

LEGIBILITY NOTICE

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

33
9/24/87
① w.b.

⑤

I-31965

DR 0312-3

ornl

ORNL/TM-10441

**OAK RIDGE
NATIONAL
LABORATORY**

MARTIN MARIETTA

**Nuclear Medicine Progress Report
for Quarter Ending March 31, 1987**

F. F. Knapp, Jr.
K. R. Ambrose
P. C. Srivastava

DISTRIBUTION OF THIS REPORT IS RESTRICTED

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

ORNL/TM-10441

DE88 000024

Contract No. DE-AC05-84OR21400

Health and Safety Research Division

NUCLEAR MEDICINE PROGRESS REPORT
FOR QUARTER ENDING MARCH 31, 1987

F. F. Knapp, Jr.

K. R. Ambrose
P. C. Srivastava

NOTICE This document contains information of a preliminary nature.
It is subject to revision or correction and therefore does not represent a
final report.

Work sponsored by
DOE Office of Health and
Environmental Research

Date Published - August 1987

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

MASTER

LB
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

Previous reports in this series:

ORNL/TM-5809	ORNL/TM-8363
ORNL/TM-5936	ORNL/TM-8428
ORNL/TM-6044	ORNL/TM-8533
ORNL/TM-6181	ORNL/TM-8619
ORNL/TM-6371	ORNL/TM-8746
ORNL/TM-6410	ORNL/TM-8827
ORNL/TM-6638	ORNL/TM-8966
ORNL/TM-6639	ORNL/TM-9037
ORNL/TM-6771	ORNL/TM-9124
ORNL/TM-6916	ORNL/TM-9343
ORNL/TM-6958	ORNL/TM-9394
ORNL/TM-7072	ORNL/TM-9480
ORNL/TM-7223	ORNL/TM-9609
ORNL/TM-7411	ORNL/TM-9707
ORNL/TM-7482	ORNL/TM-9784
ORNL/TM-7605	ORNL/TM-9937
ORNL/TM-7685	ORNL/TM-10082
ORNL/TM-7775	ORNL/TM-10238
ORNL/TM-7918	ORNL/TM-10294
ORNL/TM-8123	ORNL/TM-10377
ORNL/TM-8186	

CONTENTS

	<u>Page</u>
Summary	1
Evaluation of Metabolites from the Radioiodinated β-Methyl-branched Fatty Acid, 15-(p-Iodophenyl)- 3-R,S-methylpentadecanoic Acid (BMIPP), Using an Isolated Perfused Rat Heart System	2
Synthesis and Evaluation of New Te Fatty Acid Analogues Containing Internal Iodoalkenes	6
Agents for Medical Cooperative Programs	10
Osmium-191	10
Copper-64	10
Radioiodinated Agents	10
Other Nuclear Medicine Group Activities	11
Publications	11
Visitors	11

SUMMARY

Studies using Langendorff-perfused rat hearts have shown for the first time the formation of a polar metabolite from the methyl-branched fatty acid, BMIPP. Evaluation of the radioactive components in the outflow tract of hearts after administration of the straight-chain analogue [$I-131$]IPPA and [$I-125$]BMIPP were pursued. Analysis of lipid extracts by thin-layer chromatography illustrated the presence of a product considerably more polar than BMIPP. These results suggest for the first time that the slow myocardial clearance observed with BMIPP in clinical studies may be associated with the wash-out of an unidentified metabolite.

As a continuation of an evaluation of the effects of tellurium (Te) heteroatom position and the position of alkenyliodide substitution on myocardial uptake and retention properties, several new Te fatty acids have been synthesized and studied in rats. The new agents were prepared by coupling of internal alkenyl iodides prepared from the corresponding boronic acid analogues with sodium alkoxy carbonyl tellurols. Evaluation of the four new analogues (9- $I-C_{16}-5-Te-\Delta^9$, 11- $I-C_{18}-7-Te-\Delta^{11}$, 9- $I-C_{18}-5-Te-\Delta^9$ and 15- $I-C_{18}-5-Te-\Delta^{15}$) demonstrated an unexpected relationship between chain length, and the position of the Te heteroatom and alkenyliodide moiety.

During this period several radioiodinated agents were supplied to collaborators at the University of Michigan, the Brookhaven National Laboratory, and the University of Bonn, West Germany, for collaborative studies.

