
DOE/ER/25026—31

DE89 014169

REPORT NO. UIUCDCS-R-89-1525

ASYNCHRONOUS INTEGRATION OF ORDINARY
DIFFERENTIAL EQUATIONS ON MULTIPROCESSORS

by

Sohail Aslam
C. W. Gear

July 1989

DEPARTMENT OF COMPUTER SCIENCE
1304 W. SPRINGFIELD AVENUE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, IL 61801

Supported in part by the U.S. Department of Energy under
grant DOE DEFG02-87ER25026.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

Asynchronous Integration of Ordinary Differential Equations

on Multiprocessors

Sohail Aslam C. W. Gear

June 28,1989

1 Introduction

Asynchronous iteration methods have been shown to offer significant speedups in multiprocessing environments

for the class of iterative methods

x = F(x) (1)

For a system of equations, parallel implementation on a multiprocessor with no or minimal synchronization be­

tween cooperating processes yields the most advantage [1]. Picard or Picard-like iteration schemes fall into such

a class of iterative methods. We present a preliminary report on using Picard-like integration methods for solving

Initial Value Problems (IVP) firom amongst the class of Ordinary Differential Equations (ODE).

2 The Class of Asynchronous Iterative Methods

We quote most of the material in this section from [1]. If x is a vector of Rn, its components will be denoted by

Xi,i, 1,..., n. To avoid confusion, a sequence of vectors in Rn will be denoted ny x(j), j = 1,... . If F is an

operator of Rn into itself, its components will be represented by .F<(x) orby PiCaji, ... ,*„),*=!, ... ,n. Let

N denote the set of all nonnegative integers.

1

Definition 1. Let F be an operator from Rn to Rn. An asynchronous iteration corresponding to the operator

F and starting with a given vector x(0) is a sequence of vectors x(j) of Rn defined recursively by

- 1)
(2)

■fi(*l(al(j))) ••• i*n(*n(j))) if * € Jj.
V

Define J = {Jj \j =1,2, ... } where each J, is a non-empty subset of {1, ... , n}. It represents the indices of

those components of x(j) that are updated in the jth iterate. Define S = {(<i(j), ... , «n(i))|j = 1,2, ... }

which a sequence of elements of N. In addition, let J and S satisfy the following conditions for each t =

1, ... ,n:

1- *iti) < i - 1. J = 1.2, ... ;

2. *i(j) considered a function of j tends to infinity as j tends to infinity;

3. i occurs infinitely many often in sets Jj, j = 1,2,

The first condition imposes the requirement that only components of previous iterates can be used in computing

the new iterate. The second condition states that the values of an early iterate are not directly used in iterations

far in the future; eventually, newer iterates have to be used instead. This condition is necessary to guard against

the situation in which, for example, a processor crashes. The third condition guarantees that no component

is abandoned forever. An asynchronous iterative scheme corresponding to F, starting with the vector x(0) is

denoted by (F, x(0), J, S). □

Definition 2. An operator F is a Lipchitzian operator on a subset D of Rn if there exists a nonnegative n x n

matrix A such that

|F(x) — F(y)| < A|x — y|, Vx,y€D, (3)

where, if s is a vector of Rn with components zt, i = 1, ... , n, |z| denotes the vector with components

|z{|, i = 1, ... , n, and the inequality holds for every component. The matrix A will be termed a Lipchitzian

matrix for the operator F. □

2

Definition 3. An operator F from Rn to Rn is a contracting operator on a subset D of Rn if it is a T.iprhitrian

operator on D with a Lipchitzian matrix A such that p(A) < 1 (where p(A) is the spectral radius of A). □

Given these definitions, the following theorem establishes sufficient condition for ensuring the convergence

of any asynchronous iteration corresponding to F.

Theorem 1 //F is a contracting operator on a closed subset D o/Rn and t/F(D) C D, then any asynchronous

iteration (F, x(0), J, S) corresponding to F and starting with a vector x(0) converges to the unique fixed point

ofF in D.

