junction potential plus 1.0 for the electrode error described in the text was applied to these data.

TABLE 11. Data for 90°C Tests of UO<sub>2</sub> in PBB1 Brine

| Sample Number                     | No. Days | Normalized Uranium Mass Loss (mg/m <sup>2</sup> ) |                                    |                     |                         | Final* pH |      |
|-----------------------------------|----------|---------------------------------------------------|------------------------------------|---------------------|-------------------------|-----------|------|
|                                   |          | Leachate <sup>(1)</sup>                           | Plate-Out on Teflon <sup>(2)</sup> | Iron <sup>(3)</sup> | Filtrate <sup>(1)</sup> |           |      |
| <u>UO<sub>2</sub></u>             |          |                                                   |                                    |                     |                         |           |      |
| BU5 (4)                           | 5        | 5.0                                               | 7.6                                |                     | 4.9                     | 12.6      | 6.65 |
| BU14 (4)                          | 14       | 3.4                                               | 17.2                               |                     | 2.8                     | 20.6      | 6.30 |
| BU28A (4)                         | 28       | 3.4                                               | 11.5                               |                     | 3.4                     | 14.9      | 6.21 |
|                                   | (5)      | 4.1                                               |                                    |                     |                         |           |      |
| BU28B (6)                         | 28       | 3.1                                               | 28.4                               |                     | 3.0                     | 31.5      | 6.24 |
|                                   | (7)      | 3.2                                               |                                    |                     |                         |           |      |
|                                   | (8)      |                                                   |                                    |                     | 2.6                     |           |      |
| <u>UO<sub>2</sub>-Fe</u>          |          |                                                   |                                    |                     |                         |           |      |
| BUF5 (4)                          | 5        | 3.9                                               | 15.4                               | 1.5                 | 1.0                     | 20.8      | 6.58 |
| BUF14 (4)                         | 14       | 9.5                                               | 35.9                               | 2.2                 | 0.3                     | 47.6      | 5.92 |
| BUF28A (4)                        | 28       | 9.1                                               | 229                                | 3.5                 | 0.0                     | 242       | 6.28 |
|                                   | (5)      | 70.4                                              |                                    |                     |                         |           |      |
| BUF28B (6)                        | 28       | 23.6                                              | 81.3                               | 2.9                 | 0.2                     | 108       | 6.09 |
|                                   | (7)      | 21.6                                              | 97.0                               | 3.2                 | 0.0                     |           |      |
|                                   | (8)      |                                                   |                                    |                     | 0.0                     |           |      |
| <u>Oxidized UO<sub>2</sub></u>    |          |                                                   |                                    |                     |                         |           |      |
| OBU5 (4)                          | 5        | 10.7                                              | 5.4                                |                     | 9.4                     | 16.1      | 6.45 |
| OBU14 (4)                         | 14       | 6.5                                               | 4.7                                |                     | 6.8                     | 11.2      | 6.44 |
| OBU28A (4)                        | 28       | 4.4                                               | 7.4                                |                     | 4.4                     | 11.8      | 6.44 |
| OBU28B (6)                        | 28       | 7.8                                               | 16.2                               |                     | 4.7                     | 24.0      | 6.46 |
|                                   | (7)      | 7.2                                               |                                    |                     |                         |           |      |
|                                   | (8)      |                                                   |                                    |                     | 4.3                     |           |      |
| <u>Oxidized UO<sub>2</sub>-Fe</u> |          |                                                   |                                    |                     |                         |           |      |
| OBUF5 (4)                         | 5        | 7.2                                               | 18.9                               | 3.9                 | 0.7                     | 30.0      | 6.46 |
| OBUF14 (4)                        | 14       | 10.9                                              | 36.3                               | 5.4                 | 0.0                     | 52.6      | 5.69 |
| OBUF28A (4)                       | 28       | 10.0                                              | 86.1                               | 6.1                 | 0.0                     | 102       | 6.07 |
|                                   | (5)      | 38.6                                              |                                    |                     |                         |           |      |
| OBUF28B (6)                       | 28       | 45.4                                              | 39.4                               | 10.9                | 0.2                     | 95.7      | 5.87 |
|                                   | (7)      |                                                   |                                    | 13.4                |                         |           |      |
|                                   | (8)      |                                                   |                                    |                     | 0.0                     |           |      |

(1) 36 ml sample

(5) reanalyzed two weeks later

(2) 50 ml sample

(6) set aside for one week before analyzing

(3) 25 ml sample

(7) reanalyzed one week later

(4) analyzed immediately

(8) reanalyzed three weeks later

\*These values have been corrected for liquid junction potential; i.e., a value of 0.90 was added to the measured pH values.

TABLE 12. Data for 90°C Tests of UO<sub>2</sub> in Deionized Water

| Sample Number                     | No. Days | Normalized Uranium Mass Loss (mg/m <sup>2</sup> ) |                                    |                     |                         |       | Final pH |
|-----------------------------------|----------|---------------------------------------------------|------------------------------------|---------------------|-------------------------|-------|----------|
|                                   |          | Leachate <sup>(1)</sup>                           | Plate-Out on Teflon <sup>(2)</sup> | Iron <sup>(3)</sup> | Filtrate <sup>(1)</sup> | Total |          |
| <u>UO<sub>2</sub></u>             |          |                                                   |                                    |                     |                         |       |          |
| WU5 (4)                           | 5        | 51.6                                              | 14.2                               |                     | 22.4                    | 65.8  | 5.38     |
| WU14 (4)                          | 14       | 31.2                                              | 155                                |                     | 10.0                    | 186   | 5.47     |
| WU28A (4)                         | 28       | 103                                               | 140                                |                     | 28.4                    | 243   | 5.76     |
| (5)                               |          | 106                                               |                                    |                     |                         |       |          |
| WU28B (6)                         | 28       | 77.2                                              | 169                                |                     | 19.3                    | 246   | 5.64     |
| (7)                               |          | 85.1                                              | 287                                |                     | 21.6                    |       |          |
| (8)                               |          |                                                   |                                    |                     | 22.0                    |       |          |
| <u>UO<sub>2</sub>-Fe</u>          |          |                                                   |                                    |                     |                         |       |          |
| WUF5 (4)                          | 5        | 11.9                                              | 181                                | 2.2                 | 0.5                     | 195   | 6.07     |
| WUF14 (4)                         | 14       | 35.4                                              | 227                                | 6.1                 | 0.8                     | 269   | 5.91     |
| WUF28A (4)                        | 28       | 90.8                                              | 136                                | 51.2                | 1.1                     | 278   | 6.42     |
| WUF28B (6)                        | 28       | 88.5                                              | 328                                | 14.2                | 1.6                     | 431   | 6.17     |
| (7)                               |          | 107.8                                             |                                    |                     |                         |       |          |
| (8)                               |          |                                                   |                                    |                     | 0.8                     |       |          |
| <u>Oxidized UO<sub>2</sub></u>    |          |                                                   |                                    |                     |                         |       |          |
| OWU5 (4)                          | 5        | 151                                               | 12.3                               |                     | 115                     | 163   | 5.77     |
| OWU14 (4)                         | 14       | 140                                               | 118                                |                     | 77.2                    | 258   | 5.11     |
| OWU28A (4)                        | 28       | 312                                               | 539                                |                     | 244                     | 851   | 5.50     |
| (5)                               |          | 397                                               |                                    |                     |                         |       |          |
| OWU28B (6)                        | 28       | 848                                               | 336                                |                     | 697                     | 1184  | 5.31     |
| (7)                               |          | 1090                                              |                                    |                     |                         |       |          |
| (8)                               |          |                                                   |                                    |                     | 602                     |       |          |
| <u>Oxidized UO<sub>2</sub>-Fe</u> |          |                                                   |                                    |                     |                         |       |          |
| OWUF5 (4)                         | 5        | 21.0                                              | 88.9                               | 1.7                 | 0.6                     | 112   | 6.02     |
| OWUF14 (4)                        | 14       | 23.8                                              | 55.2                               | 46.6                | 1.1                     | 126   | 5.90     |
| OWUF28A (4)                       | 28       | 72.6                                              | 218                                | 74.9                | 2.5                     | 366   | 6.39     |
| (5)                               |          | 131                                               |                                    |                     |                         |       |          |
| OWUF28B (6)                       | 28       | 184                                               | 232                                | 52.5                | 1.6                     | 469   | 5.99     |
| (7)                               |          | 207                                               |                                    |                     |                         |       |          |
| (8)                               |          |                                                   |                                    |                     | 1.2                     |       |          |