EVALUATION OF METABOLITES FROM THE RADIOIODINATED β -METHYL-BRANCHED FATTY ACID, 15-(p-IODOPHENYL)-3-R,S-METHYLPENTADECANOIC ACID (BMIPP), USING AN ISOLATED PERFUSED RAT HEART SYSTEM

The radioiodinated 3-methyl-branched fatty acid, 15-(p-[1-123]iodphenyl)-3-R,S-methylpentadecanoic acid (BMIPP), shows slow myocardial clearance in experimental animals and also humans. This agent (Figure 1) is thus a good candidate for the evaluation of regional fatty acid uptake patterns by SPECT. The identity of the radioactive component being released from the heart is of interest, however, since it could represent either "back-diffusion" of the unmetabolized BMIPP or the release of a catabolite. Although it was not anticipated that BMIPP could be catabolized to short-chain metabolites by the normal β -oxidative process because of the impediment of the 3-methyl group, catabolism through the initial stages of the first cycle of β -oxidation could proceed with the formation of the β -methyl- β -hydroxy product. Alternatively, initial α -hydroxylation followed by decarboxylation could form the racemic 3-methyl fatty acid product which could then proceed through the β -oxidative chain to form the expected short-chain catabolites. Thus, the slow release of radioactivity *in vivo* could represent back-diffusion of BMIPP, loss of a "partially" catabolized product such as the β -hydroxy- β -methyl product or wash-out of short-chain catabolites resulting from complete β -oxidation. An understanding of this process is important since it will provide a clear picture of the behaviour of BMIPP *in vivo* and will provide insight into the metabolism of β -methyl-branched fatty acids and may also provide information that can be used to design other agents in which metabolism can be completely inhibited.

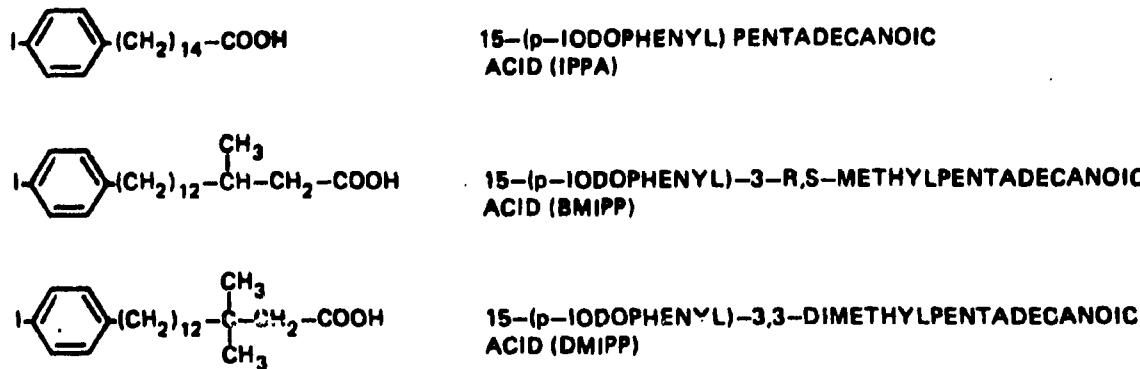


Figure 1. Structures of iodophenyl-substituted fatty acids.

To study the release of products from BMIPP and to provide a system for the isolation of sufficient amounts of the unknown component, an isolated Langendorff-perfused rat heart system has been used. Hearts from fasted rats were removed and perfused in a retrograde fashion through the aorta in the usual manner with oxygenated Krebs-Henseleit buffer at a flow rate of 10 ml/min using a peristaltic pump. The special modifications for these studies includes the jacketed chamber in which the heart was enclosed to insure the temperature was maintained at 37°C. The buffer temperature was also maintained by a coiled chamber. The partial pressures of O₂ and CO₂ were maintained at 450-550 mm and 42-45 mm, respectively, by using a 5% O₂-95% CO₂ gas mixture. The frequency of the heart beats was from 180-200 contractions/minute. The radioactive fatty acids, dissolved in albumin, were administered through the injection port and effluent samples collected each minute over a 15 min period. In this fashion the release of metabolites could be assessed independent of flow.