3 The Picard Method

Consider the Initial Value Problem (IVP)

it = /(*. y), yfo) = yo (4)

where y = dy/dt We can integrate the two sides with respect to f to obtain

y(t) = yo+ f f{t, y(t))dt. (5)
Jit

We can employ the Picard Method to solve (S) by computing

yn(t) = yo+ [f(B,^-l(t))d». (6)
Jt0

a sequence of successive approximations jfi (t) to the exact solution y(t). [We are now using superscripts to refer

to the iterate and parenthesised i to indicate y at a certain value of t.] The sequence has to start somewhere; the

best guess is

y°(0 = v(<o).

Clearly if yn = yn~l, then y — y" = yn_1 solves (5) and hence (4). It can be shown that these iterates always

converge, on a suitable interval, to the true solution y(t) of the Initial Value Problem (4). The proof can be found

3

in most books on Solution of Ordinary Differential Equations (ODEs). We give a brief example of the procedure

for instructive purpose only. Consider the IVP

y = y, y(0) = i,

where y denotes dy/dt. The hue solution is y = e‘. Picard iteration proceeds as follows: rewrite the IVP in the

equivalent integral forni:

y(<) = yo+ / /(*.y(*))d*
•'to

= 1 + / y{»)da
Jo

Thus,

y°(t) = i,

y1 (<) = 1+ / lda=l + <
Jo
f* ft t2

y2^) = 1 + J yl{a)ds = i+ J + a)d* = 1 + * + 2[

and in general

yn(f) = 1+/V_1(*)<fr

Jo
. A <2 tn

= l + <+2j+ •••

which is the Taylor series expansion of e‘; each iteration adds the next term in the Taylor series.

The Picard Method carries over to system of equations; the quantities y, /(t, y) and yb ate vectors in this case

and the integration is performed component-wise.

4 Asynchronous Generalized Picard iteration

Suppose we have a system of N ODEs:

y = f(i, y), y(i0) = yo (7)

4

where y is composed of elements (yi.yz, ... , yn). Similarly the vector f consists of elements (fi, /2, ... ,fN).

The vector yo contains the initial values of the N components y (to). An asynchronous iteration proceeds along the

following sequence of computations on a multiprocessor. Assume that we have a pool of processors available.

Let Tj, j = 1, ... , be an increasing sequence of clock times. At some value of ij a processor P becomes

available. This idle processor is assigned the evaluation ofyf.P proceeds to integrate the component

*?(<) = w(M+ f ... ••• .yjr(n)«)K. (8)

Jto

The integration of the ODE from t0 to f requires evaluating fj at various C values along the integration interval.

The component yj will most likely have coupling with other components in the system of ODEs. Evaluation

of fj will require the values of all such components at any given A natural criterion will be to pick up the

most recently available values of all such components. In our proposed method however, a component does not

make its most recent values available until it has finished integration. Thus the notation used in (8) is yl^n\C),

for all yi that yj depends upon. According to condition 1 of the definition 1 of asynchronous iteration method,

3i(n) < n - 1. This indicates that yj will use the most recent values of ^ if they are available, otherwise it will

proceed to use earlier values. Note that the current value of yj (y?) is used. This component is readily available

to the processor integrating (8) because it is computing it

This scheme does not require any synchronization amongst the processors integrating various components

of the system of ODEs. At some time rk, k > j, processor P will finish integrating component y;- and will be

assigned another component yt. Note that unlike the traditional Picard method, the processor P does not carry

out further iterations after reaching the end of the integration interval. The processor is relinquished after having

confuted y?. Later, when any yt on which yj depends upon, computes its new iterate and makes it available,

component yj will have to confute yet another iterate.

This scheme is not restricted to any particular multiprocessor architecture. Shared memory multiprocessors

offer an advantage when it comes to movement of data but even in a network of processors, e.g., hypercubes or

distributed network of computers, the scheme is well suited as long as the cost of communication amongst the

elements of the network is not too expensive compared to the cost of computation itself.

