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SUMMARY

Tungsten heavy alloy powders were produced from freeze-dried aqueous
solutions of ammonium metatungstate and, principally, sulfates of Ni and Fe.
The freeze-dried salts were calcined and hydrogen reduced to form very fine,
homogencus, low-density, W heavy alloy powders having a coral-like structure
with elements of approximately 0.1 um in diameter. The powders yield high
green strength and sinterability. Tungsten heavy alloy powders of 70%, 90%,
and 97% W were prepared by freeze drying, compacted, and solid-state (SS)
sintered to full density at temperatures as low as 1200°C and also at
conventional liquid-phase {LP} sintering temperatures.

Solid-state sintered microstructures contained polygonal W grains with
high contiguity; the matrix did not coat and separate the W grains to form
low-contiguity, high-ductility structures. Liquid-phase sintered microstruc-
tures were very conventional in appearance, having W spheroids of Tow
contiguity. All these materials were found to be brittle. High levels of
residual S accompanied by segregation of the S to all the microstructural
interfaces are principally responsible for the brittleness; problems with S
could be eliminated by using Fe and Ni nitrates rather than the sulfates.

Unusually high hardness, approaching 48 HRC, was obtained from
sintering at 1130°C. As-sintered hardness decreases as grain size increases
with sintering temperature during SS sintering and with time during LP
sintering. The relationship between grain size and hardness follows the
Hall-Petch relationship. Theoretically, as-sintered hardnesses approaching
60 HRC are possible at sintering temperatures circa 1000°C if hot isostatic
pressing or some other mechanical process is employed to achieve full
densification.
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INTRODUCTION

The cryochemical or freeze-dry process is a method for preparing both
oxide and metal powders with excellent properties, that are extremely fine
and homogenous with high green strength and sinterability. Landsberg and
Campbell reported and patented the process for preparing tungsten (W) and
tungsten-rhenium (W-Re) powders by freeze drying (Landsberg and Campbel]l
1965; Landsberg 1967). Since their work was published, other investigators
have used the process to prepare and characterize other metal, oxide, and
carbide powders (Roehrig and Wright 1972). An excellent description and
technical discussion of the process is included in the article by Schnettler,
Monforte, and Rhodes (1968).

In the work reported here, the freeze-dry process was employed to pre-
pare W heavy alloys, W-Ni-Fe. This approach was judged to be promising with
respect to alloy properties because of the homogeneity, small particle size,
and improved sinterability demonstrated in other systems. Sintered specimens
with extremely uniform and fine-textured microstructures have been produced
from these powders.

The objective of this investigation was the production of an improved,
higher-strength W heavy alloy through finer microstructures obtainable from
powders prepared by the freeze-dry process.






CONCLUSTONS AND RECOMMENDATIONS

Freeze-dried W heavy alloy powders are fine and homogenous and have high
green strength and sinterability, full densification being attained at
1200°C. Solid-state (SS) sintered microstructures contained polygonal W
grains with apparently high contiguity; the matrix did not coat and separate
the W grains to form Jow-contiguity, high-ductility structures, as hoped.
However, the ductility-structure relationship was not demonstrated in this
work due to the embrittling effects of residual S and, perhaps, other ele-
ments. Additional work needs to be done using S-free solutions, and with
careful attention to other potentially embrittling elements such as 0; only
then will the possibilities for high strength and toughness be determined.

Liquid-phase (LP) sintered microstructures were similar to those
obtained from conventional powders. Less than 10-min LP sintering produces
somewhat finer structures that should have higher strength. Such "flash"
sintering requires precise control of heat flow and temperature, conditions
which may be attainable only in very small parts. Therefore, flash LP
sintering should be of secondary interest in any future work.

As-sintered hardnesses increase as grain size decreases with lowered
sintering temperature. The relationship between hardness and grain size
follows the Hall-Petch relationship and as-sintered hardnesses near 48 HRC
were attained. Even higher hardnesses, approaching 60 HRC, are theoretically
possible through mechanically augmented sintering processes, such as hot
isostatic pressing. Therefore, unique combinations of high hardness,
density, and conductivity are possible from freeze-dried W heavy alloys.
Applications should be considered for these materials that would benefit from
these properties (for example, small caliber projectiles, wear parts, and
electrical contacts).






POWDER PREPARATION

Through the freezing and drying operation, the preparation of powders is
similar to the commercial freeze-dry processing of foods or beverages. A
solution is flash frozen and dried; but, in addition, the anhydrous salts
produced in freeze drying must be converted to the desired end product by
thermal treatments. The process consists of the following operations:

e preparing a solution containing the metal salts that will decompose
to the desired metail composition

e flash freezing the solution by spraying it into a very cold liquid
that is immiscible with the solution

e drying the frozen solution in vacuum at a temperature below the
freezing temperature of the solution

e decomposing the salt to form the oxides
¢ reducing the oxides to metal alloy.

The final product is extremely friable aggregates composed of crystallites
less than 1000 A in size. The low bulk density of the powder requires it to
be prepressed and granulated before compacting for sintering. Powder
compacts have high green strength and sinterability. Fine, homogenous,
sintered microstructures are obtained.

SOLUTION PREPARATION

Solutions for this work were prepared using ammonium metatungstate (AMT)
and either the sulfates or nitrates of Ni and Fe. Initial attempts were made
to synthesize the alloy powder using tungstic acid or ammonium paratungstate,
but it was difficult to prepare clear, stable solutions. The AMT is very
soluble in water and was found to be very convenient for laboratory use. Its
large solubility (>1000 g/L) allowed soiution concentrations of 100 to 200 g
metal alloy per L; in fact, the limiting solubilities were the sulfates in
the higher Ni-Fe composition.

In preparing the solutions, the AMT and Ni-Fe salts were dissolved sepa-
rately in distilled water and the two combined before dilution to the desired



concentration. These solutions were stable and could be stored up to 48 h
without becoming turbid or precipitating the salts. However, solutions
prepared for this work were frozen within 1 h after preparation.

Solutions containing the Ni-Fe nitrates had to be neutralized with the
ammonium ion {using ammonium hydroxide) before freezing. Otherwise, the
salts would not precipitate during the freezing operation and the frozen
solution cannot be dried.

Three alloy compositions were prepared for this work: 97W-2.1Ni-0.9Fe,
90W-7Ni-3Fe, and 70W-21Ni-9Fe.

FLASH FREEZING

Flash freezing was accomplished by spraying the salt solutions through a
0.02-1in.-diameter orifice into rapidly stirred hexane which was maintained at
temperatures between -70°C and -50°C during the freezing operation.

The hexane was contained in a large stainless steel beaker fitted with a
basket sieve. After freezing, the frozen product, in the form of micro-
spheres, was removed from the hexane in the basket sieve, allowed to drain,
and transferred to precooled trays in a freezer. Freezer storage of 24 h or
more allowed residual hexane to evaporate before drying commenced.

DRYING

Drying takes place by vacuum sublimation of the frozen water from the
frozen microspheres. The drying was done in a Jab-size freeze dryer with
shelf temperature control, product (microsphere) temperature measurement
capability, condenser temperature capability of -80°C, and a vacuum pumping
rate of 190 L/min.

Shelf temperature was set initially at -25°C for receiving the trays of
frozen product. After a vacuum of less than 200-um Hg was obtained, the
shelf temperature was reset at -2°C. The product temperature remained at or
slightly below -25°C until the ice sublimation was essentially complete, at
which time the temperature of the microsphere would rise to near the shelf
temperature set point. Simultaneocusly, the vacuum would improve to less than
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