In Figure 2 the release of [I-125] and [I-131] products from normoxic rat hearts administered [I-131]IPPA and [I-125]BMIPP is illustrated. The clearance curve for IPPA increases rapidly to peak at about 5 min and then

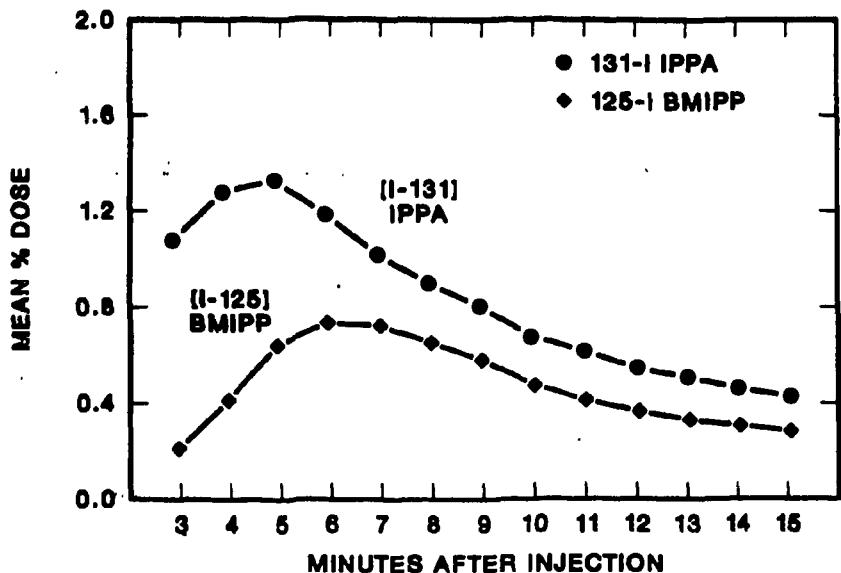


Figure 2. Time-course of radioactivity in the outflow from rat hearts ($n=5$) administered with a mixture of [$I-131$]IPPA/[$I-125$]BMIPP.

decreases with an apparent monoexponential or biexponential curve over the 15 min period. The release curve for BMIPP has a similar shape but a major difference is the release of significantly decreased levels of radioactivity which is consistent with the longer retention observed *in vivo*. In addition, the BMIPP release curve consistently peaked later (6-7 min) in all studies. To gain some insight into the identity of the components released in the outflow, representative samples were acidified and extracted with chloroform-methanol and the organic extracts dried, concentrated and analyzed by thin-layer chromatographic analysis. Since the initial perfusate sample collected during the first minute following administration of the radioiodinated fatty acids into the aortic inflow represents the injected agents cleared from the coronary circulation, this sample serves as a control. Analysis of samples for the first minute, as expected, showed the presence of [$I-131$]IPPA and [$I-125$]BMIPP (Figure 3). In contrast, analysis of the lipid extracts in samples 3, 5, 7, 10 and 15 showed levels of polar products from both IPPA and BMIPP increasing rapidly with time (Figure 4). Even after 3 min,

Figure 3. Thin-layer chromatographic (TLC) mobility of radioactive components in the initial perfusate (1 min) from hearts administered [$I-131$]IPPA/[$I-123$]BMIPP (solvent system, petroleum ether with ether-ether-acetic acid, 70:30:1).

radioactivity from IPPA had the expected mobility of ρ -iodobenzoic acid, the established metabolite from IPPA resulting from β -oxidation. Analysis of radioactivity released from BMIPP exhibited mobility much more polar than the administered BMIPP (Figure 4). The radioactive component was soluble in basic solution and could be re-extracted from acidified sample, demonstrating the presence of an acidic group, presumably a carboxylic acid.