5

5 The Integration Procedure

The method allows for various choices to be made for the integration procedure employed for various components

of the system of ODEs. The system of ODEs can be split into a set of sub-systems. For a particular sub-system, a

one-step method may be selected while for another, a multi-step integration method may be chosen. The method

selected can be fixed step size or variable step size. For the variable step size case, different local error tolerances

can be specified for each sub-system to control step size. The integration method maybe explicit for one sub­

system and implicit for another.

In a variable step size numerical integration procedure, the step size is partially controlled by stability con­

straints. For example, for the model problem y = \y, the stability condition for forward Euler method is

|1 + AA| < 1. If an implicit method or a predictor-corrector scheme, additional conditions have to be placed

on step size to ensure convergence of asynchronous integration. We illustrate the need for such constraint with

the following discussion. Consider the following system of ODEs:

y = Ay + /iz,

z = ny+Xz.

where y and z represent dy/dt and dz/dt respectively. Assume that jb = zo = 0. Suppose that we use backward

Euler to compute the mth iterate for y; we’ll thus compute a series of y values using the recurrence relation

C = y»-i + AnAy™ + Kftz™-1.

where hn is the step size such that tn = tn-i + hn. The superscript m in y£* refers to the mth iterate while the

subscript n refers to the value of y at in. We assume that the most recent z iterate, zm_1, is available. Define a

shift operator E as yn = Eyn-\, thus yn-i = E~'yn. We can rewrite the recurrence relation in terms of this

shift operator as

Vn = £~lsC + >*nAiC +

or

[\-h\-E-l]tf = hnz™-K

6

The iterate y"* will emerge as a vector of y values confuted at various values of t. We c?.n represent the confu­

tation in matrix-vector form:

/(1-Ahi)

-1 (1 — Xhz)

/VT\

&

/fihi

nh2

-1 (l-Afcn)/ VC/ V

or

/y?\ / (1 — Afti) \ *

\ r*r'\
.m— 1

y?
—

-i (1 - Xht) Hha

W/

-1 (1 — Xhn) / \

ZT"1

nK/ Vc-1/

The A matrix required by the Lipchitzian condition of the iteration operator is then

/(l - A/m) \-1//i/M

A =
-i (i — A/m) h/m

V -1 (l-A/ln)/ \

We make the simplifying assumption that h\ = ... = hn = h. Then,

In order to satisfying the contracting property, we must enforce

nh

(ihnJ

l-Xh < 1.

Although backward Euler is an A-stable method, this condition places a restriction on the step size chosen for

confuting any of y™. We do not yet know of a suitable method to enforce this condition. The condition would

most likely be quite complex for a system of ODEs that is not as simple as the one above. If this condition is not

satisfied, the asynchronous iteration will diverge.

7

Any such restriction is not required if an explicit method is chosen. We illustrate this by choting forward

Euler to compute the mth iterate for y. The recurrence relation for forward Euler is

iC = Vn-l + AnAy™.! + fcn/iC-Y-

Rewrite in terms of the shift operator E\

y? = E~xy™ + hn\E-'yZ +

or

[1 - ^"‘(l +/iA)]y” = h^E-'z?-1.

Computation of the vector ym can be represented in matrix-vector form;

/ 1

(-1-AA*) 1

\ /J/T\

s?
=

/ VjC/ \

m— 1 ,

yhi 0

(zi \
z?-1

flkn 0/ Vz”-1/

Or,
/y?\ / i

y? (-1 - Aha) 1

\-1 / 0

IMha 0

\ /*rl\
*2~l

\lC/ V (1 Afcn) 1/ \ ^ 0/ \z?-1/

The A matrix required by the Lipchitzian condition of the operator F is then

/ \'1/0 \

A =
(-1 - Xfh) phi 0

V (-1-Afcn) 1/ nK 0/

Clearly, p(A) = 0 so that asynchronous iteration doesn’t impose any additional requirements on the choice of

step size. Only stability requirements will restria the step size. This is intuitively obvious because for the forward

Euler method, only the previous values are used. The direction of flow of information is in the forward direction.

