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A MICROWAVE PEL CODE USING WAVEGUIDE MODES.* 

J. A. Bvers, R. H. Cohen 

Lawrence Livermore National Laboratory, University of California, 

Livermore, California, 94550 

A free electron laser code, GFEL, is being developed for application to the LLNL 

tolcamak current drive experiment, MTX. This single frequency code solves for the slowly 

varying complex field amplitude using the usual wiggler-averaged equations of existing 

codes, in particular FRED[l] , except that it describes the fields by a 2D expansion in 

the rectangular waveguide modes, using coupling coefficients similar to those developed 

by Wurtele[2], which include effects of spatial variations in the fields seen by the wiggler 

motion of the particles. Our coefficients differ from those of Wurtele in two respects. First , 

we have found a missing V^T/GUI factor in his Cz; when corrected this increases the effect of 

the Ez field component and this in turn reduces the amplitude of the TM mode. Second, 

we have consistently retained all terms of second order in the wiggle amplitude. Both 

corrections are necessary for accurate computation. GFEL has the capability of foUowing 

the TEon and TE(M)ml modes simultaneously. GFEL produces results nearly identical 

to those from FRED if the coupling coefficients are adjusted to equal those implied by the 

algorithm in FRED. Normally, the two codes produce results tha t are similar but different 

in detail due to the different treatment of modes higher than TEo\-
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I . Introduction 

In this paper we describe a new free electron laser code, GFEL, that uses the vacuum 

waveguide modes as a basis set for describing the electromagnetic fields. Its basic structure 

follows that of the existing code FRED [1], but with an entirely new field algorithm, 

designed to operate only in the microwave regime. The development closely follows that 

of Wurtele[2]. We modify his mode coupling coefficients by calculating all terms to the 

consistent order. We also specifically correct his Ez coupling coefficient which we find to be 

in error at lowest order. We describe equivalent methods of applying these mode coupling 

coefficients. We demonstrate that there is a choice of coupling coefficients for GFEL that 

makes this code equivalent to FRED, even though heretofore the treatment in FRED of 

modes higher order than TEoi had been considered only approximate. We describe a 

simple modification that would allow FRED to accurately model the higher order modes 

for waveguide problems. 

We show results for 34.6 ghz conditions to demonstrate the noticeable but not extreme 

differences that result when changing from the FRED-equivalent coefficients to the new 

(presumably more accurate) coefficients. The results of Fig 1 agree with those from FRED 

in all particulars, such as maximum field amplitudes, onset of phase jumps, etc., to within 

a few percent. Results from the new coefficients in Fig. 2 show a 7% higher growth rate 

and a larger fraction of 21 mode power, both in greater disagreement with the experiment 

[3], Our calculation also predicts a very small TM21 power relative to the TE%\ power, 

also in contradiction with the experiment [3]. It can be seen that there is no sudden 

turning over to dip%/dz a 0 after saturation, in sharp contradiction to the experiment, as 

already pointed out from the FRED results [4]. At the present time GFEL has a full set of 

betatron orbits and a space charge solution, both essentially identical to those of FRED. 

Improvements in the space charge solution are being developed. The taper algorithm in 

GFEL is still crude, but results close to those of FRED are obtained, both for the 34.6 ghz 

case and for the Microwave Tokamak Experiment (MTX) at 250 ghz at LLNL. 

II. Laser equations with waveguide mode coupling coefficients 

Here we quote directly from Wurtele's thesis for the free electron laser equations using 
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the waveguide mode coupling coefficients, C,. His table 5.1 gives the coefficients Cx, and 

Cz, for the first few TEmn and TMmn modes. We develop corrections to these coefficients 

further on in section IV. These coefficients are functions of the transverse dimensions x,y. 

The sum C, — Cxa -j- Cz, is to be used as a factor in the particle equations wherever 

the field amplitude a, occurs, with a sum over modes s = m,n, and using the x,y of the 

particular particle being followed. The same factor C, appears on the right hand side of 

the field equations (now a pair for each mode rather than at each grid point for a gridded 

code) as a result of the Fourier mode transform of the current. 

Wurtele defines the particle phase V"; relative to the design mode T2?0i, denoted as 

mode s = 1. The particle equations are 

u> sin(V>,+^) 
Hi--/ -a1awC,-

i>i - k w - Ski - r—2 2c7f 
1. + al, ~ 2 J 2awa,C, cos(ipi + 6,) dz 

where 6ki = ^ — fci and 6, ~ (k, — k\)z + (f>a{z) — 4>i(z). The particle equations involve a 

sum over modes, s. The •$; equation needs correction for the betatron orbits contribution. 

The field equations are 
, ^ e f f ^ ' / s i n ^ + ^ V /sm(ipj + 6,)\ 

*: = 
l a ' p , e f r f l " ' C 7 ' / c o s ( ^ + 5 5 ) /cos(^H-^)\ 

a, 2wc 

In these field equations the C, are really functions of the i'th particle's wiggler-averaged 

x, y and so are really to be brought inside the angle bracket average over the set of particles. 

