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1 Introduction

Asynchronous iteration methods have been shown to offer significant speedups in multiprocessing environments

for the class of iterative methods

x = F(x) (1)

For a system of equations, parallel implementation on a multiprocessor with no or minimal synchronization be-
tween cooperating processes yields the most advantage [1]. Picard or Picard-like iteration schemes fall into such
a class of iterative methods. We present a preliminary report on using Picard-like integration methods for solving

Initial Value Problems (IVP) from amongst the class of Ordinary Differential Equations (ODE).

2 The Class of Asynchronous Iterative Methods

‘We quote most of the material in this section from [1]. If x is a vector of R™, its components will be denoted by
2,4, 1,...,n. To avoid confusion, a sequence of vectors in R® will be denoted ny x(5),5 = 1,... . f Fisan
operator of R® into itself, its components will be represented by Fi(x) or by Fi(21, ... ,2n),i=1, ... ,n. Let

N denote the set of all nonnegative integers.



Definition 1. Let F be an operator from R™ to R™. An asynchronous iteration corresponding to the operator

F and starting with a given vector x(0) is a sequence of vectors x(j) of R® defined recursively by

) z:(7-1) ifi g Jj,
2i(j) = (2)

Fi(z1(81(7)), -.. ,2n(8a(9))) ifi€ J;.
Define J = {J;|j = 1,2, ... } where each J; is a non-empty subset of {1, ... ,n}. It represents the indices of
those components of x(j) that are updated in the j** iterate. Define S = {(s1(j), ... ,aa(G))li = 1,2, ... }

which a sequence of elements of N. In addition, let J and § satisfy the following conditions for each i =

1, ... ,n:
L &(G)<i-1,3=12 ...;
2. 8;(j) considered a function of j tends to infinity as j tends to infinity;
3. i occurs infinitely many often in sets J;, j = 1,2, ...

The first condition imposes the requirement that only components of previous iterates can be used in computing
the new iterate. The second condition states that the values of an early iterate are not directly used in iterations
far in the future; eventually, newer iterates have to be used instead. This condition is necessary to guard against
the situation in which, for example, a processor crashes. The third condition guarantees that no component
is abandoned forever. An asynchronous iterative scheme corresponding to F', starting with the vector x(0) is
denoted by (F, x(0), J, S). m]

Definition2. An operator F is a Lipchitzian operator on a subset D of R" if there exists a nornegative n x n

matrix A such that

|F(x) - F(y)| < Ajlx-y|, V¥x,y€D, (3)
where, if 3 is a vector of R® with components z;, i = 1, ... ,n, |s| denotes the vector with components
|%l,4 = 1, ... ,n, and the inequality holds for every component. The matrix A will be termed a Lipchitzian
matrix for the operator F. a



Definition 3. An operator F from R" to R" is a contracting operator on a subset D of R™ if it is a Lipchitzian
operator on D with a Lipchitzian matrix A such that p(A4) < 1 (where p( A) is the spectral radius of A). a
Given these definitions, the following theorem establishes sufficient condition for ensuring the convergence

of any asynchronous iteration corresponding to F.

Theorem 1 IfF is a contracting operator on a closed subset D of R™ and if F(D) C D, then any asynchronous
iteration (F,x(0), J, §) corresponding to F and starting with a vector x(0) converges to the unique fixed point

of FinD.,

3 The Picard Method
Consider the Initial Value Problem (IVP)
y=rf(ty), yt)=w (4)
where y = dy/dt We can integrate the two sides with respect to ¢ to obtain
t
¥t) = o+ / £(s, y(s))ds. (5)
0
We can employ the Picard Method to solve (5) by computing
t
(1) = w+ / £(s,4""(s))d. (6)
0

a sequence of successive approximations i (t) to the exact solution y(t). [We are now using superscripts to refer
to the iterate and parenthesised ¢ to indicate y at a certain value of ¢.] The sequence has to start somewhere; the
best guess is

1'(2) = y(to).