8

Similarly, for a predictor-corrector method with forward Euler predictor and backward Euler corrector, it can

be shown that contracting property requirement will impose the condition \hn\ < 1. For general Backward

Difference Formulae methods (BDF), the condition is |/3oAmI < 1-

For larger and more complex systems of ODEs, things get more complex. For the simple example above, n

associated with component z is known but for more complex coupling and larger system of ODEs, /i will not so

readily available. Consider a system of ODEs with a component equation

y = ••• >*. ••• .**)•

Let the zi,... z* be elements of vector z. Here n will be estimated by computing the norm fm. More than often

it would not be possible to evaluate ||/*|| analytically; it would have to be evaluated numerically.

6 The Asynchronous Integration Algorithm

The components of the system of ODEs are split into sub-systems. Possible splitting can range from one com­

ponent per sub-system to only one sub-system with all of the components. Let denote the sub-system i. Its

members will be components of the system of ODEs (7). Thus, for example, a system of 8 (iV = 8) ODEs could

be split into 3 sub-systems with die assignment

2/1 =

: < in = A(«.y)
in

\ = fifay)

if* M*>y)

yi : < in = fs(i,y)

, * =

j = M*,y)
:

in — Mt,y)

9

We now rewrite the system of N ODEs in toms of such sub-systems. Suppose we have split the N ODEs into

K sub-systems. The system is then represented as

$1 = ^i(*,Y)

% = ^a(t,Y)

y« = *jr(*,Y)

where Y = (^i, 3^2. • • • . 3te)- The choice of splitting will dictate the nature of this coupling. We then apply

the procedure (8) to the sub-systems.

The algorithm to integrate a system of N initial value ODEs is rather straight forward. Each sub-system X is

assigned a parallel thread of execution. We prefer to use the term thread because in a multiprocessor environment

the number of processors available will likely be different than the number of sub-systems we have at hand. If

there are less processors available than the number of of sub-systems then these threads will have to share the

available pool of processors. Load balancing will become an important issue in such a case. The notion of a

thread of execution will allow us to defer the issue of processor assignment while we outline our procedure. We

will address it when we discuss how the procedure has been implemented as a computer code.

The first item on the agenda for all sub-systems is to set up the initial values vector Y(t0). Once this is

done, each sub-system makes it initial values vector available to all sub-systems that depend upon it Then each

sub-system must then wait until all sub-systems it depends upon have initialized.

In the discussion that follows, we will use the terms client sub-systems and server sub-systems. For a given

sub-system, the sub-systems that it depends upon will be termed its servers while those that depend upon it will

be termed clients. For example, if the coupling in the 3-sub-systems example presented previously is as follows:

3>i = .Ftfryi.tt)

3>2 =

y3 =

3>2 is a server of 3^i, and 3^3 are servers of 3*2, and 3*3 is a server of 3*2. On the clients side, 3*2 and 3*3 are

10

clients of 3>i, is a client of and y% is a client of y^.

We will present the subsequent events from the point of view of sub-system 2 in the 3-sub-systems example

we have chosen. Sub-system 2 integrates

y2 = ^2(i,y?,y2(M.y30) (9)

using any one-step or multi-step method to obtain 3^, i.e., the second iterate. It then notifies its client-sub-system

2 that it has a new iterate and makes Ji} available to it Sub-system 2 then waits to be notified by one or both of its

server sub-systems 1 and 3. Sub-systems 1 and 3 would have performed a similar integration, perhaps at a faster

or slower pace than sub-system 2. They would also send notifications to their clients. Suppose sub-system 2

receives a notification from its server sub-system 1 while its other server sub-system, i.e., sub-system 3, is still

integrating. Sub-system 2 now proceeds with its second iteration:

y2 = F2(t,yl,y2(t),y$) (io)

to compute yf • Note that it re-uses y° because that is the most recent information it has at hand from sub-system

3. Sub-system 2 then notifies its client, sub-system number 1, and ships over to it Next time around, it may

receive notification from both of its clients, sub-system 1 and 3. It then proceeds with the next iteration.