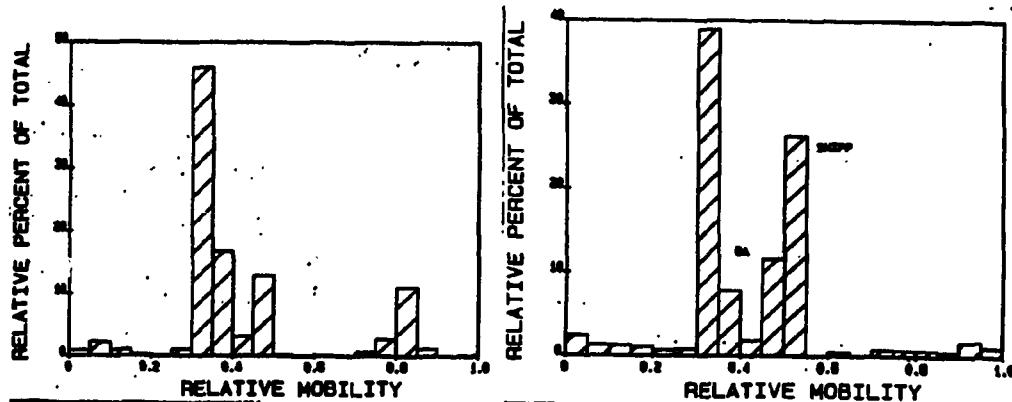


Figure 4. TLC mobility of radioactive components in the later perfusate (5 min) from hearts administered with [$I-131$]IPPA/[$I-125$]BMIPP (same solvent system as for Figure 3).

The modified fatty acid, BMIPP, was designed to inhibit β -oxidation resulting in increased retention which would facilitate evaluation of regional myocardial fatty acid uptake patterns by SPECT using the iodine-123-labeled agent. The clearance could represent back-diffusion of unaltered methyl-branched fatty acid, or the loss of a metabolite. Differentiation of these two possibilities could not be assessed *in vivo* except by the use of cardiac catheterization. The current studies were designed to evaluate the release kinetics of radioiodinated BMIPP from isolated rat hearts. The polar component released from BMIPP in these isolated rat heart studies (Figure 4) contains a carboxyl group and from the relative chromatographic polarity, it would appear to be a hydroxy acid. One possibility is the presence of 15-(*p*-iodophenyl)-3-hydroxy-3-methyl-pentadecanoic acid (β -hydroxy BMIPP or BHMIPP). Studies are now in progress to synthesize BHMIPP and to isolate sufficient levels of the unknown metabolite for mass spectral analysis.

SYNTHESIS AND EVALUATION OF NEW TE FATTY ACID ANALOGUES CONTAINING INTERNAL IODOALKENES

Development of radiolabeled long-chain fatty acids as tools to evaluate myocardial physiology and perfusion is of interest. Tellurium can be readily incorporated in the fatty acid chain while maintaining the linearity of the fatty acid molecule. The presence of tellurium is a unique structural feature that results in the prolonged retention or "trapping" of the modified fatty acids in the myocardium. Radioiodinated tellurium fatty acids have been investigated to take advantage of the attractive properties of nonradioactive Te in the fatty acid chain for prolonged myocardial retention and of ^{123}I for imaging. Radioiodide has been successfully stabilized as an iodophenyl moiety on 15-(*p*-iodophenyl)-6-tellurapentadecanoic acid (ORNL/TM-8186), and as a terminal vinyl iodide on 18-iodotellura-17-octadecenoic acid (ORNL/TM-7918) with Te in the different positions (ORNL/TM-8746). These agents show high heart uptake and high myocardial retention in rats and excellent myocardial images after injection in dogs. New radioiodinated internal iodoalkenyl

tellurium fatty acid analogues have now been prepared in conjunction with collaborators at the University of Tennessee (G. W. Kabalka et al.) to investigate further the effects of internal alkenyliodide on myocardial uptake and retention. The general synthetic route is shown in Scheme I and Scheme II. The procedure involves protection of the hydroxyl group of a terminal acetylenic alcohol (1) by reaction with dihydropyran with subsequent coupling with the requisite alkyl bromide to form the internal alkyne (2). Following acid cleavage of tetrahydropyranyl ether (3), the free alcohol (4), was converted to the tosylate (5) by the new procedure developed during this work (Varma et al, 1986). The tosylate (5) was converted to the iodide (6) by treatment with KI and the iodide then converted to the isomeric mixture of the internal alkenyl boronic acid (7). In this way a series of substrates were prepared for the preparation of Te fatty acids 12a-12d (Fig. 5).

The approach summarized in Scheme II was used to prepare the three new internal iodoalkenyl tellurium fatty acids. The structures of these three new analogues are shown in Figure 5.