(1) 36 ml sample

(5) reanalyzed two weeks later

(2) 50 ml sample

(6) set aside for one week before analyzing

(3) 25 ml sample

(7) reanalyzed one week later

(4) analyzed immediately

(8) reanalyzed three weeks later

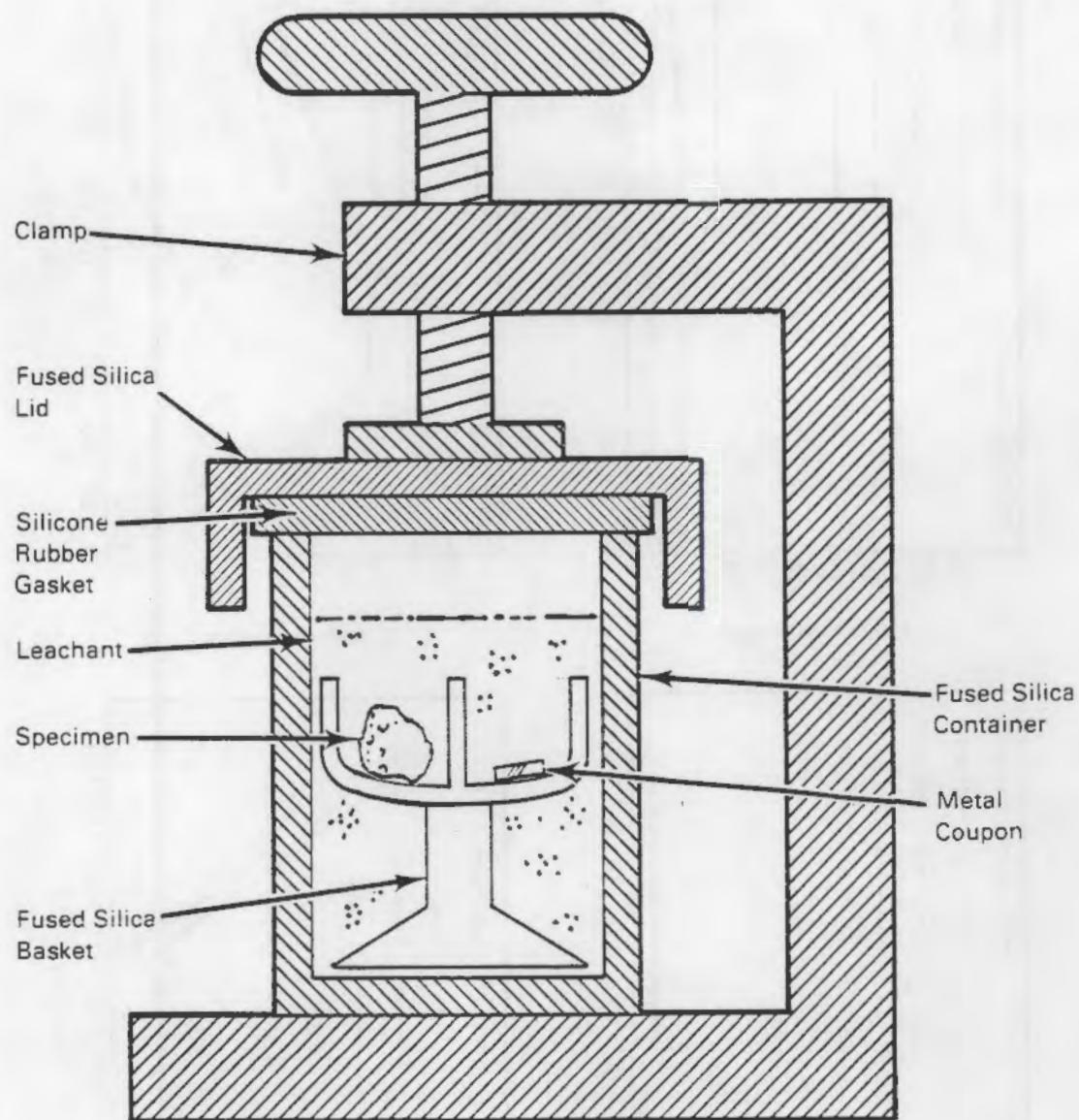



FIGURE 1. Schematic Diagram of Container Used for Ambient Temperature Spent Fuel Leach Tests