When a notification from a server sub-system anives, the notified sub-system could either be in the middle

of iteration or it could be waiting for a notification. In the latter state, the sub-system performs the next iteration.

In the former state, it can either abort the current iteration and restart again because a more recent iterate is

available from another sub-system, or it can continue the present iteration and attend to the notification only after

the current iteration has completed. Our algorithm is designed to operate using the latter strategy, that is, sub­

systems continue the current iteration and attend to notifications only after the current iteration has completed.

We want to reduce the number of occasions a sub-system has to synchronize with other sub-systems. Moreover,

more than one notification could arrive while a sub-system is computing an iterate. Each notification tells the

sub-system how far back to go and compute another iterate. By waiting until the current iteration is done, the

sub-system can attend to all of the outstanding notifications, determine the earliest time among the integration

11

times that are part of the notificatioDS and compute the next iterate.

The goal for sub-system 2 is to integrate ^ = ^(f, Y) out to fWhenever it receives a notification from

one or both of its servers, it can integrate out to t ;inal. But it decides to forgo t ;inaj as the end point of integration

in favor of the following: upon receiving a notification, sub-system 2 begins computing a new iterate 3?” • At each

time step during the numerical integration of = ^(f, Y), sub-system 2 checks the difference between the

previous iterate -1(0 30(1 newly confuted (*)• While this difference is less than a user specified tolerance

ee, the integration continues, but the sub-system retains the last iterate. This is called the validate phase and the

sub-system checks that convergence has been achieved. When the difference |3f (t) - 3*2-1(*)l exceeds a user

specified tolerance ee at some point te, then sub-system 2 decides to integrate 3? (*) to some point where

tv = min(te -(- w,tfinal). This is called the update phase. Beyond, t*, sub-system 2 sets 3?(<) = 3>"(*«)

for tv < t < tThe interval [<«,<«,] is termed a window. The window size, that is, w can be constant,

or more interesting, computed dynamically. Our current algorithm uses a constant window size; the user can

specify a window size for each sub-system. Efficiency dictates that this window should be less than the entire

time interval. But it should not be so much less that a large number of integrations over windows are required

since each integration has an overhead. On the other band, if the window is too large, too many iterations are

required, increasing the cost A dynamic window sizing algorithm would be ideal but we do not know a suitable

algorithm yet

Once 3? is at hand, sub-system will send a notification to its clients that they need to re-iterate beyond f e.

Recall thattc is where sub-system 2 found a change larger than ee. Sub-system 2 will also make it new iterate 3?

available to its clients. In a similar manner, the servers of sub-system 2 will send notifications along with their

tc’s. Sub-system 2 takes the minimum of these te’s and begins it next iteration at that minimum.

As notifications arrive, sub-system 2 iterates to compute 3?(*). 3*?(*) and so on, ultimately reaching f/{not.

And, hopefully, so do the other sub-systems. When the entire system reaches > and there are no notifications

pending, the iteration activity stops because the all sub-systems have converged.

If a sub-system does not have any servers, that is, it does not depend upon any other sub-system then it will

12

continue witii its next iteration starting at the end of the previous window. This would happen for example if all

of the ODEs in a system were lumped into just one sub-system.

We present a pictorial example of how such an iteration proceeds. Consider a system of two ODEs:

y =

i = 9{i,V,z)

y(0) = Jto, z(0) = *0, o < < < tfinal.

We set up two

will use y and

follows:

sub-systems and start the integration for each in parallel. Because it is such a simple example, we

z instead of sub-system 1 and sub-system 2. Both notify each other that the initial iterates are as

1
1
1
1
1
1
1
Itl0■y--------------------------------------—1» ----------------------------------- L

Tinn—»
t final

Tim* —*■
t final

The first iteration begins; for brevity we will assume that threads of execution for y and z, each have a processor

so they begin without any holdups. Thread y takes a step, confutes y^fi) and compares it to y°(f i). It is very

likely that the difference would exceed the specified tolerance. Thread z would go through a similar stage. A

freeze-frame of the two will look like the following:

4ckaif

Til
t final

>• “•

Ickamg*

Til
t final

Thread y will set te equal toil, the time at which it detected change. It will create a window from te to i«, where

t„ = te + w integrate over the window without performing any difference tests along the way. Beyond tw, y1

will be set toy1 (it»).

