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This paper applies the method of assigning probability in Dempster-
Shafer Theory (DST) to the components of rule-based expert systems used in
the control of nuclear reectors. Probabilities are assigned to premises,
consequences, and rules themselves. This paper considers how uncertainty
can propagate through a system of Boolean equations, such as fault trees
or expert systems. The probability masses assigned to primary initiating
events in the expert system can be derived from observing a nuclear
reactor in operation or based on engineering knowledge of the reactor
parts. Use of DST mass assignments offers greater flexibility to the
construction of expert systems In two important respects.

First, DST mass assignments have the advantage over classical
probability methods of accommodating when necessary uncommitted
probability assignments. Thus the DST probability framework can
incorporate expert system inputs from imprecise or "fuzzy" data. Second,
DST applied to the Boolean rules themselves leads to a probabilistic
logic, where a given rule may be valid with probability less than unity:
"fuzzy" logical rules.

When knowledge bases contain rules which may not always hold, or
rules that occasionally must be operated upon with imprecise information,
the DST mass assignments are shown to be a rigorous methodology for
calculating probability assignments throughout the system.

The method of distributing probability to subsets of possible values
of a random variable, rather than to individual sample points, was
introduced by Dempster (1967), and was subsequently extended to the theory
of belief functions by Shafer (1976, 1982, 1985, 1986).
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Since 1985, DST has grown In popularity among AI researchers studying
knowledge representation and reasoning under uncertainty, so that it now
rivals Fuzzy Set Theory (FST) as a major uncertainty paradigm
[Prade 1985]. The article by Lee, Grize, and Dehnad (1987) provides an
excellent comparison of the theoretical and computational requirements of
DST, FST, and classical probability theory.

Surprisingly, little work has been completed to date extending DST to
truth-valued logic. Using DST, we will present a framework in which an
analyst can represent the fact that he cannot determine whether some event
has occurred or not. The event can be e5.ther true or false, but not both.

In classical two-valued logic, a statement or proposition is either
true or false; similarly an event either occurred or did not occur. In
three-valued logic, there exists a separate term denoting "unknown" or
uncertain knowledge about the actual event.

Systems of Boolean equations form both fault trees and rule-based
expert systems. This paper illustrates a simple set of Boolean equations
depicting cause-consequence relations for a nuclear reactor or nuclear
power plant to show how uncertainty over initiating events, subsequent
results, or rules themselves can affect inferences with such models.

BACKGROUND FOR DST

Define the probability space (Q, F, P), where 0 is a nonempty set of
possible outcomes, F is a cr-field of 0, and. P Is a probability measure
defined on F. An element of 0 is called a sample point, while a subset of
0 is called an event. In DST probability is assigned to events, while in
classical probability theory, probability is distributed among the sample
points. Since a sample point is also a subset of 0 with one element, it
can be treated as an event and have probability assigned to it in DST.
This is how DST subsumeu classical probability theory and generalizes it.

Mass Distribution Function

Consider the state space, fi, with elements UJ_ e Q. In classical
probability theory, probability can be assigned to individual elements,
a>i, such that 2P(ti>i) - 1. The innovation of DST was to look to the power

i x

set 2 , defined as the' set of all possible subsets of 0, and assign
probability mass, mo(o>), to exclusive-OR (XOR) transformations of all
w e n . The mass distribution function of DST is a Borel measure
satisfying the following two conditions: 0 < mQ(ui) < 1 and 2 mjj(o>) - 1.
In the conventional DST notation u^ is an element of ft, while u is both a
subset of fl and thereby an element of 2^ .

A third condition for mf}(u>) is unique to DST. Implicit in the DST
mass summation expression 2 mfl(w) - 1 is the term m(#), which denotes mass
assigned to the null set. In DST, m(4>) is set equal to zero as a premise.

Three-Valued Logic

This paper considers a state space of ft - (True, False} to evaluate
events and the validity of propositions. The conventional selection of a
state space in DST, also called the frame of discernment, has been chosen
as the set of propositions (about a random variable's outcome) not the set
of truth values. Therefore, this paper extends DST to a new domain, which
we believe can bridge the gap between artificial intelligence and
reliability analysis.