Clearly if y™ = y™~!, then y = 3™ = y*~! solves (5) and bence (4). It can be shown that these iterates always

converge, on a suitable interval, to the true solution y(t) of the Initial Value Problem (4). The proof can be found



in most books on Solution of Ordinary Differential Equations (ODEs). We give a brief example of the procedure

for instructive purpose only. Consider the IVP

Y=y, y(0) =1,

where y denotes dy/dt. The true solution is y = ef. Picard iteration proceeds as follows: rewrite the IVP in the

equivalent integral form:

W) = w4 ] " $o, le))ds
= 1+/: y(s)ds

Thus,

L) =

¥'() = 1+/‘1d:=1+t
V() = 1+/o‘yl(’)dl=l+/o‘(l+s)da=1+t+;—2!

and in general

t
v = 1+ [ i
0
t2 tn
= l+t+z+ ..+

which is the Taylor series expansion of e*; each iteration adds the next term in the Taylor series.
The Picard Method carries over to system of equations; the quantities y, (¢, y) and y are vectors in this case

and the integration is performed component-wise.

4 Asynchronous Generalized Picard iteration
Suppose we have a system of N ODEs:

y=1£(ty), y(t)=vo M



where y is composed of elements (3, 32, ... , yn). Similarly the vector f consists of elemeats (£, £, ... , fv).
The vector yo contains the initial values of the N' components y(2o). An asynchronous iteration proceeds along the
following sequence of computations on a multiprocessor. Assume that we have a pool of processors available.
Let7, j =1, ..., be an increasing sequence of clock times. At some value of 7 a processor P becomes

available. This idle processor is assigned the evaluation of 3. P proceeds to integrate the 7** component

47 (t) = ys(to) + / PR (o MR 1 1o W L L1 10 1 (8)

The integration of the ODE from 2, to ¢ requires evaluating f; at various { values along the integration interval.
The component y; will most likely bave coupling with other components in the system of ODEs. Evaluation
of f; will require the values of all such components at any given (. A natural criterion will be to pick up the
most recently available values of all such components. In our proposed method however, a component does not
make its most recent values available until it has finished integration. Thus the notation used in (8) is y:*™(¢),
for all y; that y; depends upon. According to condition 1 of the definition 1 of asynchronous iteration method,
s;(n) < n — 1. This indicates that y; will use the most recent values of y; if they are available, otherwise it will
proceed to use earlier values. Note that the current value of y; (y}') is used. This component is readily available
to the processor integrating (8) because it is computing it.

This scheme does not require any synchronization amongst the processors integrating various components
of the system of ODEs. At some time n,, k > j, processor P will finish integrating component y; and will be
assigned another component 3;. Note that unlike the traditional Picard method, the processor P does not carry
out further iterations after reaching the end of the integration interval. The processor is relinquished after having
computed y7. Later, when any g on which y; depends upon, computes its new iterate and makes it available,
compoaent y; will have to compute yet another iterate.

This scheme is not restricted to any particular multiprocessor architecture. Shared memory multiprocessors
offer an advantage when it comes to movement of data but even in a network of processors, €.g., hypercubes or
distributed network of computers, the scheme is well suited as long as the cost of communication amongst the

elements of the network is not too expensive compared to the cost of computation itself.



S The Integration Procedure

The method allows for various choices to be made for the integration procedure employed for various components
of the system of ODEs. The system of ODEs can be split into a set of sub-systems. For a particular sub-system, a
one-step method may be selected while for another, a multi-step integration method may be chosen. The method
selected can be fixed step size or variable step size. For the variable step size case, different local error tolerances
can be specified for each sub-system to control step size. The integration method maybe explicit for one sub-
system and implicit for another.

In a variable step size numerical integration procedure, the step size is partially controlled by stability con-
straints. For example, for the model problem y = Ay, the stability condition for forward Euler method is
[1 + AA| < 1. If an implicit method or a predictor-corrector scheme, additional conditions have to be placed
on step size to ensure convergence of asynchronous integration. We illustrate the need for such constraint with

the following discussion. Consider the following system of QDEs:

y = Ay+upz,
Z = py+Az.
where g and z represent dy/dt and dz /dt respectively. Assume that g = zo = 0. Suppose that we use backward

Euler to compute the m*? iterate for y; we’ll thus compute a series of y values using the recurrence relation
Yo = Yoy + Bady + hapz

where h,, is the step size such that¢t,, = ¢,_; + hy. The superscript m in y refers to the m*" iterate while the
subscript n refers to the value of y at t,,. We assume that the most recent z iterate, z™~1, is available. Define a
shift operator E as yn = Eyn_1, thus yn—1 = E~'y,. We can rewrite the recurrence relation in terms of this
shift operator as

Yo = BT + hadi + Baps !,
or

[1—hA = E-']y™ = huz™!.

