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ABSTRACT

This report discusses an AFP190L array processor (manufactured by
Floating Point Systems of Beaverton, Oregon) interfaced to a PDP~-10
(Digital Equipment Corporation, Maynard, Mass.). After AP software
installation, an analysis of the overhead was performed.
these measurements and some conclusions will be presented. An AP
monitor and softwars dinterface vwere written to minimize the overhead
';ﬂn - from the PDP-10. A vector extension to the FORTRAN language called

g "FIVE" was developed to increase user access to the AP. Some the
' . problems associated with defining and implementing FIVE will be
T discussed. 1Its successes and limitations will be reviewed.
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" Array processors offer a cost effective alternative for large scale
: acienFific conputings Tn these days of diminishing budgets, one must
T ; oe?iouély coosider the AP as opposed to an expensive, general purpose

- . CPUs At Lawrence Livermore Laboratory, California, the Department of

e Enetgy is conducting a program of research ta develop energy from a

: process called magnetic fusion- This research, in part, involves the
.. R . L. -\ﬂ :

computer modelling of fusion plasma theory. These computer programs are

complex and consume large amounts of time. By connecting an AP190L to

the PDP-10, the Laboratory has greatly augmented its scientific compute

oapacity.'

'.The FPS 190L AP was selected because of its unique architecture.

Ihe vo:d size of the AP exceeds that of the PDP-10 by two bits and

: dramatic speed» ratios are obtainable for simple arithmetic (oée Table

1'1). However, can one achleve the ratios that are theoretically

possible’ In"the following remarks, the results of this PDP-10 and AP

coupling will be reviewad.

._(' ,'

S Table 1.

- Operation Ppop~krio(l) Fps Ap(2)
Addicion 10.8us (2.45-6,26) 1¢3us (.167-.333)
Subtraction 9.9 8 (2.62-6.43) 1a3us (.167=.333)
Multiplication 1l.lus (3.65-4.84) le3us («167-.500)
Pivision 16.4us (7.49-7.95) 1e7us (3.8)

.

(1) mhe PDP-:D numbers stated were obtained by timing loops 10000 1long.

The numbers in parentheses are the quoted values from the FDP-10
hardware book.

2) The AP numbers stated were obtained from counting cvcles since the
FPS AP 1s a syncronous machfne and cycle times are absolute, based on
the clock frequency of 167nse The numbers in parentheses are the
ninimun time per result possible to the time required for ome result.
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» It seems that there should be nearly a factor of 10 speed
'ienhancement by doing arithmetic on the AP. One problem is that the AP

”'and PDP-IO do not share a comion memory and hence the data must be

shipped back and forth. The AP is connected to the PDP-10 via a channel
.type interface. Communication between the AP and PDP-10 takes place
o _r the I/O bus side of the interface and DMA transfers of data is done
on‘tﬁe mem;ry bus side. The interface was designed to get or put a word
- of FDP-10 memory at full memory speed (approximately 900ns). The FDP-10
o memory is multiported and the AP channel accesses one of these ports.
' The 1nterface handles all format conversion between the various floating
-poipt formats, 1nteger formats, and so on, on the fly.

:The PDP—IO is a paged, virtual memory, timesharing machine. This

.means that the users data may not be physically contiguous. Referencing

Amemory is done by a combination of hardware and software. The effect of

.virtual 1s that not all of the user’s data has to be in core.

Some may

be on the disk, 1.e. mnot in physical memory.

e

Timesharing means that
. the user may not be in core at all if another user is runninge. E?ch of
IR .:thésé can effect an external hardware device doing DMA to a -user’s
program.

—an l The scenario for get:ing to the AP from a user’s program goes as

follows: The user calls onc of the FPS software library routines to

transfer data to or from the AP and to run a program in the AP. The

. routines set up the necessary data blocks and then issue a call to the

PDP-10 monitor (operating system). The monitor saves the wusers

registers and determines which call was requested. If the call 1is
legal, control 1is transfered to the proper service routine in the

monitors This routine thea proceeds to address check all the user’s

- ‘!!Il'!!i UL
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"'_addresees. and . to lock down any data and buffer areas that will be DMA
:ieceessed by tﬁe FPS interface. On completion of checking and 1locking,
.khe job 1is marked as I/0 active so that the swapper will not move any
portion of the job out of physicai Memory. If a page was on the

‘ awapping space and not in phys;cal core then a page fault is issued to
et e '.,~

x'v

- After the interface has completed its requested function or the AP has

'“finished running then the monitor can be sent ar interrupt. The monitor

"will continue to honor requests for AP coumunication until the list is

K, ;‘.: . i .