For our state space the power set 2° - (<S, T, F, (T,F)) contains a
term (T,F) denoting an exclusivs-OR for an observation that could be
either true or false, but not both. The (T,F) term comes from the DST
uncommitted belief term in the power set. After renormalizing for 4< the
effective power set becomes 2° - (T, F, (T,F)).

Modua Ponens

Definition 1: Material implication between A and B is expressed "If
A, then B" and written "A -» B." Definition 2: The inverse of the logical
relation "A -* B" is "A -+ " B." Definition 3: Modus ponens of the logical
relation "A •* B" is "A A (A •* B) •* B." This paper determines the impact
on modus ponens when a researcher receives information, that can be
quantified into a probability, on the rule (A •* B) itself. In binary
logic, if a premise occurs, then the consequence is known as well. In
designing expert systems, AI researchers use this logic and refer to
"sure-fire" rules. If the premise occurs with some probability less than
one, then the consequences would be expected to occur with the same
probability. But what can be said if the rule itself is not strictly
valid with probability one? The answer to this question can be found by
first comparing the truth values emerging for the consequence, B, for
given values of A and the rule itself (A •* B) .

Due to space limitations, we cannot provide here a formal justifi-
cation of Table 1 based on DST. However, a formal derivation can hi found
in Guth (1987). Truth tables can also be constructed for the Boolean OR
and AND operators that incorporate the three-valued logic. Again to
conserve space, we will utilize the logic from these tables published
elsewhere in the literature, e.g., Zimmerman (1985, p. 137), without
reprinting them here.

Mass Assignment Equations

Denote the mass distribution for A as m(A) - (a, b, c), where "a"
denotes the mass assigned to the True element, b to the False element, and
c to the XOR(T.F) element. Therefore, a + b + c - 1. Similarly denote
the mass assignment for B by m(B) - (x, y, z). Then we obtain the mass
assignments for the Boolean AND and OR operations as follows:

m(A A B) - (ax, b + y - by, az + cz + ex) , (1)

m(A v B) - (a + x - ax, by, bz + cy + cz) . (2)

From Table 1 if we let the mass on the rule (A -* B) denoted by R and
m(R) - (rj_, X2, r^) then

m(B) - (arj, ar2, 1 - ar^ - ar2) . (3)

Table 1. Modus ponens truth table

A -* B

A

(T,

B

T

F

F)

T

T

(T,F)

(T,F)

F

F

(T,F)

(T.F)

(T,

(T,

(T,

(T,

F)

F)

F)

F)



NUCLEAR REACTOR EXPERT SYSTEM

To see the relevance of these two forms of uncertainty - uncommitted
mass and probabilistic rules - on expert systems for nuclear reactors,
consider the following example. Our objective is to conclude the
probability that the top event will occur, and determine how uncertainty
propagates through the model. Let a hypothetical expert system for a
pressurized water reactor be summarized by the following six Boolean
equations:

Pressure Balanced - Power Source Normal A Power Sink Normal (4)

Power Sink Normal - Sec. Flow Normal A Sec. Temp. Normal (5)

Sec. Temp. Normal - Sec. Pumps Operating A Condenser Vacuum Normal (6)

Power Source Normal - Temp. Pri. Normal A Pri. Flow Normal (7)

Pri. Flow Normal - Pri. Pump Operating v Backup Pump On (8)

Pri. Pump Operating - No Mechanical Failure A Power Normal (9)

where A denotes the Boolean AND operator and v denotes the Boolean OR
operator, the abbreviation "Pri." refers to Primary, "Sec." to Secondary,
and "Temp." to Temperature.

Each of the six Boolean equations can be interpreted as an "If, then"
rule of a rule-based expert system. For example, Eq. (6) states "if the
secondary pumps are operating AND the condenser vacuum is normal, then the
secondary temperature is normal." Equation (8) states "If the primary
pump is operating OR the backup pump is on then primary flow will be
normal."

The equal sign in Eqs. (4) through (9) implies logical equivalence
and could be replaced by the symbol < — > . Logical equivalence implies
that the material implication (-») works in both directions. Thus, e.g.,
Eq. (6) also states "If the secondary temperature is normal, then the
secondary pumps are operating AND the condenser vacuum is normal."