13

The profile of the first iterate will then be:

Similarly, thread z will end up with its first iterate with the following profile:

Tim*

As soon as y has the first iterate, it will notify its client z and make the new iterate available. The notification

will also include y’s te\ z will have compute new values fort including and beyond te. Component y now awaits

notification from z. When the notification arrives, y will take t*, i.e., the value of t at which z has revised its

iterate, and look through y1, its most recent solution vector. The goal of the search would be to find the largest U

such that tk <tc < h+i- Such a tk will be taken as the starting point U for the second iteration. Again, at each

time step, y will check to see if y* (f) exceeds y1 (t) a specified tolerance. When it does, y, will create a window

14

in time, integrate over it, and send a notification to z along with y2. Pictorially, the following will occur

Tim«

Tim*

As indicated earlier, the iteration stage in which the difference check is performed at each time step is called

validate phase, and the integration over the window [te, iw] is termed update phase. Similarly, z will go through

a similar phase upon receiving a notification firom y.

tc tv t final

Updit*

15

The process continues, progressing through stages represented by the following frames:

Tim« Time

Tims

Tims

Ultimately, for some iterate m, the difference |j/m — y"*-11 will be within the tolerance. The integration will span

out to t final- Component y will not sent any notification to z. Similarly, z will end up in a similar state. With

no notifications pending and both components sitting at t final, the system would have reached convergence. The

iteration activity will cease.

Figure ?? presents a state diagram which describes the transitions through various stages of a single iteration

for a particular sub-system.

16

Figure 1: State diagram for transitions a sub-system goes through during asynchronous iteration

17

7 Implementation on a Multiprocessor

As we mentioned in the introduction, we have implemented the asynchronous integration procedure on a multipro­

cessor, shared memory system. In our case, it is an Encore Corporation’s Multimax computer with 20 National

Semiconductor NS32000 series processors. We use the Encore’s Parallel Threads Package [4] which is based

upon the Brown University’s Threads Package [2]. The computer code is written in C. It follows the traditional

environment provided by existing ODEs solvers; the user supplies the main driver, a routine to supply the initial

conditions and a routine that evaluates / in y = f (f, y). Splitting of the system of ODEs into sub-systems places

another requirement to be fulfilled by the user the user has to specify the number of sub-systems and the coupling

amongst them.

7.1 Processor Allocation

For a given set of sub-systems, the code spawns off threads of execution to run on the available processors.

The pool of threads then perform iterations on behalf of the sub-systems. As noted earlier, the number of sub­

systems, and thus the number of threads, may not be the same as the number of physical processors available.

This immediately leads to the issue of processor assignment At the simplest level, we can let the underlying

operating system (UNIX in our case) manage the thread to processor assignment More desirable, however, is to

schedule threads for execution based upon need for iteration. Consider that we have a large set of sub-systems

that are carrying out iteration. When a sub-system finishes computing an iterate it would send notifications to

its clients, that is, the sub-systems that depend upon it At any one moment there would be a number of such

pending notifications. As these get serviced, the notified sub-systems will want to carry out another iteration. An

appropriate scheduling strategy would be that an idle processor be assigned to the sub-system which has the earlier

iteration restart time. This time would be the minimum of the all the in the notifications that were serviced.

There are two ways such a scheduling decision can be made. There can either be a manager thread or a pool of

threads servicing sub-systems.

If a manager thread is spawned along with threads for each sub-system then all notifications will be routed

18

to the manager. When a sub-system wants to notify its clients, it will place a request with the manager. After

placing the request, the sub-system will suspend itself in a wait queue. The manager will take these requests and

infonn the targeted clients. The manager will then assign processors in order of the values te that are part of the

notification request; the sub-system which is notified with the earliest te will be the first one to get a processor.