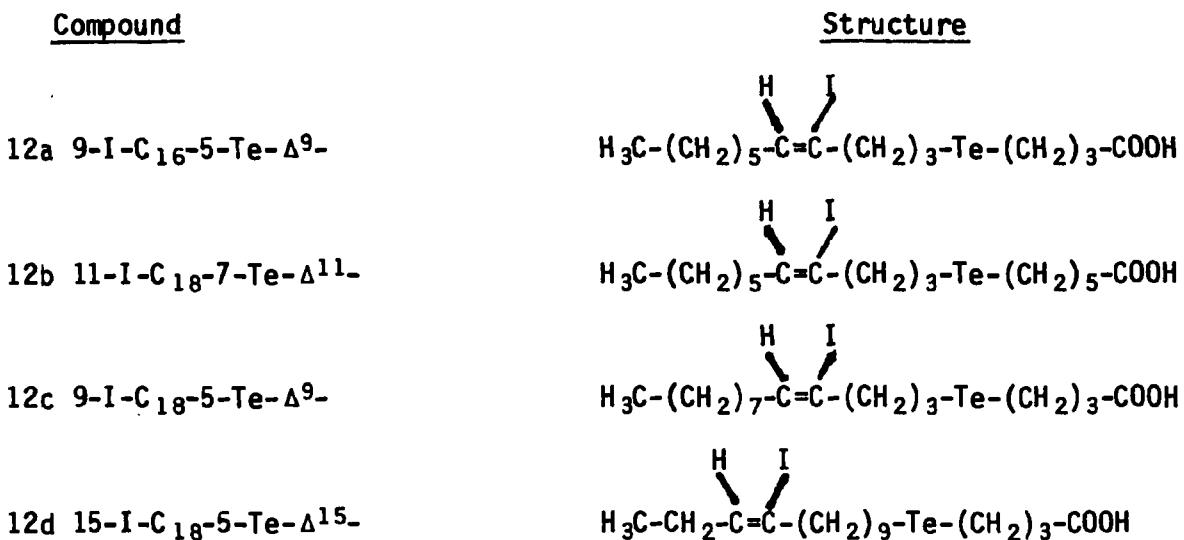
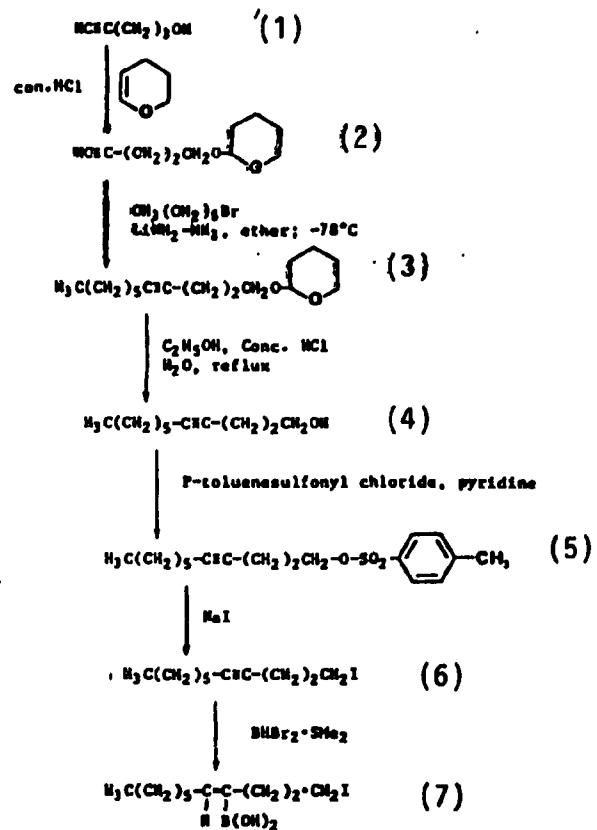
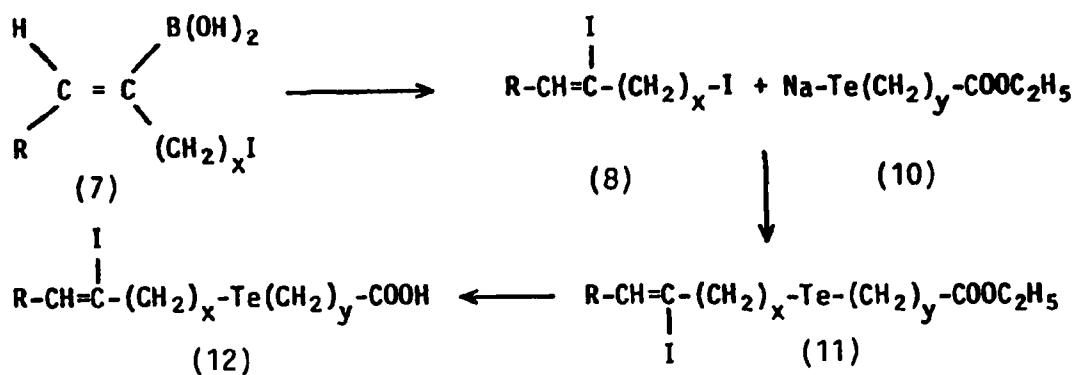




