
.MASTER
PREPRINT UCRL- 82652

Lawrence LJvermore Laboratory
AP190L and P D P - K I l ^ : A HARDWARE/SOFTWARE MEASUREMENT REPORT

Neil Maron and George G. Sutherland

March 8 ? 1979

This paper was prepared for presentation at the Third Annual FPS Users
Group Meeting, Lake Buena Vista, FL. May 6-9, 1979

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made
before publication, this preprint is made available with the understanding that it will not be cited or reproduced
without the permission of the author.

AP190L and PDP-KIIO: A Hardware/Software Measurement Report

Neil Maron

and

George G. Sutherland

M-Division
Lawrence Livermore Laboratory
Livermore, California 94550

March 8, 1979

• . - • *» i - ' . ' " ' ' - t

ABSTRACT

This report discusses an AP190L array processor (manufactured by
Floating Point Systems of Beaverton, Oregon) interfaced to a PDP-10
(Digital Equipment Corporation, Maynard, Mass.). After AF software
installation, an analysis of the overhead was performed. The results of
these measurements and some conclusions will be presented. An AP
monitor and software interface were written to minimize the overhead
from the PDP-10. A vector extension to the FORTRAN language called
"FIVE" was developed to increase user access to the AP. Some the
problems associated with defining and implementing FIVE will be
discussed. Its successes and limitations will be reviewed.

This work was performed under the auspices of the U.
Energy by the Lawrence Livermore
W-7405-ENG-48. Laboratory under

S. Department of
contract number

- N O T I C E -
This report M I prepared as an acvount of work
sponsored by the United Srates Government. Neither die
United Sulci nor the United Stales Departn;n» or
Energy, nor any of their employee!, nor any of Ihelt
contractor!, lubconltactoti, or (heir employee!, makei
any warranty, express or implied, or assumes any legal
liability nr responsibility Tor the iccuracy, completeness
or usefulness or any Information, apparatus product or
process disclosed, or represents that it! use would nol
infringe privately owned rights.

-2-

Array processors offer a cost effective alternative for large scale

scientific computing* In these days of diminishing budgets, one must

seriously consider the AP as opposed to an expensive, general purpose

CPU. At Lawrence Livermore Laboratory, California, the Department of

Energy is conducting a program of research to develop energy from a

•#rjt* ^process i

.*

called magnetic fusion* This research, in part, involves the

computer modelling of fusion plasma theory* These computer programs are

complex and consume large amounts of time. By connecting an AP190L to

the PDP-10, the Laboratory has greatly augmented its scientific compute

i capacity*

"«ytu ' '•'• ••'• "-CThe FPS 190L AP was selected because of its unique architecture.
t ' . ^ " - ; r ' * ' . . • • ••:•

rJ #,; The word size of the AP exceeds that of the PDP-10 by two b i t s and

"''"; dramatic speed r a t i o s are obtainable for simple ari thmetic (see Table

*•,. •' 1) . However, can one achieve the ra t ios that are theoret ical ly

possible? In the following remarks, the resul ts of t h i s PDP-10 and AP
f : . ; . j ••'

coupling wi l l be reviewed.

V \ v • Table 1.

Operation PDP-KI10 (I) FPS AP<2)

Addition 10.8us (2.45-6.26) 1.3us (.167-.333)
Subtraction 9.9us (2.62-6.43) 1.3us (.167-.333)
Multiplication l l . l u s (3.65-4.84) i.3us (.167-.500)
Division 16.4us (7.49-7.95) 1.7us (3.8)

* ' The POP-JO numbers stated were obtained by timing loops 10000 long.
The nutnbers in parentheses are the quoted values from the PDP-10
hardware book.

' ' The AP numbers s ta ted were obtained from counting cycles since the
FPS AP i s a syncronous machine and cycle times are absolute, based on
the clock frequency of 167ns. The numbers in parentheses are the
minimum time per r e su l t possible to the time required for one r e su l t .