6



The iterate y™ will emerge as a vector of y values computed at various values of t. We c2n represent the compu-

tation in matrix-vector form:

(1 - /\h]) y;" phl
-1 (1 - Ahz) y;"' [lhz
-1 (1= 2Ah,) i
or
¥r (1= Ahy) ~t
w -1 (1 = Ahy) phy
v -1 (1= Ahy,)

The A matrix required by the Lipchitzian condition of the iteration operator is then

(1 —Ahl) -1 phl
-1 (1 = Ahy) phy
A=
~-1 (1-2Ahy,)
We make the simplifying assumption that h; = ... = h, = h. Then,
— _bh
Pl4) = T35

In order to satisfying the contracting property, we must enforce

ph
1-Ah

Igl.

phy

pha

pha

m—1
Z

Although backward Euler is an A-stable method, this condition places a restriction on the step size chosen for

computing any of y*. We do not yet know of a suitable method to enforce this condition. The condition would

most likely be quite complex for a system of ODES that is not as simple as the one above. If this condition is not

satisfied, the asynchronous iteration will diverge.



Any such restriction is not required if an explicit method is chosen. We illustrate this by chosing forward

Euler to compute the m*? iterate for y. The recurrence relation for forward Euler is
Yo = Yne1 + hadyit ) + hapz]
Rewrite in terms of the shift operator E:
Y = BTy + R AET YR 4 hopE~ 201,

or

[1-E-'(1 +hA))y™ = huE~'2m" 1,

Computation of the vector y™ can be represented in matrix-vector form:

1 yr 0 -l
(-1=Aky) 1 W phy O P
(-1-2h) 1/ \yp phn 0/ \zp-t
Or,
o 1 AN zm!
w (-1-2hg) 1 phe 0 Z
¥ (-1=-2h,) 1 ph, 0 zm-l
The A matrix required by the Lipchitzian condition of the operator F is then
1 L0
(-1-2hy) 1 phy 0
A=
(-1-2hk,) 1 phy O

Clearly, p(A) = 0 so that asynchronous iteration doesn’t impose any additional requirements on the choice of
step size. Only stability requirements will restrict the step size. This is intuitively obvious because for the forward

Euler method, only the previous values are used. The direction of flow of information is in the forward direction.



Similazly, for a predictor-corrector method with forward Euler predictor and backward Euler corrector, it can
be shown that contracting property requirement will impose the condition |Au| < 1. For general Backward
Difference Formulae methods (BDF), the condition is |Gohu| < 1.

For larger and more complex systems of ODEs, things get more complex. For the simple example above, u
associated with component z is known but for more complex coupling and larger systemn of ODEs, u will not so

readily available. Consider a system of ODEs with a component equation

!'I=f(t,y.11, oo 1 &y cun ,Zk).

Let the z), ... 25 be elements of vector 5. Here p will be estimated by computing the norm fz. More than often

it would not be possible to evaluate || f3|| analytically; it would have to be evaluated numerically.

6 The Asynchronous Integration Algorithm

The components of the system of ODEs are split into sub-systems. Possible splitting can range from one com-
ponent per sub-system to only one sub-system with all of the components. Let Y; denote the sub-system i. Its
members will be components of the system of ODEs (7). Thus, for example, a system of 8 (N = 8) ODEs could

be split into 3 sub-systems with the assignment

| ' n = fAty)

Dot Y, o= AlY)
| B = AtY)

'iu = fit,y)
AR = fs(t,y)
| % = fslty)

v 4' = fty)
| = fity)




We now rewrite the system of N ODEs in terms of such sub-systems. Suppose we have split the N ODEs into

K sub-systems. The system is then represented as

»§ = FARY)
5’2 = }-Z(ts Y)
yK = Fx (t’ Y)
where Y = (J1,)s, ... ,Vx). The choice of splitting will dictate the nature of this coupling. We then apply

the procedure (8) to the sub-systems.