Figure 5. Structures of iodoalkenyltellurium fatty acids.

Scheme I

Scheme II

The new analogues were designed to permit an evaluation of the effects of several structural features on myocardial uptake and clearance kinetics in fasted rats. These include fatty acid chain length, the position of the tellurium heteroatom, and the position of the iodoalkenyl moiety. The goal of such structure-activity studies is to optimize the properties of these interesting molecules to show the most attractive in vivo properties. In addition, the availability of structure-activity data will permit the design of the most useful agent for further investigations.

The iodine-125-labeled fatty acid analogues were prepared by the same approach shown in Scheme II by radioiodination of the borono intermediates (7), followed by silicic acid column purification of the radioiodinated iodoalkenyl iodide intermediates and subsequent coupling with the methylcarboxyalkyl sodium tellurides (10). The esters of the fabricated fatty acids (11) were purified by column chromatography, hydrolyzed with base to the free acids (12) and then complexed with bovine serum albumin in the usual manner and administered to fasted Fischer rats. The results of these tissue-distribution studies are shown in Table 1 and demonstrate an unexpected relationship between fatty acid structure and myocardial uptake and clearance properties. Although the factors effecting the in vivo properties are not clear, these studies have shown that a combination of chain length, Te position and the relative position of the internal iodoalkenyl substitution are important factors. The most interesting observation is the clearance of analogues 12c and 12d which has not been demonstrated with other analogues.

Table 1. Distribution of radioactivity in tissues of Fischer 344 female rats following intravenous administration of E-[¹²⁵I]iodotellurium fatty acids.^a

Fatty acid, minutes after injection	Percent injected dose/gm						Mean H:8 ratio	
	Tissue							
	Heart (H)	Blood (B)	Liver	Lungs	Kidneys	Thyroid		
12a	5	5.11	0.33	14.23	0.67	...	10.44	15.5
	30	5.76	0.48	11.51	0.57	...	17.19	12.0
	60	6.52	0.32	9.24	0.50	...	28.78	20.4
12b	5	4.17	0.65	15.6	2.29	2.41	10.3	6.4
	30	4.76	0.67	12.1	1.95	2.41	11.7	7.1
	60	5.66	0.49	9.3	1.84	2.23	13.9	11.2
12c	5	2.07	1.66	9.83	2.45	2.47	21.8	1.3
	30	1.11	1.20	5.12	1.14	2.17	65.5	0.9
	60	0.66	0.89	3.39	0.78	1.26	118	0.7
12d	5	2.83	1.02	10.08	2.89	2.14	14.2	2.8
	30	1.39	0.95	5.35	1.22	2.15	47.8	1.5
	60	0.80	0.82	4.39	0.84	1.67	69.7	0.9

^a Five fasted female rats for each time period were used.

AGENTS FOR MEDICAL COOPERATIVE PROGRAMS

Osmium-191

Several shipments of osmium-191 were made during this period. Two of the new activated carbon osmium-191/iridium-191m radionuclide generators were supplied to collaborators at the UCLA Medical Center, Torrance, California (Dr. I. Mena). One shipment of osmium-191 was made to Children's Hospital, Boston, Massachusetts (Dr. S. Treves). One shipment of osmium-191 as potassium perosmate was supplied for geochemical research to the Massachusetts Institute of Technology, Cambridge, Massachusetts (Prof. S. Hart).

Copper-64

Two shipments of copper-64 were made to the Oak Ridge Associated Universities (Dr. J. Crook) during this period to study the heart uptake of Cu-citrate by PET in a canine model.

