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A MICROWAVE FEL CODE USING WAVEGUIDE MODES.”

J. A. Byers, R. H. Cohen
Lawrence Livermore National Laboratary, University of California,
Livermore, California, 2550

A free electron laser code, GFEL, is being developed for application to the LLNL
tokamak current drive experiment, MTX. This single frequency code solves for the slowly
varying complex field amplitude using the usual wiggler-averaged equations of existing
codes, in particular FRED[1], except that it describes the fields by a 2D expansion in
the rectangular waveguide modes, using coupling coefficients similar to those developed
by Wurtele(2], which include effects of spatial variations in the fields seen by the wiggler
motion of the particles. Our coefficients differ from those of Wurtele in two respects. First,
we have found a missing v/27/a,, factor in his C,; when corrected this increases the effect of
the E, field component and this in turn reduces the amplitude of the TM mode. Second,
we have consistently retained all terms of second order in the wiggle amplitude. Both
corrections are necessary for accurate computation. GFEL has the capability of following
the TEy, and TE(M),,; modes simultaneously. GFEL produces results nearly identical
to those from FRED if the coupling coeflicients are adjusted to equal those implied by the
algorithm in FRED. Normally, the two codes produce results that are similar but different
in detail due to the different treatment of modes higher than T Fo;.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract number W-7405-ENG-48. We thank W. M.
Fawley, R. A. Jong, and E. T. Scharlemann for advice and for comparisons with FRED.
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1. Introduction

In this paper we describe a new free electron laser code, GFEL, that uses the vacuum
wavegunide modes as a basis set for describing the electromagnetic fields. Its hasic structure
follaws that of the existing code FRED [1], but with an entirely new field algorithm,
designed to operate only in the microwave regime. The development closely follows that
of Wurtele[2]. We modify his mode coupling coefficients by calculating all terms to the
consistent order. We also specifically correct his E, coupling coefficient which we find to be
in error at lowest order. We describe equivalent methods of applying these mode coupling
coefficients. We demonstrate that there is a choice of coupling coefficients for GFEL that
makes this code equivalent to FRED, even though heretofore the treatment in FRED of
modes higher order than TEy; had been considered only approximate. We describe a
simple modification that would allow FRED to accurately model the higher order modes
for waveguide problems. '

We show results for 34.6 ghz conditions to demonstrate the noticeable but not extreme
differences that resuit when changing from the FRED-equivalent coefficients to the new
(presumably more accurate) coefficients. The results of Fig 1 agree with those from FRED
in all particulars, such as maximum field amplitudes, onset of phase jumps, ete., to within
a few percent. Results from the new coefficients in Fig. 2 show a 7% higher growth rate
and a Jarger fraction of 21 mode power, both in greater disagreement with the experiment
[3]. Our calculation also predicts a very small TMa; power relative to the Ti%; power,
also in contradiction with the experiment [3]. It can be seen that there is no sudden
turning ov& to dy1/dz ~ Q after saturation, in sharp contradiction to the experiment, as
already pointed out from the FRED results [4]. At the present time GFEL has a full set of
betatron orbits and a space charge solution, both essentially identical to those of FRED.
Improvements in the space charge solution are being developed. The taper algorithm in
GFEL is still crude, but results close to those of FRED are obtained, both for the 34.6 ghz
case and for the Microwave Tokamak Experiment (MTX) at 250 ghz at LLNL.

II. Laser equations with waveguide mode coupling coefficients

Here we quote directly from Wurtele’s thesis for the free electron laser equations using
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the waveguide mmode coupling coefficients, C,. His table 5.1 gives the coefficients C,, and
C., for the first few TE,,, and TM,,,, modes. We develop corrections to these coefficients
further on in section IV. These coeflicients are functions of the transverse dimensiorns x,y.
The sum C, = C;, + C., is to be used as a factor in the particle equations wherever
the field amplitude a, occurs, with a sum over modes s = m,n, and using the x,y of the
particular particle being followed. The same factor C, appears on the right hand side of
the field equations (now a pair for each mode rather than at each grid point for a gﬁdded
code) as a result of the Fourier mode transform of the current.

Wourtele defines the particle phase 1; relative to the design mode TEy,;, denoted as
mode s = 1. The particle equations are

7:! == Z “t,‘a,awC’ 5“1(11’1' + 6’)
PRl i

r_g v 2 _ ] _d_¢!.
¥} = ky — ks 27 [1.+a,,, Z‘:Zawa,C. cos(¢;+6a)] M

where 6k; = £ —kyand 6, = (ks ~ K1)z + ¢,(2) — ¢1(z). The particle equations involve a
sum over modes, s. The 1! equation needs correction for the betatron orbits contribution.