The other approach is to have a pool of threads that service the sub-system. A thread from the pool carries out

an iteration on behalf of a sub-system. Upon reaching the end, the sub-system will either send a notification to

its clients or would reach f The notified sub-systems will be tagged to indicate that they need to re-iterate.

After generating the notification and making the new iterate available, the notifying sub-system will relinquish the

thread. The thread will now look through the all of the tagged sub-systems for the sub-system with the minimum

tc value. When one is found, the thread will execute the next iteration on behalf of the sub-system.

At present, we are not using either of these strategy. We are relying on the underlying operating system to

scheduling. However, we are in the process of modifying the code for the two scheduling schemes outlined above.

7.2 Data Structures for Storing and Managing Iterates

Each iterate is actually a series of values at various steps over the integration interval. When a sub-system com­

putes a new iterate, part of the previous iterate will have to replaced. The issue of storing, updating and making

newer iterates available to client sub-systems will be largely decided based upon the underlying multiprocessor

architecture. In a distributed or networked set of processors, each sub-system will likely keep a local database of

iterates of sub-systems that it needs to carry out the integration. As newer iterates arrive as part of a notification

message, the local database would be updated. In shared memory system, an obvious choice is to have a database

of iterates that is shared amongst all of the sub-systems. Whenever a sub-system needs to update its iterate it will

either go into the database itself or request a manager process to do so on its behalf. In either case, the entry in the

database for the sub-system’s iterate will require synchronized access. Our goal, however, is to cany out asyn­

chronous iteration with the least amount of synchronization. Our present implementation is on a shared memory

multiprocessor, we had to choose a data structure for the shared database that would require the least amount of

19

synchronization, e.g., locking etc.

It is not known at the outset how many values each iterate will have so the data structures used to store the

iterates have to be dynamic. A frequent operation on the iterates is interpolation; a linked list is thus a suitable

choice. It is also convenient to store and delete nodes in a linked list. Our code uses a doubly linked list to store

the iterates. When a new iterate is computed, its is linked into the existing linked list at the the appropriate point

For example, suppose the kth iterate of some component y looks like the following:

When y*+1 has been computed, it is linked in based upon the value t:

link not deleted

y*+I

Note however, that the forward pointer of the node after which the new list is inserted is changed but the reverse

pointer from the first outdated node is left in place. This way if a client using the old list backs up, it will end up in

the new segment With such an arrangement looking up values in the list does not require a lock which otherwise

would impose a major synchronization overhead. This also allows the sub-system managing the iterate to insert

a new iterate without locking. The only time any synchronization is needed is when an outdated iterate is to be

deleted and storage reclaimed.

The outdated nodes are not deleted immediately to reclaim the memory. The reason is that there could be a

client sub-system using y*. There is only one database being shared amongst all sub-systems. We can not delete

the outdated position until y is sure that no one is using the old portion. This is determined by keeping a reference

count in the database for each outdated branch. When an outdated iterate branch is created, the reference count

for the branch is set to the number of clients of the sub-system, y in this example. When a client of y comes

into the database to use the value of y’s iterate, it decrements the reference count for all of the outdated branches.

20

When the count becomes zero for a branch, y can can delete the branch and reclaim the storage.

When y*+2 is computed, it is linked in as follows:

link not deleted

link not deleted

8 Preliminary Results

To illustrate the code, we integrated the following system of ODEs which are the equations for a two-body problem

13], page 236-238:

ill = to

ik = V4

in = -yi/ivi + yi)*

in = -ifc/(yi+i£)*

Time range is 0 < i < 7.5. The initial conditions are jti(O) = 0.5, yi(0) = 0, yj(0) = 0, and 2m(0) = >/3. We

grouped all four into one sub-system, then into two sub-systems with the split yi, &> and y*, i.e..