'.V>V

- 3 -

I t seems that there should be nearly a factor of 10 speed

••-.'«•; . enhancement by doing arithmetic on the AP. One problem i s that the AP

; ;•?•£•,-.'• ''/,'' and PDP-10 do not share a comion memory and hence the data must be

; J - ' : v . ' ; shipped back and f o r t h . The AP i s connected to the PDP-10 v i a a channel

W'iS-.•'':•}. type interface* Communication between the AP and PDP-10 takes place

'H^SKlfe^-^f'bver the I/O bus s i d e of the interface and DMA transfers of data i s done
" V ? ; , w ^ - t e I . ' - * ? • > * ' . " •-••-,'..•••••?*•::.••

'/sLV'!*' •'•.',?.'•:• ' o n the memory bus s ide* The interface was designed to get or put a word

'"'•[•'•' ' ••'. of PDP-10 memory at f u l l memory speed (approximately 900ns). The PDP-10

] '••„'•. ••.;•" ' memory i s multiported and the AP channel acces se s one of these ports .
r •l.Vs'.i'.v ."'.'•''

.?.j'*' The interface handles a l l format conversion between the various f l o a t i n g
1: ;> . •?; . •>, . • : , - . • ; . • , .

= •'i;feS-:-' po int formats, integer formats, and so on, on the f l y .

^^^'''•'i;1''-"-'''*\The PDP-10 i s a paged, v i r t u a l memory, timesharing machine. This

.'!»..y means that the users data may not be p h y s i c a l l y contiguous. Referencing
' ^ ' ' • • f l ! ' : . . ; ; / - . ' "

memory i s done by a combination of hardware and software. The e f f e c t of

..•.'•;;':.:;••';'/!. v i r t u a l i s that not a l l of the user ' s data has to be in core . Some may

be on the disk, i . e . not in physical memory. Timesharing means that

. t h e user may not be in core a t a l l i f another user i s running. Each of

these can e f f e c t an ex terna l hardware dev ice doing DMA to a user ' s

program.

The scenario for g e t t i n g to the AP from a user 's program goes as

f o l l o w s : The user c a l l s one of the FPS software l ibrary rout ines to

transfer data to or from the AP and to run a program in the AP. The

. rout ines s e t up the necessary data blocks and then i ssue a c a l l to the

PDP-10 monitor (operating system). The monitor saves the users

r e g i s t e r s and determines which c a l l was requested. If the c a l l i s

l e g a l , control i s transfered to the proper serv ice routine in the

monitor. This routine then proceeds to address check a l l the user ' s

;v:.->».

I l l

-4 -

< * '

- ' 3

. addresses and . to lock down any data and buffer areas that wil l be DMA

accessed by the FPS Interface. On completion of checklvig and locking,

the job Is narked as I/O active so that the swapper xri.ll not move any

portion of the job out of physical memory. If a page was on the

swapping space and not In physical core then a page fault Is issued to
f V ' * * •"•--'' _ ' • " • . ' . *.!• • • : . ' •

it'get the page Into core. Then the interface Is sent a start command.

After the Interface has completed Its requested function or the AP has

finished running then the monitor can be sent ar interrupt. The monitor

will continue to honor requests for AP communication until the list is

exhausted. The user Is marked as I/O complete and may then run, be

swapped, and so on. All of these monitor actions represent many
"'r-' ! ' " . • ' '*

instructions and comprise a large amount of overhead. To measure this

' overhead, various timing tests were performed with the FPS software that

was delivered with the machine.
NUM PUT XFR DIV WAT GET MC

1 2 Y Y Y 1 15
2 2 N Y Y 1 6
3 1 N Y Y 1 r>
4 1 N N Y 1 3

70
60

•8 50
c
§ 40
I 30

20
10

I I

/ '

f\
s ^

- , < • •

"J hjj "J I]
J . . . J . . .