".exhausted. The user is marked as I/0 complete and may then run, be

»swapged,i and so on. ~All of these monitor actions represent many
vinstruetiens and comprise a large amount of overhead. To measure this

- overhead. various timing tests were performed with the FPS software that

uas delivered with the machine-

NUM PUT XFR DIV WAT GET MC

1 2 Y Y Y 1 15
2 2 N Y Y 1 6
3 1 N Y Y 1 5
4 1 N N Y 1 3
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; Figure 1

get the page 1nto core. Then the interface is sent a start command.'
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Figure 1 displays varilous aspects of the timing study. Five curves
are shown. The four near horizontal lines represent time versus vector
lengtg for AP functions. The curved 1line dis typical of any PDP-10
operation (add, subtract, multiply or divide). The intersection point

is the “break even" length for doing the operation on the AP ar the

C L '

l‘f"The legend in the wupper right hand corner of figure 1l indicates
what is represented by each curve. NUM refers to which curve number.
PUT 1is the number of separate calls to the operating system that were

done to get the data from the PDP-10 to the AP. XFR (Yes or No) tells

J? whether or not the object code for the AP was shipped to the AP for each

-~

o execuiion or note DIV (Yes or No} tells whether or not thé divide
. routine was actually run in the AP. WAT (Yes or No) states that a wait

"until completion of running call was issved to the operating system.

GET tallies the number of calls to the operating system to get the

\

" “results back from the AP to the PDP-10. Finally, MC is the total number

to the operating system required to accowplish what the

e 1

pr;viéﬁé.fivé calumns state. Note that at each length ﬁhe time vequired
is almost.directly proportional to the number of calls to the 9perating
system and is also almost totally independant of the length. of the
vector. Clearly as the number of calls to the operating system is
decreased the “break even" length decreases. The standard software

produced by FPS 1is reflected in curve Z. It does not provide very

efficient operation of the AP. Curve 3 was obtained by writing

enhancements to the existing software. Curve 4 was also cbtained using

standard FPS5 softwsre.

T e T T e A R TR R A
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Note that for simple diadic operations the time required to obtain

results 1s almost independent of length for the AP. For the FDP-10 the

- time is proportional to the length of the vector. Addition, subtraction

and wmuleiplication are closely grouped together. Division takes a

N little longer- Hith the standatd, delivered FPS software the
:cross-over point is seen  to be vectors an the order or 2500 to 3000

long- This is only the break even point. Factor of two execution rate

A . improvements are achieved around 7000. Thus very long vectors are

required in order to obtain break even values. Another approach might

be to do a lot of COmputation in the AP, such as running a whole
program. It turns out that 1f one is not careful, multiple computations

with little data transfer will require more time- Although not showm,

“run on the PDP-1D as one DO loop and on the AP by shipping V2 and V3,
. éhee'eepaéete;y doing the two muitiplies and one addition, then sending
-V~'back vi. | ot
A more thorough investigation revealed some of the problem areas.
' One of these is FPS” atrategy of frequent calls to the operating system.
The FPS array processor can be a viable option for providing
increased number crunch power to a PDP-10. The software delivered by
FPS does not maximize the cost effectiveness and shows that for the
greatest advantage to - be pgained, improved software would have to be
developed which would cut down on the operating system overhead
asgociated with using» the array processor. The specific improvements

would be te chain the DMA transfers and the vector functions together to

minimize calls to the operating system.

4
-
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this phenomena was observed for the equation V1=V2%V2+V3*Vv3, This was '
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Fortran Interface to VEctor programning

Tn thié second part, a software interface to bridge the gap between

. &

the user and the AP will be discussed. Very few users at Livermore have

the time or incentive to acquaint themselves with a new computer
~' gnGifbument. 'fORTRAN is the wmajor implementation language at the

Lo

VLaLotatory. At the time of installation, there existed no AP~FORTRAN so
an extension to PDP-10 FORTRAN was defined with the goal that wusers
e coﬂld program the AP in a natural fashion that would be efficient both

for them and the AP. The following is a software interface that is
baéeﬂ ‘on the vector and the Scientific Library.

TS

© . INITIALIZATION

CALL IFIVE(STRING,NUM,IER)
0. - STRING is a FORTRAN-1like statement which exprasses the vector operations
. to be performed. NUM is an Integer which uniquely identifies the
STRING, IER 1is a variable which will be set on encountering an error

condition during execution. The following is an example of an IFIVE

statement:

CALL IFIVE(®A=B*(C+D)”,28, JERR)
The exptession is enclosed in quote marks so that it will be treated as
a Hollerith string and not be decoded by the compiler. Multiple

statement strings are permitted; and results of previous computations

may be used in Subsequent ones. For instance:

CALL IFIVE(®A=A+B;VRTA=INVRT(A);C=(A+VRTA)/2.0",7,KER)
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ARRAY AND SUBSCRIPT RANGE DEFINITION