Radioiodinated Agents

Two shipments of iodine-125 labeled agents were made to collaborators. One shipment of [I-131]BMIPP was supplied to BNL, Upton, New York (Dr. P. Som), for evaluation of fatty acid uptake patterns in experimental cardiomyopathy using autoradiography. In addition, [I-125] N-(p-iodophenyl)maleimide was supplied to University of Michigan, Ann Arbor, Michigan (Dr. D. J. Buchsbaum) for antibody labeling studies. A sample of [I-131]DMIPP was supplied to the University of Bonn, West Germany (Drs. A. Kropp and H. J. Biersack).

11/12

OTHER NUCLEAR MEDICINE GROUP ACTIVITIES

Publications

K. R. Ambrose, B. A. Owen, M. M. Goodman, and F. F. Knapp, Jr.
"Evaluation of the Metabolism in Rat Hearts of Two New Radioiodinated
3-Methyl-Branched Fatty Acid Myocardial Imaging Agents," European Journal
of Nuclear Medicine, 12(10), 1987.

F. F. Knapp, Jr., M. M. Goodman, Ambrose, K. R., P. Som, A. B. Brill, K.
Yamamoto, K. Kubota, Y. Yonekura, R. Dudczak, P. Angelberger, and R.
Schmoliner "The Development of Radioiodinated 3-Methyl-Branched Fatty
Acids for Evaluation of Myocardial Disease by Single Photon Techniques,"
In, Noninvasive Measurement of Cardiac Metabolism, E. E. van der Wall,
Editor, Martinus Nijhoff Publishers, Amsterdam, pp. 159-202 (1987).

Visitors

Dr. L. A. O'Tuama, a neurologist and fellow in nuclear medicine at the
Johns Hopkins Medical Institutions, visited the Nuclear Medicine Group on
January 26, 1987. A group of East Tennessee High School students visited
on March 6, and several nuclear medicine technology students from
Vanderbilt University toured the facilities on March 13, 1987.

INTERNAL DISTRIBUTION

1. J. F. Allred	15-19. F. F. Knapp, Jr.
2. K. R. Ambrose	20. E. Newman, Jr.
3. T. A. Butler (Consultant)	21. D. C. Parzyck
4. A. P. Callahan	22. D. E. Rice
5. E. B. Cunningham	23. C. R. Richmond
6. T. Dahl	24. J. Setaro
7. K. F. Eckerman	25. P. C. Srivastava
8. A. S. Garrett, Jr., M.D.	26. P. J. Walsh
9. W. R. Garrett	27-29. Central Research Library
10. M. M. Goodman (Consultant)	30. Document Record Section
11. G. D. Griffin	31-32. Laboratory Records Department
12. A. R. Hawthorne	33. Laboratory Records, ORNL RC
13. G. W. Kabalka (Consultant)	34. ORNL Patent Section
14. S. V. Kaye	

EXTERNAL DISTRIBUTION

35. S. J. Adelstein, M.D., Shields Warren Radiation Lab., Boston, MA 02115
36. R. W. Atcher, University of Chicago, Dept. Radiology, Nucl. Med. Section, Box 429, Chicago, IL 60637
37. H. L. Atkins, M.D., Radiology Dept., State Univ. of New York, Stony Brook, NY 11794
38. R. J. Baranczuk, Biomedical Products, 7899 Mastin, Overland Park, KS 66204
39. C. Brihaye, Centre de Recherches du Cyclotron, Universite de Liege, Belgium
40. A. B. Brill, M.D., Ph.D., Commonwealth of Massachusetts, Univ. of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, Massachusetts 01605
41. T. F. Budinger, M.D., Donner Lab., LBL, Berkeley, CA 94720
42. W. Burr, M.D., Medical and Health Sciences Division, ORAU, Oak Ridge, TN 37830
43. P. Cho, OHER, U.S. DOE, MS-ER-73, Washington, D.C. 20545
44. D. W. Cole, Jr., U.S. DOE, ER-73, GTN, Washington, D.C. 20545
45. J. Crook, M.D., Ph.D., Medical and Health Sciences Division, ORAU, Oak Ridge, TN 37830
46. R. F. Dannals, Division of Nuclear Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
47. R. Dudczak, M.D., Dept. Nuclear Medicine, I. Medizinische Universitatsklinik, A-1090 Wien, Lazarettgasse 14, Vienna, Austria
48. D. R. Elmaleh, Physics Research Dept., Massachusetts General Hospital, Boston, MA 02114
49. L. Feinendegen, Institut fur Medizin, Postfach 1913, D-5170, Julich 1, Federal Republic of Germany
50. D. M. Goldenberg, M.D., Center of Molecular Medicine and Immunology, 1 Bruce Street, Newark, NJ 07103
51. M. Guillaume, Chef de Travaux, Centre de Recherches du Cyclotron, Universite de Liege, Belgium