I
10' 10 3

Length

Figure 1

10"

http://xri.ll

- 5 -

Figure 1 d i sp lays various aspects of the timing study. Five curves

are shown. The four near horizontal l i n e s represent time versus vector

length for AP f u n c t i o n s . The curved l i n e Is typica l of any PDP-10

operation (add, s u b t r a c t , mult iply or d i v i d e) . The i n t e r s e c t i o n point

i s the "break even" length for doing the operation on the AP or the

The legend i n the upper r ight hand corner of f igure 1 indicates

what Is represented by each curve. NUK r e f e r s to which curve number.

;. PUT i s the number of separate c a l l s to the operating system that were

done to get the data from the PDP-10 to the AP. XFR (Yes or No) t e l l s

;••;•••.';• whether or not the o b j e c t code for the AP was shipped to the AP for each

•,'..".•'• execution or n o t . DIV (Yes or No) t e l l s whether or not the divide

routine was a c t u a l l y run in the AP. WAT (Yes or No) s t a t e s that a wait

\ u n t i l completion of running c a l l was i ssued to the operating system.

1 GET t a l l i e s the number of c a l l s to the operating system to get the

r e s u l t s back from the AP to the PDP-10. F i n a l l y , MC i s the t o t a l number

of c a l l s to the operating system required to accomplish what the

previous f i v e columns s t a t e . Note that a t each length the time required

I i s almost d i r e c t l y proportional to the number of c a l l s to the operating

system and I s a l s o almost t o t a l l y independant of the length of the

v e c t o r . Clearly as the number of c a l l s to the operating system Is

decreased the "break even" length d e c r e a s e s . The standard software

produced by FPS i s re f l ec ted in curve 2. It does not provide very

e f f i c i e n t operation of the AP. Curve 3 was obtained by writing

..' I enhancements to the e x i s t i n g software. Curve U was a l so obtained using

standard FPS software.

ii; i

" v y - • • • • , - , • • • i- i n i T | i a • ' • 'Y"" l " I'" "I II I ! i

i .1. . ,Jll,.:,.L,,,>:,Ml

-

_.'.. .•>;• - 6 -

Note that for simple diadic operations the time required to obtain

results is almost Independent of length for the AP. For the PDP-10 the

time Is proportional to the length of the vector. Addition, subtraction

and multiplication are closely grouped together* Division takes a

v V... • . little longer* With the standard, delivered FPS software the

'.'•?&!,*u'-.;-'"."'."cross-over" point is seen to be vectors «v\ the order or 2500 to 3000

long* This Is only the break even point. Factor of two execution rate

*.,' • improvements are achieved around 7000. Thus very long vectors are

required in order to obtain break even values. Another approach might

be to do a lot of computation in the AP, such as running a whole

.'••**' v:.-i program. It turns out that if one is not careful, multiple computations
" • • / • . . s T - ^ - v i - : ' ' ; ' 7 - : • ' '•••"'"'• :• •' •

,'*r'.;' with l i t t l e data transfer w i l l require more t ime. Although not shown,

t h i s phenomena was observed for the equation V1=V2*V2+V3*V3. This was

run on the PDP-10 as one DO loop and on the AP by shipping V2 and V3,

,. * V ' ' i then separately doing the two m u l t i p l i e s and one add i t i on , then sending

•:-„• .- .:•-.• back v i . \ : ;

'••'' ; A more thorough i n v e s t i g a t i o n revealed some of the problem areas*

» One of these i s FPS' s trategy of frequent c a l l s to the operating system.

t ' The FPS array processor can be a v iab le option for providing

I
I increased number crunch power to a PDP-10. The software delivered by

| ' FPS does not maximize the cost effectiveness and shows that for the

greatest advantage to be gained, improved software would have to be

developed which would cut down on the operating system overhead

; associated with using the array processor* The specific improvements

would be to chain the DMA transfers and the vector functions together to

minimize calls to the operating system.