The algorithm to integrate a syster of N initial value ODEs is rather straight forward. Each sub-system Y; is
assigned a parallel thread of execution. We prefer to use the term thread because in a multiprocessor environment
the number of processors available will likely be different than the number of sub-systems we have at hand If
there are less processors available than the number of of sub-systems then these threads will have to share the
available pool of processors. Load balancing will become an important issue in such a case. The notion of a
thread of execution will allow us to defer the issue of processor assignment while we outline our procedure. We
will address it when we discuss how the procedure has been implemented as a computer code.

The first item on the agenda for all sub-systems is to set up the initial values vector Y (to). Once this is
done, each sub-system makes it initial values vector available to all sub-systems that depend upon it. Then each
sub-system must then wait until all sub-systems it depends upon have initialized.

In the discussion that follows, we will use the terms client sub-systems and server sub-systems. For a given
sub-system, the sub-systems that it depends upon will be termed its servers while those that depend upon it will

be termed clients. For example, if the coupling in the 3-sub-systems example presented previously is as follows:

AV Fi(t, Y1, D)
Y = F(t, 1,0 Ys)

A% Fi(t, N, V)

Y, is a server of Yy, Y and Y; are servers of Jh, and )4 is a server of )». On the clients side, )» and )); are

10



clients of Y1, Y is a client of Y,, and Y is a client of Y.
We will present the subsequent events from the point of view of sub-system 2 in the 3-sub-systems example

we have chosen. Sub-system 2 integrates
y’l = F’Z(tv y?’yZ(tO),yg) (9)

using any one-step or multi-step method to obtain Y., i.e., the second iterate. It then notifies its client-sub-system
2 that it has a new iterate and makes )] available to it. Sub-system 2 then waits to be notified by one or both of its
server sub-systems 1 and 3. Sub-systems 1 and 3 would have performed a sirmnilar integration, perhaps at a faster
or slower pace than sub-system 2. They would also send notifications to their clients. Suppose sub-system 2
receives a notification from its server sub-system 1 while its other server sub-system, i.e., sub-system 3, is still

integrating. Sub-system 2 now proceeds with its second iteration:
5’2=f2(t, ylliyl(t)!yg) (10)

to compute V2. Note that it re-uses Y because that is the most recent information it has at hand from sub-system
3. Sub-system 2 then notifies its client, sub-system number 1, and ships Y2 over to it. Next time around, it may
receive notification from both of its clients, sub-system 1 and 3. It then proceeds with the next iteration.

When a notification from a server sub-system arrives, the notified sub-system could either be in the middle
of iteration or it could be waiting for a notification. In the latter state, the sub-system performs the next iteration.
In the former state, it can either abort the current iteration and restart again because a more recent iterate is
available from anotiner sub-system, or it can continue the present iteration and attend to the notification only after
the current iteration has completed. Our algorithm is designed to operate using the latter strategy, that is, sub-
systems continue the current iteration and attend to notifications only after the current iteration has completed.
We want to reduce the number of occasions a sub-system has to synchronize with other sub-systems. Moreover,
more than one notification could arrive while a sub-system is computing an iterate. Each notification tells the
sub-system how far back to go and compute another iterate. By waiting until the current iteration is done, the

sub-system can attend to all of the outstanding notifications, determine the earliest time among the integration

11



times that are part of the notifications and compute the next iterate.

