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Fractal geometry of two-dimensional fracture networks at 
Yucca Montain, southwestern Nevada 

ABSTRACT 

2 F r a c t u r e  t r a c e s  exposed on t h r e e  214- t o  260-m pavements i n  t h e  same 
Miocene ash-f low t u f f  a t  Yucca Mountain, southwestern Nevada, have been mapped 
a t  a s c a l e  o f  1:50. The maps are  two-dimensional s e c t i o n s  th rough t h e  t h r e e -  
dimensional  network o f  strata-bound f r a c t u r e s .  A l l  f r a c t u r e s  w i t h  t r a c e  l e n g t h s  
g r e a t e r  than 0.20 rn were mapped. The d i s t r i b u t i o n  o f  f r a c t u r e - t r a c e  l e n g t h s  i s  
log-normal. The f r a c t u r e s  do n o t  e x h i b i t  w e l l - d e f i n e d  s e t s  based on 
o r i e n t a t i o n .  

p rove  u s e f u l  f o r  model ing f r a c t u r e  f l o w  and mechanical responses o f  f r a c t u r e d  
rock ,  an a n a l y s i s  o f  each o f  t h e  t h r e e  maps was done t o  t e s t  whether such 
networks a r e  f r a c t a l .  These networks proved t o  be f r a c t a l  and t h e  f r a c t a l  
dimensions (D) a r e  t i g h t l y  c l u s t e r e d  (1.12, 1.14, 1.16) f o r  t h r e e  l a t e r a l l y  
separated pavements, even though v i s u a l l y  t h e  f r a c t u r e  networks appear q u i t e  
d i f f e r e n t .  The f r a c t a l  a n a l y s i s  a l s o  i n d i c a t e s  t h a t  t h e  network p a t t e r n s  a r e  
s c a l e  independent over  two orders  o f  magnitude f o r  t r a c e  l e n g t h s  r a n g i n g  from 
0.20 t o  25  m. 

Since f r a c t a l  c h a r a c t e r i z a t i o n  o f  such complex f r a c t u r e - t r a c e  networks may 

1. INTRODUCTION 

F r a c t u r e s  fo rm three-dimensional  
in te rconnected  networks i n  n e a r l y  a l l  
rocks  a t  o r  near  t h e  E a r t h ' s  sur face.  
Open-fracture networks a r e  t h e  pr imary  
avenues o f  r a p i d  t r a n s p o r t  f o r  l i q u i d  
and gaseous f l u i d s  th rough rock  masses. 
I n  c o n t r a s t  t o  f r a c t u r e  f low,  m a t r i x  
f l o w  g e n e r a l l y  i s  s i g n i f i c a n t  o n l y  f o r  
s low t r a n s p o r t  r a t e s .  F o r  r a p i d  t r a n s -  
p o r t ,  f r a c t u r e  f low g e n e r a l l y  dominates 
m a t r i x  f l o w  i n  n a t u r a l  g e o l o g i c  systems 
o f  m i n e r a l i z i n g  f l u i d s ,  petroleum, 
n a t u r a l  gas, and ground water. F rac-  
t u r e  f l o w  can exceed m a t r i x  f l o w  
p a r t i c u l a r l y  when t h e  g e o l o g i c  system 
i s  d i s t u r b e d  by an induced pressure  
d i f f e r e n t i a l ,  such as t h e  pumping of  
pe t ro leum o r  ground water ,  t h e  pro-  
d u c t i o n  o f  n a t u r a l  gas, o r  t h e  ponding 
o f  water  beh ind  dams. Measured 

f rac tu re-ne twork  p e r m e a b i l i t i e s  i n  some 
areas a r e  6-7 o r d e r s  o f  magnitude 
g r e a t e r  than rock  m a t r i x  p e r m e a b i l i t i e s  
(e.g. , Montezar and W i  1 son, 1985). 

E f f o r t s  t o  q u a n t i t a t i v e l y  model 
and t o  understand f l o w  p r o p e r t i e s  o f  
f r a c t u r e  networks a r e  p r e s e n t l y  under 
way (e.g., Long and Witherspoon, 1985). 
The use o f  f r a c t u r e - f l o w  models t o  
a p p l i e d  problems i s  c o n t i n g e n t  upon t h e  
s i z e ,  shape, o r i e n t a t i o n ,  c o n n e c t i v i t y ,  
aper tu re ,  s u r f a c e  roughness, and 
s p a t i a l  d i s t r i b u t i o n  o f  f r a c t u r e s .  

f r a c t u r e - t r a c e  networks on two-dimen- 
s i o n a l  s e c t i o n s  t h r o u g h  t h e  t h r e e -  
dimensional  f r a c t u r e  network. We then 
c h a r a c t e r i z e  t h e  two-dimensional  
f r a c t u r e - t r a c e  maps u s i n g  f r a c t a l  
geometry. 