1

Fortran Interface to VEctor programming

In t h i s second p a r t , a software i n t e r f a c e to bridge the gap between

the user and the AP w i l l be d i scussed . Very few users a t Livermore have

the time or incent ive to acquaint themselves with a new computer

environment. FORTRAN i s the major implementation language at the

Laboratory. At the time of i n s t a l l a t i o n , there ex i s t ed no AP-FORTRAN so

an extension to PDP-10 FORTRAN was defined with the goal that users

could program the AP in a natural fashion that would be e f f i c i e n t both

for them and the AP. The following i s a software i n t e r f a c e that i s

based on the vector and the S c i e n t i f i c Library.

INITIALIZATION

CALL IFIVE(STRING,NUM,IER)

STRING i s a FOllTRAN-like statement which expresses the vector operations

to be performed. NUM i s an integer which uniquely i d e n t i f i e s the

STRING. IER i s a var iable which w i l l be s e t on encountering an error

condit ion during execut ion . The fol lowing i s an example of .an IFIVE

statement:

CALL IFIVE('A=B*(C+D)*,28,JERR)

The expression i s enclosed in quote marks so that i t w i l l be treated as

a Hol ler i th s t r i n g and not be decoded by the compiler. Multiple

statement s t r i n g s are permitted; and r e s u l t s of previous computations

may be used in subsequent ones . For ins tance :

CALL IFIVE('A«A+B;VRTA=INVRT(A):C«.(A+VRTA)/2.0',7,KER)

a i 11 i I . Ill , 1 lU.. I .
1 1 1 " i . . ' . _ : -v .,..' . - • -

i i i • i i ••

**
*

I III y | l

Hi -

-8-
AKRAY AND SUBSCRIPT RANGE DEFINITION

CALL DFIVE(*ARRAYNAME(DIMENSIONS)',NUM,LER)
: ' '• '• {

CALL DFIVE('R.ARRAYNAME(LOWERBOUND;UPPERBOUND:INC)'9NUM,MERR)
. . . ' * •••.

^wjV: "• •. DFIVE indicates a definition statement. Dimension and range information
'' '*;';..'• :. about arrays i3 communicated in this fashion. Variables encountered in

IFIVE statements that are not previously defined as arrays will be
treated as scalars or simple variables. The R. defines which elements
are to be referenced in the vector computations. DFIVE i xamples follow:

'.?,'/•;. •:-,. ..••._•/ CALL DFIVE('A(0:63),B«C(-J:J,-K:K)',39,NERR)
• The array A i s defined as one dimensional with 6A elements. The arrays

B and C are two dimensional with the values J and K being defined

•̂ '•'' V.: ..- e lsewhere. The equal s ign separating B and 0 provides a shorthand for

'-,.;•'• arrays of equal dimensions. Another form permitted in DFIVE defines

r;.:-. . s i m p l e var iab les :

CALL DFIVE('J<=' ,JX,*K=' ,KY,A1,NFAIL)

This argument list identifies and locates the variables J and K. The
; specifications given in DFIVE statements are global across all IFIVE
«' statements. All simple variables must be defined prior to their
1 - appearance In a range or dimension DFIVE statement. In the example
' given below, elements number 1 thru 62 would be referenced in the one

dimensional array A.
' CALL DFIVE(*R.A(1:62)*,A3,JAIL)
• RUNNING

- •• -4 ff
•m\ i I CALL RFIVE(NAMES,NUMBER,IFAIL)

V-:..

I II |

-9-

After proper initialization with IFIVE and DFIVE subroutines calls one

nay supply an argument list consisting of the actual arrays and scalar

variables to be operated on as specified by the function defined as

NUMBER. If no error occurs, the value of IFAIL will be unchanged. In

the multi-computational initialization example, which is repeated below,

. there oust be six arguments supplied. Input array names for A and B as

well as output names for VRTA and C are required. Array A Is both an

output as well as input array name. With few exceptions, vectors

appearing in an IFIVE arithmetic string must reference an equal number

of elements.