To facilitate review of these equations, it will be convenient to
introduce some short-hand notation for the events. Let the initiating
events be denoted by letters A through F with intermediate events Ij
through I5 leading to the top event of interest: Pres. Therefore, let
Eqs. (4) through (9) be represented by

Pres. • Ij A I3 (4')

11 - A A I 2 (5')

12 - B A C (6')

13 - D A I 4 (7')

14 - E v I 5 (8')

15 - F A G (9')

Thus the top event, Pres. represents "Pressure Balanced," and D represents
"Temp. Pri. Normal," etc.



Let Rj denote rule i for i - 4, 5, 6, 7, 8, 9, and let the individual
Rj correspond to Eqs. (4') through (9'), respectively. We will assign
mass to the rules in the same way that mass is assigned to the initiating
events. The R^ will be used as parameters for a study of modus ponens.
The expert systems rules Eqs. (4') through (9'), coupled with individual
R^ for the validity of each rule, are graphically depicted in Fig. 1.

The fact we have written Eqs. (4') through (9') with logical
equivalence (-) rather than material implication (-•) has nontrivial
consequences for analysis with the tree in Figure 1. The equal sign
implies that one can study effects propagating up or down the tree. With
material implication, the logic would work in only the direction of the
implication, e.g., only up or only down the tree.

Three different cases for the mass assignments on the initiating
events and on the rules are shown in Table 2. For the first case the
researcher can clearly observe whether the components A through G occur,
but he faces some uncertainty over whether the rules are always valid. In
Case IX the researcher places uncommitted probability on both the
components and the rules.

In Case III the researcher has precise information on both the com-
ponents and the rules. Case III represents a conventional binary logic

Pres

T™ H A

1

' i
i

' 3

Fig. 1. Expert system rule tree.



Table 2. Mass assignments for alternative cases
(True, False, True-False)

Variable

A

B

C

D

E

F

G

ru

r5

r6

r7

r8

r9

Case I

(.9, .1,

(•9, .1,

(.7, .3,

(.8, .2,

(.7, .3,

(.9, .1,

(.8, .2,

(.8, 0, .

(•9, 0, .

(-6, 0, .

(.8, 0, .

(.7, 0, .

(.8, 0, .

0)

0)

0)

0)

0)

0)

0)

2)

1)

4)

2)

3)

2)

Case II

(•9,

(•9,

(-7,

(-8,

(.7,

(.9,

(.8,

(•8,

(-9,

(.6,

(.8,

(-7,

(.8,

0, .

0, .

0, .

0, .

0, .

0, .

0, .

0, .

0, .

0, .

0, .

o, .

o, .

1)

1)

3)

2)

3)

1)

2)

2)

1)

4)

2)

3)

2)

Case

(.9,

(.9,

(.7,

(.8,

(.7,

(.9,

(.8,

(.8,

(.9,

(.6,

(.8,

(.7,

(.8,

III

• 1. 0)

.1. 0)

.3, 0)

.2, 0)

.3, 0)

.1, 0)

• 2, 0)

.2, 0)

.1, 0)

.4, 0)

.2, 0)

• 3, 0)

• 2, 0)

assignment, and one might expect the results from this case to eliminate
mass assignments on the uncommitted (T,F) term. However, the application
of modus ponens leads to uncommitted mass assignments on the consequence
even in the binary mass assignment case.

The results for Cases I and II are identical and shown in Table 3.
No mass is assigned to the false elements of the consequences in either of
these two cases due to the nature of the modus ponens operator. Mass can
only be assigned to the false element of the consequence if there exists
positive mass on both the true element of the premise and on the false
element of the rule. For Cases I and II no mass is assigned to the false
element of the rule.

The results for Case III, given in Table 4, reveal the same irass
assignment for the true element of the consequences; however, part of the
mass previously assigned to the (T,F) element has been redistributed to
the false elements. The probabilistic interpretations of initiating
events shown in Case III have often been employed by the risk analysis
community and form the basis for probabilistic risk assessment studies of
nuclear reactor safety and exposure to radiation. Yet Case III also con-
siders a probabilistic interpretation for rules, which thereby leads to
the three-valued logic mass assignments for the consequences given in
Table 4.