Vi

yi

I Vl = 16

in - -vi/{v\+$)^
*

in = m

y* = -^/(yi+i^)^
V

21

and finally, into four sub-systems with one component per sub-system. The sub-systems generate a trace of their

progress which can displayed on any workstation running the X Windows System [3]. The figures we present

were generated by doing a dump of the graphics window as a bitmap and then included within the body of this

report

Figure 1 presents the results for the one sub-system case. There are three view ports in the graph. The upper

most presents the solution profiles of the four components. The middle frame has a series of five horizontal lines,

each at a higher level than the previous. These lines represent the windows te through t„. The lower most frame

presents a profile of the step sizes that were used during integration. As there is only one sub-system, the solution

profiled was not computed by iteration. The integration however, was carried out over a set of windows such that

each subsequent window starts off where the previous ended. For such one sub-system cases, our code reduces

to a typical ODEs solver. The sharp downward pointing spikes in the step sizes plot are due to the fact that for

every new iteration, the sub-system starts off with a default value of step size. A much better choice would be

the average of step sizes used in the previous iteration.

Figure 2 and 3 present similar frames for the two sub-systems case. The iterates j/(and y{ are plotted in the

top most frame in Figure 2. Note how the iterates go off the track and then fall back on track. The windows

now show overlap, or backtracking, caused when each of the two sub-systems notifies each other of a revised

value of its iterate. The progression of windows is towards the right indicating progress along i towards t final-

The profiles for step sizes show larger variation especially in the regions where the solution curves have steeper

slopes. Figure 3 presents the results for the sub-system composed of & and y4<

Figures 4 through 7 present graphics frames for the 4 sub-systems case. Each component of the system of

ODEs is being integrated asynchronously. Many more iterations were required. The iterates show significant

deviation before settling down on the correct path.

22

■g| Two body problem: one subsystem

Figure 2: Two body problem, one sub-system: profile of solution iterates, step sizes and windows.

23

Figure 3: Two body problem, two sub-systems: profile of solution iterates, step sizes and windows for sub­

system 1.

24

Figure 4: Two body problem, two sub-systems: profile of solution iterates, step sizes and windows for sub­

system 2.

Figure 5: Two body problem, four sub-systems: profile of solution iterates, step sizes and windows for sub­

system 1.

Figure 6: Two body problem, four sub-systems: profile of solution iterates, step sizes and windows for sub­

system 2.

27

Figure 7: Two body problem, four sub-systems: profile of solution iterates, step sizes and windows for sub­

system 3.

28

Figure 8: Two body problem, four sub-systems: profile of solution iterates, step sizes and windows for sub­

system 4.

9 Future Work

We have hinted at a number of issues that need to be resolved. We gather them, and a few more, in this section.

We need to determine an effective procedure to ensure the contracting property of the iteration matrix. Re­

call that if implicit methods are selected for integration of the sub-systems then asynchronous iteration places a

restriction on the step sizes chosen.

We are in the process of implementing the two processor allocation algorithm we discussed, that is, having a

manager process or a pool of processors serving sub-systems.

Large systems will require large amounts of storage space for storing the iterates. As portions of the iterates

become outdated, the storage is reclaimed but if the integration interval is large and a large number of inteimediate

steps are taken then the linked lists for the iterate could beyond the storage capacity available. One obvious

solution is that once all of the sub-systems have converged up to a certain point in the integration interval, the

iterates up to this point can be written off to an external device and die freed storage used for future nodes. We

are in the process of devising code to do so.

Once the code is in a form that we try large problems, we’ll try out our code against well known ODE solvers.

We envision that only then we’ll see a gain in using asynchronous integration over the traditional sequential codes.

We could also like to implement die code on hypercube in order to address and subsequendy attempt to resolve,

issues raised in a networked multiprocessing environment

30

References

[1] G6rard M. Baudet, Asynchronous Iterative Methods for Multiprocessors, J. ACM, Vol. 25, No. 2, (April

1978), pp. 226-244.

[2] Thomas W. Doeppner, Threads: A System for the Support of Concurrent Programming, Department of

Computer Science, Brown University, Technical Report CS-87-11, June 16,1987.

[3] E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-

Verlag, 1987.

[4] Encore Parallel Threads manual. Encore Computer Corporation, 1988.

[5] X Window System, Massachusetts Institute of Technology, 1988.

31