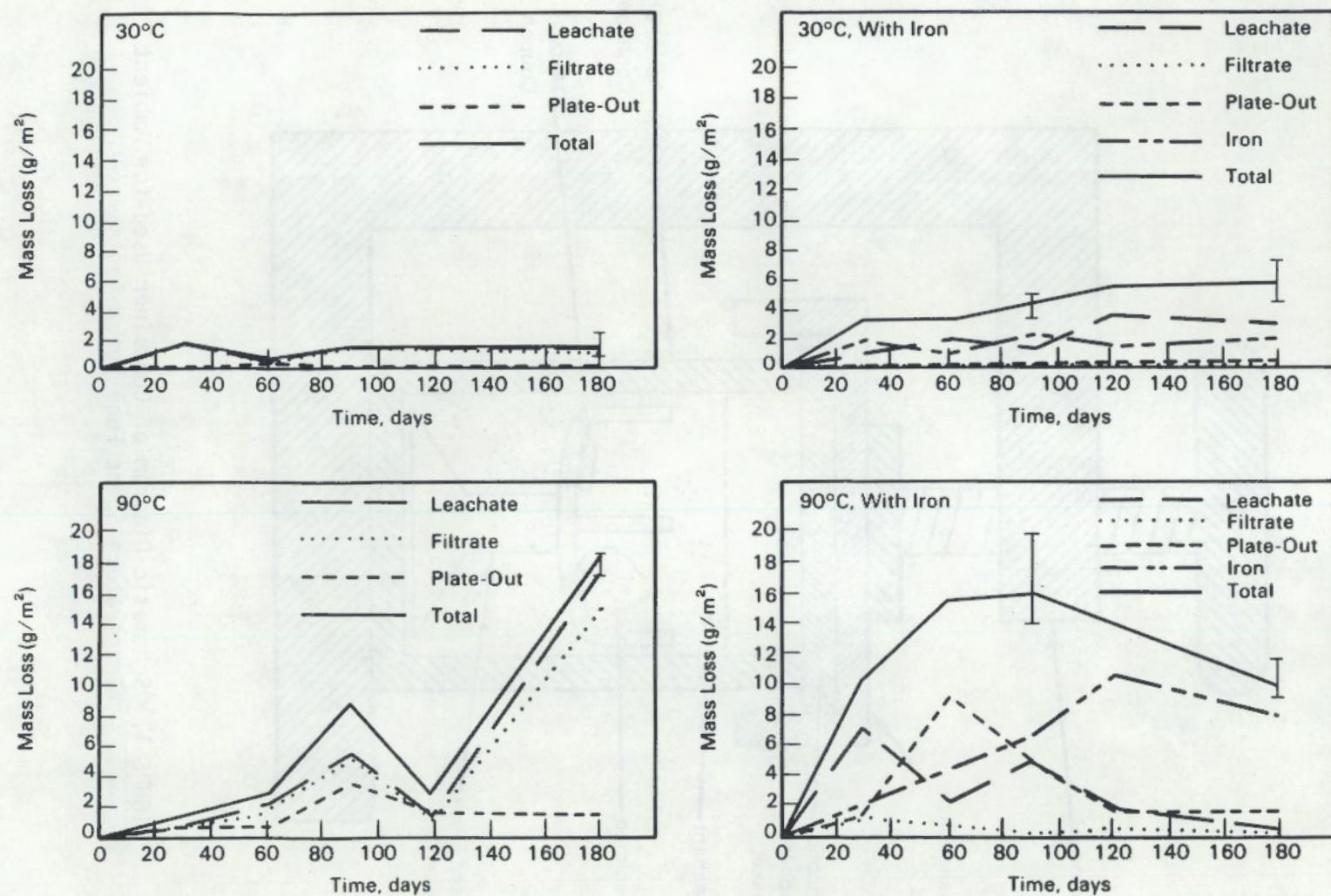



FIGURE 2. Normalized Uranium Mass Loss from Spent Fuel in PBB1 Brine

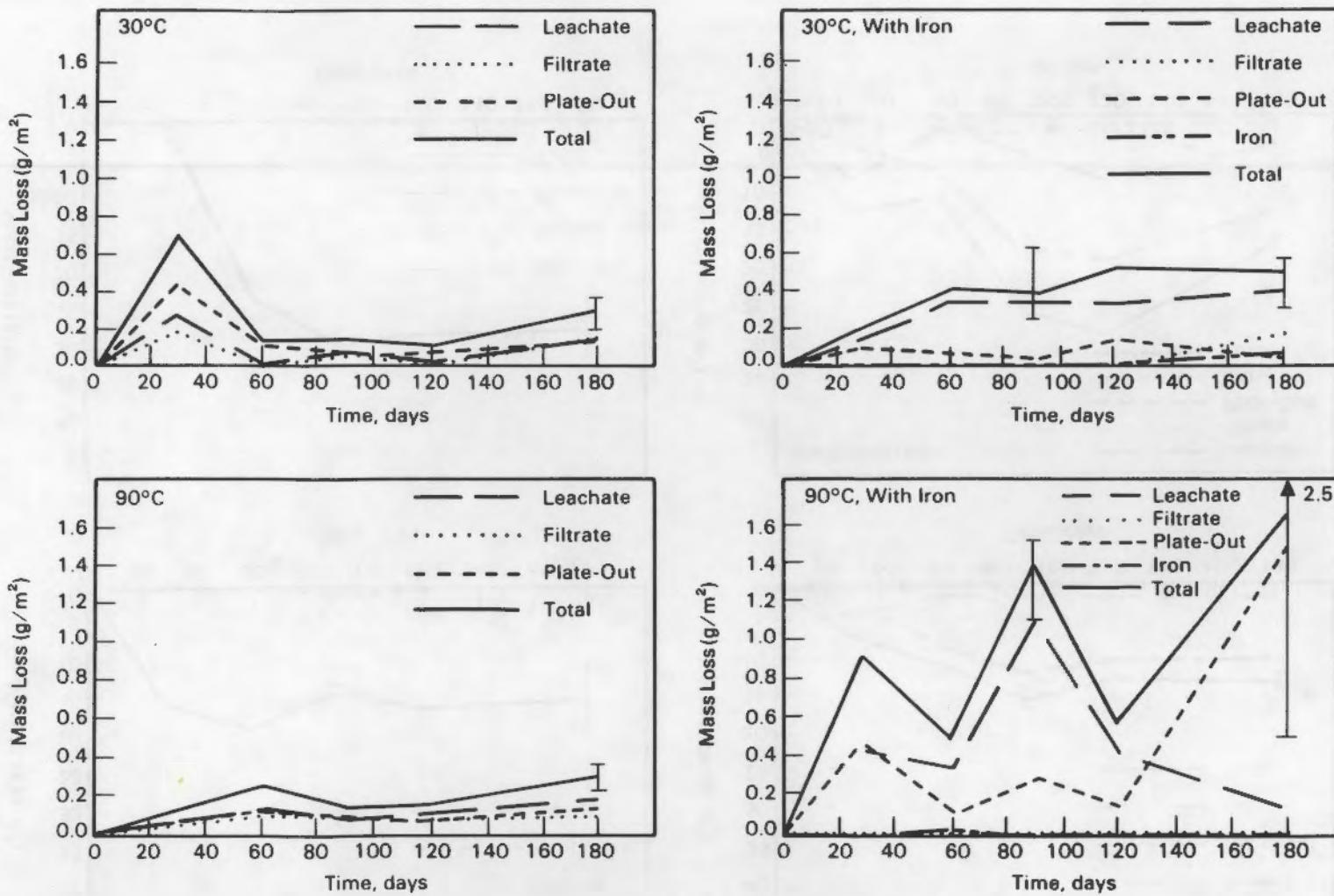



FIGURE 3. Normalized Plutonium Mass Loss from Spent Fuel in PBB1 Brine

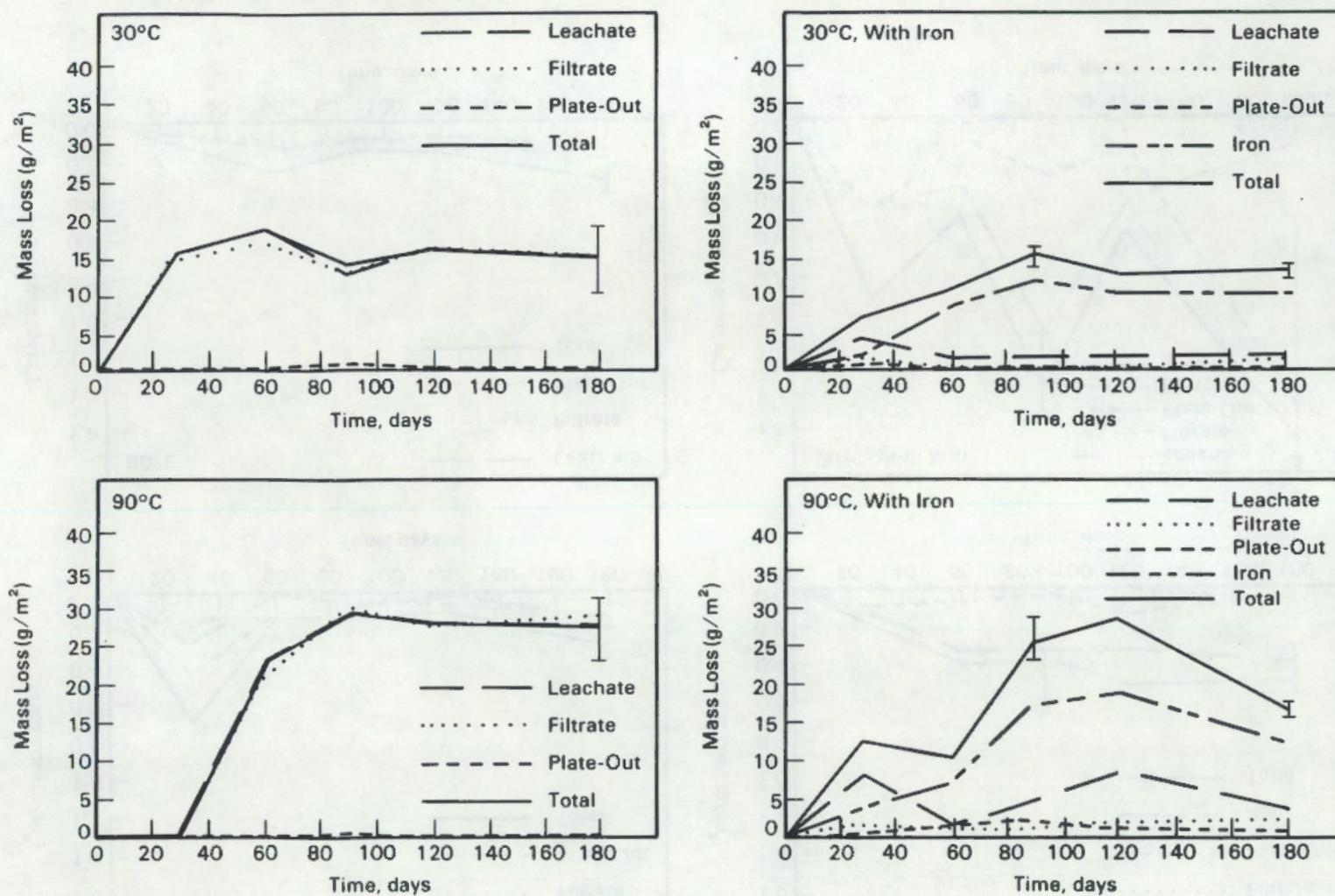



FIGURE 4. Normalized Technetium Mass Loss from Spent Fuel in PBB1 Brine

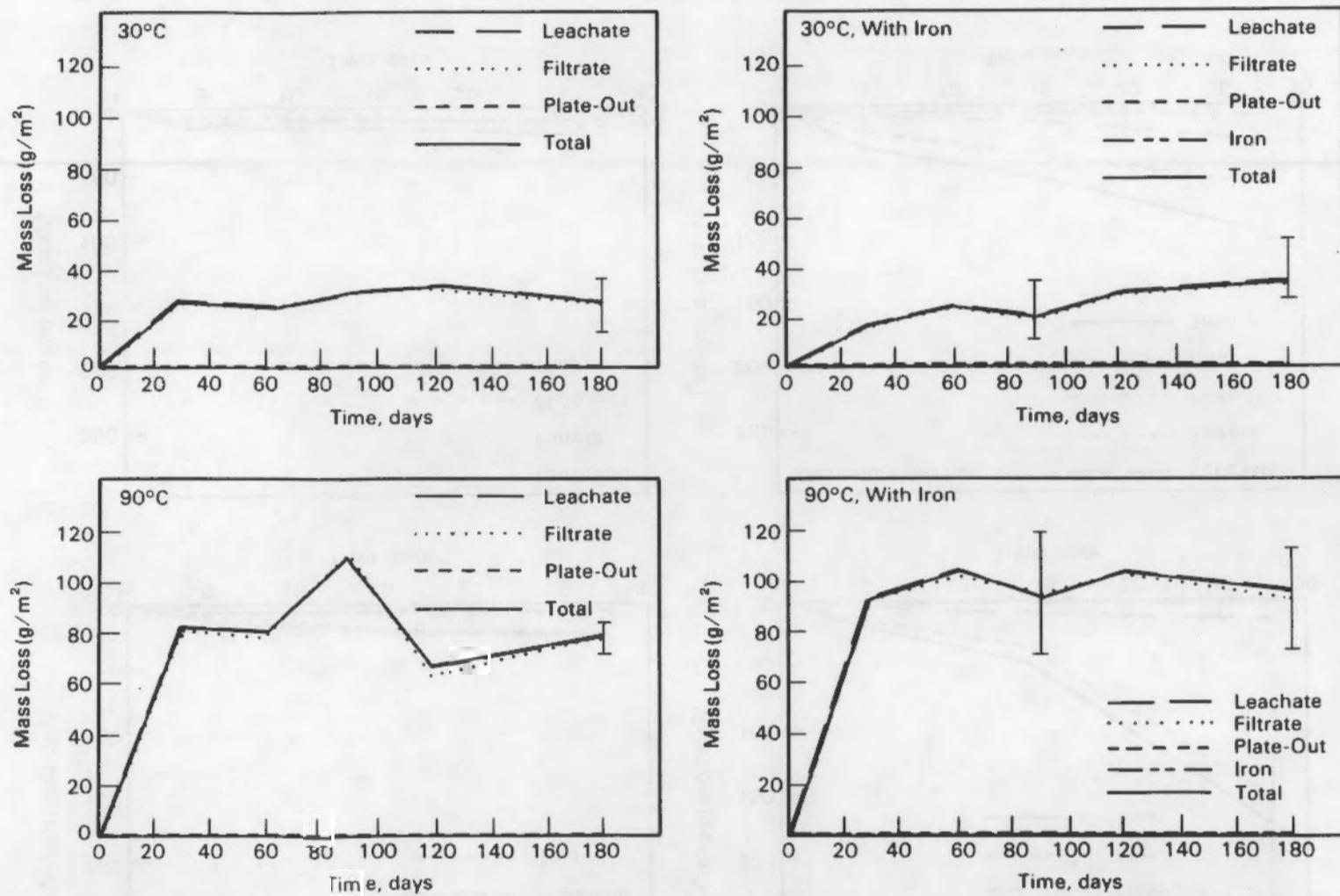



FIGURE 5. Normalized Cesium Mass Loss from Spent Fuel in PBB1 Brine

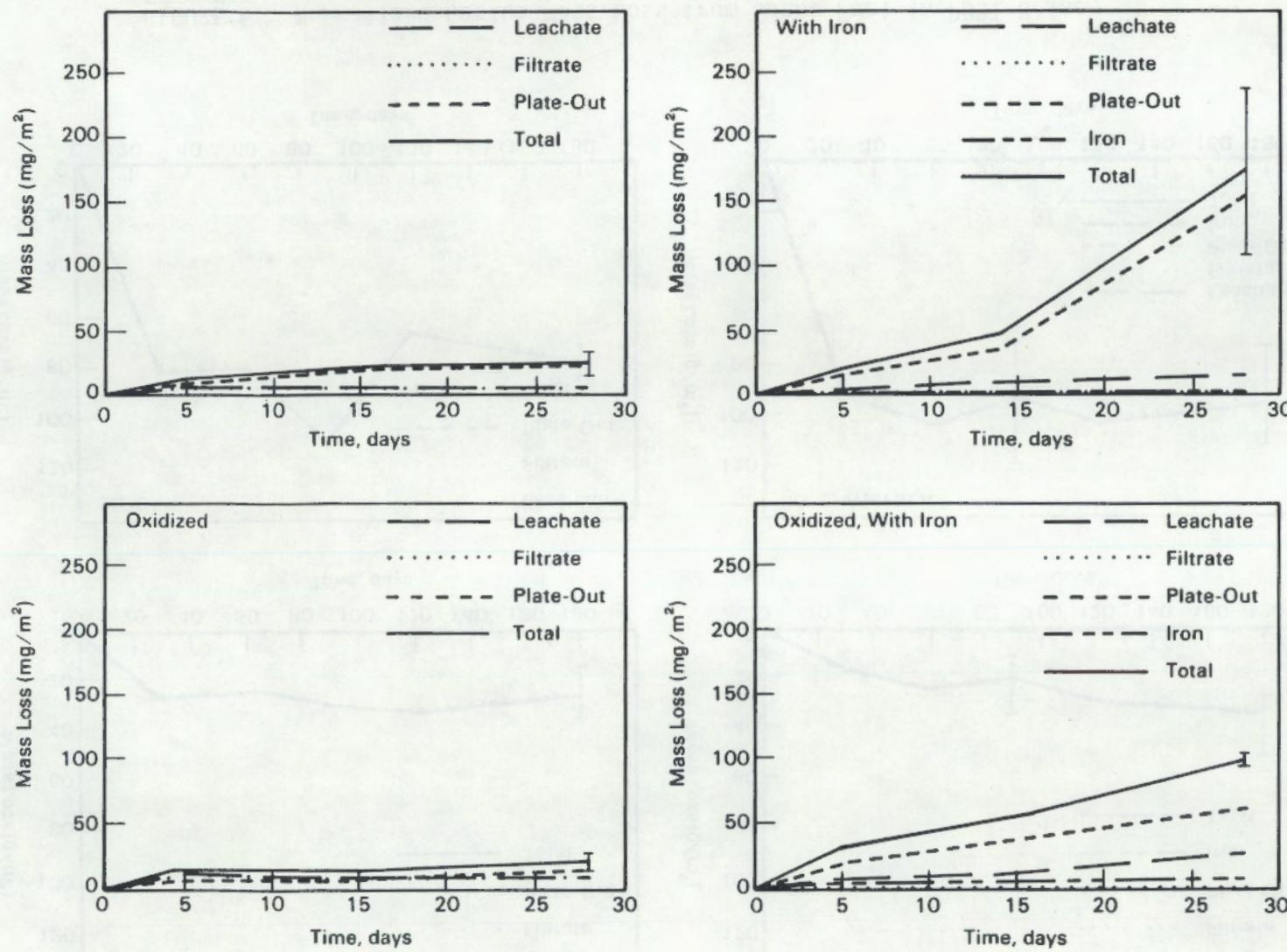



FIGURE 6. Normalized Uranium Mass Loss from  $\text{UO}_2$  in 90°C PBB1 Brine

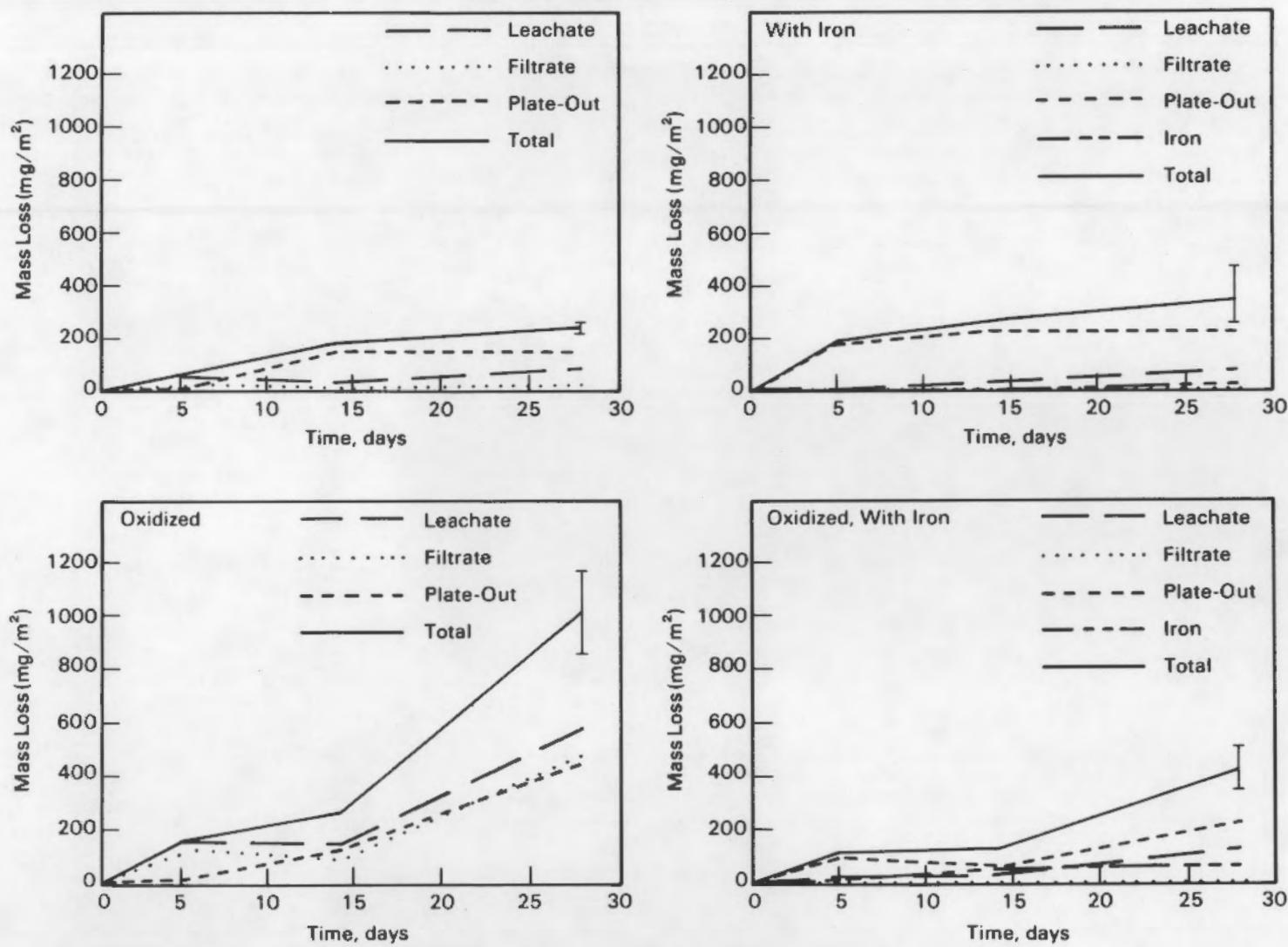



FIGURE 7. Normalized Uranium Mass Loss from  $\text{UO}_2$  in 90°C Deionized Water



APPENDIX A

TABLE A.1. RAW URANIUM DATA FOR 30°C TESTS OF UNCLAD SPENT FUEL IN PBB1 BRINE

| Sample Number | No. Days | Leachate <sup>(1)</sup><br>Vol. (ml) | Plate-Out <sup>(2)</sup><br>Vol. (ml) | Uranium Concentration (μg/ml) |        |                                     |                         |
|---------------|----------|--------------------------------------|---------------------------------------|-------------------------------|--------|-------------------------------------|-------------------------|
|               |          |                                      |                                       | Leachate                      | Quartz | Plate-Out on<br>Iron <sup>(3)</sup> | Zircaloy <sup>(3)</sup> |
| 26            | 28       | 35                                   | 47                                    | 20                            | 0.35   |                                     | 19                      |
| 4             | 60       | 40                                   | 45                                    | 5.9                           | 3.0    |                                     | 5.9                     |
| 32            | 90       | 27                                   | 45                                    | 22                            | 1.1    |                                     | 22                      |
| 7             | 120      | 37                                   | 45                                    | 15                            | 0.81   |                                     | 14                      |
| 14            | 180      | 41                                   | 45                                    | 10                            | 1.8    |                                     | 4.0                     |
| 16            | 180      | 40                                   | 45                                    | 21                            | 0.64   |                                     | 20                      |
| A.1           | 10       | 37                                   | 46                                    | 12                            | 1.2    | 720                                 | 1.2                     |
|               | 34       | 40                                   | 45                                    | 19                            | 1.1    | 420                                 | 0.36                    |
|               | 27       | 24                                   | 45                                    | 23                            | 5.0    | 640                                 | 3.4                     |
|               | 28       | 37                                   | 45                                    | 12                            | 1.4    | 1000                                | 0.41                    |
|               | 11       | 37                                   | 45                                    | 13                            | 1.2    | 820                                 | 0.18                    |
|               | 3        | 120                                  | 37                                    | 35                            | 2.0    | 601                                 | 0.28                    |
|               | 1        | 180                                  | 35                                    | 45                            | 6.4    | 743                                 | 0.43                    |
|               | 8        | 180                                  | 37                                    | 45                            | 1.7    | 924                                 | 0.60                    |
|               | 17       | 39                                   | 45                                    | 30                            | 2.2    | 688                                 | 6.4                     |
|               |          |                                      |                                       |                               |        |                                     | 0.15                    |

(1) This volume applies to both leachate and filtrate.