In terms of these variables it is if, = (k, — kj)z + <j>, that is equivalent to the field phase 

in FRED. In the linear regime during exponential growth the field phases ip, (not <ft,) of 

all modes are identical, once initial transients have died away (see Figs 1,2). 

HI. Lowest order coupling coefficients; equivalent methods 

The standard description for a mode code (as in Wurtele) is to separate the TE and 

TM modes, each with their own mode coupling coefficients, but it is possible to define 



an equivalent combined field amplitude, e, where e 2 = eTE + eyM and an equivalent 

combined mode coupling factor is given by C2 = CTE + CTM. The fact tha t the two 

pieces are combined by adding them in quadrature will be seen below to lessen the net 

effect of Ez. 

We understand that FRED reduces the source amplitude in the field equation by an 

0.5 factor (and doubles the e x t o t power) for all modes except TEo\- In G F E L there is an 

equivalence to using either a) the same C, on the 7 ' equation and on the e' equation or b) 

a source reduction factor in the field equation as in F R E D but which varies in value mode 

by mode and is equal to C 2 . The inverse of this source reduction factor is to be used as 

a field power correction factor. In particular, GFEL can nearly match F R E D results by 

either a) choosing C2\ = 0.707, so that C21 = 0.5 in GFEL, matching the source reduction 

factor 0.5 in FRED, or b) setting C2i = 1 and instead using a source reduction factor 

equal t o 0.5 in the field equation for the 21 mode and doubling the 21 mode power. This 

equivalence demonstrates t ha t FRED could be easily modified to include the equivalent of 

the mode coupling coefficients, simply by replacing i ts 0.50 source modification factor by 

d 
To lowest order and exclusive of the spatial sinusoidal factors, the coupling coefficients 

are C z T B = Mp)kv/k±, CxTM = Mp)k*/k±i ^ CzTM = - ^ V "M/Oie^sy- w h e r e 

p = K xw = kxy/2awhkw, R = a?w/2(l + a2J, K^R) = J0{R) - ^{R), K2{R) = J0{R) + 

Ji(R). We here divide through by Ki(R), so as to normalize C01 = 1. 

During the development of this work, Scharlemann pointed out tha t we had missed 

the Cz piece, which comes from the Ez of the TM mode. In fact we were using Cz from 

Wurtele's table 5.1 which is missing the y/2-^jaw factor shown above. T h e Ez effect thus 

incorrectly calculated is relatively minor. Apparently, Wurtele's incorrect form was also 

used for the calculations in a published paper [5]. The corrected value of Cz will clearly 

increase (by about a factor of 5 for 34.6 ghz), and since Cz is negative increase the reduction 

in the net 21 mode coupling factor. With this change we now calculate CZTM = —0.27 

and CXTM — 0-47. The net T M coefficient is then given by CTM = CXTM + CZTM — 

0.47—0.27 = 0.20. We see tha t the net C T M is reduced by about 60%, a sizeable reduction 

of the T M part of the 21 mode. However the net effect on the combined C2i is much less. 
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The net TE coefficient is CTE = CtTE = JO(P) TJ; ~ ° - 9 4 * ° - 8 6 1 = 0.81. The combined 21 

mode coefficient (34.6 ghz) is Cfj = C\E + C%M - 0.65 -j- 0.04 = 0.69, to be compared to 

the 0.50 source reduction factor used in FRED. We see that the effect of Ez is comparable 

to the effect of Jo(p) that reduces both CXTE and CXTM- Since Cj,M « C\E the TM21 

mode should be greatly suppressed relative to the T.E21 —this result still stands with the 

full corrections of sec. IV and is in disagreement with the experiment [3]. Our other 

corrections given in section IV will further modify the coefficients by decreasing CQI and 

increasing C21 even more. For the three methods [ 1) full corrections, 2)Wurtele's lowest 

order (but Cz factor corrected), 3)FRED equivalent] the coefficients are C^ = 0.83,1.0,1.0, 

and C\x = 0.88,0.69,0.50. The detailed results from using methods 1 and 3 for 34.6 ghz 

(see Figs 1,2) show significant but not extreme differences. 

IV. Corrections to Wurtele's coefficients 

Wurtele[2] calculated modifications to the FEL equations due to radial variations of 

waveguide modes. His results, as presented in his Table 5.1, include the Bessel functions 

Jo(p) and Ji{p), where p — kxxw, the implication being that p is not so small that the 

Bessel functions can be replaced by their leading-order approximations. However, Wurtele 

dropped terms of order a 2 , / 7 2 ~ p2 compared to one at some points in the analysis, so the 

results of his Table 5.1 have significance only at leading order. One goal of this present 

paper is to present results obtained by consistently retaining next-order terms in the awff 

expansion. 