The field equations are

2 .
Y s <sm(¢.- +6,)
° 2we Vi

& = 1 9 eff4Cs <°°5(1l’i +5,)>

a, e Y

In these field equations the C, are really functions of the i’th particle’s wiggler-averaged
z,y and so are really to be brought inside the angle bracket average over the set of particles.
In terms of these variables it is v, = (k, — k1)z + ¢, that is equivalent to the field phase
in FRED. In the linear regime during exponential growth the field phases ¢, (not ¢,) of

all modes are identical, once initial transients have died away (see Figs 1,2).

IIL Lowest order coupling coefficients; equivalent methods
The standard description for a mode code (as in Wurtele) is to separate the TE and

TM modes, each with their own mode coupling coefficients, but it is possible to define
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an equivalent combined field amplitude, e, where e = e + €%, and an equivalent
combined mode coupling factor is given by C? = C3p + C%,,. The fact that the two
pieces are combined by adding them in quadrature will be seen below to lessen the net
effect of E..

We understand that FRED reduces the source amplitude in the field equation by an
0.5 factor (and doubles the €2, power) for all modes except TEp;. In GFEL there is an
equivalence to using either a) the same C, on the v’ equation and on the &' equation or b)
a source reduction factor in the field equation as in FRED but which varies in +alue mode
by mode and is equal to C2. The inverse of this source reduction factor is to be vsed as
a field power correction factor, In particular, GFEL can nearly match FRED results by
either a) choosing C;; = 0.707, so that C% = 0.5 in GFEL, matching the source reduction
factor 0.5 in FRED, or b) setting C2) = 1 and instead using a source reduction factor
equal to 0.5 in the field equation for the 21 mode and doubling the 21 mode power. This
equivalence demonstrates that FRED could be easily modified to include the equivalent of
the mode coupling coefficients, simply by replacing its 0.50 source modification factor by
C3.

To lowest order and exclusive of the spatial sinusoidal factors, the coupling coefficients
are C.rg = Jo(p)ky/kL, Corm = Jo(p)kz/kL, and C.ryr = —{—ZJ%JI(P)TI%‘%' where
p=k,xy = k:v2ay,/vkw, R = 2 /2(1 +a2), K;(R) = Jo(R) — 1i{R), K2(R) = Jo(R) +
J1(R). We here divide through by K;(R), so as to normalize Cpy = 1.

During the development of this work, Scharlemann pointed out that we had missed
the C. piece, which comes from the E, of the TM mode. In fact we were using C, from
Waurtele’s table 5.1 which is missing the v/2y/a,, factor shown above. The E, effect thus
incorrectly calculated is relatively minor. Apparently, Wurtele’s incorrect form was also
used for the calculations in a published paper[5]. The corrected value of C, will clearly
increase (by about a factor of 5 for 34.6 ghz), and since C, is negative increase the reduction
in the net 21 mode coupling factor. With this change we now calculate C.p = —0.27
and C.rp = 0.47. The net TM coefficient is then given by Cry = Corm + Corm =
0.47—0.27 = 0.20. We see that the net Crp is reduced by about 60%, -a sizeable reduction
of the TM part of the 21 mode. However the net effect on the combined C»; is much less.
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The net TE coefficient is Ctg = C.75 = Jo(p)% =~ 0.94 x 0.861 == 0.81. The combined 21
mode coefficient (34.6 ghz) is CZ, = C25 + C%,, = 0.65 + 0.04 = 0.69, to be compared to
the 0.50 source reduction factor used in FRED. We see that the effect of E, is comparable
to the effect of Jo(p) that reduces both C.7g and C,rm. Since C2,; << C%5 the TMp,
mode should be greatly suppressed relative to the T'E;y —this result still stands with the
full corrections of sec. IV and is in disagreement with the experiment {3). Our other
corrections given in section IV will further modify the coeflicients by decreasing Cp; and
increasing Cz; even more. For the three methods | 1) full corrections, 2)Wurtele’s lowest
order (but C; factor corrected), 3)FRED equivalent] the coefficients are CZ, = 0.83,1.0, 1.0,
and C2, = 0.88,0.69,0.50. The detailed results from using methods 1 and 3 for 34.6 ghz

(see Figs 1,2) show significant but not extreme differences.

IV. Corrections to Wurtele’s coefficients

Waurtele[2] calculated modifications to the FEL equations due to radial variations of
waveguide modes. His results, as presented in his Table 5.1, include the Bessel functions
Jo(p) and Jy(p), where p = k.z,,, the implication being that p is not so small that the
Bessel functions can be replaced by their leading-order approximations. However, Wurtele
dropped terms of order a2, /4% ~ p* compared to one at some points in the analysis, so the
results of his Table 5.1 have significance only at leading order. One goal of this present
paper is to present results obtained by consistently retaining next-order terms in the a,, /v
expaunsion.