CALL DFIVE(”ARRAYNAME(DIMENSIONS)®,NUM,LER)

CALL DFIVE (*R.ARRAYNAME(LOWERBOUND: UPPERBOUND: INC)” ,NUM,MERR}

X.DFIVE 1ndicates a definition statement. Dimension and range Information -,

‘_>about arrays is communicated 1n this fashion. Variables encountered in

IFIVE statements that are not previously defined as arrays will be
t;eated as scalars or simple variables. The R. defines whick elements
are ;o be referenced in the vector computations. DFIVE xamples follogz
. , CALL DFIVE( A(0:63) ,B=C(~J: J,—K.K)',39 NERR)

The artay A 1s defined as one dimensional with 64 elements.

S

L B and C are two dimensional with the values J and K being defined o

- elsewhere- The équal sign separating B and ¢ provides a shorthand for

arrays of equal dimensions. Another form permitted in DFIVE defines

.. glmple variables:

CALL DFIVE(*J=’,JX,’K=",KY,41,NFAIL)

This argument lisrt identifies and locates the variasbles J and K. f%he

specifications given in DFIVE statements are global across all IFIVE
statements. All aimple variables must be defined prior ‘to their
appearance }n a range or dimension DFIVE statement. In the examéle
given below, elements number ]| thru 62 would be referenced in the one

dimensional array A.

CALL DFIVE("R.A(1:62)°,43,JAIL)
RUNNING

CALL RFIVE(NAMES,NUMBER, IFAIL)

|

, . 1 IR L

The arrays B

1
|
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After proper 2inittalization with IFIVE and DFIVE subroutines calls ome
may supply an argument list couslisting of the actuval arrays and scalar
variaSies to be ‘opetated on as speclfied by the function defined as
NUMBER. If no error occurs, the value of IFAIL will be unchangede 1In

the mult{-computational initialization example, which is repeated below,

. there must be six arguments supplied. Input array names for A and B as

well es output names for VRTA and C are required. Array A is both an

output as well as 1input array name. With few exceptions, vectors

appearing in an IFIVE arithmetic string must reference an equal number

of elements.

- .
.

. CALL IFIVE(“A=A+B;VRTA=INVRT (A);Cs=(A+VRTA)/2.0°,7,¥ER)

CALL RFIVE(XA,XB,XVRT,XC, 7, IHOPE)

" INVRT {s a macrix $nversion routinme. Argunents fownd in ﬁhe RFIVE

" statemeat must correspond to the dummy arguments in the IFIVE statement

~4n order of thelr appearance from left to right.

 TMPLEMENTATION

Two approaches to providing the software interface, FIVE, between the

PDP-10 and the AP 190L were considered. The first approach ran entirely

at execute time. All range, dimension, and function definitions were

scanned and the information derived was tabled. When an RFIVE statement
was encountered, the information was used to supply the AP with the
correct data for computation. It was observed early in this effort that

the overhead both to execution speed and table space would be excessive.

‘Therefore, this strategy vas abandoned in favor of a pre-compile scan on

oy M

e
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. the FORTRAN source program containing the FIVE subroutine CALL

atatementse.

The pre-compile scan method looks at the source program and digests

the iaformation found in FIVE statements. This information 18 organized

. +,@s found in Table 2. Using ﬁart aof a DFIVE given previously:
. ‘ CALL DFIVE(’A(0:63)",59,NERR)

an entry for A would be made in the Vector Symbol table with one

dimension. The Dimension table would have an entry pointing to the

Vector Symbol. The ID Number, £9, and a pointer to the Bounds table

would be fpund.

The Bounds table contains an ordered pailr for each
- dlmehéion found inbthe define statement. The ordered paif entry consig;
:~of a ﬁéintervéo the Scalar Symbol table and a sign. A similar enér&
:yoﬁld be found for the féllowing range definition:
h CALL DFIVE("R.A(1:62:2)’,60,MYER)

The Range table would contain an entry with the ID Number, 60. The

Bounds table would contain an ordered triplet for the lower, upper, and
incfement. information and their signs. A simple IFIVE statement will

help iliustrate qther teble entries:
CALL IFIVE(’A=B+4C”,67,NIX) :

The vectors A, B, and C are presumed to be defined elsewhere and

appropriate entries made. The string A=B4C will be translated to
pastfix ARC+= and tabled along with the ID Number 67. The string ABC+=

is scanned left to right for operators while stacking operands. In the

example, A, B, arnd C would be on the stack when the + operator is

encountered. The + operator is binary with two operands, B and C.