52. D. R. Hamilton, Nuclear Medicine Branch, CIA/NCDRH/FDA, Rockville, MD 20857
53. C. J. Hardy, Chief, Isotope Division, Australian Atomic Energy Commission, Lucas Heights Research Laboratories, Private Mail Bag, Sutherland, 2232 NSW, Australia
54. J. Hiltunen, Technical Research Centre of Finland, Reactor Laboratory, Otakaari 3 A, SF-02150 Espoo, Finland
55. K. Hubner, M.D., Department of Radiology, UT Memorial Hospital, Knoxville, TN 37920
56. K. J. Irgolic, Chemistry Dept., Texas A&M Univ., College Station, TX 77840
57. A. Jones, Shields Warren Radiation Lab, Boston, MA 02115
58. G. Kirsch, Universite de Metz, Metz, France
59. D. E. Kuhl, M.D., Division of Nuclear Medicine, University of Michigan Hospitals, University Hospital BIG 412/0028, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0028
60. J. S. Laughlin, Sloan-Kettering Inst. for Cancer Research, New York, NY 10021
61. J. Logic, M.D., University of Alabama Medical Center, Birmingham, AL 35233
62. H.-J. Machulla, Institut fur Med. Strahlenphysik, Universitätsklinikum, Hufelandstrasse 55, D-4300, Essen 1, Federal Republic of Germany
63. J. N. Maddox, DOE-OHER, ER-73, Washington, DC 20545
64. R. G. Manning, Mallinckrodt, Inc., 675 McDonnell Blvd., P.O. Box 5840, St. Louis, MO 63134
65. D. Moody, Group INC-11, MS J-519, LASL, Los Alamos, NM 87545
66. Office of Assistant Manager for Energy Research and Development DOE-ORO, Oak Ridge, TN 37831
67. K. J. Panek, Mallinckrodt Diagnostica (Holland) B.V., Westerduinweg 3, P.O. Box 3, 1755 ZG Petten, Holland
68. C. L. Partain, M.D., Director, Nuclear Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
69. R. C. Reba, M.D., George Washington Univ. Med. Center, Washington, DC 20037
70. S. N. Reske, M.D., Nuklear Medizin Abteilung, RWTH Aachen, Pauwelsstrasse 1, 5100 Aachen, West Germany
71. M. Robbins, Mallinckrodt, Inc., 675 McDonnell Blvd., P.O. Box 5840, St. Louis, MO 63134
72. J. S. Robertson, DOE-OHER, ER-73/GTN, Washington, D.C. 20545
73. F. Snyder, ORAU, Oak Ridge, TN 37830
74. P. Som, DVM, Medical Dept., BNL, Upton, NY 11973
75. S. C. Srivastava, Bldg. 801, Medical Dept., BNL, Upton, NY 11973
76. A. Solomon, M.D., UT MRCH, Knoxville, TN 37920
77. H. W. Strauss, M.D., Nuclear Medicine Div., Massachusetts General Hospital, Boston, MA 02114
- 78-107. Technical Information Center, DOE, Oak Ridge, TN 37831
108. J. W. Thiessen, M.D., DOE-OHER, ER-71, Washington, DC 20545

109. F. Visser, M.D., Cardiology Dept., Free University Hospital, De Boelelaan 117, Amsterdam, The Netherlands
110. H. N. Wagner, Jr., M.D., Div. of Nuclear Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205
111. L. C. Washburn, Medical and Health Sciences Division, ORAU, Oak Ridge, TN 37830
112. A. P. Wolf, BNL, Upton, NY 11973
113. D. V. Woo, Hahnemann University, Philadelphia, PA 19102
114. R. W. Wood, Jr., DOE-OHER, Washington, DC 20545