(2) This volume applies to plate-out on the quartz only.

(3) Total μg per coupon.

TABLE A.2. RAW PLUTONIUM DATA FOR 30°C TESTS OF UNCLAD SPENT FUEL IN PBB1 BRINE

| Sample Number | No. Days | Leachate <sup>(2)</sup><br>Vol. (ml) | Plate-Out <sup>(3)</sup><br>Vol. (ml) | Plutonium Activity (Bq/ml) <sup>(1)</sup> |        |                                     |                         | Filtrate |
|---------------|----------|--------------------------------------|---------------------------------------|-------------------------------------------|--------|-------------------------------------|-------------------------|----------|
|               |          |                                      |                                       | Leachate                                  | Quartz | Plate-Out on<br>Iron <sup>(4)</sup> | Zircaloy <sup>(4)</sup> |          |
| 26            | 28       | 35                                   | 47                                    | 5.5                                       | 6.7    |                                     |                         | 3.7      |
| 4             | 60       | 40                                   | 45                                    | 5.7                                       | 24     |                                     |                         | 3.8      |
| 32            | 90       | 27                                   | 45                                    | 28                                        | 16     |                                     |                         | 20       |
| 7             | 120      | 37                                   | 45                                    | 7.3                                       | 18     |                                     |                         | 3.3      |
| 14            | 180      | 41                                   | 45                                    | 17                                        | 34     |                                     |                         | 16       |
| 16            | 180      | 40                                   | 45                                    | 58                                        | 27     |                                     |                         | 56       |
| A.2           |          |                                      |                                       |                                           |        |                                     |                         |          |
| 10            | 28       | 37                                   | 46                                    | 34                                        | 19     | 47                                  |                         | 0.073    |
| 34            | 60       | 40                                   | 45                                    | 82                                        | 15     | 110                                 |                         | 0.13     |
| 27            | 90       | 24                                   | 45                                    | 218                                       | 19     | 51                                  | 13                      | 0.083    |
| 28            | 90       | 37                                   | 45                                    | 59                                        | 11     | 52                                  |                         | 0.18     |
| 11            | 90       | 37                                   | 45                                    | 48                                        | 12     | 38                                  |                         | 0.083    |
| 3             | 120      | 37                                   | 45                                    | 92                                        | 33     | 223                                 |                         | 0.38     |
| 1             | 180      | 35                                   | 45                                    | 146                                       | 0.23   | 328                                 | 11                      | 132      |
| 8             | 180      | 37                                   | 45                                    | 58                                        | 14     | 115                                 |                         | 0.27     |
| 17            | 180      | 39                                   | 45                                    | 112                                       | 19     | 210                                 |                         | 0.67     |

(1) Total  $^{239}\text{Pu}$  plus  $^{240}\text{Pu}$  activity. This activity represents about 90% of the total Pu which has a specific activity of 4.0 GBq/g.

(2) This volume applies to both leachate and filtrate.

(3) This volume applies to plate-out on the quartz only.

(4) Total  $\mu\text{g}$  per coupon.

TABLE A.3. RAW TECHNETIUM DATA FOR 30°C TESTS OF UNCLAD SPENT FUEL IN PBB1 BRINE

| Sample Number | No. Days | Leachate <sup>(2)</sup><br>Vol. (ml) | Plate-Out <sup>(3)</sup><br>Vol. (ml) | Technetium Activity (Bq/ml) <sup>(1)</sup> |        |                                  |                         | Filtrate |
|---------------|----------|--------------------------------------|---------------------------------------|--------------------------------------------|--------|----------------------------------|-------------------------|----------|
|               |          |                                      |                                       | Leachate                                   | Quartz | Plate-Out on Iron <sup>(4)</sup> | Zircaloy <sup>(4)</sup> |          |
| A.3           | 26       | 28                                   | 35                                    | 47                                         | 82     | <1.7                             |                         | 78       |
|               | 4        | 60                                   | 40                                    | 45                                         | 87     | 0.52                             |                         | 80       |
|               | 32       | 90                                   | 27                                    | 45                                         | 88     | 4.5                              |                         | 88       |
|               | 7        | 120                                  | 37                                    | 45                                         | 82     | <0.33                            |                         | 83       |
|               | 14       | 180                                  | 41                                    | 45                                         | 55     | <0.33                            |                         | 55       |
|               | 16       | 180                                  | 40                                    | 45                                         | 84     | <0.33                            |                         | 85       |
|               | 10       | 28                                   | 37                                    | 46                                         | 22     | 2.5                              | 430                     | 10       |
|               | 34       | 60                                   | 40                                    | 45                                         | 8.8    | 0.88                             | 1580                    | 3.0      |
|               | 27       | 90                                   | 24                                    | 45                                         | 18     | 3.2                              | 1830                    | 400      |
|               | 28       | 90                                   | 37                                    | 45                                         | 7.2    | <1                               | 2170                    | 1.8      |

(1) Total <sup>99</sup>Tc activity. This activity represents 100% of the Tc which has a specific activity of 0.63 GBq/g.

(2) This volume applies to both leachate and filtrate.

(3) This volume applies to plate-out on the quartz only.

(4) Total  $\mu$ g per coupon.

TABLE A.4. RAW CESIUM DATA FOR 30°C TESTS OF UNCLAD SPENT FUEL IN PBB1 BRINE

| Sample Number | No. Days | Leachate Vol. (ml) <sup>(2)</sup> | Plate-Out Vol. (ml) <sup>(3)</sup> | Cesium Activity (k8q/ml) <sup>(1)</sup> |        |                                  |                         | Filtrate |
|---------------|----------|-----------------------------------|------------------------------------|-----------------------------------------|--------|----------------------------------|-------------------------|----------|
|               |          |                                   |                                    | Leachate                                | Quartz | Plate-Out on Iron <sup>(4)</sup> | Zircaloy <sup>(4)</sup> |          |
| 26            | 28       | 35                                | 47                                 | 597                                     | 3.5    |                                  |                         | 592      |
| 4             | 60       | 40                                | 45                                 | 492                                     | 1.4    |                                  |                         | 487      |
| 32            | 90       | 27                                | 45                                 | 918                                     | 2.2    |                                  |                         | 925      |
| 7             | 120      | 37                                | 45                                 | 733                                     | 0.38   |                                  |                         | 706      |
| 14            | 180      | 41                                | 45                                 | 388                                     | 0.83   |                                  |                         | 377      |
| 16            | 180      | 40                                | 45                                 | 697                                     | 0.73   |                                  |                         | 677      |
| A             |          |                                   |                                    |                                         |        |                                  |                         |          |
| 10            | 28       | 37                                | 46                                 | 387                                     | 0.58   | 4.1                              |                         | 383      |
| 34            | 60       | 40                                | 45                                 | 503                                     | 1.8    | 6.6                              |                         | 513      |
| 27            | 90       | 24                                | 45                                 | 943                                     | 1.0    | 2.4                              | <0.58                   | 828      |
| 28            | 90       | 37                                | 45                                 | 342                                     | 0.61   | 1.0                              |                         | 342      |
| 11            | 90       | 37                                | 45                                 | 305                                     | 0.69   | 6.6                              |                         | 308      |
| 3             | 120      | 37                                | 45                                 | 655                                     | 1.4    | 4.4                              |                         | 637      |
| 1             | 180      | 35                                | 45                                 | 973                                     | 0.60   | 96                               | <3.0                    | 945      |
| 8             | 180      | 37                                | 45                                 | 593                                     | 0.36   | 19                               |                         | 590      |
| 17            | 180      | 39                                | 45                                 | 645                                     | 0.34   | 22                               |                         | 618      |

(1) Total <sup>137</sup>Cs activity. This activity represents about 42% of the total Cs which has a specific activity of 1350 GBq/g.

(2) This volume applies to both leachate and filtrate.

(3) This volume applies to plate-out on the quartz only.

(4) Total  $\mu$ g per coupon.

TABLE A.5. RAW URANIUM DATA FOR 90°C TESTS OF UNCLAD SPENT FUEL IN PBB1 BRINE

| Sample Number | No. Days | Leachate Vol. (ml) <sup>(1)</sup> | Plate-Out Vol. (ml) <sup>(2)</sup> | Uranium Concentration (µg/ml) |        |                                  |                         |
|---------------|----------|-----------------------------------|------------------------------------|-------------------------------|--------|----------------------------------|-------------------------|
|               |          |                                   |                                    | Leachate                      | Quartz | Plate-Out on Iron <sup>(3)</sup> | Zircaloy <sup>(3)</sup> |
| 21            | 28       | 32                                | 36                                 | 5.8                           | 5.1    |                                  | 4.8                     |
| 35            | 60       | 33                                | 41                                 | 21                            | 3.9    |                                  | 14                      |
| 36            | 90       | 24                                | 40                                 | 67                            | 25     |                                  | 64                      |
| 37            | 120      | 33                                | 40                                 | 11                            | 11     |                                  | 7.1                     |
| 2             | 180      | 30                                | 35                                 | 160                           | 11     |                                  | 128                     |
| 19            | 180      | 31                                | 35                                 | 169                           | 12     |                                  | 152                     |
| A.5           | 22       | 30                                | 35                                 | 62                            | 11     | 500                              | 8.9                     |
|               | 9        | 60                                | 30                                 | 19                            | 68     | 1170                             | 5.8                     |
|               | 38       | 90                                | 25                                 | 15                            | 56     | 1000                             | 0.46                    |
|               | 40       | 90                                | 26                                 | 110                           | 11     | 1400                             | 1.0                     |
|               | 5        | 90                                | 28                                 | 35                            | 11     | 2400                             | 2.2                     |
|               | 20       | 120                               | 31                                 | 40                            | 17     | 2970                             | 1.3                     |
|               | 18       | 180                               | 24                                 | 35                            | 1.2    | 1380                             | 3.1                     |
|               | 29       | 180                               | 26                                 | 35                            | 6.4    | 2100                             | 3.0                     |
|               | 12       | 180                               | 28                                 | 35                            | 1.0    | 2490                             | 0.50                    |
|               |          |                                   |                                    |                               |        |                                  | 1.4                     |

(1) This volume applies to both leachate and filtrate.