Therefore, a call to the vector add routine in the Scientific Liﬁrary is

i
!
{
i
|
!
{

N |
-
-
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generateds B and C removed from the stack and replaced with a temporary
result. Scanning the postfixz resumes and the equal sign is found. This
ends the process. A, B, and C are entered in the Argument table. Since

A appears on a left hond side of an equal sign, it has a result pointer.

The result pointer is from B4+C. When the pre-compile scan is complete,

"all‘ghe table information is éompressed and written to a disc file. The =
‘;;igé éiie‘is'éken read by the executing progr#m during an initialization f—
phase. During execution, the subroutine calls to the FIVE package are
treated differently since some of the information was digested during
the pre-compile scan. When a DFIVE call is made, all vectors defined
with range and dimension information that match the ID number are

s

" activated. The bounds pointers to range and dimension iunformation are :

placed in the Vector Symbol tablzs. Any simple valable definition found
-1s also supplied the current value. IFIVE statements are ignored. When

an RFIVE statement is called, the ID number is matched agaiunst those in -

© the ID Function KNumber tab. :. Pointers to the Argument table and list i

of AP Sclentific Library calls are found. All management of the AP

. memory is done on the basis o¢f 1length of vectors, both input and

e generated temporaries, and numper of scalars. The vector lengths are

obtained from the dimeﬁsion and range data pointer to by the dummy
i variables in the IFIVE sgtatement. Vhen all relocation for the AP
k Scientific Library calls is complete, transfer of the input 1is begun. '

Instead of an individual APPUT for each imput, all information about

input is collected. This includes the 1list of relocated Secilentific
=y Library calls. The host location, AP location, length, and type of

format for each input is sent in one access from the host to the AP.

-, The AP monitor is started and

s
<

the calling program in the host 1is

|
:r%?xh
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rsuspended in a wait state. The AP monitor executes all the Scientific

Library routine in the relocated 1list provided by the host. Om

compleéion, control is returned to the host and the pragram waiting is

restarted. The input process is now reversed. All information about x

output is collected and one aceess is made to transfer the results from

¢ . the

AP to the host.

. In an effort to improve the speed of the software package, an =

attempt is made to perform relocation and memory management of the AP at

!
1
i
=
pre~compile scan time. This can only be done is there are no variable {

‘'dimension or range definitions. When these conditions are met, much of
Ag',;£5e avethead due to the FIVE package in the executing program can be :
Aﬁgliminated- 'Only the actual location of the variables 1in the RFIVE

‘statement need be supplied to start an AP runm.

VECTOR SYMBOL

Bumber of Dimensions

:
Table 2. \i
|

Fame Dimension ID Range ID

\
i

» DIMENSION
Vector Symbol Point Bounds ppi;:-—-;;-gumber

. o RANGE ;
Véctor.sjmbol Point  Bounds Point---;; Rumber

SCALAR SYMBOL

0 A S et

)

R
° Name Value/Polnter

BOUNDS

Scalar Symbol Point  Sign

_ID FUNGTION NUMBER

1D Number PoskfiR Point - Postfix Length Arg Point. Arg Length
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ARGUMENT

Name Point Result Point Loc in Host Loc in AP Length

- FUNCTION

e o s -

Name Number of Inputs Number of Outputs

Timing the FIVE Interface

(L A=BACHD

‘ : E=F~-A*G
H=(GAS) /(1. (HG*G)
P=A+E*(
Q=E~P*(
R=Q4C*D
8=T+Q
T=SQRT (S*S+HR*R)

aod FEXU+PAW
. BePAUHE*W

(2) X=PBC(X4VX, XN)
. Y=Y+VY
RHO=SORT(X, 1. 0~-RPI*(YGC-Y),RHO, QDX)

The two examples above were coded in FORTRAN for the PDP~10. Example 1

consists of two parts and represents a portion of a l-dimensiomnal Boris

‘particle mover. The second iIs an extract from a l-dimensional

electrostatic particle programe Both benchmarks exhibited

the same
speed characteristics. A speedup of approximately 6 times was noted

when relocation was performed at execution time« With relocition at

precompile scan time, a speed up of 17 tao 19 times was observed. This

includes all overhead. Measurements of the Livermore AP monitor

overhead indicates that about 4% AP time is spent in that function for

vector lenpths of 1000 (see Eig. 2}.
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- spaceds This of course increases overhead, lowering efficiency.
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Discussion and Conclusion

The‘ FIVE package has its limitations. Relocation is expensive at
execution time. Vectors which are multidimensional and have irregular
it;a"ﬂge variation;; nust be moved into a vector whose elements are evenly
There
is no conmon subexpression analysis in tha precompile scan. To ‘be fully

useful, the AP needs an efficient FORTRAN from a reliable commercial

source. We eaperly awalit the FPS product.