The goal for sub-system 2 is to integrate Y, = F>(t, Y) outto ¢ sina1. Whenever it receives a notification from
one or both of its servers, it can integrate outto t y;nq1. Butit decides to forgo ¢ a4 as the end point of integration
in favor of the following: upon receiving a notification, sub-system 2 begins computing a new iterate Y. Ateach
time step during the numerical integration of Y* = F;(t, Y), sub-system 2 checks the difference between the
previous iterate Yy ~'(t) and newly computed Y3 (t). While this difference is less than a user specified tolerance
€., the integration continues, but the sub-system retains the last iterate. This is called the validate phase and the
sub-system checks that convergence has been achieved. When the difference |2 (t) — Y53~ '(t)| exceeds a user
specified tolerance e. at some point ., then sub-system 2 decides to integrate Y3 (t) to some point ¢, where
t, = min(2, + w,tsinqe). This is called the updare phase. Beyond, &,, sub-system 2 sets V7' (t) = Y5 (tw)
fort, < t < tfina. The interval [t.,t,] is termed a window. The window size, that is, w can be constant,
or more interesting, computed dynamically. Our current algorithm uses a constant window size; the user can
specify a window size for each sub-system. Efficiency dictates that this window should be less than the entire
time interval. But it should not be so much less that a large number of integrations over windows are required
since each integration has an overhead. On the other hand, if the window is too large, too many iterations are
required, increasing the cost. A dynamic window sizing algorithm would be ideal but we do not know a suitable
algorithm yet.

Once )7 is at hand, sub-system will send a notification to its clients that they need to re-iterate beyond ..
Recall that ¢, is where sub-system 2 found a change larger than ¢.. Sub-system 2 will also make it new iterate Y3
available to its clients. In a similar manner, the servers of sub-system 2 will send notifications along with their

t.’s. Sub-system 2 takes the minimum of these ¢.’s and begins it next iteration at that minimum.

As notifications arrive, sub-system 2 iterates to compute Y3'(t), Y5(t) and so on, ultimately reaching ¢ sinai.
And, hopefully, so do the other sub-systems. When the entire system reaches #7¢nq1, and there are no notifications

pending, the iteration activity stops because the all sub-systems have converged.

If a sub-system does not have any servers, that is, it does not depend upon any other sub-system then it will

12



continue with its next iteration starting at the end of the previous window. This would happen for example if all
of the ODEs in a system were lumped into just one sub-system.

We present a pictorial example of how such an iteration proceeds. Consider a system of two ODEs:

] = f(ty ¥ z)
Z = g(t) Y, z)
¥(0) = o, 2(0) =20, 0t < tpinat.

We set up two sub-systems and start the integration for each in parallel. Because itis such a simple example, we
will use y and z instead of sub-system 1 and sub-system 2. Both notify each other that the initial iterates are as

follows:

ot
L]
(=4

N

PIFGES R Y

1y°

Py
tfinal _’t tinal

Time=—» Time

I D

The first iteration begins; for brevity we will assume that threads of execution for y and z, each have a processor
so they begin without any holdups. Thread y takes a step, computes y'(,) and compares it to 3°(;). It is very
likely that the difference would exceed the specified tolerance. Thread z would go through a similar stage. A

freeze-frame of the two will look like the following:

J, * a0
: change Iz
1 1
I | '
' \ t
| | I
! l |
change ! 1 1
K i_yo ! L
t tpin t tyin
1 Time — final 1 Time _zmol

Thread y will set ¢, equal to ¢, the time at which it detected change. It will create a window from ¢, to ¢,,, where
t, = t. + w integrate over the window without performing any difference tests along the way. Beyond ¢, y'

will be set to y' ().
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The profile of the first iterate will then be:

| + Y

[}

T — yo
i L ‘I:
te tw tfinal

Similarly, thread z will end up with its first iterate with the following profile:

"
(=]

N

—

N-

|

1

i, 1y

-~
.
.,
3
e

Time =

As soon as y has the first iterate, it will notify its client z and make the new iterate available. The notification
will also include y’s t.; z will have compute new values for ¢ including and beyond t.. Component y now awaits
notification from z. When the notification arrives, y will take tZ, i.e., the value of ¢ at which z has revised its
iterate, aﬁd look through !, its most recent solution vector. The goal of the search would be to find the largest ¢;
such that t; < t. < tx41. Such at, will be taken as the starting point ¢; for the second iteration. Again, at each

time step, y will check to see if 1* () exceeds 3 (t) a specified tolerance. When it does, y, will create a window
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in time, integrate over it, and send a notification to z along with y2. Pictorially, the following will occur:

change P |
! Jyo
1 Ly
s 1 ™
i < o t4inal
Validate me
Y,
|
[}
[}
1
1 '
ol
' ' !yo
' T -
t. 1) tlinal
-— Time =t
Update