(2) This volume applies to plate-out on the quartz only.

(3) Total µg per coupon.

TABLE A.6. RAW PLUTONIUM DATA FOR 90°C TESTS OF UNCLAD SPENT FUEL IN PBB1 BRINE

| Sample Number | No. Days | Leachate Vol. (ml) <sup>(2)</sup> | Plate-Out Vol. (ml) <sup>(3)</sup> | Plutonium Activity (Bq/ml) <sup>(1)</sup> |        |                                  |                         | Filtrate |
|---------------|----------|-----------------------------------|------------------------------------|-------------------------------------------|--------|----------------------------------|-------------------------|----------|
|               |          |                                   |                                    | Leachate                                  | Quartz | Plate-Out on Iron <sup>(4)</sup> | Zircaloy <sup>(4)</sup> |          |
| 21            | 28       | 32                                | 36                                 | 14                                        | 11     |                                  |                         | 8.8      |
| 35            | 60       | 33                                | 41                                 | 31                                        | 25     |                                  |                         | 21       |
| 36            | 90       | 24                                | 40                                 | 21                                        | 14     |                                  |                         | 30       |
| 37            | 120      | 33                                | 40                                 | 23                                        | 9.8    |                                  |                         | 14       |
| 2             | 180      | 30                                | 35                                 | 56                                        | 7.8    |                                  |                         | 19       |
| 19            | 180      | 31                                | 35                                 | 36                                        | 47     |                                  |                         | 19       |
|               |          |                                   |                                    |                                           |        |                                  |                         |          |
| 22            | 28       | 30                                | 35                                 | 108                                       | 97     | 37                               |                         | 0.23     |
| 9             | 60       | 30                                | 36                                 | 85                                        | 22     | 225                              |                         | 0.1      |
| 38            | 90       | 25                                | 35                                 | 248                                       | 103    | 53                               | 15                      | 0.1      |
| 40            | 90       | 26                                | 35                                 | 350                                       | 28     | 57                               |                         | 0.07     |
| 5             | 90       | 28                                | 35                                 | 248                                       | 32     | 53                               |                         | 0.03     |
| 20            | 120      | 31                                | 40                                 | 105                                       | 27     | 60                               |                         | 0.1      |
| 18            | 180      | 24                                | 35                                 | 55                                        | 448    | 121                              | 62                      | 0.30     |
| 29            | 180      | 26                                | 35                                 | 39                                        | 325    | 102                              |                         | 0.1      |
| 12            | 180      | 28                                | 35                                 | 8.0                                       | 81     | 92                               |                         | 0.18     |

A.6

(1) Total  $^{239}\text{Pu}$  plus  $^{240}\text{Pu}$  activity. This activity represents about 90% of the total Pu which has a specific activity of 4.0 GBq/g.

(2) This volume applies to both leachate and filtrate.

(3) This volume applies to plate-out on the quartz only.

(4) Total  $\mu\text{g}$  per coupon.

TABLE A.7. RAW TECHNETIUM DATA FOR 90°C TESTS OF UNCLAD SPENT FUEL IN PBB1 BRINE

| Sample Number | No. Days | Leachate Vol. (ml) <sup>(2)</sup> | Plate-Out Vol. (ml) <sup>(3)</sup> | Technetium Activity (Bq/ml) <sup>(1)</sup> |        |                                  |                         | Filtrate |
|---------------|----------|-----------------------------------|------------------------------------|--------------------------------------------|--------|----------------------------------|-------------------------|----------|
|               |          |                                   |                                    | Leachate                                   | Quartz | Plate-Out on Iron <sup>(4)</sup> | Zircaloy <sup>(4)</sup> |          |
| 21            | 28       | 32                                | 36                                 | 123                                        | <1.7   |                                  |                         | 115      |
| 35            | 60       | 33                                | 41                                 | 108                                        | <0.3   |                                  |                         | 100      |
| 36            | 90       | 24                                | 40                                 | 187                                        | 1.3    |                                  |                         | 195      |
| 37            | 120      | 33                                | 40                                 | 130                                        | <0.3   |                                  |                         | 128      |
| 2             | 180      | 30                                | 35                                 | 123                                        | <0.67  |                                  |                         | 136      |
| 19            | 180      | 31                                | 35                                 | 157                                        | <0.67  |                                  |                         | 160      |
| 22            | 28       | 30                                | 35                                 | 37                                         | 2.0    | 530                              |                         | 8.8      |
| 9             | 60       | 30                                | 36                                 | 7.5                                        | 6.0    | 983                              |                         | 5.2      |
| 38            | 90       | 25                                | 35                                 | 7.0                                        | 14     | 1830                             | 400                     | 5.3      |
| 40            | 90       | 26                                | 35                                 | 53                                         | 3.3    | 2000                             |                         | 6.2      |
| 5             | 90       | 28                                | 35                                 | 5.7                                        | 5.2    | 2770                             |                         | 2.8      |
| 20            | 120      | 31                                | 40                                 | 40                                         | 3.7    | 2780                             |                         | 10       |
| 18            | 180      | 24                                | 35                                 | 23                                         | 3.0    | 1340                             | <22                     | 11       |
| 29            | 180      | 26                                | 35                                 | 23                                         | 1.8    | 1600                             |                         | 8.3      |
| 12            | 180      | 28                                | 35                                 | 8.8                                        | 3.0    | 1880                             |                         | 14       |

(1) Total <sup>99</sup>Tc activity. This activity represents 100% of the Tc which has a specific activity of 0.63 GBq/g.

(2) This volume applies to both leachate and filtrate.

(3) This volume applies to plate-out on the quartz only.

(4) Total  $\mu$ g per coupon.

TABLE A.8. RAW CESIUM DATA FOR 90°C TESTS OF UNCLAD SPENT FUEL IN P8B1 BRINE

| Sample Number | No. Days | Leachate Vol. (ml) <sup>(2)</sup> | Plate-Out Vol. (ml) <sup>(3)</sup> | Cesium Activity (kBq/ml) <sup>(1)</sup> |        |                                  |                         | Filtrate |
|---------------|----------|-----------------------------------|------------------------------------|-----------------------------------------|--------|----------------------------------|-------------------------|----------|
|               |          |                                   |                                    | Leachate                                | Quartz | Plate-Out on Iron <sup>(4)</sup> | Zircaloy <sup>(4)</sup> |          |
| 21            | 28       | 32                                | 36                                 | 1670                                    | 0.40   |                                  |                         | 1650     |
| 35            | 60       | 33                                | 41                                 | 1610                                    | 7.5    |                                  |                         | 1590     |
| 36            | 90       | 24                                | 40                                 | 3100                                    | 0.34   |                                  |                         | 3170     |
| 37            | 120      | 33                                | 40                                 | 1370                                    | 0.17   |                                  |                         | 1280     |
| 2             | 180      | 30                                | 35                                 | 1680                                    | 1.4    |                                  |                         | 1670     |
| 19            | 180      | 31                                | 35                                 | 1850                                    | 4.0    |                                  |                         | 1820     |
| A.8           |          |                                   |                                    |                                         |        |                                  |                         |          |
| 22            | 28       | 30                                | 35                                 | 1880                                    | 10     | 17                               |                         | 1870     |
| 9             | 60       | 30                                | 36                                 | 2130                                    | 1.3    | 18                               |                         | 2100     |
| 38            | 90       | 25                                | 35                                 | 2500                                    | 0.59   | 29                               | <0.38                   | 2550     |
| 40            | 90       | 26                                | 35                                 | 1540                                    | 0.38   | 16                               |                         | 1530     |
| 5             | 90       | 28                                | 35                                 | 1850                                    | 0.33   | 42                               |                         | 1920     |
| 20            | 120      | 31                                | 40                                 | 2170                                    | 0.12   | 37                               |                         | 2130     |
| 18            | 180      | 24                                | 35                                 | 2430                                    | 2.7    | 63                               | <2.4                    | 2300     |
| 29            | 180      | 26                                | 35                                 | 2370                                    | 0.87   | 62                               |                         | 2330     |
| 12            | 180      | 28                                | 35                                 | 1570                                    | 5.8    | 47                               |                         | 1510     |

(1) Total <sup>137</sup>Cs activity. This activity represents about 42% of the total Cs which has a specific activity of 1350 GBq/g.

(2) This volume applies to both leachate and filtrate.

(3) This volume applies to plate-out on the quartz only.

(4) Total  $\mu$ g per coupon.