I n  t h i s  paper, we present  maps o f  



2. FRACTURE MAPS 

As p a r t  o f  an e f f o r t  t o  charac- 
t e r i z e  the  f r a c t u r e  network a t  Yucca 
Mountain i n  southwestern Nevada (F ig .  
1). we have prepared 1:50 s c a l e  maps o f  
f r a c t u r e  t races  exposed on t h r e e  pave- 
ments from 214 t o  260 m i n  area i n  
Miocene ash-f low t u f f s .  The pavements 
a re  subhori zon ta l  p lana r  sur faces  t h a t  
we c lea red  o f  t a l u s ,  s o i l ,  and vegeta- 
t i o n  t o  p rov ide  complete exposure o f  
t he  ash-f low t u f f  bedrock. 
ments a re  i n  the  same ash- f low subun i t ,  
t h e  upper l i t h o p h y s a l  subun i t  o f  t h e  
T i va  Canyon Member o f  t h e  Pa in tb rush 
T u f f  (Sco t t  and o thers ,  1983). The 
pavements a re  designated by numbers 
100, 200, and 300. Pavement 100 i s  
l oca ted  500 meters south o f  pavements 
200 and 300, which a r e  15 meters a p a r t ,  
eas t  and west. 

All f r a c t u r e s  w i t h  t r a c e  l eng ths  
grea ter  than 0.20 m were mapped. The 
maps f o r  pavements 100, 200, and 300 
are  shown on F igures  2 ,  3, and 4, 
respec t  i ve ly  . 
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3. THE FRACTURES 

The p a t t e r n s  o f  f r a c t u r e s  on 
F igu res  2, 3, and 4 are  composites o f  
c o o l i n g  f r a c t u r e s  w i t h  t u b u l a r  s t r u c -  
t u r e s  (Bar ton  and o thers ,  1984) formed 
s h o r t l y  a f t e r  emplacement of  t h e  ash- 
f l o w  t u f f  and l a t e r  f r a c t u r e s  formed i n  
response t o  t e c t o n i c  s t resses  t h a t  p ro-  
duced t h e  Basin and Range p rov ince  and 
p o s s i b l y  t h e  Las Vegas-Walker Lane 
shear zone (Barton, 1984). The v e r t i -  
c a l  e x t e n t  o f  t h e  f r a c t u r e s  i s  l i m i t e d  
by t h e  l i t h o l o g y  because t h e  f r a c t u r e s  
a r e  s t ra ta -bound w i t h i n  t h e  upper 
l i t h o p h y s a l  subuni t .  

3.1 F r a c t u r e  o r i e n t a t i o n s  

The po les  t o  f r a c t u r e  sur faces  and 
bedding f o r  a l l  t h r e e  pavements a r e  
p l o t t e d  toge the r  i n  s te reograph ic  p ro -  
j e c t i o n  on F i g u r e  5. The f r a c t u r e s  

N 

F i g u r e  5. Combined po les  t o  f r a c t u r e  
sur faces  f o r  a l l  t h r e e  
pavements. b i s  p o l e  t o  
bedding. Lower-hemi sphere 
equal-area p r o j e c t i o n  (580 
po les ) .  

F i g u r e  1. Locat ion  o f  Yucca Mountain, 
southwestern Nevada. 
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range i n  s t r i k e  f rom 0 t o  360' and i n  
d i p  from 46 t o  90' w i th  s l i g h t l y  h i g h e r  
concen t ra t i ons  i n  t h e  southeast and 
southwest quadrants; h ighes t  concentra- 
t i o n s  i n  d i p  a re  between 80 and 90'. 
The f r a c t u r e s  cannot be  grouped i n t o  
we l l -de f i ned  se ts  based on o r i e n t a t i o n .  

3.2 D i s t r i b u t i o n  o f  f r a c t u r e - t r a c e  
1 engths 

The combined d i s t r i b u t i o n  o f  
f r a c t u r e - t r a c e  l eng ths  f o r  a l l  t h r e e  
pavements i s  shown on F i g u r e  6. The 
lower  end o f  t h e  d i s t r i b u t i o n  i s  t r u n -  
ca ted  because no t r a c e  l eng ths  l e s s  
than 0.20 m were mapped. The upper end 
i s  t runca ted  because many t r a c e  l eng ths  

100 

a 
g 
a 

f 5 0  

i 

7 
4 

exceed t h e  dimensions o f  t h e  pavements. 
The d i s t r i b u t i o n  i s  log-normal, even 
w i t h  t h e  t r u n c a t i o n  of  t r a c e  l eng ths  
l e s s  than 0.20 m (Baecher and Lanney, 
1978). 

3.3 F r a c t u r e  networks 

The f r a c t u r e  networks are  q u i t e  
complex and cannot be broken down i n t o  
we l l -de f i ned  f r a c t u r e  se ts ,  each hav ing  
a c h a r a c t e r i s t i c  o r i e n t a t i o n ,  spacing 
d i s t r i b u t i o n ,  and t r a c e - l e n g t h  d i s t r i -  
bu t i on .  F r a c t a l  c h a r a c t e r i z a t i o n  o f  
such complex f r a c t u r e  networks may 
prove useful  f o r  model ing f r a c t u r e  f l o w  
and f o r  model ing mechanical responses 
o f  f r a c t u r e d  rock. 