As indicated earlier, the iteration stage in which the difference check is performed at each time step is called
validate phase, and the integration over the window [t., ¢,,] is termed update phase. Similarly, z will go through

a similar phase upon receiving a notification from y:

- z0
i
|
|
chaage 1 1
-2
1 |
! !
! t
! L
4 T, tsinal
Validate Time—+

-
o

—~i 2
t
1
[}
122
] V. 1Z
[ i :
: | l
L r s
t. 1w tfiucl
———e Time =
Update
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The process continues, progressing through stages represented by the following frames:

i J': t t b
i Update tﬁ""l ¢ Update et tfm.al
Time—— Time =
]
1,4 — 20
' Y 11
t [} !
. Ly |
1 | l :z"
] [ -t ] 3
1 1 |y:Z i z
1 3 N 0 | :24
: + — ' '
] 1 1_:y 1 ) L
t; Validate te tfincl i Validate Te tﬁnal
Time ——o Time ——w
] zo
11
12
|
172
1 1,3
lz‘
] t
T, —
; ¢ w»
Update tinal Update Lginal
Time == Time ==

Ultimately, for some iterate m, the difference |y™ — y™~!| will be within the tolerance. The integration will span
out to ¢4;na. Component y will not sent any notification to z. Similarly, z will end up in a similar state. With
no notifications pending and both components sitting at ¢ 4;.4;, the system would have reached convergence. The
iteration activity will cease.

Figure 2?2 presents a state diagram which describes the transitions through various stages of a single iteration

for a particular sub-system.
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tstart o t0

r
[

tnotify — oo 4__: Load IC
[
[

Ready to Run

Queue

Free p:

titer — min(tstart,tnotify)

tstarte— oo
tnotify «- oo

Yes .
validate: | Send notification Update window

twend

change? end

tfinal

Received notification

Figure 1: State diagram for transitions a sub-system goes through during asynchronous iteration
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7 Implementation on a Multiprocessor

As we mentioned in the introduction, we have implemented the asynchronous integration procedure on a multipro-
cessor, shared memory system. In our case, it is an Encore Corporation’s Multimax computer with 20 National
Semiconductor NS32000 series processors. We use the Encore’s Parallel Threads Package [4] which is based
upon the Brown University’s Threads Package [2]. The computer code is written in C. It follows the traditional
environment provided by existing ODEs solvers; the user supplies the main driver, a routine to supply the initial
conditions and a routine that evaluates f in y = f(¢, y). Splitting of the system of ODEs into sub-systems places
another requirement to be fulfilled by the user: the user has to specify the number of sub-systems and the coupling

amongst them.

7.1 Processor Allocation

For a given set of sub-systems, the code spawns off threads of execution to run on the available processors.

The pool of threads then perform iterations on behalf of the sub-systems. As noted earlier, the number of sub-

systems, and thus the number of threads, may not be the same as the number of physical processors available.
This immediately leads to the issue of processor assignment. At the simplest level, we can let the underlying

operating system (UNIX in our case) manage the thread to processor assignment. More desirable, however, is to
schedule threads for execution based upon need for iteration. Consider that we have a large set of sub-systems

that are carrying out iteration. When a sub-system finishes computing an iterate it would send notifications to

its clients, that is, the sub-systems that deﬁend upon it. At any one moment there would be a number of such

pending notifications., As these get serviced, the notified sub-systems will want to carry out another iteration. An

appropriate scheduling strategy would be that an idle processor be assigned to the sub-system which has the earlier
iteration restart time. This time would be the minimum of the all the ¢, in the notifications that were serviced.

There are two ways such a scheduling decision can be made. There can either be a manager thread or a pool of
threads servicing sub-systems.

If a manager thread is spawned along with threads for each sub-system then all notifications will be routed

18



to the manager. When a sub-system wants to notify its clients, it will place a request with the manager. After
placing the request, the sub-system will suspend itself in a wait queue. The manager will take these requests and
inform the targeted clients. The manager will then assign processors in order of the values ¢, that are part of the
notification request; the sub-system which is notified with the earliest ¢, will be the first one to get a processor.