There are, in particular, four places in the calculation where higher-order terms should 

be kept: 

(1) in evaluating t' in the energy equation 

V = ( t ' e / m c 2 ) v . E , (1) 

l/«ll should be expanded to second order rather than replaced by c~1; hence we take 

'=~(>+i+iH)+o(t) 
where x = kwz and v0 = c(l - 7 - 2 ) 1 / 2 . 
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(2) in evaluating the transverse coordinate x = fdzvw/v\\, we must again retain 

second-order corrections to 1/fy, yielding 

2 1 / 2 co„ , (( 3 a 
X = X0 + v0kwy (K£)-~0-*)+o@) 

This correction generates additional Bessel functions (associated with the sin 3;^ term) and 

corrections to the argument p of the existing ones. 

(3) Even without this correction to a;, the expansion of the transverse field variation 

cos(fc Iz — m.n/2) should include a 3i term in order to be second-order accurate in aw/-y; 

we have 

c o s ^ a : — ro7r/2) = Ci (Jo(p) + 2^2(p) cos2x) + O I - ^ J + nonresonant terms , (2o) 

where ci = cos(fcj.s0

 — rmr/2). This expression is also valid with the corrections to x. 

Similarly, the expansion of s i n ^ a : — mir/2) should include a J3 term; incorporating also 

the corrections to x, we have: 

sin(kxx - nrnII) = 2 ^ (Ji(pi) s i n \ + (J3{p) + Mp2))sm3X) 

+ O I —j I + nonresonant terms , (26) 

where 
K21'2 C ay, 

v0kw 7 
2 

4 
" 2 = P l 2 ^ 

In Eqs. (2a) and (2b), "nonresonant terms" denotes terms proportional to sin2mx and 

cos[(2m + l )x ] , respectively; these terms do not give rise to "slowly varying'' contributions 

to 7'. Note, to the order of our calculation, one can replace Ji(p), «M/>2)» a n < ^ * M P ) by 

their leading-order approximations. 

(4) in evaluating the wiggler average of ij> = J dz fc„ + fc, - wt + <f> [which leads to the 

"axial Bessel functions" Jm{R) with R = a%,/2(l + aj,)], if J? is to be considered of order 



unity, (that is, if we are worried about small corrections to R), then we should retain terms 

through order a 4 / 7 4 in evaluating t(z) from v.71; thus with e = aJ,/2(7 2 — 1), 

Vlf1 = t>o M 1 + c + ~e2 + {e + 3e 2)cos 2* + - £ 2 c o s 4 X + . . . J 

u)t = u> I — = ui + Rt sin2x + R2 sin4x + O I ^ V ) 
J "II \ 7 4 / 

i « o V 2 ( 7 2 - l ) 4 ( 7

2 - l ) 2 + 7 
R i , ^ H ( 3 / 2 ) a y 7 2 

v0 1 - 7 - 2 

16 7 J 

Using these expressions, Wurtele's expressions for the waveguide fields [his Eqs. (A.27)-

(A.30)], and the relation v = v„, = 21/2(aw/f)cez cos'x in Eq. (1) and performing the usual 

wiggler average, we obtain 7' = 7^ + 7J, where 7^ and 7?. are respectively, the energy gain 

rates due to the transverse and longitudinal components of E, and are given by 

j s V ^ - c l S 2 sm(V. + *,) i c - G± *- ' 7 c «o 

c1s2sm(ip + bM)— 
7 c k, a*. 

1 ~ V * a i a w <*> • f 1 , c \* 
7|| = ~ 2 ^ ci*2 s^lV" + M " 

G X = J 0 ( p ) ^ + J2(p)K3 + & (jx(R) + ±J2(R) + lj0{R)\ 

G„ = hipJKi + (MP2) + MP)) KA . 

Here, 
K1 = J0(R1)-J1(R1)(1+R2) 

K2^J0(R1) + J1(R1){1 + R2) 

Kt = J0(R) + J2(R) 

K4 = MR) - J2{R) 

s2 = sm(kyy — raw/2) , 

and K — ky/k± for TE modes and kx/k± for TM modes, while tr = 0 for TE modes 

and 1 for TM modes. We can display these results in an updated version of Wurtele's 
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table, our Table I. where now Si — sin(m7rx/a), Cj = cos(mitx/a), S2 = sin(n7rj//6), 

C2 — cos(niry/b). Besides the presence of more second-order terms and the differences 

resulting from sign conventions, this table also differs from Wurtele's through the factor 

2i/2"i//aw present in the Czt terms. It can be straightforwardly verified tha t the particle 

phase and the mode amplitude and phase equations have the same coupling coefficients as 

the 7' equation, as asserted by Wurtele. 
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Figure Captions 

Fig. 1. Results from GFEL modeling of laser growth and saturation for 34.6 ghz, 

for FRED-equivalent coefficients. Four modes are shown, 01-solid line, 21-short dash, 41 

medium dash, 61-long dash. 

Fig 2. The same as Fig 1 for the corrected Wurtele coefficients. 

TE01 

TE» 

TJtfn 

TE21 

TM2i 

Table I. Mode coupling coefficients 

Cxt czt 

K1C2 0 

ttG^S^ 0 

fc^G-L5lC2 - ^ G I S I * 

-fc^GxCC, 0 

-^tGl-ClC2 ^ V * ! ^ 
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