1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Trace  Length Irn) 

F i g u r e  6. Combined d i s t r i b u t i o n  o f  f r a c t u r e - t r a c e  l eng ths  f o r  a l l  t h r e e  
pavements (580 f r a c t u r e s ) .  

52 

4. FRACTALS 

F r a c t a l  geometry 
1982). has been a p p l i l  
o t h e r s  t o  q u a n t i t a t i v  
complex p a t t e r n s  in  n 
geometry app l i ed  t o  t 
f r a c t u r e  n e t m r k s  sim 
t i f i e s  t h e  s p a t i a l  an 
d i  s t  r i  b u t  ions. 
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4. FRACTALS 

F r a c t a l  geometry (Mandelbrot, 
1982), has been a p p l i e d  by him and 
o t h e r s  t o  q u a n t i t a t i v e l y  desc r ibe  
complex p a t t e r n s  i n  nature.  F r a c t a l  
geometry a p p l i e d  t o  two-dimensional 
f r a c t u r e  networks s imu l taneous ly  quan- 
t i f i e s  t h e  s p a t i a l  and t race - leng th  
d i s t r i b u t i o n s .  

A f r a c t a l  a n a l y s i s  f o r  each o f  t h e  
t h r e e  f r a c t u r e  maps p l o t t e d  on F i g u r e  7 
was ,done by hand. Gr ids  o f  var ious-  
s i z e d  square elements were placed over 
t h e  maps, and t h e  number o f  g r i d  
elements i n t e r s e c t e d  by f r a c t u r e  t r a c e s  
was counted. The r e l a t i v e  s i z e  (K) O f  
t h e  g r i d  elements i s  p l o t t e d  versus t h e  
Log2 o f  t h e  number o f  g r i d  elements (N) 
i n t e r s e c t e d  by f r a c t u r e s  f o r  each 
element s ize .  F o r  each pavement, t h e  
f r a c t a l  dimension ( D )  i s  t h e  abso lu te  
va lue  o f  t h e  s lope o f  a s t r a i g h t  l i n e  
f i t t e d  t o  t h e  po in ts .  
t h i s  way, t h e  f r a c t a l  dimension ( 0 )  can 
be determined by t h e  equat ion  

When p l o t t e d  

where b i s  t h e  y - i n te rcep t .  
f r a c t a l  dimensions o f  a l l  t h r e e  ne t -  
works l i e  between 1 and 2, w i t h  con- 
f i d e n c e  l e v e l s  o f  0.99. F o r  com- 
par ison ,  t h e  f r a c t a l  dimension o f  a 
s t r a i g h t  l i n e  i s  1; f o r  a plane, i t  i s  
2; and f o r  a volume, i t  is  3. Pavement 
100 has a f r a c t a l  dimension of  1.16; 
pavement 200, a f r a c t a l  dimension of 
1.12; and pavement 300, a f r a c t a l  
dimension o f  1.14. 

by smooth l i n e s  ( e i t h e r  s t r a i g h t  o r  
curved),  t h e  networks can be s a i d  t o  be 
f r a c t a l  over  t h e  s c a l e  range 0.20 t o  25 
m o r  two o rde rs  o f  magnitude. Because 
these l i n e s  a re  s t r a i g h t  (no t  curved),  
t h e  networks can a l s o  be s a i d  t o  be 
s c a l e  independent over t h e  same 
range. F r a c t u r e  networks w i t h  f r a c t a l  
dimensions c lose  t o  one, such as these, 
a r e  expected t o  have s t r o n g l y  d i r e c -  
t i o n a l  f l o w  an iso t ropy ,  a c h a r a c t e r i s -  
t i c  t h a t  i s  n o t  obvious from t h e  
d i s t r i b u t i o n  o f  f r a c t u r e  s t r i k e s .  

The 

Because t h e  p o i n t s  can be f i t t e d  
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F i g u r e  7. F r a c t a l  p l o t  o f  f r a c t u r e  
networks. 

5. CONCLUSIONS 

Complex two-dimensional f r a c t u r e -  
t r a c e  networks can be descr ibed quan- 
t i t a t i v e l y  u s i n g  f r a c t a l  geometry. The 
f r a c t a l  dimensions ( 0 )  a re  t i g h t l y  
c l u s t e r e d  (1.12-1.16) f o r  t h r e e  
l a t e r a l l y  separated pavements i n  t h e  
same s t r a t i g r a p h i c  subun i t ,  even though 
t h e  f r a c t u r e  networks v i s u a l l y  appear 
q u i t e  d i f f e r e n t .  
magnitude, t h e  networks are  sca le  
independent, even when t h e  t race - leng th  
d i s t r i b u t i o n s  a re  t runca ted .  

Over two orders  o f  



We are  p r e s e n t l y  i n v e s t i g a t i n g  
whether the  f r a c t a l  d imension of  
f r a c t u r e  networks v a r i e s  w i t h  l i t h o l o g y  
f o r  t he  strata-bound f r a c t u r e s  a t  Yucca 
Mountain. 
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