. CALL IFIVE(*A=A+B;VR1A«IHVRT(A)jC*(A+\'RTA)/2.0',7,KER)

CALL RFIVE<XA,XB,XVRT,XC,7,IK0PE)

INVRT is a matrix inversion routine. Argurxents found in the RFIVE

' statement must correspond to the dummy arguments in the IFIVE statement

. i n order of their appearance from left to right.

IMPLEMENTATION

Two approaches to providing the software interface, FIVE, between the

PDP-10 and the AP 190L were considered. The first approach ran entirely

at execute time. All range, dimension, and function definitions were

scanned and the information derived was tabled, when an RFIVE statement

was encountered, eh& Information was used to supply the AF with the

correct data for computation. It was observed early in this effort that

the overhead both to execution speed and table space would be excessive.

Therefore, this strategy was abandoned in favor of a pre-compile scan on

-10-

the FORTRAN source program containing the FIVE subroutine CALL

statements.

The pre-compile scan method looks at the source program and digests

the information found in FIVE statements. This information is organized

,a3 found in 'fable 2. Using part of a DFIVE given previously:

CALL DFIVE('A(0:63)',59,NERR)

an entry for A would be made in the Vector Symbol table with one

dimension. The Dimension table would have an entry pointing to the

Vector Symbol. The ID Number, 59, and a pointer to the Bounds table

would be found. The Bounds table contains an ordered pair for each

dimension found in the define statement. The ordered pair entry consist

of a pointer to the Scalar Symbol table and a sign. A similar entry

; would be found for the following range definition:

CALL DFIVE('R.A(1:62:2)',60,MYER)

The Range table would contain an entry with the ID Number, 60. The

Bounds table would contain an ordered triplet for the lower, upper, and

increment Information and their signs. A simple IFIVE statement will

help illustrate other teble entries:

CALL IFIVE(*AHB-fC*,67,NIX) :

The vectors A, B, and C are presumed to be defined elsewhere and

appropriate entries made. The string A=B+C will be translated to

postfix ABC+- and tabled along with the ID Number 67. The string ABC+=

is scanned left to right for operators while stacking operands. In the

example, A, B, and C would be on the stack when the + operator is

encountered. The + operator is binary with two operands, B and C.

Therefore, a call to the vector add routine in the Scientific Library is

-11-

generated. B and C removed from the stack and replaced with a temporary

result• Scanning the postfix resumes and the equal sign is found. This

ends the process. A, B, and C are entered in the Argument table. Since

A appears on a left hrnd side of an equal sign, it has a result pointer.

The result pointer is from B4C. When the pre-compile scan Is complete,

all the table information is compressed and written to a disc file. The

disc file is then read by the executing program during an initialisation

phase. During execution, the subroutine calls to the FIVE package are

treated differently since some of the information was digested during

the pre-compile scan. When a DFIVE call Is made, all vectors defined

with range and dimension information that match the ID number are

activated. The bounds pointers to range and dimension information are

placed in the Vector Symbol table. Any simple vaiable definition found

•is also supplied the current value. IFIVE statements are ignored. When

an RFIVE statement is called, the ID number is matched against those in

the ID Function Number tab •>.. Pointers to the Argument table and list

of AP Scientific Library calls are found. All management of the AP

memory is done on the basis of length of vectors, both input and

generated temporaries, and number of scalars. The vector lengths are

obtained from the dimension and range data pointer to by the dummy

variables in the IFIVE statement. When all relocation for the AP

Scientific Library calls is complete, transfer of the input is begun.

Instead of an individual APPUT for each input, all information about

input is collected. This includes the list of relocated Scientific

Library calls. The host location, AP location, length, and type of

format for each input is sent in one access from the host to the AP.

The AP monitor is started and the calling program in the host is

••-,••••= T - - - - - - - •.-s--.-'-" ,V :'".'"."' "'"::--iv"i"'r|" V"'i'^""H :" i"" , , ,"r" n r 1 " " " '" ' : ; :

-12-

suspended in a wait state. The AP monitor executes all the Scientific

Library routine in the relocated list provided by the host* On

completion, control is returned to the host and the program waiting is

restarted* The input process is now reversed* All Information about

output is collected and one access is made to transfer the results from

the AP to the host.