The other approach is to have a pool of threads that service the sub-system. A thread from the pool carries out
an iteration on behalf of a sub-systern. Upon reaching the end, the sub-system will either send a notification to
its clients or would reach t¢;,41. The notified sub-systems will be tagged to indicate that they need to re-iterate,
After generating the notification and making the new iterate available, the notifying sub-system will relinquish the
thread. The thread will now look through the all of the tagged sub-systems for the sub-system with the minimum
t. value. When one is found, the thread will execute the next iteration on behalf of the sub-system.

At present, we are not using either of these strategy. We are relying on the underlying operating system to

scheduling. However, we are in the process of modifying the code for the two scheduling schemes outlined above.

7.2 Data Structures for Storing and Managing Iterates

Each iterate is actually a series of values at various steps over the integration interval. When a sub-system com-
putes a new iterate, part of the previous iterate will have to replaced. The issue of storing, updating and making
newer iterates available to client sub-systems will be largely decided based upon the underlying multiprocessor
architecture. In a distributed or networked set of processors, each sub-system will likely keep a local database of
iterates of sub-systems that it needs to carry out the integration. As newer iterates arrive as part of a notification
message, the local database would be updated. In shared memory system, an obvious choice is to have a database
of iterates that is shared amongst ail of the sub-systems. Whenever a sub-system needs to update its iterate it will
either go into the database itself or request a manager process to do so on its behalf. In either case, the entry in the
database for the sub-system’s iterate will require synchronized access. Our goal, however, is to carry out asyn-
chronous iteration with the least amount of synchronization. Our present implementation is on a shan_:d memory

multiprocessor; we had to choose a data structure for the shared database that would require the least amount of
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synchronization, e.g., locking etc.

It is not known at the outset how many values each iterate will have so the data structures used to store the
iterates have to be dynamic. A frequent operation on the iterates is interpolation; a linked list is thus a suitable
choice. Itis also convenient to store and delete nodes in a linked list. Our code uses a doubly linked list to store
the iterates. When a new iterate is computed, its is linked into the existing linked list at the the appropriate point.

For example, suppose the k** iterate of some component y looks like the following:

t, .3 i,y t, t,
k k k k 19 ¢

When y**! has been computed, it is linked in based upon the value ¢:
link not deleted

x t,) t,3 t,¥ = | t,3 7
k41 -l k k k k

t,y ¢,y t, t,) ¢}
.k-|;|:- HF ‘;F—_—:- k41 x| v

Note however, that the forward pointer of the node after which the new list is inserted is changed but the reverse

¥
L.
+

pointer from the first outdated node is left in place. This way if a client using the old list backs up, it will end up in
the new segment. With such an arrangement looking up values in the list does not require a lock which otherwise
would impose a major synchronization overhead. This also allows the sub-system managing the iterate to insert
a new iterate without locking. The only time any synchronization is needed is when an outdated iterate is to be
deleted and storage reclaimed.

The outdated nodes are not deleted immediately to reclaim the memory. The reason is that there could be a
client sub-system using y*. There is only one database being shared amongst all sub-systems. We can not delete
the outdated position until y is sure that no one is using the old portion. This is determined by keeping a reference
count in the database for each outdated branch. When an outdated iterate branch is created, the reference count
for the branch is set to the number of clients of the sub-system, y in this example. When a client of y comes

into the database to use the value of y’s iterate, it decrements the reference count for all of the outdated branches.
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When the count becomes zero for a branch, y can can delete the branch and reclaim the storage.