There are, in particular, four places in the calculation where higher-order terms should
be kept:

(1) in evaluating t' in the energy equation
¥ = (fe/mP)v-E )
1/v should be expanded to second order rather than replaced by ¢~1; hence we take

c lJ.2 az ¢1.'4
= — —w o Tw _w
vo (1 T T Cosx) o (7")

where x = k,z and vp = c(1 — y~2)1/2,



(2) in evaluating the transverse coordinate £ = [dzw, /vy, we must again retain

second-order corrections to 1/v), yielding

+ 21/2¢q,, 14 3a? 4 1 d? ) + 0 ad
==z =% )sinx + 525 -z
© T uokyy 173 )X 13z 7

This correction generates additional Bessel functions (associated with the sin 3x term) and

corrections to the argument p of the existing ones.
(3) Even without this correction to z, the expansion of the transverse field variation

cos(k.z — mn/2) should include a J; term in order to be second-order accurate in a.; /v;

we have

4
cos(kzx — mm/2) = ¢y (Jo(p) + 2J2(p) cos2x) + O (: ) + nonresonant terms , (2a)

where ¢; = cos(k.zg — mn/2). This expression is also valid with the corrections to z.
Similarly, the expansion of sin(k,z — mn/2) should include a J; term; incorporating also

the corrections to z, we have:

sin(kzz — mm/2) =2¢, (J1(pa)sin x + (J3(p) + J1(p2)) sin 3x)

5
+0 (z ) + nonresonant terms (2b)
where
p=k, 91/2_¢ w
voky Y
(1 ‘ —)

In Eqgs. (2a) and (2b), “nonresonant terms” denotes terms proportional to sin 2my and
cosf(2m + 1)x], respectively; these terms do not give rise to “slowly varying” contributions
to 7’. Note, to the order of our calculation, one can replace J2(p), Jy(pz), and J3(p) by
their leading-order approximations.

(4) in evaluating the wiggler average of ¢ = [ dzk,, -+ k, — wt + ¢ [which leads to the
“axial Bessel functions” Jo,(R) with R = a2 /2(1 + a2)), if R is to be considered of order
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unity, (that is, if we are worried about small corrections to R), then we should retain terms

through order a? /v* in evaluating #(z) from v/ 1: thus with € = a2 /2(+% - 1),

9 . 3
'u“‘1 =5t (l+e+zez+(e+3ez)c052x+ Zezcos4x+...)

dz
wt=w | — —wt+R151n2x+stm4x+(9(a’yR)
vy

Z~‘/dz . a? +9 al )
=l u\Tam_n it
¢ 14(3/2)a2 /7%

Ri=R
1 Vo 1- ’)’_2
3 9%
Ry = -—GR—Z

Using these expressions, Wurtele’s expressions for the waveguide fields [his Eqs. (A.27)-
(A.30)}, and the relation v = v,, = 21/2(a,, /v)ce, cosx in Eq. (1) and performing the usual
wiggler average, we obtain v' = v/ +'y(‘, where v/, and ’y;\ are respectively, the enezgy gain

rates due to the transverse and longitudinal components of E, and are given by

=y e

—0,52 sin(d + 6,) k— G
Féa) -

Qutly 2 k o
- Z —-c152 sin(1 + 8,) 7

Ga

G1 = Jolp K + Tao)ia-+ 22 (1(R) + i-’z(R) +3nm))

G) = Ni(p1)K2 + (J1(p2) + Js(p)) Ka

K; = Jo(Ry) — L(R)(1 + Ry)
Kz = Jo(Ri1) + Ii(Ra)(1 + R2)
K3 = Jo(R) + J2(R)
Ky = Jy(R) — L(R)

sz = sin(kyy — n7/2)
and k = k,/k; for TE modes and k./k; for TM modes, while ¢ = 0 for TE modes
and 1 for TM modes. We can display these results in an updated version of Wurtele's
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table, our Table I. where now S, = sin(mnz/a), Cy = cos(mnz/a), S2 = sin(nmy/b),
Cy = cos(nmy/b). Besides the presence of more second-order terms and the differences
resalting from sign conventions, this table also differs from Wurtele's through the factor
224 /q,, present in the C,, terms. It can be straightforwardly verified that the particle
phase and the mode amplitude and phase equations have the same coupling coefficients as

the 4' equation, as asserted by Wurtele,
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Figure Captions
Fig. 1. Results from GFEL modeling of laser growth and saturation for 34.6 ghz,

for FRED—-equivalent coefficients. Four modes are shown, 01-solid line, 21-short dash, 41

medium dash, 61-long dash.
Fig 2. The same as Fig 1 for the corrected Wurtele coefficients.

Table 1. Mode coupling coeflicients

C, C:,
T Eyy KiCy 0
TEy EL£G15C, 0
™™y 6,50 -Lrkgsc
TEn -2 E£GLCIC, 0
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