In an effort to improve the speed of the software package, an

attempt is made to perform relocation and memory management of the AP at

pre-coiapile scan time. This can only be done is there are no variable

dimension or range definitions. When these conditions are met, much of

'..the overhead due to the FIVE package in the executing program can be

eliminated. Only the actual location of the variables in the RFIVE

statement need be supplied to start an AP run.

Table 2.

VECTOR SYMBOL

Name Dimension ID Range ID Number of Dimensions

DIMENSION

Vector Symbol Point Bounds point ID Number

RANGE

Vector symbol Point Bounds Point ID Number

SCALAR SYMBOL

Name Value/Pointer

BOUNDS

Scalar Symbol Point Sign

ID FUNCTION NUMBER

ID Number Poirtfi* Point Poatfix Length Arg Point Arg Length

-13-

ARCUMENT

Kame Point Result Point Loc in Host loc in AP length

FUNCTION

Name Number of Inputs Number of Outputs

Timing the FIVE Interface

(i) A«B-K:*D
E=F-A*G
H=(G4S)/(l.04G*G)
P*A+E*H
Q»E-P*G
R=»Q-tC*D
S»T+Q
T~SQRT(S*S+R*R>

and . F*E*U+P*W
B«P*U+E*W

(2) X*PBC(X+VX,XN)
Y*Y+VY
RHO»=SORT{X,i.0-RPI*(yGC-Y),MHO,QDX)

The two examples above were coded in FORTRAN for the PDP-10. Example 1

c o n s i s t s of two parts and represents a port ion of a 1-dimensional Boris

p a r t i c l e mover. The second i s an e x t r a c t from a 1-dimensional

e l e c t r o s t a t i c p a r t i c l e program. Both benchmarks exhibi ted the same

speed charac ter i s t i c s* A speedup of approximately 6 times was noted

when re locat ion was performed at execution t ime. With re locat ion at

precompile scan t ime, a speed up o f 17 to 19 times was observed. This

inc ludes a l l overhead. Measurements of the Livermore AP monitor

overhead ind icates that about 4Z AP time i s spent in that function for

vector lengths of 1000 (see f i g . 2) .
NOTICE Reference to a company or product

'This report was prepared as an account of work names does not imply approval or
!K?SS"A br*i ? l ^"! l e d s , a . P , ? 9 v e ™ S e , l L recommendation of the product by
Neither the United States nor the United States ,. . , . ., « . „ , . , . ,
De^rtmentofEnergy.noranyoftheirempIoyees. t h e University of California or the
nor any of their contractors, subcontractors, or U.S. Department of Enerev to the
their employees, makes any warranty, express or „„„i„>„_ i- .L. \ ,
implied, or assumes any legal liability or respon- exclusion ol others that may be
sibilily for the accuracy, completeness or suitable,
usefulness of any information, apparatus, product
or process disclosed, or represents that its use
would not infringe privately-owned rights."

-u-
10,000 f ' ' ' T

30

T — i — i — i — | — i — i — i — r

N a + F

a = 33.90 fiS/point
F= 1294 juS

- i — i — i — r

Na + F
for N = 1000 ^ 2 — - = 1.04

or <4% overhead

35 40 45
Microsecond/point, T

50

Figure 2

Discussion and Conclusion

The FIVE package has i t s l i m i t a t i o n s . Relocation i s expensive at

execution t ime. Vectors which are multidimensional and have irregular

range var iat ions must be moved Into a vector whose elements are evenly

spaced. This of course increases overhead, lowering e f f i c i e n c y . There

i s no coiiimon subexpression ana lys i s In the precompile scan . To be f u l l y

u s e f u l , the AP needs an e f f i c i e n t FORTRAN from a r e l i a b l e commercial

source. We eagerly await the FPS product .