When y*+2 is computed, it is linked in as follows:
link not deleted

t,) t, £,y t, ¢,y
k42| x k o) g ¢

link not deleted

¢y t,y 1 t,y Ly t,)
.HF k41 k41 ) I
t,¥ | t, | ¢, ) £y
i k+F k-q::L X JZL k-ii-_—‘-r xig ¥

Y
"
-k

8 Preliminary Results

To illustrate the code, we integrated the following system of ODEs which are the equations for a two-body problem

[3], page 236-238:
h = »
= N
B = -un/+i)}
w = -w/(+R)}

Time range is 0 < ¢ < 7.5. The initial conditions are y1(0) = 0.5, %2(0) = 0, 15(0) = 0, and y4(0) = V3. We

grouped all four into one sub-system, then into two sub-systems with the split ¥1, 35, and ¥, y4, i€.,

» [n=w
\ = -/ +EB}
n = W

M <
|5 = —w/0F+ )



and finally, into four sub-systems with one component per sub-system. The sub-systems generate a trace of their
progress which can displayed on any workstation running the X Windows System (5]. The figures we present
were generated by doing a dump of the graphics window as a bitmap and then included within the body of this
report.

Figure 1 presents the results for the one sub-system case. There are three view ports in the graph. The upper
most presents the solution profiles of the four components. The middle frame has a series of five horizontal lines,
each at a higher level than the previous. These lines represent the windows ¢, through ¢,,. The lower most frame
presents a profile of the step sizes that were used during integration. As there is only one sub-system, the solution
profiled was not computed by iteration. The integration however, was carried out over a set of windows such that
cach subsequent window starts off where the previous ended. For such one sub-system cases, our code reduces
to a typical ODEs solver. The sharp downward pointing spikes in the step sizes plot are due to the fact that for
every new iteration, the sub-system starts off with a default value of step size. A much better choice would be
the average of step sizes used in the previous iteration.

Figure 2 and 3 present similar frames for the two sub-systems case. The iterates y{ and y; are plotted in the
top most frame in Figure 2. Note how the iterates go off the track and then fall back on track. The windows
now show overlap, or backtracking, caused when each of the two sub-systems notifies each other of a revised
value of its iterate. The progression of windows is towards the right indicating progress along ¢ towards  fina1.
The profiles for step sizes show larger variation especially in the regions where the solution curves have steeper
slopes. Figure 3 presents the results for the sub-system composed of y, and ys.

Figures 4 through 7 present graphics frames for the 4 sub-systems case. Each component of the system of
ODE:s is being integrated asynchronously. Many more iterations were required. The iterates show significant

deviation before settling down on the correct path.
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ng| Two body problem: one subsystem

Figure 2: Two body problem, one sub-system: profile of solution iterates, step sizes and windows.
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Figure 3: Two body problem, two sub-systems: profile of solution iterates, step sizes and windows for sub-

system 1.
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Figure 4: Two body problem, two sub-systems: profile of solution iterates, step sizes and windows for sub-

system 2.



Figure 5: Two body problem, four sub-systems: profile of solution iterates, step sizes and windows for sub-

system 1.



Figure 6: Two body problem, four sub-systems: profile of solution iterates, step sizes and windows for sub-

system 2.
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Figure 7: Two body problem, four sub-systems: profile of solution iterates, step sizes and windows for sub-

system 3.
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Figure 8: Two body problem, four sub-systems: profile of solution iterates, step sizes and windows for sub-

system 4.



9 Future Work

‘We have hinted at a number of issues that need to be resolved. We gather them, and a few more, in this section.

We need to determine an effective procedure to ensure the contracting property of the iteration matrix. Re-
call that if implicit methods are selected for integration of the sub-systems then asynchronous iteration places a
restriction on the step sizes chosen.

We are in the process of implementing the two processor allocation algorithm we discussed, that is, having a
manager process or a pool of processors serving sub-systems.

Large systems will require large amounts of storage space for storing the iterates. As portions of the iterates
become outdated, the storage is reclaimed but if the integration interval is large and a large number of intermediate
steps are taken then the linked lists for the iterate could beyond the storage capacity available. One obvious
solution is that once all of the sub-systems have converged up to a certain point in the integration interval, the
iterates up to this point can be written off to an external device and the freed storage used for future nodes. We
are in the process of devising code to do so.

Once the code is in a form that we try large problems, we’ll try out our code against well known ODE solvers.
We envision that only then we’ll see a gain in using asynchronous integration over the traditional sequential codes.

‘We could also like to implement the code on hypercube in order to address and subsequently attempt toresolve,

issues raised in a networked multiprocessing environment.
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