TABLE A.9. Raw Data for 90°C Tests of  $UO_2$  in PBB1 Brine

| Sample Number                        | No. Days | Uranium Concentration, $\mu\text{g}/\text{ml}$ |                                    |                     | Final pH   |
|--------------------------------------|----------|------------------------------------------------|------------------------------------|---------------------|------------|
|                                      |          | Leachate <sup>(1)</sup>                        | Plate-Out on Teflon <sup>(2)</sup> | Iron <sup>(3)</sup> |            |
| <u><math>UO_2</math></u>             |          |                                                |                                    |                     |            |
| BU5 (4)                              | 5        | 0.044                                          | 0.048                              |                     | 0.043 5.75 |
| BU14 (4)                             | 14       | 0.030                                          | 0.109                              |                     | 0.025 5.40 |
| BU28A (4)                            | 28       | 0.030                                          | 0.073                              |                     | 0.030 5.31 |
|                                      | (5)      | 0.036                                          |                                    |                     |            |
| BU28B (6)                            | 28       | 0.027                                          | 0.180                              |                     | 0.026 5.34 |
|                                      | (7)      | 0.028                                          |                                    |                     |            |
|                                      | (8)      |                                                |                                    |                     | 0.023      |
| <u><math>UO_2</math>-Fe</u>          |          |                                                |                                    |                     |            |
| BUF5 (4)                             | 5        | 0.034                                          | 0.098                              | 0.019               | 0.009 5.68 |
| BUF14 (4)                            | 14       | 0.084                                          | 0.228                              | 0.028               | 0.003 5.02 |
| BUF28A (4)                           | 28       | 0.080                                          | 1.450                              | 0.044               | 0.000 5.38 |
|                                      | (5)      | 0.620                                          |                                    |                     |            |
| BUF28B (6)                           | 28       | 0.208                                          | 0.516                              | 0.037               | 0.002 5.19 |
|                                      | (7)      | 0.190                                          | 0.615                              | 0.040               | 0.000      |
|                                      | (8)      |                                                |                                    |                     | 0.000      |
| <u>Oxidized <math>UO_2</math></u>    |          |                                                |                                    |                     |            |
| OBU5 (4)                             | 5        | 0.094                                          | 0.034                              |                     | 0.083 5.55 |
| OBU14 (4)                            | 14       | 0.057                                          | 0.030                              |                     | 0.060 5.54 |
| OBU28A (4)                           | 28       | 0.039                                          | 0.047                              |                     | 0.039 5.54 |
| OBU28B (6)                           | 28       | 0.069                                          | 0.103                              |                     | 0.041 5.56 |
|                                      | (7)      | 0.063                                          |                                    |                     |            |
|                                      | (8)      |                                                |                                    |                     | 0.038      |
| <u>Oxidized <math>UO_2</math>-Fe</u> |          |                                                |                                    |                     |            |
| OBUF5 (4)                            | 5        | 0.063                                          | 0.120                              | 0.049               | 0.006 5.56 |
| OBUF14 (4)                           | 14       | 0.096                                          | 0.230                              | 0.068               | 0.000 4.79 |
| OBUF28A (4)                          | 28       | 0.088                                          | 0.546                              | 0.078               | 0.000 5.17 |
|                                      | (5)      | 0.340                                          |                                    |                     |            |
| OBUF28B (6)                          | 28       | 0.400                                          | 0.250                              | 0.138               | 0.002 4.97 |
|                                      | (7)      |                                                |                                    | 0.170               |            |
|                                      | (8)      |                                                |                                    |                     | 0.000      |

(1) 36 ml sample

(2) 50 ml sample

(3) 25 ml sample

(4) analyzed immediately

(5) reanalyzed two weeks later

(6) set aside for one week before analyzing

(7) reanalyzed one week later

(8) reanalyzed three weeks later

TABLE A.10. Raw Data for 90°C Tests of UO<sub>2</sub> in Deionized Water

| Sample Number                     | No. Days | Uranium Concentration (μg/ml) |                                    |                     |                         | Final pH |
|-----------------------------------|----------|-------------------------------|------------------------------------|---------------------|-------------------------|----------|
|                                   |          | Leachate <sup>(1)</sup>       | Plate-Out on Teflon <sup>(2)</sup> | Iron <sup>(3)</sup> | Filtrate <sup>(1)</sup> |          |
| <u>UO<sub>2</sub></u>             |          |                               |                                    |                     |                         |          |
| WU5 (4)                           | 5        | 0.455                         | 0.090                              |                     | 0.197                   | 5.38     |
| WU14 (4)                          | 14       | 0.275                         | 0.985                              |                     | 0.088                   | 5.47     |
| WU28A (4)                         | 28       | 0.910                         | 0.888                              |                     | 0.250                   | 5.76     |
|                                   | (5)      | 0.936                         |                                    |                     |                         |          |
| WU28B (6)                         | 28       | 0.680                         | 1.070                              |                     | 0.170                   | 5.64     |
|                                   | (7)      | 0.750                         | 1.820                              |                     | 0.190                   |          |
|                                   | (8)      |                               |                                    |                     | 0.194                   |          |
| <u>UO<sub>2</sub>-Fe</u>          |          |                               |                                    |                     |                         |          |
| WUF5 (4)                          | 5        | 0.105                         | 1.150                              | 0.028               | 0.004                   | 6.07     |
| WUF14 (4)                         | 14       | 0.312                         | 1.440                              | 0.078               | 0.007                   | 5.91     |
| WUF28A (4)                        | 28       | 0.800                         | 0.860                              | 0.650               | 0.010                   | 6.42     |
| WUF28B (6)                        | 28       | 0.780                         | 2.080                              | 0.180               | 0.014                   | 6.17     |
|                                   | (7)      | 0.950                         |                                    |                     |                         |          |
|                                   | (8)      |                               |                                    |                     | 0.007                   |          |
| <u>Oxidized UO<sub>2</sub></u>    |          |                               |                                    |                     |                         |          |
| OWU5 (4)                          | 5        | 1.330                         | 0.078                              |                     | 1.010                   | 5.77     |
| OWU14 (4)                         | 14       | 1.230                         | 0.750                              |                     | 0.680                   | 5.11     |
| OWU28A (4)                        | 28       | 2.750                         | 3.420                              |                     | 2.150                   | 5.50     |
|                                   | (5)      | 3.500                         |                                    |                     |                         |          |
| OWU28B (6)                        | 28       | 7.470                         | 2.130                              |                     | 6.140                   | 5.31     |
|                                   | (7)      | 9.600                         |                                    |                     |                         |          |
|                                   | (8)      |                               |                                    |                     | 5.300                   |          |
| <u>Oxidized UO<sub>2</sub>-Fe</u> |          |                               |                                    |                     |                         |          |
| OWUF5 (4)                         | 5        | 0.185                         | 0.564                              | 0.021               | 0.005                   | 6.02     |
| OWUF14 (4)                        | 14       | 0.210                         | 0.350                              | 0.591               | 0.010                   | 5.90     |
| OWUF28A (4)                       | 28       | 0.640                         | 1.380                              | 0.950               | 0.022                   | 6.39     |
|                                   | (5)      | 1.150                         |                                    |                     |                         |          |
| OWUF28B (6)                       | 28       | 1.620                         | 1.470                              | 0.666               | 0.014                   | 5.99     |
|                                   | (7)      | 1.820                         |                                    |                     |                         |          |
|                                   | (8)      |                               |                                    |                     | 0.011                   |          |