The mass assignments shown in Tables 3 and 4 were obtained using
Eqs. (1), (2), and (3) with local computations for each intermediate event
up the tree. See Shenoy and Shafer (1986) and Shafer, Shenoy, and



Table 3. Equilibrium mass assignments for
Cases I and II

Event

Pres.

Il

12

13

14

15

True

0.0958

0.3062

0.3780

0.3910

0.6110

0.5760

False

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

True

0

0

0

0

0

0

or false

.9042

.6938

.6220

.6090

.3890

.4240

Table 4. Equilibrium mass assignments for
Case III

Event

Pres.

Il

12

13

I4

15

True

0.0958

0.3062

0.3780

0.3910

0.6110

0.5760

False

0.0239

0.0340

0.2520

0.0978

0.2618

0.1440

True or false

0.8803

0.6598

0.3700

0.5112

0.1272

0.2800

Mellouli (1986) for a discussion on when local computation techniques can
be employed.

For many rule-based expert systems the existence of possible nonunity
mass assignments on initiating events or rules has been an important
caveat preventing further inference. In DST mass assignments a rigorous
methodology has been proposed to accommodate these probabilistic mass
assignments and explain their impact on the mass assigned to the rules
themselves.

The numerical results show that for some consequential events, e.g.,
I4 and Pres., the majority of mass is assigned to (T,F). Moreover,
assigning mass directly to the false element of the rule, as opposed to
leaving "non-true" mass on the uncommitted belief term (T,F), does result
in a redistribution of mass to the false element of the consequences.

For those rule-based systems which contain probabilistic or frequency
interpretations of their components, DST mass assignments coupled with a
probabilistic interpretation of rules represents a comprehensive framework
for inference with imprecise information. Our experience with expert
systems in robotics and nuclear reactor control confirms that many of the



expert systems extant use "decision rules" rather than strictly logical
material implication rules. Thus we feel confident that the researcher
interested in studying the effects of uncertainty in his expert system
will find these methodologies useful.

DISCUSSION OF RELATED LITERATURE AND CONCLUSIONS

Dubois and Frade (1987) as well as Chatalic, Dubois, and Prade (1986)
have written on DST extensions to expert systems. Both of these works
employ the traditional set of propositions as a frame of discernment.
Moreover, the latter paper sketches the expert system rules in the form of
a "dependency tree" that resembles more of a semantic network than a fault
tree with Boolean AND and OR gates.

A conference sponsored by Electric Power Research Institute (EPRI) in
May 1987 had two sessions related to plant control: (1) Expert Systems
Applications in Nuclear Power Plants and (2) Expert Systems Applications
in Plant Diagnostics. One of the EPRI conference papers by
Neuschaefer et al. (1987) reported development of a general expert system
shell for plant diagnosis where the user supplies the knowledge base in
the form of cause-consequence relations depicted in a fault tree. Their
system proposes to account for uncertainty in instrument readings through
conventional signal validation and filtering.

Skatteboe, Tangen, and Berge (1987) describe the use of alternative
mathematical models in the construction of expert systems. These authors
distinguish between "shallow" versus "deep" information, where shallow
information corresponds to "rules-of-thumb" built into expert systems and
de°T> information derives from actual statistical frequencies. The rules-
of-thumb appear to be analogous to rules in our models that hold with a
high probability, e.g., 0.9. Their same work also discusses qualitative
reasoning based on imprecise quantitative measures.

Finally, DST has been incorporated into expert systems for structural
damage assessment (Ishizuka, Fu, and Yao, 1981), and in a medical genetics
diagnostic system (Gouvernet, Ayme, and Sanchez, 1982).

In conclusion, this paper has shown how uncertainty over the logical
relations embodied in expert system rules can be mathematically repre-
sented and propagated through a system of Boolean equations. We have
borrowed the concept of modus ponens to admit a probabilistic logic for
the validity of rules, where some given rule may be valid with a
probability less than one.

This paper has also demonstrated an application of the uncommitted
belief term in DST to the possibility set (True, False). The uncommitted
term can represent component failures that may or may not have occurred,
or the observer cannot tell whether it occurred. To the extent expert
system researchers use "decision rules" and imprecise input data, the
forms of uncertainty explored here should prove insightful to future
modeling efforts.
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