(1) 36 ml sample

(2) 50 ml sample

(3) 25 ml sample

(4) analyzed immediately

(5) reanalyzed two weeks later

(6) set aside for one week before analyzing

(7) reanalyzed one week later

(8) reanalyzed three weeks later

DISTRIBUTION

No. of  
Copies

No. of  
Copies

OFFSITE

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 | DOE Technical Information Center<br><br>Allied Chemical<br>Corporation<br>File Copy<br>505 2nd Street<br>Idaho Falls, ID 83401<br><br>Argonne National<br>Laboratory<br>Reference Library<br>9800 South Cass Avenue<br>Argonne, IL 60439<br><br>R. G. Ballinger<br>Bldg. 24, Rm 215<br>Massachusetts Institute<br>of Technology<br>77 Massachusetts Avenue<br>Cambridge, MA 02139<br><br>Ernest Bondiotti<br>Environmental Sciences<br>Division<br>Oak Ridge National<br>Laboratory<br>Bldg. 1505<br>Oak Ridge, TN 37830<br><br>J. W. Braithwaite<br>Division 6312<br>Sandia National Laboratory<br>P. O. Box 5800<br>Albuquerque, NM 87185<br><br>Brookhaven National<br>Laboratory<br>Reference Section<br>Info. Division, Upton<br>Long Island, NY 11973<br><br>R. B. Chitwood<br>DOE Division of Nuclear<br>Power Development<br>Washington, DC 20545 | H. Clyde Claiborne<br>Oak Ridge National<br>Laboratory<br>P. O. Box X<br>Oak Ridge, TN 37830<br><br>P. Colombo<br>Brookhaven National<br>Laboratory<br>Nuclear Waste Mgt. Group<br>Upton, NY 11973<br><br>Jared Davis<br>U.S. Nuclear Regulatory<br>Commission<br>Washington, DC 20555<br><br>DOE, Office of Terminal<br>Waste Disposal and<br>Remedial Action<br>Washington, DC 20545<br><br>Environmental Protection<br>Agency<br>Office of Radiation<br>Programs<br>Technical Assessment<br>Division<br>AW559<br>Washington, DC 20460<br><br>K. Flynn<br>Argonne National Laboratory<br>9700 Cass Avenue<br>Argonne, IL 60439<br><br>L. L. Hench<br>Dept. of Materials Science<br>and Engineering<br>University of Florida<br>Gainesville, FL 32611 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| <u>No. of Copies</u>                                                                                                           | <u>No. of Copies</u>                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| J. Holloway<br>Dept. of Chemistry<br>Arizona State University<br>Tempe, AZ 85281                                               | W. L. Lindsay<br>Centennial Professor<br>Colorado State University<br>Fort Collins, CO 80523                                             |
| L. H. Johnson<br>Fuel Waste Technology Branch<br>Atomic Energy of Canada, Ltd.<br>W.N.R.E. Pinawa, Manitoba<br>Canada, ROE 1L0 | Los Alamos Scientific<br>Laboratory<br>Reference Library<br>P. O. Box 1663<br>Los Alamos, NM 85744                                       |
| D. A. Knecht<br>Exxon Nuclear<br>P. O. Box 2800<br>Idaho Falls, ID 83401                                                       | R. Y. Lowrey<br>DOE Albuquerque Operations<br>Office<br>Albuquerque, NM 87115                                                            |
| D. Langmuir<br>Department of Chemistry/<br>Geochemistry<br>Colorado School of Mines<br>Golden, CO 80401                        | R. W. Lynch<br>Manager, Department 4530<br>Sandia Laboratories<br>P. O. Box 5800<br>Albuquerque, NM 87185                                |
| Lawrence Berkeley<br>Laboratory<br>Reference Library<br>University of California<br>Berkeley, CA 94720                         | S. A. Mann<br>DOE Chicago Operations and<br>Regional Office<br>Argonne, IL 60439                                                         |
| Lawrence Livermore<br>National Laboratory<br>Reference Library<br>P. O. Box 808<br>Livermore, CA 94550                         | M. A. Molecke<br>Nuclear Waste Experimental<br>Programs<br>Division 4512<br>Sandia Laboratories<br>Albuquerque, NM 87185                 |
| D. LeClaire<br>Defense Waste and Byproducts<br>Management<br>Washington, DC 20545                                              | J. P. Murray<br>Harvard University<br>Pierce Hall<br>Cambridge, MA 02138                                                                 |
| A. Lerman<br>Dept. of Geological<br>Sciences<br>Northwestern University<br>Evanston, IL 60201                                  | K. Nuttal<br>Head, Fuel Waste Technology<br>Branch<br>Whitehell Nuclear Research<br>Establishment<br>Pinawa, Manitoba, Canada<br>ROE 1L0 |

| <u>No. of Copies</u>                                                                                           | <u>No. of Copies</u>                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oak Ridge National Laboratory<br>Central Research Library<br>Document Reference Section<br>Oak Ridge, TN 37830 | J. Pomeroy, Technical Sec.<br>National Academy of Sciences<br>Committee of Radioactive Waste Mgmt.<br>National Research Council<br>2101 Constitution Avenue<br>Washington, DC 20418 |
| A. Ogard<br>Los Alamos Scientific Laboratory<br>CNC-11, MS-514<br>Los Alamos, NM 87545                         | R. G. Post<br>College of Engineering<br>University of Arizona<br>Tucson, AZ 85721                                                                                                   |
| V. M. Oversby<br>Lawrence Livermore National Laboratory<br>P. O. Box 808<br>Livermore, CA 94550                | L. D. Ramspott, L-204<br>Lawrence Livermore National Laboratory<br>P. O. Box 808<br>Livermore, CA 94550                                                                             |
| F. L. Parker<br>Dept. of Environmental Engineering<br>Vanderbilt University<br>Nashville, TN 37235             | J. L. Ratigan<br>RE/SPEC<br>P. O. Box 725<br>One Concourse Drive<br>Rapid City, SD 57709                                                                                            |
| G. A. Parks<br>Stanford University<br>Department of Applied Earth Sciences<br>Stanford, CA 94305               | D. W. Readey<br>Department of Ceramic Engineering<br>Ohio State University<br>2041 College Road<br>Columbus, OH 43210-1178                                                          |
| T. H. Pigford<br>Univ. of California<br>Berkeley, CA 94720                                                     | Savannah River Laboratory Reference Library<br>Aiken, SC 29801                                                                                                                      |
| G. F. Pinder<br>Dept. of Civil Engineering<br>Princeton University<br>Princeton, NJ 08540                      | M. Seitz<br>Argonne National Laboratory<br>9700 South Cass Avenue<br>Argonne, IL 60439                                                                                              |
| M. S. Plodinec<br>E. I. duPont deNemours & Co.<br>Savannah River Laboratory<br>Aiken, SC 29801                 |                                                                                                                                                                                     |

| <u>No. of Copies</u>                                                                                                                 | <u>No. of Copies</u>                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R. Silva<br>Lawrence Livermore<br>National Laboratory<br>P. O. Box 808<br>Livermore, CA 94550                                        | R. F. Williams<br>Electric Power Research<br>Institute<br>3412 Hillview Avenue<br>P. O. Box 104112<br>Palo Alto, CA 94303                                                                                                                                                 |
| M. J. Steindler<br>Chemical Engineering<br>Division<br>Argonne National<br>Laboratory<br>9700 South Cass Avenue<br>Argonne, IL 60439 | Wilste Library<br>U. S. Nuclear Regulatory<br>Commission<br>Washington, DC 20555                                                                                                                                                                                          |
| T. T. Vandegraaf<br>Atomic Energy of<br>Canada, Ltd.<br>W.N.R.E., Pinawa, Manitoba<br>Canada ROE 1L0                                 | T. J. Wolery, L-202<br>Lawrence Livermore National<br>Laboratory<br>P. O. Box 808<br>Livermore, CA 94550                                                                                                                                                                  |
| Lars Werme<br>SKBF-Swedish Nuclear Fuel<br>Supply Co.<br>Division KBS<br>Box 5864<br>S-102 48 Stockholm, Sweden                      | Office of Civilian Radioactive<br>Waste Management<br>Department of Energy<br>Washington, DC 20545<br>C. R. Cooley<br>M. W. Frei<br>A. F. Perge<br>R. Stein                                                                                                               |
| W. B. White<br>Materials Research<br>Laboratory<br>Penn. State University<br>University Park, PA 16802                               | Office of Nuclear Waste<br>Isolation<br>505 King Street<br>Columbus, OH 43201                                                                                                                                                                                             |
| J. B. Whitsett<br>DOE Operations Office<br>550 2nd Street<br>Idaho Falls, ID 83401                                                   | S. J. Basham<br>G. K. Beall<br>W. A. Carbiener<br>J. A. Carr<br>D. E. Clark<br>J. C. Cunnane<br>J. F. Kircher<br>V. S. McCauley<br>D. P. Moak<br>J. B. Moody<br>W. E. Newcomb<br>J. S. Perrin<br>G. E. Raines<br>B. A. Rawles (5)<br>J. R. Schornhorst<br>J. S. Treadwell |
| G. Wicks<br>E. I. duPont deNemours & Co.<br>Savannah River Laboratory<br>Aiken, SC 29801                                             |                                                                                                                                                                                                                                                                           |
| R. E. Wilems<br>INTERA, Environmental<br>Consultants<br>11999 Katy Freeway,<br>Suite 610<br>Houston, TX 77079                        |                                                                                                                                                                                                                                                                           |

| <u>No. of Copies</u>                                                                                                                                         | <u>No. of Copies</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Office of Crystalline Repository Deployment<br>P. O. Box 16595<br>Columbus, OH 43216-6595<br>A. A. Bauer<br>A. Brandstetter<br>R. A. Robinson<br>B. D. Shipp | 57 <u>Pacific Northwest Laboratory</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Salt Repository Project Office<br>505 King Avenue<br>Columbus, OH 43201<br>J. O. Neff<br>K. K. Wu                                                            | L. L. Ames<br>M. J. Apted<br>J. O. Barner<br>W. F. Bonner<br>D. J. Bradley<br>L. A. Bray<br>H. C. Burkholder<br>T. D. Chikalla<br>D. G. Coles<br>J. S. Fruchter<br>J. H. Jarrett<br>E. A. Jenne<br>M. D. Freshley<br>W. J. Gray (5)<br>J. H. Haberman<br>F. N. Hodges<br>Y. B. Katayama<br>M. R. Kreiter<br>K. M. Krupka<br>W. L. Kuhn<br>J. L. Latkovich<br>J. L. McElroy<br>B. P. McGrail<br>G. L. McVay (5)<br>J. E. Mendel<br>D. M. Merz<br>L. R. Pederson<br>R. D. Peters<br>S. G. Pitman<br>B. A. Pulsipher<br>D. Rai<br>P. W. Reimus<br>J. T. A. Roberts<br>W. A. Ross<br>J. L. Ryan<br>J. A. Schramke<br>R. J. Serne<br>J. W. Shade<br>P. J. Turner<br>R. E. Westerman<br>J. H. Westsik, Jr.<br>C. F. Windisch<br>Technical Information (5)<br>Publishing Coordination (2) |
| <u>ONSITE</u>                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 <u>DOE Richland Operations Office</u>                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| J. J. Sutey<br>J. D. White<br>D. E. Crouter                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 <u>Rockwell Hanford Operations</u>                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P. A. Salter<br>W. W. Schulz<br>M. J. Smith                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>Exxon Nuclear Company</u>                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S. J. Beard                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>Joint Center for Graduate Study</u>                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| J. Cooper                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>UNC Nuclear Industries, Inc.</u>                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| F. H. Bouse                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3 <u>Westinghouse Hanford Company</u>                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D. A. Cantley<br>R. J. Cash<br>C. N. Wilson                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

